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ABSTRACT OF THE DISSERTATION 

INSIGHTS TO PROTEIN PATHOGENICITY FROM THE LENS OF PROTEIN 

EVOLUTION 

by 

Janelle Nunez-Castilla 

Florida International University, 2022 

Miami, Florida 

Professor Jessica Siltberg-Liberles, Major Professor 

As protein sequences evolve, differences in selective constraints may lead to 

outcomes ranging from sequence conservation to structural and functional divergence. 

Evolutionary protein family analysis can illuminate which protein regions are likely to 

diverge or remain conserved in sequence, structure, and function. Moreover, 

nonsynonymous mutations in pathogens may result in the emergence of protein regions 

that affect the behavior of pathogenic proteins within a host and host response. I aimed to 

gain insight on pathogenic proteins from cancer and viruses using an evolutionary 

perspective. First, I examined p53, a conformationally flexible, multifunctional protein 

mutated in ~50% of human cancers. Multifunctional proteins may experience rapid 

sequence divergence given trade-offs between functions, while proteins with important 

functions may be more constrained. How, then, does a protein like p53 evolve? I assessed 

the evolutionary dynamics of structural and regulatory properties in the p53 family, 

revealing paralog-specific patterns of functional divergence. I also studied flaviviruses, 

like Dengue and Zika virus, whose conformational flexibility contributes to antibody-

dependent enhancement (ADE). ADE has long complicated vaccine development for 
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these viruses, making antiviral drug development an attractive alternative. I identified 

fitness-critical sites conserved in sequence and structure in the proteome of flaviviruses 

with the potential to act as broadly neutralizing antiviral drug target sites. I later 

developed Epitopedia, a computational method for epitope-based prediction of molecular 

mimicry. Molecular mimicry occurs when regions of antigenic proteins resemble protein 

regions from the host or other pathogens, leading to antibody cross-reactivity at these 

sites which can result in autoimmunity or have a protective effect. I applied Epitopedia to 

the antigenic Spike protein from SARS-CoV-2, the causative agent of COVID-19. 

Molecular mimicry may explain the varied symptoms and outcomes seen in COVID-19 

patients. I found instances of molecular mimicry in Spike associated with COVID-19-

related blood-clotting disorders and cardiac disease, with implications on disease 

treatment and vaccine design.  
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Binding of SARS-CoV-2 Spike to TN1 Fab antibody. Equilibrated structure
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INTRODUCTION 
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Proteins diverge with time and can evolve at different rates within the same 

species. For instance, proteins with more critical functions tend to be more conserved 

than other proteins (Zhang & Yang, 2015). Moreover, residues within the same protein 

can evolve at different rates depending on a site’s structural and functional constraints 

(Echave et al., 2016), which in turn depend on the environment and intensity of selection 

(Wollenberg Valero, 2020). Significant site-specific rate-shifts between clades in a 

phylogeny may be indicative of functional divergence (Gaucher et al., 2002) and can 

reveal determinants of specificity (Penn et al., 2008). In unrelated organisms, such as 

viral pathogens and their hosts, convergent evolution of pathogenic proteins can result in 

short linear motif mimics with the potential to rewire host protein interaction networks 

(Chemes et al., 2015). Some motif mimics in the pathogen may correspond to 

immunogenic epitopes in the host (Sarmady et al., 2011) and may trigger a host 

autoimmune response (Cusick et al., 2012). 

The classic paradigm has been that protein structure determines protein function. 

It would appear to follow, then, that intrinsically disordered proteins lacking a well-

defined structure should be similarly lacking in function. However, conformationally 

flexible proteins are able to sample protein structure space (their conformational 

ensemble) and can thus adopt multiple functions, more accurately described by the 

“protein structure-function continuum” model (Uversky, 2019). Conformational 

flexibility, together with protein promiscuity, promotes evolvability by facilitating 

functional and structural divergence (Tokuriki & Tawfik, 2009). Further, disordered 

regions have been found to diverge more rapidly than ordered regions (Brown et al., 

2002). However, secondary structure appears to play a role here based on large scale 
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predictions across eukaryotic protein families, as disordered sites prone to secondary 

structure have been found to be more conserved than ordered sites also within secondary 

structure (Ahrens et al., 2016). Sites predicted to be both disordered and within secondary 

structure elements may in fact be molecular recognition features (MoRFs), which 

undergo real-time disorder-to-order transitions upon binding (Mohan et al., 2006). 

MoRFs are known to promote interactions with multiple partners and are a contributor to 

functional promiscuity (Cumberworth et al., 2013). 

Redundancy generated by whole-genome and small-scale gene duplication allows 

for functional diversification. The most common outcome following a duplication event 

is that one copy retains the original function while the other copy is lost through 

pseudogenization (Lynch & Conery, 2000). Alternatively, duplicated genes may be 

retained through neofunctionalization, where one gene retains the original function while 

the duplicate may explore novel functions (Ohno, 1970), and subfunctionalization, where 

the original function is divided between the two copies (Force et al., 1999). Retention of 

duplicates is affected by gene stoichiometry (dosage effects), such that duplicates from 

whole-genome duplication are retained at higher rates than those from small-scale 

duplications (Hughes & Liberles, 2008). The interaction promiscuity of intrinsically 

disordered proteins is thought to contribute to their sensitivity to dosage effects (Vavouri 

et al., 2009). On the other hand, multiple interaction partners provide opportunities for 

subfunctionalization and duplicate retention (Hughes & Liberles, 2008). Additionally, 

rewiring regions of intrinsic disorder between paralogs (related by duplication) can also 

result in functional divergence (Ahrens et al., 2017). 
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 The tumor suppressor protein p53 is often described as the Guardian of the 

Genome. Furthermore, the most common genetic alteration found in human cancers is 

inactivation of p53, with roughly 50% of cancers having a mutated p53 (Soussi & 

Béroud, 2001). p53 is an intrinsically disordered transcription factor that functions as a 

hub protein (Collavin et al., 2010) with roles in maintaining genome integrity, regulating 

the cell cycle, inducing apoptosis, and more (Bai & Zhu, 2006). Its paralogs, p63 and 

p73, are also hubs considered to be tumor suppressor proteins although they have clearer 

roles in developmental processes (Collavin et al., 2010). Intrinsically disordered regions 

are often enriched in post-translational modifications (Pejaver et al., 2014) and regulate 

the formation of specific interactions (Uversky et al., 2008), as is the case for the 

conformationally flexible p53 (Oldfield et al., 2008). Amino acid substitutions may alter 

the conformational and functional ensemble of a disordered protein like p53, which can 

have results ranging from no functional effect to gain or loss of function. For a 

multifunctional protein, the fitness equation can be balanced in a variety of ways if these 

substitutions lead to the improvement of some functions but the impairment of others. 

Thus, there may be expansion of a nearly-neutral network that allows for rapid sequence 

divergence (Wagner, 2008). Alternatively, the nearly-neutral network may be narrowed 

by the fragility of a protein with many important functions, resulting in slow sequence 

divergence (Assis & Kondrashov, 2014). To provide insight on the evolution of the 

conformationally flexible, multifunctional p53 protein and potential functional 

divergence in its family, I explored the evolutionary dynamics of functional domains, 

intrinsic disorder, secondary structure, and phosphorylation across p53 and its paralogs. 
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The flavivirus family includes viruses such as West Nile Virus (WNV), Dengue 

Virus (DENV), and Zika Virus (ZIKV), the last of which caused an epidemic in the 

Americas from 2015-2016. WNV is transmitted by a Culex spp. vector while DENV and 

ZIKV are both transmitted by an Aedes spp. vector. In phylogenies built for individual 

proteins, ZIKV is sometimes found to share a more recent common ancestor with WNV 

than with DENV (Ortiz et al., 2013). Furthermore, there have been conflicting reports on 

ZIKV’s potential to be transmitted by a Culex spp. vector (Guedes et al., 2017; Lourenço-

de-Oliveira et al., 2018). Antibody-dependent enhancement (ADE) is a phenomenon 

whereby a prior infection with a closely related virus or serotype can worsen a 

subsequent viral infection due to insufficient neutralization by existing antibodies. ADE 

has been observed between the four DENV serotypes (Dejnirattisai et al., 2016; 

Priyamvada et al., 2016), DENV and ZIKV (Dejnirattisai et al., 2016; Stettler et al., 

2016), and WNV and ZIKV (Bardina et al., 2017). ADE has complicated ZIVK (Almeida 

et al., 2018) and DENV vaccine development (Shukla et al., 2020) with vaccine-

enhanced DENV infections having been observed (Hadinegoro et al., 2015), suggesting 

vaccination efforts may be counterproductive (Ferguson et al., 2016). For DENV, 

changes in pH have been found to induce functionally relevant conformational transitions 

in the Envelope protein (Stiasny et al., 2011), and this conformational flexibility has been 

implicated in altered antibody binding affinity (Kuhn et al., 2015). Given the ADE among 

closely related flaviviruses and the difficulties facing vaccine development against 

DENV and ZIKV, efforts may be better concentrated on the development of broadly 

neutralizing antiviral drugs that consider the evolutionary context of flaviviruses and 

avoid conformationally flexible regions. To better understand where ZIKV fits in the 
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flavivirus phylogeny and to explore the potential of broadly neutralizing antiviral drug 

targets as an alternative to ADE-hindered vaccine efforts, I performed a study to identify 

fitness-critical sites across ZIKV+DENV and WNV clades. 

One member from another group of viruses has recently been the cause of a years-

long pandemic. The coronavirus SARS-CoV-2 is the causative agent of COVID-19, a 

disease whose typical symptoms include fever, cough, shortness of breath (Guan et al., 

2020; Wang et al., 2020), and loss of taste or smell (Dawson et al., 2021). As of early 

July 2022, 554 million cases of COVID-19 have been reported worldwide (World Health 

Organization, 2022). Recent studies indicate that an estimated one third are asymptomatic 

(Sah et al., 2021), although many COVID-19 infected individuals experience a variety of 

complications including liver injury (Tian & Ye, 2020), kidney injury (Han & Ye, 2021), 

and cardiovascular complications (Long et al., 2020). Similar cardiovascular 

complications have been observed following vaccination against SARS-CoV-2 as well 

(Greinacher et al., 2021; Helms et al., 2021; Patone et al., 2021; Schultz et al., 2021). One 

of the main antigenic proteins in SARS-CoV-2 is Spike (Voss et al., 2021), a protein that 

protrudes from the viral surface and enables entry into host cells (Shang et al., 2020). 

Spike is the primary antigenic component in the vaccines against SARS-CoV-2. So, 

while symptom severity following SARS-CoV-2 infection and vaccination is currently 

not well understood, molecular mimicry between SARS-CoV-2 Spike and other antigenic 

or human proteins may offer an explanation. Molecular mimicry refers to shared regions 

of high molecular similarity in unrelated proteins that allow them to perform similar 

interactions with other proteins (Cusick et al., 2012). If the mimicry occurs between an 

antigenic protein and a human protein, cross-reactive antibodies may be produced which 
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can lead to an autoimmune response (Getts et al., 2013). For example, SARS-CoV-2 

Spike may present protein regions that closely resemble epitopes (antigenic protein 

regions that elicit an immune response) from human proteins, triggering the production of 

cross-reactive antibodies that erroneously target self-proteins, exacerbating disease 

symptoms. On the other hand, molecular mimicry may result in heterologous immunity, 

where prior exposure to a pathogen can result in protective immunity against a different 

pathogen sharing a mimicry region (Agrawal, 2019). Here, if an individual has been 

previously exposed to one such pathogen, then upon infection with SARS-CoV-2, 

molecular mimicry may trigger an immune response sufficient to prevent symptom onset. 

The study of molecular mimicry can provide insight on disease pathogenesis, improve 

therapeutic treatment, and inform vaccine design. As such, a means to predict molecular 

mimicry of known immune epitopes would be of great importance to the broader 

scientific and medical community. I developed a program, Epitopedia, that predicts 

molecular mimicry between unrelated proteins. Epitopedia was applied to the Spike 

protein from SARS-CoV-2 to identify potential regions of molecular mimicry. 

 The general aim of my doctoral study is to gain insights concerning the evolution 

of pathogenic proteins from cancer and viruses. I investigate functional divergence in the 

p53 tumor suppressor protein family. In doing so, I illuminate that p53 is a rapidly 

evolving protein that appears to still be exploring its function, perhaps explaining why it 

is so often found mutated in various human cancers. I also identify evolutionarily 

constrained sites in the flavivirus proteome with the potential to act as sites for broadly 

neutralizing antiviral drugs. I present Epitopedia, a novel and broadly accessible 

computational pipeline for the prediction of molecular mimicry from known immune 
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epitopes. I then apply Epitopedia to the SARS-CoV-2 Spike protein to understand if 

molecular mimicry could provide an explanation for the variety of disease severity seen 

in individuals who experience COVID-19. I provide a brief outline of the work 

performed in the upcoming chapters below.  

 

Functional Diversification After Gene Duplication: Paralog Specific Regions of 

Structural Disorder and Phosphorylation in p53, p63, and p73 

 In the second chapter of this dissertation, I investigate functional divergence in 

the p53 protein family. For nearly 300 vertebrate sequences, I used sequence-based 

predictors to determine intrinsic disorder, secondary structure, and phosphorylation 

propensity. I then evaluated the evolutionary dynamics of these structural/functional 

features in addition to the evolutionary dynamics of the amino acid sequence on a per-site 

basis. I further assessed the percentage of sites exhibiting rapid evolutionary rates for 

these four properties across the various domains and linkers found in the p53 protein 

family. I also mapped the evolutionary dynamics of intrinsic disorder and fraction of 

intrinsic disorder to structural representatives for the three shared domains in this protein 

family. Lastly, I evaluated patterns of intrinsic disorder for the p53 DNA-binding domain 

for a subset of vertebrate sequences compared to invertebrate sequences. Changes in 

domain composition from invertebrate to vertebrate proteins were also analyzed.  
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Exploring Functional Constraints in the Proteomes of Zika, Dengue, and Other 

Flaviviruses to Identify Fitness-Critical Sites 

 In the third chapter, I identify evolutionarily constrained sites in the flavivirus 

proteome that are conserved in sequence, structural order, and secondary structure, and 

present these sites as candidates for broadly neutralizing antiviral drugs. Sites meeting 

these criteria were considered fitness-critical and are referred to as target sites. I searched 

for target sites across the full phylogeny of 42 flaviviruses as well as in a clade-specific 

manner. All target sites were assessed for surface accessibility when possible. I 

investigated to what extent the identified target sites remained conserved across 

thousands of Zika virus, Dengue virus, and West Nile virus strains. Further, I determined 

site-specific evolutionary rates for non-gapped sites in the multiple sequence alignment 

and analyzed sites experiencing significant rate-shifts between clades as a proxy for 

functional divergence and determinants of vector specificity.  

 

Epitopedia: Identifying Molecular Mimicry Between Pathogens and Known Immune 

Epitopes 

 In the fourth chapter, I present Epitopedia (Balbin et al., 2021), a computational 

pipeline for the prediction of molecular mimicry of known epitopes. Epitopedia works by 

taking a structure from the Protein Data Bank (PDB) (Berman et al., 2000) and using the 

corresponding sequence to BLAST (Altschul et al., 1990) against linear sequence 

epitopes found in the Immune Epitope Database (Vita et al., 2019). Epitope hits that have 

at least 5 consecutive amino acids identical to the query are, when possible, further 

analyzed for structural similarity. Structural representatives for the hits can be identified 
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from either PDB or AlphaFold2 models of the human proteome (Tunyasuvunakool et al., 

2021). In these instances, the corresponding protein region on the query structure is 

assessed by DSSP (Kabsch & Sander, 1983) to ensure that a minimum of 3 consecutive 

amino acids are surface accessible and TM-align (Zhang & Skolnick, 2005) is used to 

calculate the RMSD between the query structure and the hit structure. Hits with an 

RMSD of at most 1Å are considered candidates for molecular mimicry. Further, I 

evaluated pentapeptide structural space by comparing the RMSD of pentapeptide pairs 

from the main secondary structure classes (helix, extended, and coil) at various levels of 

sequence identity (from 0-100%).  

 

Potential Autoimmunity Resulting from Molecular Mimicry Between SARS-CoV-2 Spike 

and Human Proteins 

 Lastly, in the fifth chapter of this dissertation, I use Epitopedia (Balbin et al., 

2021) to predict molecular mimicry of the SARS-CoV-2 Spike protein. For all molecular 

mimicry candidates (see previous section for description), I indirectly evaluated 

autoimmune potential by assessing how often each molecular mimicry pentapeptide motif 

was found in the human proteome. I performed more thorough investigations on two 

mimicry motifs: one from human thrombopoietin, and one found in multiple human 

proteins and the respiratory syncytial virus glycoprotein. For the mimicry motif in human 

thrombopoietin, the PDB structure was found bound to an antibody. Thus, the ability of 

the mimicry motif on SARS-CoV-2 Spike to bind to this antibody was assessed through 

molecular dynamics simulations and antibody-antigen interface complementarity was 

assessed with MaSIF-search (Gainza et al., 2019). For the second mimicry motif, I argue 
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that there is compelling evidence in the literature supporting this motif’s potential to 

produce cardiac disease complications of autoimmune origin in COVID-19 patients. 
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ABSTRACT 

Conformational and functional flexibility promote protein evolvability. High 

evolvability allows related proteins to functionally diverge and perhaps to 

neostructuralize. p53 is a multifunctional protein frequently referred to as the Guardian of 

the Genome–a hub for e.g. incoming and outgoing signals in apoptosis and DNA repair. 

p53 has been found to be structurally disordered, an extreme form of conformational 

flexibility. Here, p53, and its paralogs p63 and p73, were studied for further insights into 

the evolutionary dynamics of structural disorder, secondary structure, and 

phosphorylation. This study is focused on the post gene duplication phase for the p53 

family in vertebrates, but also visits the origin of the protein family and the early domain 

loss and gain events. Functional divergence, measured by rapid evolutionary dynamics of 

protein domains, structural properties, and phosphorylation propensity, is inferred across 

vertebrate p53 proteins, in p63 and p73 from fish, and between the three paralogs. In 

particular, structurally disordered regions are redistributed among paralogs, but within 

clades redistribution of structural disorder also appears to be an ongoing process. Despite 

its deemed importance as the Guardian of the Genome, p53 is indeed a protein with high 

evolvability as seen not only in rearranged structural disorder, but also in fluctuating 

domain sequence signatures among lineages. 

 

INTRODUCTION 

Proteins are dynamic, with a natural tendency to rearrange their conformational 

ensembles in response to the local environment [1]. Conformational flexibility is 

associated with functional promiscuity and together they promote evolvability [2]. 
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Evolvability offers a route to functional and structural divergence among related proteins, 

allowing related proteins to functionally diversify and perhaps to neostructuralize [3] and 

could manifest as a fold transition, a domain change, or a change in conformational 

flexibility. Conformational flexibility is enabled through the interplay between amino 

acid residues in proteins and the degree of flexibility depends on the nature of the amino 

acids. Similarly, structurally disordered protein regions are conformationally flexible. It 

follows that if the property of structural disorder is not evolutionarily conserved for 

homologous sites in a protein family, conformational and functional divergence may be 

inferred. 

 Recognized as the Guardian of the Genome, yet infamous for its frequent 

implication in cancer; p53 is a versatile protein, known to perform numerous functions 

from DNA binding as a transcription factor to a regulator of apoptosis and beyond [4]. 

With potential to interact with multiple proteins, p53 has been coined a hub, forming an 

epicenter of incoming and outgoing signals, such as post-translational modifications and 

interactions with other biomolecules [5]. Conformational flexibility enables p53 to form 

specific interactions in a regulated fashion [6]. Consequently, a majority of p53’s 

interactions are mediated through structurally disordered regions, which are often 

enriched in post-translational modifications regulating biomolecular interactions, and p53 

is no exception [7]. Many of the structurally disordered regions transition to order upon 

binding [7], while others may endure a shift in the population of the p53 conformational 

ensemble [8]. Not only is structural disorder essential for p53’s broad functionality, it is 

accompanied by a complex fitness equation to be considered for every amino acid 
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substitution in this protein. It was recently reported that the structurally disordered 

regions in the p53 family were highly diversified in amino acid sequence [9]. 

 For every amino acid substitution, the conformational and functional ensemble 

may be altered, with plausible scenarios ranging from no change to gain-or-loss of 

function. While globular protein domains must fold to function, structurally disordered 

regions may be less constrained, challenging the common concept of structure being 

more conserved than sequence. Many possibilities to balance the fitness equation exist if 

some functions are benefitted and others slightly impaired. This could result in an 

expanded nearly-neutral network that would allow rapid sequence divergence [10]. 

However, for a protein with many extremely important functions, fragility may narrow 

the nearly-neutral network ultimately resulting in slow sequence divergence [11]. When a 

multifunctional, structurally disordered protein like p53 accumulates substitutions on 

evolutionary time scales, does its functional ensemble diverge? The complexity of this 

question is apparent; structurally disordered proteins are frequently not found to have 

their complete structural ensemble experimentally determined, and changes in 

multifunctionality, as seen for a protein hub, are difficult to conclusively deduce 

experimentally on evolutionary time scales. Here, we take an evolutionary approach 

informed by linear predictions to investigate the evolutionary dynamics of structural 

disorder, secondary structure, functional domains, and phosphorylation, in addition to 

amino acid substitutions, to gain further insights into the functional ensemble and its 

potential divergence in the p53 family. 
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RESULTS 

 

Origins 

Reported sightings of a p53 protein and perhaps even a p63/p73 protein in 

choanoflagellates and invertebrates, suggest that the evolutionary record of p53 predates 

the beginning of the animal lineage, Metazoa [12]. Thus, a representative p53 family 

phylogeny including a selection of species ranging from choanoflagellates to primates 

was constructed for the p53 DNA binding domain (p53 DBD) (Fig 1A). The phylogeny 

confirms that proteins containing the p53 DBD are found across Metazoa and in 

choanoflagellates (Fig 1A). In addition to p53 DBD, choanoflagellates and annelids also 

contain oligomerization domains (ODs) and Sterile Alpha Motif domains (SAMs), while 

molluscs contain the transactivation domain (TAD), p53 DBD, OD, and SAM. 

Considering that the same four domain combination is recovered in early chordates, this 

indicates that this four domain cassette was present prior to the emergence of Ecdysozoa 

including arthropods (Fig 1B). In the ecdysozoan lineage the p53 ancestor has rapidly 

diverged and at times regions have been lost, resulting in weak or obliterated traces of the 

other domains. In hemichordates and early chordates, p53 DBD is found in combinations 

with OD, TAD and/or SAM. Generally, in non-vertebrates, proteins that not only contain 

the p53 DBD but additional parts of the four domain cassette tend to cluster, suggesting 

that more conserved functional sequence motifs may indeed remain within their p53 

DBD, compared to the others. Further, cnidarian clusters with the multidomain proteins 

suggesting that they too may have more of the original functionality left. Noteworthy is 

that the annelid and mollusc clade, containing L. gigantea that comprises the four domain 

cassette, fall inside the hemichordate and early chordate group. B. floridae has two 
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copies; one (XP_002598770) has the p53 DBD and OD and falls far from all vertebrate 

p53 domains in this phylogeny, the other (XP_002613954) has the entire four domain 

cassette. This four domain cassette protein forms the closest outgroup to the entire 

vertebrate p53 family in this phylogeny and is considered the last common ancestor of all 

p53, p63 and p73 proteins in vertebrates, in agreement with taxonomy and previous 

studies [13,14]. In vertebrates, the p53 family consists of two primary clades: one has all 

p53 proteins, and the other is further split into the p63 and the p73 clades, indicating that 

p63 and p73 are more similar to each other than to p53. 
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Figure 1. p53 origins. (A) Overview of the p53 family phylogeny including 74 

representative species across Metazoa and in choanoflagellates, built based on their p53 

DBD domains. For the invertebrate part of the tree, support values at the nodes indicate 

posterior probabilities. Nodes with posterior probability <0.5 are unresolved. For detailed 
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support values and for the vertebrate clade, see Appendix 1. (B) Pfam domain 

architectures showing the multidomain context in which the p53 DBDs are found. (C) 

Heat map representation of the disorder propensities predicted by IUPred [15] based on 

the full-length proteins. Rows correspond to protein sequences and columns to alignment 

sites; the color gradient from blue to white to red mirrors the disorder propensity gradient 

from low (blue) to high (red), with white being the boundary between order and disorder 

(alignment gaps are colored in grey). 

 

Vertebrate expansion 

The gene duplication pattern resulting in three vertebrate proteins from one 

ancestral protein is consistent with two whole genome duplications that supposedly 

occurred at the time of early vertebrates, after the divergence of B. floridae but before 

sharks diverged [13]. To further study the p53 family in vertebrates, a larger vertebrate 

specific phylogeny was reconstructed. This phylogeny was based on a full-length 

alignment of 301 sequences with 101, 102, and 98 sequences per p53, p63, and p73 clade, 

respectively (Appendix 2). The phylogeny shows three specific clades, in agreement with 

the invertebrate/vertebrate p53 DBD domain tree. Indeed, most vertebrate genomes, from 

shark to man, seem to encode three genes that belong to the p53 protein family [16], but 

there are exceptions. Notably, p53 is missing from most of the avian genomes (further 

discussed below). In addition, there are some lineage-specific small scale duplications of 

p53. Compared to the ancestral p53 family protein from B. floridae, all vertebrate 

proteins in the p53 family have lost domains, but no domains have been added. Proteins 

in the p63 and p73 clades overall share the three domain composition of p53 DBD, OD, 

and SAM. TAD is not identified by Pfam (Appendix 3). In the p53 clade, the 

evolutionary dynamics of TAD is high. TAD is present in shark, but missing from several 

ray-finned fish, present in lobe-finned fish and snakes, missing in alligators and birds, 

and present in most mammals (Appendix 3). For the proteins that lack TAD, the sequence 
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may remain but the TAD signature is vague. All p53 proteins lack SAM, thus, it was 

likely lost before sharks diverged. Rarely, SAM is lost from p63 (P. sinensis and B. 

mutus) or p73 (U. maritimus), and OD is not found in two sequences in the p53 clade. 

One is after a lineage-specific duplication in E. edwardii and the second is from the only 

bird representative found in data derived from bird genome data, P. humilis. Lastly, the 

N-terminus and linkers between domains are variable in length, and in some cases linkers 

are even absent. 

Birds are not well represented in the p53 clade. Only two bird p53 sequences 

could be found despite extensive efforts. Notably, the sequence for p53 from G. gallus 

[17] is not found in its whole genome sequence [18,19]. The only avian genome that has 

remnants of p53 is P. humilis [20], although this p53-like sequence only encodes the p53 

DBD. G. gallus p53 has the p53 DBD and the OD but like many other reptiles, it lacks 

TAD. Further, these two bird sequences fall outside the reptilian clade as the outgroup to 

mammals and thus, we cannot conclude that these are the main p53 proteins in P. humilis 

or G. gallus. However, given that G. gallus and P. humilis are distantly related birds and 

that they fall close to their expected location in the p53 family phylogeny (Appendix 2), it 

seems plausible that other bird genomes should still encode at least a p53-like protein, but 

sequencing it from avian genomes appears challenging.  

Domain losses or gains between related proteins are strong indications of 

functional divergence. A domain loss can occur if the sequence diverges beyond 

recognition or if the region is physically lost [21]. A domain (and a linker) can also 

appear lost, if different isoforms or partial sequences are considered. Over time, the 

domain composition of the p53 family has been altered, with high rate of domain loss in 
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Ecdysozoa where many p53 DBD containing proteins are too short to contain the other 

domains, but some also have highly divergent OD and SAM domains that no longer 

generate a significant Pfam domain prediction. In early vertebrates, an ancestral four 

domain cassette protein was duplicated and subdivided into different proteins, p53, p63, 

and p73. The p53 clade lost SAM and experienced rapid change in the TAD signature 

sequence. The p63/p73 clade appears to not change in its current domain organization, 

but the sequence that once encoded the TAD domain (and may still be present in p63 and 

p73) has faded beyond recognition, probably prior to the duplication that yielded p63 and 

p73. Thus, it is possible that a subfunctionalization event followed the first duplication; 

p53 got most of the TAD domain function, while the p63/p73 ancestor kept the SAM 

domain. 

Sequence divergence: Rate changes at homologous sites 

 Following the gene duplication resulting in p63 and p73, p63 is much more 

constrained, manifested by highly conserved sequences among different species, while 

the p73 clade is less conserved in sequence. The phylogenies based on full-length protein 

sequence alignments and their corresponding nucleotide sequence alignment reveal that 

the rate of sequence divergence is greater in the p53 clade (Appendix 2).  

 A pairwise comparison (based on the full-length protein alignment) between 

human and shark sequences in the p53, p63, and p73 clades respectively reveal 51.55%, 

76.13% and 76.65% sequence identity. Consequently, p63 and p73 are more similar, with 

61.81% sequence identity when comparing shark sequences and 59.24% sequence 

identity when comparing the human sequences. Further, pairwise sequence identity for 

shark p53 vs. shark p63 and shark p73, reveal 49.02% and 49.86% respectively. 
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Interestingly, the same comparisons made with the human proteins, p53 vs. p63 and p73, 

reveal 40.99% and 42.82% pairwise sequence identity, respectively. In summary, the 

shark p53 family proteins have diverged less than the human counterparts, in accordance 

with the significantly slower divergence rate found in sharks compared to other 

vertebrates [22]. 

Evolutionary dynamics of structural disorder 

 Highly dependent on conformational flexibility, the proteins in the p53 family are 

known to vary in stability; p63 is more stable than p73 and the least stable is p53 [23]. 

Limited studies of p53 proteins from different species show variation in levels of stability 

also within the p53 clade. Here, we predicted structural disorder propensity as an 

approximation for conformational flexibility. The disorder profile for the entire p53 

family reveals that the predicted disorder propensity per site is highly variable across the 

entire length of the protein (Fig 2). Dividing the p53 family into the p53, p63, and p73 

clades, reveals that the p63 protein is conserved in disorder propensity across the entire 

protein, while p53 and p73 show multiple regions with varying disorder propensities 

across their clades (Fig 2). Classifying the sites into either disorder (if the structural 

disorder propensity is ≥0.4) or order (if the structural disorder propensity is <0.4), reveals 

that, on average, predicted disorder fractions per protein are similar in p53 and p63 clades 

and higher in p73 clade (means: 0.62 and 0.60 and 0.69, with standard deviations: 0.07, 

0.03 and 0.05, respectively). Proteins in the p53 clade show a broader range of disorder, 

ranging from 0.40 to 0.78 (Fig 2C). However, since p53 has a different domain 

composition than p63 and p73, comparing only the DBD offers further insights. DBDs in 

the p53 clade are, on average, predicted to be more ordered than the DBDs in p63 and 
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p73, with p73 being more disordered than p63 (Fig 2C). The mean and standard 

deviations are 0.43 (s.d. 0.09), 0.54 (s.d. 0.03) and 0.58 (s.d. 0.08) in p53, p63 and p73 

clades (differences in means between them are significant based on non-parametric tests 

with p-values <0.05). In the p63 and p73 clades, a decrease in the fraction of disorder in 

DBD domains in ray-finned fish can be observed (Appendix 4). On the contrary, the p53 

clade shows the opposite trend, with many ray-finned fish being among the most 

disordered. It should also be noted that the lobe-finned fish L. chalumnae have the most 

ordered DBD among the entire vertebrate p53 family (Appendix 4). However, also 

considering the invertebrate p53 DBD, the fractions of disorder in the p53 DBDs are on 

average smaller than in vertebrates but also more variable within the group (mean 0.23, 

s.d. 0.16). Single-domain proteins are predicted to be more ordered than those that have 

contained more of the four domain cassette (Appendix 5).  
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Figure 2. Disorder propensity across the p53 family in vertebrates. (A) Cartoon 

representation of the p53 family DNA-based phylogeny is shown (p53 clade, grey; p63 
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clade, blue; p73 clade, green). The p53, p63, and p73 clades contain 101, 102, and 98 

sequences, respectively, ranging from shark to human. Horizontal width represents 

sequence divergence. (B) The profiles of disorder propensity predicted by IUPred [15] 

are plotted per site according to the multiple sequence alignment. Profiles colored by 

clade (i) and by species according to the color guide for sequences in the p53 clade (ii), 

p73 clade (iii), and p63 clade (iv). The cut-off applied to assign structural disorder (≥0.4) 

or order (<0.4) is marked by the red line. (C) Boxplots showing the fraction of predicted 

structural disorder for the 301 vertebrate proteins and for the p53 DBD domain for the 

same vertebrates and for 47 invertebrates separately (all differences in means are 

statistically significant based on non-parametric tests with p-values <0.5 with the 

exception of p53-p63 disorder fractions in full length proteins where p-value = 0.25). 

 

 Although the amount of structural disorder is important for the overall stability of 

a protein, the location of the disordered and ordered regions, as well as the multidomain 

context, are crucial. While p63 proteins are consistent for both disorder amount and 

location across species, the disorder amount and location vary greatly in p53 and p73 

proteins from different species, clearly indicating that structural disorder is not conserved 

here (Fig 2). To address in which regions structural disorder was not conserved, the 

transition rate of structural disorder-order was examined across the p53 family and in the 

different clades. The continuous disorder propensity per residue of every protein in the 

p53 family was mapped onto its corresponding site in the multiple sequence alignment. 

The resulting heat map, with the sequences arranged corresponding to the phylogenetic 

tree for the p53 family, reveal interesting patterns of regions that are conserved or 

changing in disorder propensity (Fig 3A). To further quantify the evolutionary dynamics 

of structural disorder, the site specific rate of disorder-to-order transition (DOT) was 

inferred over the phylogeny based on a binary matrix converted from the disorder 

propensity heat map matrix using the same cut-off as above. 
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Figure 3. Graphical representation of sequence-based predictions in vertebrates. 

Heat maps for structural traits plotted in the order of the DNA-based phylogenetic tree 

context, showing taxa names as boxes colored according to the color guide in Fig 2. The 

heat maps are showing sequence-based predictions mapped to their corresponding residue 

sites on the multiple sequence alignment (gaps in the alignment are colored grey): (A) 

continuous structural disorder propensities by IUPred [15] colored according to the 

gradient in Fig 1, (B) secondary structure predictions by PSIPRED [24] displaying loop 

(white), alpha helix (purple) and beta strand (yellow), and (C) sites predicted to be 

phosphorylated by NetPhos [25] using a 0.75 cut-off (red). Above the heat maps, 

normalized evolutionary rates per site are shown for amino acid sequence (SEQ) in green 

[26] vs binary traits [27] of disorder-order transitions (DOT) in orange (upper left), 

secondary structure elements-loop transitions (SLT) in blue (upper center), and 

phosphorylation transitions (PT) in pink (upper right). All evolutionary rates were 

normalized with a mean of zero and standard deviation of 1 (negative rates for slow 

evolving sites and positive rates for fast evolving sites). Grey shaded areas delimitate 

Pfam domain regions. For greater detail on the p53 clade, see Appendix 6.  
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Further, amino acid (sequence) substitution rates per site (SEQ) were inferred (Fig 

3).  For all rates, throughout this study, positive rates evolve faster than average and 

negative rates evolve slower than average. DOT is faster than average in most of the p53 

spanning region, except in the p53 DBD itself. For the part of the C-terminus that is 

missing in p53, but before the SAM domain, the sequence is diverging fast, but DOT is 

slow. Towards the end of SAM and in the C-terminus, p63 and p73 show rapid DOT. 

Evolutionary dynamics of secondary structure elements 

 With a high degree and varying amount of disorder across the p53 family, an 

analysis of the secondary structure elements propensities was suitable. Mapped in a heat 

map context, similar to that for the disorder propensity, reveal multiple regions with 

secondary structure transitions between sequences in the same clade and in a clade-

specific manner (Fig 3). To quantify the evolutionary dynamics of secondary structure 

elements (alpha helix and beta strand) vs. loop across the phylogeny, a binary matrix for 

these properties was used to infer rates for secondary structure to loop transitions 

(SLT) (Fig 3). Sites with rapid SLT are found across the entire length of the alignment. 

Remarkably, the mostly ordered p53 DBD shows several sites with rapid SLT indicating 

that the structure is fluctuating among species. Also for the seemingly highly similar p63 

and p73, like for the DOT, SLT is rapid in the SAM domain. 

Evolutionary dynamics of phosphorylation sites 

 Since phosphorylation frequently modulates the conformations of disordered 

regions in a regulatory fashion, an analysis of predicted phosphorylation sites was 

conducted. Here the heat map shows the locations of predicted phosphorylation sites in a 

binary fashion. Since only Ser, Thr, and Tyr can be phosphorylated, the amount of Ser, 
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Thr, and Tyr may also be important for how many phosphorylation sites are predicted. 

However, while there are significant differences in the fraction of Ser, Thr, and Tyr 

among the different clades (p53, mean 0.17, s.d. 0.01; p63 mean 0.2, s.d. 0.01; p73, mean 

0.18, s.d. 0.01) there is no significant difference in the fraction of sites predicted to be 

phosphorylated when comparing p53, p63 and p73 mean values (p53, mean 0.06, s.d. 

0.01; p63, mean 0.06, s.d. 0.01; p73, mean 0.05, s.d. 0.01, significance based on non-

parametric tests with p-value < 0.05). In all clades, about 5% of all sites are predicted to 

be phosphorylated (Appendix 7). To quantify the evolutionary dynamics of 

phosphorylation sites across the phylogeny, the binary matrix was used to infer rates for 

presence or absence of phosphorylation sites (PT) (Fig 3). Sites with rapid PT are 

enriched in the linker regions. 

Functional divergence by changes in SEQ, DOT, SLT, and PT rates 

 

 Regions that are rapidly changing in disorder, secondary structure, and 

phosphorylation are likely less important for a conserved function. These rates are 

calculated for the entire vertebrate p53 family and clade-specific patterns are therefore 

indistinct. To gain resolution on the clade level, clade-specific rates were estimated 

(Appendices 8 and 9). Plotting the different rates in an accumulative manner shows that 

gapped sites indeed have high rates (Fig 4). Since the mere presence of an indel indicates 

functional change, or perhaps an alternative isoform or a poorly aligned region, our 

attention is directed to the sites that have less than 10% gaps (Fig 4). For these sites, 

quantifying the number of sites with rapid DOT, SLT, PT, and SEQ, plus the number of 

sites that are always fast or always slow for each linker and domain region across the 

alignment informs which traits are diverging in the different regions (Fig 5A). 
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Considering the p53 family level, the greater fraction of rapid DOT is found in TAD, the 

greater fraction of rapid SEQ is found in L1, and the greater fraction of rapid PT is found 

in L2. The greater fraction of rapid SLT is in L3, however, since the proteins in the p53 

clade are shorter than the proteins in the p63 and p73 clades, comparisons beyond the OD 

domain should be made between p63 and p73 only. Considering the p53 clade (Fig 5B), 

TAD still has the greater fraction of rapid DOT, and L2 is still high in PT, and L1 in 

SEQ, but SLT is rather slow. In the p73 clade (Fig 5C), the C-terminus has the greater 

fraction of rapid DOT, but even the OD domain has almost half of the sites undergoing 

rapid DOT. SEQ is rather rapid in all linkers, and SLT is rapid for >40% of the 66 sites in 

the SAM domain. In the p63 clade (Fig 5D), few sites are rapid. In this clade, we note 

many regions with >50% of sites with all rates slow. OD from p63 and p73 have similar 

patterns, but more sites are rapid in SLT and PT for p63. The pattern for the OD in p53 is 

different. Further comparing the C-terminus of p63 to the C-terminus of p73, p63 is more 

constrained.  
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Figure 4. Accumulated evolutionary rates per site in vertebrates. Accumulated 

evolutionary rates per site, (A) for the p53 family, (B-D) per clade, p53, p73, p63. SEQ, 

DOT, SLT, and PT colored according to Fig 3. Light pink shaded areas delimitate Pfam 

domain regions. Grey shaded areas have at least 10% gaps. One site with accumulated 

value >10 is marked with a dot. 
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Figure 5. Distribution of rapid evolutionary rates per region for sites with <10% 

gaps in vertebrates. The number of sites with above average rates are shown, (A) for the 

p53 family, (B-D) per clade p53, p73, and p63. SEQ, DOT, SLT, and PT colored 

according to Fig 3. In addition, the number of sites with all rates below average 

(ALL_slow: light blue) and all rates above average (ALL_fast: brown) are shown. The 
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numbers below each region label correspond to the total number of sites kept in that 

region after filtering out all sites with at least 10% gaps. 

 

Structural changes in regions important for molecular interactions 

 All prediction methods applied are intentionally based on linear sequences and 

not on 3D structures since the repertoire of 3D structures, although quite impressive for 

the p53 family, may only provide a limited set of snapshots of the conformational 

ensemble in which these proteins exist. However, the structural context is valuable and 

site specific DOT as well as the site specific fractions of predicted disorder were mapped 

onto structures for TAD, p53 DBD, and OD (all structures used were from human p53 or 

human p63, and only sites present in the PDB structure were mapped) (Fig 6).  

For TAD, the MDM2 binding site is shown (Fig 6A and 6E). Here, moderate 

DOT is observed for the p53 family. On the clade level, the p53 clade shows rapid DOT 

(Fig 6B), p73 shows slow DOT (Fig 6C) and p63 has sites with a mixture of slow and 

rapid DOT (Fig 6D). For disorder conservation in TAD, on the p53 family level and on 

the p53 clade level intermediate conservation of disorder is observed (Fig 6E and 6F). 

p73 shows high conservation of disorder (Fig 6G) and p63 shows low conservation of 

disorder (Fig 6H).   

 For p53 DBD, the tetrameric state with DNA bound is displayed for the p53 

family (Fig 6A and 6E), but for each individual clade, only one of the monomers is 

shown (Fig 6B-6D and 6F-6H). In general, the region involved in forming the DNA 

binding p53 DBD dimer and in coordinating Zn as cofactor, has rapid DOT in the p53 

clade, as shown in the left circle (Fig 6B). Here, p63 and p73 have slower DOT (Fig 6C 

and 6D) and conserved disorder (Fig 6G and 6H), while p53 has less conserved disorder 

(Fig 6F). The p53 clade has rapid DOT at the end of beta strand 4 (B4) and the following 
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loop (Fig 6F, right circle). The end of the same beta strand shows rapid DOT in p73, 

while p63 has rapid DOT in the loop. Further, for a second beta strand (B1) in the right 

circle, p53 is ordered while both p63 and p73 are disordered. Lastly, one of the long beta 

strands (B10) in the main beta sheet has conserved disorder in p53 while p63 and p73 

have conserved order. 

 For OD, the two different tetrameric states are displayed for the p53 family (Fig 

6A and 6E), but for each individual clade, only one of the monomers is shown (Fig 6B-

6D and 6F-6H). Earlier studies of the tetramerization in p53 vs. p63 and p73 revealed that 

the latter two require an additional alpha helix at the C-terminus of OD in order to form 

stable tetramers and that heterotetramers between p63 and p73, but not p53, can form 

[28]. Thus, different PDB structures were used to map the functional tetrameric states for 

p53 and p63/p73, respectively. On the p53 family level, the area around the central 

horizontal axis and the ends have rapid DOT, while the rest has intermediate DOT. In the 

p53 clade, DOT is slow except around the horizontal axis (Fig 6B). For p63 and p73, 

DOT is rapid, perhaps with a slower tendency at the horizontal axis (Fig 6D and 6C). For 

disorder conservation in OD, p53 has conserved disorder, with slightly less conservation 

around the horizontal axis (Fig 6F-6H). In p73, sites are more conserved in disorder or 

lack of disorder, but some sites are not conserved in either property. In p63, most sites are 

conserved in either disorder or complete lack of disorder. 
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Figure 6. Three dimensional context of disorder-order transitions (DOT) and 

structural disorder conservation in vertebrates. DOT and disorder fraction (gaps 

included) per site are shown mapped onto representative PDB structures for TAD (PDB 

code 3dac [29]), p53 DBD (PDB code 4hje [30]), and OD domains (PDB code 1olg [31] 

for p53 and 4a9z [To be Published] for p63/p73); (A) DOT, and (E) disorder fraction for 

the p53 family showing, from left to right, TAD binding interface with MDM2, p53 DBD 

domains in their functional tetrameric state binding DNA and Zn as cofactor, and ODs in 

their functional tetrameric state (on top, values were mapped onto a p53 tetramer, and on 

the bottom values were mapped onto a p63 tetramer); (B-D) DOT and (F-H) disorder 

fraction per clade p53, p73, and p63  were mapped onto monomeric states. For further 

information on the ranges of the mapped regions, see Appendix 10. In addition, a p53 
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DBD domain colored by the rainbow color scheme based on secondary structure 

succession (from blue to red corresponding to N-terminus and C-terminus, respectively) 

and mapped onto a string of secondary structure elements is shown inside the box. The 

same string of secondary structure elements is shown in (F-H) colored by disorder 

fractions for an easier visualization of the differences across paralogs. 

 

Diverging regulation through phosphorylation 

 To investigate if phosphorylation may be one of the mechanisms utilized to 

differentiate the regulatory pathways of p53, p63, and p73 from each other, shared and 

clade-specific phosphorylation sites were identified using a 50% majority rule either 

within a clade or across the entire p53 family. In total, 66 phosphorylation sites were 

identified (Appendix 11). Of these 66 sites, only two sites were predicted to be 

phosphorylated for all three clades. One, and three, sites were shared across p53/p73 and 

p53/p63, respectively, while eight sites were shared across p63/p73. The remaining 52 

sites were clade-specific. In the p53, p63, and p73 clades, respectively, 12, 28, and 12 

sites were predicted to be phosphorylated in more than 50% of the sequences for each 

clade. Since p53 proteins have been extensively studied, many experimental 

phosphorylation sites are known. For nine out of the 12 p53 clade-specific sites identified 

here, the NetPhos predictions are in agreement with the experimental data in the 

PhosphoSite database (as of Dec. 2015) that includes conserved phosphorylation sites for 

p53 across human, mouse, rat, rabbit and green monkey [32]. For two of the three 

remaining sites, the adjacent site has been experimentally validated to be phosphorylated. 

None of the 12 p53 clade-specific sites have been experimentally reported to be 

phosphorylated in PhosphoSite for either p63 or p73 homologs. For p63 and p73 clade-

specific sites, no phosphorylations have been experimentally reported in PhosphoSite for 

the corresponding site in the p53 homologs, in agreement with the NetPhos predictions. 
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Indeed, clade-specific positioning of phosphorylation sites in the different clades in the 

p53 family seem to contribute to their specific regulatory pathways. Further, not only 

does the phosphorylation site pattern differ between clades, but the p53 family also seem 

to exploit another strategy for functional diversification through shifts in the type of post-

translational modification in homologous sites across paralogs. In particular, for at least 

three of the p63 and/or p73 clade-specific phosphorylation sites, p53 is also post-

translationally modified, but with a different modification (Fig 7 and Appendix 11). 

Alignment site 253 (TAD region) is predicted to be phosphorylated in the p73 clade (S26 

in human p73). This site has Leu in most p63 sequences and Asn in some p53 sequences. 

For human p53, this site corresponds to Asn30 that has been found to be methylated on 

the carboxyl by PIMT [33,34]. Similarly, alignment site 498 (p53 DBD region) is 

predicted to be phosphorylated in the p63 clade (S250 in human p63). This site has Gly in 

all p73 sequences and Cys in some p53 sequences. For human p53, this site corresponds 

to Cys182 that has been found to be glutathionylated [34]. Lastly, alignment site 744 (OD 

region) is predicted to be phosphorylated in the p63 clade (T410 in human p63). This site 

has Asn in all p73 sequences and Arg in most p53 sequences. For human p53, this site 

corresponds to Arg337 that is known to be dimethylated [34]. Further, changes in amino 

acid states with compensatory effects through negatively charged amino acids were 

observed, e.g. alignment site 225 is phosphorylated in p53 and p63, but has Glu in p73, 

suggesting that p73 may resemble the phosphorylated state. Also other changes in amino 

acid among these sites maintain the majority of the physicochemical properties, as in Tyr-

Phe transitions, while removing or adding a regulatory switch. Interestingly, some 

observed transitions are directly involving Ser, Thr or Tyr residues. Phosphorylation 
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transitions between Ser/Thr (e.g. alignment site 471) are, in general, expected to conserve 

kinase partner and thus, conserve the regulatory mechanism, while transitions from 

Ser/Thr phosphorylations to Tyr phosphorylations suggest divergent mechanisms of 

regulation via different kinases. Alignment site 164 in p63 clade switches from Ser in 

ray-finned fish to Tyr in the rest of species (with shark as an exception), suggesting 

divergent regulation in ray-finned fish p63 proteins. Thus, differential regulation within 

orthologs is implied. Also, alignment site 165 is known to be phosphorylated in human 

p63 (Tyr36) in PhosphoSite, but this phosphorylation site is missing in all fish, where 

shark has Cys and the others Phe or Leu. 
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Figure 7. Shared and clade-specific predicted phosphorylation patterns. (A) 

WebLogos [35] per clade showing 66 alignment positions following a 50% majority rule 

of phosphorylation predictions based on a phosphorylation cut-off = 0.75 (NetPhos), gaps 

included. (B) Phosphorylation predictions mapped onto their alignment sites (numeration 

based on the full alignment), with scores ranging from 0 (blue) to 1 (red) with 0.5 as the 

midpoint (white). Gaps are shown in grey. The colored boxes on the left show the 

distribution of species sorted by the phylogenetic tree following the color scheme as in 

Fig 2. Shared and clade-specific phosphorylation sites are distributed along domains 

(yellow shaded areas) and linkers. Sites marked with a circle means p53 clade-specific 

(black, the phosphorylation site is experimentally validated in PhosphoSite; grey, an 

adjacent site is experimentally validated to be phosphorylated in PhosphoSite). Sites 

marked with a star are predicted to be phosphorylated in a p63 or p73 clade-specific 

manner while p53 has a different experimentally verified posttranslational modification 

[34].  
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DISCUSSION 

 Using linear sequence predictors, properties of structural disorder (IUPred), 

secondary structure (PSIPRED), and phosphorylation sites (NetPhos) have been inferred. 

It is important to remember that these are predictions and cannot be perfect given that 

they are (i) independently aiming to predict traits that may depend on each other, (ii) 

using only the linear sequence context without considering long-range sequence contacts, 

and (iii) based on experimental data that may not reflect the dynamic nature of a protein 

sequence, e.g. one PDB structure is merely a snapshot of a conformational ensemble [36]. 

The accuracy for PSIPRED is >80% compared to actual experimentally determined 

protein structures [37]. For disordered proteins, fewer proteins are experimentally 

determined to be disordered. For IUPred, comparing to IDEAL (a small database of 

disordered proteins [number of proteins = 207]) [38] the accuracy is approximately 85%, 

but comparing to DisProt (a slightly larger database of disordered proteins [number of 

proteins = 794]) [39] the accuracy is approximately 62% [40]. However, it has been 

found that IUPred is more accurate in predicting order vs. disorder for DisProt proteins if 

the cut-off is set to 0.4 instead of the intended 0.5 [39,41]. In a different study, IUPred 

predictions of 0.4 were frequently found for disordered residues in partially disordered 

proteins [42]. Thus, we used the 0.4 cut-off to infer order vs. disorder. The sensitivity 

reported for NetPhos predictions cover a range from 69–96% [25], partially due to the 

lack of insufficient data available to train phosphorylation predictors [43]. Still, these are 

all standard prediction methods, widely used in computational and molecular biology 

when experimental data is not available. 
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  By comparing approximately 300 protein sequences from the vertebrate p53 

family and an additional ~50 invertebrate p53 DBD domain sequences, we have 

investigated diverging properties from sequence to structure to regulation in the p53 

family. From the invertebrate p53 DBD phylogeny, it appears that p53 DBD sequences 

primarily form clades based on the domain content of the full-length protein. If the p53 

DBD containing proteins from Fig 1 are arranged by species in the order of taxonomy 

and with focus on their domain composition, a picture of the main evolutionary events of 

the p53 family emerges (Fig 8). As previously shown, a three domain p53 DBD 

containing protein is present in choanoflagellates [12]. The shared precursor of this 

protein and the very first metazoan p53 protein must have had at least three of the four 

domains found in present day vertebrate p53 family proteins. We observe proteins with 

all four domains in gastropods, hemichordates, and early chordates. Since these belong to 

Bilateria, it is clear that the bilaterian ancestor had all four domains. It should also be 

noted that other species not included here, such as the placozoan, Trichoplax adhaerens, 

have an MDM2 binding site [44]. Although Pfam does not classify this protein to have a 

TAD domain, the MDM2 binding site indicates that it does, or at least that it used to have 

a TAD domain. Thus, TAD predates the divergence of Bilateria and Placozoa. Further, 

TAD and the other non-p53 DBD domains, are frequently lost (Fig 8). In Ecdysozoa, 

some of these domain losses are due to actual sequence segment loss and others are due 

to the sequence signature being depleted. Altogether, this clearly suggests that early 

metazoan, and perhaps even choanoflagellates have p53 family proteins that diverged less 

than many of the ecdysozoan p53 family proteins that have lost most domains and 

frequently only consist of the p53 DBD itself. There may be other equally or more remote 
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p53 DBD proteins in other invertebrates, like e.g. CEP-1 in Caenorhabditis elegans [44]. 

Lineage-specific gene duplications are frequent in invertebrates, but a last common 

ancestor of all proteins in the vertebrate p53 family is shared with B. floridae (Figs 1 and 

8). 

 

Figure 8. Major evolutionary events in the early p53 family. The sequences in Fig 1 

are arranged by NIH Common tree taxonomy to show the evolutionary order of events 

(left). Branches with evidence of gene duplications are marked with a star. Branches with 

domain loss are marked with a triangle. Branches are not to scale. The protein 

distribution per species is shown (right). Presence of domains per protein are colored 

according to the color scheme for domains in Fig 1, with the addition that grey denotes 

missing domain and white denotes that no additional proteins were detected. 

 

It is also clear that the p53 DBD is less structurally disordered in single domain 

invertebrate proteins. In vertebrates, the three paralogs p53, p63, and p73, are diverging 

at different rates: p63 is highly constrained while p53 is not. Ray-finned fish are 

demonstrating rapid lineage-specific diversification among all three paralogs. Although 

this study is mostly focused on the functional domains and their divergence, the inter-
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domain linkers vary in length and in disorder/order and secondary structure composition. 

Linkers are not just flexible spacers but important for controlling the conformational 

ensemble [45]. The divergence in linker 1 between p53 and p63 and p73 is profound and 

suggests functional change. TAD is rapidly diverging amongst p53 in different 

vertebrates, and has already diverged beyond Pfam’s domain detection ability in p63 and 

p73, even if some of TAD’s ancestral functionality may have remained. For p53, MDM2 

is a critical regulator [44]. When MDM2 binds to key residues F19, W23, and L26 in the 

human p53 TAD, it can further ubiquitinate p53 on Lys residues throughout the p53 

protein marking it for proteasomal degradation (reviewed in [46]). p73 was found to bind 

MDM2 in the same region, and although binding of MDM2 prevented p73’s 

transcriptional activity, it was not ubiquitinated [47]. Recently, a study found p73 to be 

ubiquitinated by MDM2 but p73 was not degraded [48]. For p63, the MDM2 interaction 

is much weaker [49]. Thus, the differential disorder among paralogs in the MDM2 

binding region amongst these paralogs suggest and support divergent functional 

dependence on MDM2. The MDM2 binding region is frequently lost among ray-finned 

fish p53 proteins, and the TAD Pfam domain in general is not detected in p63 and p73, 

although the homologous sequence may still be there. Still, remnants of the MDM2 

binding site have been found in p53 from early metazoans [44] further supporting that 

this is an ancestral function. 

 Additional indications of clade-specific functional divergence emerges from the 

patterns of phosphorylation. Indeed, functionally relevant phosphorylation transitions 

were identified and present an interesting picture of how these three paralogs have 

diversified in the realm of phospho-signaling. Since phosphorylation is performed by 
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different kinases in response to various signals these seemingly small changes can allow 

proteins to specialize after a gene duplication. Of the three members of the p53 family, 

p63 is more constrained to diverge in sequence. The p63 clade has 28 clade-specific 

predicted phosphorylation sites above 50% conservation, compared to 12 in the p53 and 

p73 clades alike, suggesting that phosphorylation sites may be lost on the latter two. For 

at least two of the clade-specific phosphorylation sites in p63, p53 is also post-

translationally modified but with a different modification, further enforcing distinct 

regulatory mechanisms acting on these three paralogs. 

 Null-mice of p63 or p73 are severely impacted and do not live long while null-

mice of p53 survive to adulthood [50], suggesting that p53 is dispensable but p63 and p73 

are not. The functional overlap between p53, p63, and p73 is hampered by the complexity 

of the protein family [51]. p53 presents lineage-specific changes and one can speculate 

that perhaps p53 is rapidly diversifying in a near-neutral mode due to remaining 

functional redundancy with p63 and p73. 

 p53 is a puzzling protein, known to cause and prevent cancer, prevalently 

mutated, in cancerous and non-cancerous cells [52]. Regardless, it cannot be expected to 

be functionally conserved amongst invertebrates with different domain composition, nor 

amongst vertebrates. Interpreting the p53 family from a molecular evolution perspective, 

p63 and p73 are predominantly responsible for most of the ancient function as indicated 

by stronger conservation of sequence and the properties here analyzed, but even in these 

two clades divergent regions suggest ongoing functional divergence. From a systems 

biology perspective, diversification in phosphorylation alters the signaling and interaction 

networks in which these different proteins act. From a biophysical perspective, non-
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conserved disorder has been interpreted as non-functional [53]. Here non-conserved 

disorder is found in the DNA binding region of p53, while p63 and p73 both have 

conserved disorder. This suggests functional diversification of the DNA binding region in 

p53 causing some species to become ordered in this region, perhaps bypassing a 

regulatory step of DNA binding regulation. Thus, an alternative interpretation for non-

conserved disorder (rapid DOT) could be that it enables or disables fine-tuned signaling, 

rapid rewiring, or gain and loss of function(s) in a lineage-specific manner, offering a 

boost to biological diversity. In p53, all scenarios are possible. In the ray-finned fish 

clade, p53 is rapidly changing compared to the rest of the vertebrates, with many changes 

from fish to fish in the TAD domain. Also p63 and p73 have ray-finned fish specific 

changes. For p73, the p53 DBD is more ordered in ray-finned fish than in the rest of the 

p73 clade. For p63, the OD domain is more ordered in ray-finned fish than in the rest of 

the p63 clade. Co-evolution is probable. p53 from the lobe-finned fish, L. chalumnae has 

remarkably little disorder. Was the last common ancestor of p53 more ordered than it is 

today or has disorder been lost in L. chalumnae? Given that the rest of the vertebrate p53 

family is more disordered, it is likely that L. chalumae has lost disorder. Without 

disorder, is L. chalumnae’s p53 still a multifunctional protein, and does it hold clues to 

critical, non-redundant, p53 functions, perhaps with simplified regulation? Further, what 

is happening to p53 in the avian genomes? 

 p53 is an innovative protein. While many proteins simply lose function in 

response to a mutation, many cancer causing mutations in p53 are thought to cause a 

gain-of-function [54], perhaps through mutation-driven conformational selection effects 

[55]. If a mutation can cause a gain-of-function, can controlled experimental conditions 
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with wt-p53 in vitro have similar effects? Some gain-of-function effects seen in cancer 

mutants may shift the conformational ensemble since structurally disordered proteins are 

prone to adapt to their environmental conditions (mutation-driven conformational 

selection [55] vs. allosteric conformational selection [56]). Both of these effects could 

impact p53 in vitro, in vivo, and in a tumor cell context. 

 Inevitably, ongoing functional divergence is present in the p53 family, and 

especially in the p53 clade. The Guardian of the Genome gives the impression of still 

exploring its function and does not fit the picture of a resilient Guardian. Perhaps, a more 

appropriate way to refer to p53 is as a Gambler of the Genome? 

 

METHODS 

Sequence retrieval 

 Three datasets were constructed: (i) the p53 protein family at the whole protein 

level in vertebrates, (ii) the p53 protein family at the nucleotide level in vertebrates, and 

(iii) the p53 protein family at the DNA-binding domain level in a representative set of 

vertebrate sequences and non-vertebrates. For (i), NCBI BLAST [57] was performed 

using the blastp algorithm with the human p53 protein sequence (NCBI reference 

sequence: NP_000537.3) against vertebrates in the RefSeq database [58]. To minimize 

redundancy, only the longest sequence from the same gene was chosen as the 

representative. Partial or much longer proteins were removed to maintain a high quality 

multiple sequence alignment. In some instances, sequences from key species missing in 

the RefSeq database were instead identified by BLAST against the nr database. For (ii), 

the corresponding nucleotide sequences for the amino acids sequences in (i) were 
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retrieved from NCBI. For the final dataset (iii), NCBI BLAST was performed using the 

blastp algorithm with the human p53 protein DNA-binding domain excluding vertebrates 

in the RefSeq database to get non-vertebrate sequences. Partial proteins with an 

incomplete p53 DBD were removed to maintain a high quality multiple sequence 

alignment. To minimize redundancy and to reduce the dataset a selection of sequences 

was used. 

For major vertebrate taxonomic groups, a representative organism with sequence 

information for all three paralogs in the p53 protein family was selected from (i). 

Vertebrate organisms included in (iii) were: Homo sapiens, Bos taurus, Gallus gallus, 

Anolis carolinensis, Xenopus tropicalis, Latimeria chalumnae, Takifugu rubripes, Danio 

rerio, and Callorhinchus milii. Sequence identifiers for all vertebrate sequences are given 

in Appendix 12 and protein identifiers are included in the phylogenetic trees that show 

sequence names. 

Phylogenetic reconstruction 

 Sequences for datasets (i) and (iii) were aligned with MAFFT v7.123–1 [59] 

using the L-INS-i algorithm for a maximum of 1000 iterations. Sequences in dataset (ii) 

were aligned using TranslatorX [60] to map corresponding codons to the amino acid 

alignment from (i). Phylogenetic trees for all datasets were constructed using MrBayes 

v3.2.2 [61]. For protein based phylogenies [(i) and (iii)], Bayesian MCMC analysis was 

performed using a mixed amino acid model with gamma distributed rate variation among 

sites. The nucleotide based phylogeny (ii) was estimated with Bayesian MCMC analysis 

using a GTR model with gamma distributed rate variation among sites. For all trees, 

MrBayes ran two simultaneous analyses (each with four chains: three heated and one 
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cold) for 15 million generations with a sampling frequency of 100 generations. For 

dataset (i) the best tree was constructed with TBR branch swaps, while for (ii) and (iii) 

the best trees were constructed with TBR branch swaps disabled. The final average 

standard deviation of the split frequencies were 0.0060 (max. s.d. 0.051) for dataset (i), 

0.0053 (max. s.d. 0.092) for dataset (ii), and 0.0023 (max. s.d. 0.016) for dataset (iii). 

Consensus trees were built with the default burn-in phase (discarding the first 25% of 

trees) using the 50% majority rule. The tree from the third dataset was rooted on a branch 

containing Monosiga brevicollis and Salpingoeca rosetta. The resulting topology was 

used to guide rooting the trees from the first two datasets by rooting on the branch 

containing both p63 and p73 clades and selecting the p53 clade as the outgroup. 

Sequence-based predictions 

 To assess the characterization of the structural properties of the proteins included 

in our phylogenies, the amino acid sequence of each protein (unaligned sequence) was 

used as input for different sequence-based predictors in order to predict structural 

disorder, secondary structure, phosphorylation sites and domain regions. Thereafter, for 

each prediction method, the predicted value for each residue in each protein sequence 

was mapped onto its corresponding site in the multiple sequence alignment. This resulted 

in three matrices for (i) structural disorder prediction, (ii) secondary structure predictions, 

and (iii) predicted phosphorylation sites. For (i) and (iii), the data predicted was 

continuous. For (ii), the data had three non-numerical categories. In order to analyze the 

transitions between order and disorder, between the presence of secondary structure 

elements and loops, and for presence or absence of phosphorylation sites, all matrices 

were represented as binary phyletic patterns (as described below). The phyletic patterns 
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were individually analyzed in their phylogenetic context and transition rates were 

calculated. 

Structural disorder prediction 

 Structural disorder was predicted using IUPred [15,62] version 1.0 selecting the 

option for long disordered regions. IUPred was specifically developed for predicting 

disorder in intrinsically unfolded proteins using estimated energy content. The IUPred 

prediction generates a disorder propensity for each residue in the protein. The disorder 

propensities range from 0 (indicating no propensity of being disordered) to 1 (indicating 

strong propensity of being disordered). While the method was developed to have scores 

above 0.5 indicating disorder, a cut-off of 0.4 was later demonstrated to give higher 

accuracy when predicting disorder on proteins from the experimentally verified DisProt 

database [41,42]. The continuous disorder predictions were mapped onto the multiple 

sequence alignment, and visualized in a heat map format using iTOL [63]. Further, all 

sites with IUPred prediction values <0.4 were assigned order and all sites ≥0.4 were 

assigned disorder. This binary matrix was used as a phyletic pattern for analyzing the 

evolutionary dynamics of structural disorder to order transitions (DOT). 

Secondary structure prediction 

 Secondary structure was predicted using PSIPRED [24,64] version 3.4 with 

default parameters and the nr database (version March.30.2014), filtered to avoid low 

complexity regions, coiled-coil regions and transmembrane regions, was selected to 

generate a sequence profile per protein. PSIPRED is a neural network program which 

performs an analysis on the sequence profiles obtained from PsiBlast (Position Specific 

Iterated–BLAST version 2.2.26, blastpgp) [65] converting them to secondary structure 
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propensities. The three states of secondary structure propensity (alpha helix, beta strand, 

and loop) were visualized in a heat map. The PSIPRED predictions were converted into 

binary data: alpha helix/beta strand residues were set to 1 and loop residues were set to 0. 

This binary matrix was used as a phyletic pattern for analyzing the evolutionary 

dynamics of secondary structure to loop transitions (SLT). 

Phosphorylation site prediction 

 Phosphorylation sites for Serine, Threonine and Tyrosine residues were predicted 

using NetPhos [25] version 3.1, an artificial neural network method. Similar to the other 

predictions, two states were defined: sites with values <0.75 were assigned not 

phosphorylated or 0 and all sites ≥0.75 were assigned as sites predicted to be 

phosphorylated or 1. Sites predicted to be phosphorylated were visualized in a heat map. 

The resulting binary matrix was used for analyzing the evolutionary dynamics of 

phosphorylation transitions (PT). 

Protein domain prediction 

 Protein domains were predicted based on Pfam [66] version 27 by aligning each 

sequence to their stored Hidden Markov Model (HMM) profiles using the available batch 

search scripts. Sites in domains with significant bit scores based on pre-defined gathering 

thresholds, predicted to be part of a Pfam_A domain (based on the envelope coordinates), 

were visualized in a heat map. 

Evolutionary dynamics of sequence data 

 Rate4Site [67] was used to estimate the amino acid substitution rates (SEQ) by an 

empirical Bayesian principle under the Jones, Taylor, and Thornton [68] amino acids 

substitution model (JTT) using a prior gamma distribution including 16 discrete 
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categories. Rate4Site estimates the site specific rates considering the topology and branch 

lengths of the phylogenetic tree. The branch lengths were not optimized as the input trees 

were obtained by Bayesian inference. Normalized evolutionary rates in Rate4Site are Z-

scores, scaled such that the average across all sites is equal to zero and standard deviation 

is equal to 1. This means that sites showing a normalized evolutionary rate <0 are 

evolving slower than average, and those with a rate >0 are evolving faster than average. 

Evolutionary dynamics of predicted data 

 To study the gain/loss transitions of structural properties in related proteins along 

their evolutionary history, a protocol that includes the estimation of evolutionary rates per 

site based on the phylogenetic trees and the binary matrices generated was adopted. 

GLOOME software [27] was used to study the evolutionary dynamics of structural 

disorder (DOT rate; disorder-order transitions), secondary structures (SLT rate; 

secondary structure-loop transitions), and phosphorylation sites (PT rate; phosphorylation 

transitions). GLOOME was originally developed to study the gain/loss events across 

phylogenies. Here GLOOME was applied to analyze trends in binary presence (1) and 

absence (0) patterns in predicted protein sequence features (disorder vs. no-disorder, 

secondary structure vs. no secondary structure, phosphorylation site vs. no 

phosphorylation site) with default equal substitution rates for transitions within the same 

state (0 to 0, 1 to 1) and default equal rates for substitutions from one state to another (0 

to 1, 1 to 0) and a rate distribution of 6 gamma categories. The outputs include the 

evolutionary rates per alignment site normalized as a Z-score (the same way as for the 

sequence data in Rate4Site). Lastly, for each of the evolutionary rates calculated (SEQ, 
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DOT, SLT and PT) for the family and the individual clades, we further analyzed those 

aligned sites with less than 10% of gaps per alignment position. 

Non-parametric tests 

 Inference methods implemented in R statistical software [69] were used for 

testing if differences in means across groups are statistically significant (p-value <0.05). 

According to the Shapiro-Wilk test [70] normality could not be assumed and non-

parametric tests were performed. For three or more samples the Kruskal-Wallis test [71] 

was applied, while the pairwise testing involved the use of the Mann-Whitney U test with 

Bonferroni correction [72,73]. 

3D mapping of structural disorder conservation and disorder-to-order transition rates 

 Conservation, here defined as the fraction of disorder per site from the binary 

matrices (gaps included), was calculated for the p53 family and the individual clades. Site 

specific rates and conservation of disorder were mapped onto representative PDB 

structures for the different domains. Appendix 10 shows the details of the mapped 

regions. Figures were generated using PyMOL [74]. 
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Appendices 

 

Appendix 1. p53 domain phylogeny for Metazoa and Choanoflagellates. Overview of 

the p53 family phylogeny including 74 representative species across Metazoa and 

Choanoflagellates, built based on their p53 DBD domains. Support values at the nodes 

indicate posterior probabilities. Nodes with posterior probability < 0.5 are unresolved. 
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Appendix 2. p53 phylogenies for 301 vertebrate proteins. (A) Circular representations 

of p53 DNA-based phylogeny and (B) its corresponding full-protein-based phylogeny. 

These consensus trees were obtained with MrBayes 3.2.2 after sampling trees for 15 

million generations with the default burn-in phase (discarding the first 25% of trees) and 

using the 50% majority rule. Node circles show posterior probabilities ranging from 0.5 

in red to 1 in white. Here proteins were colored by clade (p53 in grey, p63 in blue and 

p73 in green) with tip labels following the color guide from Fig 2. Figure generated with 

FigTree (http://tree.bio.ed.ac.uk/software/figtree/). 

 

 

http://tree.bio.ed.ac.uk/software/figtree/
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Appendix 3. Domain composition in vertebrate proteins. (A) Heat map showing Pfam 

domain predictions per protein into their corresponding multiple sequence alignment sites 

(rows show protein hits; columns show alignment positions; sites that belong to Pfam_A 

domains are colored, green; linkers between domains, white; gaps in the alignment, grey), 

all in the context of the p53 DNA-based phylogeny with tip labels colored according to 

the color guide. (B) In addition, individual domain architectures (labeled and colored as 

shown in Pfam domains box) were also included to highlight their actual lengths 

enforcing missing or broken domains. Figure generated with iTOL [63].  
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Appendix 4. Structural disorder fractions in vertebrate proteins. Distribution of 

structural disorder (grey) and order (blue) in full-length proteins and in p53 DBD 

domains sorted by p53 DNA-based phylogenetic tree with tip labels following the color 

guide. Furthermore, individual domain architectures (labeled and colored as shown in 

Pfam domains box) were also included. Figure generated with iTOL [63]. 
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Appendix 5. p53 DBD structural disorder content increases with the number of 

domains. Scatter plot of the p53 DBD structural disorder percentage vs. the number of 

Pfam domains per protein from 74 hits, including invertebrates and vertebrates proteins. 

There is a positive correlation between these two variables (Pearson correlation 

coefficient R = 0.64, R2 = 0.41, and p-value < 0.05, concluding that linear correlation 

different to 0 is statistically significant). 
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Appendix 6. p53 clade in detail: graphical representation of sequence-based 

predictions. Heat map for structural traits plotted in the order of the p53 DNA-based 

phylogenetic tree context, showing p53 protein names as boxes colored according to the 

color guide in Fig 2. These heat maps are showing sequence-based predictions mapped to 

their corresponding residue sites in the multiple sequence alignment, after removing 

empty columns (i.e. columns fully gapped in the p53 clade) for this subset: (A) 

continuous structural disorder propensities by IUPred [15,62] with a color gradient from 

blue to white to red mirroring the disorder propensity gradient from low (blue) to high 

(red), with white being the boundary between order and disorder (remaining alignment 

gaps are colored in grey). (B) secondary structure predictions by PSIPRED [24,64] 

displaying 3 states loop (white), alpha helix (purple) and beta strand (yellow), and C) 

sites predicted to be phosphorylated by NetPhos [25] using a 0.75 cut-off (red). On top of 

these heat maps, normalized evolutionary rates per site are shown for amino acid 

sequence (SEQ) in green [26] vs. binary traits [27] of disorder-order transitions (DOT) in 

orange (upper left), secondary structure elements—loop transitions (SLT) in blue (upper 

center), and phosphorylation transitions (PT) in pink (upper right). All evolutionary rates 

were normalized with a mean of zero and standard deviation of 1: negative rates for slow 

evolving sites and positive rates for fast evolving sites. Grey shaded areas delimitate 

Pfam domain regions.  
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Appendix 7. Differential distribution of protein phosphorylations per clade. 

Boxplots showing the fractions of serine, threonine and tyrosine residues per protein per 

clade compared to the fractions of sites predicted to be phosphorylated by NetPhos [25] 

using a 0.75 cut-off. Significance analysis was carried out using non-parametric tests 

(Kruskal Wallis test for the comparison of 3 or more samples and Mann-Whitney U test 

with Bonferroni correction for the pairwise analysis). Differences in means are 

statistically significant (p-values << 0.05), except for the p53-p63 comparison of 

predicted phosphorylation factions (p-value = 1). 

 



77 

 

 

 
 

Appendix 8. Comparison of SEQ, SLT, and PT with DOT rates. Combined profiles of normalized evolutionary rates per aligned 

site for family and clades (vertebrates set) comparing disorder-order transitions (DOT) with (A) amino acid substitutions (SEQ), (B) 

secondary structure elements-loop transitions (SLT), and (C) phosphorylation transitions (PT). Grey shaded areas delimitate Pfam 

domain regions. 
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Appendix 9. Comparison of SLT and PT with SEQ rates. Combined profiles of 

normalized evolutionary rates per aligned site for family and clades (vertebrates set) 

comparing amino acid substitutions (SEQ) with (A) secondary structure elements-loop 

transitions (SLT) and (B) phosphorylation transitions (PT). Grey shaded areas delimitate 

Pfam [66] domain regions. 
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Appendix 10. PDB files and regions used for mapping DOT and disorder 

conservation into a structural context 

 

Pfam 

Domain 

PDB 

code 

Protein 

template 

PDB 

numeration 

Sequence 

positions 

(human) 

Fragment 

length 

Alignment 

sites 

TAD_p53 3dac p53 17-28 17-28 12 231-242 

TAD_p63 3dac p53 17-28 53-64 12 231-242 

TAD_p73 3dac p53 17-28 13-24 12 231-242 

DBD_p53 4hje p53 94-291 94-291 198 410-660 

DBD_p63 4hje p53 94-291 162-361 198 410-660 

DBD_p73 4hje p53 94-291 112-311 198 410-660 

OD_p53 1olg p53 319-360 319-360 42 717-768 

OD_p63 4a9z p63 358-404 397-443 47 731-802 

OD_p73 4a9z p63 358-404 351-392 47 731-802 
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Appendix 11. Shared and clade specific predicted phosphorylation patterns. 

Alignment sites following a 50% majority rule of sequences with phosphorylation 

predictions based on NetPhos phosphorylation prediction score cut-off=0.75 (gaps 

included). Information displayed per clade (specific) and per family (shared). Shaded 

areas correspond to the majority rule (phosphorylation predicted for more than 50% of 

taxa per clade for the family). Corresponding positions in the canonical human proteins 

(P53_human NP_000537.3, P63_human NP_003713.3, and P73_human NP_005418.1) 

are shown. 

 

p53 clade-

specific sites 
Domain p53_human p63_human p73_human 

432 DBD 116 184 134 

471 DBD 155 223 173 

539 DBD 211 281 231 

653 DBD 284 354 304 

681 Linker2 303 373 325 

706 Linker2 315 385 337 

796 Linker3 366 439 392 

803 Linker3 367 444 393 

809 Linker3 371 448 397 

1088 Cter 376 652 596 

1091 Cter 378 654 598 

1156 Cter 392 679 635 

p63 clade-

specific sites 
Domain p53_human p63_human p73_human 

149 Nter - 25 - 

154 Nter - 30 - 

163 Nter - 34 - 

164 Nter - 35 - 

324 Linker1 - 111 65 

362 Linker1 - 131 82 

386 Linker1 - 142 - 

405 Linker1 92 160 110 

444 DBD 128 196 146 

498 DBD 182 250 200 

654 DBD 288 358 308 

637 Linker2 297 367 319 

712 Linker2 - 389 434 

720 OD 322 395 349 

744 OD 337 410 364 

833 Linker3 - 452 401 

839 Linker3 - 458 406 

840 Linker3 - 459 407 

844 Linker3 - 463 411 

862 Linker3 - 477 426 
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947 Linker3 - 535 479 

976 SAM - 564 508 

992 SAM - 580 524 

998 SAM - 586 530 

1058 Cter - 627 570 

1065 Cter - 630 573 

1067 Cter - 631 575 

1081 Cter - 645 589 

p73 clade-

specific sites 
Domain p53_human p63_human p73_human 

253 TAD 30 74 26 

255 TAD 32 76 28 

332 Linker1 56 119 70 

361 Linker1 - 130 81 

464 DBD 148 216 166 

658 DBD 289 359 309 

696 Linker2 311 381 333 

735 OD 328 401 355 

754 OD 347 420 374 

1066 Cter - - 574 

1130 Cter 380 670 621 

1136 Cter 384 674 625 

Overlapping 

sites across 

paralogs 

Domain p53_human p63_human p73_human 

255 TAD 15 51 11 

364 Linker1 70 132 83 

392 Linker1 81 147 97 

399 Linker1 87 154 104 

415 DBD 99 167 117 

419 DBD 103 171 121 

434 DBD 118 186 136 

437 DBD 121 189 139 

533 DBD 205 275 225 

543 DBD 215 285 235 

638 DBD 269 339 289 

689 Linker2 304 374 326 

736 OD 329 402 356 

770 OD 361 343 388 
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Appendix 12. Accession numbers for the vertebrate datasets (i) and (ii) 

 

Separate Excel sheet
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CHAPTER III 

EXPLORING EVOLUTIONARY CONSTRAINTS IN THE PROTEOMES OF ZIKA, 

DENGUE, AND OTHER FLAVIVIRUSES TO FIND FITNESS-CRITICAL SITES 
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ABSTRACT 

Dengue virus (DENV) challenges vaccine design due to antibody dependent 

enhancement (ADE) and evidence suggests that Zika virus (ZIKV) experiences ADE 

with DENV and West Nile virus (WNV) antibodies. Thus, multiple flaviviruses must be 

considered when developing novel therapies against ZIKV. We analyzed 42 flavivirus 

polyproteins in their evolutionary context to identify motifs conserved in sequence with 

low real-time and evolutionary conformational flexibility, thought to be fitness-critical 

sites. We also analyzed evolutionary rate-shifts between clades for insight on vector 

specificity. For mosquito-borne flaviviruses, two conserved motifs were identified within 

the RNA-dependent RNA polymerase (RdRP), critical for flavivirus genome replication. 

Clade-specific motifs were identified for the ZIKV+DENV and WNV clades, many of 

which were also in RdRP. Six sites in motifs for WNV experienced significant 

evolutionary rate-shifts, suggesting their importance for functional divergence. Overall, 

some of these motifs are prime candidates as broadly neutralizing antiviral drug targets 

across different mosquito-borne flaviviruses. 

 

INTRODUCTION 

The 2015-2016 Zika virus (ZIKV) epidemic in the Americas was caused by a 

ZIKV outbreak in Brazil in late 2014 and has resulted in over 90 countries and territories 

being reported as at risk for ZIKV infection (CDC 2018). Although most ZIKV cases are 

asymptomatic, symptomatic ZIKV cases are associated with increased risk for 

neurological complications such as Guillain-Barré syndrome (Lessler et al. 2016). In 

addition, current estimates indicate that 30% of pregnant women symptomatic for ZIKV 
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will experience ZIKV-associated adverse fetal outcomes, such as microcephaly, 

compared to only 7% of pregnant women with an asymptomatic ZIKV infection (Lessler 

et al. 2016). 

 The presence of other flaviviruses, such as the closely related Dengue virus 

(DENV), may contribute to the severity and enhancement of ZIKV infection through 

interference with antibodies against DENV which can lead to both neutralization (Barba-

Spaeth et al. 2016) and enhancement (Dejnirattisai et al. 2016; Priyamvada et al. 2016) of 

the infection. Antibody-dependent enhancement (ADE) between DENV serotypes has 

long challenged DENV vaccine design (Heinz and Stiasny 2012). ADE has been 

observed between DENV and ZIKV in instances where DENV is the first infection 

(Dejnirattisai et al. 2016) and where ZIKV is the first infection (Stettler et al. 2016). 

Contrasting results have been found regarding ADE activity between ZIKV and West 

Nile virus (WNV), another member of the flavivirus family. Using a mouse model, one 

study found that WNV antibodies enhance ZIKV infection (Bardina et al. 2017), while 

another study found that ZIKV antibodies confer protection against WNV (Vázquez-

Calvo et al. 2017). The discrepancy in these results may be related to antibody titer, as it 

has been observed in DENV infections that antibody titer is correlated to ADE. Low 

antibody titer does not sufficiently enhance infection while a high antibody tier is able to 

effectively neutralize infection (Katzelnick et al. 2017). While there are several ZIKV 

vaccines in clinical trial phases (reviewed by (Makhluf et al. 2018)), vaccine-enhanced 

DENV disease has also been observed (Hadinegoro et al. 2015) meaning vaccination 

could actually be counterproductive (Ferguson et al. 2016). 
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 Conformational flexibility in DENV’s Envelope protein can alter antibody 

binding affinity and efficacy among DENV serotypes (Kuhn et al. 2015). Two 

multifunctional enzymes encoded by the flavivirus polyprotein that are frequent targets 

for developing antiviral drugs are NS3 and NS5 (Sampath and Padmanabhan 2009; 

Bollati et al. 2010). NS3 functions as a serine protease, a helicase, and an RTPase (Yon et 

al. 2005). NS5 functions primarily as a methyltransferase and an RNA-dependent RNA 

polymerase (Sampath and Padmanabhan 2009). NS5 is also known to inhibit interferon 

signaling, but although inhibition of interferon signaling is wide-spread across 

flaviviruses, the mechanism of inhibition is not conserved (Grant et al. 2016). Both NS3 

and NS5 are known to interact with many different human proteins, but few NS3 and 

NS5 proteins from different flaviviruses interact with the same human proteins (Le 

Breton et al. 2011). NS3 and NS5 have also been found to have conformational flexibility 

(Assenberg et al. 2009; Bussetta and Choi 2012; Meng et al. 2015; Klema et al. 2016). 

 Protein conformational flexibility is determined by the properties of the amino 

acid residues in a protein and correlates strongly with an amino acid’s propensity to be 

disordered (Ruvinsky et al. 2012) as well as its local and global interactions (Zhang et al. 

2007). The equilibrium between different conformations can be altered in response to 

signals in the environment (Smock and Gierasch 2009). Many viral proteins rely on 

intrinsic disorder for their function. Envelope in DENV is known to undergo functionally 

important conformational transitions in response to changes in pH (Stiasny et al. 2011). A 

computational analysis found that Capsid, 2K, NS3, and NS5 in DENV are enriched in 

disordered regions predominantly predicted to be involved in protein-protein interactions 

(Meng et al. 2015). Another computational analysis of disorder in the ZIKV proteome 
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found that the Capsid, NS2B, NS3, NS4A, and NS5 proteins were enriched in 

intrinsically disordered regions (Giri et al. 2016). Further, a previous study of structural 

disorder across the individual protein families in the different flaviviruses found rapid 

evolutionary dynamics of structural disorder in several flavivirus protein families (Ortiz 

et al. 2013). On the more extreme end, ZIKV was found to be almost completely ordered 

in the Capsid protein, unlike its close relatives that were 20-30% disordered, but even 

moderate fluctuations of disorder can be important for functional diversity. Percent 

disorder in both Membrane and Capsid proteins of flaviviruses has been strongly 

correlated with virulence (Kian-Meng Goh et al. 2019). The relatively low level of 

disorder in the Capsid protein of ZIKV compared to other flaviviruses appears to account 

for its high fetal morbidity rates despite low mortality rates (Kian-Meng Goh et al. 2019). 

Intrinsic disorder in the Capsid protein of WNV has been implicated in RNA-binding and 

chaperone activity (Ivanyi-Nagy et al. 2008; Ivanyi-Nagy and Darlix 2010). Overall, the 

clades for ZIKV, DENV, and WNV have higher disorder content in their Envelope 

proteins than most other flaviviruses, which enables high conformational flexibility and 

can have important consequences for antibody binding. Altogether, this suggests that the 

development of vaccine and antivirals for ZIKV should consider multiple flavivirus taxa, 

especially the four different DENV serotypes and WNV, in their evolutionary context. It 

also suggests precaution with targeting conformationally flexible regions. 

 Both DENV and ZIKV are transmitted by Aedes spp. vectors, while WNV is 

transmitted by a Culex spp. vector. Despite that, some studies have shown that ZIKV is 

able to replicate in Culex quinquefasciatus (Guo et al. 2016; Guedes et al. 2017), 

suggesting that ZIKV may be transmissible by a Culex vector. Others assert that the link 
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between ZIKV and Culex needs more support (Roundy et al. 2017; van den Hurk et al. 

2017). Further, newer studies have indicated that ZIKV is not able to infect Culex tarsalis 

(Dodson et al. 2018; Main et al. 2018) or Culex quinquefasciatus (Lourenço-de-Oliveira 

et al. 2018; Main et al. 2018). In phylogenetic analyses of individual proteins, ZIKV is 

sometimes recovered sister to WNV rather than DENV (Ortiz et al. 2013). These results, 

together with ZIKV’s potential to experience ADE with WNV antibodies, raise questions 

about whether ZIKV could indeed be transmitted by Culex mosquitoes today or in the 

future. It is not unheard of for a virus to evolve to expand its vector association, as 

Chikungunya virus has been previously found to have expanded its vector specificity 

through just a single mutation (Tsetsarkin et al. 2007; de Lamballerie et al. 2008). 

Understanding vector specificity is important because it allows us to determine the 

potential geographic range for a disease. 

 Protein sequences diverge with time. The amino acid substitutions at each site in a 

protein are evolving at a rate that depends on the site’s functional (selective) constraint. 

The presence of significant site-specific rate-shifts between clades in a phylogeny 

indicates differentiation of functional constraints (Gaucher et al. 2001; Penn et al. 2008). 

The mosquito-borne flaviviruses originated from a shared ancestor but have since 

diverged and adapted to different mosquito vectors. To explore if there has been a change 

in functional constraints for flaviviruses with Aedes and Culex vectors, respectively, 

detection of rate-shifting sites can bring further insights. Comparing the amino acid state 

in ZIKV to the flaviviruses with Aedes and Culex vector specificity at sites with changing 

functional constraints can help ascertain which sites may be important for the divergence 

between these subgroups and inform where ZIKV fits in. 
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 Here, we set out to study evolutionary constraints of the flavivirus proteomes to 

identify fitness-critical sites that can act as target sites for broadly neutralizing antiviral 

drugs across flaviviruses. While recent work on intrinsically disordered proteins has 

shown that structural features conserved across the conformational ensemble of a protein 

can serve as potential drug targets (Chong et al. 2018), intrinsic disorder has typically 

posed a challenge for traditional structure-based drug design that relies on a well-defined 

three-dimensional structure (Cheng et al. 2006; Zhang and Lai 2011; Batool et al. 2019). 

Thus, we identify regions of the flavivirus proteome under high evolutionary constraint 

that are conserved in structure and lack conformational flexibility. These fitness-critical 

target sites can provide us with a faster, cheaper, more successful route towards antiviral 

drug development against ZIKV, DENV, and other current and emerging flaviviruses. 

We also identify sites implicated in the determination of vector specificity by analyzing 

site-specific evolutionary rate-shifts between flaviviruses with an Aedes or Culex vector. 

 

METHODS 

Sequence Retrieval 

 A dataset of flavivirus polyproteins was constructed by running NCBI BLAST 

(Altschul et al. 1990) with the Zika virus polyprotein (NCBI reference sequence: 

YP_002790881.1) against flaviviruses (taxid: 11051) in the RefSeq database (Pruitt et al. 

2005). Flaviviruses with a canonical polyprotein representative were selected. For each 

sequence, domains within the polyprotein were predicted using Pfam v27.0 (Finn et al. 

2014). Sequences for which many domains were not predicted by Pfam were removed to 

ensure conservation of domain composition across the dataset. 
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Phylogenetic Reconstruction 

 A multiple sequence alignment was generated using MAFFT v7.123b (Katoh et 

al. 2002), with the L-INS-I algorithm selected, and for a maximum of 1000 iterations. 

Following alignment, a phylogenetic tree was estimated using MrBayes v3.2.3 (Ronquist 

et al. 2012). Bayesian MCMC analysis was performed using a mixed-model for amino 

acid substitution and gamma distributed rate variation among sites. The program ran for 

5,000,000 generations (average standard deviation of split frequencies = 0.000074) with a 

sampling frequency of 100 generations before building the 50% majority-rule consensus 

tree with the default burn-in phase to discard the first 25% of trees. The resulting tree was 

midpoint rooted. 

Intrinsic Structural Disorder Prediction 

 Two predictors were used to infer intrinsic structural disorder based on the full-

length polyprotein: IUPred v1.0 (Dosztányi et al. 2005b, a) and DISOPRED2 (Ward et al. 

2004). For IUPred, the setting for long disordered regions was selected. Disorder 

propensity scores from IUPred follow a continuous range from 0 to 1, where 0 indicates a 

low propensity for structural disorder and 1 indicates a high propensity for structural 

disorder. While the cut-off value for distinguishing between order and disorder is 

typically 0.5, a cut-off value of 0.4 is used because it has been shown to have greater 

accuracy in predicting experimentally verified disorder (Fuxreiter et al. 2007). For 

DISOPRED2, disorder propensity scores range from 0 to 9, where 0 indicates low 

propensity for structural disorder and 9 indicates a high propensity for structural disorder. 

For both predictors, scores below the cut-off are assigned as ordered while scores at or 
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above the cut-off are assigned as disordered. IUPred and DISOPRED2 predictions were 

mapped back to their corresponding position on the multiple sequence alignment. 

Secondary Structure Prediction 

 Two predictors were used for secondary structure prediction: PSIPRED v3.4 

(Jones 1999; McGuffin et al. 2000) and JPred4 (Drozdetskiy et al. 2015). PSIPRED 

predictions were generated using default settings against the UniRef90 database (Suzek et 

al. 2015). PSIPRED predictions were generated using the full-length polyprotein as input, 

while JPred4 predictions were generated based on the individual proteins due to length 

restrictions imposed by the program. PSIPRED and JPred4 predictions for alpha helices, 

beta strands, and loops were mapped back to their corresponding position on the multiple 

sequence alignment. 

Identification of Target Sites 

 Protein regions with five or more consecutive sites displaying 100% sequence 

conservation were identified for the full phylogeny or across clades. Identified motifs 

were then analyzed for 100% conservation in structural order as predicted by IUPred. 

Motifs conserved in sequence and structural order were further analyzed for 100% 

conservation in secondary structure element (alpha helix or beta strand) as predicted by 

PSIPRED (Appendix 1). Protein regions with 100% conservation in sequence, structural 

order, and secondary structure are henceforth referred to as target sites. Identified target 

sites were also analyzed for conserved order and conserved secondary structure element 

as predicted by DISOPRED2 and JPred4, respectively. 

 To check for solvent accessibility of identified target sites, surface exposed 

residues were found using the PyMOL script findSurfaceResidues.py (Vertrees 2019) 
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with a 2.5 Å² cut-off. For the sites in Envelope, ZIKV Envelope (PDB ID: 5GZN (Wang 

et al. 2016)) was used. For the sites in NS3, ZIKV NS3 (PDB ID: 5JWH (Cao et al. 

2016)) was used. For the sites in RdRP, the ZIKV RdRP (PDB ID: 5TFR (Upadhay et al. 

2017)) was used. Solvent accessibility could not be determined for the sites in NS4 due to 

a lack of experimentally verified structures. 

Analysis of Zika, Dengue, and West Nile Virus Strains 

 For ZIKV, DENV, and WNV, additional datasets of viral strains were generated. 

Strain sequence data were retrieved from GenBank by searching for the virus of interest 

in the NCBI Protein database and filtering by organism (ZIKV, DENV, or WNV), source 

database (GenBank), and sequence length (length of the polyprotein ± 10 residues). The 

DENV viral strains were not separated by serotype. When filtering by length, the length 

of the following RefSeq polyproteins was used: YP_002790881.1 for ZIKV (3419 aa), 

NP_073286.1 (DENV4) for the DENV lower bound (3387 aa) and NP_059433.1 

(DENV1) for the DENV upper bound (3392 aa), and YP_001527877.1 for WNV (3433 

aa). After retrieving the viral strain sequences from GenBank, the three datasets were 

additionally filtered to remove sequences containing X characters. The final datasets were 

each aligned using Clustal Omega v1.2.1 (Sievers et al. 2011) with default settings before 

being analyzed for conservation of the identified target sites. 

Evolutionary Rate Estimation 

Common Core Multiple Sequence Alignment for Mosquito-Borne Flaviviruses 

 The sub-alignment for the mosquito-borne flaviviruses (MBFVs), including three 

taxa with no known vector that are sister to the Yellow Fever virus clade, was extracted 

from the alignment based on the full-length polyprotein. For the resulting sub-alignment 
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of 27 flaviviruses, all sites with a gap character were removed and we refer to the 

remaining sites in the alignment (3322 out of originally 3559) as common core sites. The 

sub-alignment of common core sites for the MBFVs was further divided into three clades 

of interest: (i) Aedes-outgroup clade, (ii) Aedes clade, and (iii) Culex clade. For each of 

these common core sub-alignments, site-specific amino acid evolutionary rates were 

estimated by Rate4Site (Pupko et al. 2002) using empirical Bayesian estimation under the 

JTT (Jones et al. 1992) model for amino acid substitution. Evolutionary rates estimated 

by Rate4Site were normalized as Z-scores to have the average rate across all sites be 

equal to 0 and the standard deviation be equal to 1. Sites with an evolutionary rate < 0 are 

therefore predicted to be evolving slower than average and those with an evolutionary 

rate > 0 are predicted to be evolving faster than average. Site rates were drawn from a 16-

category gamma distribution, estimated separately for each sequence alignment. Branch 

lengths were not optimized as the input trees for the clade-specific rates were taken from 

the full phylogeny. In order to run Rate4Site, the phylogeny was reduced such that it 

included only the MBFVs. The reduced tree was then re-rooted on the branch that 

denotes the split between the majority of the Aedes clade and the Culex clade. This allows 

for all three previously mentioned clades of interest to be recovered, with each clade 

being used as the input tree for their respective rates. 

 The clade-specific common core sub-alignments were further divided into 

individual proteins based on the protein boundaries in the Zika virus polyprotein. The 2K 

protein was included with the NS4B protein due to its short length. Amino acid 

evolutionary rates per site were estimated by Rate4Site as previously described for each 

of the individual protein alignments corresponding to the clades of interest.  
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Rate-Shift Calculations 

 Site-specific rate-shifts were calculated for each pairwise comparison between the 

Aedes-outgroup, Aedes, and Culex clades. The clade-specific sequence rates based both 

on the full-length polyprotein and on each individual protein for the common core sites 

were used in the analysis. Rate4Site yields a normalized estimate of the conservation 

score at each site in the sub-alignment for the clade on which they are based, represented 

by a mean and standard deviation. By assuming that the distributions of these estimates 

are roughly Gaussian, they can be compared to estimates at homologous sites in the sub-

alignments for other clades using a simple t test. The sample sizes (N) used to estimate 

the conservation scores are a function of both the number of sequences with residues 

(non-gap characters) at a site and a measure of sequence divergence based on their branch 

lengths in the phylogenetic tree, preventing us from estimating the true sample size. Thus, 

the analysis was performed on all sites with > 1 non-gap character (i.e., residue), and the 

number of non-gap characters in a clade was used as an estimate of sample size for that 

site. To calculate a p value based on the above t-statistic, we used the Satterthwaite 

approximation of degrees of freedom (Satterthwaite 1946) and the same estimate of N as 

before. 

 In this way, the statistical significance of rate-shifts between all homologous site 

pairs among all clade-specific sub-alignments may be evaluated. Importantly, because we 

are making (𝐴
2

)  pairwise comparisons across n alignment positions, the operational 

confidence limit (α) must be corrected accordingly: corrected 𝛼 =  
𝛼

(𝐴
2)𝑛

. Here, A is the 3 

clades of interest and n is 3322, the length of the common core alignment. Thus, based on 

an alpha of 0.05, the corrected alpha used here is 5.017 × 10-6. To achieve higher 
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specificity, significant rate-shifting sites were filtered such that the absolute mean 

difference as a site is greater than the sum of the standard deviations at that site. 

 Site-specific rate-shifts were also calculated using DIVERGE 3.0 (Gu and Vander 

Velden 2002; Gu et al. 2013). A tree was provided of the MBFVs rooted as described 

above and the three clades of interest were selected. The alignment provided was for the 

common core sites of the full-length polyprotein. The Gu99 function (Gu 1999) for Type-

I functional divergence was used and sites with a posterior probability greater than or 

equal to 0.5 were identified as experiencing a significant rate-shift. 

Structural Alignment 

 A structural alignment was generated for the Zika virus RNA-dependent RNA 

polymerase domain (PDB id: 5U0C (Zhao et al. 2017)) of the NS5 protein with the 

Hepatitis C virus NS5B protein (functions as an RNA-dependent RNA polymerase) 

bound to the nucleoside analog inhibitor sofosbuvir (PDB id: 4WTG (Appleby et al. 

2015)). Each of the 8 entities of 5U0C was aligned with the single entity of 4WTG with 

CATH-SSAP v0.16.2 (Taylor and Orengo 1989; Orengo and Taylor 1996). The SSAP 

alignment for entity 1 of 5U0C and 4WTG was used to superpose the structures using 

CATH-superpose v0.16.2 (Taylor and Orengo 1989). 

Visualization 

 The phylogeny, multiple sequence alignment, prediction heatmaps, and 

evolutionary rates were visualized using the Python packages ETE3 (Huerta-Cepas et al. 

2016) and Matplotlib (Hunter 2007) as previously implemented (Rahaman and Siltberg-

Liberles 2016). 3D protein structures were visualized using PyMOL (Schrödinger 2014). 
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RESULTS 

Polyprotein and Phylogeny 

 A phylogeny was reconstructed for 42 flaviviruses based on their full-length 

polyprotein. The polyprotein can be divided into 3 structural and 7 non-structural proteins 

(Fig. 1, Table 1). The structural proteins include Capsid (C), pre-membrane (prM), and 

Envelope (E). The non-structural proteins include NS1, NS2A, NS2B, NS3, NS4A, 

NS4B, and NS5. An additional peptide, 2K, is located between NS4A and NS4B (not 

pictured). Many of the proteins are composed of multiple domains. The prM protein has 

the propeptide (pr) and glycoprotein M (M) domains. Envelope has the glycoprotein 

central (Domain I, DI) and dimerization (Domain II, DII) domains (shown together), as 

well as an immunoglobulin-like (Domain III, DIII) domain, NS3 contains a protease 

(NS3Pro) domain, followed by the DEAD domain, and ends with a helicase (NS3Hel) 

domain. Last, NS5 is composed of a methyltransferase domain (MTase) and an RNA-

dependent RNA polymerase domain (RdRP). 

 

Figure 1. Schematic of the flavivirus polyprotein illustrating a the proteins that make up 

the polyprotein and b the domains that make up the proteins. 
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Table 1. Flavivirus protein function 

Protein Function 

Capsid Housing of viral genome, interaction with host proteins, and 

determination of viral infectivity (Oliveira et al. 2017)  

Premembrane prM acts as a chaperone for envelope folding and prevents premature 

fusion of envelope proteins. prM is cleaved to pr and M proteins for 

mature virion formation (Hsieh et al. 2014)  

Envelope Facilitates viral infection through receptor binding and membrane 

fusion. Triggers neutralizing antibody response (Zhang et al. 2017)  

NS1 Formation of viral replication complex (dimer), and eliciting and 

evading immune response (hexamer) (Rastogi et al. 2016)  

NS2A Formation of viral replication complex and eliciting host immune 

response (Xie et al. 2013)  

NS2B Necessary cofactor for serine protease activity of NS3. Also has roles 

in viral replication and virion formation (Li et al. 2016) 

NS3 Serine protease domain performs autocleavage and cleaves many sites 

in viral polyprotein. Helicase domain unwinds RNA secondary 

structure to assist in RNA replication (Bollati et al. 2010)  

NS4A Formation of viral replication complex. Regulates ATPase activity of 

NS3 helicase (Shiryaev et al. 2009)  

NS4B Formation of viral replication complex (Kaufusi et al. 2014)  

NS5 N-terminus has methyltransferase domain for RNA cap methylation. 

C-terminus has RNA-dependent RNA polymerase domain for viral 

genome replication (Bollati et al. 2010)  

 

At the polyprotein level, many of the phylogenetic relationships observed among 

the flaviviruses show a strong correlation with their vector association (Fig. 2). 

Arthropod-borne flaviviruses can be divided into two groups: tick-borne flaviviruses 

(TBFVs) and mosquito-borne flaviviruses (MBFVs). MBFVs can be further categorized 
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as being Aedes spp. specific or Culex spp. specific. The two arthropod-borne flavivirus 

groups are recovered in separate clades, resulting from the earliest divergence event. A 

third group of flaviviruses with no known vector (NKV) can be found within each of the 

two major clades of the phylogeny. 

The upper major clade of the phylogeny branches off into two subclades. The 

upper subclade is composed of five NKV flaviviruses: Apoi virus (APOIV), Rio Bravo 

virus (RBV), Montana myotis leukoencephalitis virus (MMLV), Jutiapa virus (JUTV), 

and Modoc virus (MODV). The lower subclade is composed of 10 TBFVs: Tyuleniy 

virus (TYUV), Kama virus (KAMV), Karshi virus (KSIV), Powassan virus (POWV), 

Alkhurma hemorrhagic fever virus (AHFV), Langat virus (LGTV), Omsk hemorrhagic 

fever virus (OHFV), Tick-borne encephalitis virus (TBEV), Spanish goat encephalitis 

virus (SGEV), and Louping ill virus (LIV).  

 The lower major clade is composed of an outgroup consisting of the three MBFVs 

belonging to the Yellow fever virus (YFV) clade, which includes YFV, Sepik virus 

(SEPV), and Wesselsbron virus (WESSV), as well as its sister clade of 3 NKV 

flaviviruses, which includes Yokose virus (YOKV), Sokoluk virus (SOKV), and Entebbe 

bat virus (ENTV). In vitro, these three NKV viruses have shown the ability to replicate 

within Aedes spp. cells (Kuno 2007). Two more Aedes-associated MBFVs, Chaoyang 

virus (CHAOV) and Donggang virus (DONV), branch off at the next node junction. 

These two viruses, along with the YFV clade and the sister NKV clade, create the Aedes-

outgroup clade that is referred to later when discussing significant rate-shifts between 

groups of MBFVs (Fig. 2). Following, the next branching event results in two clades, one 

composed of 7 Aedes spp. flaviviruses and the other of 12 Culex spp. flaviviruses. The 
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Aedes group includes Kedougou virus (KEDV), Zika virus (ZIKV), Spondweni virus 

(SPOV), and the four Dengue virus serotypes (DENV1-4). The Culex group includes 

Kokobera virus (KOKV) Aroa virus (AROAV), Ilheus virus (ILHV), Tembusu virus 

(TMUV), Ntaya virus (NTAV), Bagaza virus (BAGV), St. Louis encephalitis virus 

(SLEV), Cacipacore virus (CPCV), West Nile virus (WNV), Murray Valley encephalitis 

virus (MVEV), Japanese encephalitis virus (JEV), and Usutu virus (USUV). 
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Figure 2. Phylogenetic reconstruction of 42 flavivirus polyproteins. Taxa often associate 

by vector association: no known vector (NKV), tick-borne flaviviruses (TBFV), and 

mosquito-borne flaviviruses (MBFV). A second NKV group is found within the MBFVs. 

These viruses have been found to replicate in vitro within Aedes spp. cells (Kuno 2007). 

Nodes indicated with an asterisk have a posterior probability greater than 0.9 but less 

than 1, all other nodes have a posterior probability of 1. 

 

Identification of Target Sites 

 When discussing clade-specific target sites, we will refer to the clades by their 

taxa composition (e.g., ZIKV+DENV clade). Protein regions with five or more 

consecutive sites displaying 100% sequence conservation were identified for the full 

phylogeny (42 taxa), as well as for the MBFV clade (27 taxa), a subgroup of the MBFVs 

(19 taxa, Fig. 2 – boxed clade), the ZIKV+DENV clade (7 taxa, Fig. 2), the WNV clade 

with AROAV and KOKV (12 taxa, Fig. 2) and the WNV clade alone (10 taxa, Fig. 2). 

Identified motifs were then analyzed for 100% conservation in structural order as 

predicted by IUPred. Motifs conserved in sequence and structural order were further 

analyzed for 100% conservation in secondary structure element (alpha helix or beta 

strand) as predicted by PSIPRED (Appendix 1). Protein regions with 100% conservation 

in sequence, structural order, and secondary structure are considered fitness-critical and 

henceforth referred to as target sites. 

 When considering the alignment and structural predictions for the full phylogeny, 

there were no identifiable target sites. While 11 regions conserved in amino acid 

sequence were identified, only three of these regions were conserved in structural order, 

and none of those regions were conserved in secondary structure. Examining structural 

order and secondary structure individually, there were 82 and 90 regions, respectively, 

with full conservation for that feature. Given the relatively small number of regions 
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conserved in amino acid sequence, conservation at the sequence level is the limiting 

factor. 

 When considering only the 27 MBFVs (Fig. 2), we identified 16 regions 

conserved in amino acid sequence, 7 of which were conserved in structural order, but 

only 1 was also conserved in secondary structure and classified as a target site (Table 2, 

Fig. 3). The identified site, LEFEA, is in the RNA-dependent RNA polymerase (RdRP) 

domain of the NS5 protein. Further limiting the taxa under consideration to a subset of 19 

MBFVs (Fig. 2, boxed clade) allowed for the identification of an additional target site, 

RRDLR, which is also located in RdRP (Table 2, Fig. 3). 

Table 2. Summary of target sites 

Clade Protein—

Domain 

Conserved Sites in the 

MSAa,b 

Surface Exposed 

Residuesc 

MBFV Subgroup NS5—RdRP 3133-LEFEA-3137 L**E* 

 NS5—RdRP 3422-RRDLR-3426 *R**R 

ZIKV+DENV Envelope—DIII 630-GHLKC-634 GH*K* 

 NS3—DEAD 1872-HATFT-1876 *AT** 

 NS5—RdRP 3133-LEFEAL-3138 L**E** 

 NS5—RdRP 3411-YAQMW-3415 Y*QM* 

 NS5—RdRP 3421-HRRDLRL-3427 **R**RL 

WNV NS3—DEAD 1901-PASIAARGYI-1910 PA******** 

 NS4B—NS4B 2516-WQAEA-2520 N/Ad 

 NS4B—NS4B 2527-RTAAG-2531 N/Ad 

 NS5—RdRP 3133-LEFEA-3137 L**E* 

 NS5—RdRP 3331-LHFLN-3335 LH*LN 

 NS5—RdRP 3422-RRDLR-3426 *R**R 

 NS5—RdRP 3428-MANAIC-3433 **N**C 

 NS5—RdRP 3513-TWAEN-3517 TWAEN 
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aBold means also conserved with JPred4 and DISOPRED2 

bUnderline means also conserved in ZIKV 

cAsterisk means residue is not exposed on the surface 

dNo experimentally determined structure available 

 

Figure 3. Target sites mapped to the RNA-dependent RNA polymerase structure for 

ZIKV (PDB id: 5TFR (Upadhyay et al. 2017)). Sites shown in purple are shared among 

19 MBFVs. Sites in red are ZIKV+DENV clade specific. Sites in blue are WNV clade 

specific. Residues shown as spheres are exposed to the surface as determined by the 

PyMOL script findSurfaceResidues.py (Vertrees 2019) using a 2.5 Å² cut-off. 

 

Shorter evolutionary time scales were evaluated: the ZIKV+DENV clade, the 

WNV clade plus KOKV and AROAV, and the WNV clade, respectively. For the 

ZIKV+DENV clade, five target sites were identified across three proteins: Envelope, 
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NS3, and NS5. For the WNV clade with KOKV and AROAV, four target sites were 

identified across two proteins: NS4B and NS5. By excluding KOKV and AROAV and 

reducing the taxa to only the WNV clade, the number of target sites identified increased 

so that nine target sites were identified within three proteins: NS3, NS4B, and NS5 

(Table 2). For both the ZIKV+DENV and WNV clades, the majority of the identified 

target sites were located within RdRP (Fig. 3). Given ZIKV’s association with the WNV 

clade in phylogenies based on individual proteins (Ortiz et al. 2013), we also investigated 

any target sites shared by the WNV clade and ZIKV, shown underlined (Table 2). 

 Predictions for structural order and secondary structure by DISOPRED2 and 

JPred4, respectively, were also taken into consideration. Sites where both structural 

disorder predictors and both secondary structure predictors agree are indicated in bold 

(Table 2).  

 The ability of a drug to bind to a protein requires that the protein binding site is 

exposed to solvent. For all target sites found in experimentally determined structures, 

solvent accessibility was determined by checking for surface exposed residues based on a 

2.5 Å² cut-off. The WNV clade target sites in NS4B could not be assessed for surface 

accessibility due to the lack of an experimentally structure for that protein. For all other 

target sites across clades and proteins, only one is fully exposed on the surface: TWAEN 

in RdRP for the WNV clade. However, the remaining sites have at least two residues 

exposed to the surface, and none of the target sites are fully buried (Table 2). 

 Polyprotein sequences for ZIKV, DENV, and WNV strains were analyzed to 

ensure that the target sites identified were conserved in amino acid identity across strains. 

For each of these viruses, all target sites were conserved in 99-100% of the strains 
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analyzed. For 567 ZIKV strains analyzed, all target sites were conserved across all strains 

except for GHLKC which lacked conservation for one of the strains. For 5078 DENV 

strains (DENV1-4 combined), no target site was found to be 100% conserved across 

strains. Regardless, all target sites can be considered highly conserved in DENV given 

that conservation levels varied between 99.8 and 99.9%, with only between 3 and 10 

strains lacking conservation, depending on the site. For 2125 WNV strains, the target 

sites LEFEA and RRDLR were conserved across all strains, while the remaining target 

sites showed 99.8-99.9% conservation, with between 1 and 4 strains lacking 

conservation, depending on the site (Table 3). 

Table 3. Conservation of target sites in ZIKV, DENV, and WNV strains 

Virus (strain count) Target site Percent conservation (%) 

ZIKV (567) GHLKC 99.82 

 HATFT 100 

 LEFEAL 100 

 YAQMW 100 

 HRRDLR 100 

DENV (5078) GHLKC 99.92 

 HATFT 99.80 

 LEFEAL 99.94 

 YAQMW 99.86 

 HRRDLR 99.86 

WNV (2124) PASIAARGYI 99.95 

 WQAEA 99.95 

 RTAAG 99.95 

 LEFEA 100 

 LHFLN 99.81 

 RRDLR 100 
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 MANAIC 99.86 

 TWAEN 99.86 

 

Evolutionary Rate-Shifts – Functional Determinants for Mosquito-Borne Flaviviruses 

 Understanding vector specificity is important as it allows for the appropriate 

management of vector populations to mitigate the spread of disease. Additionally, the 

presence of a vector in certain geographic areas can indicate the potential for a previously 

absent disease to spread to that area. As a proxy for sites that play a role as functional 

determinants of vector specificity, we determined significant site-specific evolutionary 

rate-shifts between three clades of interest: Aedes-outgroup, Aedes, and Culex (Fig. 2). To 

this end, when discussing the clades used for the identification of site-specific 

evolutionary rate-shifts, we will refer to them by their vector association (e.g., Aedes 

clade). Clade-specific evolutionary rates were determined for the common core sites 

(ungapped sites) between these clades based on both individual proteins and the full-

length polyprotein. A modified t test was used to determine which sites presented a 

significant shift in evolutionary rate (for further details, please see Methods – 

Evolutionary rate estimation and Rate-shift calculations). For both sets of rates, rate-

shifts are analyzed in a per-protein context. Evolutionary rate-shifts between the three 

clades of interest were also estimated using DIVERGE (Gu and Vander Velden 2002) 

and the results were analyzed in a per-protein context. 

 The results from DIVERGE yielded fewer sites predicted to have significant 

evolutionary rate-shifts. This method identified 23, 0, and 71 rate-shifting sites for Aedes 

vs Culex, Aedes vs Aedes-outgroup, and Culex vs Aedes-outgroup, respectively. 
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 Generally, for each individual protein there are more sites with significant rate-

shifts identified based on the polyprotein rates than there are based on the per-protein 

rates (Fig. 4). The primary exception to this trend is the NS5 protein, where there are 

more sites with significant rate-shifts identified for all clade comparisons for the 

individual protein rates versus the polyprotein rates. Additionally, the NS1 and NS2A 

proteins for the Aedes vs  Culex comparison had more sites identified for the per-protein 

rates, as did the prM protein for the Culex vs Aedes-outgroup comparison. 

 

Figure 4. Percent of sites exhibiting significant evolutionary rate-shifts based on a 

evolutionary rates for individual proteins and b evolutionary rates for the full-length 

polyprotein. Percent significant rate-shifts are shown in a per-protein context. 
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 Regardless of method, Aedes vs Aedes-outgroup consistently had less sites with 

significant rate-shifts identified, with DIVERGE being unable to identify any. Similarly, 

Aedes vs Culex had the second highest number of sites identified, while Culex vs Aedes-

outgroup had the highest number of sites identified. As a method, DIVERGE identified 

the fewest sites when compared to the t test based on individual protein rates and the t 

test based on the polyprotein rates, which were relatively comparable. Significant rate-

shifts identified by the polyprotein rates generally recovered all sites also identified by 

DIVERGE, with there being a few exceptions of some sites that were only identified by 

DIVERGE for the Culex vs Aedes-outgroup comparison (six total). 

 Of greatest interest, some significant rate-shifts occur in sites identified as target 

sites for the WNV clade (Table 4, Fig. 5). For these sites, we only focus on comparisons 

between Aedes vs Culex and Culex vs Aedes-outgroup. These significant rate-shifts 

mostly occur in rates based on the polyprotein for Aedes vs Culex and Culex vs Aedes-

outgroup comparisons, with some also having a significant rate-shift across comparisons 

when based on the individual protein rates. Three sites are also identified by DIVERGE 

for the Culex vs Aedes-outgroup comparison. One site is identified to have a significant 

rate-shift across both comparisons featuring Culex for all methods of analysis. 

Table 4. Target sites of the WNV clade with sites identified as having significant 

evolutionary rate-shifts across clades 

 

 Aedes vs Culex Culex vs Aedes-outgroup 

 Individual Polyprotein DIVERGE Individual Polyprotein 

2517     X 

3332 X X X X X 

3430 X X    

3433  X X  X 
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3516  X X  X 

3517  X   X 

 

 

Figure 5. WNV target sites with significant evolutionary rate-shifts shown in a 

phylogenetic context. Phylogeny on the left is shown re-rooted to recover the three clades 

used in the rate-shift analysis. Taxa are colored as in Fig. 2. Target sites for the WNV 

clade are shown on the right in the context of the multiple sequence alignment for the 



110 

 

 

MBFVs. The last row of the alignment, labeled Significant Rate Shifts, has stars at the 

sites that were identified to be experiencing significant evolutionary rate-shifts. 

 

DISCUSSION 

 We have performed a comparative study of the flavivirus proteome to identify its 

evolutionary constraints on sequence and structural properties. The structural properties 

discussed here are predicted intrinsic disorder and secondary structure. We chose to base 

the structural properties on predictions to treat all sites equally instead of only including 

sites with experimental structural data. Predictions are not in perfect agreement with 

experimental structural data which also depend on experimental conditions (See Ahrens 

et al. 2018 for further discussion). We sought to identify sites that are critical for viral 

fitness with potential as broadly neutralizing antiviral target sites. We define fitness-

critical target sites as 5 or more consecutive residues that are conserved in sequence, 

order (not intrinsically disordered), and secondary structure over a specific clade in the 

flavivirus polyprotein phylogeny. 

 Our phylogeny included tick-borne and mosquito-borne flaviviruses, as well as 

flaviviruses with no known vector (Fig. 2). For the mosquito-borne flaviviruses, three 

main clades were identified: the outgroup clade that contains YFV and that uses Aedes as 

vector (Aedes-outgroup), the clade that contains ZIKV and DENV and uses Aedes as 

vector (ZIKV+DENV clade/Aedes clade), and the clade that contains WNV and uses 

Culex as a vector (WNV clade/Culex clade). Two target sites within RdRP were 

identified for the 19 mosquito-borne flaviviruses in the ZIKV+DENV and WNV clades. 

Additional target sites were found for the ZIKV+DENV and WNV clades separately. 

Five and nine target sites were found in the ZIKV+DENV clade and the WNV clade, 

respectively. At the sequence level, the identified target sites were either fully or nearly 
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fully (>99%) conserved across viral strains for ZIKV, DENV, and WNV, strengthening 

the position that these are evolutionarily constrained fitness-critical sites that may be 

taken advantage of for the development of broadly neutralizing antiviral drugs. 

 Next, when we compared rate-shifts in amino acid sequence across these clades, 

we found that significant rate-shifts have occurred between all clades. However, rate-

shifts between the Aedes clade and Aedes-outgroup clade were sparse (Fig. 4), suggesting 

that the rate-shifting sites between the Culex clade and the Aedes and Aedes-outgroup 

clades could be important for vector specificity. Six of the rate-shifting sites for the Culex 

and Aedes-outgroup comparison fall within four target sites for the WNV clade. Two of 

these motifs (MANAIC and TWAEN) are located close to each other in the 3D structure 

of RdRP (Fig. 3). These two motifs may be ancestral as MANAIC occurs in SOKV and 

TWAEN in CHAOV, both from the Aedes-outgroup clade. Both are also conserved in the 

Aedes-associated ZIKV and SPOV (Table 2, Fig. 5). As such, the presence of both motifs 

may contribute to a distinct function found in ZIKV, SPOV, and the WNV clade with 

potential implications for Aedes and Culex vector specificity.  

 One of the ZIKV+DENV target sites is found within the Envelope (E) protein. 

The E protein of flaviviruses is a conformationally flexible protein (Kuhn et al. 2015) 

responsible for viral entry into cells (Modis et al. 2004). The E protein is recognized by 

potentially neutralizing antibodies and thus plays a large role in ADE (Kuhn et al. 2015). 

A pocket, called the βOG pocket, in the flexible hinge region of the DENV2 E protein 

involved in the conformational changes necessary for viral infection has been found to 

bind to a small detergent, β-octylglucoside (Modis et al. 2003), suggesting that blocking 

this pocket may inhibit viral entry. The βOG pocket has been previously found to bind to 
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small molecules that block this region in DENV (Clark et al. 2016). More recent work 

found that several small compounds targeted at the βOG pocket were able to inhibit 

DENV, ZIKV, WNV, and JEV activity, though with variable viral specificity (de 

Wispelaere et al. 2018). Interestingly, one of our identified target sites for the 

ZIKV+DENV clade (GHLKC) is at the top of this pocket, highlighting its potential as a 

target site for broadly neutralizing antiviral drugs. While the motif GHLKC was only 

found conserved in sequence, structural order, and secondary structure for the 

ZIKV+DENV clade, the ability to target the βOG pocket in JEV and WNV indicates that 

the clade-specific target sites we identify may serve as broader targets than anticipated. 

 For the ZIKV+DENV clade and for the WNV clade, one target was found for 

each clade in the DEAD domain of NS3. This domain is critical for the helicase activity 

of NS3. While the sites for WNV clade are buried, the two accessible sites from the 

ZIKV+DENV clade hold promise as a potential antiviral target site. These two sites 

participate in coordinating ssRNA (ZIKV, PDB id: 5GJB, (Tian et al. 2016)) and are 

found in a deep pocket when ssRNA is not bound (ZIKV, PDB id: 5JPS) (Fig. 6). 

Flavivirus helicases are considered important drug targets (Luo et al. 2015). 
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Figure 6. The target sites in the NS3 helicase (DEAD domain) for the ZIKV+DENV 

clade has the motif HATFT shown in purple. Only two of the five sites (positions 2 and 

3, A and T) are surface accessible. However, in ZIKV NS3, these two sites a participate 

in coordinating ssRNA (PDB id: 5GJB (Tian et al. 2016)) and b are found in a deep 

pocket when ssRNA is not bound (PDB id: 5JPS, not published). 

 

 Most of the target sites identified are located in RdRP, which is already a 

frequently considered drug target (Malet et al. 2008; Sampath and Padmanabhan 2009; 

Bollati et al. 2010). We find that RdRP has potential target sites that are conserved across 

a subset of 19 MBFVs and even more if we consider only the WNV clade and the 

ZIKV+DENV clade. One target site for the MBFVs, RRDLR, forms an arginine patch in 

RdRP. This patch binds to a 3’-UTR of the flaviviral genome called the 3’ stem-loop top 

loop (3’-SL-TL). The 3’-SL-TL contains a highly conserved motif (ACAG) that 

functions as a recognition site for RdRP. Using DENV2 as a model, it was found that 

site-directed mutagenesis of two arginines in RRDLR (bolded) resulted in loss of 

interaction with the 3’-SL-TL and in reduced viral replication as a result (Hodge et al. 

2016). These two arginines are also found to be solvent accessible based on the ZIKV 

RdRP structure (PDB id: 5U0C (Upadhyay et al. 2017)). The apparent functional 

significance and relative accessibility of RRDLR in addition to its conservation across a 

multitude of flaviviruses further indicate its potential as a broadly neutralizing antiviral 

target site. 

 The flavivirus RdRP is distantly related to the RdRP in Hepatitis C virus (HCV) 

(Potisopon et al. 2014). RdRP from HCV is inhibited by the nucleoside analog 

sofosbuvir, a proven therapy against HCV (Bhatia et al. 2014). Various studies have 

supported the use of sofosbuvir in treating ZIKV using both cell-line studies (Mumtaz et 

al. 2017; Sacramento et al. 2017) and mouse models (Ferreira et al. 2017). Retallack and 
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co-workers found that sofosbuvir could reduce ZIKV viral load (Retallack et al. 2016). A 

structural alignment between the ZIKV RdRP and the HCV RdRP illustrates the 

structural similarities of these proteins. Sequence similarity, however, is low and 

conservation between the flavivirus target sites and HCV is hardly observed (Fig. 7). 

While sofosbuvir binding to the flaviviruses may not be specific or long-term, it shows 

that RdRP is a potential target against these viruses. Compounds that bind to the target 

sites in RdRP can be used as broadly neutralizing antivirals across several flaviviruses. 
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Figure 7. Structural alignment for ZIKV RdRP (PDB id: 5U0C (Zhao et al. 2017)) and 

HCV RdRP (PDB id: 4WTG (Appleby et al. 2015)). Each of the 8 entities of 5U0C was 

aligned with the single entity of 4WTG with CATH-SSAP v0.16.2 (Taylor and Orengo 
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1989; Orengo and Taylor 1996). Entity 1 of 5U0C had the lowest RMSD (4.57 Å) and 

the highest SSAP score (74.17) with 4WTG. The SSAP alignment for these two entities 

was used to superpose the structures using CATH-superpose v0.16.2 (Taylor and Orengo 

1989). ZIKV is shown in beige, while HCV is shown in gray. Target sites for the 

MBFVs, ZIKV+DENV clade, and WNV clade are shown mapped onto the ZIKV RdRP 

and are colored as in Fig. 3. RNA is shown in green. Sofosbuvir is shown in blue. Views 

of the structural alignment are shown from a the front and b the back. Additionally, 

ZIKV and HCV RdRPs are shown from c, e the front and d, f the back. g A sequence 

alignment for the target sites in the ZIKV+DENV clade, the WNV clade, and HCV. 

ZIKV and WNV are shown as the representative sequences of their clades. 

 

 Altogether, our results identify evolutionarily constrained protein regions, both in 

sequence and structure, that can serve as promising target sites for the development of 

broadly neutralizing antivirals against flaviviruses while aiming to avoid complications 

caused by ADE. Identifying the majority of these target sites in proteins already often 

used as drug targets, such as NS5 (RdRP), further supports the plausibility of these sites 

as candidate targets for antiviral drug development. We find significant evolutionary rate-

shifts between Culex and Aedes, or WNV and ZIKV+DENV, in some of these target 

sites. Rate-shifts between clades indicate functional divergence. In this case, the rate-

shifts may be implicated in vector specificity (Culex for WNV and Aedes for 

ZIKV+DENV) and can provide ways to address the spread of these viruses by disrupting 

vector-virus interactions. Notably, ZIKV shares some target sites with the WNV clade, 

two of which contain sites experiencing significant evolutionary rate-shifts. The 

implication of functional divergence made by rate-shifting sites suggests that ZIKV may 

not only share functional determinants with DENV but also with WNV. This, together 

with ZIKV’s association with WNV in certain phylogenies, raises concerns as to whether 

ZIKV can easily evolve to expand its vector association or if it already has under certain 

conditions. 
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Appendices 

 

Appendix 1. Sequence-based predictions. Heatmaps for the three properties of interest 

mapped onto the polyprotein multiple sequence alignment context, with gaps colored 

gray. Phylogeny shown to the left is colored as shown in Fig. 2. Gray shaded blocks 

above the heatmaps illustrate domain boundaries as predicted by Pfam (Finn et al. 2016). 

a Multiple sequence alignment. Amino acids are colored based on TOP-IDP scale for 

measuring intrinsic disorder propensity (red is highest, purple is lowest; (Campen et al. 
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2008)). b Intrinsic disorder propensity as predicted for the full-length polyprotein by 

IUPred (Dosztányi et al. 2005). Blue-to-white-to-red illustrates low propensity towards 

disorder (blue, 0) to high propensity towards disorder (red, 1), with 0.4 (white) acting as 

the cut-off. c Secondary structure as predicted for the full-length polyprotein by 

PSIPRED (Jones 1999) showing beta strands (yellow), alpha helices (purple), and coils 

(white).  
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CHAPTER IV 

EPITOPEDIA: IDENTIFYING MOLECULAR MIMICRY BETWEEN PATHOGENS 

AND KNOWN IMMUNE EPITOPES 
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ABSTRACT 

Upon infection, foreign antigenic proteins stimulate the host’s immune system to 

produce antibodies targeting the pathogen. These antibodies bind to regions on the antigen 

called epitopes. Structural similarity (molecular mimicry) of epitopes between an infecting 

pathogen and host proteins or other pathogenic proteins the host has previously 

encountered can impact the host immune response to the pathogen and may lead to cross-

reactive antibodies. The ability to identify potential regions of molecular mimicry in a 

pathogen can illuminate immune effects which are especially important to pathogen 

treatment and vaccine design. Here we present Epitopedia, a software pipeline that 

facilitates the identification of regions that may exhibit potential three-dimensional 

molecular mimicry between an antigenic pathogen protein and known immune epitopes as 

catalogued by the Immune Epitope Database (IEDB). Epitopedia is open-source software 

released under the MIT license and is freely available on GitHub, including a Docker 

container with all other software dependencies preinstalled. We performed an analysis 

describing how various secondary structure states, identity between pentapeptide pairs, and 

identity between the parent sequences of pentapeptide pairs affects RMSD. We found that 

pentapeptides pairs in a helical conformation had considerably lower RMSD values than 

those in extended or coil conformations. We also found that RMSD is significantly 

increased when pentapeptide pairs are from non-homologous sequences.  

 

INTRODUCTION 

Pathogens present antigenic molecules that can elicit a host immune response. For 

proteins, an epitope is the portion of the antigen that is recognized and bound by an 
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antibody. Occasionally, pathogen epitopes may share similar chemical and structural 

properties to unrelated host epitopes, leading to unexpected interactions between the 

pathogen’s epitope and host proteins (Getts et al., 2013). Molecular mimicry can also 

potentially lead to autoimmune disorders where infection with a pathogen can trigger the 

production of antibodies that mistakenly cross-react with an epitope in a host protein, 

potentially resulting in autoimmune complications involving both B-cell and T-cell 

response (Cusick et al., 2012). Alternatively, molecular mimicry between two pathogens 

may lead to heterologous immunity where infection with one pathogen can provide 

protection against other pathogens that exhibit molecularly similar antigenic proteins 

(Agrawal, 2019).  

Epitopes can be linear or conformational. Linear epitopes consist of short local 

sequence stretches while conformational epitopes consist of sequence stretches across the 

protein sequence that come together in the 3D structure. Prediction of molecular mimicry 

for conformational epitopes presents a challenge, while the prediction of molecular 

mimicry at linear epitopes using a sequence-based approach followed by structural 

comparison is more straightforward. To the best of our knowledge there are currently no 

computational programs or pipelines readily available for the prediction of molecular 

mimicry of known epitopes, although programs exist to map peptides (mimotopes) onto 

the antigenic protein structure to identify a native epitope (Chen et al., 2012; Huang et al., 

2008; Mayrose et al., 2007; Negi & Braun, 2009), to identify molecular mimicry in remote 

homologs (Armijos-Jaramillo et al., 2021), and to identify molecular mimicry in antibody-

binding interfaces (Stebliankin et al., 2022). 
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We present Epitopedia, a computational pipeline for the prediction of molecular 

mimicry. Epitopedia identifies sequence and structural similarity between an antigenic 

protein of interest and experimentally verified linear epitopes found in the Immune Epitope 

Database (IEDB) (Vita et al., 2019). Given the structural similarity between these epitopes 

and the pathogenic protein, it follows that binding of the same antibody may be possible. 

 

EPITOPEDIA IMPLEMENTATION 

Internal Database Generation 

Epitopedia utilizes data from the Immune Epitope Database (IEDB) (Vita et al., 

2019), the Protein Data Bank (PDB) (Berman et al., 2000), and, optionally, the AlphaFold 

Protein Structure Database (Varadi et al., 2022) for the human proteome (Tunyasuvunakool 

et al., 2021). The data are organized into four internal tables (IEDB-FILT, mmcif-seqs, 

EPI-3D, and 3D-DSSP) stored in a SQLite3 database. IEDB-FILT is derived from a 

reduced IEDB that only includes the necessary data (epitope sequence, epitope identifier, 

antigen source sequence, range, accession, organism,  etc.) for epitope mimicry search, 

including the full-length antigen source sequences from all assays available for T Cell, B 

Cell, and MHC Ligand available in IEDB. Based on the epitopes with positive assays from 

IEDB-FILT, a database for BLASTP (referred to as EPI-SEQ) of linear epitope sequences 

(mean length of 13 residues) and associated taxonomic origin of the epitopes is generated. 

Sequences from all PDB structures and human AlphaFold models were extracted and 

stored in mmcif-seqs. To find structural representatives for the antigen source sequences 

from IEDB, a sensitive (s=7.5) MMseqs2 (Steinegger & Söding, 2017) many-against-many 
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search of antigen source sequences against mmcif-seqs is performed and the results are 

stored in EPI-3D. For a structural representative to be included in EPI-3D, the MMseqs2 

pairwise alignment between the antigen source sequence and the structure sequence must 

have at least 90% identity and 20% query coverage. Lastly, DSSP (Kabsch & Sander, 1983) 

is used to determine secondary structure and compute the accessible surface area (ASA) 

for every residue in each chain in EPI-3D and the results are stored in 3D-DSSP. 

Searching for 1-Dimensional Molecular Mimics 

The Epitopedia pipeline is executed with one or more PDB IDs as input. The protein 

sequence (seqres) is extracted from the input structure and used in a BLASTP search 

against EPI-SEQ. The BLASTP parameters evalue and max_target_seq are both set to 

2,000,000 to avoid discarding hits due to large evalues or reaching the match limit, 

respectively. The BLAST hits are filtered to only include hits with regions containing 5 or 

more consecutive, identical amino acids between the query (input protein based on the PDB 

ID input) and subject (epitope). If a hit meets this requirement in more than one region, the 

regions are split into subalignments so that one epitope may have >1 region. 

Further, to be considered molecular mimics, the regions must have at least 3 

consecutive accessible amino acids with a relative accessible surface area (RASA) > 20%. 

Based on ASA from 3D-DSSP and the maximum allowed solvent accessibility (MaxASA) 

values per amino acid as defined in Wilke (Tien et al., 2013), RASA is calculated according 

to the equation 𝑅𝐴𝑆𝐴 = 𝐴𝑆𝐴/𝑀𝑎𝑥𝐴𝑆𝐴. Regions meeting these qualifications are 

considered one dimensional mimics (1D-mimics). Regions that do not meet the 

aforementioned criteria to be considered a 1D-mimic are discarded. 
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Identifying 3-Dimensional Molecular Mimics 

 For 1D-mimics where the antigen source protein containing the epitope hit is 

represented in EPI-3D, the structural regions of the input structure corresponding to the 

1D-mimic regions are evaluated to ensure that all residues are solved. To avoid missing 

potential mimics due to regions of missing electron density in an input structure, several 

structures can simultaneously be used as an input. Further, providing multiple PDB IDs 

for the same protein as input allows for a conformational ensemble approach to search for 

structural mimics. The structural fragments of 1D-mimics represented in EPI-3D and the 

corresponding hit fragment from the input structure are extracted. To compliment 

structural representation of human antigen source proteins in PDB, structural fragments 

can also be extracted from AlphaFold2 models for the human proteome 

(Tunyasuvunakool et al., 2021). Although AlphaFold2 models are used, we refer to them 

as AlphaFold models from here on after. 

TM-align (Zhang & Skolnick, 2005) is used to evaluate the structural similarity 

based on the RMSD for each extracted peptide structure pair based on its BLAST hit 

pairwise alignment. To ensure that the structural superposition step is in agreement with 

the peptide pair sequence alignment, the pairwise alignment of the 100% identical 1D-

mimic peptide pair is provided to TM-align. Pairs with an RMSD ≤ 1Å are considered 

three dimensional mimics (3D-mimics).   

Handling Redundancy and Quantifying Results 

 Given the nature of epitopes and IEDB, it is common to have several overlapping 

epitopes where both the epitope mimic region and the antigen source sequence are 

identical. Internal accession numbers for all antigen source sequences in IEDB-FILT 
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were assigned to ensure that any two or more identical sequences will have the same 

internal accession number to allow for filtering of redundancy at the output stage of the 

pipeline.  

Epitopedia outputs results in CSV, JSON, and a simple web interface. The web 

interface is built using Flask, Bootstrap, and NGL Viewer (Rose et al., 2018) and 

provides an interactive visualization of the 3D-mimic region in both the input and 

epitope-containing source protein. The distribution of RMSD values for the 3D-mimics is 

plotted as a histogram, with grey lines denoting the points of -1, 0, 1 standard deviations, 

respectively, and a red line denoting the hit’s RMSD value amongst the distribution. he 

Z-score for the hit is also computed, allowing for a comparative assessment of the hit 

quality against other hits for a particular run. An additional score termed EpiScore is 

calculated by dividing the mimic length by the RMSD (length of alignment/RMSD) to 

emphasize the significance of longer mimics. For example, given several mimics of 

varying length with the same RMSD, a longer mimic would have a higher EpiScore than 

a shorter mimic. Further, the EpiScore can reflect a more notable hit for a longer mimic 

with a higher RMSD than a shorter mimic with a lower RMSD. Thus, a higher EpiScore 

represents a more remarkable hit. 

User Customization 

 For each provided input structure, the following main steps allow for 

customization of the run. For the BLASTP search in Step 1 (Figure 1), the user can 

specify a taxonomy filter for a focused search. With the taxonomy filter, epitopes from 

the specified taxonomic id will be excluded from the search.  
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For extracting potential epitope hits based on the input structure in Step 2, the 

minimum span length of an identical hit and the minimum accessibility of the hit in the 

input structure can be specified, with default values set to 5 and 3 residues, respectively. 

The user determines the cutoff for RASA, with the default set to 0.2. The sequence motifs 

from the epitope hits that meet span length and accessibility cutoffs are considered 1D-

mimics, because although they are valid epitope hits based on the input structure, the 

structure of the epitope hit fragment is yet unknown. The structural fragments 

corresponding to the motif of each 1D-mimic are excised from the input structure.  

 

Figure 1. Overview of Epitopedia. Epitopedia is initiated with one or more PDB 

structures as input. In Step 1, a BLASTP search against linear epitope sequences in EPI-

SEQ is performed with the corresponding sequence (seqres) from each PDB input as 

query. In Step 2, BLASTP hits that include sequence fragments from the query that do 

not contain at least 5 consecutive identical amino acids and where less than 3 amino acids 

are surface accessible based on the input structure are discarded. For the remaining hits, 

the PDB fragment is extracted from the input structure. These are considered 1D-mimics. 

In Step 3, structural fragments from the hits from EPI-SEQ that correspond to the 1D-

mimics are extracted from PDB structural representatives of the source antigens. In Step 

4 (optional), for hits against epitopes in human source antigens that are not represented in 
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PDB, structural fragments are extracted from AlphaFold models for regions with a 

certain confidence level (specified by the user). In Step 5, TM-align is used to calculate 

the RMSD of the structural alignment of the BLAST hit fragment or peptide pairs. In 

Step 6, RMSD results for all fragment pairs for all inputs for the run are combined. 

EpiScore (length of alignment/RMSD) and RMSD histograms are generated, and Z-

scores are calculated based on the whole run. A top list of fragment pairs with RMSD ≤ 

1Å is created. These fragment pairs are referred to as 3D-mimics. 

 

In Step 3, for epitope hits corresponding to 1D-mimics from Step 2, the PDB 

structure of their source antigen protein is extracted from EPI-3D, if such a structure 

exists. Fragments matching the motifs of the 1D-mimics are excised for later comparison 

to the corresponding motif of each 1D-mimic from the input structure. Further, 

accessibility of the residues in the motifs is extracted from 3D-DSSP based on the whole 

protein structure. 

Similarly, the user can choose to extract representative structures from an 

AlphaFold model of the human proteome (Tunyasuvunakool et al., 2021) based on EPI-

3D in Step 4. The user can specify the confidence level of the AlphaFold models to 

consider using a motif (local) and a protein (global) confidence score. Both scores are 

based on pLDDT, which is the primary confidence score reported for AlphaFold models 

(Jumper et al., 2021). For the motif confidence score (m-pLDDT), no residue within the 

1D-mimic motif can be below the cutoff. For the protein confidence score (p-pLDDT), 

the average of pLDDT for the entire model cannot be below the cutoff. The defaults are 

set to 0.9 and 0.7 for m-pLDDT and p-pLDDT, respectively. Structural fragments 

matching the motifs of the 1D-mimics are excised for later comparison to the 

corresponding motif of each 1D-mimic from the input structure. Further, accessibility of 

the residues in the motifs is extracted from 3D-DSSP based on the whole AlphaFold 

model. 
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In Step 5, structural comparisons of each motif fragment from the input structure 

to the corresponding fragments from Step 3 or Step 4 are performed using TM-align for 

the exact pairwise sequence alignment (Zhang & Skolnick, 2005). TM-score and RMSD 

are reported. However, because only short structural fragments are compared, the TM-

score is not meaningful, while the RMSD of the structural alignment and agreement in 

RASA (based on the whole structural context) are meaningful. The user can set an 

RMSD cutoff for hits to be reported but the default is no RMSD cutoff. 

In Step 6, all results for all input structures are compiled into a list. The EpiScore 

and Z-scores are computed. Hits with RMSD of at most 1Å are considered 3D-mimics. 

For the 3D-mimics, a web interface output is generated. The web interface includes the 

settings used to execute Epitopedia and basic information about the motif in the input 

structure, the epitope it mimics, and the source antigen in addition to RMSD, 

accessibility, EpiScore, Z-scores, and a link to a visualization of the results (Figure 2). 

For motifs with a 3D-mimic, the best hit is shown but the other hits are included under a 

dropdown menu. Structural visualization of 3D-mimics highlights the location of each 

mimic in the input structure and in the antigen source structural representative (Figure 3).  
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Figure 2. Overview of the Epitopedia web interface for 3D-mimics. For each run, (a) information about the run; (b) the mimic and 

protein in which the mimic was identified; (c) the epitope and its structural representative; (d) identification of the structural 
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representative with MMseqs2; (e) structural comparison of the mimics including 

EpiScore, EpiScore Z-Score, and RMSD Z-Score; (f) EpiScore distribution for all 

structurally represented mimics (blue) during the given run including the EpiScore Z-

score (grey), with the current mimic in red; (g) RMSD distribution for all structurally 

represented mimics (blue) during the given run including the RMSD Z-score (grey), with 

the location of the current mimic in red; (h) link to 3D visualization of the mimic; (i) and 

while the Best Mimic is shown from the start, additional mimics for the same motif from 

the same or different proteins but with higher RMSD are included in a dropdown menu.    

 

 
 

Figure 3. Visualization of the mimic pair in 3D. (a) The motif (green) shown in input 

protein (brown) (b) and in the structural representative protein (blue). (c) The TM-align 

structural superimposition for the motif in the input protein (brown) and the structural 

representative (blue). Panels a-c are interactive. (d) The mimic motif is interactive, 

hovering over a residue in the motif will highlight it in panels a-c.   

 

EPITOPEDIA DEMONSTRATION 

 To demonstrate an Epitopedia run, we provide an example using an electron 

microscopy structure of the SARS-CoV-2 Spike protein (PDB ID: 6VXX, chain A (Walls 

et al., 2020)) as input (Figure 4). The taxid-filter flag with a taxid of 11118 was utilized 

to ensure neither the input protein nor other Coronavirus proteins were included as 

mimics (since these are homologous proteins and not mimics). The search for mimic 
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representatives was performed against both PDB and the Human AlphaFold Protein 

Structure Database with default settings. 

 

Figure 4. Epitopedia output overview using PDB 6VXX, chain A as input. For detailed 

output see example_output folder on the GitHub repository. 

 

 The run resulted in 755 1D-mimics, where 297 1D-mimics are structurally 

represented, of which 93 are only represented in the Human AlphaFold Protein Structure 

Database. After ensuring that only the best mimic per source sequence progresses, there 

were 153 mimics, with 66 of them mimicked with an AlphaFold structure. Finally, after 

filtering the results so that only 3D-mimics with an RMSD ≤ 1Å remain and removing 

redundant hits, there were 27 mimics, of which 11 are mimicked with an AlphaFold 

structure.  Of the 16 3D-mimics from PDB, 13 are from human (such as integrin beta-1), 

and one each are from Mycobacterium tuberculosis, Bacillus anthracis, and Timothy 

grass (Appendix 1, Appendices 4-9). The remaining 11 3D-mimics are from the Human 

AlphaFold Protein Structure Database (Tunyasuvunakool et al., 2021; Varadi et al., 2022) 

and thus are all from human epitopes (Appendix 2). The mimic with the lowest RMSD 

(0.09 Å) is shown in Figures 2 and 3. 
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We also applied Epitopedia to a different SARS-CoV-2 Spike structure (PDB ID: 

6XR8) and identified additional molecular mimicry with potential implications for 

COVID-19 (Nunez-Castilla et al., 2022). 

 

PENTAPEPTIDE STRUCTURAL SPACE ANALYSIS 

To provide guidance on how to interpret structural mimicry based on RMSD for 

the 3D-mimic pentapeptide fragment pairs identified by Epitopedia, we performed an 

investigation of RMSD for random pentapeptide pairs for the three main secondary 

structure states helix, extended, and coil from any sequence pair regardless of sequence 

similarity and for sequence pairs with low sequence similarity representing non-

homologous proteins. 

Methods 

 To understand how secondary structure state and sequence identity affect the 

distribution of RMSD values for pentapeptide pairs, an analysis of RMSD distributions of 

pentapeptide pairs across various secondary structure states and pentapeptide sequence 

identity levels was performed.  

All possible pentapeptides based on PDB structures were generated and annotated 

with a DSSP secondary structure state reduction based on 3D-DSSP. The DSSP state 

reduction was performed such that if all residues in a pentapeptide were classified as turn 

(T), bend (S) or none (-), the pentapeptide was labeled coil, if all residues were strand (E) 

or beta-bridge (B) the pentapeptide was labeled extended, and if all residues were alpha 

helix (H), 3-10 helix (G), or pi-helix (I) the pentapeptide was labeled helix. Any 

pentapeptides that did not fit into one of these 3 categories were discarded.  
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Around 1,000 pentapeptide pairs (Appendix 3) were generated for each secondary 

structure state per identity level (0%, 20%, 40%, 60%, 80%, and 100%) from the labeled 

pentapeptide database described above. The number of pentapeptide pairs per category is 

not exactly the same across all categories because matches of a pentapeptide against itself 

(same PDB ID) are discarded. The pentapeptide regions were extracted from the parent 

structures using GEMMI (GitHub - Project-Gemmi/Gemmi: Macromolecular 

Crystallography Library and Utilities, n.d.) and superposed using TM-align (Zhang & 

Skolnick, 2005), with a fixed alignment as described for the Epitopedia implementation 

above.  

To reduce the influence that parent sequence homology may have on the above 

analysis, we performed a similar analysis starting with 2,000 pentapeptides for each 

secondary structure state per identity level. Here, an added filtering step was performed 

to ensure that the parent sequences of the pentapeptide pairs were no more than 30% 

identical according to a local pairwise Smith-Waterman alignment of the parent 

sequences generated with EMBOSS Water (Madeira et al., 2019). Pentapeptide matches 

where the identity filter could not be enforced were discarded, thus, the number of 

pentapeptide pairs per category is not exactly the same across categories. For instance, if 

a query pentapeptide had been paired with over 100 other pentapeptides to generate a 

pentapeptide pair, yet a pentapeptide pair with a parent sequence identity of less than 

30% was not found, the query pentapeptide was discarded. This scenario 

disproportionately affected pentapeptide pairs with higher pentapeptide identity, as there 

is a lower chance of parent sequences having less than 30% identity as the pentapeptide 
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pair identity increases. In total, all pentapeptide identity and secondary structure 

combinations have greater than 900 pentapeptide pairs (Appendix 3).  

Statistical comparisons were performed with Mann Whitney U using SciPy 

(Virtanen et al., 2020). Alpha values were corrected for multiple comparisons using 

simple Bonferroni correction. For a confidence level of 99%:  

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑎𝑙𝑝ℎ𝑎 =  
0.01

𝑁 𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠
 

Results 

 An analysis was performed to better understand how the RMSD distribution for 

pentapeptides pairs varies with differing pentapeptide pair sequence identity, parent 

sequence identity and secondary structure state. For the first analysis that did not consider 

the percent identity of the parent sequences for a pentapeptide pair, a decrease in the 

median RMSD is observed at the 100% identity levels (Figure 5, Table 1). For helix 

pentapeptide pairs, the median RMSD for the 0% to 80% pentapeptide identity levels is 

0.20-0.22Å, while at the 100% identity level the median is 0.13Å, which is a significant 

decrease when compared to all other identity levels for the helical state (Table 2). For 

extended pentapeptide pairs, the median RMSD for the 0% to 80% pentapeptide identity 

levels is 0.69-0.84Å, while at the 100% identity level the median is 0.14Å. This is a 

significant decrease when compared to all other identity levels for the extended state 

(Table 2). Lastly, for coil pentapeptide pairs, the median RMSD for the 0% to 80% 

pentapeptide identity levels is 1.79-1.95Å, while at the 100% identity level the median is 

0.31Å. This large decrease of ~1.5Å is significant when compared to all other identity 

levels for coil (Table 2). 
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Figure 5. (a) Violin plots of the resulting RMSD distribution from pentapeptide structure 

analysis. The distributions for the analysis without the 30% parent sequence identity filter 

are shown in grey while the corresponding distributions for the pentapeptides from the 

30% parent sequence identity set are shown in blue. (b) Violin plots showing the 

distribution of query coverage between the parent sequences for pentapeptide pairs at 

various identity levels and secondary structure categories. (c) Violin plots showing the 

distribution of pairwise identity between the parent sequences for pentapeptide pairs at 

various identity levels and secondary structure categories. 

 

Table 1. Median RMSD values resulting from RMSD distribution for structural space 

analysis of pentapeptide pairs of various identity levels and secondary structural 

categories shown in Figure 5. 

 

 

Pentapeptide 

% Identity 

Median RMSD (Å) 

No Parent Identity Filter 30% Parent Identity Filter 

Helix Extended Coil Helix Extended Coil 

0 0.22 0.84 1.95 0.22 0.83 1.91 

20 0.21 0.82 1.88 0.21 0.80 1.90 

40 0.21 0.75 1.87 0.21 0.77 1.88 

60 0.20 0.74 1.85 0.21 0.74 1.85 

80 0.21 0.69 1.79 0.21 0.76 1.79 

100 0.13 0.14 0.31 0.20 0.63 1.74 
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Table 2. Comparisons across pentapeptide identity levels for the same structural class for the no filter and 30% filter datasets, 

respectively. Significantly different comparisons are shown in blue.1 

 

Pentapeptide % 

Identity 

No Parent Identity Filter 30% Parent Identity Filter 

Helix Extended Coil Helix Extended Coil 

0 20 0.197694 0.578304 0.070875 0.084507 0.107303 0.464566 

0 40 0.377122 0.000931 0.001582 0.212098 0.002897 0.013426 

0 60 0.076141 0.000368 0.000528 0.15162 1.64E-06* 7.41E-06* 

0 80 0.313838 3.52E-12* 5.1E-09* 0.0284 9.37E-08* 1.97E-10* 

0 100 8.4E-59* 1.3E-212* 5.5E-156* 5.63E-06* 2.77E-31* 3.33E-17* 

20 40 0.688416 0.006825 0.145049 0.636335 0.170195 0.083497 

20 60 0.634811 0.00257 0.092602 0.779538 0.001278 0.000172 

20 80 0.791704 1.43E-10* 2.84E-05* 0.639867 0.000168 1.84E-08* 

20 100 3.63E-52* 2.8E-210* 2.3E-149* 0.002963 4.31E-25* 6.02E-15* 

40 60 0.362381 0.785088 0.797398 0.838454 0.06416 0.038889 

40 80 0.891271 7.14E-05* 0.006063 0.35334 0.016001 8.83E-05* 

40 100 1.27E-54* 4.5E-203* 1.9E-141* 0.00072 2.59E-20* 2.54E-10* 

60 80 0.457191 0.000238 0.011388 0.457478 0.571466 0.067424 

60 100 1.06E-50* 7.3E-200* 2.5E-140* 0.001357 1.51E-14* 6.59E-06* 

80 100 3.08E-53* 2.2E-174* 1.5E-124* 0.01095 5.00E-13* 0.003258 
1 Based on simplified Bonferroni correction at 99% confidence level, corrected alpha = 0.000111. 
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For the follow-up analysis we enforced a 30% parent sequence identity filter to 

better resemble molecular mimics from unrelated protein pairs. To ensure that the 

pentapeptide pairs were from proteins that are not closely related, we performed local 

alignments and extracted the percent sequence identity and query cover for each parent 

sequence pair. By design, no parent sequence pair has a pairwise sequence identity above 

30%, with a median around 20% (Figure 5). The query cover for the parent sequence pair 

alignments is low, with a median of around 20% (Figure 5). For these pairwise sequence 

alignments with 20% sequence identity and query cover, we can assume that these are 

primarily non-homologous parent sequence pairs although some remote homologs may 

be included in this dataset. 

For the pentapeptide pairs from these non-homologous sequence pairs, the sharp 

decrease in the median RMSD at the 100% pentapeptide identity level has faded for 

extended and coil conformations (Figure 5). For helix pentapeptide pairs, the median 

RMSD at the 0% to 100% pentapeptide identity level is 0.20-0.22Å. Only the 100% vs 

0% identity level comparison yields significant difference for the helix pentapeptide pairs 

(Table 2). For extended pentapeptide pairs, the median RMSD at the 0% to 100% 

pentapeptide identity level is 0.63-0.83Å. For coil pentapeptide pairs, the median RMSD 

at the 0% to 100% pentapeptide identity level is 1.74-1.91Å. For extended and coil 

pentapeptide pairs, the 100% identity level is significantly different when compared 

against every other identity level except for one comparison, 80% vs 100% in the coil 

state (Table 2).  

When comparing the same identity level for the pentapeptide pairs across the set 

with no parent sequence identity filter and the set with the 30% sequence identity filter, 
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we found that the pairwise parent sequence identity has an impact on the RMSD for 

identical pentapeptide pairs in the helical state, but not for the less identical peptide pairs 

(Table 3). This pattern is shared for the coil state, but for the extended state, the pairwise 

parent sequence identity seems to impact RMSD for identical and 80% identical 

pentapeptides (Table 3). 

Table 3. Comparisons between pentapeptide identity levels for the same structural class 

for the 30% filter vs the no filter dataset. Significantly different comparisons are shown 

in blue.1 

 

Pentapeptide % 

Identity 
30% vs no Parent Identity Filter 

  Helix Extended Coil 

0 0 0.438284984 0.56859737 0.1896511 

20 20 0.381648164 0.255207316 0.7826223 

40 40 0.445432037 0.339928559 0.5969043 

60 60 0.091388265 0.844626827 0.4058797 

80 80 0.856800634 0.000269319* 0.5128634 

100 100 3.41E-55* 4.83E-171* 1.93E-131* 

1Based on simplified Bonferroni correction at 99% confidence level, corrected alpha = 

0.000555556.  

 

 Altogether, this analysis shows that for pentapeptides, the secondary structure 

state is important to consider when identifying molecular mimics using RMSD for 

random proteins. We used TM-align to calculate RMSD and this method, like many 

others, calculates RMSD based on the spatial coordinates for C-alpha in each amino acid 

residue. Our observation that pentapeptide pairs in a helical state have lower RMSD is 

not surprising given the regular geometry of the α-helix. For identical pentapeptide pairs 

in extended and coil conformations, the median RMSD for the non-homologous parent 

sequences are 0.63Å and 1.74Å, respectively, compared to 0.20Å for helix (Table 1). 
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Guidelines 

 Our interpretation, as far as molecular mimicry goes, is that mimics with identical 

sequences in α-helices are likely to appear very similar if they are oriented the same way 

in their parent proteins. As such, they are likely to be able to participate in similar 

interactions with, for example, an antibody. Mimics with identical sequences with low 

RMSDs, approaching the median RMSD of the unfiltered set (Table 1), are likely to 

present a similar interaction interface, if oriented similarly. A pentapeptide in a helix, 

given its winding structure, is relatively short while a pentapeptide in the extended or coil 

conformation may present a larger accessible area. 

Pathogen proteins that mimic known epitopes in antigenic proteins may stimulate 

the production of cross-reactive antibodies that can interact with the pathogen protein as 

well as the human antigen. Pathogen proteins that mimic known epitopes in other 

pathogens may trigger an immune memory that could lead to protective immunity or 

complex immune effects such as anti-body dependent enhancement.    

 

CONSLUSION 

 Here, we have developed Epitopedia, a pipeline for the discovery of potential 

molecular mimics of immune epitopes found in IEDB. Importantly, Epitopedia is 

designed to only predict molecular mimicry for linear epitopes, that are continuous in 

sequence, as opposed to conformational epitopes, that are discontinuous in sequence and 

come together in three-dimensional space. As such, molecular mimics found in 

conformational epitopes cannot be identified using our approach. Additionally, 

Epitopedia is reliant on publicly available data found in both IEDB and PDB and cannot 
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predict instances of molecular mimicry de novo. Molecular mimics that are not yet found 

in IEDB or PDB will not be identified by Epitopedia. Furthermore, relying on public 

databases can lead to biased results because proteins with greater perceived relevance 

(e.g. those involved in more common human diseases) are more likely to be well-studied 

and thus have functional and structural information deposited in these databases, while 

other proteins remain underrepresented. PDB is also biased towards proteins that lack 

intrinsic disorder and the more stable conformation of a dynamic protein. Therefore, 

Epitopedia may not predict molecular mimics in conformationally flexible regions. 

Importantly, results produced by Epitopedia are only predictions, subject to both false 

positives and negatives. It is critical to further investigate this output with both literature 

searches and experimental validation. 

Epitopedia can facilitate our understanding of how pathogens may interfere with 

the known epitopes from the human proteome and also known epitopes from other 

species. Epitopes shared between pathogens can impact immune responses for secondary 

infections and identification of mimics of epitopes can provide insights to the mechanism 

behind the widely differing clinical manifestations and complications of infection with 

certain pathogens, such as SARS-CoV-2. Identification of molecular mimicry between 

known epitopes from the human proteome and a human pathogen protein can provide 

clues to the autoimmune potential of an infection caused by the pathogen. Further, by 

pinpointing regions in the pathogen’s proteome that may cause an autoimmune response 

if a cross-reactive antibody is created against it, these regions can be avoided in future 

vaccine design. Lastly, by highlighting which human proteins may be at risk for 

autoimmune targeting in response to a pathogen infection, therapeutics to counteract 
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autoimmune effects can be used (or developed). Epitopedia provides a starting point for 

generating a better understanding of the autoimmune potential of pathogens and can 

benefit large-scale data mining and experimental in-vitro and in-vivo design to solve 

autoimmune conundrums in infectious disease. 
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Appendices 

Appendix 1. 3D-mimics found for SARS-CoV-2 Spike (PDB id 6VXX_A) 

Motif Protein Species RMSD 
RMSD Z-

Score 
EpiScore PDB_chain 

DPSKP 60S ribosomal protein L3 Human 0.09 Å -1.81 55.56 6LU8_B 

DPSKP 
Alanine and proline-rich secreted 

protein apa precursor 

Mycobacterium 

tuberculosis 
0.22 Å -1.67 22.73 5ZX9_A 

LPDPS BRCA1-A complex subunit BRE Human 0.18 Å -1.71 27.78 6GVW_C 

EHVNN Casein kinase 2 alpha isoform Human 0.30 Å -1.58 16.67 2ZJW_A 

NLLLQ DNA polymerase subunit gamma 1 Human 0.42 Å -1.45 11.90 5C51_A 

LLQYG Ankyrin 1 Human 0.49 Å -1.38 10.20 1N11_A 

GEVFN Integrin beta 1 Human 0.56 Å -1.30 8.93 7NWL_B 

QEVFA Lethal factor precursor Anthrax 0.59 Å -1.27 8.47 6ZXL_H 

DPFLG NAD-dependent deacetylase sirtuin-2 Human 0.64 Å -1.22 7.81 5D7P_B 

KIADY Nucleoporin NUP188 Human 0.64 Å -1.22 7.81 5IJO_J 

IDGYF lanosterol 14-alpha demethylase Human 0.64 Å -1.22 7.81 4UHI_A 

PFLGV CTP synthase 1 Human 0.64 Å -1.22 7.81 7MH0_B 

FTVEKG Pollen allergen Phl p 2 Timothy grass 0.67 Å -1.18 8.96 1WHP_A 

HAPAT 
Activator of 90 kDa heat shock protein 

ATPase homolog 1 
Human 0.76 Å -1.09 6.58 1X53_A 
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STASAL 40S ribosomal protein S13 Human 0.84 Å -1.00 7.14 6G5I_N 

PPEAE Integrin alpha-5 Human 0.96 Å -0.87 5.21 7NXD_A 
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Appendix 2. Human AF-3D-mimics for SARS-CoV-2 Spike 

Motif Protein RMSD 
RMSD Z-

Score 
EpiScore AlphaFold2 ID 

TGIAV Phosphofructokinase 0.09 Å -1.81 55.56 
AF-P17858-F1-

model_v1_A 

TGIAV Low affinity immunoglobulin gamma Fc region receptor II-b 0.11 Å -1.78 45.45 
AF-P31995-F1-

model_v1_A 

KIQDSL Phosphorylase b kinase regulatory subunit beta 0.13 Å -1.76 46.15 
AF-Q93100-F1-

model_v1_A 

KIQDSL Long-chain-fatty-acid-CoA ligase 5 0.40 Å -1.47 15.00 
AF-Q9ULC5-F1-

model_v1_A 

VYDPL Actin-binding protein IPP 0.15 Å -1.74 33.33 
AF-Q9Y573-F1-

model_v1_A 

SAIGKI Ran-GTP binding protein 0.17 Å -1.72 35.29 
AF-O60518-F1-

model_v1_A 

LPDPS Semaphorin 7a 0.63 Å -1.23 7.94 
AF-O75326-F1-

model_v1_A 

VLYNS U2 snRNP-associated SURP motif-containing protein 0.20 Å -1.69 25.00 
AF-O15042-F1-

model_v1_A 

KLPDD F-box only protein 3 0.28 Å -1.60 17.86 
AF-Q9UK99-F1-

model_v1_A 

NLLLQ Ankyrin 3 0.47 Å -1.40 10.64 
AF-Q12955-F1-

model_v1_A 

DNTFV N-acetylgalactosamine-6-sulfatase 0.47 Å -1.40 10.64 
AF-P34059-F1-

model_v1_A 
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Appendix 3. Number of pentapeptide pairs per pentapeptide identity / secondary 

structure category for both analyses (with and without parent sequence identity filter). 

 

 

Pentapeptide 

% Identity 

Number of Pentapeptide Pairs 

No Parent Identity Filter 30% Parent Identity Filter 

Helix Extended Coil Helix Extended Coil 

0 962 962 954 1999 2000 1999 

20 964 967 955 1999 2000 1999 

40 967 966 954 1999 1999 1999 

60 965 969 953 1999 2000 1999 

80 966 966 953 1999 1992 1998 

100 944 925 903 1508 921 1236 
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Appendix 4. The molecular mimicry motif DPSKP (red) from Spike (A, colored by 

chain) matches ribosomal protein L3 (B, beige) from Homo sapiens with an RMSD of 

0.09 Å and alanine and proline-rich secreted protein apa precursor (C, beige) from 

Mycobacterium tuberculosis with an RMSD of 0.22 Å. The motif is not conserved in 

human betacoronaviruses (D). Protein structures visualized can be found in Appendix 1. 

Sequences for human betacoronavirus Spike proteins were aligned using MAFFT. The 

molecular mimicry motif region was extracted from the alignment according to Appendix 

1. Accessions for the sequences in order of appearance are: YP_009724390, 

YP_009825051, YP_009047204, YP_009555241, NP_073551, YP_003767, YP_173238. 
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Appendix 5. The molecular mimicry motif LPDPS (red) from Spike (A, colored by 

chain) matches BRCA1-A complex subunit BRE (B, colored by chain) from Homo 

sapiens with an RMSD of 0.18 Å and semaphorin-7A (C, colored by chain) from Homo 

sapiens with an RMSD of 0.66 Å. The motif is not conserved in human 

betacoronaviruses (D). For details, see legend of Appendix 4. 
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Appendix 6. The molecular mimicry motif EHVNN (red) from Spike (A, colored by 

chain) matches casein kinase 2 alpha isoform (B, beige) from Homo sapiens with an 

RMSD of 0.30 Å. The motif is not conserved in human betacoronaviruses (C). For 

details, see legend of Appendix 4. 
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Appendix 7. The molecular mimicry motif NLLLQ (red) from Spike (A, colored by 

chain) matches DNA polymerase subunit gamma-1 (B, colored by chain, with DNA 

colored by element) from Homo sapiens with an RMSD of 0.42 Å. The motif is semi-

conserved in human betacoronaviruses (C). For details, see legend of Appendix 4. 
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Appendix 8. The molecular mimicry motif LLQYG (red) from Spike (A, colored by 

chain) matches ankyrin-1 (B, beige) from Homo sapiens with an RMSD of 0.49 Å. The 

motif is semi-conserved in human betacoronaviruses (C). For details, see legend of 

Appendix 4. 
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Appendix 9. The molecular mimicry motif GEVFN (red) from Spike (A, colored by 

chain) matches integrin beta-1 (B, colored by chain) from Homo sapiens with an RMSD 

of 0.67 Å. The motif is not conserved in human betacoronaviruses (C). For details, see 

legend of Appendix 4.  
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CHAPTER V 

POTENTIAL AUTOIMMUNITY RESULTING FROM MOLECULAR MIMICRY 

BETWEEN SARS-COV-2 SPIKE AND HUMAN PROTEINS  
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ABSTRACT 

 Molecular mimicry between viral antigens and host proteins can produce cross-

reacting antibodies leading to autoimmunity. The coronavirus SARS-CoV-2 causes 

COVID-19, a disease curiously resulting in varied symptoms and outcomes, ranging from 

asymptomatic to fatal. Autoimmunity due to cross-reacting antibodies resulting from 

molecular mimicry between viral antigens and host proteins may provide an explanation. 

Thus, we computationally investigated molecular mimicry between SARS-CoV-2 Spike 

and known epitopes. We discovered molecular mimicry hotspots in Spike and highlight 

two examples with tentative high autoimmune potential and implications for 

understanding COVID-19 complications. We show that a TQLPP motif in Spike and 

thrombopoietin shares similar antibody binding properties. Antibodies cross-reacting 

with thrombopoietin may induce thrombocytopenia, a condition observed in COVID-19 

patients. Another motif, ELDKY, is shared in multiple human proteins, such as PRKG1 

involved in platelet activation and calcium regulation, and tropomyosin, which is linked 

to cardiac disease. Antibodies cross-reacting with PRKG1 and tropomyosin may cause 

known COVID-19 complications such as blood-clotting disorders and cardiac disease, 

respectively. Our findings illuminate COVID-19 pathogenesis and highlight the 

importance of considering autoimmune potential when developing therapeutic 

interventions to reduce adverse reactions. 

 

INTRODUCTION 

 The coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. 

COVID-19 is an infectious disease whose typical symptoms include fever, cough, 



166 

 

 

shortness of breath [1,2], and loss of taste or smell [3]. Curiously, despite over half a 

billion confirmed cases worldwide [4], roughly one-third are estimated to be 

asymptomatic [5]. Yet, other SARS-CoV-2 infected individuals may also experience a 

variety of disease-related complications including liver injury [6], kidney injury [7], and 

cardiovascular complications including myocarditis, heart failure, thrombosis [8], and 

thrombocytopenia [9]. COVID-19 can trigger a range of antibody response levels [10] 

and an enrichment in autoantibodies that react with human proteins has been found for 

patients with severe disease [11]. While the reason for the variety of disease severity 

affecting people with COVID-19 is not well understood, molecular mimicry may provide 

an avenue for explanations. 

Molecular mimicry occurs when unrelated proteins share regions of high 

molecular similarity, such that they can perform similar and unexpected interactions with 

other proteins. When molecular mimicry involves antigens to which antibodies are 

produced, cross-reactive antibodies can result. Molecular mimicry between pathogen 

antigens and human proteins can cause an autoimmune response, where antibodies 

against the pathogen erroneously interact with human proteins, sometimes leading to 

transient or chronic autoimmune disorders [12]. Alternatively, molecular mimicry could 

be viewed through the lens of heterologous immunity, where previous exposure to one 

pathogen antigen can result in short- or long-term complete or partial immunity to 

another pathogen with a similar antigen [13]. Moreover, antigen-driven molecular 

mimicry can also lead to cross-reactive antibody immunity which has been reported 

against SARS-CoV-2 for uninfected individuals [14]. 
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The SARS-CoV-2 Spike protein is responsible for enabling SARS-CoV-2 entry 

into host cells [15]. Spike protrudes from the virus surface and is one of the main 

antigenic proteins for this virus [16]. Additionally, Spike is the primary component in the 

vaccines against SARS-CoV-2. Consequently, mimicry between Spike and human 

proteins or Spike and other human pathogens can result in cross-reactive antibodies in 

response to SARS-CoV-2 infection or vaccination. Cross-reactive antibodies may yield 

complex outcomes such as diverse symptoms with varying severity across populations 

and developmental stages as observed for COVID-19. It must be noted that there are a 

variety of genetic and environmental factors that contribute to an individual’s likelihood 

to develop an autoimmune response [17]. Still, identifying autoimmune potential and 

heterologous immunity through instances of molecular mimicry between Spike and 

proteins from humans or human pathogens can serve to better understand disease 

pathogenesis, improve therapeutic treatments, and inform vaccine design as they relate to 

SARS-CoV-2 infection. Previous studies have predicted molecular mimicry between 

SARS-CoV-2 Spike and human proteins using sequence similarity [18] to known 

epitopes in the Immune Epitope Database (IEBD) [19] and sequence and structural 

similarity in general [20,21]. We combine these approaches and investigate molecular 

mimicry between Spike and human proteins by considering both sequence and structural 

similarity and searching against known epitopes from IEDB [19]. We define molecular 

mimicry as a match of at least five identical consecutive amino acids that appear in both 

Spike and in a known epitope, where at least three amino acids are surface accessible on 

Spike and the match from the epitope has high structural similarity to the corresponding 

sequence from Spike. In light of our findings, we discuss autoimmune potential and 
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heterologous immunity with implications for vaccine design and the side-effects of 

SARS-CoV-2 infection. 

 

METHODS 

Identifying Epitopes with Molecular Mimicry 

 To identify known epitopes with positive assays from IEBD, we used Epitopedia 

[22] with a full-length Cryo-EM structure of Spike from SARS-CoV-2 (PDB id: 6XR8, 

chain A, RBD: 0up3down (solved residues:14-69, 77-244, 254-618, 633-676, 689-1162) 

[23]) as input. Hits containing 5 or more consecutive residues with 100% sequence 

identity where at least 3 of the input residues are surface accessible are considered 

sequence-based molecular mimics (termed as “1D-mimics”). For all 1D-mimics with 

corresponding structural representation from either the Protein Data Bank (PDB) [24] or 

AlphaFold2 [25] 3D models of human proteins, TM-align [26] was used to generate a 

structural alignment and Root Mean Square Deviation (RMSD) for all input-hit (1D-

mimic) alignment pairs using only the structural regions corresponding to the hit for the 

source antigenic protein containing the epitope and the input. Epitopes with an RMSD ≤ 

1 Å to Spike were considered structure-based molecular mimics (termed as “3D-

mimics”). 

 

Conformational Ensemble of TQLPP Structural Mimicry  

To gather all structures of the TQLPP motif in Spike, an NCBI BLASTP search 

against PDB was performed with the SARS-CoV-2 Spike reference sequence as the 

query and a SARS-CoV-2 taxa filter. Of 75, close to full-length, hits (>88% query cover), 
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20 included a solved structure for the TQLPP motif. The TQLPP region of the PDB 

structure was extracted for all chains in the 20 structures (all were trimers, as in Spike’s 

biological state) resulting in a TQLPP Spike ensemble of 60 different chains from SARS-

CoV-2. Each sequence in the TQLPP Spike ensemble was superimposed with chain X of 

the two PDB structures of human thrombopoietin (hTPO, PDB ids: 1V7M and 1V7N) to 

generate an RMSD value distribution for Spike’s conformational ensemble vs hTPO for 

the structural mimicry region (Appendix 7). 

Modeling Spike-Antibody Complexes 

We constructed a composite model of the Spike-TN1 complex using the hTPO-

TN1 complex (PDB id: 1V7M) as a template. For this, we first aligned the TQLPP 

segment of hTPO in the hTPO-TN1 complex with the TQLPP segment of the fully 

glycosylated model of Spike (PDB id: 6VSB [27]) retrieved from the CHARMM-GUI 

Archive [28]. We then removed hTPO, leaving TN1 complexed with Spike. For the 

Spike-TN1 simulations, only the TN1 interacting N-terminal domain of Spike (residues 

1-272) was considered. Similarly, a composite model of the Spike-S2P6 complex was 

modeled by using the stem helix-S2P6 complex with ELDKY in the stem helix segment 

of Spike (PDB id: 6XR8) retrieved from the Protein Data Bank. We then removed the 

stem helix segment from the stem helix-S2P6 complex, leaving S2P6 complexed with 

Spike. For the Spike-S2P6 simulations, only the S2P6 interacting stem helix segment of 

Spike (residues 1146-1159) was considered. Geometrical alignments, as well as 

visualization, were performed with PyMOL version 2.5.0 [30] and Visual Molecular 

Dynamics (VMD 1.9.3 [31]). 
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 To confirm that the modeled Spike TQLPP region is in agreement with the 

TQLPP region of solved Spike structures, these regions were extracted. TM-align was 

used to superimpose the TQLPP regions from the different structures, including the 

modeled TQLPP region from the Spike-TN1 complex, and to calculate the respective 

RMSD values. Three states of the model were included (before and after equilibration, 

and after molecular dynamics (described in the following paragraph)) together with the 

60 experimentally determined Spike structures in Appendix 7) and compared in an all-

against-all manner (Appendix 1, Appendix 8). A Mann-Whitney U test was used to 

compare the TQLPP region from 60 experimentally determined Spike structures based on 

RBD state: (1) both down, (2) 1 down and 1 up, (3) both up (Appendix 2). Further, TM-

align was used to calculate RMSD between wild-type TQLPP (PDB id: 6XR8, chain A) 

and the corresponding region in known variants of concern with available structures 

(Appendix 9).  

Molecular Dynamics Simulation 

A simulation system for the modeled Spike-antibody systems was prepared using 

CHARMM-GUI [32,33,34]. The complexes were solvated using a TIP3P water model 

and 0.15 M concentration of KCl and equilibrated for 1 ns at 303 K. All-atom simulations 

were performed with NAMD2.14 [35] using CHARMM36m force-field. The production 

runs were performed under constant pressure of 1 atm, controlled by a Nose−Hoover 

Langevin piston [36] with a piston period of 50 fs and a decay of 25 fs to control the 

pressure. The temperature was set to 303 K and controlled by Langevin temperature 

coupling with a damping coefficient of 1/ps. The Particle Mesh Ewald method (PME) 

[37] was used for long-range electrostatic interactions with periodic boundary conditions 
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and all covalent bonds with hydrogen atoms were constrained by Shake [38]. The contact 

area of the interface was calculated as (S1+S2-S12)/2, where S1 and S2 represent the 

solvent accessible surface areas of the antigen and antibody and S12 represents that for the 

complex (Appendix 3). We performed MD simulations of the hTPO-TN1 complexes 

(PDB ids: 1V7M and 1V7N) as well as the Spike-TN1 complexes modeled from PDB 

ids: 1V7M and 1V7N to generate interaction matrices of protein-antibody hydrogen 

bonds during the last 50 ns of 200 ns MD simulation for each run. 

Binding Affinity 

 The PRODIGY webserver [39] was used to calculate the binding affinity and 

intermolecular contacts for Spike-TN1 (described above) and hTPO-TN1 complexes 

(PDB ids: 1V7M and 1V7N) at the TQLPP region. We retrieved five intermediate 

structures from 200 ns MD simulations of each of these complexes at an interval of 40 ns. 

Similarly, PRODIGY was used to calculate the binding affinity and intermolecular 

contacts for the modeled Spike-S2P6 complex (from PDB id 7RNJ [29]) at the ELDKY 

region. We retrieved five intermediate structures from a 50 ns MD simulation at an 

interval of 10 ns. The average binding affinity for each complex is reported (Appendix 

10).  

Antibody Interface Complementarity 

We used the MaSIF-search geometric deep learning tool designed to uncover and 

learn from complementary patterns on the surfaces of interacting proteins [40]. The 

surface properties of proteins are captured using radial patches. A radial patch is a fixed-

sized geodesic around a potential contact point on a solvent-excluded protein surface 

[41]. In MaSIF-search, the properties include both geometric and physicochemical 
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properties characterizing the protein surface [40]. This tool exploits that a pair of patches 

from the surfaces of interacting proteins exhibit interface complementarity in terms of 

their geometric shape (e.g., convex regions would match with concave surfaces) and their 

physicochemical properties. The data structure of the patch is a grid of 80 bins with 5 

angular and 16 radial coordinates and ensures that its description is rotation invariant. 

Each bin is associated with 5 geometric and chemical features: shape index, distance-

dependent curvature, electrostatics, hydropathy, and propensity for hydrogen bonding. 

The model converts patches into 80-dimensional descriptor vectors, such that the 

Euclidian distance between interacting patches is minimized. Here, we define the binding 

confidence score as a measure of distance between the descriptor vectors of the two 

patches. Thus, lower “MaSIF binding confidence scores” represent better 

complementarity and therefore better matches. The pre-trained MaSIF-search model 

“sc05” with a patch radius of 12 Å was used. 

Using the MaSIF protocol, we evaluated complexes of the TN1 antibody bound to 

Spike in the TQLPP region. The antibody-antigen patch pairs were extracted using scripts 

from the molecular mimicry search pipeline EMoMiS [42]. To accommodate multiple 

Spike configurations, we extracted patches from 40 SARS-CoV-2 Spike-antibody 

complexes from the SabDab structural antibody database [43]. Patches centered at Q23 

from Spike and W33 from TN1 were selected as representative pairs for the Spike-TN1 

interaction type because this potential contact point has the most hydrogen bonds in the 

modeled Spike-TN1 TQLPP region. Binding confidence scores of randomly formed 

complexes (Random), complexes between Spike and its native antibodies (Spike-Ab), 

and complexes between hTPO and TN1 (hTPO-TN1) were extracted and tabulated 
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(Appendix 11). The distribution of binding confidence scores from randomly formed 

complexes was obtained by pairing patches from random locations on Spike with patches 

from its antibodies. For native antibody-antigen Spike-Ab and hTPO-TN1 complexes, we 

obtained patch pairs from known interface regions using the MaSIF-search strategy for 

the selection of interacting patches [40]. Columns “Contact AB” and “Contact AG” in 

Appendix 12 indicate the residue used as the center of the patch from the antibody and 

the corresponding antigen. 

Evaluating Further Cross-Reactivity 

All 3D-mimics and AlphaFold-3D-mimics (termed as “AF-3D-mimics”) were 

split into pentapeptides (if mimicry motif exceeded 5 residues) which were used as 

queries for NCBI BLASTP searches against the RefSeq Select [44] set of proteins from 

the human proteome. Results for the BLAST searches can be found in Appendix 13. 

For the TQLPP sequence motif, 10 representative isoforms in proteins containing 

the complete motif were found, including hTPO. The other 9 proteins lacked a solved 

structure containing TQLPP. However, AlphaFold2 3D models were available for all 10 

of these RefSeq Select sequences [25,45], allowing us to extract the region corresponding 

to TQLPP in these hits and structurally superimpose this region with Spike TQLPP (from 

PDB id 6XR8) with TM-align as described above. 

TN1-protein complexes were generated for three of the remaining 9 proteins (Fc 

receptor-like protein 4 (residues 190-282), serine/threonine-protein kinase NEK10 

(residues 1029-1146), ALG12 (Mannosyltransferase ALG12 homolog (residues 1-488)). 

The TQLPP segment in hTPO was structurally aligned with each of the TQLPP segments 

of the modeled proteins, after which, hTPO was removed resulting in the complex of 
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TN1 with the modeled proteins following the methods mentioned for Spike above. The 

equilibrated structures of these complexes show that TN1 stays firmly with these proteins 

without any structural clash. Further, to evaluate the shape complementarity of these 

three proteins and TN1, MaSIF was used to calculate binding confidence scores as 

described above (Appendix 14). 

It should also be noted that two additional human genes (GeneIDs 8028 and 

57110) also have one TQLPP motif, but not in the RefSeq Select isoforms. Since no 

structure or structural prediction was available for these proteins, they were excluded 

from further analysis. 

For the ELDKY sequence motif, 6 additional representative isoforms containing 

the complete motif were found, in addition to the human proteins identified by Epitopedia 

to contain 3D-mimics of the motif. Solved structures of the ELDKY motif were available 

for 3 of the proteins, while the others had AlphaFold2 3D models available. In all 

instances, the region corresponding to the ELDKY motif was extracted and structurally 

superimposed with Spike ELDKY (from PDB id 6XR8) with TM-align as previously 

described. 

Statistical Analysis 

Distributions were visualized as violin plots with ggpubr (Version 0.40) and 

ggplot2 (Version 3.3.6) from R (Version 4.2.1). Following Shapiro-Wilk normality 

testing, statistical analysis comparing the different distributions was performed using 

Mann-Whitney U with SciPy [46], followed by a simplified Bonferroni correction 

(alpha/n comparisons) when appropriate. 
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RESULTS AND DISCUSSION 

 We used Epitopedia [22] to predict molecular mimicry for the structure of the 

SARS-CoV-2 Spike protein (PDB id: 6XR8, chain A [23]) against all linear epitopes in 

IEDB, excluding those from Coronaviruses. Epitopedia returned 789 sequence-based 

molecular mimics (termed as “1D-mimics”). 1D-mimics are protein regions from 

epitopes that share at least five consecutive amino acids with 100% sequence identity to a 

pentapeptide in SARS-CoV-2 Spike, where at least three of the amino acids are surface 

accessible on Spike. Most 1D-mimics (627 epitopes) were found in human. Additionally, 

1D-mimics were found in non-human vertebrates (65 epitopes, 7 species), viruses (58 

epitopes, 17 species), bacteria (18 epitopes, 7 species), parasitic protists (12 epitopes, 2 

species), plants (5 epitopes, 2 species), and invertebrates (4 epitopes, 2 species). 

Seemingly redundant 1D-mimics from the same protein may represent different epitopes 

and, thus, all 789 1D-mimics were kept at this step. 

 Structural representatives from the Protein Data Bank (PDB) were identified for 

284 1D-mimics based on their source sequence using the minimum cutoffs of 90% for 

sequence identity and 20% for query cover. The 284 1D-mimics are represented by 7992 

redundant structures from 1514 unique PDB chains. From these, structure-based 

molecular mimics (termed as “3D-mimics”) were identified. 3D-mimics are 1D-mimics 

that share structural similarity with SARS-CoV-2 Spike as determined by an RMSD of at 

most 1 Å. We found 20 3D-mimics for Spike. Unsurprisingly, as with the 1D-mimics, 

most 3D-mimics were found for human proteins. Additionally, one 3D-mimic was found 

for Mus musculus (mouse), Mycobacterium tuberculosis, Phleum pratense (Timothy 

grass), and respiratory syncytial virus, respectively (Table 1). For each 3D-mimic, 
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Epitopedia computes a Z-score based on the distribution of RMSD values for all resulting 

hits for the input structure. This allows for a comparative assessment of the quality of a 

hit, with respect to RMSD, to other hits for a given run. Epitopedia also computes an 

EpiScore for each hit. EpiScore, calculated as (motif length/RMSD), favors longer motifs 

over shorter ones with the same RMSD values. 

Table 1. 3D-mimics found for SARS-CoV-2 Spike 

Motif Protein Species RMSD Z-Score 
Epi 

Score PDB_chain 

TQLPP Thrombopoietin Human 0.46 Å -1.34 10.87 1V7N_X 

QLPPA SMYD3 protein Human 0.38 Å -1.42 13.16 5CCL_A 

KNLRE Toll-like receptor 8 Human 0.87 Å -0.92 5.75 6WML_D 

FTVEKG 
Pollen allergen 

Phl p2 

Phleum 

pratense 
0.76 Å -1.03 7.89 1WHP_A 

GEVFN Integrin beta 1 Human 0.63 Å -1.16 7.94 7NWL_B 

HAPAT 

Activator of 90 

kDa heat shock 

protein ATPase 

homolog 1 

Human 0.74 Å -1.05 6.76 7DME_A 

YSTGS 
Argininosuccinate 

lyase Human 0.48 Å -1.31 10.42 1K62_B 

EHVNN 
Casein kinase 2 

alpha isoform Human 0.29 Å -1.51 17.24 2ZJW_A 

NLLLQ 
DNA polymerase 

subunit gamma 1 
Human 0.57 Å -1.22 8.77 5C51_A 

LLQYG Ankyrin 1 Human 0.20 Å -1.60 25.00 1N11_A 

LPDPS 

BRCA1-A 

complex subunit 

BRE 

Human 0.32 Å -1.48 15.62 6GVW_C 

LPDPS Semaphorin 7a Human 0.84 Å -0.91 5.95 3NVQ_A 

DPSKP 
60S ribosomal 

protein L3 
Human 0.10 Å -1.70 50.00 6LU8_B 

DPSKP 

Alanine and 

proline-rich 

secreted protein 

apa precursor 

Mycobacterium 

tuberculosis 
0.21 Å -1.59 23.81 5ZXA_A 
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IAARD Talin Mus musculus 0.74 Å -1.05 6.76 6R9T_A 

GNCDV 
Tryptophan-tRNA 

ligase 
Human 0.91 Å -0.88 5.49 1O5T_A 

SFKEE 

Small subunit 

processome 

component 20 

homolog 

Human 0.32 Å -1.48 15.62 7MQA_SP 

EELDK Kynureninase Human 0.22 Å -1.58 22.73 2HZP_A 

ELDKY 
Fusion 

glycoprotein F0 

Respiratory 

syncytial virus 
0.12 Å -1.68 41.67 6EAE_F 

DKYFK 

Cytoplasmic 

FMR1-interacting 

protein 1 

Human 0.14 Å -1.66 35.71 4N78_A 

 

 For the 402 human 1D-mimics where no PDB structural representative could be 

identified for their source sequence, AlphaFold2 3D models were used. 3D model 

representatives were found for 102 human 1D-mimics. Of these, 10 are predicted to be 

AlphaFold-3D-mimics (termed as “AF-3D-mimics”) based on the RMSD (Table 2). 

Table 2. Human AF-3D-mimics for SARS-CoV-2 Spike 

Motif Protein RMSD Z-Score EpiScore AlphaFold2 ID 

NLLLQ Ankyrin 3 0.61 Å -1.18 8.20 AF-Q12955-F1-

model_v1_A 

LLQYG 
Olfactory receptor 

10Q1 
0.66 Å -1.13 7.58 AF-Q8NGQ4-F1-

model_v1_A 

TGIAV Phosphofructokinase 0.17 Å -1.63 29.41 AF-P17858-F1-

model_v1_A 

TGIAV 

Low affinity 

immunoglobulin 

gamma Fc region 

receptor II-b 

0.17 Å -1.63 29.41 AF-P31995-F1-

model_v1_A 

KIQDSL 

Phosphorylase b 

kinase regulatory 

subunit beta 

0.19 Å -1.61 31.58 AF-Q93100-F1-

model_v1_A 

KIQDSL 
Long-chain-fatty-acid-

CoA ligase 5 
0.37 Å -1.43 16.22 AF-Q9ULC5-F1-

model_v1_A 
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VYDPL 
Actin-binding protein 

IPP 
0.17 Å -1.63 29.41 AF-Q9Y573-F1-

model_v1_A 

EELDK 
Tight junction-

associated protein 1 
0.20 Å -1.60 25.00 AF-Q5JTD0-F1-

model_v1_A 

EELDKY 
Keratin, type I 

cytoskeletal 18 
0.22 Å -1.58 27.27 AF-P05783-F1-

model_v1_A 

ELDKY 
Tropomyosin alpha-3 

chain 
0.18 Å -1.62 27.78 AF-P06753-F1-

model_v1_A 

 

 The 3D- and AF-3D-mimics (hereinafter referred to as “molecular mimics”) 

mapped to a few clusters on Spike. Ten molecular mimics were singletons, six 

overlapping molecular mimics were found as pairs in three small clusters, and the 

remaining 14 were found in three larger clusters with at least four overlapping molecular 

mimics (Figure 1a). The largest cluster, with six molecular mimics, was also adjacent to 

three additional molecular mimics. All mimics are displayed on the surface of Spike’s 

functional trimer, but the large cluster centered around LLLQY is in a deep pocket and is 

an unlikely antibody binding epitope in this conformation (Figure 1b). Only one 

molecular mimic is predicted for the RBD, despite RBD being an immunodominant 

region in Spike to which many antibodies naturally bind [47]. This molecular mimic 

(HAPAT) corresponds to the activator of 90 kDa heat shock protein ATPase homolog 1 

(AHA1). Two molecular mimics are predicted near the S1/S2 boundary that is a site for 

proteolytic cleavage [48]. The first is YSTGS from argininosuccinate lyase. The second 

is EHVNN from casein kinase 2 alpha (CK2). CK2 has been found to play an important 

role in SARS-CoV-2 infection [49]. Activation of CK2 is promoted by SARS-CoV-2 

infection [50] and inhibiting CK2 has been suggested as a therapeutic strategy against 

both SARS-CoV and SARS-CoV-2 [49]. If a cross-reactive antibody intended for SARS-

CoV-2 can interact with CK2, it may impact its activity and perhaps the antibody can 
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stabilize conformations that make CK2 more active, but these are speculations and more 

work along these lines is needed. 

 

Figure 1. Molecular mimicry with autoimmune potential across SARS-CoV-2 Spike. (a) 

Overview of molecular mimics (solid arrow: 3D-mimic, dashed arrow: AF-3D-mimic) 

for Spike in the linear sequence showing Spike domains (NTD: N-terminus domain of S1 

subunit (green), RDB: receptor binding domain of S1 subunit (orange), CTD: C-terminus 

domain of S1 subunit (cyan), S2: S2 domain (purple)) as predicted by Pfam [51] based on 

the NCBI reference sequence (YP:009724390.1). The boundary between the S1 and S2 

subunits is indicated by S1/S2. (b) Surface representation of Spike (PDB id: 6XR8 [23]) 

colored by subunit (pink, beige, light blue) with residues colored by number of 

occurrences in a molecular mimic (blue: 1, green: 2, purple: 3, orange: 4 or more). 

Structural visualization generated with PyMOL 2.5.0 [30]. (c) The number of occurrences 

of the sequence motif in human RefSeq Select isoforms arranged in order from the N-

terminus to the C-terminus and colored by predominant secondary structure element 

based on Spike PDB id 6XR8 chain A. 

 

To further evaluate the autoimmune potential of the human mimics, we identified 

all occurrences of the motifs in the human RefSeq Select proteome [44]. The 

pentapeptides from the molecular mimicry regions are found from four to 33 times in 
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human proteins (Figure 1c, Appendix 13). The human protein thrombopoietin that 

includes the 3D-mimic TQLPP (Table 1) also has an occurrence of the sequence mimic 

LPDPS (Appendix 13). Further, another protein family that occurs twice for the same 

pentapeptide is tropomyosin. Tropomyosin alpha-3 is an AF-3D-mimic (Table 2), and 

tropomyosin alpha-1 has one occurrence of the same pentapeptide (ELDKY). The same 

motif, ELDKY, is a 3D-mimic in the fusion F0 glycoprotein of respiratory syncytial virus 

(Table 1). Altogether, based on the known epitopes in IEDB, heterologous immunity is 

rare with Spike while regions of autoimmune potential form hotspots. 

To further evaluate molecular mimicry and, indirectly, autoimmune potential, we 

performed a deeper investigation of two motifs, TQLPP and ELDKY, that mapped to 

positions 22-26 (small cluster) and 1151-1155 (largest cluster) in Spike, respectively. For 

TQLPP, a 3D-mimic with human thrombopoietin was identified. The only structure in 

our dataset where a 3D-mimic was located at an antibody interface was for human 

thrombopoietin (hTPO). Thrombopoietin is a cytokine that regulates platelet production 

[52] (Figure 2). Interestingly, COVID-19 patients often suffer from thrombocytopenia, 

characterized by low platelet levels [53], which correlates with an almost 5-fold increase 

in mortality [54]. Thrombocytopenia in COVID-19 patients resembles immune 

thrombocytopenia (ITP), where hTPO and/or its receptor are mistakenly targeted by 

autoantibodies leading to reduced platelet count [55]. Treatments with hTPO Receptor 

Agonists improve thrombocytopenia in both general [56] and COVID-19 [57] patients, 

suggesting the mistaken targeting occurs before hTPO activates the hTPO receptor. ITP 

is a heterogenous disease caused by numerous mechanisms. In ITP patients, about half 

have antibodies against the major platelet glycoproteins while 28.1% have autoantibodies 
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against hTPO, 28.1% against the hTPO receptor, and 6.8% against the hTPO-hTPO 

receptor complex. While autoantibodies often seem to play a role in ITP, other 

mechanisms are possible [58]. For ELDKY, we identified one 3D-mimic in the fusion F0 

glycoprotein of respiratory syncytial virus (Table 1) and two AF-3D-mimics from keratin 

type I cytoskeletal 18 and tropomyosin alpha-3 (Table 2). Additional 3D-mimics partially 

overlapping with ELDKY were identified. The ELDKY motif in Spike is part of a highly 

reactive epitope [59] found in an α-helix located towards the C-terminus. This motif is 

conserved across beta-coronaviruses and can bind an antibody effective against all 

human-infecting beta-coronaviruses [29]. Altogether, the numerous molecular mimics of 

the ELDKY motif suggests a potential for both protective and autoimmune cross-

reactivity. 

 

Figure 2. The hTPO pathway to induce platelet production. Simplified JAK-STAT 

signaling pathway in megakaryocytes where hTPO activates the TPO receptor and 

triggers signaling cascades that stimulate platelet production [60,61]. Created with 

BioRender.com (accessed on 12 August 2021). 
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Molecular Mimicry between Spike and Thrombopoietin Mediated through TQLPP 

The shared five-amino acid motif, TQLPP (Figure 3a), is located on the surface of 

Spike’s N-terminal Domain (NTD) (Figure 3b, c), whereas it is found at the interface 

with a neutralizing antibody in hTPO [62] (Figure 3d). The TQLPP motifs from the two 

proteins are found in coil conformations but exhibit high structural similarity (Figure 3e, 

f). On Spike, the motif is adjacent to the NTD supersite that is known to be targeted by 

neutralizing antibodies [63]. We hypothesized that COVID-19 may trigger the production 

of TQLPP-specific antibodies against this epitope that can cross-react with hTPO. In the 

absence of Spike TQLPP antibodies, we used molecular modeling and machine learning 

to investigate the binding of the neutralizing mouse Fab antibody (TN1) from the hTPO 

structure [64] to the Spike TQLPP epitope. 
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Figure 3. Structural mimicry between a TQLPP motif in SARS-CoV-2 Spike and an 

antibody binding epitope in thrombopoietin. (a) Pairwise sequence alignment for the 

TQLPP motif in the epitope for human thrombopoietin (hTPO, IEDB Epitope ID: 

920946) and Spike, amino acids colored by Taylor [65] for sites with ≥ 50% conservation 

in the amino acid property [66]. The region of molecular mimicry is highlighted in the 

red dashed box. Surface representation of Spike from (b) the top and (c) the side, with 

Spike trimer (PDB id: 6XR8 [23]) colored by subunit (pink, beige, light blue) and red 

indicating the location of the TQLPP epitope fragment, illustrating the surface 

accessibility of TQLPP and highlighting the location of RBD (dashed oval) and NTD 

(dashed circle). (d) Surface representation shown for hTPO (gray, PDB id: 1V7M [62]) 

and its TN1 antibody (blue) with the TQLPP motif (red) at the interface. (e) TM-align 

generated structural alignment for TQLPP in Spike (beige) and hTPO (gray), with RMSD 

= 0.61 Å. (f) Violin plots of RMSD values resulting from the comparison of the TQLPP 

region in 20 Spike structures (60 chains) vs TQLPP in two hTPO structures (PDB ids: 

1V7M and 1V7N, chain X for both [62]). Statistical analysis with Mann-Whitney U 

reveals no statistical significance between the sets. Box plots, bounded by the 1st and 3rd 

quartiles, show median value (horizontal solid bold line), vertical lines (whiskers) 
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represent 1.5 × IQR, while outliers are marked as black points. For further details, see 

methods. Alignment representations were generated with Jalview 2.11.2.2 [66] and 

structural visualizations were generated with PyMOL 2.5.0 [30]. 

 

To construct a composite model of Spike and TN1 Fab, a full-length glycosylated 

model of the Spike trimer, based on PDB id 6VSB [27] with the first 26 residues 

(including the TQLPP motif) reconstructed [67], was coupled to three copies of TN1 Fab 

from the structure of hTPO complexed with TN1 Fab [62]. The Spike-TN1 complex was 

energy minimized and equilibrated with molecular dynamics (MD) simulation. The final 

model of the Spike trimer complexed with three TN1 Fab antibodies (Figure 4a, b) shows 

that the TQLPP epitope is accessible to the antibody and the adjacent glycan chains do 

not shield the antibody-binding site (Figure 4c, Appendix 4). To confirm the 

conformation of TQLPP, we calculated the RMSD for TQLPP regions from 20 Spike 

trimer structures (60 chains) from PDB, plus the modeled states (before and after 

equilibration, and upon 200 ns MD simulation) in an all-vs-all manner (Appendix 1, 

Appendix 8), paying particular attention to the orientation (up or down) of the RBD. For 

1953 pairwise comparisons, 1306 had an RMSD ≤ 1 Å and 32 had an RMSD  ≥ 2 Å. 

Three groups were compared using a Mann-Whitney U test based on RBD state: (1) both 

down (N = 666, mean = 0.78 Å , median = 0.66 Å), (2) 1 down 1 up (N = 962, mean = 

0.81 Å, median = 0.73 Å), and (3) both up (N = 325, mean = 0.85 Å, median = 0.78 Å). 

Here, comparisons between groups 1 and 2 (p-value = 0.030) and 1 and 3 (p-value = 

0.003) were significantly different, while that between groups 2 and 3 (p-value = 0.055) 

was not (Appendix 2) The reconstructed TQLPP region falls within the conformational 

ensemble from PDB, suggesting that the modeled representation of TQLPP is valid. 

Furthermore, the Spike-TN1 complexes (with TN1 from PDB ids 1V7M and 1V7N) and 
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hTPO-TN1 complexes (PDB ids 1V7M and 1V7N) are all stable and have comparable 

binding affinities, with averages ranging from -9.2 to -9.56 kcal/mol (Appendix 10). The 

predominant intermolecular contacts for these four complexes are between polar-apolar 

and apolar-apolar residues (Appendix 10).  

To evaluate the molecular mimicry between the antibody interface areas, we 

performed MD simulations of hTPO and Spike NTD with TQLPP complexed with the 

TN1 antibody. The hydrogen bonds were calculated between the TN1 antibody with 

hTPO and Spike, respectively, from the last 50 ns of both trajectories (Appendix 3). Both 

the Spike-TN1 and the hTPO-TN1 complexes showed similar contact areas (Appendix 

3). Notably, critical hydrogen bonds were observed for residues Q and L in the TQLPP 

motif with TN1 for both Spike and hTPO (Figure 4d, e and Appendix 3). 

To further support our findings, we evaluated the antibody-antigen interface 

complementarity with MaSIF-search, a recent tool that uses deep learning techniques 

[40], on a pair of circular surface regions (patches) from an antibody-antigen complex. 

MaSIF-search produces a score associated with the confidence of binding when forming 

a stable complex. We refer to this score here as the binding confidence score, where 

lower scores indicate a higher probability of protein-protein binding. The results show 

that Spike-TN1 complexes have a better (lower) binding confidence score than random 

complexes and that complexes including Spike from PDB id 7LQV [63] have three of the 

four best binding confidence scores (0.86, 1.05, 1.42) and may bind to TN1 as well as, or 

better than, hTPO (Figure 4h, Appendices 11-12). Notably, in 7LQV, COVID-19 

antibodies bind to Spike at the NTD supersite [63]. These results strongly argue for the 
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possibility of cross-reactivity between Spike and hTPO driven by the molecular mimicry 

of TQLPP (Figure 4). 
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Figure 4. Binding of SARS-CoV-2 Spike to TN1 Fab antibody. Equilibrated structure (1 

ns) of the modeled TN1 Fab antibody (blue, PDB id: 1V7M) complexed with Spike 

trimer model (pink, beige, light blue) shown from (a) the side and (b) the top, with 

TQLPP shown as red spheres. (c) The Spike NTD (beige) and TN1 Fab complex used for 

MD simulations (200 ns), with adjacent glycans at N17 and N74 highlighted in purple. 

The representative amino acids contributing to hydrogen bonds (dashed lines) during the 

last 50 ns of simulations for the (d) hTPO-TN1 and (e) Spike-TN1 complexes are 

highlighted as cyan sticks. (f) Violin plot showing the distribution of the MaSIF binding 

confidence scores for randomly selected patch pairs (blue), the interacting region of 

Spike-antibody (yellow) and hTPO-TN1 (gray) complexes, and for modeled Spike-TN1 

complexes across 40 Spike configurations (red). Statistical analysis with Mann-Whitney 

U shows that all pairwise comparisons except for Spike-Ab and hTPO-TN1 are 

significantly different after Bonferroni correction (Appendix 12). Box plots, bounded by 

the 1st and 3rd quartiles, show median value (horizontal solid bold line), vertical lines 

(whiskers) represent 1.5 × IQR, while outliers are marked as black points. For further 

details, see methods. Structural visualizations were generated with PyMOL 2.5.0 [30] and 

VMD 1.9.3 [31]. 

 

The human proteome contains nine additional occurrences of the TQLPP motif. 

Two of these motifs, found in Hermansky-Pudlak syndrome 4 protein and ALG12 

(Mannosyltransferase ALG12 homolog), have been associated with thrombosis and 

hemostasis disorder [68]. To evaluate structural mimicry between Spike-TQLPP and all 

human-TQLPP motifs, we utilized AlphaFold2 3D models [25,45] (Appendix 5). The 

closest structural mimicry region is in hTPO (RMSD = 0.39 Å), followed by coiled-coil 

domain-containing protein 185, Fc receptor-like protein 4 (FCRL4), and far upstream 

element-binding protein 1 (Appendix 5). These results indicate that TQLPP motifs have 

similar conformations (Appendix 1), strengthening the notion of structural mimicry. We 

investigated the potential cross-reactivity of an antibody targeting TQLPP in these 

proteins, after discarding six that display the TQLPP motif in low confidence or 

unstructured regions. The remaining three proteins, NEK10 (ciliated cell-specific kinase), 

FCRL4, and ALG12 were complexed with TN1 (Figure 5). The binding confidence score 

for NEK10-TN1 (1.44) is comparable to the hTPO-TN1 complex (Figure 5). NEK10 
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regulates motile ciliary function responsible for expelling pathogens from the respiratory 

tract [69]. Dysfunction of NEK10 can impact mucociliary clearance and lead to 

respiratory disorders such as bronchiectasis [69]. Based on our results, it is plausible that 

the function of NEK10 and thus mucociliary clearance can be affected by cross-reactive 

Spike antibodies targeting TQLPP. 

 

Figure 5. Predicted interaction patches between TN1 Fab antibody (PDB id: 1V7N) and 

the TQLPP motif. The best (lowest) binding confidence score is shown for Spike (PDB 

id: 7LQV, chain A, beige), hTPO (PDB id: 1V7N, chain X, gray), NEK10 (Uniprot: 

Q6ZWH5, pink), ALG12 (Uniprot: Q9BV10, purple), and FCRL4 (Uniprot: Q96PJ5, 

light blue). For all, red indicates the TQLPP motif and dark blue dots represent the 

surface points included in the predicted MaSIF patches. 

 

Molecular Mimicry between Spike, RSV, and Many Human Proteins Mediated through 

ELDKY 

Another motif, ELDKY, is in a region with several partially overlapping pentamer 

motifs including three 3D-mimics and three AF-3D-mimics (Figure 6a). For the 3D-
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mimics, two are from the human proteins kynureninase (hKYNU; motif: EELDK) and 

cytoplasmic FMR1-interacting protein 1 (hCYFIP1; motif: DKYFK), while the last is 

found in the fusion F0 glycoprotein of respiratory syncytial virus (RSV; motif: ELDKY). 

For the AF-3D-mimics, the motif is found in human tight junction-associated protein 1 

(hTJAP1; motif: EELDK), keratin type I cytoskeletal 18 (hKRT18; motif: EELDKY), 

and tropomyosin alpha-3 (hTPM3; motif: ELDKY). In Spike, the ELDKY motif is in a 

stem helix region near the C-terminus. This motif is well-conserved across beta-

coronaviruses and is found in a highly reactive epitope [59] that has been shown to bind 

to a broadly neutralizing antibody (S2P6) effective against all human-infecting beta-

coronaviruses [29]. The S2P6 antibody (from PDB id 7RNJ [29]) forms a stable complex 

with the Spike helix, with an average binding affinity of -9.52 ± 0.26 kcal/mol (Appendix 

10). Here, the predominant intermolecular contacts are formed between charged-apolar, 

polar-apolar, and apolar-apolar residues (Appendix 10). In COVID-19, stronger antibody 

responses to the epitope containing the ELDKY motif have been recorded for severe 

(requiring hospitalization) vs moderate cases, while fatal cases had a weaker response 

than surviving cases [16]. A synthetic epitope containing the ELDKY motif has also been 

shown to elicit antibody production following COVID-19 immunization [70]. Together 

with the 3D-mimics identified here, these results suggest interesting possibilities for the 

ELDKY motif from the perspective of both protective immunity and an autoimmune 

response. First, while not an example of molecular mimicry but evolutionary 

conservation across beta-coronaviruses, prior exposure to an endemic cold-causing 

coronavirus (ex. HCoV-OC43) could result in the production of a broadly neutralizing 

antibody against an epitope containing the ELDKY motif that would be effective against 
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SARS-CoV-2 infection, which could result in milder or asymptomatic infection. Further, 

a protective effect due to molecular mimicry is suggested by the 3D-mimic identified for 

the fusion F0 glycoprotein of RSV, a common virus that infects most children in the 

United States by the time they are 2 years old [71], where antibodies against the ELDKY-

containing epitope in RSV may be effective in combatting SARS-CoV-2 infection. In 

contrast, the potential for an autoimmune response against this motif is suggested by its 

presence in both two human 3D- and AF-3D-mimics (Figure 6).  

 

Figure 6. Structural mimicry between an ELDKY motif in SARS-CoV-2 Spike and 

epitopes in six other proteins. (a) Sequence alignment between SARS-CoV-2 Spike and 
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the epitopes containing the 3D-mimicry motif for human kynureninase (hKYNU, IEDB 

Epitope ID: 1007556), respiratory syncytial virus fusion F0 glycoprotein (RSV F0, IEDB 

Epitope ID: 1087776), human cytoplasmic FMR1-interacting protein 1 (hCYFIP1, IEDB 

Epitope ID: 1346528), human tight junction-associated protein 1 (hTJAP1, IEDB Epitope 

ID: 1016424), human keratin type I cytoskeletal 18 (hKRT18, IEDB Epitope ID: 

1331545), and human tropomyosin alpha-3 (hTPM3, IEDB Epitope ID: 938472). 

Residues in the molecular mimicry motifs are colored by Taylor [65]. The extended 

molecular mimicry region is highlighted by the orange dashed box. (b) Surface 

representation of Spike (PDB id: 6XR8) colored by subunit (beige, pink, light blue) with 

ELDKY motif indicated in red. Surface representation of proteins (gray) with full or 

partial 3D-mimics of the ELDKY motif (red): (c) hKYNU (PDB id: 2HZP), (d) RSV F0 

(PDB id: 6EAE), (e) hCYFIP1 (PDB id: 4N78), (f) hTJAP1 (Uniprot: Q5JTD0), (g) 

hKRT18 (Uniprot: P05783), (h) hTPM3 (Uniprot: P06753). Alignment representations 

were generated with Jalview 2.11.2.2 [66] and structural visualizations were generated 

with PyMOL 2.5.0 [30]. 

 

There are six additional occurrences of the ELDKY motif in the human proteome 

(Appendix 6). Structural similarity between Spike-ELDKY and human-ELDKY was 

assessed based on experimentally determined structures (if available) or AlphaFold2 3D 

models. RMSDs for the ELDKY motif ranged from 0.12-0.20 Å for 5 of the structures, 

with one hit being an outlier at an RMSD = 0.46 Å. In all instances, the ELDKY motif is 

found in an α-helix, resulting in the high degree of structural similarity found for this 

motif across proteins and bolstering the possibility for molecular mimicry. The ELDKY 

occurrence with the largest RMSD (0.46 Å) is found in the leucine-zipper dimerization 

domain of cGMP-dependent protein kinase 1 (PRKG1) (Appendix 6) whose 

phosphorylation targets have roles in the regulation of platelet activation and adhesion 

[72], smooth muscle contraction [73], and cardiac function [74]. Additionally, PRKG1 

regulates intracellular calcium levels via a multitude of signaling pathways [75]. The 

ELDKY motif is also found in tropomyosin alpha-1 (TPM1), a homolog of the AF-3D-

mimic tropomyosin alpha-3 (TPM3). Tropomyosins (TPMs) are involved in regulation of 

the calcium-dependent contraction of striated muscle [76]. TPM1 is a 1D-mimic but due 
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to a discrepancy in IEDB it was not identified as a 3D-mimic, although there is high 

structural similarity between ELDKY in Spike and ELDKY in TPM1 (Appendix 6). A 

previous study identified a longer match with 53% sequence identity between Spike and 

TPM1 that included the ELDKY motif [77]. However, in a separate search for structural 

similarity, Marrama and colleagues were unable to identify structural mimicry at the 

ELDKY motif due to using a structure for Spike lacking the motif, leading to a 

conclusion against molecular mimicry contributing to myocarditis in COVID-19 [77], in 

contrast to our work. These results illustrate the importance of structural representative 

selection when performing structural comparisons and in taking both sequence and 

structural similarity together into account when performing molecular mimicry searches, 

as we have done. For PRKG1, cross-reactive Spike antibodies targeting ELDKY may 

react with the motif, affecting PRKG1’s role in the regulation of platelet activation and 

adhesion and thus providing another avenue for thrombocytopenia or other blood clotting 

disorders. Antibodies that cross-react with PRKG1 may also alter calcium levels, thus 

affecting TPM function. For TPM1, cross-reactive Spike antibodies targeting the ELDKY 

motif may result in coronary heart disease, as low-level autoantibodies against this 

protein have been associated with increased risk for this condition [78] and TPM1 and 

TPM3 are cardiac disease-linked antigens [77]. Cardiac disease, including myocardial 

injury and arrhythmia, can be induced by SARS-CoV-2 infection [79] and myocarditis 

has been found to develop in some individuals following vaccination against SARS-CoV-

2 [80]. Furthermore, COVID-19 has been found to increase risk and long-term burden of 

several cardiovascular diseases, with COVID-19 severity being proportionate to 

increased risk and incidence [81].  
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CONCLUSION 

 We find that molecular mimics with high autoimmune potential are often found in 

clusters within Spike. Some clusters have several molecular mimics whose motifs are 

also found multiple times in the human proteome. Molecular mimics located in α-helices 

tend to have high structural similarity as can be expected based on the regular 

conformation of the helix, but also some molecular mimics in coil regions are remarkably 

similar. Our results on the TQLPP motif, located in a coil region, suggest a worrisome 

potential for cross-reactivity due to molecular mimicry between Spike and hTPO 

involving the TQLPP epitope that may affect platelet production and lead to 

thrombocytopenia. Further, cross-reactivity with other TQLPP-containing proteins such 

as NEK10 cannot be dismissed based on our in-silico results, but in-vivo validation is 

required. The presence of neutralizing antibodies against peptides with TQLPP in 

COVID-19 patients’ convalescent plasma [82], particularly in severe and fatal cases [16] 

adds credence to our result. It is also interesting to note that antibodies against a TQLPP-

containing peptide were found in the serum of pre-pandemic, unexposed individuals [83]. 

Prior infection with a different human coronavirus cannot explain the cross-reactivity 

observed in the unexposed group because TQLPP is situated in a region with low amino 

acid conservation [83]. Rather, this suggests the presence of an antibody for an unknown 

epitope with affinity for the TQLPP region in Spike. The COVID-19 vaccines designed 

to deliver the Spike protein from SARS-CoV-2, like COVID-19 infection itself, can 

cause thrombocytopenia [53,84,85,86] and it is plausible that cross-reactivity can titrate 

the serum concentration of free hTPO. The TQLPP motif is changing in the SARS-CoV-

2 variants and evolutionary trends in the motif suggest it may not remain in Spike. RMSD 
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values between wild-type TQLPP and TQLPP in five variants of concern range from 

0.21-1.78 Å (Appendix 9). In the Gamma variant, a P26S mutation has changed TQLPP 

to TQLPS and two additional mutations are located just before the motif at L18F and 

T20N in the NTD supersite, while the Delta variant is mutated at T19R [87]. The first 

Omicron variant (21K or BA.1), however, has no amino acid substitutions near the 

TQLPP motif, while a closely related Omicron variant  (21L or BA.2) contains a 9 

nucleotide deletion that results in the loss of 60% of the TQLPP motif (L24-, P25-, P26-) 

[87]. Neutralizing antibodies targeting the NTD supersite may rapidly lose efficacy 

against the evolving SARS-CoV-2. While the current COVID-19 vaccines remain safe 

and efficacious, we postulate that protein engineering of the TQLPP motif and possibly 

the NTD supersite for future COVID-19 vaccines may reduce the risk for 

thrombocytopenia and improve long-term vaccine protection against evolving variants. 

 We illuminated the cross-reactivity mediated through the ELDKY motif between 

Spike and PRKG1, TPM1, and TPM3. While PRKG1 provides a connection between 

blood clotting disorders and cardiac complications, it has a larger RMSD than other 

ELDKY motifs. ELDKY motifs in α-helices have high similarity and make good 

candidates for molecular mimicry. We find ELDKY in the homologous proteins TPM1 

and TPM3 suggesting a conserved importance for structure and function. In contrast to 

TQLPP, the ELDKY motif is highly conserved among beta-coronaviruses [29] and there 

are presently no SARS-CoV-2 variants with mutations in this region [87]. Further, while 

the existence of a broadly neutralizing antibody against an epitope containing ELDKY 

[29] illustrates the potential of this motif as a pan-coronavirus vaccine target, the viability 

may be diminished by the possibility for autoimmune cross-reactivity due to this motif. 
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 We present an extended application of Epitopedia [22] to identify molecular 

mimicry between Spike and known epitopes. We do not attempt to discover all possible 

epitopes for Spike. Epitopedia is only capable of predicting molecular mimicry for linear 

epitopes with positive assays that have been deposited in IEDB [19] and cannot predict 

molecular mimicry de novo. By design, Epitopedia does not predict molecular mimicry 

for conformational epitopes. Epitopedia relies primarily on structures available in PDB 

[24] when assessing structural similarity between 1D-mimics and the corresponding 

region on SARS-CoV-2 Spike. This can result in the nonidentification of potentially 

genuine molecular mimics if they are only present as 1D-mimics but have yet to have 

their structure experimentally determined. Moreover, the composition of the PDB is 

biased towards proteins that crystallize well, thus a molecular mimic can additionally go 

nonidentified if the 1D-mimic is found in an intrinsically disordered protein region. 

Proteins are dynamic molecules and the structures present in PDB may only represent a 

fraction of a protein’s full conformational ensemble [88]. Further, IEDB and PDB both 

have a biased data composition in that more well-studied proteins are likely to be the 

ones whose functions and structures are published while other proteins are 

underrepresented. Lastly, it is important to be mindful that Epitopedia output it strictly a 

prediction and can have false positives. It is therefore of utmost importance to follow up 

on the results with both literature searches and experimental validation. 

We highlight two epitopes of particular interest in our investigation of molecular 

mimicry in SARS-CoV-2. For one epitope, we find the TQLPP motif and an interacting 

antibody with which we perform a computational investigation into antibody binding 

properties of the tentative molecular mimic. The results show that the same antibody may 
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be able to bind TQLPP-containing epitopes in different proteins and that the TQLPP 

motif tends to be found in similar conformations despite being in a loop or coil. For the 

other epitope, we find the ELDKY motif with potential for protective immunity and with 

high structural similarity. High structural similarity can be expected for α-helical 

structures, and, if the sequence is identical, molecular mimicry results. Altogether, these 

are examples of molecular mimicry that may play a role in autoimmune or cross-reactive 

potential of antibodies generated by the immune system against SARS-CoV-2 Spike, but 

it must be noted that these results have not been experimentally verified. Still, 

computational investigations into the autoimmune potential of pathogens like SARS-

CoV-2 are important for therapeutic intervention and when designing vaccines to avoid 

potential predictable autoimmune interference. 
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Appendices 

 

Appendix 1. RMSD value distribution for solved and modeled Spike TQLPP regions. 

RMSD values resulting from an all-against-all comparison of the Spike TQLPP region of 

63 structures, including the model in 3 states (shown as dots). 
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Appendix 2. Comparison of RMSD values for TQLPP region from 20 Spike trimer 

structures based on RBD state. Box plots show distribution of RMSD values for Spike 

TQLPP where RBDs are: (1) both down (blue, N = 666, mean = 0.78 Å, median = 0.66 

Å), (2) 1 down and 1 up (yellow, N = 962, mean = 0.81 Å, median = 0.73 Å), (3) both up 

(red, N = 325, mean = 0.85 Å, median = 0.78 Å). Statistical testing was performed using 

the Mann-Whitney U test. Brackets marked with an asterisk (*) denote statistically 

significant comparisons while those marked “n.s.” denote non-significant comparisons. 

Groups 1 and 2 (p-value = 0.30) and 1 and 3 (p-value = 0.003) are significantly different 

but groups 2 and 3 (p-value = 0.055) are not. Box plots, bounded by the 1st and 3rd 

quartiles, show mean (black dot) and median values (horizontal solid gray line), vertical 

lines (whiskers) represent 1.5 × IQR, while outliers are marked as open circles. 
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Appendix 3. Molecular dynamics simulations overview. (a) Time evolution of the 

protein-antibody binding interface contact areas (100x Å2) for Spike-TN1 (purple) and 

thrombopoietin-TN1 (green) in the molecular dynamics trajectories for PDB templates 

1V7M (left) and 1V7N (right). Interaction matrices showing hydrogen bond contribution 

during the last 50 ns of 200 ns simulations between amino acid residue pairs ordered 
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according to their hydrogen-bond occupancies for the (b, d) hTPO-TN1 and (c, e) Spike-

TN1 complexes for PDB template 1V7M and 1V7N, respectively. Residues belonging to 

TQLPP are colored in purple and positions for hTPO are based on the PDB template. 

TN1 Fab residues from heavy and light chains are shaded blue and yellow, respectively. 
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Appendix 4. SARS-CoV-2 Spike bound to TN1 Fab antibody. SARS-CoV-2 Spike 

shown in the trimeric state (PDB id: 6VSB) bound to TN1 Fab antibody (blue, PDB id: 

1V7M) as viewed from (a) the side and (b) the top. The TQLPP motifs are shown as red 

spheres and glycans are shown in purple. Structural visualization generated with PyMOL 

[30]. 
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Appendix 5. TQLPP motif for 10 human proteins modeled by AlphaFold2. Protein 

structure models are colored by AlphaFold confidence estimate according to the color bar 

where red = 25 (low confidence) and blue = 100 (high confidence). TQLPP motif is 

shown as spheres. RMSD for human TQLPP in the 10 proteins compared to SARS-CoV-

2 Spike (PDB id: 6XR8, chain A) is shown. The proteins are (a) thrombopoietin 

(Uniprot: P40225), (b) Hermansky-Pudlak syndrome 4 protein (Uniprot: Q9NQG7), (c) 

coiled-coil domain containing protein 85 (Uniprot: Q8N715), (d) transmembrane protein 

52 precursor (Uniprot: Q8NDY8), (e) far upstream element-binding protein 1 (Uniprot: 

Q96AE4), (f) Fc receptor-like protein 4 (Uniprot: Q96PJ5), (g) DNA annealing helicase 

and endonuclease ZRANB3 (Uniprot: Q5FWF4), (h) serine/threonine-protein kinase 

NEK10 (Uniprot: Q6ZWH5), (i) espin (Uniprot: B1AK53), and (j) ALG12 

(Mannosyltransferase ALG12 homolog, Uniprot: Q9BV10). Structural visualization 

generated with PyMOL [30].   
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Appendix 6. Structure of ELDKY motif for 5 human proteins. Protein structures from 

PDB are colored gray while AlphaFold2 3D models are colored by AlphaFold confidence 

estimate according to the color bar where red = 25 (low confidence) and blue = 100 (high 

confidence). ELDKY motif is shown as spheres. RMSD for human ELDKY in the 5 

proteins compared to SARS-CoV-2 Spike (PDB id: 6XR8, chain A) is shown. The 

proteins are (a) protein phosphatase 1A (PDB id: 3FXJ), (b) leucine zipper domain of 

cGMP-dependent protein kinase 1 (PDB id: 3NMD), (c) protein FAM228B (Uniprot: 

P0C875), (d) protein Njmu-R1 (Uniprot: Q9HAS0), (e) thyroid receptor interacting 

protein 11 (Uniprot: Q15643), and (f) tropomyosin alpha-1 (PDB id: 6X5Z). Structural 

visualization generated with PyMOL [30].
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Appendix 7. RMSD values resulting from the alignment of the TQLPP region of 1V7M 

chain X and 1V7N chain X against the TQLPP region of 60 Spike structures. Sorted by 

RMSD. 

 
1V7M X 1V7N X 

Spike 

Structure 

RMSD Spike 

Structure 

RMSD 

6ZGG A 0.36 7DCC E 0.21 

6ZGG B 0.40 7DCC I 0.27 

7BNN B 0.43 7DCC K 0.28 

6ZGG C 0.44 7BNN B 0.42 

7DCC E 0.44 7BNM C 0.44 

7DCC I 0.48 7BNM B 0.44 

7DCC K 0.48 7BNM A 0.44 

7BNM A 0.52 7A25 C 0.46 

7BNM B 0.52 6XR8 A 0.46 

7BNM C 0.52 6ZGE C 0.47 

7A25 C 0.59 6ZGE A 0.47 

6ZGE A 0.60 6ZGE B 0.48 

6ZGE B 0.60 6ZGG A 0.49 

6ZGE C 0.60 7KMK B 0.49 

7BNN A 0.60 7LRT B 0.49 

6XR8 A 0.61 6ZGG C 0.49 

7A25 A 0.63 7A25 A 0.50 

7LRT B 0.66 6XR8 B 0.51 

7LRT C 0.66 7LRT C 0.51 

6XR8 B 0.68 6ZGG B 0.53 

6XR8 C 0.71 6XR8 C 0.55 

7A25 B 0.71 7A25 B 0.57 

6ZP2 A 0.72 7LRT A 0.58 

6ZP2 B 0.72 7N1U A 0.59 

6ZP2 C 0.72 7KRQ A 0.61 

7KMK B 0.72 7BNN A 0.61 

7LRT A 0.73 7KRQ B 0.62 

7KRQ A 0.76 7E8C A 0.64 

7KRQ B 0.76 7BNN C 0.64 

7N1U A 0.76 7KRQ C 0.66 

7BNN C 0.78 7KMK C 0.68 

7KRQ C 0.79 7E8C C 0.71 

7E8C A 0.82 7E8C B 0.72 

7LQV A 0.85 7N1U C 0.73 
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7KMK C 0.87 7JJI A 0.75 

7N1U C 0.87 7JJI B 0.75 

7E8C C 0.88 7JJI C 0.75 

7LQV C 0.88 7N1U B 0.76 

7E8C B 0.90 7KMK A 0.78 

7N1U B 0.90 7LQV A 0.78 

7LQV B 0.91 7LQV C 0.80 

7JJI A 0.92 7LQV B 0.82 

7JJI B 0.92 6ZP2 A 0.84 

7JJI C 0.92 6ZP2 C 0.84 

7CWL B 0.95 6ZP2 B 0.84 

7CWS R 0.95 7MJG B 0.85 

7KMK A 0.96 7MJG C 0.93 

7MJG B 1.02 7MJG A 0.93 

7MJG A 1.09 7CWL B 0.94 

7MJG C 1.10 7CWS R 0.94 

7CWL A 1.17 7CWS O 1.03 

7CWS O 1.17 7CWL A 1.03 

7C2L A 1.21 7C2L B 1.26 

7C2L B 1.21 7C2L C 1.26 

7C2L C 1.21 7C2L A 1.26 

7N1Q B 1.62 7N1Q B 1.56 

7CWL C 1.67 7CWS Q 1.57 

7CWS Q 1.67 7CWL C 1.57 

7N1Q A 1.68 7N1Q A 1.61 

7N1Q C 1.71 7N1Q C 1.64 
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Appendix 8. RMSD values resulting from the alignment of the TQLPP region from 60 

Spike structures and three modeled states, representing a conformational ensemble of 

TQLPP in Spike, sorted by RMSD. 

 

Separate Excel sheet
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Appendix 9. RMSD values for SARS-CoV-2 Spike wild-type TQLPP compared to 

corresponding region in known variants of concern. 

 
VARIANT OF 

CONCERN 

SPIKE 

PDB_CHAIN 
RMSD (Å) NOTES 

Alpha 7N1U_A 0.21  

Beta 7N1Q_A 1.78  

Gamma 7SBS_A 1.17 
P26S turns TQLPP to 

TQLPS 

Delta 7SBK_A 0.69  

Omicron BA.1 7WE7_D 0.33  

Omicron BA.2 7UB0_A N/A Contains deletion of LPP 

Omicron BA.2.12.1 Not available N/A  

Omicron BA.4 Not available N/A  

Omicron BA.5 Not available N/A  
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Appendix 10. PRODIGY binding affinities for antigen-antibody complexes 

Complex Frame 

Binding 

Affinity 

(kcal/mol) 

Intermolecular Contacts 

Charged-

Charged 

Charged-

Polar 

Charged-

Apolar 
Polar-Polar 

Polar-

Apolar 

Apolar-

Apolar 

Spike-TN1 

Fab  

(1V7M 

template) 

1 -11.5 3 18 11 20 35 19 

2 -8.6 0 5 2 7 16 20 

3 -9.2 2 8 8 6 15 16 

4 -8.8 3 6 3 7 15 14 

5 -9.7 3 7 8 10 20 22 

Mean -9.56 2.2 8.8 6.4 10 20.2 18.2 

Std Dev 1.16 1.30 5.26 3.78 5.79 8.53 3.19 

Spike-TN1 

Fab  

(1V7N 

template) 

1 -8.7 4 5 3 6 13 13 

2 -9.6 1 6 4 5 18 16 

3 -9.1 0 6 7 3 13 17 

4 -10.1 0 5 6 5 19 17 

5 -8.5 0 6 4 4 12 14 

Mean -9.2 1 5.6 4.8 4.6 15 15.4 

Std Dev 0.66 1.73 0.55 1.64 1.14 3.24 1.82 

hTPO-TN1 

Fab 

(1V7M) 

1 -9.2 1 11 9 10 20 16 

2 -10.3 1 9 10 7 21 20 

3 -9.2 1 9 9 7 17 16 

4 -9.5 2 10 8 9 20 15 

5 -9.3 3 8 6 9 20 18 

Mean -9.5 1.6 9.4 8.4 8.4 19.6 17 

Std Dev 0.46 0.89 1.14 1.52 1.34 1.52 2.00 

1 -9.3 1 8 5 4 16 11 

2 -9.2 1 9 8 3 14 13 
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hTPO-TN1 

Fab 

(1V7N) 

3 -9.1 1 6 6 4 15 11 

4 -9.7 2 7 6 5 14 9 

5 -9.9 2 7 5 5 20 13 

Mean -9.24 1.4 7.4 6 4.2 15.8 11.4 

Std Dev 0.43 0.55 1.14 1.22 0.84 2.49 1.67 

Spike-

S2P6 Fab 

(7RNJ 

template) 

1 -9.5 2 5 10 0 10 13 

2 -9.2 2 6 8 0 10 16 

3 -9.6 1 5 11 0 11 16 

4 -9.9 1 6 11 0 11 17 

5 -9.4 2 5 10 0 11 16 

Mean -9.52 1.6 5.4 10 0 10.6 15.6 

Std Dev 0.26 0.55 0.55 1.22 0.00 0.55 1.52 
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Appendix 11. Distribution of MaSIF binding confidence scores. 

Separate Excel sheet 
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Appendix 12. Statistical comparison of MaSIF binding confidence scores for antibody 

complexes. 

 
MaSIF binding confidence scores 

Comparison p-value Significant1 

Random Spike-Ab 4.83E-75 Yes 

Random hTPO-TN1 3.00E-08 Yes 

Random Spike-TN1 5.24E-26 Yes 

Spike-Ab hTPO-TN1 3.37E-02 No 

Spike-Ab Spike-TN1 7.68E-09 Yes 

hTPO-TN1  Spike-TN1 1.92E-04 Yes 
 

1 Compared to Bonferroni corrected p-value (<8.33E-03) for alpha = 0.05 
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Appendix 13. RefSeq Select human isoforms that contain pentapeptides found in the 3D-

mimics and AF-3D-mimics for SARS-CoV-2 Spike. 

 

Separate Excel sheet 

 

 

  



222 

 

 

Appendix 14. MASIF binding confidence scores of other human proteins in complex 

with TN1. 

 
UNIPROT 

ACCESSION1  

PROTEIN 

NAME 

MASIF BINDING 

SCORE 

CONTACT 

PROTEIN2 

CONTACT 

TN1 

Q6ZWH5 NEK10  1.44195044 1047 GLN 102 SER 

Q9BV10 ALG12  1.897805691 466 GLN 102 SER 

Q96PJ5 FCRL4  2.539466143 215 GLN 102 SER 
 

1 Reference for AlphaFold2 prediction 

2 Corresponds to Q in TQLPP 

  



223 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 
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Functional Diversification After Gene Duplication: Paralog Specific Regions of 

Structural Disorder and Phosphorylation in p53, p63, and p73 

 I evaluated roughly 300 protein sequences in the vertebrate p53 family and close 

to an additional 50 protein sequences from the p53 DNA-binding domain (p53 DBD) in 

invertebrates. In doing so, I illustrated how this protein family is functionally diverging 

based on sequence, structural, and regulatory properties. Broadly, it appears that 

vertebrate p63 is more constrained from diverging at the sequence level than either of its 

two paralogs, p53 and p73. This is further reflected in the high conservation seen in the 

p63 clade for intrinsic disorder, secondary structure, and phosphorylation. In contrast, 

vertebrate p53 appears to be the least constrained of the three paralogs as reflected in the 

large proportion of rapid evolutionary rates in this clade across sequence, structural, and 

regulatory properties. 

In a phylogeny reconstructed based on vertebrate and invertebrate p53 DBDs, 

clades appear to form primarily based on the domain composition of the full-length 

protein. Arranging the species from this phylogeny according to their taxonomy revealed 

that the precursor of the metazoan p53 protein must have contained three of the four 

domains (p53 DBD, oligomerization domain [OD], and sterile alpha motif domain 

[SAM]) found in the vertebrate p53 family. Proteins with all four domains (the 

aforementioned three, plus the transactivation domain [TAD]) are found in gastropods, 

hemichordates, early chordates, suggesting the presence of a four-domain protein in the 

bilaterian ancestor. TAD and other non-p53 DBD domains are frequently lost in 

Ecdysozoa, whether due to loss of the sequence segment or depletion of the domain 

signature within the sequence. Overall, this indicates that many ecdysozoan p53 family 
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proteins, which have often lost most of their domains and consist only of a p53 DBD, are 

more divergent than p53 family proteins in early metazoans.  

 TAD exhibits high evolutionary rates for sequence and disorder-to-order 

transitions in the p53 clade, and in the p63 and 73 clades TAD has diverged beyond 

recognition by Pfam. MDM2 is a critical regulator of p53 (Lane et al., 2010) that, upon 

binding to TAD, ubiquinates p53 and marks it for proteasomal degradation (Chao, 2015). 

Binding of MDM2 to TAD is likely an ancestral function, as remnants of MDM2 binding 

sites have been found in p53 from early chordates (Lane et al., 2010). For p73, studies 

have shown that binding of MDM2 does not always result in ubiquitination (Bálint et al., 

1999), and even after successful ubiquitination does not lead to degradation (Wu & Leng, 

2015). The interaction between p63 and MDM2 is even weaker (Zdzalik et al., 2010). 

Divergent functional dependence on MDM2 is supported by the differential patterns of 

disorder seen in the MDM2 binding region for this protein family.  

 Clade-specific patterns of phosphorylation between the three paralogs are further 

indicative of functional divergence in this protein family. Changes in phosphorylation 

pattern can lead to functional diversification following gene duplication because the 

phosphorylation can be performed by different kinases in response diverse signals. As 

previously mentioned, p63 is more constrained in sequence divergence than its two 

paralogs. It follows, then, that the p63 clade would have more clade-specific predicted 

phosphorylation sites with over 50% conservation than either the p53 or p73 clades, as 

was observed to be the case. This would suggest that phosphorylation sites have been lost 

in p53 and p73. In addition, human p53 presents a different experimentally verified 

posttranslational modification at two of the clade-specific phosphorylation sites for p63, 
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further supporting functional divergence between the paralogs through different 

regulatory mechanisms. 

As a tumor suppressor protein, p53 is responsible for preventing cancer. Despite 

that, mutated p53 is found in roughly 50% of human cancers (Soussi & Béroud, 2001). 

p53 is also often found mutated in non-cancerous cells (Martincorena et al., 2015). p63 

and p73 likely represent most of the ancestral function for this family, given their higher 

conservation in sequence and structural properties, although divergent regions within 

these proteins are suggestive of ongoing functional divergence. Knockout studies reveal 

that p63- and p73-null mice experience high mortality while p53-null mice survive to 

adulthood (Stiewe, 2007), indicating that p63 and p73 are more vital than p53. Lineage-

specific changes in p53 and functional redundancy between p53 and its two paralogs may 

allow p53 to functionally diversify in a near-neutral manner. Differing phosphorylation 

patterns between the paralogous clades hint at diverging signaling and interaction 

networks for these proteins. Further, the p53 DBD of the p53 clade has rapid disorder-to 

order transitions, while disorder is more conserved in the p63 and p73 clades. Increased 

order for some species in the p53 DNA binding region suggests functional divergence 

that may result in changes to DNA binding regulation. Non-conserved disorder may 

allow for lineage-specific modulation of fine-tuned signaling and allow for gain or loss of 

function(s). Ultimately, functional divergence is ongoing in the p53 family and is 

particularly pronounced for the p53 clade. As p53 appears to still be exploring its 

function, referring to it as the Guardian of the Genome seems like a misnomer. It may be 

more aptly referred to as the Gambler of the Genome.  
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Exploring Functional Constraints in the Proteomes of Zika, Dengue, and Other 

Flaviviruses to Identify Fitness-Critical Sites 

 I investigated fitness-critical sites in the flavivirus proteome experiencing 

evolutionary constraints in sequence and structural properties. Fitness-critical sites are 

considered regions of 5 or more amino acids conserved in sequence, order (lacking 

intrinsic disorder), and secondary structure element. These fitness-critical sites are also 

referred to as target sites, with the intention that they may be appropriate targets for 

broadly neutralizing antiviral drugs.  

 While flaviviruses are sufficiently divergent that I was unable to find any target 

sites for the full phylogeny, focusing on shorter evolutionary timescales allowed for the 

identification of multiple clade-specific target sites for the mosquito-borne flaviviruses 

(MBFVs) and the ZIKV+DENV and WNV clades. Here, two target sites were found for 

19 MBFVs, while five and nine target sites were found for the ZIKV+DENV and WNV 

clades, respectively. Furthermore, all target sites were found to have >99% sequence 

conservation among ZIKV, DENV, and WNV strains, bolstering the possibility for these 

sites to be used as targets for broadly neutralizing antivirals.  

 One target site, GHLKC, identified for the ZIKV+DENV clade is found within 

the conformationally flexible (Kuhn et al., 2015) Envelope protein that enables viral entry 

(Modis et al., 2004). GHLKC is located above a flexible hinge region, called the βOG 

pocket, whose conformational changes promote viral infection. Targeting the βOG pocket 

with small molecules has inhibited viral activity for viruses in both the ZIKV+DENV and 

WNV clades (de Wispelaere et al., 2018). While GHLKC was only identified as a target 

site for the ZIKV+DENV clade, the ability of the βOG pocket to be targeted in viruses 
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corresponding to the WNV clade suggests that the clade-specific target sites I identified 

may serve as target sites for a broader group of viruses than anticipated. 

 I also identified two target sites for the DEAD domain of the NS3 protein, one 

each for the ZIKV+DENV and WNV clades. While the target site for the WNV clade is 

not viable given its lack of solvent accessibility, the target site for the ZIKV+DENV 

clade, HATFT, contains two residues that coordinate with ssRNA (Tian et al., 2016) and 

are found in a deep pocket when not bound to ssRNA. NS3 performs helicase functions 

in flaviviruses (Bollati et al., 2010) and flavivirus helicases are popular drug targets (Luo 

et al., 2015).  

 Most target sites I identified are found in RdRP, another highly popular drug 

target (Bollati et al., 2010; Malet et al., 2008; Sampath & Padmanabhan, 2009). For 19 

MBFVs, I found two target sites in RdRP. Narrowing my search to the ZIKV+DENV and 

WNV clades, I was able to identify one and four additional target sites in RdRP, 

respectively. One MBFV target site, RRDLR, is found in an arginine patch within RdRP 

that interacts with the flavivirus genome. Mutations at this motif disrupt this interaction 

and result in reduced viral replication (Hodge et al., 2016). The functional relevance of 

this motif, together with its solvent accessibility and conservation across multiple 

flaviviruses, highlight its potential to serve as a target site for broadly neutralizing 

antiviral drugs. 

 In the rate-shift analysis, I observe significantly rate-shifting sites between all 

three clades (Aedes, Aedes-outgroup, and Culex). Unsurprisingly, the fewest rate-shifting 

sites are found between the Aedes and Aedes-outgroup clades. Rate-shifting sites between 

the Culex clade and both the Aedes and Aedes-outgroup clades are suspected to be 
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important for vector specificity. Six of the rate-shifting sites I found for the Culex and 

Aedes-outgroup comparison are located within four target sites pertaining to the WNV 

clade. Here, two of the target site motifs may be ancestral as one each is conserved in two 

different viruses from the Aedes-outgroup clade. Both motifs are also conserved in ZIKV 

and SPOV from the Aedes clade. Thus, these two motifs may play distinct roles in ZIKV, 

SPOV, and the viruses in the WNV clade and may be involved in determination of vector 

specificity. While support for transmissibility of ZIKV via a Culex vector remains 

inconclusive (Viveiros-Rosa et al., 2020), results herein suggest that the possibility 

should continue to be monitored in future.  

The target sites I identified remain to be validated in silico and in vitro. For a 

similar study identifying target sites in the coronavirus family prior to the COVID-19 

pandemic (Rahaman & Siltberg-Liberles, 2016), a follow-up study was conducted 

wherein a virtual screening of FDA-approved drugs was performed for the SARS-CoV-2 

RdRP (Pokhrel et al., 2020). While this is speculative, I believe that if the 2016 study by 

Rahaman and Siltberg-Liberles had been paid heed to, perhaps we could have been better 

prepared to respond to the COVID-19 pandemic. Thus, a similar follow-up study could, 

and should, be performed for the flavivirus targets sites I identified. The highest-ranking 

targets should then have their efficacy tested in in vitro experiments. Identifying an 

effective broadly neutralizing antiviral against flaviviruses now would be of incredible 

value should a new or existing member of this family become a significant threat in the 

future.  
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Epitopedia: Identifying Molecular Mimicry Between Pathogens and Known Immune 

Epitopes 

I describe Epitopedia (Balbin et al., 2021), a novel computational pipeline for the 

prediction of molecular mimicry based on known immune epitopes from the Immune 

Epitope Database (IEDB) (Vita et al., 2019). I emphasize the importance of considering 

the secondary structure element in which a molecular mimic is found when interpreting 

Epitopedia results. Analysis of pentapeptide pairs with varying pairwise sequence 

identities (0%, 20%, 40%, 60%, 80%, and 100%) from parent sequences with no identity 

filter revealed a significant decrease in RMSD for 100% identity compared to all other 

identity levels across the three secondary structure states (helix, extended, coil). The 

pentapeptide analysis was repeated while enforcing a 30% pairwise sequence identity 

filter on the parent sequences to better represent non-homologous sequence pairs. In 

doing so, the steep decrease in RMSD for pentapeptide pairs with 100% identity is no 

longer observed and is particularly noticeable for the extended and coil states. Still, for 

pentapeptide pairs with 100% identity, there is a significant difference in RMSD between 

pairs from parent sequences with no identity filter in place and those from parent 

sequences with a 30% identity filter. Altogether, molecular mimics found in helices will 

tend to have low RMSDs, which is not surprising given the regular geometry of that 

secondary structure element. Low RMSDs observed for molecular mimics found in 

extended or coiled states are expected to increase confidence in the predicted molecular 

mimic’s validity, especially if the parent sequences for the molecular mimic share low 

pairwise sequence identity. 
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Despite the contributions made by Epitopedia in its current form, it’s important to 

recognize its limitations. One limitation is that Epitopedia is only capable of predicting 

molecular mimicry for epitopes that have been deposited in IEDB and cannot predict 

molecular mimicry de novo. Similarly, Epitopedia relies primarily on structures deposited 

in the Protein Data Bank (PDB) (Berman et al., 2000) when assessing structural 

similarity between the query and hit. Therefore, Epitopedia cannot detect a molecular 

mimic (even if it is real) if the epitope is either not in IEDB or if it has no structural 

representation in PDB. Additionally, due to feasibility of implementation, Epitopedia 

only focuses on linear epitopes. However, not all epitopes are linear. In fact, many 

epitopes are conformational, meaning that the relevant amino acids are brought together 

in 3-dimensional space upon protein folding. Information on conformational epitopes can 

be found in IEDB. In future, it would be interesting to see Epitopedia (or any other 

program) expanded to include the ability to predict molecular mimicry for 

conformational epitopes in addition to linear ones. 

To my knowledge, Epitopedia is the first program of its kind, although there exist 

programs for the prediction of  molecular mimicry in remote homologs (Armijos-

Jaramillo et al., 2021) and programs are under development for the prediction of 

molecular mimicry based on antibody-binding interfaces (Stebliankin et al., 2022). 

Additionally , there exist several programs that focus on mimotopes, which are 

macromolecules (often peptides and obtained by phage display) recognized by an 

antibody primed for a different epitope. It is assumed that the mimotopes and the native 

epitope for the antibody to which they bind share similar components (Geysen et al., 

1986). These programs map mimotopes onto the antigenic protein structure to identify 
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the native epitope (Chen et al., 2012; Mayrose et al., 2007; Negi & Braun, 2009). The 

means to predict molecular mimicry is of great value in understanding disease 

complications, developing therapeutic interventions, and informing vaccine design to 

prevent autoimmune outcomes. Predictions generated by Epitopedia can initiate 

hypotheses on potential pathogenic and autoimmune cross-reactivity that can be tested in 

vitro and in vivo. 

 

Potential Autoimmunity Resulting from Molecular Mimicry Between SARS-CoV-2 Spike 

and Human Proteins 

 In an effort to explain the variety of disease severity seen in COVID-19, I use 

Epitopedia to predict molecular mimicry in the SARS-CoV-2 Spike protein. 1D-mimics 

are epitopes with at least five consecutive amino acids with 100% sequence identity to a 

corresponding protein region in Spike. 3D-mimics are 1D-mimics that have at least three 

amino acids surface accessible on Spike and for which the RMSD between the epitope 

and Spike fragment is at most 1 Å. I found 789 1D-mimics, of which 284 had structural 

representation in the Protein Data Bank (PDB) (Berman et al., 2000), and 20 had a 

sufficiently low RMSD to be considered a 3D-mimic. Of the 402 human 1D-mimics 

lacking a structural representative in PDB, Epitopedia identified AlphaFold2 models for 

102, of which 10 had a sufficiently low RMSD to be considered AF-3D-mimics. 3D-

mimics and AF-3D-mimics are collectively referred to as molecular mimics. Most 

predicted molecular mimics for SARS-CoV-2 Spike are found in human, while few are 

found in other pathogens. Altogether, this suggests that Spike has autoimmune potential, 
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and that heterologous immunity is rare or unlikely. Furthermore, many of the molecular 

mimics can be found clustered near one another when mapped to the Spike sequence. 

 One of the molecular mimics I found, TQLPP, is located at an antibody-binding 

interface in human thrombopoietin, a protein responsible for regulation of platelet 

production (Varghese et al., 2017). On Spike, the TQLPP motif is located near the N-

terminus domain supersite, a known antibody-binding site (Cerutti et al., 2021). 

Thrombocytopenia, a condition characterized by low platelet levels, has been observed in 

COVID-19 patients (Yang et al., 2020) and in individuals vaccinated against SARS-CoV-

2 (Greinacher et al., 2021). I therefore hypothesized that SARS-CoV-2 Spike may trigger 

the production of TQLPP-specific antibodies that may cross-react with human 

thrombopoietin and result in thrombocytopenia. This was investigated using molecular 

dynamics (MD) simulations and machine learning to assess the binding of SARS-CoV-2 

Spike to the TN1 Fab antibody from the human thrombopoietin structure. MD 

simulations revealed that TQLPP is accessible to the antibody and that glycans on 

Spike’s surface do not hinder binding. Additionally, residues Q and L of TQLPP were 

found to be the largest hydrogen bond contributors between Spike and TN1 Fab. The 

machine learning tool MaSIF-search (Gainza et al., 2019) assessed the antibody-antigen 

interface complementarity for different complexes to provide a binding confidence score. 

Spike-TN1 complexes had better binding confidence scores than random complexes, 

further supporting the possibility of molecular mimicry between Spike and 

thrombopoietin. Fortunately for humankind, it seems the TQLPP motif may not remain in 

Spike for long as Gamma and Omicron SARS-CoV-2 variants have already experienced 
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mutations in this region (Hodcroft, 2021). Protein engineering of the TQLPP motif for 

the next generation of SARS-CoV-2 vaccines may reduce the risk of thrombocytopenia. 

 I found another motif, ELDKY, in many molecular mimicry candidates. On 

SARS-CoV-2 Spike, ELDKY is in a C-terminal stem helix region that has been found to 

bind a broadly neutralizing antibody effective against all human-infecting beta-

coronaviruses (Pinto et al., 2021). One of the molecular mimics containing ELDKY was 

human tropomyosin alpha-3 (TPM3). Moreover, while these are not molecular mimics 

identified by Epitopedia, ELDKY is found in human tropomyosin alpha-1 (TPM1) and 

human cGMP-dependent protein kinase 1 (PRKG1), both of which had an RMSD less 

than 1 Å for this motif compared to Spike. PRKG1 plays a role in regulation of 

intracellular calcium levels (Francis, 2010) and its phosphorylation targets have roles in 

platelet activation and adhesion (Li et al., 2003), smooth muscle contraction (Sauzeau et 

al., 2000), and cardiac function (Francis, 2010). TPMs are involved in the calcium-

dependent contraction of striated muscle (Szent-Györgyi, 1975) and are known cardiac 

disease-linked antigens (Marrama et al., 2022). Altogether, this suggests that cross-

reactive antibodies against ELDKY in PRKG1 may provide an alternate avenue for the 

development of thrombocytopenia in COVID-19 patients. Additionally, cross-reactive 

antibodies targeting ELDKY in PRKG1, TPM1, and TPM3 may result in cardiac disease. 

Cardiac diseases have been observed following both SARS-CoV-2 infection (Nishiga et 

al., 2020) and vaccination (Patone et al., 2021). The ELDKY motif is highly conserved 

across beta-coronaviruses and is not mutated in any current SARS-CoV-2 variants, 

hinting at its potential as a viable pan-coronavirus vaccine target. However, the potential 

for autoimmune cross-reactivity at this motif may reduce its suitability.  
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Importantly, the findings I present in this chapter are the results of computational 

predictions and must still be validated experimentally. Still, computational analyses such 

as these can help to inform experimental design when investigating phenomena such as 

molecular mimicry in the SARS-CoV-2 Spike protein.  
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