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Abstract: We propose a theoretical basis for analyzing several features of genetic diseases caused
by dominant alleles, including: disease prevalence, genotype penetrance, and the relationship
between causal genotype frequency and disease frequency. In addition, we provide a theoretical
framework for accurate diagnosis and clinical approaches for disease study, including two examples
in which inaccurate and incomplete diagnoses affect the estimates of disease prevalence: First, the
disease iceberg effect shows that disease prevalence is often underestimated due to errors introduced
by inaccurate diagnosis; second, because lifetime risk of disease is cumulative, and therefore an
increasing function of age, measurements of prevalence are inaccurate if people of all ages are
not included. Finally, we discuss the aggregation of genetic diseases. We identify theoretical and
computational deficiencies associated with using the sibling recurrence-risk ratio as a measure of
familial aggregation. We develop an alternative concept of aggregation and propose an associated
measure that does not experience the deficiencies. Throughout, we provide clinicians and researchers
practical implications of our theoretical framework.

Keywords: genetic disease; prevalence; penetrance; accurate diagnosis; disease iceberg effect;
cumulative lifetime risk; familial aggregation

1. Introduction

Determining the genetic basis for diseases is an important part of population genetics
and epidemiology, as disorders can be caused both by a person’s genetic predisposition
and by environmental influences. The accurate allocation of the cause between genes
and the environment allows a better understanding of disease mechanisms and promotes
techniques for diagnosing and combating disease [1,2].

The analysis of genetic diseases has a long history. Garrod [3] first drew attention to
the relation between inheritance of recessive alleles and the appearance of alkaptonuria in
human families. This work ultimately led to the understanding that body characteristics
(phenotype) are primarily determined by cellular proteins and that genes (genotype) specify
these proteins (e.g., enzymes). Genetic diseases are phenotypes; thus, a genetic disease is
similar to any phenotype specified by a genotype [4]. Though different genetic diseases
may have different biochemical bases, their transmission processes are identical, and each
can be characterized as being caused by recessive or dominant alleles. We focus on single-
gene disorders caused by dominant alleles and assume an autosomal “two-allele” model
for the genotype-phenotype relationship; consequently, we will not discuss multi-gene or
sex-linked diseases.

Our purpose is to clarify the relationship between disease-causing genotypes and the
presence of the disease, as well as to clarify the role of accurate diagnosis. We identify
theoretical and computational deficiencies associated with the current measure of familial
aggregation and propose an alternative concept of aggregation and its measure. Our
intention is therefore to describe the theoretical issues clearly, to show why accurate
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diagnosis is lacking in some cases, as well as to provide replacements for commonly used
approaches that experience theoretical and computational deficiencies. Throughout, we
provide clinicians and researchers practical implications of our theoretical framework.

In developing our theoretical framework, we will use: probability as a relative fre-
quency; a set theoretic approach to probability; partitions and the law of total probability;
conditional probabilities and their properties; population parameters and their estima-
tors; and large-sample-size confidence intervals. As the background for the underlying
probability and statistical concepts used, we recommend References [5,6].

Unbiased clinical studies can provide accurate estimates of population parameters
(e.g., allele frequency, genotype penetrance, or disease prevalence), which are required for
meaningful inferences about disease characteristics. Readers interested in specific protocols
for obtaining unbiased clinical studies may see [7] for an in-depth discussion of clinical
study design—including strategies for minimizing biases, the statistical analysis of the
data, and ethical issues. In addition, we suggest two clinically oriented works that give
additional perspectives on specific genetic diseases [1,2].

2. Disease-Causing Genotypes and Prevalence

We discuss disease-causing genotypes and their relationship to the presence of the
associated disease caused by a dominant allele, including their role in determining the
disease’s frequency in the population.

Traits (phenotypes) are divided into categories determined by genotypes written
for convenience as if they consisted of only two alleles [8]. Indeed, most treatments
of population genetics [9] focus on a two-allele model, while acknowledging a more
complete treatment recognizes that genes have multiple alleles. Nonetheless, even genotype
models describing more than two alleles [9] can be reduced to two-allele models if allele
contribution is expressed in terms of the functions of the proteins synthesized by each allele.

Let D denote the event that an individual in the population has the disease caused by
a dominant allele. Let P(D) denote the probability that any individual in the population
has the disease. In the literature, P(D) is sometimes referred to as: (a) the frequency of the
disease in the population; (b) the risk of the disease for an individual in the population;
(c) the likelihood an individual in the population has the disease; or (d) the prevalence of the
disease in the population [10,11].

In our two-allele model, we denote the alleles by C and c and define them as the
only two options, where a C allele synthesizes a functioning protein and a c allele makes a
non-functioning protein. The C allele is called a dominant allele, and the c allele is called
a recessive allele. We will use the following notation for the frequency of these alleles in
the population: Let p = P(C) denote the frequency (probability) of the C allele in the
population; let q = P(c) denote the frequency (probability) of the c allele in the population.
Obviously, p + q = 1, since C and c are the only options in our two-allele model.

2.1. Penetrance and Environmental Influence

Penetrance refers to the frequency (probability) of the disease D, given a particular
genotype CC, Cc, or cc [8,12–14]. Specifically, the penetrance of a particular genotype is the
corresponding conditional probability: The penetrance of CC is P(D|CC); the penetrance
of Cc is P(D|Cc), which is the same as the penetrance of cC; the penetrance of cc is P(D|cc).
For example, P(D|CC) is the frequency of those in the population with genotype CC who
have the disease D.

In agreement with some authors [15], we say a specific genotype has full penetrance
provided its penetrance is one; for example, P(D|CC) = 1 corresponds to the genotype CC
having full penetrance. A specific genotype has partial penetrance provided its penetrance
is less than one; for example, P(D|CC) < 1 corresponds to the genotype CC having
partial penetrance.
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Penetrance is often presented in an imprecise manner [8], which may lead to misunder-
standing; our probability-based quantitative description is unambiguous. Indeed, because
genotype penetrance indicates the frequency of those people with a particular genotype
who have the disease, penetrance is not a measure of disease severity. This means genotype
penetrance does not influence whether a person has a severe, moderate, or mild form of the
disease. For example, P(D|Cc) = 0.5 means that, of those people with genotype Cc, about
50% are identified with the disease; it does not mean a diseased person with genotype Cc
has a moderate form of the disease. Disease severity is instead related to the concepts of
“complete/incomplete dominance” and “expressivity” [8].

The concept of penetrance is one way to include an environmental component in
the genotype-phenotype correlation. The estimate of penetrance may include a suspected
environmental effect on gene expression (e.g., eating gluten is necessary for the onset of
Celiac disease [16]). Even so, it is not always possible to accurately identify a disease
phenotype, though the genotype might be known. Griffiths et al. [8] describe this as an
aspect of penetrance leading to the “subtlety” of the mutant phenotype; we add that
incomplete diagnosis can masquerade as partial penetrance (Section 3).

In order to use genotype frequencies to accurately estimate disease prevalence, it
is essential that penetrance be accurately estimated (Section 2.2). With that in mind, it
is important to note that using clinical studies to estimate the penetrance of a particular
genotype requires: (i) the use of a genetic test to identify whether a person has the genotype;
(ii) the identification of the disease’s phenotypes; and (iii) the use of a diagnostic test to
determine whether such a person with the genotype has the disease (i.e., exhibits the
disease’s phenotypes). Thus, the accuracy of diagnosis plays a critical role in estimations of
penetrance (Section 3).

2.2. Prevalence of Diseases Caused by Dominant Alleles

A person with either genotype CC or Cc might be affected with a condition sometimes
called a dominant disorder [15]. This may occur where the genotype cc produces the wild-
type phenotype, but mutation from c to C generates a new version of the c protein that may
impair cellular function.

We introduce a parameter that describes the relationship between the penetrance of
CC and Cc. The parameter r is the ratio of the penetrance of Cc to the penetrance of CC
(Section 2.1); that is,

r =
P(D|Cc)
P(D|CC)

, (1)

where 0 < r ≤ 1 because 0 < P(D|Cc) ≤ P(D|CC). We will use the parameter r in
clarifying a theoretical framework for the prevalence of diseases caused by dominant alleles.

Because the genotypes CC, Cc, cC, and cc form a partition of the population, prevalence
can be written in the form

P(D) = p2P(D|CC) + 2pqP(D|Cc) + q2P(D|cc). (2)

Equation (2) describes the prevalence for diseases (P(D)) in terms of the frequencies of the
alleles (p and q) and in terms of the penetrance of the genotypes (P(D|CC), P(D|Cc), and
P(D|cc)). The derivation of Equation (2) is provided in Appendix A.

For a disease caused by a dominant allele, P(D|cc) = 0, P(D|CC) > 0, and P(D|Cc) > 0.
In this case, Equation (2) becomes

P(D) = p2P(D|CC) + 2pqP(D|Cc);

in other words, disease prevalence (P(D)) in principle equals the sum of the homozygote
dominant and heterozygote genotype population frequencies (p2 and 2pq), where each
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frequency is rescaled according to its associated penetrance (P(D|CC) and P(D|Cc)). This
allows us to introduce a new formulation for P(D). Substituting Equation (1) yields,

P(D) = p2P(D|CC) + 2pqrP(D|CC)

= (p2 + 2pqr)P(D|CC)

= p(p + 2qr)P(D|CC)

= p(p + 2(1− p)r)P(D|CC)

= p(p + 2r− 2pr)P(D|CC),

which we write in the form

P(D) = p(2r + (1− 2r)p)P(D|CC). (3)

Incidentally, in the above derivation of Equation (3), we demonstrate that

p2 + 2pqr = p(2r + (1− 2r)p);

in other words, the expression p(2r + (1− 2r)p) is simply another way to write the sum
of the homozygote dominant and (rescaled by r) heterozygote population frequencies
(p2 and 2pqr). The advantages of using this expression will become apparent in the
following discussion.

Equation (3) completely characterizes the theoretical prevalence of such a disease
by describing it in terms of only three parameters: the penetrance of the genotype CC
(P(D|CC)); the parameter r (Equation (1)); and the frequency of the C allele in the popula-
tion (p = P(C)). It thus identifies the roles of the three important parameters in determining
disease prevalence. In particular, prevalence has a different structure as a function of p in
each of the three cases for r:

(i) If 1/2 < r ≤ 1, then P(D) has a concave down parabolic relationship in terms of p.
(ii) If r = 1/2, then P(D) has a linear relationship in terms of p.
(iii) If 0 < r < 1/2, then P(D) has a concave up parabolic relationship in terms of p.

Figure 1 illustrates how Equation (3) uses allele frequency and the penetrance of
the genotype CC to determine disease prevalence, where graphs for the three cases of r
are shown:

(i) The blue shaded region corresponds to 1/2 < r ≤ 1, where the solid blue curve is
r = 1, and the dotted blue curve is an illustrative example (r = 3/4).

(ii) The black line corresponds to r = 1/2.
(iii) The red shaded region corresponds to 0 < r < 1/2, where the dashed red curve is the

lower limit r = 0, which cannot be achieved because r must be positive for diseases
caused by dominant alleles. The dotted red curve is another illustrative example
(r = 1/4).

An advantage of Equation (3) (and Figure 1) over other expressions for prevalence
(e.g., Equation (2)) is that it clearly identifies the critical role r plays in determining the
prevalence’s different theoretical framework as a function of p in each of the three cases
mentioned. Incidentally, the parameter r has an important role in our alternative new
concept of disease aggregation (Section 4).
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p

P(D)
r =

1

r =
0

r = 1/2

P(D|CC)

10.670.330

Figure 1. Graph of disease prevalence P(D) versus dominant allele population frequency p for the
three cases of r (Equation (3)): (i) the blue shaded region corresponds to 1/2 < r ≤ 1, where the solid
blue curve is r = 1, and the dotted blue curve is an illustrative example (r = 3/4); (ii) the black line
corresponds to r = 1/2; (iii) the red shaded region corresponds to 0 < r < 1/2, where the dashed red
curve is the lower limit r = 0, which cannot be achieved because r > 0 for dominant diseases. The
dotted red curve is another illustrative example (r = 1/4). The theoretical prevalence of any disease
caused by a dominant allele must be above the dashed red curve and, at most, the solid blue curve.
Numerical values on the vertical axis can be assigned once a value of P(D|CC) is known. Note that
the largest possible value of P(D) is P(D|CC), which occurs at p = 1, where all three cases coalesce.

An important property for the prevalence of diseases caused by dominant alleles
illustrated in Figure 1 is:

The theoretical prevalence of any disease caused by a dominant allele must be
greater than the dashed red curve (r = 0) and, at most, the solid blue curve
(r = 1). That is, P(D) always satisfies

p2P(D|CC) < P(D) ≤ p(2− p)P(D|CC).

Thus, if clinicians estimate a value of disease prevalence (P̂(D)) to be outside this interval,
it should suggest to them that there likely are diagnostic errors (Section 3) with how P(D)
has been estimated.

Moreover, if a disease is thought to be caused by a dominant allele, then clinicians
should find that prevalence estimated from diagnostic tests will be close to P(D) described
in Equation (3). If it is not, then that should alert clinicians that the diagnostic test is possibly
not accurate (Section 3.2).

2.3. Necessary and/or Sufficient Genotypes

We develop the theoretical framework characterizing when the disease-causing geno-
types are necessary and/or sufficient for the presence of the disease. Let G denote
the disease-causing genotypes for a disease caused by a dominant allele; specifically,
G = {CC} ∪ {Cc}.

To define the logical concepts of “necessary” and “sufficient”, we frame the discussion
in terms of the events G and D representing the disease-causing genotypes and the presence
of the disease, respectively. However, the concepts apply to any two events; for example,
in Section 3.2, we discuss whether a positive result in a diagnostic test (denoted by T) is
necessary and/or sufficient for the presence of the disease (again, denoted by D).
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We say that G is necessary for D provided D ⇒ G. That is, the occurrence of D implies
the occurrence of G. In other words, (in this context) if a person has the disease, then the
person will (likely) have the disease-causing genotype.

We say that G is sufficient for D provided G ⇒ D. That is, the occurrence of G implies
the occurrence of D. In other words, (in this context) if a person has the disease-causing
genotype, then the person will (likely) have the disease.

Conditional probability formulations. We now develop equivalent conditional probabil-
ity formulations for the concepts of “necessary” and “sufficient” discussed above. The
formulations apply to any two events, but we will frame the discussion in terms of G and D
as above (see Section 3.2 for another example). Observe that P(G|D) = 1 is equivalent
to saying that “G is necessary for D”. Also, observe that P(D|G) = 1 is equivalent to
saying that “G is sufficient for D”. The details for the equivalence of these formulations is
established in Appendix B.

We now use the formulations to clearly identify when the disease-causing genotypes
are necessary and/or sufficient for the presence of a disease caused by a dominant allele.
In addition, we include implications for clinicians as the context.

For a disease caused by a dominant allele, P(D|G′) = 0. Now,

P(D) = P(D ∩ G) + P(D ∩ G′)

= P(D ∩ G) + P(D|G′)P(G′)

= P(D ∩ G),

which implies

P(G|D) =
P(D ∩ G)

P(D)
=

P(D)

P(D)
= 1;

therefore, G is necessary for D. Moreover,

P(D|G) =
P(D ∩ G)

P(G)
=

P(D)

P(G)
;

hence, G is sufficient for D if and only if P(D) = P(G). Recall that the frequency of the
disease-causing genotypes is

P(G) = P(CC) + P(Cc ∪ c C) = p2 + 2pq ;

therefore, by Equation (2) (since 0 < P(D|CC) ≤ 1 and 0 < P(D|Cc) ≤ 1), we conclude

P(D) = P(G)⇔ P(D|CC) = 1 and P(D|Cc) = 1.

Thus, P(D|G) = 1 if and only if P(D|CC) = 1 and P(D|Cc) = 1.
In summary, the disease-causing genotypes CC and Cc are always necessary for D;

they are sufficient for D if and only if the disease-causing genotypes are fully penetrant
(P(D|CC) = 1 and P(D|Cc) = 1).

An implication for clinicians is that if they believe the disease-causing genotypes are
“necessary, but not sufficient” for the presence of the disease, then P(D|CC) 6= 1 and/or
P(D|Cc) 6= 1. Two explanations are: there could be other components (e.g., environmental)
affecting the presence of the disease, resulting in CC and/or Cc not being fully penetrant;
or it could be that the associated diagnostic test lacks the accuracy (Section 3.2) to correctly
predict that the genotypes are fully penetrant. Consequently, it is essential that clinicians
not use their belief that a disease-causing genotype is partially penetrant as the justification
for relying on an inaccurate diagnostic test. In all of these scenarios, it is imperative that
clinicians continue their investigations, ultimately seeking a thorough understanding and
explanation of the actual relationship between P(D) and P(G).
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In Section 3, we provide a similar analysis with D and a diagnostic test’s positive result,
which we denote by T. Specifically, we demonstrate that accurate diagnosis is equivalent
to T being necessary and sufficient for D. This allows us to develop, in Sections 2 and 3, a
unified theoretical framework for identifying a genetic disease caused by a dominant allele,
as summarized in Section 5.

3. The Role of Diagnostic Tests

We provide three fundamental concepts for obtaining accurate estimates of disease
prevalence: (1) identifying the genetic basis for the disease (Section 3.1); (2) achieving an
accurate diagnosis via appropriate tests (Section 3.2); and (3) viewing disease prevalence as
a cumulative lifetime risk [11] (Section 3.3).

Before discussing the three fundamental concepts, it is important to recognize that the
prevalence of genetic diseases is commonly underestimated [17–21]. This general under-
diagnosis of diseases occurs because of inattention to the three fundamental concepts,
and specifically because of the difficulty of identifying people with genetic diseases that
are either non-lethal or that have symptoms similar to those of other diseases. Last [17]
conceived of the analogy of a disease iceberg to describe this general disparity between the
perceived and actual prevalence of a disease in the population. In his model, the entire
iceberg represents the proportion of the population with the disease (actual prevalence);
the “above water portion” of the iceberg corresponds to the diagnosed portion of the
population with the disease (perceived prevalence); the “below water portion” of the iceberg
corresponds to the portion of the population with the disease, but as yet undiagnosed
(Figure 2A).

Theoretical framework. Let D denote the event that an individual from the population
has the disease. Let A denote the event that an individual from the population has been
diagnosed with the disease. The complement of A (denoted by A′) will therefore be the
event that an individual from the population has not been diagnosed with the disease for
whatever reason.

P(D ∩ T′) ≈ P(D)

A

P(D ∩ T) ≈ P(D)

B

water
level

Figure 2. An extended disease iceberg analogy differentiating between various levels of identifying a
disease based on a particular diagnostic test. Each rectangle (an iceberg) represents the proportion of
the population with a given disease (P(D)) and is the same in each panel. The differences between
the panels represent the various abilities that particular diagnostic tests may have in identifying
the disease. The white region (above water portion) in each rectangle denotes the proportion of the
population with the disease and a positive test result (P(D ∩ T)), while the blue region (below water
portion) in each rectangle denotes the proportion of the population with the disease, but unknown
because they have a negative test result (P(D ∩ T′)). (A) A classical disease iceberg effect in which
most of those with the disease are undiagnosed. (B) A well-identified disease in which almost all of
the proportion of the population with the disease has a positive test result.
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Consider a disease with a significant iceberg effect, that is to say, the above-water portion
of the iceberg is significantly smaller than the below-water portion of the iceberg. For the
diseases studied by Last [17], the undiagnosed cases were 2–10-times the diagnosed cases.
In other words,

P(D ∩ A)� P(D ∩ A′).

Now, D = (D ∩ A)∪ (D ∩ A′), and because A and A′ are mutually exclusive, P(D) =
P(D ∩ A) + P(D ∩ A′). Hence, for a disease experiencing a significant iceberg effect,

P(D ∩ A)� P(D),

demonstrating that the perceived prevalence (P(D ∩ A)) consisting of those thought to be
affected by the disease will significantly underestimate the actual disease prevalence (P(D)).

The disease iceberg effect is common among diseases caused by dominant alle-
les and can be significant; indeed, disease prevalence can be underestimated by close
to 90% [17,19,22]. Moreover, knowing the ratio of diagnosed-to-undiagnosed cases al-
lows researchers and clinicians to more accurately estimate the actual disease prevalence
P(D) [17,19,22], which we illustrate with an example.

Consider a disease with a perceived prevalence of 3.6% (P(D ∩ A) = 0.036). In
addition, suppose it is reported that 90% of those with the disease are undiagnosed; that
is, P(D ∩ A′) = 0.9P(D). Using this information, researchers and clinicians can give a
more accurate estimate of the actual disease prevalence P(D). Indeed, one can show that
P(D) = 0.36; thus, the actual disease prevalence is more accurately estimated as 36%,
which is 10-times the perceived prevalence.

In Section 3.1, we extend the iceberg analogy and explain that the disease iceberg
effect can be reduced by better: (i) disease identification; (ii) knowledge of disease-causing
genotypes; and (iii) diagnosis (Section 3.2).

3.1. Identifying a Genetic Disease

Identifying a genetic disease requires two key approaches: (i) the assignment of a
disease to a particular genotype; and (ii) the performance of accurate diagnostic tests.

The assignment of a disease to a particular genotype. Each person with the disease caused
by a dominant allele has a particular genotype (CC or Cc). This genotype can be inferred
from a family pedigree, and it can be directly determined by laboratory genotype tests. The
genotype can be correlated via other laboratory tests with known symptoms and signs of
the disease in order to discover (structurally, immunologically, or physiologically) why the
particular genotype generates the disease phenotype. A combination of genetic tests and
diagnostic tests is used; these tests must each be sensitive (very high true-positive rate) and
specific (very high true-negative rate) for an accurate assignment (Section 3.2). If the various
tests are appropriate and accurate, they should all agree with each other within reasonable
error bounds. If different tests give different results regarding disease presence, clinicians
should determine why the tests differ. These tests plus careful clinical examination should
lead to an accurate diagnosis that minimizes the likelihood of misidentification.

The performance of accurate diagnostic tests. Clinical studies are used to estimate disease
prevalence (Section 2.2), to determine which symptoms and signs are the most relevant, and
to correlate these with the genotypes of disease carriers. Medical diagnoses (e.g., physical
biopsies, tests for antibodies, and observation of symptoms) are combined with genotype
determination [23].

Theoretical framework. Let T denote the event that a particular diagnostic test yields a
positive result for the disease, which can be used to decompose P(D) as

P(D) = P(D ∩ T) + P(D ∩ T′).
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We develop an extended disease iceberg analogy to differentiate between various levels of
identifying a disease based on a particular diagnostic test. In Figure 2, the rectangle (an
iceberg) in each panel represents the proportion of the population with a given disease.
In our analysis, both the disease and P(D) are the same in both panels. The differences
between the panels represent the various abilities that particular diagnostic tests may have
in identifying the disease. The white region (above water portion) in each rectangle denotes
the proportion of the population with the disease and a positive test result (P(D ∩ T)),
while the blue region (below water portion) in each rectangle denotes the proportion of the
population with the disease, but who are unknown because they have a negative test result
(P(D ∩ T′)).

More precisely, we have the following levels of a diagnostic test identifying a disease:

• A disease is not a well-identified disease (with respect to the diagnostic test) provided

P(D ∩ T′) ≈ P(D),

which is equivalent to P(D ∩ T) ≈ 0. This implies the prevalence of the disease will
be significantly underestimated by the diagnostic test and is equivalent to Last’s [17]
concept of the disease iceberg effect (Figure 2A).

• A disease is a well-identified disease (with respect to the diagnostic test) provided

P(D ∩ T) ≈ P(D),

which is equivalent to P(D ∩ T′) ≈ 0. This implies the diagnostic test will yield an
accurate estimator, via an unbiased clinical study based on the diagnostic test, for the
prevalence of the disease (Figure 2B).

The clinical understanding of diseases has progressed over time based on improve-
ments in the understanding of disease mechanisms and also on the development of new
diagnostic tools. Thus, we suggest that the panels for the hypothetical disease in Figure 2
should illustrate the progression from “not well-identified” to “well-identified” in an actual
disease as diagnostic tests improve in disease identification. In Sections 3.2 and 3.3, we de-
velop a theoretical framework for achieving this, as well as include suggestions/implications
for researchers and clinicians.

Dominant fatal diseases, such as Huntington’s disease, have a clear genotype-phenotype
relationship and straight-forward diagnostic approaches; they should, therefore, show
minimal iceberg effects—they are “well-identified” diseases (Figure 2B). For others, such as
prion diseases [13], the genotype-phenotype relation is not as well identified (Figure 2A).
Prion diseases are rare disorders in which abnormally folded proteins cause neural disabili-
ties. An example is Creutzfeldt-Jacob disease [24], in which the disease-causing protein
originates from an alteration in allele sequence or is obtained from an exogenous source
(e.g., the diet). Only the genetic version of the disorder is relevant here.

3.2. Accurate Diagnosis

Again, we let D be the event that an individual in the population has the disease
and let T be the event that a diagnostic test yields a positive result for the disease. For
example, a diagnostic test might be: (i) a biopsy; (ii) a test for blood-borne substances, such
as antibodies associated with the disease; or (iii) a test based on the presence of symptoms
associated with the disease [2].

Recall that D and T can be used to partition a group of individuals (e.g., the population
as a whole or a clinical study corresponding to a random sample of a population under
consideration) of size n as shown in Table 1, where:
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n11 = the number with D and T;

n12 = the number with D and T′;

n21 = the number with D′ and T;

n22 = the number with D′ and T′;

and n = n11 + n12 + n21 + n22.

Table 1. The partition of a group of individuals by D and T.

T T ′

D n11 n12

D′ n21 n22

In addition, recall that the accuracy of the diagnostic test is defined to be

Accuracy =
n11 + n22

n
,

which measures the frequency of those individuals in the clinical study that are correctly
diagnosed. The closer the ratio is to one, the more accurate the diagnostic test is. Only a
diagnostic test with n12 ≈ 0 and n21 ≈ 0 will provide an accurate diagnosis (Accuracy ≈ 1).
We now discuss the properties of such a test.

3.2.1. Necessary and Sufficient Diagnostic Tests

We show that accurate diagnosis is equivalent to a positive test result being both
necessary and sufficient for the presence of the disease. Establishing this equivalence leads
to several new advances: (i) we will be able to describe the theoretical mechanism for
developing an accurate diagnosis (Section 3.2.2); (ii) we will be able to develop a theoretical
framework for cumulative lifetime risk and its role in accurate diagnosis (Section 3.3);
(iii) together with Section 2.3, we will have a unified theoretical framework for identifying
a genetic disease by understanding the relationships between D, G, and T as summarized
in Section 5.

Necessary diagnostic tests. An essential property of a diagnostic test is that it be effective
at detecting the disease when the test is administered to an individual having the disease.
More precisely, it should be the situation that P(T|D) ≈ 1; otherwise, this particular test
should not be used as a diagnostic tool. Sometimes, P(T|D) is referred to as the true-positive
rate, as well as the sensitivity of the diagnostic test [25].

Recall that P(T|D) = 1 is equivalent to saying that T is necessary for D (details of
the equivalency are in Section 2.3 with G replaced by T); that is, “T is necessary for D”
is equivalent to the diagnostic test having high sensitivity. Similarly, one can show that
P(T|D) = 1 is equivalent to saying that the false-negative rate is zero (P(T′|D) = 0).
Therefore, “T is necessary for D” (i.e., the diagnostic test has high sensitivity or has a
small false-negative rate) means that: if a person has the disease, then the person will
almost always test positive for the disease. When T is necessary for D, the population is
partitioned, as shown in Table 1 with n12 ≈ 0:

Sufficient diagnostic tests. A diagnostic test becomes a useful way of identifying those
with the disease if P(D|T) ≈ 1. Sometimes, P(D|T) is referred to as the positive predictive
rate [25].

Recall that P(D|T) = 1 is equivalent to saying that T is sufficient for D (details of
the equivalency are in Section 2.3 with G replaced by T); that is, “T is sufficient for D” is
equivalent to the diagnostic test having a high positive predictive rate. Similarly (assuming
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P(D′) 6= 0), one can show that P(D|T) = 1 is equivalent to saying that: the false-positive
rate is zero (P(T|D′) = 0); as well as P(T′|D′) = 1. Sometimes, P(T′|D′) is called the true-
negative rate, as well as the specificity of the diagnostic test [25]. Therefore, “T is sufficient
for D” (i.e., the diagnostic test has a high positive predictive rate or a small false-positive
rate, or high specificity) means that: if a person receives a positive test, then the person will
almost always have the disease. When T is sufficient for D, the population is partitioned,
as shown in Table 1 with n21 ≈ 0:

Accurate diagnosis: A necessary and sufficient diagnostic test. The goal of any diagnostic
test is for a positive test result to be both necessary and sufficient for an individual to
be identified with the disease; that is, T and D partition the population as a diagonal
partition (Table 1 with n12 ≈ 0 and n21 ≈ 0), and those individuals in the population under
consideration with the disease are precisely those individuals who receive a positive result
from the diagnostic test. Only if both sensitivity and specificity are high in a clinical study
can clinicians be confident their analyses are accurate.

In summary, the result of the foregoing is that accurate diagnosis depends on T being
both necessary and sufficient for D. When this is the case, P(T) = P(D). Thus, an estimator
for P(T) based on a clinical study should be close to an estimator for P(D) described by
Equation (3).

An implication for clinicians is that if they choose to use a diagnostic test with a
positive test result being “not necessary” for the occurrence of the disease, then that is
equivalent to them accepting a significant iceberg effect and a large underestimation of the
actual prevalence of the disease. Another implication for clinicians is that if they believe
a diagnostic test’s positive test result is “necessary, but not sufficient” for the occurrence
of the disease, then that is equivalent to them accepting that the diagnostic test does not
accurately predict whether a person has the disease or not. Instead, we suggest that it is
imperative that clinicians continue their investigations—ultimately seeking a diagnostic
test that does yield P(T) = P(D).

3.2.2. Estimating Prevalence via a Diagnostic Test

To actually create a diagnostic test that yields P(T) ≈ P(D), a clinician should begin
with a diagnostic test for which T is necessary for D (Table 1 with n12 ≈ 0). Indeed, if T is
not necessary for D, then the diagnostic procedure ought to be rejected outright. When
diagnostic tests are first developed, they are likely to have difficulty identifying those with
the disease and those without it (Table 1 with n21 6≈ 0 and, therefore, n11 is underestimated).
A clinician’s goal is therefore to refine the diagnostic test, while keeping in mind accepted
clinical study design protocols [7], so that it also ensures T is sufficient for D (Table 1 with
n12 ≈ 0 and n21 ≈ 0). When this is achieved, clinicians will have created a diagnostic test
that accurately predicts disease presence (i.e., the test is ready for usage as a diagnostic
tool), and P(T) will be close to P(D).

The preceding intuitive discussion connects our theory to a clinician’s practice. To our
knowledge, we are the first to rigorously characterize the discussion by developing the
theoretical mechanism for how P(T) approaches P(D) as the diagnostic test is refined. We
demonstrate that when T is necessary for D (Section 3.2.1), P(T) can be used to provide
lower and upper bounds for P(D); moreover, we show that as the false-positive rate
(P(T|D′)) approaches zero, the lower and upper bounds force P(T) to approach P(D).
Thus, T will be both necessary and sufficient for D, and consequently, P(T) ≈ P(D).
Specifically, the theoretical mechanism is described by

P(T)− (1− P(T))
α0

1− α0
≤ P(D) ≤ P(T) , (4)

where α0 is an upper bound for P(T|D′); in other words, the false-positive rate is at most
α0 (0 ≤ P(T|D′) ≤ α0). The derivation of Equation (4) is provided in Appendix C.
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Reducing α0 improves the diagnostic test’s accuracy. Moreover, Equation (4) describes
the theoretical mechanism by which P(T) approaches P(D) as α0 becomes smaller (because
the lower bound in Equation (4) approaches P(T) as α0 approaches zero), resulting in the
partition of the population induced by T and D approaching a diagonal partition, at which
point, T will be both necessary and sufficient for D. The implication is crucial:

As the false-positive rate becomes smaller, the probability increases that a positive
result in the corresponding diagnostic test will more accurately predict prevalence
of the disease.

Estimation procedure. The above theoretical development suggests the following four-step
procedure for clinicians wanting to use a diagnostic test to accurately estimate disease
prevalence:

(i) Begin with a diagnostic test for which T is necessary for D. A corresponding clinical
study should consist of data resembling Table 1 with n12 ≈ 0.

(ii) Estimate P(T). Use Table 1 to find

P̂(T) =
n11 + n21

n
·

(iii) Estimate the maximum value of a false-positive rate, which is denoted by α0. Use
Table 1 to compute, for example, a 95% confidence interval [5,6] for the false-positive
rate, and take α0 to be the maximum of the interval

α0 = α̂ + 1.96
√

α̂(1− α̂ )/n , where α̂ = P̂(T|D′) = n21

n21 + n22
·

(iv) Substitute the estimators of P(T) and α0 into Equation (4), which yields an interval
estimate for P(D).

Example 1. As context, consider a disease caused by a dominant allele with p = 0.2, r = 1 and
the genotype CC fully penetrant. Then P(D) = 0.36 (Equation (3)). In principle, an accurate
diagnostic test should yield P(T) ≈ P(D) ≈ 0.36. To achieve this, begin with a diagnostic
test for which T is necessary for D (Step (i)). Using a corresponding clinical study resembling
Table 1 with n12 ≈ 0, obtain the estimator P̂(T) ≈ 0.36 (Step (ii)). Figure 3 is an illustration of
Equation (4), where the lower bound is the blue curve and the upper bound is the black horizontal
line (at P̂(T) ≈ 0.36). The disease prevalence P(D) lies inclusively between the two bounds, and
interval estimates for P(D) (indicated in red) are shown for α0 = 0.3, 0.2, 0.1, and 0.02. Depending
on the diagnostic test and how it is interpreted, false-positive results may generate uncertainty
regarding P(D); for example, if the false-positive rate is as high as 0.3 (i.e., α0 = 0.3), then P(D) is
estimated as being inclusively between 0.086 and 0.36 (Steps (iii) and (iv); Figure 3). An interval
estimate with such a large spread makes any P(D) estimate unreliable (e.g., the interval does not
support claiming P(D) ≈ 0.09). Indeed, such uncertainty should alert clinicians that the diagnostic
test is not accurate (T is necessary, but not yet sufficient for D). However, as α0 is reduced, the test’s
accuracy is improved; at values α0 ≤ 0.1, the disease prevalence will be estimated more accurately
(Figure 3 with α = 0.1 and 0.02); T will become both necessary and sufficient for D, resulting in
P(T) ≈ P(D) ≈ 0.36, as desired.

Incidentally, our development of accurate diagnosis applies to any disease, whether it
is genetically based or not.
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Figure 3. Illustration of Example 1, where P(T) = 0.36. The horizontal axis is the values for α0, which
is an upper bound for the false-positive rate; the vertical axis is the disease prevalence P(D). The
lower bound in Equation (4) is the blue curve, and the upper bound is the black horizontal line at
P(T) = 0.36. P(D) will lie inclusively between the two bounds. The interval estimates for P(D)

(indicated in red) are shown for α0 = 0.3, 0.2, 0.1, and 0.02. The accuracy of an interval estimate of
disease prevalence increases as the false-positive rate declines; specifically, the red interval estimates
become smaller as α0 becomes smaller.

3.3. Accurate Diagnosis Requires Cumulative Lifetime Risk

For many disorders, disease prevalence is a cumulative lifetime risk; that is to say, dis-
ease prevalence is the likelihood a person from the population will be accurately diagnosed
as having the disease at some point during their lifetime. For certain disorders, in particular
those caused by dominant alleles, symptoms and the probability of testing positive for the
disease (P(T)) show a peak in middle age. This leads to a steady accumulation of cases (of
a particular disease) in the population [8,11,13,26,27]. Diagnostic tests for such diseases are
administered to people thought to have the disease-causing genotype; these tests yield a
result at a specific moment in each person’s lifetime. For some disorders (e.g., Huntington’s
Disease (HD) [28]), the probability of a positive test result (P(T)) increases with age, so
young people with the disease-causing genotype may not test positive for the disease. In
non-fatal dominant diseases, these negative results are often misinterpreted to mean that
such people will never test positive for the disease. Our analysis will make clear that this
interpretation is unwarranted and is a source of underestimates of P(D).

Figure 4 shows the cumulative lifetime feature of disease prevalence for people with
HD. Figure 4A illustrates data for 84 people (ranging in age from 10 to over 80 years
old) who at some point developed HD. The maximum proportion was diagnosed at
approximately age 50, and by age 80 nearly all of those who would develop HD had been
diagnosed. Figure 4B illustrates the corresponding cumulative distribution of diagnosis,
indicating that it takes about 80 years for most people with the disease-causing genotype
for HD to be identified. This cumulative mechanism means that a negative diagnostic test
result at any age below, say 70, does not preclude either a positive diagnostic test result or
actual disease itself at a later time. Therefore, HD prevalence cannot be accurately estimated
by studying only those younger than age 70. This cumulative pattern of diagnosis applies
to prion diseases [13] and amyotrophic lateral sclerosis [29], and in general has implications
for the estimation of the prevalence of diseases that are detected only later in life.
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Figure 4. The cumulative lifetime feature of disease prevalence for people with Huntington’s Disease
(HD). (A) Proportion of 84 people (ranging in age from 10 to 80) with HD who are diagnosed at
each of the eight age decades. The maximum proportion occurs at approximately age 50, and the
distribution is bell-shaped, but not symmetric. (B) The cumulative proportion of the people shown in
(A) with HD who are diagnosed at each of the eight decades. Constructed from data in [28].

Genetic tests at any time will show the presence or absence of the disease-causing
genotypes. For a disease such as HD, the CC genotype is unlikely to be found in living
people because most individuals with the CC genotype die before birth. The presence
of the Cc genotype suggests that the disease will develop in severity over the lifetime
of the individual and the true prevalence P(D) is not accurately estimated until all ages
have been accounted for [13]. Thus, for individuals with the Cc genotype, the variable
appearance of HD over a lifespan is not necessarily a measure of the penetrance of the
disease-causing genotype Cc, as disease prevalence may also depend on how carefully
clinicians have diagnosed the condition (i.e., how likely it is to obtain a positive diagnostic
test result may depend on disease severity and the diagnostic test’s ability to detect mild
forms of the disease).

Cumulative lifetime risk is best understood as an investigation of the accuracy of
diagnosis and the identification of all people who might have the disease. Recall that an
accurate diagnosis can be framed in terms of a positive diagnostic test result being both
necessary and sufficient for the presence of the disease (Section 3.2.1). The implications are
crucial for understanding population disease prevalence. We will show that cumulative
lifetime risk is formally and actually equal to population-wide disease prevalence, P(D):

Theoretical framework. The following is a theoretical framework for cumulative lifetime
risk analysis. It describes the accuracy of a diagnosis as a function of subject age in terms
of two measures of cumulative diagnosis, which we call the cumulative age-true positive
rate and the cumulative age-positive predictive rate. The former is an index of the diagnostic
test’s true-positive rate, and thus of the degree to which the diagnostic test is necessary for
demonstrating the disease; the latter is an index of the diagnostic test’s positive predictive
rate, and thus of the degree to which the diagnostic test is sufficient for demonstrating
the disease. For simplicity, we assume that the maximum lifetime of individuals in the
population is 100 years.

We define the age-true positive rate, denoted by ftpr(i), to be the conditional probability
a person receives a positive test result at age i years old (i = 1, 2, . . . , 100), given the person
has the disease; that is to say,

ftpr(i) = P((T ∩ {age i years old})|D) (i = 1, 2, . . . , 100) .
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Thus, the true-positive rate is the accumulation of all age-true positive rates,

P(T|D) =
100

∑
i=1

ftpr(i) .

We define the age-positive predictive rate, denoted by fppr(i), to be the conditional
probability a person has the disease at age i years old, given the person receives a positive
test result (i = 1, 2, . . . , 100); that is to say,

fppr(i) = P((D ∩ {age i years old})|T) (i = 1, 2, . . . , 100) .

Thus, the positive predictive rate is the accumulation of all age-positive predictive rates,

P(D|T) =
100

∑
i=1

fppr(i) .

Here are the properties that both the age-true positive rate and the age-positive
predictive rate satisfy (to simplify the notation, the function f (i) stands for both ftpr(i) and
fppr(i)):

(i) The function f (i) has values 0 ≤ f (i) ≤ 1 for all i = 1, 2, . . . , 100.
(ii) The sum of all the values of f (i) must equal one, ∑100

i=1 f (i) = 1, which is a consequence
of the diagnostic test satisfying P(T|D) = 1 (T is necessary for D) and P(D|T) = 1 (T
is sufficient for D).

(iii) The function f (i) is bell-shaped, but is not necessarily symmetric. That is, f (i) obtains
its maximum at some age denoted by m; f (i) will be an increasing function for i < m
and a decreasing function for i > m. For diseases with later-in-life detection (e.g., many
diseases caused by dominant alleles), m typically occurs during middle-age.

Figure 5A provides a graph of a typical f (which stands for both ftpr and fppr) for
diseases with later-in-life detection. For convenience, the function f has been extended to
a continuous function defined for all times 0 ≤ t ≤ 100. Indeed, the function f (t) can be
thought of as a “best fit curve” using the values f (i) for i = 1, 2 . . . , 100, and f (0) = 0.
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Figure 5. (A) Graph of a typical f , which stands for both the age-true positive rate ( ftpr) and the
age-positive predictive rate ( fppr). See the text for their descriptions. The function f (t) is bell-shaped,
but is not necessarily symmetric, and obtains its maximum at some age denoted by m. For a disease
with later-in-life detection, m typically occurs during middle-age. (B) Graph of a typical F, which
stands for both the cumulative age-true positive rate (Ftpr) and the cumulative age-positive predictive
rate (Fppr). See the text for their descriptions. For a disease with later-in-life detection, F is close to
one only after middle age.
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We define the cumulative age-true positive rate of the disease at age i, denoted by Ftpr(i),
to be the sum of the age-true positive rates for ages at most i; that is to say,

Ftpr(i) =
i

∑
k=1

ftpr(k) (i = 1, 2, . . . , 100) .

We define the cumulative age-positive predictive rate of the disease at age i, denoted by
Fppr(i), to be the sum of the age-positive predictive rate for ages at most i; that is to say,

Fppr(i) =
i

∑
k=1

fppr(k) (i = 1, 2, . . . , 100) .

Here are properties that both the cumulative age-true positive rate and the cumulative
age-positive predictive rate satisfy (to simplify the notation, the function F(i) stands for
both Ftpr(i) and Fppr(i)):

(i) The function F has values 0 ≤ F(i) ≤ 1 for the ages i = 1, 2, . . . , 100.
(ii) F(i) is an increasing function, where F(100) = 1 because

Ftpr(100) = P(T|D) = 1 and Fppr(100) = P(D|T) = 1.

(iii) F(i) will be concave up (increasing at an increasing rate) for 1 ≤ i < m; and will be
concave down (increasing at a decreasing rate) for m < i ≤ 100.

Figure 5B provides a graph of a typical F (which stands for both Ftpr and Fppr) for
diseases with later-in-life detection. For convenience, the function F has been extended to
a continuous function defined for all times 0 ≤ t ≤ 100. Indeed, the function F(t) can be
thought of as a “best fit curve” using the values F(i) for i = 1, 2, . . . , 100, and F(0) = 0.

In summary, accurate diagnosis (Section 3.2) in the context of a cumulative lifetime
risk corresponds to

Ftpr(100) = 1 and Fppr(100) = 1.

Framing accurate diagnosis as a cumulative lifetime risk has implications for clinicians
regarding a diagnostic test’s result. For diseases with later-in-life detection (e.g., many
diseases caused by dominant alleles), clinicians should be aware of three important and
related concepts:

(i) A negative diagnostic test result up to middle age does not indicate that the person
will never be accurately diagnosed with the disease during their lifetime. For example,
a person may actually have an early form of the disease that is not detected by the
diagnostic test; consequently, inadequate testing may prevent treatment for the person
during their lifetime. Indeed, because Ftpr(t) ≈ 1 and Fppr(t) ≈ 1 only later in life, it is
essential to continue testing a person with the disease-causing genotype who receives
a negative diagnostic test result well beyond middle age (Figure 5).

(ii) Clinical studies exclusively using people from a specific age group (e.g., only those
from 20–30 years old) will suffer from ascertainment bias; hence, such studies will not
produce meaningful inferences regarding population disease prevalence (Figure 5).
Moreover, clinical studies consisting of people only up to middle age will suffer from
ascertainment bias and result in an underestimation of the prevalence of diseases with
later-in-life detection. For example, HD prevalence would be underestimated by about
30% if only people up to age 55 were included in the data in [28] (Figure 4B).

(iii) A positive diagnostic test result at any age (in a person with the disease-causing
genotype) may also be a false-positive and may suggest treatments that will not
be necessary. The chances of false positives should thus be minimized at all ages
(Figure 5).
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Cumulative lifetime risk equals disease prevalence. We now show that cumulative life-
time risk in principle equals the prevalence of the disease, P(D) (Section 2). For a diagnostic
test in which a positive test result is both necessary and sufficient for the presence of the
disease,

Cumulative lifetime risk = P(T),

as well as
P(T|D) = Ftpr(100) = 1 and P(D|T) = Fppr(100) = 1.

Now,

P(D) = P(D ∩ T) + P(D ∩ T′)

P(D) = P(T|D)P(D) + P(T′|D)P(D)

1 = P(T|D) + P(T′|D),

which implies P(T′|D) = 0 because P(T|D) = 1. Thus,

P(D) = P(D ∩ T) + P(D ∩ T′)

P(D) = P(D|T)P(T) + P(T′|D)P(D),

which implies P(D) = P(T) because P(D|T) = 1 and P(T′|D) = 0. Therefore,

Cumulative lifetime risk = P(T) = P(D),

where P(D) is given by Equation (3).
In summary, it is important to view the accuracy of diagnosis as a function of subject

age in order to ensure that a positive diagnostic test result precisely identifies those individ-
uals who have the disease. That is, the goal of any diagnostic test should be for P(T) to
accurately estimate P(D).

4. Familial and Offspring-Group Aggregation

The current approach to investigating the prevalence of genetic diseases in various
families relies on the concept of familial aggregation, in which the frequency of a disease
may be higher in particular family groupings than in the general population. An initial
grouping was the hereditary family, consisting of genetic relatives from the same family tree:
grandparents, parents, siblings, cousins, etc. [8,11]. A more precise grouping is first-degree
relatives (parents, offspring, and siblings [30]), which form a subset of the hereditary family.
However, a person’s genetic disease risk is not directly influenced by a non-parent in a
hereditary family. Because current approaches assess a person’s genetic disease risk via
imprecise measures of familial aggregation, we propose they be replaced by a measure
determined solely by parental genotypes; thus, we introduce a new approach that we call
offspring-group aggregation. The advantages of this approach will become apparent below.

Throughout, we use standard human pedigree analysis terminology; for example,
“parents” refers to genetic parents, and “siblings” refers to offspring with the same genetic
parents [8].

Offspring-groups. Consider a two-allele model for a genetic disease. Table 2 illustrates all
possible parental genotypes and their offspring. The entries in the individual cells are the
frequencies of the corresponding offspring.
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Table 2. All possible parental genotypes and frequencies of their offspring.

CC Cc cC cc

CC p2 × p2 p2 × pq p2 × qp p2 × q2

Cc pq× p2 pq× pq pq× qp pq× q2

cC qp× p2 qp× pq qp× qp qp× q2

cc q2 × p2 q2 × pq q2 × qp q2 × q2

Constructing all the possible matings using the parents in Table 2, we observe that
there are precisely six partition subsets of the general population, which we denote by Fi
(for i = 1, 2, . . . , 6), and have the following probabilities:

F1 : CC× CC; P(F1) = p2 × p2;

F2 : CC× Cc; P(F2) = 4(p2 × pq);

F3 : CC× cc; P(F3) = 2(p2 × q2);

F4 : Cc× Cc; P(F4) = 4(pq× pq);

F5 : Cc× cc; P(F5) = 4(pq× q2);

F6 : cc× cc; P(F6) = q2 × q2.

(5)

In Figure 6, we illustrate the possible offspring genotypes within each subset Fi
(for i = 1, 2, . . . , 6). We refer to Fi as an offspring-group, which consists of all people (offspring)
whose parents have the genotypes that determine the partition Fi. For example, F2 consists
of all people (offspring) in the general population whose parents have genotypes CC× Cc.

C C

C CC CC

C CC CC

F1

C C

C CC CC

c Cc Cc

F2

C C

c Cc Cc

c Cc Cc

F3

C c

C CC Cc

c Cc cc

F4

C c

c Cc cc

c Cc cc

F5

c c

c cc cc

c cc cc

F6

Figure 6. Illustration of the possible offspring genotypes within each of the six offspring-groups Fi

(for i = 1, 2, . . . , 6). Because offspring genotype frequencies differ among the offspring-groups,
some office-spring groups may have high disease prevalence while others may have low or zero
disease prevalence.

Consequently, because a person’s genotype is dependent on their parents, siblings
belong to the same offspring-group. Moreover, an offspring-group will include people
who are not necessarily siblings; indeed, two people who are not siblings could each have
parents with the same genotypes and thus be members of the same offspring-group.

Incidentally, which offspring-group a parent belongs to is determined by the genotypes
of their parents; a parent might not belong to the same offspring-group as their children.
For example, suppose you and your mate have genotypes CC× Cc, then your offspring
belong to F2; in addition, suppose your parents have genotypes Cc× Cc, then you belong
to F4.

At any given time, there are always exactly six offspring-groups in the general pop-
ulation (Figure 6), while there are a large number of hereditary families with various
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compositions. Most importantly, Figure 6 shows that some offspring-groups may have
high P(D), while others may have low or zero P(D).

Clinical studies involving pairs of siblings report the likelihood that a sibling has the
disease, given the other sibling has the disease. This statistic, called sibling risk, is presented
as if it were a clinical characteristic of the disease. Disease risk is instead determined
by the structures of the offspring-groups (Figure 6), the penetrance of disease-causing
genotypes, and the frequency of the disease-causing genotypes. We will address this idea
in Section 4.2. Familial aggregation is currently measured with the sibling recurrence-
risk ratio, denoted by λs, which refers to the ratio of sibling risk to the population-wide
disease prevalence (Section 4.1). An estimated high value λ̂s � 1 (e.g., occasionally
obtained from clinical studies) is used often as an indication that a particular disorder
has familial aggregation [10,11,31]. However, as we will show, the current measure of
familial aggregation is biased because it ignores a large part of the population and because
it is affected by (often mistaken) estimates of population disease prevalence. Indeed, we
provide several arguments that, in principle, the theoretical sibling recurrence-risk ratio is
always equal to one (λs = 1); this gives the surprising result that any estimator λ̂s 6≈ 1 be
viewed with suspicion. Therefore, we propose that λs is in need of replacement.

Our new concept focuses on the six offspring-groups (Figure 6) instead of hereditary
families. Because each offspring-group has its own disease risk, “familial risk” should not be
represented by a population parameter with a single value such as λs. After demonstrating
the unsuitability of λs, we propose an alternative that depends on the allele frequency and
penetrance of disease-causing genotypes; thus, our measure differs among the possible
six offspring-groups of the general population (Equation (9)). We also discuss why our
new measure is likely to yield an unbiased estimator based on clinical studies—unlike
estimators for the sibling recurrence-risk ratio (Section 4.2).

4.1. Sibling Recurrence-Risk Ratio

Sibling risk is defined as the probability that an individual has a disease, given that
a sibling has the same disease [11,32,33]. More precisely, let S1 and S2 denote two (non-
identical) siblings with the same parents, let D1 denote the event that S1 has the disease,
and let D2 denote the event that S2 has the same disease. In the literature [10,11,33], sibling
risk is often denoted by Ks; thus,

Ks = Sibling risk = P(D2|D1).

In addition, the population risk (frequency, prevalence, probability) of the disease
in the population is often denoted by K. In particular, P(D1) = K and P(D2) = K. The
literature in this field [10,11] defines the sibling recurrence-risk ratio

λs =
Ks

K

for use in the explanation of familial aggregation, as well as for hypothesizing a need for
additional genes to describe the dependence of disease prevalence on genotype. Misunder-
standing and different interpretations of the definition of Ks have led to various approaches
for (inaccurately) estimating λs, making valid inferences and hypotheses problematic [32].

Our approach to this issue is based on the alleles of offspring being dependent on their
parents, as well as on the small number of possible offspring-group types in a population
and the membership of two siblings in the same offspring-group. Observe that while the
siblings S1 and S2 are from the same offspring-group, the definition of Ks as currently used
does not specify to which of the six offspring-groups the siblings belong (Figure 6). Thus, Ks
is not defined as a conditional probability with respect to an offspring-group, forcing the
general population to become the focus for determining Ks. Therefore, the heterogeneity
of offspring-groups means λs is not an enlightening measure of familial aggregation.
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Our analysis develops several biologically based probabilistic arguments leading to the
demonstration that Ks = K for a genetic disease; that is, λs = 1 (Sections 4.1.1 and 4.1.2).

Following this demonstration, we will explore its implications for the calculations
of estimators for Ks and K. We also discuss why the estimator λ̂s experiences computa-
tional deficiencies—incorrectly predicting λs > 1. In addition, we discuss the implica-
tions of Ks = K and the misuse of λs as the justification for additional gene hypotheses
(Section 4.1.3).

4.1.1. Offspring Allele Independence: λs = 1

The genotypes of offspring are dependent on the parents, not on the siblings; con-
sequently, whether S1 has a particular allele is not affected by whether S2 has the allele
and genetic events regarding S1 and S2 will be independent of each other. In partic-
ular, with respect to genetic diseases, D1 and D2 are independent events. Therefore,
P(D1 ∩ D2) = P(D1)P(D2), which implies

Ks = P(D2|D1) =
P(D1 ∩ D2)

P(D1)
=

P(D1)P(D2)

P(D1)
= P(D2) = K ;

hence, we conclude that λs = 1. This means that λs = 1 for any disease in which disease
status is independent in each sibling. Incidentally, the independence of D1 and D2 may
not be the case for certain types of disorders; for example, two siblings living in the
same household will likely not be independent of each other with respect to non-genetic
contagious disease status [32].

As another approach showing λs = 1, we note that Risch [33] writes λs in terms of the
covariance between siblings

λs = 1 +
1

K2 Cov(D1, D2) .

Because D1 and D2 are independent events, Cov(D1, D2) = 0 [5,6] and we again conclude
that λs = 1.

As a third approach showing λs = 1, we note Risch [11] defines φs as the prob-
ability that two siblings share zero marker alleles and states that φs = 1/4. Let Z =
{S1 and S2 share zero alleles}, and observe that

P(Z) = φs = 1/4.

Recall {S1 and S2 have the disease} = D1 ∩ D2. As indicated in [11],

P((D1 ∩ D2)|Z) = P(D1)P(D2) = K2,

which implies
P((D1 ∩ D2) ∩ Z) = P((D1 ∩ D2)|Z)P(Z) = K2φs ;

moreover, P(D1 ∩ D2) = P(D2|D1)P(D1) = KsK. Therefore,

P(Z|(D1 ∩ D2)) =
P((D1 ∩ D2) ∩ Z)

P(D1 ∩ D2)
=

K2φs

KsK
=

φs

Ks/K
=

φs

λs
·

As described in [10], the expected proportion of affected sibling pairs sharing zero alleles is
0.25; that is, P(Z|(D1 ∩ D2)) = 0.25 = φs. Hence, φs = φs/λs, and we again conclude that
λs = 1.

4.1.2. Siblings Are from the Same Offspring-Group: λs = 1

We define the offspring-group risk for a specific offspring-group Fi to be the probability
of an individual having the disease, given that the individual is an offspring in Fi. That is,
offspring-group risk is P(D|Fi) (for i = 1, 2, . . . , 6).



Life 2023, 13, 733 21 of 32

From Figure 6, using P(D|cc) = 0 for a disease D caused by a dominant allele
(Section 2.2), we compute the offspring-group risk for each of the six offspring-groups:

P(D|F1) = P(D|CC) ; P(D|F2) =
1
2
(

P(D|CC) + P(D|Cc)
)

P(D|F3) = P(D|Cc) ; P(D|F4) =
1
4
(

P(D|CC) + 2P(D|Cc)
)

P(D|F5) =
1
2

P(D|Cc) ; P(D|F6) = 0 .

(6)

We are now ready to compute sibling risk using the offspring-group risks. Because the
six offspring-groups form a partition of the population and because siblings are from the
same offspring-group, we can write

Ks = P(D2|D1) =
P(D2 ∩ D1)

P(D1)

=
1

P(D1)

6

∑
i=1

P(D2 ∩ D1 ∩ Fi)

=
1

P(D1)

6

∑
i=1

P(D2 ∩ Fi)P(D1)

=
5

∑
i=1

P(D2|Fi)P(Fi) (because P(D2|F6) = 0).

Using the offspring-group frequencies (Equation (5)), we have that

Ks = P(D2|F1)p4 + P(D2|F2)4p3q + P(D2|F3)2p2q2

+ P(D2|F4)4p2q2 + P(D2|F5)4pq3.
(7)

Substituting the offspring-group risks (Equation (6)) into Equation (7) gives the following
representation

Ks = P(D2|CC)p4 + 2[P(D2|CC) + P(D2|Cc)]p3q + 2P(D2|Cc)p2q2

+ [P(D2|CC) + 2P(D2|Cc)]p2q2 + 2P(D2|Cc)pq3.

Finally, combining similar terms (and noting that p + q = 1), using Equation (1) and
Section 2.2, and using Equation (3) yields

Ks = [p4 + 2p3q + p2q2]P(D2|CC) + [2p3q + 4p2q2 + 2pq3]P(D2|Cc)

= p2[p2 + 2pq + q2]P(D2|CC) + 2pq[p2 + 2pq + q2]P(D2|Cc)

= p2(p + q)2P(D2|CC) + 2pq(p + q)2P(D2|Cc)

= p2P(D2|CC) + 2pqP(D2|Cc)

= p(2r + (1− 2r)p)P(D2|CC)

= K .

Thus, we again conclude that Ks = K. This last argument has the additional utility that it
provides the underlying structure for developing a new measure of aggregation (based on
offspring-groups instead of hereditary families), which we discuss in Section 4.2.

Even though the values of Ks and K are identical, certain offspring-groups (and heredi-
tary families) may have more members with a disease than other groups and may also have
a higher or lower P(D) than the population as a whole. The equality of Ks and K simply
means that the sibling recurrence-risk ratio is not an appropriate measure of aggregation
among offspring-groups or hereditary families. Before we propose an alternative measure



Life 2023, 13, 733 22 of 32

that avoids the challenges associated with λs, we discuss why estimators (λ̂s) of λs appear
to be greater than one.

4.1.3. Estimating the Sibling Recurrence-Risk Ratio

There are two main reasons for errors in the traditional statistical construction of the
estimator λ̂s: (i) the prevalence of the disease, K, is almost always underestimated; (ii)
sibling risk, Ks, is almost always overestimated.

Having already discussed the underestimation of K (Section 3), we now discuss the
overestimation of Ks. Recall that

Ks = P(D2|D1) =
P(D2 ∩ D1)

P(D1)
·

Using data from a clinical study consisting of pairs of siblings, an estimator P̂(D2 ∩ D1)
will likely yield an overestimation of P(D2 ∩ D1) because the clinical study will almost
always not include siblings from offspring-group F6 for which P(D|F6) = 0 (Equation (6)).
Hence, ascertainment bias will cause

K̂s =
P̂(D2 ∩ D1)

P̂(D1)

to be overestimated. Incidentally, the contribution of offspring-group F6 can be significant.
For example, when p ≤ 0.2, more than 40% of all population members are in this offspring-
group; thus, the same proportion (more than 40%) of the population is likely not included in
computing an estimator for Ks (though F6 is likely to be included in computing an estimator
for K).

In addition, we point out that the sibling recurrence-risk ratio is particularly sensitive
to underestimates of K. Indeed, observe that

λs =
Ks

K
=

P(D2|D1)

K
=

P(D1 ∩ D2)

P(D1)K
=

P(D1 ∩ D2)

K2 ·

Because the exponent for K is two, while P(D1 ∩ D2) has exponent one, λs will be more
sensitive to underestimates of K than to overestimates of P(D2 ∩ D1).

Similarly, an estimator for Ks based on a conditional probability approach is also
almost always overestimated. Consider a clinical study consisting of pairs of siblings with
one of the siblings known to have the disease. An estimator of Ks will be K̂s = P̂(D2|D1).
In this case, the clinical study will likely consist mostly of individuals participating from
offspring-groups with high offspring-group risks (Equation (6)) [32]; that is, the clinical
study will suffer from ascertainment bias. Hence, the calculated value of K̂s will likely yield
an overestimation of Ks.

Despite the reality that in principle Ks = K, several studies [10,11,31,34] have used
estimators of Ks and K derived from clinical studies to suggest λs > 1 and propose that
a more complicated genetic model is required to explain the causes of certain genetic
disorders. However, as we have shown that λs = 1, it appears that equations using λs with
a value other than 1 should not be used to propose alternative genetic hypotheses.

As an illustration, we now discuss an example where using λs is problematic. The
contribution of the Human Leukocyte Antigen (HLA) region (denoted by λsHLA) to the
sibling recurrence-risk ratio is the “expected proportion of affected sibling pairs sharing
zero haplotypes identical-by-decent (IBD) (0.25) divided by the observed proportion [of
affected sibling pairs sharing zero haplotypes IBD]” [10]; that is,

λsHLA =
P(Z|(D1 ∩ D2))

P̂(Z|(D1 ∩ D2))
=

0.25
P̂(Z|(D1 ∩ D2))

,

where Z = {S1 and S2 share zero haplotypes}.



Life 2023, 13, 733 23 of 32

Assuming a multiplicative model [11], the percentage of the HLA’s contribution to the
sibling recurrence-risk ratio (denoted by % λsHLA) is calculated [10] using the equation

% λsHLA = 100
log(λsHLA)

log(λs)
,

which obviously requires λs 6= 1 (otherwise, the denominator is zero). However, because of
our earlier discussion that λs = 1 (Sections 4.1.1 and 4.1.2), we conclude that this equation
experiences a theoretical deficiency by always producing an undefined result—assuming
the true value of λs is used.

In addition to the already-discussed issues with the estimator λ̂s, it appears that
estimating λsHLA also is problematic; indeed, the above equation for % λsHLA often is used
with an estimated value of λs satisfying λ̂s > 1 and an estimated value of λsHLA also
satisfying λ̂sHLA > 1 [10,11,31,34]. For example, Table 3 in [10] includes several clinical
studies that can be used to construct λ̂sHLA, where the individual studies produce values
of P̂(Z|(D1 ∩ D2)) ranging from a low of 0 (also the median and mode) to a high of 0.50.
These values correspond to λ̂sHLA ranging from undefined (infinite) to 0.50. Combining
all of the data in the clinical studies produces P̂(Z|(D1 ∩ D2)) = 0.07, but due to the large
spread of the data, it is not likely that this single value is meaningful (as was pointed out
by the authors of the study) [10]. In any event, even if researchers wrongly use λ̂s > 1 and
λ̂sHLA > 1, they will still be able to compute the quantity

% λ̂sHLA = 100
log( λ̂sHLA)

log( λ̂s)
·

However, inferences and hypotheses should not be based on such a calculated value of
% λ̂sHLA because of the previously discussed issues with the estimator λ̂s and because of
difficulties associated with the estimator λ̂sHLA. We do not dispute that, in principle, there
may exist a percentage of HLA’s contribution to disease risk; we are simply proposing that
using % λ̂sHLA as an indicator is suspect.

In summary, our analysis shows that λs experiences theoretical and computational
deficiencies; in addition, its definition often is misunderstood and subject to misinter-
pretations [32]. These attributes lead to estimators of λs being greatly inflated (λ̂s � 1);
thus, drawing conclusions based on λ̂s is suspect. In particular, we propose that λs does
not accurately indicate familial aggregation nor provide insight for the general genotype–
disease relationship.

4.2. Offspring-Group Aggregation and Its Measure

To better account for the fact that each offspring-group has its own disease risk, we
propose replacing the concept of familial aggregation with what we call offspring-group
aggregation, which describes the aggregation of genetic diseases among the six offspring-
groups (instead of among hereditary families). In addition, we propose a new measure that
precisely describes the frequency distribution of genetic diseases among the six offspring-
groups and yields estimators of the offspring-group aggregation of genetic diseases.

To do this, we define the offspring-group recurrence-risk ratio as the ratio of the offspring-
group risk to the disease prevalence; specifically,

µi =
P(D|Fi)

P(D)
(for i = 1, 2, 3, 4, 5, 6).

It measures the likelihood that a person from offspring-group Fi has the disease, relative to
a person from the general population. For example, µi = 2.5 means that a person from Fi is
about 2.5 times more likely to have the disease as a person from the general population.



Life 2023, 13, 733 24 of 32

Using Equations (1) and (6), we obtain the following representations of offspring-group
risk (Section 4.1.2) in terms of r and P(D|CC):

P(D|F1) = P(D|CC), P(D|F2) =
1
2
(1 + r)P(D|CC)

P(D|F3) = rP(D|CC), P(D|F4) =
1
4
(1 + 2r)P(D|CC)

P(D|F5) =
1
2

rP(D|CC), P(D|F6) = 0,

which we collectively write in the form

P(D|Fi) = βi(r)P(D|CC) (for i = 1, 2, 3, 4, 5, 6) (8)

where the functions βi(r) are:

β1(r) = 1, β2(r) =
1
2
(1 + r), β3(r) = r,

β4(r) =
1
4
(1 + 2r), β5(r) =

1
2

r, β6(r) = 0.

Using Equations (3) and (8), we obtain

µi =
βi(r)

p(2r + (1− 2r)p)
(for i = 1, 2, 3, 4, 5, 6). (9)

We propose that the values of µi are an appropriate way to measure the degree of offspring-
group aggregation across all offspring-groups in the general population.

In Table 3, we provide illustrative examples of the offspring-group recurrence-risk
ratio (Equation (9)): (i) a C allele with p = 0.2 and r = 1; (ii) a C allele with p = 0.2 and
r = 0.5; (iii) a C allele with p = 0.02 and r = 1.

Table 3. Illustrative examples of the offspring-group recurrence-risk ratio.

p = 0.2, r = 1 p = 0.2, r = 0.5 p = 0.02, r = 1

µ1 2.78 5.00 25.25

µ2 2.78 3.75 25.25

µ3 2.78 2.50 25.25

µ4 2.08 2.50 18.94

µ5 1.39 1.25 12.63

µ6 0 0 0

Table 3 illustrates several key features regarding the ability of µi to measure offspring-
group aggregation:

(i) The disparate values of µi show that each offspring-group has its own contribution
to offspring-group aggregation. For example, when p = 0.2 and r = 1, members of
offspring-groups F1, F2, and F3 are approximately three-times as likely to have the
disease as members of the general population, while family F6 will have no members
with the disease.

(ii) The distribution of offspring-group aggregation is influenced by the frequency of
the dominant allele C. For example, when r = 1, the positive values of µi increase
markedly as p changes from p = 0.2 to p = 0.02.

(iii) The distribution of offspring-group aggregation is influenced by the parameter r. For
example, when p = 0.2, the offspring-group aggregation is more concentrated among
families F1 and F2 for r = 0.5 than for r = 1.
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An important property of the values of the offspring-group recurrence-risk ratio µi is
that their weighted sum is equal to 1, where the individual weights are the frequencies of
the corresponding offspring-groups. Indeed, writing Equation (7) in terms of the offspring-
group recurrence-risk ratios yields

Ks = P(D2)
[

p4µ1 + 4p3qµ2 + 2p2q2µ3 + 4p2q2µ4 + 4pq3µ5
]

.

Recalling that K = P(D2), we obtain the following decomposition of the sibling recurrence-
risk ratio λs in terms of the offspring-group recurrence-risk ratios µi

λs =
Ks

K
= p4µ1 + 4p3qµ2 + 2p2q2µ3 + 4p2q2µ4 + 4pq3µ5 .

Because λs = 1 (Sections 4.1.1 and 4.1.2), it follows that

p4µ1 + 4p3qµ2 + 2p2q2µ3 + 4p2q2µ4 + 4pq3µ5 = 1 , (10)

where the coefficients of µi are the corresponding frequencies of offspring-group Fi given
by Equation (5).

In addition, another key feature of the offspring-group recurrence-risk ratio is that,
unlike λs, Equation (10) precisely describes the frequency distribution of offspring-group
aggregation of the disease among the six offspring-groups (recall for family F6 that µ6 = 0).
Writing Equation (10) in the form

6

∑
i=1

P(Fi)µi = 1

emphasizes that each term in the sum, P(Fi)µi, is the offspring-group proportion of those
with the disease who are in offspring-group Fi, where P(Fi) is given by Equation (5).

Table 4 illustrates the offspring-group proportions when p = 0.2 and r = 1. The
implication of the values is straightforward; for example, of those people with the disease,
approximately 57% are from offspring-group F5. Moreover, notice that the sum of the
values equals 1, as required by Equation (10).

Table 4. Offspring-group proportions when p = 0.2 and r = 1.

P(F1)µ1 0.004

P(F2)µ2 0.071

P(F3)µ3 0.142

P(F4)µ4 0.213

P(F5)µ5 0.569

P(F6)µ6 0

We point out that, for diseases in which the genotype CC is lethal prior to birth or
shortly thereafter (e.g., Huntington’s disease and Marfan syndrome [35,36]), offspring-
groups F1, F2, and F3 will not appear in the (living) population. In this case, the offspring-
group risk ratios µ4 and µ5 and the offspring-group proportions P(F4)µ4 and P(F5)µ5 are
the most relevant.

In summary, our theoretical framework proposes replacing familial aggregation with
offspring-group aggregation and replacing λs with the offspring-group recurrence-risk
ratio µi, which has these advantageous properties: (i) it quantifies the clustering of the
genetic disease within different offspring-groups and thus does not assume a single value
of aggregation that applies across the general population; (ii) it depends on the parameters
p and r, which can be estimated using unbiased clinical studies (Section 2); (iii) unlike
λs, it does not explicitly depend on K, which is often underestimated (Section 3); (iv) it
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can be used to precisely describe the frequency distribution of offspring-group aggrega-
tion (Equation (10)), which cannot be done with λs. This emphasizes the importance for
parental-sibling clinical studies of determining from which of the six offspring-groups each
subject comes.

In Section 5.3, we provide a scenario illustrating how a clinician may use the theoretical
framework for offspring-group aggregation as a clinical tool.

5. Discussion: Integration of Results

Researchers and clinicians who want to identify a genetic disease, including its
genotype-phenotype relationship, benefit from being attentive to the three topics we have
developed: (1) the relationship between the disease-causing genotypes and the presence of
the associated disease (Section 2); (2) the role of diagnostic tests and their ability to identify
the disease (Section 3); and (3) the frequency distribution of offspring-group aggregation
among the six offspring-groups (Section 4).

Figure 7 provides an organizational diagram of our unified theoretical framework
of these three topics. Recall that G, D, and T denote the events that an individual from
the general population has the disease-causing genotypes, has the disease, and receives a
positive test result from a diagnostic test, respectively. Their possible relationships (logical
implications) are illustrated by the blue and red arrows: Section 2 discusses when G is neces-
sary and/or sufficient for D (i.e., when the disease-causing genotypes identify the disease);
Section 3 discusses when T is necessary and/or sufficient for D (i.e., when a diagnostic test
identifies the disease). Section 4 investigates the frequency distribution of offspring-group
aggregation among the six offspring-groups (summarized by ∑6

i=1 P(Fi)µi = 1), which is
affected by G, D, and T, as indicated by the green arrows.

D

G T

(Sect
ion 2) (Section 3)

w
he

n is G necessary for D when is T necessary for D

when is G suffic
ien

t fo
r D w

hen
is T sufficient for D

Offspring-Group Aggregation

∑6
i=1 P(Fi)µi = 1

(Section 4)

Figure 7. Organizational diagram of our unified theoretical framework of the three main topics for
identifying a genetic disease. Recall that G, D, and T each denote the events that an individual
from the general population has the disease-causing genotypes, has the disease, and receives a
positive test result from a diagnostic test, respectively. The possible relationships between G, D,
and T are illustrated by the blue and red arrows (the arrows are the notation for the logical concept
“implies”). The frequency distribution of offspring-group aggregation among the six offspring-groups
is summarized by the equation, which is affected by G, D, and T, as illustrated by the green arrows.

5.1. Relationship between G and D (Section 2)

Fundamental to identifying a genetic disease is determining the relationship between
the disease-causing genotypes and the presence of the associated disease. For a disease
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caused by a dominant allele: G is always necessary for D; G is sufficient for D if and only if
the disease-causing genotypes are fully penetrant. This is illustrated in Figure 7: D ⇒ G
and the corresponding blue arrow always occurs; G ⇒ D and the corresponding red arrow
occurs if and only if P(D|CC) = 1 and P(D|Cc) = 1.

In other words, the relationship between disease prevalence and the frequencies of the
disease-causing genotypes is always

P(D) ≤ P(G),

and
P(D) = P(G) only when P(D|CC) = 1 and P(D|Cc) = 1.

The theoretical framework presented in Section 2 provides guidance to researchers
and clinicians with regard to determining the relationship between the disease-causing
genotypes and the presence of the associated disease. In particular, if they believe “G is
necessary, but not sufficient for D”, then we propose that researchers and clinicians con-
tinue their investigations, being aware of the associated consequences and responsibilities
(Section 2.3), with the goal of characterizing the relationship between G and D. Even so, it is
essential that clinicians not use their belief that a disease-causing genotype is partially pen-
etrant as justification for using an inaccurate diagnostic test; that is, for using a diagnostic
test with low sensitivity and/or low specificity (Section 5.2).

5.2. Relationship between T and D (Section 3)

The theoretical framework presented in Section 3 provides guidance to researchers
and clinicians with regard to understanding the relationship between a positive diagnostic
test result and the presence of the associated disease. In summary, we recommend that
researchers and clinicians:

(i) Ensure diagnostic tests have T that is both necessary and sufficient for D. Figure 7
illustrates the desired relationship: T ⇔ D and the corresponding blue and red arrows
both occur. When this is the case, P(T) = P(D), where P(D) is described in Section 2.
If clinicians think that a diagnostic test’s positive result is “necessary, but not sufficient”
to confirm the presence of the disease, then that is equivalent to them accepting a
diagnostic test that is actually inadequate at identifying the disease. The test either
should be refined or replaced. We suggest it is imperative that clinicians continue their
investigations—ultimately seeking a diagnostic test that consistently does identify the
disease (Section 3.2).

(ii) Treat P(T) as a cumulative lifetime risk. Framing accurate diagnosis as a cumulative
lifetime risk has implications for clinicians considering the usefulness of a diagnostic
test result, as well as for developing long-term clinical studies (Section 3.3).

These two essential features make it more likely that unbiased clinical studies produce an
estimator P̂(T) that is close to the estimator P̂(D) described in Section 2.2.

In order to be useful in diagnosis, all diagnostic tests must, within reasonable error
bounds, give the same diagnostic information. At present, antibody tests, pregnancy tests,
and blood tests for particular substances are examples of diagnostic tests for which high
sensitivity and specificity determinations are standard. This standard should be applied
to all tests (e.g., tissue biopsies) that are part of the diagnostic system. Even so, for some
genetic diseases, not all subjects with the disease-causing genotype will appear to have the
disease. This may be because of partial penetrance, but it should also be considered that
incomplete diagnosis may be at fault or that people may tend to ignore their symptoms or
ascribe them to other causes. Those persons should be more carefully followed up with
additional investigations and perhaps different types of diagnostic tests.

Finally, we mention that when G and T are both necessary and sufficient for D (all
blue and red arrows in Figure 7 occur), then

P(G) = P(D) = P(T),
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and clinical studies should produce estimators for P(G) and P(T) that are close; that is,
P̂(G) ≈ P̂(T). Because genetic tests are less likely to have errors than are diagnostic tests, a
discrepancy between the estimators more than likely suggests that P̂(T) is not accurate,
indicating that further investigation is warranted, rather than concluding simply that G is
not sufficient.

5.3. Offspring-Group Aggregation (Section 4)

The general population can be partitioned into six offspring-groups denoted by Fi
(for i = 1, 2, . . . , 6), and a specific offspring-group Fi is determined by parental genotypes
(Figure 6). We provide a theoretical framework for describing a genetic disease’s offspring-
group aggregation (i.e., disease aggregation among the six offspring-groups).

We discuss the theoretical and computational deficiencies of the sibling recurrence-risk
ratio, whose definition often is misunderstood and subject to differing and inconsistent
interpretations. This ratio typically is used as an indicator of familial aggregation even
though it ignores the six offspring-groups (Section 4.1).

We propose replacing familial aggregation with offspring-group aggregation, as well
as an alternative measure that does not experience the deficiencies and precisely describes
the frequency distribution of offspring-group aggregation among the six offspring-groups
(Section 4.2). In summary, our proposed measure is the offspring-group recurrence-risk ratio
(denoted by µi), which is defined in Equation (9). It measures the likelihood a person from
offspring-group Fi has the disease, relative to a person from the general population. The
frequency distribution of offspring-group aggregation is described by the equation

6

∑
i=1

P(Fi)µi = 1,

where P(Fi)µi is the offspring-group proportion of those with the disease who are in
offspring-group Fi.

Finally, we note that µi and P(Fi) depend on understanding the disease-causing
genotypes and the presence of the disease (Section 2), as well as accurate diagnosis of
the disease (Section 3). Thus, our theoretical framework for offspring-group aggregation
fundamentally relies on an understanding of the relationships between G, D, and T, as
communicated by the green arrows in Figure 7.

Offspring-group aggregation as a clinical tool. We conclude with a scenario illustrating
how a clinician may use the theoretical framework for offspring-group aggregation as a
clinical tool. Consider a disease caused by a dominant allele with p = 0.2, r = 1, and
P(D|CC) = 1. Then, P(D) = 0.36 (Equation (3)). Suppose a person visits a clinician
wanting to know the likelihood they have the disease, given the person has a sibling known
to have the disease. While the clinician may not know to which offspring-group the siblings
belong, it is known they are not in offspring-group F6. As illustrated in Table 3, the clinician
predicts the person is either 1.39, 2.08, or 2.78 times as likely to have the disease, compared
to members of the general population, which is 0.36. Using this information, the clinician
predicts the likelihood that the person has the disease is approximately either 0.50, 0.75,
or 1.00, respectively, and the person’s offspring-group determines which of the three values
it is. However, even if the clinician does not know the person’s offspring-group, it is still
possible to estimate the likelihood the person has the disease. Indeed, based on Table 4,
the clinician notices that, of those people with the disease, F5 has the highest percentage
(in fact, higher than the sum of all other offspring-groups); thus, the clinician may choose
to only use the F5 information and predict that the likelihood the person has the disease
is about (1.39)× (0.36) = 0.50. Alternatively, the clinician may choose to use a weighted
average, incorporating all the information in Tables 3 and 4,

0.57(0.50) + 0.21(0.75) + 0.22(1.00) = 0.66
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as a prediction of the likelihood the person has the disease. Whichever value the clinician
chooses (0.50 or 0.66), the clinician concludes the person is at a higher risk than a member of
the general population (0.36). This information can be used to frame a discussion between
the clinician and the patient regarding the next steps to pursue (e.g., whether to test the
person for the disease-causing genotypes or administer accurate diagnostic tests).

We recommend that researchers and clinicians consider using the theoretical frame-
work for offspring-group aggregation discussed in Section 4 and summarized in Section 5.3.

To place our analysis in the context of the current state of research, it is still epidemio-
logically valid to say that if one person in a hereditary family has a genetic disease, other
family members are at risk, should be carefully evaluated, and appropriate precautions
should be taken. Though other hereditary family members often are at higher risk than are
members of the population as a whole, this does not mean Ks > K in the general population.
We suggest this mistaken idea be replaced by an approach that carefully uses diagnostic
tools to accurately evaluate K, as well as describe genetic disease aggregation in terms of
the offspring-groups Fi and the offspring-group recurrence-risk ratio µi.
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Appendix A. Derivation of Equation (2)

Consider the partition of the population in terms of the genotypes CC, Cc, cC, and cc.
Now,

D = (D ∩ CC) ∪ (D ∩ Cc) ∪ (D ∩ cC) ∪ (D ∩ cc),

and because the genotypes are mutually exclusive (the intersection of any two genotypes is
the empty set ∅),

P(D) = P(D ∩ CC) + P(D ∩ Cc) + P(D ∩ cC) + P(D ∩ cc).

Because P(D ∩ Cc) = P(D ∩ cC), we obtain

P(D) = P(D ∩ CC) + 2P(D ∩ Cc) + P(D ∩ cc).

By the definition of the probability of an intersection,

P(D) = P(D|CC)P(CC) + 2P(D|Cc)P(Cc) + P(D|cc)P(cc),

which can be written in the form shown in Equation (2).

Appendix B. Necessary and Sufficient as Conditional Probabilities

We now develop equivalent conditional probability formulations for the concepts of
“necessary” and “sufficient”. The formulations apply to any two events, but we will frame
the discussion in terms of G and D (Section 2.3).
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Observe that P(G|D) = 1 is equivalent to saying that “G is necessary for D”. Indeed:

P(G|D) = 1⇔ P(D ∩ G) = P(D)

⇔ P(D ∩ G′) = 0 (because P(D) = P(D ∩ G) + P(D ∩ G′))

⇔ D ∩ G′ = ∅ (∅ denotes the empty set)

⇔ D = D ∩ G (because D = (D ∩ G) ∪ (D ∩ G′))

⇔ the occurrence of D implies the occurrence of G

⇔ G is necessary for D.

Furthermore, observe that P(D|G) = 1 is equivalent to saying that “G is sufficient for D.”
Indeed:

P(D|G) = 1⇔ P(G ∩ D) = P(G)

⇔ P(G ∩ D′) = 0 (because P(G) = P(G ∩ D) + P(G ∩ D′))

⇔ G ∩ D′ = ∅;

⇔ G = G ∩ D (because G = (G ∩ D) ∪ (G ∩ D′))

⇔ the occurrence of G implies the occurrence of D

⇔ G is sufficient for D.

Appendix C. Derivation of Equation (4)

Because T = (T ∩ D) ∪ (T ∩ D′) and because D and D′ are mutually exclusive,

P(T) = P(T ∩ D) + P(T ∩ D′)

= P(T|D)P(D) + P(T|D′)P(D′)

= P(D) + P(T|D′)(1− P(D)) (because P(T|D) = 1)

which implies,

P(T) = (1− P(T|D′))P(D) + P(T|D′) .

Solving for P(D) yields

P(D) =
P(T)− P(T|D′)

1− P(T|D′)
.

To simplify the notation in the following derivation, we let ω = P(T) and α = P(T|D′).
Then, we can write

P(D) =
ω− α

1− α

=
ω(1− α)− α(1−ω)

1− α
,

which implies that

P(D) = ω− (1−ω)
α

1− α
· (A1)

Let f (α) = α/(1− α) for 0 ≤ α < 1. The derivative of f is

f ′(α) = (1− α)−2 > 0 ,
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which implies that f (α) is an increasing function on the interval 0 ≤ α < 1. Thus, for α0
with 0 < α0 < 1,

0 ≤ α ≤ α0 ⇒ f (0) ≤ f (α) ≤ f (α0)

⇒ 0 ≤ α

1− α
≤ α0

1− α0
·

Therefore, using Equation (A1), we obtain the following lower and upper bounds
for P(D):

ω− (1−ω)
α0

1− α0
≤ P(D) ≤ ω .

Substituting ω = P(T) yields Equation (4).
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