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ON CYCLIC FIXED POINTS OF SPECTRA

MARCEL BÖKSTEDT, ROBERT R. BRUNER,
SVERRE LUNØE–NIELSEN, AND JOHN ROGNES

Abstract. For a finite p-group G and a bounded below G-spectrum X of finite type mod p, the G-
equivariant Segal conjecture for X asserts that the canonical map XG

→ XhG, from G-fixed points

to G-homotopy fixed points, is a p-adic equivalence. Let Cpn be the cyclic group of order pn. We
show that if the Cp-equivariant Segal conjecture holds for a Cpn -spectrum X, as well as for each of

its geometric fixed point spectra ΦCpe (X) for 0 < e < n, then the Cpn -equivariant Segal conjecture
holds for X. Similar results also hold for weaker forms of the Segal conjecture, asking only that the
canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable
finite coefficients.

1. Introduction

Let p be any prime number. Graeme Segal’s Burnside ring conjecture [1] for a finite p-group G asserts
that if X = SG is the genuinely G-equivariant sphere spectrum, then the canonical map XG → XhG =
F (EG+, X)G is a p-adic equivalence. For cyclic groups G = Cp of prime order the conjecture was proved
by Lin [15] and Gunawardena [11], [2]. Thereafter Ravenel [19], [20] gave an inductive proof of Segal’s
conjecture for finite cyclic p-groups G = Cpn of order pn, starting from Lin and Gunawardena’s theorems.
Ravenel’s result was superseded by Carlsson’s proof [7] of the Segal conjecture for all finite p-groups, but
as we shall show here, Ravenel’s methods are also of interest in a more general context, where X is a
quite general G-spectrum.

As was elucidated by Miller and Wilkerson [18], Ravenel’s methods give two proofs of the Segal
conjecture for cyclic groups—one computational using the modified Adams spectral sequence, and one
non-computational, using explicit geometric constructions. The object of this paper is to generalize
Ravenel’s geometric proof of the Segal conjecture to show that XG → XhG is “close to” a p-adic
equivalence for G = Cpn , assuming that XC → XhC and similar maps are “close to” such an equivalence
for C = Cp. Our main technical results are Theorems 2.4 and 2.5. Their statements involve (W,k)-
coconnected maps and geometric fixed points, which are discussed in Definitions 2.1 and 2.3, respectively.
See Example 2.2 for more on how a (W,k)-coconnected map is close to a p-adic equivalence.

In the special cases X = B∧pn

and X = THH(B), where B∧pn

is a specific Cpn -equivariant model
for the pn-th smash power of a symmetric spectrum B, and THH(B) is the topological Hochschild
homology of a symmetric ring spectrum B, the geometric fixed points are well understood, as explained
in Theorems 2.7 and 2.8, respectively. In the special cases W = S−1/p∞ and W = F (V, S), where V is
a finite p-torsion spectrum, the (W,k)-coconnected maps are well understood in terms of p-completion
and homotopy with V -coefficients, as explained in Examples 2.9 and 2.10, respectively. In the doubly
special case when X = THH(B) and W = S−1/p∞, our results recover the main theorem of Tsalidis
[24].

2. Statement of results

We first formalize the notion of being close to a p-adic equivalence. Throughout the paper we assume
that a pair (W,k) has been chosen as in the following definition. The hypothesis on W ensures that the
function spectrum F (W,Y ) is contractible whenever the p-adic completion Yp̂ is contractible.

Definition 2.1. Let S−1/p∞ be a Moore spectrum with homology Z/p∞ concentrated in degree −1,
so that F (S−1/p∞, Y ) = Yp̂ for each spectrum Y . Let W be an object in the localizing ideal [13,

Def. 1.4.3(d)] of spectra generated by S−1/p∞, i.e., the smallest thick subcategory of spectra that contains
S−1/p∞ and is closed under arbitrary wedge sums, as well as under smash products with arbitrary spectra.
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Let k be an integer, or the symbol−∞. We say that a spectrum Y is (W,k)-coconnected if π∗F (W,Y ) =
0 for all ∗ ≥ k. We say that a map of spectra f : Y1 → Y2 is (W,k)-coconnected if hofib(f) is (W,k)-
coconnected, or equivalently, if π∗F (W,Y1) → π∗F (W,Y2) is injective for ∗ = k and an isomorphism for
all ∗ > k.

Example 2.2. The most obvious choice for W is the Moore spectrum S−1/p∞ itself, in which case
F (W,Y ) = Yp̂ , so a map f : Y1 → Y2 is (W,k)-coconnected if and only if the p-completed map
fp̂ : (Y1)p̂ → (Y2)p̂ induces an injection on π∗ for ∗ = k and an isomorphism for ∗ > k. When k = −∞,
this is the same as being a p-adic equivalence.

Alternatively, we may take W = F (V, S), where V is a finite CW spectrum whose integral homology
is p-torsion, in which case F (W,Y ) ≃ V ∧ Y by Spanier–Whitehead duality. In this case f : Y1 → Y2

is (W,k)-coconnected if and only if the map 1 ∧ f : V ∧ Y1 → V ∧ Y2 induces an injection V∗(Y1) =
π∗(V ∧Y1) → π∗(V ∧Y2) = V∗(Y2) for ∗ = k and an isomorphism for ∗ > k. The Smith–Toda complexes
V (m) for m ≥ 0, see [22] and [23], are examples of such finite p-torsion spectra.

Next, we recall some comparison maps between fixed points, homotopy fixed points, geometric fixed
points and Tate constructions.

Definition 2.3. Let C = Cp ⊂ Cpn = G and Ḡ = G/C ∼= Cpn−1 . Let λ = C(1) be the basic faithful

G-representation of complex rank one, and Sλ its one-point compactification. Let ∞λ be the direct sum
of a countable number of copies of λ. Its unit sphere S(∞λ) = EG is a free contractible G-CW space,

and its one-point compactification S∞λ = ẼG sits in a G-homotopy cofiber sequence EG+ → S0 → ẼG,
where the first map collapses EG to the non-basepoint.

Let X be a G-spectrum, in the sense of [14], and consider the vertical map

EG+ ∧X //

≃G

��

X //

��

ẼG ∧X

��

EG+ ∧ F (EG+, X) // F (EG+, X) // ẼG ∧ F (EG+, X)

of horizontal G-homotopy cofiber sequences. Passing to G-fixed point spectra we obtain a vertical map

XhG
N

// XG R
//

Γn

��

ΦC(X)Ḡ

Γ̂n

��

XhG
Nh

// XhG Rh

// XtG

of horizontal homotopy cofiber sequences, often called the norm–restriction sequences [10, Diag. (C),
(D)]. Here

XhG = EG+ ∧G X (homotopy orbits)

XhG = F (EG+, X)G (homotopy fixed points)

XtG = [ẼG ∧ F (EG+, X)]G (Tate construction)

and there is a preferred Ḡ-equivariant equivalence

[ẼG ∧X ]C
≃
−→ ΦC(X) (geometric fixed points)

inducing the upper right hand equivalence [ẼG∧X ]G ≃ ΦC(X)Ḡ. For more details, see e.g. [12, Prop. 2.1].

The right hand square above is homotopy cartesian, so Γn is (W,k)-coconnected if and only if Γ̂n is
(W,k)-coconnected. This observation can be combined with the conclusions of all of the theorems below.

We briefly write H∗(X) = H∗(X ;Fp) for the mod p homology of any spectrum, and say that H∗(X)
is of finite type if each group Hm(X) is finite.

Theorem 2.4. Let X be a G-spectrum with π∗(X) bounded below and H∗(X) of finite type. Suppose that

Γ1 : XC → XhC and Γn−1 : ΦC(X)Ḡ → ΦC(X)hḠ are (W,k)-coconnected maps. Then Γn : XG → XhG

is (W,k)-coconnected.

Informally, this theorem asserts that if XC → XhC and Y Ḡ → Y hḠ are close to p-adic equivalences,
for Y = ΦC(X), then XG → XhG is close to a p-adic equivalence.
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Theorem 2.5. Let X be a Cpn-spectrum. Suppose, for each of the geometric fixed point spectra

Y = X , ΦCp(X) , . . . , ΦC
pn−1 (X) ,

that π∗(Y ) is bounded below, H∗(Y ) is of finite type and Γ1 : Y Cp → Y hCp is (W,k)-coconnected. Then

Γn : XCpn → XhCpn is (W,k)-coconnected.

The proofs of Theorems 2.4 and 2.5 are given near the end of Section 3. The bounded below and finite
type mod p hypotheses enter in the proof of Proposition 3.8, where we make use of the convergence of
an inverse limit of Adams spectral sequences.

The following construction was introduced by the first author, in the context of functors with smash
product (FSPs). See [5, §3] for a published account. We are principally interested in the case r = pn.

Definition 2.6. Let B be any symmetric spectrum. The r-th smash power B∧r can be defined as a
Cr-spectrum by the construction

B∧r = sdrTHH(B)0 = THH(B)r−1

from [12, §2.4]. Its V -th space is defined by a homotopy colimit

(B∧r)V = hocolim
(i1,...,ir)∈Ir

Map(Si1 ∧ · · · ∧ Sir , Bi1 ∧ · · · ∧Bir ∧ SV ) ,

and Cr cyclically permutes the smash factors, in addition to its natural action on SV .

To ensure that B∧r has the same naively equivariant homotopy type as the ordinary r-fold smash
product B ∧ · · · ∧ B, it suffices to assume that B is flat and convergent, see e.g. [17, Lem. 5.5]. Here-
after, when referring to B∧r we always assume that B has first been replaced by an equivalent flat
and convergent symmetric spectrum. In [17, Thm. 5.13], the third and fourth authors prove that
Γ1 : (B∧p)Cp → (B∧p)hCp is a p-adic equivalence whenever π∗(B) is bounded below and H∗(B) is of
finite type. This provides the inductive beginning for the following application of Theorem 2.5.

Theorem 2.7. Let B be a symmetric spectrum with π∗(B) bounded below and H∗(B) of finite type.

Then

Γn : (B∧pn

)Cpn → (B∧pn

)hCpn

is a p-adic equivalence, for each n ≥ 1.

When B is a symmetric ring spectrum, its topological Hochschild homology THH(B) is a T-spectrum
[12, §2.4], where T is the circle group. It is not true in general that Γ1 : THH(B)Cp → THH(B)hCp is a
p-adic equivalence, see e.g. [12, Prop. 5.3] and [21, Thm. 4.7], but when it is “approximately” true, then
the following theorem is useful.

Theorem 2.8. Let B be a connective symmetric ring spectrum with H∗(B) of finite type, and suppose

that

Γ1 : THH(B)Cp → THH(B)hCp

is (W,k)-coconnected. Then

Γn : THH(B)Cpn → THH(B)hCpn

is (W,k)-coconnected, for each n ≥ 2.

The proofs of Theorems 2.7 and 2.8 are given at the end of Section 3.
In the case B = S there is a G-equivariant equivalence THH(S) ≃ SG, and Γ1 is a p-adic equivalence

by the classical Segal conjecture. Also in the cases B = MU (the complex cobordism spectrum) and
B = BP (the Brown–Peterson spectrum) it turns out that Γ1 for THH(B) is a p-adic equivalence, as the
third and fourth authors show in [16, Thm. 1.1]. This provides examples with k = −∞ for the following
special case.

Example 2.9. Taking W = S−1/p∞, the assumption in Theorem 2.8 is that the p-completed map
Γ1 : (THH(B)Cp)p̂ → (THH(B)hCp)p̂ is k-coconnected, i.e., that it induces an injection on πk and an
isomorphism on π∗ for ∗ > k, and the conclusion is that the p-completed map

Γn : (THH(B)Cpn )p̂ → (THH(B)hCpn )p̂

is also k-coconnected, for all n ≥ 2. This recovers a theorem of Tsalidis [24, Thm. 2.4].
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Example 2.10. Taking W = F (V, S) and V = V (1) = S/(p, v1), the Smith–Toda complex of chromatic
type 2 (for p odd), the assumption in Theorem 2.8 is that

V (1)∗(Γ1) : V (1)∗THH(B)Cp → V (1)∗THH(B)hCp

is k-coconnected, and the conclusion is that

V (1)∗(Γn) : V (1)∗THH(B)Cpn → V (1)∗THH(B)hCpn

is also k-coconnected, for all n ≥ 2. This recovers the generalization of Tsalidis’ theorem used by Ausoni
and the fourth author [3, Thm. 5.7] in the special case when B = ℓ, the Adams summand of connective
p-local complex K-theory, and k = 2p − 2. The generalized result is used again in [4, Cor. 5.9], for
B = ℓ/p = k(1), the first connective Morava K-theory.

3. Constructions and proofs

Definition 3.1. Let λ̄ be the basic faithful Ḡ-representation of complex rank one. Like in Definition 2.3,

we let EḠ = S(∞λ̄) and ˜EḠ = S∞λ̄. The usual map from the homotopy colimit to the categorical colimit

is a Ḡ-equivalence hocolimj S
jλ̄ ≃

−→ S∞λ̄ = ˜EḠ. The pullback of λ̄ along the canonical projectionG → Ḡ
is the p-th tensor power λp = C(p) of λ, and we get a G-equivalence

hocolim
j

Sjλp ≃
−→ S∞λp

= ˜EḠ ,

where the right hand side is implicitly viewed as a G-space by pullback along G → Ḡ. The G-map
Sjλp

→ S(j+1)λp

in the colimit system is given by smashing Sjλp

with the one-point compactification
z : S0 → Sλp

of the inclusion {0} ⊂ λp.

Lemma 3.2. Let X be a G-spectrum. There is a natural homotopy cofiber sequence

holimj (Σ
−jλp

X)G // (XC)Ḡ
Γn−1

// (XC)hḠ ,

where the right hand map is Γn−1 for the Ḡ-spectrum XC.

Proof. By mapping the Ḡ-homotopy cofiber sequence EḠ+ → S0 → ˜EḠ into XC , we get the homotopy
(co-)fiber sequence

F (˜EḠ,XC)Ḡ → (XC)Ḡ
Γn−1

−→ F (EḠ+, X
C)Ḡ .

At the left hand side we have a natural chain of equivalences

F (˜EḠ,XC)Ḡ ≃ F (hocolim
j

Sjλ̄, XC)Ḡ ≃ holim
j

F (Sjλ̄, XC)Ḡ

≃ holim
j

(Σ−jλ̄(XC))Ḡ ≃ holim
j

((Σ−jλp

X)C)Ḡ ≃ holim
j

(Σ−jλp

X)G .

This gives the asserted homotopy cofiber sequence. �

Proposition 3.3. Let X be a G-spectrum. There is a vertical map of homotopy cofiber sequences

holimj Φ
C(Σ−jλp

X)Ḡ //

��

ΦC(X)Ḡ
Γn−1

//

Γ̂n

��

ΦC(X)hḠ

(Γ̂1)
hḠ

��

holimj (Σ
−jλp

X)tG // XtG
Γn−1

// (XtC)hḠ .

The right hand horizontal maps are Γn−1 for the Ḡ-spectra ΦC(X) ≃ [ẼG ∧ X ]C and XtC = [ẼG ∧
F (EG+, X)]C, respectively.

Proof. We replace X in the lemma above by the G-spectra ẼG ∧X and ẼG ∧ F (EG+, X). This gives
the two claimed homotopy cofiber sequences, in view of the Ḡ-equivalences

[Σ−jλp

(ẼG ∧X)]C ≃ [ẼG ∧ Σ−jλp

X ]C ≃ ΦC(Σ−jλp

X)

and
[Σ−jλp

(ẼG ∧ F (EG+, X))]C ≃ [ẼG ∧ F (EG+,Σ
−jλp

X)]C = (Σ−jλp

X)tC ,

respectively. These follow from the G-dualizability of Sjλp

. �

Lemma 3.4. If Γ̂1 : ΦC(X) → XtC is (W,k)-coconnected, then (Γ̂1)
hḠ is (W,k)-coconnected.
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Proof. This is a special case of a more general result. The homotopy fixed point spectral sequence

E2
s,t = H−s(G;πt(Y )) =⇒ πs+t(Y

hG)

shows that Y hG is k-coconnected whenever Y is a k-coconnected G-spectrum. Commutation of function
spectra, homotopy fibers and homotopy fixed points shows that fhG : Y hG

1 → Y hG
2 is (W,k)-coconnected

whenever f : Y1 → Y2 is a (W,k)-coconnected G-map. The lemma follows by applying this to the case

of the Ḡ-map Γ̂1. �

Definition 3.5. The Greenlees filtration [9, p. 437] of ẼG = S∞λ is an integer-indexed G-cellular
filtration of spectra, whose 2i-th term is Siλ for each i. The (2i + 1)-th term is obtained from Siλ

by attaching a single G-free (2i + 1)-cell, and S(i+1)λ is in turn obtained from it by attaching a single
G-free (2i + 2)-cell. The composite G-map Siλ → S(i+1)λ is given by smashing Siλ with the one-point
compactification τ : S0 → Sλ of the inclusion {0} ⊂ λ. The Greenlees filtration induces an increasing

filtration of XtG = [ẼG ∧ F (EG+, X)]G, and a tower of homotopy cofibers with (2i+ 1)-th term

(3.1) XtG〈i〉 = [ẼG/Siλ ∧ F (EG+, X)]G ,

which we call the Tate tower. The associated spectral sequence is the homological G-equivariant Tate
spectral sequence

Ê2
s,t = Ĥ−s(G;Ht(X))

converging to the continuous homology groups

Hc
∗
(XtG) = lim

i
H∗(X

tG〈i〉)

of XtG, when X is a bounded below spectrum with H∗(X) of finite type. See [17, Def. 2.3, Prop. 4.15].
Note that i tends to −∞ in this limit. We shall also refer to the continuous cohomology groups

H∗

c (X
tG) = colim

i
H∗(XtG〈i〉) ,

and note that Hc
∗
(XtG) ∼= H∗

c (X
tG)∗ (the Hom dual) when H∗(X) is bounded below and of finite type,

because then each H∗(X
tG〈i〉) is also of finite type.

Definition 3.6. Let the G-map ξ : Sλ → Sλp

of representation spheres be the suspension of the standard
degree p covering map π : S(λ) → S(λp) of unit circles, as in the following vertical map of horizontal
G-homotopy cofiber sequences:

S(λ)+ //

π+

��

S0 τ
// Sλ

ξ

��

S(λp)+ // S0 z
// Sλp

.

We note that ξ is not induced by a linear map. It has degree p on the top cell, so ξ∗ : H∗(S
λ) →

H∗(S
λp

) is the zero homomorphism, since we work with reduced homology and mod p coefficients.

Proposition 3.7. Let X be a G-spectrum with H∗(X) bounded below. Then

lim
j

Hc
∗
((Σ−jλp

X)tG) = lim
i,j

H∗((Σ
−jλp

X)tG〈i〉) = 0

and

colim
j

H∗

c ((Σ
−jλp

X)tG) = colim
i,j

H∗((Σ−jλp

X)tG〈i〉) = 0 .

Proof. In the notation of (3.1) we have a natural equivalence

ν : (Σ−jλp

X)tG〈i〉
≃
−→ (Σj(λ−λp)X)tG〈i−j〉

for each i and j. It is obtained from the G-equivalence

S∞λ ∧ Sjλ

Siλ
∧ F (EG+,Σ

−jλp

X)
≃
−→

S∞λ

S(i−j)λ
∧ F (EG+, S

jλ ∧ Σ−jλp

X)

(see [14, III.1]) by passage to G-fixed points. Under these equivalences, the z-tower map

z : (Σ−(j+1)λp

X)tG〈i〉 → (Σ−jλp

X)tG〈i〉

induced by smashing with z : S0 → Sλp

is compatible with the composite of the Tate tower map

τ : (Σ(j+1)(λ−λp)X)tG〈i−j−1〉 → (Σ(j+1)(λ−λp)X)tG〈i−j〉
5



induced by smashing with τ : S0 → Sλ, and the ξ-tower map

ξ : (Σ(j+1)(λ−λp)X)tG〈i−j〉 → (Σj(λ−λp)X)tG〈i−j〉

induced by smashing with ξ : Sλ → Sλp

, in the sense that the following diagram commutes up to
homotopy:

[ẼG/Siλ ∧ F (EG+,Σ
−(j+1)λp

X)]G

ν

≃
++❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

z

��

[ẼG/S(i−j−1)λ ∧ F (EG+,Σ
(j+1)(λ−λp)X)]G

τ

��

[ẼG/S(i−j)λ ∧ F (EG+,Σ
(j+1)(λ−λp)X)]G

ξ

��

[ẼG/Siλ ∧ F (EG+,Σ
−jλp

X)]G

ν

≃

++❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

[ẼG/S(i−j)λ ∧ F (EG+,Σ
j(λ−λp)X)]G .

To see this, note that the diagram

Sλ ∧ F (EG+, S
0 ∧X)

≃

ν
//

z

��

S0 ∧ F (EG+, S
λ ∧X)

τ

��

Sλ ∧ F (EG+, S
λ ∧X)

ξ

��

Sλ ∧ F (EG+, S
λp

∧X) Sλ ∧ F (EG+, S
λp

∧X)

commutes up to G-homotopy (because the twist map Sλ∧Sλ ∼= Sλ∧Sλ is G-homotopic to the identity),

replace X with Σjλ−(j+1)λp

X , smash with ẼG/S(i−j−1)λ and pass to G-fixed points.
Passing to homology, we get that z∗ is strictly compatible with the composite ξ∗τ∗ under the isomor-

phisms ν∗. Next pass to continuous homology by forming limits over i along the homomorphisms τ∗.
Then the homomorphism

z∗ : Hc
∗
((Σ−(j+1)λp

X)tG) → Hc
∗
((Σ−jλp

X)tG)

is identified with the homomorphism

(3.2) ξ∗ : Hc
∗
((Σ(j+1)(λ−λp)X)tG) → Hc

∗
((Σj(λ−λp)X)tG) ,

so it suffices to show that the limit over j of the latter homomorphisms is zero. Let

Ê2
s,t(j) = Ĥ−s(G;Ht(Σ

j(λ−λp)X)) =⇒ Hc
s+t((Σ

j(λ−λp)X)tG)

be the homological Tate spectral sequence for the j-th term in the ξ-tower.
By naturality of the Tate spectral sequence, the homomorphism ξ∗ above is compatible with the

spectral sequence map Ê2
∗∗
(j + 1) → Ê2

∗∗
(j) that is induced on Tate cohomology by the G-module

homomorphism

ξ∗ : H∗(Σ
(j+1)(λ−λp)X) → H∗(Σ

j(λ−λp)X) .

This homomorphism is zero, since ξ∗ : H∗(S
λ) → H∗(S

λp

) is zero. Hence the map of spectral sequences
is also zero. It follows that the homomorphism ξ∗ in (3.2) strictly reduces the Tate filtration (= s) of
each nonzero continuous homology class. Equivalently, ξ∗ strictly increases the vertical degree (= t) of
the spectral sequence representative of each nonzero class.

By assumption, there is an integer ℓ such that Ht(X) = 0 for all t < ℓ. Then Ê2
s,t(j) = Ê∞

s,t(j) = 0 for

t < ℓ and any j. If x = (xj)j is an arbitrary element of limj H
c
∗
((Σj(λ−λp)X)tG), then xj = ξm

∗
(xj+m)

for each m ≥ 0. If xj is represented in vertical degree t, then xj+m must be represented in vertical
degree ≤ (t−m). Choosing m so large that t−m < ℓ, it follows that xj+m = 0, which implies xj = 0.
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Repeating the argument for each j we see that x = 0, so limj H
c
∗
((Σj(λ−λp)X)tG) must be the trivial

group.
Let M = colimj H

∗

c ((Σ
−jλp

X)tG). Then the Hom dual M∗ is the limit group we just showed is zero,
and M injects into its double Hom dual M∗∗, so M = 0 as well. �

Proposition 3.8. Let X be a G-spectrum such that π∗(X) is bounded below and H∗(X) is of finite type.

Then the p-adic completion Yp̂ of

Y = holim
j

(Σ−jλp

X)tG

is contractible. Hence the map Γn−1 : XtG → (XtC)hḠ is a p-adic equivalence.

Proof. The spectrum Y is the homotopy limit over i and j of the spectra

(Σ−jλp

X)tG〈i〉 = [ẼG/Siλ ∧ F (EG+,Σ
−jλp

X)]G ,

which can be rewritten as

(ẼG/Siλ ∧ Σ−jλp

X)hG

by the Adams equivalence [14, II.8.4], since ẼG/Siλ is a free G-CW spectrum. Each of these is bounded
below with mod p homology of finite type. Hence there is an inverse limit Adams spectral sequence

E∗∗

2 = Ext∗∗A (M,Fp) =⇒ π∗(Yp̂ )

converging to the p-adic homotopy of that homotopy limit (see [8, Prop. 7.1] and [17, Prop. 2.2]), where

M = colim
j

H∗

c ((Σ
−jλp

X)tG) .

The latter A -module was shown to be zero in Proposition 3.7, hence the E2-term is zero and Yp̂ is
contractible. The second conclusion follows from Proposition 3.3. �

Proof of Theorem 2.4. Consider the diagram in Proposition 3.3. By assumption, the maps

Γn−1 : ΦC(X)Ḡ → ΦC(X)hḠ and Γ1 : XC → XhC

are (W,k)-coconnected. Hence Γ̂1 : ΦC(X) → XtC is (W,k)-coconnected, so by Lemma 3.4 also

(Γ̂1)
hḠ : ΦC(X)hḠ → (XtC)hḠ

is (W,k)-coconnected. By Proposition 3.8, the map Γn−1 : XtG → (XtC)hḠ is a p-adic equivalence, hence
(W,−∞)-coconnected, by our standing assumption that W is in the localizing ideal of spectra generated

by S−1/p∞. It follows easily that Γ̂n : ΦC(X)Ḡ → XtG is (W,k)-coconnected, which is equivalent to
Γn : XG → XhG being (W,k)-coconnected. �

Proof of Theorem 2.5. This follows by induction on n, using Theorem 2.4 and the observation that

ΦCp(ΦCpe (X)) ∼= ΦC
pe+1 (X)

for all 0 ≤ e < n. �

Proof of Theorem 2.7. This follows from Theorem 2.5 in the caseX = B∧pn

, W = S−1/p∞ and k = −∞,
once we show that for each 0 ≤ e < n there is a Cpn−e-equivalence

Y = ΦCpe (B∧pn

) ≃ B∧pn−e

,

the right hand side is bounded below with mod p homology of finite type, and Γ1 : Y Cp → Y hCp is a
p-adic equivalence. The first claim follows from the proof in simplicial degree 0 of [12, Prop. 2.5]. Writing

Y ≃ Z∧p, where Z = B∧pn−e−1

is bounded below with H∗(Z) of finite type, the other claims also follow,
since Γ1 : (Z∧p)Cp → (Z∧p)hCp is a p-adic equivalence by [17, Thm. 5.13], generalizing [6, §II.5]. �

Proof of Theorem 2.8. There is a Cpn−1 -equivalence

r : ΦCpTHH(B)
≃
−→ THH(B)

(the cyclotomic structure map of THH(B), see [12, §2.5]), whose e-fold iterate is a Cpn−e-equivalence

ΦCpe (THH(B)) ≃ THH(B). It is clear from the simplicial definition that THH(B) is connective and
has mod p homology of finite type, hence the theorem follows from Theorem 2.5. �
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