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ON BEHAVIOR OF THE ALGEBRAIC TRANSFER

ROBERT R. BRUNER, LÊ M. HÀ AND NGUYẼ̂N H. V. HU
.
NG

Dedicated to Professor Huỳnh Mùi on the occasion of his sixtieth birthday

Abstract. Let Trk : F2 ⊗
GLk

PHi(BVk) → Ext
k,k+i

A
(F2,F2) be the algebraic

transfer, which is defined by W. Singer as an algebraic version of the geo-
metrical transfer trk : πS

∗ ((BVk)+) → πS
∗ (S

0). It has been shown that the
algebraic transfer is highly nontrivial and, more precisely, that Trk is an iso-
morphism for k = 1, 2, 3. However, Singer showed that Tr5 is not an epi-
morphism. In this paper, we prove that Tr4 does not detect the non zero

element gs ∈ Ext
4,12·2s

A
(F2,F2) for every s ≥ 1. As a consequence, the lo-

calized (Sq0)−1Tr4 given by inverting the squaring operation Sq0 is not an
epimorphism. This gives a negative answer to a prediction by Minami.

1. Introduction and statement of results

The subject of the present paper is the algebraic transfer

Trk : F2 ⊗
GLk

PHi(BVk) → Extk,k+i
A (F2,F2),

which is defined by W. Singer as an algebraic version of the geometrical transfer
trk : πS

∗ ((BVk)+) → πS
∗ (S

0) to the stable homotopy groups of spheres. Here
Vk denotes a k−dimensional F2−vector space, PH∗(BVk) is the primitive part
consisting of all elements in H∗(BVk), which are annihilated by every positive-
degree operation in the mod 2 Steenrod algebra, A. Throughout the paper, the
homology is taken with coefficients in F2.

It has been proved that Trk is an isomorphism for k = 1, 2 by Singer [13]
and for k = 3 by Boardman [1]. These data together with the fact that Tr =
⊕k≥0Trk is an algebra homomorphism (see [13]) show that Trk is highly nontrivial.
Therefore, the algebraic transfer is considered to be a useful tool for studying the
mysterious cohomology of the Steenrod algebra, Ext∗,∗A (F2,F2). In [13], Singer also
gave computations to show that Tr4 is an isomorphism up to a range of internal
degrees. However, he proved that Tr5 is not an epimorphism.

Based on these data, we are particularly interested in the behavior of the fourth
algebraic transfer. The following theorem is the main result of this paper.

Theorem 1.1. Tr4 does not detect the non zero element gs ∈ Ext4,12·2
s

A (F2,F2)
for every s ≥ 1.

1The third named author was supported in part by the Vietnam National Research Program,
Grant N0140801.

22000 Mathematics Subject Classification. Primary 55P47, 55Q45, 55S10, 55T15.
3Key words and phrases. Adams spectral sequences, Steenrod algebra, Invariant theory, Alge-

braic transfer.
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The reader is referred to May [10] for the generator g1 and to Lin [7] or [8] for the
generators gs.

As a consequence, we get a negative answer to a prediction by Minami [12].

Corollary 1.2. The localization of the fourth algebraic transfer

(Sq0)−1Tr4 : (Sq0)−1
F2 ⊗

GL4

PHi(BV4) → (Sq0)−1Ext4,4+i
A (F2,F2)

given by inverting Sq0 is not an epimorphism.

It is well-known (see [9]) that there are squaring operations Sqi (i ≥ 0) acting
on the cohomology of the Steenrod algebra, which share most of the properties
with Sqi on the cohomology of spaces. However, Sq0 is not the identity. We refer
to Section 2 for the precise meaning of the operation Sq0 on the domain of the
algebraic transfer.

We next explain the idea of the proof of Theorem 1.1.
Let Pk := H∗(BVk) be the polynomial algebra of k variables, each of degree 1.

Then, the domain of Trk, F2 ⊗
GLk

PH∗(BVk), is dual to (F2 ⊗
A

Pk)
GLk . In order to

prove Theorem 1.1, it suffices to show that (F2 ⊗
A

P4)
GL4

12·2s−4 = 0, for every s ≥ 1.

Direct calculation of (F2 ⊗
A

P4)12·2s−4 is difficult, as P4 in degree 12 · 2s − 4 is

a huge F2-vector space, e.g. its dimension is 1771 for s = 1. To compute it, we
observe that the iterated dual squaring operation

(Sq0∗)
s : (F2 ⊗

A

P4)12·2s−4 → (F2 ⊗
A

Pk)8

is an isomorphism of GL4-modules for any s ≥ 1. This isomorphism is obtained by
applying repeatedly the following proposition.

Proposition 1.3. Let k and r be positive intergers. Suppose that each monomial

xi1
1 · · ·xik

k of Pk in degree 2r + k with at least one exponent it even is hit. Then

Sq0∗ : (F2 ⊗
A

Pk)2r+k → (F2 ⊗
A

Pk)r

is an isomorphism of GLk-modules.

Here, as usual, we say that a polynomial Q in Pk is hit if it is A-decomposable.
Further, we show that (F2 ⊗

A

P4)8 is an F2-vector space of dimension 55. Then,

by investigating a specific basis of it, we prove that (F2 ⊗
A

P4)
GL4

8 = 0. As a conse-

quence, we get (F2 ⊗
A

P4)
GL4

12·2s−4 = 0 for every s ≥ 1.

The reader who does not wish to follow the invariant theory computation above
may be satisfied by the following weaker theorem, and then would not need to read
the paper’s last 3 sections.

Theorem 1.4. Tr4 is not an isomorphism.

This theorem is proved by observing that, on the one hand,

(F2 ⊗
A

P4)
GL4

20
∼= (F2 ⊗

A

P4)
GL4

8 ,

and on the other hand,

Ext4,4+20
A (F2,F2) = F2 · g1 6∼= Ext4,4+8

A (F2,F2) = 0.
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The paper is divided into six sections and organized as follows. Section 2 starts
with a recollection of the squaring operation and ends with a proof of the iso-
morphism (F2 ⊗

A

P4)12·2s−4
∼= (F2 ⊗

A

Pk)8. Theorem 1.4 is proved in Section 3. We

compute (F2 ⊗
A

P4)8 and its GL4-invariants in Section 4. We prove Theorem 1.1 in

Section 5. Finally, in Section 6, we describe the GL4-module structure of (F2 ⊗
A

P4)8.

Acknowledgment: The research was in progress during the second named author’s
visit to the IHES (France) and the third named author’s visit to Wayne State
University, Detroit (Michigan) in the academic year 2001-2002.

The third named author is grateful to Daniel Frohardt, David Handel, Lowell
Hansen, John Klein, Charles McGibbon, Claude Schochet and all colleagues at the
Department of Mathematics, Wayne State University for their hospitality and for
the warm working atmosphere.

The authors express their hearty thanks to Trà̂n N. Nam for helpful discussion.

2. A sufficient condition for the squaring operation to be an

isomorphism

This section starts with a recollection of Kameko’s squaring operation

Sq0 : F2 ⊗
GLk

PH∗(BVk) → F2 ⊗
GLk

PH∗(BVk).

The most important property of Kameko’s Sq0 is that it commutes with the classical
Sq0 on Ext∗A(F2,F2) (defined in [9]) through the algebraic transfer (see [1], [12]).

This squaring operation is constructed as follows.
As well known, H∗(BVk) is the polynomial algebra, Pk := F2[x1, ..., xk], on k

generators x1, ..., xk, each of degree 1. By dualizing,

H∗(BVk) = Γ(a1, . . . , ak)

is the divided power algebra generated by a1, . . . , ak, each of degree 1, where ai
is dual to xi ∈ H1(BVk). Here the duality is taken with respect to the basis of
H∗(BVk) consisting of all monomials in x1, . . . , xk.

In [6] Kameko defined a homomorphism

S̃q
0
: H∗(BVk) → H∗(BVk),

a
(i1)
1 · · ·a

(ik)
k 7→ a

(2i1+1)
1 · · ·a

(2ik+1)
k ,

where a
(i1)
1 · · · a

(ik)
k is dual to xi1

1 · · ·xik
k . The following lemma is well known. We

give a proof to make the paper self-contained.

Lemma 2.1. S̃q
0
is a GLk−homomorphism.

Proof. We use the explanation of S̃q
0
by Crabb and Hubbuck [3], which does not

depend on the chosen basis of H∗(BVk). The element a(Vk) = a1 · · ·ak is nothing
but the image of the generator of Λk(Vk) under the (skew) symmetrization map

Λk(Vk) → Hk(BVk) = Γk(Vk) = (Vk ⊗ · · · ⊗ Vk︸ ︷︷ ︸
k times

)Sk
,

where the symmetric group Sk acts on Vk⊗· · ·⊗Vk by permutations of the factors.
Let c : H∗(BVk) → H∗(BVk) be the degree-halving epimorphism, which is dual to
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the Frobenius monomorphism F : H∗(BVk) → H∗(BVk) defined by F (x) = x2 for
any x. We have

S̃q
0
(c(y)) = a(Vk)y,

for y ∈ H∗(BVk). To prove that this is well defined we need to show that if
c(y) = 0, then a(Vk)y = 0. Indeed, c(y) = 0 implies < c(y), x >=< y, x2 >= 0 for
every x ∈ H∗(BVk). Here < ·, · > denotes the dual pairing between H∗(BVk) and

H∗(BVk). So, if we write y =
∑

a
(i1)
1 · · ·a

(ik)
k , then there is at least one it which is

odd in each term of the sum. Therefore,

a(Vk)y = a1 · · ·ak(
∑

a
(i1)
1 · · · a

(ik)
k ) = 0,

because ata
(it)
t = 0 for any odd it. So, S̃q

0
is well defined.

As c is a GLk-epimorphism, the map S̃q
0
is a GLk-homomorphism.

The lemma is proved.

Further, it is easy to see that cSq2t+1
∗ = 0, cSq2t∗ = Sqt∗c. So we have

Sq2t+1
∗ S̃q

0
= 0, Sq2t∗ S̃q

0
= S̃q

0
Sqt∗.

(See [4] for an explicit proof.) Therefore, S̃q
0
maps PH∗(BVk) to itself.

Kameko’s Sq0 is defined by

Sq0 = 1 ⊗
GLk

S̃q
0
: F2 ⊗

GLk

PH∗(BVk) → F2 ⊗
GLk

PH∗(BVk).

The dual homomorphism S̃q
0

∗ : Pk → Pk of S̃q
0
is obviously given by

S̃q
0

∗(x
j1
1 · · ·xjk

k ) =

{
x

j1−1

2

1 · · ·x
jk−1

2

k , j1, ..., jk odd,
0, otherwise.

Hence

Ker(S̃q
0

∗) = Even,

where Even denotes the vector subspace of Pk spanned by all monomials xi1
1 · · ·xik

k

with at least one exponent it even.

Let s : Pk → Pk be a left inverse of S̃q
0

∗ defined as follows:

s(xi1
1 · · ·xik

k ) = x2i1+1
1 · · ·x2ik+1

k .

It should be noted that s does not commute with the doubling map on A, that is,
in general

Sq2ts 6= sSqt.

However, in one particular circumstance we have the following.

Lemma 2.2. Under the hypothesis of Proposition 1.3, the map

s : (F2 ⊗
A

Pk)r → (F2 ⊗
A

Pk)2r+k

s[X ] = [sX ]

is a well-defined linear map.
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Proof. We start with an observation that

Im(Sq2ts− sSqt) ⊂ Even.

We prove this by showing equivalently that

S̃q
0

∗(Sq
2ts− sSqt) = 0.

Indeed,

S̃q
0

∗(Sq
2ts− sSqt) = S̃q

0

∗Sq
2ts− S̃q

0

∗sSq
t

= SqtS̃q
0

∗s− S̃q
0

∗sSq
t

= Sqt · id− id · Sqt

= 0.

As a consequence, s maps (A+Pk)r to (A+Pk + Even)2r+k. Here and in what
follows, A+ denotes the submodule of A consisting of all positive degree operations.
Further, by the hypothesis of Proposition 2.3, we have

(A+Pk + Even)2r+k ⊂ (A+Pk)2r+k.

Hence, s maps (A+Pk)r to (A+Pk)2r+k. So the map s is well-defined. Then it is a
linear map, as s is.

The lemma is proved.

The following proposition is also numbered as Proposition 1.3

Proposition 2.3. Let k and r be positive intergers. Suppose that each monomial

xi1
1 · · ·xik

k of Pk in degree 2r + k with at least one exponent it even is hit. Then

Sq0∗ : (F2 ⊗
A

Pk)2r+k → (F2 ⊗
A

Pk)r

is an isomorphism of GLk-modules.

Proof. On the one hand, we have Sq0∗s = id(F2⊗
A

Pk)r . Indeed, from S̃q
0

∗s = idPk
, it

implies

Sq0∗s[X ] = Sq0∗[sX ] = [S̃q
0

∗sX ] = [X ],

for any X in degree r of Pk.
On the other hand, we have sSq0∗ = id(F2⊗

A

Pk)2r+k
. Indeed, by the hypoth-

esis, any monomial with at least one even exponent represents the 0 class in
(F2 ⊗

A

Pk)2r+k, so we need only to check on the classes of monomials with all expo-

nents odd. We have

sSq0∗[x
2i1+1
1 · · ·x2ik+1

k ] = s[xi1
1 · · ·xik

k ]

= [s(xi1
1 · · ·xik

k )]

= [x2i1+1
1 · · ·x2ik+1

k ],

for any x2i1+1
1 · · ·x2ik+1

k in degree 2r + k of Pk.
Combining the above two equalities, Sq0∗s = id(F2⊗

A

Pk)r and sSq0∗ = id(F2⊗
A

Pk)2r+k
,

we see that Sq0∗ : (F2 ⊗
A

Pk)2r+k → (F2 ⊗
A

Pk)r is an isomorphism with inverse

s : (F2 ⊗
A

Pk)r → (F2 ⊗
A

Pk)2r+k.

The proposition is proved.
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The target of this section is the following.

Lemma 2.4. For every positive integer s,

(Sq0∗)
s : (F2 ⊗

A

P4)12·2s−4 → (F2 ⊗
A

P4)8

is an isomorphism of GL4-modules.

Proof. By using Proposition 2.3 repeatedly, it suffices to show that any monomial
of P4 in degree m = 12 · 2s − 4 with at least one even exponent is hit. Since m
is even, the number of even exponents in such a monomial must be either 2 or 4.
If all exponents of the monomial are even, then it is hit by Sq1. Hence we need
only to consider the case of a monomial R with exactly two even exponents (and
so exactly two odd exponents). We can write, up to a permutation of variables,
R = x1x2Q

2, where Q is a monomial in degree 6 · 2s − 3.
Let χ be the anti-homomorphism in the Steenrod algebra. The so-called χ-trick,

which is known to Brown and Peterson in the mid-sixties, states that

uSqi(v) ≡ χ(Sqi)(u)v mod A+M,

for u, v in any A-algebra M . (See also Wood [14].) In our case, it claims that

R = x1x2Sq
6·2s−3(Q)

is hit if and only if χ(Sq6.2
s−3)(x1x2)Q is. We will show χ(Sq6.2

s−3)(x1x2) = 0 for
any s > 0.

As A is a commutative coalgebra, χ is a homomorphism of coalgebras (see [11,
Proposition 8.6]). Then we have the Cartan formula

χ(Sqn)(uv) =
∑

i+j=n

χ(Sqi)(u)χ(Sqj)(v).

Furthermore, it is shown by Brown and Peterson in [2] that

χ(Sqi)(xj) =

{
x2p

j if i = 2p − 1 for some p,
0 otherwise,

for xj in degree 1. So, in order to prove χ(Sq6.2
s−3)(x1x2) = 0 we need only to

show that 6 · 2s − 3 can not be written in the form

6 · 2s − 3 = (2a − 1) + (2b − 1)

with a ≥ b. Indeed, if we have this equality, then b = 0 as the left hand size is odd.
So 6 · 2s − 3 = 2a − 1, or equivalently 3 · 2s = 2a−1 +1. As s > 0, the left hand side
is even, hence a− 1 = 0. It implies 3 · 2s = 2. This equality has no solution s.

The lemma is proved.

3. The fourth algebraic transfer is not an isomorphism

The target of this section is to prove the following theorem, which is also num-
bered as Theorem 1.4.

Theorem 3.1.

Tr4 : F2 ⊗
GL4

PHi(BV4) → Ext4,4+i
A (F2,F2)

is not an isomorphism.

Proof. For any r, we have a commutative diagram
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(F2 ⊗
GL4

PHi(BV4))r ✲
Tr4

Ext4,4+r
A (F2,F2)

❄ ❄

Sq0 Sq0

(F2 ⊗
GL4

PHi(BV4))2r+4 ✲
Tr4

Ext4,8+2r
A (F2,F2) ,

where the first vertical arrow is the Kameko Sq0 and the second vertical one is the
classical Sq0.

The dual statement of Lemma 2.4 for s = 2 claims that

Sq0 : (F2 ⊗
GL4

PHi(BV4))8 → (F2 ⊗
GL4

PHi(BV4))20

is an isomorphism. On the other hand, it is known (May [10]) that

Ext4,4+8
A (F2,F2) = 0 6∼= Ext4,4+20

A (F2,F2) = F2 · g1.

This implies that Tr4 is not an isomorphism. The theorem is proved.

Remark 3.2. This proof does not show whether Tr4 fails to be a monomorphism
or fails to be an epimorphism. We will see that actually Tr4 is not an epimorphism
in Section 5 below.

4. GL4-invariants of the indecomposables of P4 in degree 8

From now on, let us write x = x1, y = x2, z = x3 and t = x4 and denote the
monomial xaybzctd by (a, b, c, d) for abbreviation.

Proposition 4.1. (F2 ⊗
A

P4)8 is an F2-vector space of dimension 55 with a basis

consisting of the classes represented by the following monomials:

(A) (7, 1, 0, 0), (7, 0, 1, 0), (7, 0, 0, 1), (1, 7, 0, 0), (1, 0, 7, 0), (1, 0, 0, 7),
(0, 7, 1, 0), (0, 7, 0, 1), (0, 1, 7, 0), (0, 1, 0, 7), (0, 0, 7, 1), (0, 0, 1, 7),

(B) (3, 3, 1, 1), (3, 1, 3, 1), (3, 1, 1, 3), (1, 3, 3, 1), (1, 3, 1, 3), (1, 1, 3, 3),

(C) (6, 1, 1, 0), (6, 1, 0, 1), (6, 0, 1, 1), (1, 6, 1, 0), (1, 6, 0, 1), (1, 1, 6, 0),
(1, 1, 0, 6), (1, 0, 6, 1), (1, 0, 1, 6), (0, 6, 1, 1), (0, 1, 6, 1), (0, 1, 1, 6),

(D) (5, 3, 0, 0), (5, 0, 3, 0), (5, 0, 0, 3), (0, 5, 3, 0), (0, 5, 0, 3), (0, 0, 5, 3),

(E) (5, 2, 1, 0), (5, 2, 0, 1), (5, 0, 2, 1), (2, 5, 1, 0), (2, 5, 0, 1), (2, 1, 5, 0),
(2, 1, 0, 5), (2, 0, 5, 1), (2, 0, 1, 5), (0, 5, 2, 1), (0, 2, 5, 1), (0, 2, 1, 5),

(F) (5, 1, 1, 1), (1, 5, 1, 1), (1, 1, 5, 1), (1, 1, 1, 5),

(G) (4, 2, 1, 1), (4, 1, 2, 1), (1, 4, 2, 1).

The proposition is proved by combining a couple of lemmas.

Lemma 4.2. (F2 ⊗
A

P4)8 is generated by the 55 elements listed in Proposition 4.1.
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Proof. It is easy to see that every monomial (a, b, c, d) with a, b, c, d all even is hit
(more precisely by Sq1).

The only monomials (a, b, c, d) in degree 8 with at least one of a, b, c, d odd are
the following up to permutations of the variables:

(7, 1, 0, 0), (3, 3, 1, 1), (6, 1, 1, 0), (5, 3, 0, 0), (5, 2, 1, 0), (5, 1, 1, 1), (4, 2, 1, 1),

(4, 3, 1, 0), (3, 3, 2, 0), (3, 2, 2, 1).

The last 3 monomials and their permutations are expressed in terms of the first
7 monomials and their permutations as follows:

(4, 3, 1, 0) = (2, 5, 1, 0) + Sq4(1, 2, 1, 0) + Sq2(2, 3, 1, 0),

(3, 3, 2, 0) = (5, 2, 1, 0) + (2, 5, 1, 0) + Sq4(2, 1, 1, 0) + Sq4(1, 2, 1, 0)

+Sq2(3, 2, 1, 0) + Sq2(2, 3, 1, 0) + Sq1(3, 3, 1, 0),

(3, 2, 2, 1) = (5, 1, 1, 1) + (4, 2, 1, 1) + (4, 1, 2, 1)

+Sq2(3, 1, 1, 1) + Sq1(4, 1, 1, 1) + Sq1(3, 2, 1, 1) + Sq1(3, 1, 2, 1).

Hence, (F2 ⊗
A

P4)8 is generated by the following 7 monomials and their permuta-

tions:

(7, 1, 0, 0), (3, 3, 1, 1), (6, 1, 1, 0), (5, 3, 0, 0), (5, 2, 1, 0), (5, 1, 1, 1), (4, 2, 1, 1).

By the family of a monomial (a, b, c, d) we mean the set of all monomials which
are obtained from (a, b, c, d) by permutations of the variables.

The monomials in the 7 families above which are not in Proposition 4.1 can be
expressed in terms of the 55 elements listed there as follows. (We give only one
expression from each symmetry class.)

(3, 5, 0, 0) = (5, 3, 0, 0) + Sq4(2, 2, 0, 0) + Sq2(3, 3, 0, 0),

(5, 1, 2, 0) = (6, 1, 1, 0) + (5, 2, 1, 0) + Sq1(5, 1, 1, 0),

(4, 1, 1, 2) = (4, 2, 1, 1) + (4, 1, 2, 1) + Sq1(4, 1, 1, 1),

(2, 4, 1, 1) = (4, 2, 1, 1) + Sq4(1, 1, 1, 1) + Sq2(2, 2, 1, 1),

(2, 1, 1, 4) = (4, 2, 1, 1) + (4, 1, 2, 1)

+Sq4(1, 1, 1, 1) + Sq2(2, 1, 1, 2) + Sq1(4, 1, 1, 1),

(1, 4, 1, 2) = (4, 2, 1, 1) + (1, 4, 2, 1)

+Sq4(1, 1, 1, 1) + Sq2(2, 2, 1, 1) + Sq1(1, 4, 1, 1),

(1, 2, 1, 4) = (4, 2, 1, 1) + (1, 4, 2, 1)

+Sq2(2, 2, 1, 1) + Sq2(1, 2, 1, 2) + Sq1(1, 4, 1, 1),

(1, 1, 4, 2) = (4, 1, 2, 1) + (1, 4, 2, 1)

+Sq2(2, 1, 2, 1) + Sq2(1, 2, 2, 1) + Sq1(1, 1, 4, 1),

(1, 1, 2, 4) = (4, 1, 2, 1) + (1, 4, 2, 1) + Sq4(1, 1, 1, 1)

+Sq2(2, 1, 2, 1) + Sq2(1, 2, 2, 1) + Sq2(1, 1, 2, 2) + Sq1(1, 1, 4, 1).

The lemma is proved.

Lemma 4.3. The 55 elements listed in Proposition 4.1 are linearly independent in

(F2 ⊗
A

P4)8.
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Proof. We will use an equivalence relation defined by saying that, for two polyno-
mials P and Q, P is equivalent to Q, denoted by P ∼ Q, if P −Q is hit.

If X is one of the letters from A to G, let Xi be the i-th element in family X
according to the order listed in Proposition 4.1. (This is the lexicographical order
in each family.)

Suppose there is a linear relation between the 55 elements listed there

12∑

i=1

aiAi +

6∑

i=1

biBi +

12∑

i=1

ciCi +

6∑

i=1

diDi +

12∑

i=1

eiEi +

4∑

i=1

fiFi +

3∑

i=1

giGi = 0,

where ai, bi, ci, di, ei, fi, gi ∈ F2. We need to show all these coefficients are zero.
The proof is divided into 4 steps.

Step 1. We call a monomial a spike if each of its exponents is of the form 2n − 1
for some n. It is well known that spikes do not appear in the expression of SqiY
for any i positive and any monomial Y , since the powers x2n−1 are not hit in the
one variable case. Hence, the coefficient of any spike is zero in every linear relation
in F2 ⊗

A

Pk.

Among the 55 elements of Proposition 4.1, the classes of families A and B are
spikes. So ai = bj = 0, for every i and j. Then, we get

12∑

i=1

ciCi +

6∑

i=1

diDi +

12∑

i=1

eiEi +

4∑

i=1

fiFi +

3∑

i=1

giGi = 0.

Step 2. Consider the homomorphism F2 ⊗
A

P4 → F2 ⊗
A

P2 induced by the projection

P4 → P4/(z, t) ∼= P2. Under this homomorphism, the image of the above linear
relation is d1(5, 3) = 0.

In order to show d1 = 0, we need to prove that (5, 3) is non zero in F2⊗
A

P2. The

linear transformation x 7→ x, y 7→ x+y sents (5,3) to (8, 0)+(7, 1)+(6, 2)+(5, 3)∼
(7, 1)+ (5, 3). As the action of the Steenrod algebra commutes with linear maps, if
(5, 3) is hit then so is (7, 1) + (5, 3). But it is impossible, because (7, 1) is a spike.
Hence, (5, 3) 6= 0 in F2⊗

A

P2 and d1 = 0.

Similarly, using all the projections of P4 to its quotients by the ideals generated
by each pair of the four variables, we get di = 0 for every i. So we get

12∑

i=1

ciCi +

12∑

i=1

eiEi +

4∑

i=1

fiFi +

3∑

i=1

giGi = 0.

Step 3. Consider the homomorphism F2 ⊗
A

P4 → F2 ⊗
A

P3 induced by the projection

P4 → P4/(t) ∼= P3. Under this homomorphism, the linear relation above is sent to

c1(6, 1, 1) + c4(1, 6, 1) + c6(1, 1, 6) + e1(5, 2, 1) + e4(2, 5, 1) + e6(2, 1, 5) = 0.

Applying the linear map x 7→ x, y 7→ x, z 7→ y to this relation, we obtain

(c1 + c4 + e1 + e4)(7, 1) + c6(2, 6) + e6(3, 5) =

(c1 + c4 + e1 + e4)(7, 1) + e6(3, 5) = 0.

Since (7, 1) is a spike, (c1 + c4 + e1 + e4) = 0, hence e6(3, 5) = 0. As for (5, 3), we
can show (3, 5) 6= 0 ∈ F2 ⊗

A

P2 and get e6 = 0.
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By similar arguments, we have e1 = e4 = e6 = 0. The equality (c1+c4+e1+e4) =
0 shows c1 + c4 = 0 or c1 = c4. By similar arguments, c1 = c4 = c6. We denote
this common coefficient by c and get

c{(6, 1, 1) + (1, 6, 1) + (1, 1, 6)} = 0.

We prove c = 0 by showing (6, 1, 1)+ (1, 6, 1)+ (1, 1, 6) 6= 0. Suppose the contrary,
that (6, 1, 1)+(1, 6, 1)+(1, 1, 6) is hit. Then, by the unstable property of the action
of A on the polynomial algebra, we have

(6, 1, 1) + (1, 6, 1) + (1, 1, 6) = Sq1(P ) + Sq2(Q) + Sq4(R),

for some polynomials P,Q,R. By the degree information, Sq4(R) = R2 and this
element is hit by Sq1. Therefore, it suffices to suppose (6, 1, 1)+(1, 6, 1)+(1, 1, 6) =
Sq1(P ) + Sq2(Q).

Let Sq2Sq2Sq2 act on the both sides of this equality. The right hand side is sent
to zero, as Sq2Sq2Sq2 annihilates Sq1 and Sq2. On the other hand,

Sq2Sq2Sq2{(6, 1, 1) + (1, 6, 1) + (1, 1, 6)} = (8, 4, 2) + symmetries 6= 0.

This is a contradiction. So, it implies (6, 1, 1) + (1, 6, 1) + (1, 1, 6) 6= 0 and c = 0.
We get

4∑

i=1

fiFi +

3∑

i=1

giGi = 0.

Step 4. Apply the linear map x 7→ x, y 7→ y, z 7→ y, t 7→ y to the above equality and
we have

f1(5, 3) + (f2 + f3 + f4 + g3)(1, 7) + (g1 + g2)(4, 4) =

f1(5, 3) + (f2 + f3 + f4 + g3)(1, 7) = 0.

As (7, 1) is a spike, we obtain (f2+f3+f4+g3) = 0 and f1(5, 3) = 0. As (5, 3) 6= 0,
it yields f1 = 0.

Next, apply the linear map x 7→ x, y 7→ y, z 7→ x, t 7→ x to the equality∑
i6=1 fiFi +

∑3
i=1 giGi = 0 and we have

f2(3, 5) + (f3 + f4 + g2)(7, 1) + g1(6, 2) + g3(4, 4) =

f2(3, 5) + (f3 + f4 + g2)(7, 1) = 0.

As (7, 1) is a spike, we get (f3 + f4 + g2) = 0 and f2(3, 5) = 0. Since (3, 5) 6= 0, it
implies f2 = 0.

Similarly, apply the linear map x 7→ x, y 7→ x, z 7→ y, t 7→ x to the equality

f3F3 + f4F4 +
∑3

i=1 giGi = 0 and we have

f3(3, 5) + (f4 + g1)(7, 1) + (g2 + g3)(6, 2) =

f3(3, 5) + (f4 + g1)(7, 1) = 0.

As (7, 1) is a spike, we get f4 + g1 = 0 and then f3 = 0.
Finally, apply the linear map x 7→ x, y 7→ x, z 7→ x, t 7→ y to the equality

f4F4 +
∑3

i=1 giGi = 0 and we have

f4(3, 5) + (g1 + g2 + g3)(7, 1) =

f4(3, 5) + (g1 + g2 + g3)(7, 1) = 0.

As (7, 1) is a spike, we get g1 + g2 + g3 = 0 and then f4 = 0.
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Substituting f1 = f2 = f3 = f4 = 0 into the equations (f2 + f3 + f4 + g3) = 0,
(f3 + f4 + g2) = 0, f4 + g1 = 0, we get g1 = g2 = g3 = 0.

We have shown that all coefficients of an arbitrary linear relation between the
55 elements listed in Proposition 4.1 are zero. The lemma follows.

Combining Lemmas 4.2 - 4.3, we get Proposition 4.1.

Proposition 4.4. (F2 ⊗
A

P4)
GL4

8 = 0.

Proof. If X is one of the letters A,B,C,D,E, F,G, let L(X) be the vector subspace
of (F2 ⊗

A

P4)8 spanned by the elements of family X in Proposition 4.1. Let Sk denote

the symmetric subgroup of GLk. According to the relations listed in the proof
of Lemma 4.2, L(A), L(B), L(C), L(D), L(F ), L(G) are S4-submodules. The
subspace L(E) is not an S4-submodule. However, the sum

L(C,E) = L(C)⊕ L(E)

is. We have a decomposition of S4-modules

(F2 ⊗
A

P4)8 = L(A) ⊕ L(B)⊕ L(C,E) ⊕ L(D) ⊕ L(F )⊕ L(G).

Let α be an arbitrary GL4-invariant in (F2 ⊗
A

P4)8. It can uniquely be written in

the form

α = αA + αB + αC,E + αD + αF + αG,

where αX ∈ L(X) for X ∈ {A,B,D, F,G}, and αC,E ∈ L(C,E). Each term of this
sum is S4-invariant.

Note that if a linear combination of elements in a family is S4-invariant, then all
of its coefficients are equal, because each element in the family can be obtained from
any other by a suitable permutation. Let sX denote the sum of all the elements
in the family X listed in Proposition 4.1. Then, we have αA = asA, αB = bsB,
αD = dsD, αF = fsF , αG = gsG, and αC,E = csC+esE, where a, b, c, d, e, f, g ∈ F2.

Let p be the transposition given by p(x) = y, p(y) = x, p(z) = z, p(t) = t. It is
easy to see that

p(2, 1, 0, 5) = (1, 2, 0, 5) = (2, 1, 0, 5) + (1, 1, 0, 6),

p(2, 1, 5, 0) = (1, 2, 5, 0) = (2, 1, 5, 0) + (1, 1, 6, 0).

Further, the 10 elements different from (2, 1, 0, 5) and (2, 1, 5, 0) in family E are
divided into 5 pairs with p acting on each pair by twisting. So, p(sE) = sE +
(1, 1, 0, 6) + (1, 1, 6, 0). On the other hand, as the family C is full, in the sense
that it contains all the variable permutations of a monomial, we have p(sC) = sC .
Hence, we get

p(αC,E) = p(csC + esE) = csC + esE + e(1, 1, 0, 6) + e(1, 1, 6, 0).

As αC,E is S4-invariant, e(1, 1, 0, 6) + e(1, 1, 6, 0) = 0. So e = 0, because the two
elements are linearly independent by Lemma 4.3. We obtain

α = αA + αB + αC + αD + αF + αG,

where αC = αC,E = csC .
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Let us now consider the transvection ϕ given by ϕ(x) = x, ϕ(y) = y, ϕ(z) = z,
ϕ(t) = x+ t. A routine computation shows

ϕ(sA) = sA + (7, 1, 0, 0) + (7, 0, 1, 0) + (7, 0, 0, 1) + (1, 7, 0, 0) + (1, 0, 7, 0)

+(6, 1, 0, 1) + (6, 0, 1, 1) + (1, 1, 0, 6) + (1, 0, 1, 6),

ϕ(sB) = sB + (6, 1, 1, 0) + (1, 6, 1, 0) + (1, 1, 6, 0) + (2, 5, 1, 0) + (2, 1, 5, 0)

+(5, 1, 1, 1) + (1, 5, 1, 1) + (1, 1, 5, 1) + (4, 2, 1, 1) + (4, 1, 2, 1)

+(3, 3, 1, 1) + (3, 1, 3, 1),

ϕ(sC) = sC + (6, 1, 1, 0) + (1, 6, 1, 0) + (1, 1, 6, 0),

ϕ(sD) = sD + (7, 0, 0, 1) + (1, 6, 0, 1) + (1, 0, 6, 1) + (5, 3, 0, 0) + (5, 0, 3, 0),

ϕ(sF ) = sF + (2, 5, 1, 0) + (2, 1, 5, 0) + (5, 1, 1, 1) + (4, 2, 1, 1) + (4, 1, 2, 1),

ϕ(sG) = sG + (6, 1, 1, 0).

Let rX = ϕ(sX)−sX where X is one of the letters A,B,C,D, F,G. The equality
ϕ(α) = α is rewritten as

ϕ(asA + bsB + csC + dsD + fsF + gsG) = asA + bsB + csC + dsD + fsF + gsG,

or equivalently

arA + brB + crC + drD + frF + grG = 0.

In this linear combination, rB and rD are the only terms containing (3, 3, 1, 1)
in family B and (5, 3, 0, 0) in family D respectively. From Lemma 4.3, we get
b = d = 0, and therefore arA + crC + frF + grG = 0.

In the new linear combination, as rA, rC and rF are the only terms containing
(7, 1, 0, 0) in family A, (1, 6, 1, 0) in family C and (4, 2, 1, 1) in family F respectively,
we have a = c = f = 0. As a consequence, grG = 0, so we finally get g = 0.

In summary, we have shown that every GL4-invariant α in (F2 ⊗
A

P4)8 equals

zero. The proposition is proved.

5. The fourth algebraic transfer is not an epimorphism

The goal of this paper is to prove the following theorem, which is also numbered
as Therem 1.1.

Theorem 5.1.

Tr4 : F2 ⊗
GL4

PHi(BV4) → Ext4,4+i
A (F2,F2)

does not detect the non zero elements gs ∈ Ext4,12·2
s

A (F2,F2) for every s ≥ 1.

Proof. Combining Lemma 2.4 and Proposition 4.4 we get

(F2 ⊗
A

P4)
GL4

12·2s−4 = 0,

for every non negative integer s.
On the other hand, it is well known that Ext4,24A (F2,F2) is spanned by the gener-

ator g1 (see May [10]). Further, gs = (Sq0)s−1(g1) is non zero in Ext4,12·2
s

A (F2,F2)
(see Lin [7] and also [8]).
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As F2 ⊗
GL4

PH12·2s−4(BV4) is dual to (F2 ⊗
A

P4)
GL4

12·2s−4,

Tr4 : F2 ⊗
GL4

PH12·2s−4(BV4) → Ext4,12·2
s

A (F2,F2)

does not detect the generator gs, for every non negative integer s.
The theorem is proved.

As a consequence, we get a negative answer to a prediction by Minami [12].
(This corollary is also numbered as Corollary 1.2.)

Corollary 5.2. The localization of the fourth algebraic transfer

(Sq0)−1Tr4 : (Sq0)−1
F2 ⊗

GL4

PHi(BV4) → (Sq0)−1Ext4,4+i
A (F2,F2)

given by inverting Sq0 is not an epimorphism.

Proof. Indeed, it does not detect the non zero element g, which is represented by
the family (gs)s>0 with gs = (Sq0)s−1(g1). The corollary follows.

Remark 5.3. Our result does not affect Singer’s conjecture that the k-th algebraic
transfer is a monomorphism for every k. (See [13].)

6. Final Remark: GL4-module structure

Boardman’s study of the 3 variable problem shows that the GLk module struc-
ture of F2 ⊗

A

Pk may be a useful tool. In this vein we close with a description of the

module (F2 ⊗
A

P4)8 as a GL4-module. From the “Modular Atlas” [5] we find that

there are 8 irreducible modules for GL4 in characteristic 2, of dimensions 1, 4, 4,
6, 14, 20, 20, and 64. With a little calculation we find the following description of
them:

1: the trivial module F2

N : the natural module F
4
2,

N∗: the dual of the natural module,
Λ: the alternating square of N or N∗,
S: the nontrivial constituent of N ⊗N∗, which has composition factors 1, S, 1,
T : a constituent of N ⊗ Λ, which has composition factors N∗ and T ,
T ∗: a constituent of N∗ ⊗ Λ, which has composition factors N and T ∗,
St: the Steinberg module.

Using a “meataxe” program written in MAGMA, together with a MAGMA pro-
gram to compute Brauer characters, we have found that (F2 ⊗

A

P4)8 is an extension

0 −→ N∗ ⊕ T −→ (F2 ⊗
A

P4)8 −→ Λ ⊕M −→ 0,

where the 25-dimensional module M is an extension

0 −→ 1⊕ Λ −→ M −→ N ⊕ S −→ 0.

The corresponding lattice of submodules of (F2 ⊗
A

P4)8 is shown in Figure 1. We

name the submodules by their dimension, using a prime to distinguish the two
submodules of dimension 30. We label the edges by the corresponding quotient
module. In it, intersections are shown, but sums are omitted for clarity. That is,
the intersection of the submodules 30′ and 35 is the submodule 24, but the sum
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Figure 1. Some GL4-submodules of (F2 ⊗
A

P4)8.

of 30′ and 35 (a submodule of dimension 41) is not shown. The two extensions
above can be seen in the lattice, in the sense that, for example, the submodule of
dimension 24 is the direct sum of the submodules of dimensions 4 and 20, since
their intersection is trivial. Further, the quotient of 55 by 24 is the direct sum of
the quotients of 30’ by 24 and of 49 by 24.

The generators for these submodules are provided by the same computer program
used to find this decomposition and are listed below. When all the monomials in one
of the seven families listed in Proposition 4.1 appear, we simply write the name of
the family, so that, for example, all the monomials in family A are in the submodule
of dimension 20. Also, recall the element

sG = (4, 2, 1, 1) + (4, 1, 2, 1) + (1, 4, 2, 1)

used in the proof of Proposition 4.4. Finally note that elements which form bases
for the subquotients can be read off by comparing these lists of generators. For
example, the quotient of the module 30 by the submodule 24 is Λ, and the elements
of family D generate it.

4: (6, 1, 1, 0) + (1, 6, 1, 0) + (1, 1, 6, 0), (6, 1, 0, 1) + (1, 6, 0, 1) + (1, 1, 0, 6),
(6, 0, 1, 1) + (1, 0, 6, 1) + (1, 0, 1, 6), (0, 6, 1, 1) + (0, 1, 6, 1) + (0, 1, 1, 6),



ON BEHAVIOR OF THE ALGEBRAIC TRANSFER 15

20: (A), (6, 1, 1, 0) + (1, 1, 6, 0), (6, 1, 0, 1) + (1, 1, 0, 6), (6, 0, 1, 1) + (1, 0, 1, 6),
(1, 6, 1, 0) + (1, 1, 6, 0), (1, 6, 0, 1) + (1, 1, 0, 6), (1, 0, 6, 1) + (1, 0, 1, 6),
(0, 6, 1, 1) + (0, 1, 1, 6), (0, 1, 6, 1) + (0, 1, 1, 6).

24: (A) and (C).
25: (A), (C), and sG.
30: (A), (C), and (D).
30′: (A), (C) and (5, 1, 1, 1) + (1, 5, 1, 1) + sG + (3, 3, 1, 1),

(5, 1, 1, 1)+(1, 1, 5, 1)+sG+(3, 1, 3, 1), (5, 1, 1, 1)+(1, 1, 1, 5)+sG+(3, 1, 1, 3),
(1, 5, 1, 1)+(1, 1, 5, 1)+sG+(1, 3, 3, 1), (1, 5, 1, 1)+(1, 1, 1, 5)+sG+(1, 3, 1, 3),
(1, 1, 5, 1) + (1, 1, 1, 5) + sG + (1, 1, 3, 3).

31: (A), (C), (D) and sG.
35: (A), (C), (D), sG and

(5, 2, 1, 0) + (5, 2, 0, 1) + (5, 0, 2, 1) + (5, 1, 1, 1),
(2, 5, 1, 0) + (2, 5, 0, 1) + (0, 5, 2, 1) + (1, 5, 1, 1),
(2, 1, 5, 0) + (2, 0, 5, 1) + (0, 2, 5, 1) + (1, 1, 5, 1),
(2, 1, 0, 5) + (2, 0, 1, 5) + (0, 2, 1, 5) + (1, 1, 1, 5).

45: (A), (C), (D), (E) and (G).
49: (A), (C), (D), (E), (F ) and (G).
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