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OSSA’S THEOREM AND ADAMS COVERS

ROBERT R. BRUNER

Abstract. We show that Ossa’s theorem splitting ku∧BV for elementary abelian groups
V follows from general facts about ku∧BZ/2 and Adams covers. For completeness, we also
provide the analogous results for ko ∧BV .

1. Introduction

The connective complex K-homology of BV , V elementary abelian, has been computed
by Ossa [4], and, by different techniques, by Johnson and Wilson [1]. A key step in both
proofs is the equivalence of ku-module spectra

ku ∧BZ/2 ∧BZ/2 ≃ ku ∧ Σ2BZ/2 ∨ Σ2H(F2[u, v])

where H(F2[u, v]) is the generalized Eilenberg-MacLane spectrum on the graded vector space
F2[u, v] with |u| = |v| = 2.

The purpose of this note is to show that this equivalence follows from two more general
facts of independent interest about such smash products. We also provide analogous results
in the real case, and the splitting

ko ∧BZ/2 ∧ BZ/2 ≃ ko<1> ∧BZ/2 ∨ Σ2H(F2[u, v
2]),

where ko<1> is the connected cover of ko, that is, the fiber of the Thom map ko −→ HZ.
The calculation of ku∧BV and ko∧BV from these splittings follows from formal properties

of products, and the reader is referred to [4] or [1] for details. Results analogous to the
complex case hold for both the real and complex cases at odd primes.

I would like to thank Stephan Stolz for introducing me to the essential cofiber sequence (1)
as the simplest way to calculate ku∗BZ/2 and ko∗BZ/2. Its use for this purpose is probably
due to Mark Mahowald or Don Davis.

2. Generalities

As BZ/2 is a 2-local spectrum, we shall localize at 2 throughout.

Notation 2.1. Let H = HF2 and let ‘cohomology’ mean mod 2 cohomology. Let A be the
mod 2 Steenrod algebra, A(i) the subalgera generated by Sq1, . . . , Sq2

i

, and E(1) = E[Q0, Q1]
the exterior subalgebra of A(1) generated by Q0 = Sq1 and Q1 = [Sq2, Q0].

Let P = BZ/2 and let R be the suspension of the quotient of the stunted projective space
P∞
−1 by the 0-cell. (Thus, H∗R = ΣF−1,1 in the notation of [2].)

The bottom cell of R is in dimension 0, and the fiber of the inclusion of the bottom cell
is P . This gives the key cofiber sequence

P −→ S −→ R.(1)
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2 ROBERT R. BRUNER

Lemma 2.2.

ko ∧ R ≃
∨
i≥0

Σ4iHZ

and

ku ∧ R ≃
∨
i≥0

Σ2iHZ

Proof: It suffices to prove the first equivalence, since ku ≃ ko∧Cη. In [2] it is shown that

A ⊗
A(1)

H∗R ∼=
⊕

i≥0

A ⊗
A(0)

Σ4i
F2.(2)

Since H∗(ko ∧R) ∼= (A ⊗
A(1)

F2)⊗H∗R ∼= A ⊗
A(1)

H∗R, the isomorphism (2) implies that

the Adams spectral sequence

ExtA(H
∗(ko ∧R),F2) =⇒ π∗(ko ∧ R)

is isomorphic, by a standard change of rings argument, to
⊕
i≥0

ExtA(0)(Σ
4i
F2,F2) =⇒ π∗(ko ∧ R).

This must collapse at E2 because it is zero except in total degrees congruent to 0 modulo 4. If
we let xi : ko∧R −→ Σ4iHZ be a cohomology class dual to the generator of Ext0,4i(H∗(ko∧
R),F2) then the collapse of the Adams spectral sequence implies that

∨
i≥0

xi : ko ∧ R −→
∨
i≥0

Σ4iHZ

induces an isomorphism in homotopy, and is thus a homotopy equivalence.

Theorem 2.3. For any spectrum X there are cofiber sequences

ko ∧ P ∧X
i
−→ ko ∧X

p
−→

∨
i≥0

Σ4iHZ ∧X

and

ku ∧ P ∧X
i
−→ ku ∧X

p
−→

∨
i≥0

Σ2iHZ ∧X

in which the homomorphisms p∗ are epimorphisms in cohomology.

Proof: Smash the cofiber sequence (1) with ko∧X or ku∧X and apply Lemma 2.2. Since
tensor products preserve epimorphisms, by the Kunnëth theorem it is sufficient to note that
H∗R −→ H∗S is an epimorphism.

Thus, smashing ko ∧ X or ku ∧ X with P has the effect of taking a ‘generalized Adams
cover’. This is not in general an actual HZ Adams cover because HZ ∧X is not in general
a coproduct of HZ’s. Further, this cover contains a large generalized Eilenberg-MacLane
summand, so is far from minimal.
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3. The Complex Case

In the complex case we have a much smaller generalized Adams cover.

Proposition 3.1. For any spectrum X there is a cofiber sequence

ku ∧ Σ2X
u
−→ ku ∧X

p
−→ HZ ∧X,

where u ∈ ku2 is the multiplicative generator of ku∗ and p∗ is an epimorphism in cohomology.

Proof: Multiplication by the Bott class u ∈ ku2 gives a cofiber sequence

Σ2ku
u
−→ ku −→ HZ

in which the map ku −→ HZ induces on H∗ the quotient

A ⊗
E(1)

F2 ←− A ⊗
A(0)

F2.

This remains an epimorphism upon tensoring with H∗X.
We would like to claim that this smaller generalized Adams cover of ku ∧X splits off the

one in Theorem 2.3. However, there is no comparison theorem for HZ Adams resolutions.
For example, the map ku −→ ku ∧ R of Theorem 2.3 does not factor through the map
ku −→ HZ of Proposition 3.1. The standard theorems which assert the existence of a
comparison theorem would require that HZ

∗(HZ) be projective over π∗HZ, which it is not.
However, with coefficients in a field, such a comparison theorem does exist and allows us to
compare the cofibrations above.

Theorem 3.2. If H∗X is free over E[β] and ku∗X −→ HZ∗X is onto, then

ku ∧ P ∧X ≃ ku ∧ Σ2X ∨
∨
i>0

Σ2i−1HZ ∧X.

Proof: If H∗X is E[β]-free then HZ
∗X is a mod 2 vector space, so HZ ∧ X is a wedge

of H = HF2’s. Hence, the sequences in Theorems 2.3 and 3.1 are both beginnings of HF2-
Adams resolutions. As such, the comparison theorem gives maps between them which cover
the identity of ku ∧X.

ku ∧ Σ2X −→ ku ∧ P ∧X −→ ku ∧ Σ2X
↓ ↓ ↓

ku ∧X = ku ∧X = ku ∧X
↓ ↓ ↓

HZ ∧X −→
∨
i≥0

Σ2iHZ ∧X −→ HZ ∧X

Since ku∗X −→ HZ∗X is onto, the bottom row must be the identity in homotopy, hence an
equivalence. It follows that we have a splitting

ku ∧ P ∧X ≃ ku ∧ Σ2X ∨
∨
i>0

Σ2i−1HZ ∧X

since the left map in the bottom row may be taken to be the inclusion of the i = 0 summand.
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Corollary 3.3.

ku ∧ P ∧ P ≃ ku ∧ Σ2P ∨
∨

i,j>0

Σ2i+2j−2HF2.

Proof: This follows from Theorem 3.2 and the equivalence

HZ ∧ P ≃
∨

j>0

Σ2j−1HF2

since it is easy to see that ku∗P −→ HZ∗P is onto.

Remark 3.4. We get the dimensions right if we write the generalized Eilenberg-MacLane
summand as the double suspension of H(F2[u, v]). However, the geometric origin of the
splitting is clearer with the following parameterization. We have H∗(P ∧ P ) = (x1x2), the

ideal generated by x1x2 in H∗(P × P )+ = F2[x1, x2]. As an E(1)-module, each x2i−1
1 x2j−1

2

generates a copy of E(1) and these form an E(1)-free submodule
⊕

i,j>0

<x2i−1
1 x2j−1

2 > ⊂ H∗(P ∧ P ).

Since E(1) is a Frobenius algebra, this submodule is a direct summand and it is easy to check
that the quotient is isomorphic to H∗(Σ2P ). For example, we can write

H∗(P ∧ P ) ∼= x2
1(x2)⊕

⊕

i,j>0

<x2i−1
1 x2j−1

2 >

Since Q0 and Q1 act trivially on x2
1, the first summand is H∗(Σ2P ) as an E(1)-module.

If all one wants is to understand ku ∧ P ∧ P , this splitting of cohomology and Margolis’s
theorem, that A-free submodules in cohomology correspond to HF2 wedge summands ([3]),
are sufficient.

Remark 3.5. In general, an Adams cover of ku ∧ X is not just ku ∧ Σ2X. For example
X = BZ/4 is composed of mod 4 Moore spaces, and ku∗BZ/4 −→ HZ∗BZ/4 is onto,
presumably the mildest weakening of the hypotheses of Theorem 3.2. We have the following
homotopy groups for ku ∧ BZ/4 and its first three Adams covers, where we write a + b + c
for the group Z/a⊕ Z/b⊕ Z/c and 0 for the trivial group.

Adams cover π1 π3 π5 π7 π9 π11

0 4 2+8 2+2+16 4+2+32 4+4+64 8+4+128
1 2 2+4 2+2+8 4+2+16 4+4+32 8+4+64
2 0 2 2+4 2+2+8 4+2+16 4+4+32
3 0 0 2 2+4 2+2+8 4+2+16

From this it is clear that the first Adams cover is not merely a suspension, but it is plausible
that the ith Adams cover is the double suspension of the (i− 1)st for i > 1.

4. The Real Case

We record the following trivial consequence of the definitions for reference.

Proposition 4.1. For any spectrum X there is a cofiber sequence

ko<1> ∧X −→ ko ∧X
p
−→ HZ ∧X,

where p∗ is an epimorphism in cohomology.
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As in the complex case, with coefficients in a field the comparison theorem allows us to
compare the preceding cofibration with that in Theorem 2.3.

Theorem 4.2. If H∗X is free over E[β] and ko∗X −→ HZ∗X is onto then

ko ∧ P ∧X ≃ ko<1> ∧X ∨
∨
i>0

Σ4i−1HZ ∧X.

Proof: The proof is entirely analogous to the complex case.

Remark 4.3. It might be better to replace ko <1> ∧X by (ko ∧ X) <1>, a potentially
smaller Adams cover of ko ∧X. For example,

ko<1> ∧P ≃ (ko ∧ P )<1> ∨
∨

i>0

Σ4iHF2.

Theorem 4.4.

ko ∧ P ∧ P ≃ ko<1> ∧P ∨
∨

i,j>0

Σ4i+2j−2HF2

≃ (ko ∧ P )<1> ∨
∨

i>0,j≥0

Σ4i+2j−2HF2

where (ko∧P )<1> is the minimal Adams cover of ko∧P . The cohomology of (ko∧P )<1>
is tensored up from an A(1)-module with Poincare series t3/(1− t) + t2(1 + t)(1 + t3).

Proof: Theorem 4.2 does not apply, so we must resort to an ad hoc argument in this case.
We decompose H∗(P ∧ P ) as a module over A(1) into an A(1)-free summand, producing
the generalized Eilenberg-MacLane spectrum upon smashing with ko, and the A(1)-module
which is the kernel of the minimal projective cover of H∗P in A(1)-Mod.

Remark 4.5. The homotopy type of ko ∧ P ∧n modulo generalized Eilenberg-MacLane sum-
mands depends upon the congruence class of n modulo 4. This is an easy consequence of the
homotopy of the Adams covers of ko ∧ P , and is the maximal number of different homotopy
types since the 4th Adams cover of ko is Σ8ko.
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