Some Remarks on the Root Invariant

Robert R. Bruner

Wayne State University, robert.bruner@wayne.edu

Follow this and additional works at: https://digitalcommons.wayne.edu/mathfrp
Part of the Algebraic Geometry Commons, and the Geometry and Topology Commons

Recommended Citation

Bruner, R. R. Some Remarks on the Root Invariant. In P. Selick, W.G. Dwyer, S. Halperin, et al., Eds. Stable and Unstable Homotopy. Fields Inst. Communications 19 (1998), 31-37. Toronto, ON: Fields Institute; and Providence, RI: American Mathematical Society.

This Article is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for inclusion in Mathematics Faculty Research Publications by an authorized administrator of DigitalCommons@WayneState.

Some remarks on the root invariant

ROBERT R. BRUNER

Abstract

We show how the root invariant of a product depends upon the product of the root invariants, give some examples of the equivariant definition of the root invariant, and verify a weakened form of the algebraic Bredon-Löffler conjecture .

These remarks were worked out during the Stable Homotopy Theory Workshop at the Fields Institute in Toronto during January of 1996. The author would like to thank the organizers and the Fields Institute for support and for an environment conducive to doing mathematics.

1. The Definition and Some Examples

One of the most pleasing aspects of the equivariant point of view is the fact that concepts which are obscure non-equivariantly sometimes have quite clear equivariant meaning. Greenlees' observation [3] that Bredon's filtration of stable homotopy by restrictions of equivariant maps is the same as Mahowald's root invariant filtration is a good example, as it leads to an elementary definition of the root invariant as follows.

Let $G=Z / 2$, let $\mathbb{R}^{n+k \xi}$ be the G-representation which is trivial on n coordinates and negation on k coordinates, and let $S^{n+k \xi}$ be the one point compactification of $\mathbb{R}^{n+k \xi}$. Let

$$
\phi_{k}:\left[S^{k \xi}, S^{0}\right]_{n}^{G} \longrightarrow\left[S^{0}, S^{0}\right]_{n}=\pi_{n} S^{0}
$$

and

$$
U_{k}:\left[S^{k \xi}, S^{0}\right]_{n}^{G} \longrightarrow\left[S^{k}, S^{0}\right]_{n}=\pi_{n+k} S^{0}
$$

be the fixed point and underlying map homomorphisms, respectively. Then [3, Prop. 2.5] shows that if k is maximal such that $x \in \pi_{n} S^{0}$ is in $\operatorname{Im}\left(\phi_{k}\right)$, then

$$
R(x)=U_{k}\left(\phi_{k}^{-1}(x)\right)
$$

[^0]In other words, to compute $R(x)$, extend $x: S^{n} \longrightarrow S^{0}$ to an equivariant map $\widetilde{x}: S^{n+k \xi} \longrightarrow S^{0}$ with k maximal. Then $R(x)$ contains the underlying map $U_{k}(\widetilde{x}): S^{n+k} \longrightarrow S^{0}$. Note that Lin's theorem, that $S^{-1} \simeq \lim _{\leftarrow} P_{-k}$, is not required for this definition.

The simplicity of this definition suggests that we should easily be able to see some examples. The Hopf maps bear this out. Let D be one of the division algebras $\mathbb{R}, \mathbb{C}, \mathbb{H}$ or the Cayley numbers \mathcal{C}, and let $d_{D}=1,2,4$, or 8 , respectively. The associated Hopf map $h_{D}: S^{2 d-1} \longrightarrow D P^{1} \cong S^{d}$ given by $h\left(z_{1}, z_{2}\right)=z_{1} z_{2}^{-1}$ is $2, \eta, \nu$, or σ, respectively. Each of these division algebras is two-dimensional over the preceding one in the sequence. If we write such a pair as $D_{1} \subset D_{2}$, then the elements of D_{2} may be written $a+b e$, with $a, b \in D_{1}, e \in D_{2}-D_{1}$, and $e^{2}=-1$. We may then give D_{2} the G-action $a+b e \mapsto a-b e$, with respect to which $h_{D_{2}}$ is then an equivariant map $S^{2 d-1+2 d \xi} \longrightarrow S^{d+d \xi}$ whose restriction to the fixed points is $h_{D_{1}}$. This shows that $R(2)=\eta, R(\eta)=\nu$, and $R(\nu)=\sigma$, once we verify that these extensions are maximal, which we will do in Corollary 3.

2. The Cartan Formula

The equivariant definition also allows an elementary proof of the Cartan formula, independent of the theory worked out in [5], which we present now.

Theorem 1. Let $\alpha_{i} \in \pi_{n_{i}} S^{0}$ and $R\left(\alpha_{i}\right) \in \pi_{n_{i}+k_{i}} S^{0}$, for $i=1,2$. Let $k=$ $k_{1}+k_{2}$ and let $i: S^{-k-1} \longrightarrow P_{-k-1}$ be the inclusion of the bottom cell of the stunted projective space P_{-k-1}.
(i) If $i_{*}\left(R\left(\alpha_{1}\right) R\left(\alpha_{2}\right)\right) \neq 0$ then $R\left(\alpha_{1}\right) R\left(\alpha_{2}\right) \subset R\left(\alpha_{1} \alpha_{2}\right)$.
(ii) If $i_{*}\left(R\left(\alpha_{1}\right) R\left(\alpha_{2}\right)\right)=0$ then $R\left(\alpha_{1} \alpha_{2}\right)$ lies in a higher stem than does $R\left(\alpha_{1}\right) R\left(\alpha_{2}\right)$.

Proof: Let $\widetilde{\alpha_{i}}: S^{n_{i}+k_{i} \xi} \longrightarrow S^{0}$ be a maximal extension of α_{i} for each i. Then $\widetilde{\alpha}=\widetilde{\alpha_{1}} \wedge \widetilde{\alpha_{2}}$ is an extension of $\alpha=\alpha_{1} \wedge \alpha_{2}$ and, if it is maximal then $R\left(\alpha_{1} \alpha_{2}\right)$ contains $U_{k}(\widetilde{\alpha})=U_{k}\left(\widetilde{\alpha_{1}}\right) U_{k}\left(\widetilde{\alpha_{2}}\right)=R\left(\alpha_{1}\right) R\left(\alpha_{2}\right)$. To determine whether or not it is maximal, we must analyze the relation between ϕ_{k} and ϕ_{k+1}.

Recall that the fixed point homomorphism $\left[S^{k \xi}, S^{\infty \xi}\right]_{n}^{G} \longrightarrow\left[S^{0}, S^{0}\right]_{n}$ is an isomorphism by elementary equivariant obstruction theory, so the inclusion of fixed points $i: S^{0} \longrightarrow S^{\infty \xi}$ induces the fixed point homomorphism ϕ_{k}.

The G-equivariant cofiber sequence $E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi}$ allows us to embed ϕ_{k} in a long exact sequence. Then, the cofiber sequence

$$
S^{k} \wedge G_{+} \longrightarrow S^{k \xi} \longrightarrow S^{(k+1) \xi}
$$

allows us to compare ϕ_{k} and ϕ_{k+1}. Using the adjunction isomorphism [$S^{k} \wedge$ $\left.G_{+}, E G_{+}\right]_{n}^{G} \cong\left[S^{k}, E G_{+}\right]_{n}$, and the isomorphism $\left[S^{k}, E G_{+}\right]_{n} \cong\left[S^{0}, S^{0}\right]_{n}$ induced by the nonequivariant equivalence from $E G_{+}$to S^{0}, we obtain the following braid of long exact sequences relating ϕ_{k} and ϕ_{k+1}. (This is a piece of the diagram used in [3] to show the equivalence of the two definitions of the root invariant.)

Commutativity of the right diamond shows that the obstruction to $\phi_{k}(\widetilde{\alpha})$ being in the image of ϕ_{k+1} is exactly $\partial_{k} U_{k}(\widetilde{\alpha})$. Thus, cases (i) and (ii) of the theorem are distinguished by the nontriviality or triviality, respectively, of the composite

$$
S^{(k+1) \xi} \longrightarrow S^{k} \wedge G_{+} \longrightarrow E G_{+}
$$

of the boundary map of the cofiber sequence and the free G-map induced by $U_{k}(\widetilde{\alpha})$. To express this in more familiar terms, observe that naturality of Adams' isomorphism gives a commutative square

where $i: S^{-k}=\Sigma S^{-k-1} \longrightarrow \Sigma P_{-k-1}$ is inclusion of the bottom cell. This implies the form of the theorem we have stated. In fact, we have proved the following.

Proposition 2. Suppose $\phi_{k}(\widetilde{\alpha})=\alpha$. Then $\widetilde{\alpha}$ is maximal, and hence $R(\alpha)=$ $U_{k}(\widetilde{\alpha})$, if and only if $0 \neq i_{*} U_{k}(\widetilde{\alpha}) \in \pi_{n-1} P_{-k-1}$.

Corollary 3. $R(2)=\eta, R(\eta)=\nu$, and $R(\nu)=\sigma$.
Proof: Given the extensions of $2, \eta$ and ν produced in Section 1, we need only verify that η, ν, and σ are nontrivial on the bottom cells of P_{-2}, P_{-3}, and P_{-5}, a task which is easily accomplished.

Previous versions of the Cartan formula have appeared in [9, 12], with the condition for $R\left(\alpha_{1}\right) R\left(\alpha_{2}\right)$ to be contained in $R\left(\alpha_{1} \alpha_{2}\right)$ stated as $R\left(\alpha_{1}\right) R\left(\alpha_{2}\right) \neq 0$ rather than $i_{*}\left(R\left(\alpha_{1}\right) R\left(\alpha_{2}\right)\right) \neq 0$.

Here is an example which can be found in [10]. If $\mu \in \pi_{8} S$ is detected by $P h_{1}$, and $\bar{\kappa} \in \pi_{20} S$ detected by $g \in$ Ext 4,24 is chosen correctly then we have
$R(\mu)=\nu \bar{\kappa}$. To compute $R(\eta \mu)$ we thus consider the product $R(\eta) R(\mu)=\nu^{2} \bar{\kappa}$ This is nonzero in $\pi_{26} S=\pi_{9} S^{-17}$. However $i_{*}\left(\nu^{2} \bar{\kappa}\right)=0$ in $\pi_{9} P_{-17}$, so we conclude that $R(\eta \mu)$ lies in a stem higher than π_{26}.

The algebraic root invariant, discussed in the next section, exhibits the same behavior. There, we have $R\left(h_{1}\right)=h_{2}, R\left(P h_{1}\right)=h_{2} g$, and $R\left(h_{1}\right) R\left(P h_{1}\right)=$ $h_{2}^{2} g \neq 0$ in $\operatorname{Ext}\left(F_{2}, F_{2}\right)$. However,

$$
i_{*}: \operatorname{Ext}\left(F_{2}, F_{2}\right) \longrightarrow \operatorname{Ext}\left(H^{*} P_{-17}, F_{2}\right)
$$

sends $h_{2}^{2} g$ to zero, so the algebraic root invariant $R\left(h_{1} P h_{1}\right)$ lies in a higher stem as well. In fact, we can calculate that $R\left(h_{1} P h_{1}\right)=r$, which lies in the 30-stem and "lives on" the bottom cell of P_{-21}. These calculations were done by computing the induced maps of Adams spectral sequences for the spectra involved, using the programs described in [1] and [2]. It was the anomolous behavior of $R\left(h_{1} P h_{1}\right)$ in those calculations which alerted me to the correct formulation of the Cartan formula.

In terms of the root invariant spectral sequence of [5], the 'exceptional' behavior in case (ii) of the theorem is the usual behavior of products in an associated graded when there are filtration shifts.

The condition for maximality allows us to make systematic conclusions, along the lines of [11], generalizing the example above. Let us write $|x|=n$ if $x \in$ $\pi_{n} S^{0}$ 。

Corollary 4. For any $x \in \pi_{*} S^{0}$,
(i) $|R(2 x)|>1+|R(x)| \quad$ if $\quad|R(x)|-|x| \equiv-1(\bmod 4)$,
(ii) $|R(\eta x)|>3+|R(x)| \quad$ if $\quad|R(x)|-|x| \equiv-2(\bmod 8)$,
(iii) $|R(\nu x)|>7+|R(x)| \quad$ if $\quad|R(x)|-|x| \equiv-4(\bmod 16)$.

Proof: The map η is trivial on the bottom cell of P_{-j-2} if $-j-1 \equiv-1(\bmod$ 4). Similarly, ν is trivial on the bottom cell of P_{-j-3} if $-j-3 \equiv-1(\bmod 8)$, and σ is trivial on the bottom cell of P_{-j-5} if $-j-5 \equiv-1(\bmod 16)$.

3. The Algebraic Bredon-Löffler Conjecture

As noted in [3], the equivariant definition of the root invariant also allows a very simple proof of Jones' $[\mathbf{6}]$ lower bound

$$
|R(x)| \geq 2|x|
$$

Namely, any $x: S^{n} \longrightarrow S^{0}$ occurs as the fixed points of $x \wedge x: S^{n+n \xi}=$ $S^{n} \wedge S^{n} \longrightarrow S^{0} \wedge S^{0}=S^{0}$, where the smash products are given the action which interchanges factors. The Bredon-Löffler Conjecture is the upper bound

$$
|R(x)| \leq 3|x|
$$

when $|x|>0$. By [3], this is equivalent to the assertion that the map $\eta_{k}: S^{0} \longrightarrow$ ΣP_{-k} induces a monomorphism of π_{j} for $0<j<k / 2$. The Adams spectral
sequence gives an algebraic analog, which we call the Algebraic Bredon-Löffler Conjecture, namely, that

$$
\eta_{k}^{*}: \operatorname{Ext}_{A}^{s, t}\left(F_{2}, F_{2}\right) \longrightarrow \operatorname{Ext}_{A}^{s, t}\left(H^{*} \Sigma P_{-k}, F_{2}\right)
$$

is a monomorphism for $0<t-s<k / 2$. We are able to prove the following much weaker assertion.

Theorem 5. η_{k}^{*} is a monomorphism for $0<t-s<-2+\sqrt{3+k / 2}$.
Proof: Let ρ_{r} be the natural transformation $\operatorname{Ext}_{A} \longrightarrow \operatorname{Ext}_{A_{r}}$ induced by the inclusion $A_{r} \longrightarrow A$ of the subalgebra generated by $S q^{1}, \ldots, S q^{2^{r}}$. We will show that $\rho_{r} \eta_{k}^{*}$ is a monomorphism of $\mathrm{Ext}_{A}^{s, t}$ in the stated range if r is minimal such that $n=t-s<2^{r}-1$. We shall use several facts from [8]. Let $L=F_{2}\left[x, x^{-1}\right]$ and let $j_{k}: L_{-k}=H^{*} P_{-k} \longrightarrow L$ be the obvious inclusion. Let $\lambda: \Sigma L \longrightarrow F_{2}$ be the coefficient of x^{-1}. It is easy to see that $\lambda j_{k}=\eta_{k}^{*}: \Sigma L_{-k} \longrightarrow F_{2}$. Further, we have:
(i) The induced homomorphism $\lambda^{*}: \operatorname{Ext}_{A}\left(F_{2}, F_{2}\right) \longrightarrow \operatorname{Ext}_{A}\left(\Sigma L, F_{2}\right)$ is an isomorphism [8, Theorem 1.1].
(ii) There is an isomorphism

$$
\operatorname{Ext}_{A_{r}}\left(\Sigma L, F_{2}\right) \cong \bigoplus_{j \in \mathbb{Z}} \operatorname{Ext}_{A_{r-1}}\left(\Sigma^{j 2^{r+1}} F_{2}, F_{2}\right)
$$

See [8, Theorem 1.1] and [4, Theorem 2.1].
(iii) The lower left square in the following diagram commutes. That is, the preceding isomorphism composed with λ_{*} and projected onto the zeroth component, is induced by the inclusion $A_{r-1} \longrightarrow A_{r}$ [8, Lemma 1.6].

The left hand map ρ_{r-1} is a monomorphism on $\operatorname{Ext}_{A}^{s, t}\left(F_{2}, F_{2}\right)$ since $n=$ $t-s<2^{r}-1$. Hence $\rho_{r} \lambda^{*}$ is as well. Now Adams' vanishing line implies that $\operatorname{Ext}_{A}^{s, t}\left(F_{2}, F_{2}\right)=0$ unless $s<(n+4) / 2$, so we will be done if we can show that the lower map j_{k}^{*} is a monomorphism in these filtrations. This will be true if $s<(n+k) /\left(2^{r+1}-2\right)$, because then $\operatorname{Ext}_{A_{r}}^{s, t}\left(\Sigma\left(L / L_{-k}\right), F_{2}\right)=0$. This follows by filtering L / L_{-k} by degrees and using the fact that $\operatorname{Ext}_{A_{r}}^{s, t}\left(F_{2}, F_{2}\right)=0$
if $s<n /\left(2^{r+1}-2\right)$ by the May spectral sequence, c.f. [4, proof of Theorem 2.1]. Thus, it suffices to have

$$
\frac{n+4}{2}<\frac{n+k}{2^{r+1}-2}
$$

Since r is minimal with respect to $n<2^{r}-1$, we have $2^{r}-1 \leq 2 n$, so it suffices that $2 n^{2}+7 n<k$, which holds if $n<-2+\sqrt{3+k / 2}$.

Of course this is far from the actual conjecture, but is a first step toward it. In fact, the calculations in [3] suggest the following sharpening of the algebraic Bredon-Löffler conjecture.

Conjecture 6. (Strong Algebraic Bredon-Löffler Conjecture) The map η_{k}^{*} is a monomorphism if

$$
s<(k-n) / 2 .
$$

This conjecture is based on calculations of root invariants [3]. The sparsity of elements in some bidegrees introduces an element of uncertainty in the intercept, but the slope of $-1 / 2$ and the approximate intercept $n=k$ are clearly evident for $n<40$.

Adams' vanishing line intersects this line at about $n=k / 2$, so this conjecture implies the algebraic Bredon-Löffler conjecture (see Figure 3). Since $k / 2$ is the last entire stem which is mapped monomorphically, this is the dimension one sees in homotopy.

This conjecture also correctly predicts that part of the 0 -stem which maps monomorphically according to Landweber [7], unlike the algebraic Bredon-Löffler conjecture which says nothing about the 0 -stem.

Figure 1. Conjectured limits to the range in which η_{k}^{*} is a monomorphism.

Figure 2. Root invariants of the n-stem

Finally, note that this confines root invariants to a narrow band,

$$
2|x|+s \leq|R(x)| \leq 2|x|+2 s
$$

as in Figure 3. Here, the lower bound follows from the result of [9, 2.5], that $R(x)=S q^{0}(x)$ (if the latter is nonzero on the appropriate cell of projective space), and the upper bound is equivalent to the strong algebraic Bredon-Löffler conjecture.

References

1. Robert R. Bruner, "Calculation of large Ext modules", Computers in Geometry and Topology (M. C. Tangora, ed.), Marcel Dekker, New York, 1989, 79-104.
2. R.R.Bruner, "Ext in the nineties", pp. 71-90 in Algebraic Topology, Oaxtepec 1991, Contemp. Math. 146, Amer. Math. Soc., Providence, 1993.
3. Robert Bruner and John Greenlees, "The Bredon-Löffler conjecture", Exper. Math. 4 (1995), 101-109.
4. Donald M. Davis, "An infinite family in the cohomology of the Steenrod algebra", J. Pure Appl. Alg. 21 (1981), 145-150.
5. J.P.C.Greenlees and J.P.May, "Generalized Tate cohomology", Mem. Amer. Math. Soc. 543 (1995).
6. J. D. S. Jones, "Root invariants, cup-r products and the Kahn-Priddy theorem", Bull. London Math. Soc. 17 (1985), 479-483.
7. P.S.Landweber, "On equivariant maps between spheres", Ann. Math. 89 (1969), 125137.
8. W.H.Lin, D.Davis, M.E.Mahowald and J.F.Adams, "Calculations of Lin's Ext groups", Math. Proc. Camb. Phil. Soc. 87 (1980), 459-469.
9. M.E.Mahowald and D.C.Ravenel, "The root invariant in homotopy theory", Topology 32 (1993), 865-898.
10. M.E.Mahowald and Paul Shick, "Some root invariants in $\operatorname{Ext}_{A}(Z / 2, Z / 2)$ ", Proceedings of the Northwestern Homotopy Theory Conference, Contemp. Math. 19 (1983), 227-231.
11. Hal Sadofsky, "The root invariant and v_{1}-periodic families", Topology 31 (1992), 65-112.
12. Paul Shick, "Periodic Phenomena in the Adams Spectral Sequence", Thesis, Northwestern University, 1984.

Mathematics Department, Wayne State University, Detroit, Michigan, 48202
E-mail address: rrb@math.wayne.edu

[^0]: 1991 Mathematics Subject Classification. Primary 55Q45, 55Q35, 55Q91; Secondary 55P42, 55P91, 55T15.

