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Rationality for the book

In Deterministic Control, if time is regarded as either continuous or discrete
then two models can be set, which combined yield the so called hybrid system.
The state representation of the continuous model evolves following an ordinary
differential equation (ODE) of the form

ẋ(t) = A(t)x(t) +B(t)v(t), (1)

where t ≥ 0 is the time, x = x(t) is the state and v = v(t) is the control. The
state x (in Rn) represents all variables needed to describe the physical system
and the control v (in Rm) contains all parameters that can be modified (as
a controller’s decision) as time passes. The matrices A(t) and B(t) are the
coefficients of the system.

The first question one may ask is the validity of the model, which lead to the
identification of the coefficients. Next, one may want to control the system, i.e.,
to start with an initial state x(t0) = x0 and to drive the system to a prescribed
position x(t1) = x0. Variations of this question are well known and referred to
as controllability.

Furthermore, another equation appear,

y(t) = C(t)x(t), (2)

where y = y(t) is the observation of the state and C(t) is another coefficient.
Clearly, y is in Rd with d ≤ n. Thus, the problem is to reconstruct the state
{x(t) : t0 ≤ t ≤ t1} based on the observations {y(t) : t0 ≤ t ≤ t1}, which is
called observability.

Another key question is the stabilization of the system, where one looks for
a feedback, i.e., v(t) = K(t)y(t) such that the closed system of ODE (1) and
(2) is stable.

Variation of theses four basic questions: identification, controllability, ob-
servability and stabilization are solved in text books.

To each control (and state and observation) a cost (or profit) is associated
with the intention of being minimized (or maximized), i.e., a performance index
of the form

J =

∫ T

0

[y(t)]∗R(t)y(t)dt+

∫ T

0

[v(t)]∗N(t)v(t)dt (3)

is to be optimized. This is called an optimal control problem.

vi
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Two methods are available to solve optimal control problems, namely, the
Pontryagin maximum principle and the Bellman dynamic programming. The
above (1), (2), (3) linear-quadratic model can be successfully solved by either
method. The maximum principle transforms the given (infinite-dimensional
optimization) problem into ODE with initial and terminal conditions and a
finite-dimensional optimization problem, i.e., a Lagrange multiplier technique.
The dynamic programming transforms the given problem into a non-linear par-
tial differential equation (PDE). There is a vast bibliography under the subject
optimal control, e.g. classic references such as the text book Bertsekas [23],
and Fleming and Rishel [83] or more recently Bardi and Capuzzo-Dolcetta [9],
among others.

The ODE defining the evolution equations (of the state and the observation)
may be nonlinear and the performance index may have a more general form.
Moreover, the state could be distribute, i.e., the evolution equation becomes a
PDE. Again, there are many references on the subject.

Both, the maximum principle and the dynamic programming are innova-
tions over the classic calculus of variations. The positive part of the maximum
principle is the preservation of the equation type (i.e., if the evolution equation
is an ODE then the maximum principle equation is an ODE), and the negative
part is the open-loop solution (i.e., the optimal control is of the form v = v(t)).
On the other hand, the positive part of the dynamic programming is the closed-
loop or feedback control (i.e., the optimal control has the form v = K(t, x(t))),
while the negative part is the new equation (i.e., if the evolution equation is an
ODE then the dynamic programming equation is an PDE). It is clear that this
material is built on the ODE theory.

In Stochastic Control, an uncertainty component is added to the previous
model. The coefficients becomes random and the evolution equation includes a
noise. Perhaps the most typical example is presented in signal processing, where
the signal (say x) has some noise. The ODE becomes stochastic

ẋ(t) = g(t, x(t), v(t)) + (noise). (4)

Since Gauss and Poisson distributions are the main examples of continuous
and discrete distributions, the driving noise is usually a Wiener process or a
Poisson measure. Again, the four basic questions are discussed. Observabil-
ity becomes filtering, which is very importance. Perhaps the most practical
situation is the case with a linear state space and linear observation, which pro-
duces the celebrated Kalman filter. Clearly, an average performance index is
used for the optimal stochastic control. Again, there is a vast bibliography on
stochastic control from variety of points of view, e.g., Fleming and Soner [84],
Morimoto [184],Oksendal and Sulem [191], Yong and Zhou [261], Zabczyk [263],
among others.

It is clear that stochastic control is mainly based on the theory of stochastic
differential equations, which is the main subject of this book.
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A Short History

This book-project was developed over a period of many years, first I wanted to
collect a number of useful facts about diffusion with jumps, but in the doing
so, other ideas appear and I decided to write the material in a lecture notes
form, with more details, mainly for my own use. Part of this material was used
to deliver some graduate course here and there, but, little by little the project
becomes too big or too long for me.

With time, several improvement were made, and searching for possible col-
laborators, first in my mind and latter in the real world, I was disappointed with
my first choice, but very please later on. In particular, with the help of Prof.
Luciano Tubaro, a revision of several points were successfully implemented, but,
instead of culminated with a regular book published (with Birkhäuser, where
we were in the process of signing the book contract) several years ago, more
attention was given to the research papers in progress and this book becomes
inactive, again. Recently, I reshaped and shorted a little the content to submit
it to the American Mathematical Society, and about a year later, a negative
report (with no specific points discussed) was sent to me, staying in general
lines, that the book should be rewritten and it is of no use as it is. Naturally,
I was not happy with the decision, but the reviewer was certainly, an impor-
tant mathematician specialized in probability. After recovering from this fact,
I sent a revised version to another nonprofit publisher (Princeton Press) and
after almost another year, while inquiring for a report on my book, I was told
how tricky is to market books nowadays and I was asked for specific features
that would make this book marketable.

At this point, perhaps I should mention my experience with my two previous
books (with Prof. M.G. Garroni), where we dedicated a continuous effort of
more than 7 years (although not exclusively!) to write about 600 pages on the
Green function and having about 5% of the earning (to be shared with my co-
author) of sell profits, essentially to libraries in the world. Thus, with all this
short history, I intent to justify my decision of making this internet published
book.

Thanks

I would like to express my sincere thanks to Luciano Tubaro for his help in
several portions of this book, and to several colleagues (a long undisclosed list
goes here) for their comments on certain part and versions of this “unfinished”
book. Last, but not less, I owe a great deal of gratitude to my wife, Cristina, who
gave me moral support during the many years of preparation and realization of
this book.
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Preface

The purpose of this book is to develop a solid foundation on Stochastic Differ-
ential Equations so that Stochastic Optimal Control can be widely treated. A
solid course in measure theory and Lebesgue spaces is a prerequisite, while some
basic knowledge in functional spaces and probability is desired. The beginner
will find several entry levels to the text, while the expert may access any Chap-
ter (or Section) with minimum reference to previous material. Each Chapter
has been kept as independent as possible.

A quick look at the contents will convince the reader that actually, each
chapter could be developed into a full lecture notes. However our choice is to
comfortably place ourselves within probability (stochastic processes) and (func-
tional) analysis, to be able to properly describe the mathematical aspect of the
stochastic differential equations needed for the dynamic programming technique,
specifically, for controlled diffusion processes with jumps in a d-dimensional re-
gion. In a way, this material may be called Complements of Stochastic Analysis
which could be used as a neutral introduction to stochastic optimal control,
without any direct application, only the state of the system is considered.

Starting at a good elementary level of measure theory, the first and sec-
ond chapters are an introduction to Markov-Feller processes, in the form of an
extended summary of what may be necessary to consult (to follow our main
subject). Thus, Chapter 1 is essentially addressed to the analyst with little
background in probability while Chapter 2 presents an overview of semigroups.
Only precise references to proofs are given and therefore these two first chapters
are hard to read for the first time. Moreover, they may be considered as service
chapters, where notation and fundamental concepts are briefly discussed.

Our main material begins in Chapter 3, where we study continuous and right-
continuous with left-hand limits stochastic processes, locally bounded variation
processes, martingales, piecewise deterministic processes and Lévy processes.
Chapter 4 treats Gaussian processes, random measures, stochastic integrals and
differentials. Chapter 5 is dedicated to the construction of d-dimensional (con-
trolled) diffusion processes with jumps, by means of stochastic ordinary differen-
tial equations and martingale problems. Basic proofs are kept to be a minimum
while focussing on estimates and key concepts. Each of these first five chapters
is rather independent, in the sense that the material covered in each one can be
considered as a step further into the neighborhood of Markov processes.

The reader with a good knowledge in Markov processes should skip the
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first three chapters, which should be taken as a short guided tour in stochastic
analysis. Moreover, Chapter 3 can be viewed as a complement to the theory
of processes with continuous sample paths, where more emphasis is given to
Markov jump processes. Since some ideas of the main proofs are included,
Chapter 3 is not so informal as the first two chapters. In Chapter 4, most of
the details are given, the center is stochastic integration and differentials, but
the focus is on estimates. This Chapter 4 can be skipped too, in a first reading,
and coming back to it later if needed.

Someone familiar with Wiener processes and Itô stochastic integration will
begin reading Chapter 4, and occasional go back to Chapter 3 to clear up some
points in the discussion, and eventually to the end of Chapter 2, where second
order integro-differential operators are briefly treated. Chapters 5 starts with
stochastic differential equations, to end with the diffusion processes with jumps,
as the main example of Markov-Feller processes. This is a formal chapter, the
style theorems and proofs is used, and again, the focus is on estimates. Next,
Chapters 6 and 7 discuss advanced topics in stochastic differential equations,
e.g., oblique boundary conditions, backward equations and other more analytic
tools.

In a way, the introduction to each chapter is essentially a delimiter (on the
style) to test the reader’s background necessary to understand what follows.
To complement the theory, some exercises are found only in Chapter 1. Other
chapters are more lecture style, where the main points are carefully treated, but
the instructor (or reader) should complement the theory.

Depending on the background of the reader, this book begins in Chapter 1
(hard to start there, but possible), or in Chapter 3 (adequate level in stochastic
processes), or in Chapter 4 (good level in Markov processes), or in Chapter 5
(good level in martingales), or in Chapter 6 (advanced level in stochastic differ-
ential equations). Eventually, the reader should go back to previous Chapters
(and the references mentioned there to check the proofs of some basic results)
and keep on the side the analysis view point of Chapter 2. Essentially, each of
the five Chapters is an independent unit, which may be accessed directly. The
last Chapter is mainly addressed to the expert in the field, where the theory is
well-known.

Even if the heart of the book starts with Chapter 5, the beginner should
realize that not only Chapters 5, 6, and 7 are relevant and worth to study in
this area, but the whole path throughout the various topics briefly discussed in
previous chapters are necessary to appreciate the full implication of the theory
of stochastic differential equation with jumps.

Michigan (USA), Jose-Luis Menaldi, April 2008
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Stochastic Processes with
Jumps
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Chapter 1

Probability Spaces

The purpose of this chapter is to supply the readers (who have taken a solid
course in measure and integration theory but have little background in proba-
bility theory) with a crash introduction to stochastic processes. The focus is the
neighborhood of Markov processes in continuous time. The first reading may be
a little hard, since only references to proofs are given. The last section is only to
complement the subject, some of the exercises are not so simple exercises, basi-
cally the reader should consult the references for the proofs if exercises are under
consideration. Let us mention that a comprehensive introduction to probability,
assuming measure theory, can be found in Stromberg [237] and in Stroock [238],
among others. For instance, even without assuming measure theory, an intro-
duction to probability can be found in Taylor [248], while an analysis oriented
course on diffusion processes is given in Krylov [141]. An extensive classic study
of the general theory of processes can be found in Dellacherie and Meyer [58],
Gihman and Skorohod [97], Rao [208] and Sharpe [225]. For a complete dis-
cussion for foundation of probability, the reader may check the treatises De
Finetti [57] and Loève[159], among many others.

1.1 Random Variables

Let (Ω,F) be a measurable space i.e., F is a σ-algebra of subsets in Ω. A random
variable is a measurable mapping on (Ω,F), e.g. a real random variable x is
a measurable function from (Ω,F) into (R,B), where B = B(R) is the Borel
σ-algebra of R. Most of the information that we are interested in of a random
variable x is contained in the σ-algebra generated by x i.e., x−1(B) = {F ∈ F :
x(F ) ∈ B}. Thus if x is a characteristic (or indicator) function

x(ω) =

{
1 if ω ∈ F,
0 if ω ∈ Ω r F,

for some F in F , then x−1(B) = {Ω, ∅, F,Ω r F}. If (Ω,F) and (Ω′,F ′) are
two measurable spaces, ξ : Ω → Ω′ and x : Ω → R are two random variables,

2



CHAPTER 1. PROBABILITY SPACES 3

then x is σ(ξ)-measurable, i.e., x−1(B) ⊂ ξ−1(F ′), if and only if there exists
a measurable map η : Ω′ → R such that x(ω) = η(ξ(ω)) for any ω in Ω. This
is proved by means of a monotone class argument, see Exercises 1.2 and 1.4.
Moreover, this remains true if R is replaced by a Polish space, i.e., a complete
separable metric space.

A stochastic process is a collection of random variables indexed by some
set e.g., a real valued stochastic process X = {Xt : t ∈ T} is a family of
measurable functions Xt : Ω → R, with t ∈ T. Sometimes, the same process
is denoted by X = {X(t) : t ∈ T}. Certainly, we can replace R with Rd in
the previous discussion with almost not conceptual changes. Usually, when the
random variables are indexed by a discrete set (countable set of isolated and
totally ordered points) i.e. {. . . ,−1, 0, 1, . . . } or {1, 2, . . . }, we speak of a random
sequence or a time series. In this context, we can view a time series as a random
variable with values in R∞, the set of real valued sequences {(x1, x2, . . . ) : xi ∈
R, ∀i}. Here, we endowed R∞ with the product topology and its associated
Borel σ-algebra (e.g., Shiryayev [227]). A similar argument can be applied in
general, but the discussion is more delicate. Thus, it is preferable to reserve the
term process for uncountable index set T.

When the index set T is uncountable with a natural σ-algebra on it (for
instance T is an interval), we restrict our attention to measurable stochastic
process X i.e., we assume that the function X : Ω × T → R is measurable.
Moreover, if the index set T has a given topology and the stochastic process takes
values in a topological space i.e., Rd, then the following notions are necessary

Definition 1.1 (separable). A d-dimensional stochastic process {Xt : t ∈ T},
T ⊂ [0,+∞) is separable if there exists a countable dense set of indexes I ⊂ T
(called separant) such that for any t in T and any ω in Ω there exists a sequence
{tn : n = 1, 2, . . . } of elements in I which is convergent to t and such that
X(tn, ω) converges to X(t, ω).

For instance, the reader may want to take a look at the book by Meyer [179,
Chapter IV] to realize the complexity of this notion of separability.

Unless otherwise stated, when referring to a stochastic process {Xt : t ∈ T}
in a measurable space (Ω,F), when T is a topological space, we mean a measur-
able and separable stochastic process, as understood from the context. Thus we
denote by L0(Ω× T,Rd) the set of measurable stochastic processes with values
in Rd. Naturally, we can identify Xt(ω) with a measurable function in t, for
each fixed ω, so that L0(Ω× T,Rd) = L0(Ω,L0(T,Rd)) with the corresponding
product σ-algebra (see Exercise 1.5). Thus we may look at a d-dimensional
stochastic process as a random variable with values in L0(T,Rd). On the other
hand, we may need to consider processes continuous in probability (see Sec-
tion 1.6 Versions of Processes) which are not expressible in terms of random
variables.

Definition 1.2. A d-dimensional stochastic process {Xt : t ∈ T}, T ⊂ [0,+∞)
is continuous if for any ω ∈ Ω the function t 7→ Xt(ω) is continuous.
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Note that in the previous definition, the continuity is used as a global con-
dition. Thus, if we denote by C0(T,Rd) the set of continuous functions, we
may regard a d-dimensional stochastic process as a random variable with values
in C0(T,Rd), provided a σ-algebra is defined on it. Similarly, we may define
right (left) continuous and increasing (decreasing, locally bounded variation)
processes.

When an order is given on the index set T , most of the information of a
stochastic process X is contained in the history σ-algebra, i.e., the family Ft or
F(t) defined as the minimal sub σ-algebra of F that makes the random variables
{Xs : s ≤ t} measurable. This is an increasing family of σ-algebra i.e., Fs ⊂ Ft
if s ≤ t, which is called the natural filtration associated with the stochastic
process. Most of the time, the index set T = [0,+∞). In this case, for a given
measurable and separable process {Xt : t ≥ 0} we associate a natural filtration
{Ft : t ≥ 0} as before. Certainly, X is adapted to the natural filtration i.e.,
the random variable Xt is Ft-measurable for all t ≥ 0. Also, X is progressively
measurable with respect to the natural filtration i.e., the restriction of X to the
set Ω× [0, t] is measurable with respect to the product σ-algebra Ft ×B([0, t]),
for any t ≥ 0. Here, and in what follows, B(T ) denotes the σ-algebra of Borel
subsets of T, T ⊂ Rd.

If the filtration is given a priori (independently of the stochastic process),
then we will refer to as a stochastic process being adapted or progressively mea-
surable with respect to the given filtration if the above conditions are satisfied.
Moreover, we will see later that it is convenient to normalize the filtration to
standard (or usual) conditions. As a caution, technical, we refers adapted as
“adapted and measurable”. However, note that sometimes it may be conve-
nient to consider the notion of measurable independently of adapted, in this
case, we may have a measurable process Y such that the mapping ω 7→ Y (t, ω)
is F(t)-measurable, but Y is not progressively measurable.

This is essentially how far the analysis can go on measurable spaces. As soon
as a probability measure space (Ω,F , P ) is given, any random variable is iden-
tified with its equivalence class. The same applies to processes when considered
as random variables on function spaces, e.g., RT or C(T,R). In general, we may
say that a measurable function from the sample space (Ω,F) into another mea-
surable space (E, E) is a random variable, and it is called a stochastic process
if the value spaces has the form (ET , ET ), for some set of indexes T (usually a
subset of R). Moreover, when a probability measure P is given on the measur-
able space (Ω,F) then random variables and stochastic processes are identified
with their corresponding P -equivalence classes. For a given E-valued random
variable x, the probability measure defined by Px(B) = P{x−1(B)}, B in E , is
called the distribution of x. However, for a given E-valued stochastic process
X the family of probability on En, n ≥ 1, defined by PX(B1 × · · · × Bn) =
P{X(t1, ω) ∈ B1, . . . , X(tn, ω) ∈ Bn}, B1, . . . , Bn in E , t1, . . . , tn in T, is called
the finite-dimensional distributions of X.

As long as the index set T is countable, no more detail is needed, how-
ever, for an uncountable index set T, e.g., T = [0,∞), we need to use the
notion of version and realization of a stochastic process. Indeed, for a given
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(stochastic) process {Xt : t ∈ T} on a probability space (Ω,F , P ) we say that
{Yt : t ∈ T} is a version (or a modification) of the process {Xt : t ∈ T} if
P ({ω : Xt(ω) = Yt(ω)}) = 1, for any t in T. However, given a set of a priori
properties that a process should satisfy (e.g., its finite-dimensional distributions,
an assumption of continuity or measurability on its paths, or some other condi-
tion) then realization is a process, a probability space and any other items (such
as a filtration) used to verify all required properties. Sometimes, we will refer
to processes (not necessary defined on the same probability space) having the
same finite-dimensional distribution or what is essentially the same (provided
some regularity on the paths is assumed) having the same law in ET or C(T,E),
as discussed later.

Only the case where the value set E is a complete separable metric space
(Polish space), e.g., E ⊂ Rd, endowed with the Borel σ-algebra B(E), and
the set of index T is a totally ordered complete separable metric space, e.g.,
T = [0,∞), will be discussed herein. When the set of index T is uncountable,
we impose some property (e.g., separability or continuity) on processes so that
the value space ET is replaced by better a space, e.g., EI , I countable and dense
in T , or C(T,E) as discussed later.

Sometimes when dealing with extended real-valued random variables on a
probability space (Ω,F , P ) we may need a definition of convergence in measure
for random variables which may take values ±∞ with strictly positive proba-
bility. In this context we say that a sequence {xn : n = 1, 2, . . . } of random
variables converges in measure to another random variable x if the sequence
arctan(xn) converges in measure to arctan(x) in the usual sense, equivalently, if

lim
n→∞

E{| arctan(xn)− arctan(x)|} = 0,

where E{·} denote the mathematical expectation, i.e., the integral with respect
to the probability measure P . The metric d(x, y) = E{| arctan(x)− arctan(y)|}
on the space S of extended real-valued random variables make S a complete
metric space, after the identification of two random variables whenever they are
equal almost surely. Thus a measurable process {Xt : t ≥ 0} in the previous
sense is (essentially) a Borel measurable mapping t 7→ Xt from [0,+∞) into S,
we refer to Doob [60, pp. 407–410] for more details.

A typical generalization is to consider random variables with values in a
Polish space (i.e, a complete and separable metric space), which is the analo-
gous of stochastic processes if the Polish space is a function space. Stochastic
processes are meant to model phenomenon which evolves in time in a random
way. It is usually admitted that most often statistical experiments or physical
considerations can only give information about the so-called finite-dimensional
distributions of a process (see Section 1.10 and note that two processes may
have the same finite-dimensional distributions but having not the same prob-
ability space of reference). Therefore the choice of the Polish space becomes
relevant for mathematical considerations. For instance, consider the real-valued
processes Xt(ω) = 1 for every t in [0, 1], and Yt(ω) = 1 only when t 6= ω and
Yt(ω) = 0 otherwise. It is clear that X is a continuous process while Y is (Borel)
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measurable but it is not separable. Moreover, if the probability measures (in
which they are considered) have not atoms (each single event {ω}) has zero
probability) then these two processes have the same finite-dimensional distribu-
tions and from the phenomenological viewpoint they should be considered the
same process. Mathematically, we prefers to take X.

Hence, in modeling a time-evolution random phenomenon, we are allowed to
choose a realization of the process most suitable for our mathematical purpose.
Questions like is this process continuous? really means does there exist some
process with the given finite-dimensional distributions whose paths are (almost
sure) continuous? or what is the same is there a continuous realization of
the process?. This means that we can select the probability space (Ω,F , P )
and the map X among those satisfying the prescribed properties on the finite-
dimensional distributions of the process. It will be clear by the end of this
chapter, that there is a canonical way to performing this procedure of selecting
a suitable realization such that the sample space Ω is a suitable Polish space
and X is the identity as a random variable or the coordinates mappings if viewed
as a stochastic process.

In what follows, we are going to denote indistinctly the notation P ({·}),
P (·) or P{·} for the probability measure, where the dot · represents a condition
defining a set of events.

1.2 Distributions and Independence

Let (Ω,F , P ) be a probability space i.e., P is a measure on (Ω,F) such that
P (Ω) = 1, called a probability measure. A measurable set (or a set in F) is
called an event. When a probability measure is involved, the previous concept of
random variables becomes equivalence classes of random variables. For instance
we may use the Lebesgue Banach spaces Lp = Lp(Ω,F , P ), for any 1 ≤ p ≤ ∞.
However, the study of stochastic processes is more delicate, since the family of
random variable may not be countable.

As mentioned early, the distribution (or law) of a given random variable x is
the probability measure Px induced by x on B i.e., if x is a real random variable
then its distribution is given by

Px(B) = P ({ω : x(ω) ∈ B}), ∀B ∈ B(R).

Perhaps the three most important one-dimensional laws on R are the Gaussian
(or normal) distribution, with parameters m and r > 0 [N(m, r)], which has
support on R and is given by

Pg(B) =

∫
B

(2πr)−1/2 exp(− |x−m|
2

2r )dx,

the Poisson distribution, with parameter λ > 0, which has support on N and is
given by

Pp(B) = exp(−λ)

∞∑
n=0

λn

n!
1(n∈B),
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and the exponential distribution, with parameter α > 0, which has support on
R+

0 = [0,+∞) and is given by

Pe(B) =

∫
B∩R+

0

α exp(−αx)dx.

Thus the mean and the variance are as follows (see Exercise 1.7)∫
R
xPg(dx) = m,

∫
R

(x−m)2Pg(dx) = r2,∫
R
xPp(dx) = λ,

∫
R

(x− λ)2Pp(dx) = λ,∫
R
xPe(dx) = α−1,

∫
R

[x− α−1]2Pe(dx) = α−2.

The characteristic function (or Fourier transform) of a distribution (or proba-
bility law) P on R is the complex-value function

P̂ (ξ) =

∫
R

eixξP (dx), ∀ξ ∈ R,

with i =
√
−1, and if the distribution P is on R+

0 then its Laplace transform is
also defined

P̃ (ζ) =

∫
R+

0

e−xζP (dx), ∀ζ ∈ R+
0 .

For the previous distributions we have

P̂g(ξ) = exp
(
− 1

2
rξ2 + imξ

)
,

P̂p(ξ) = exp
(
λ(eiξ − 1)

)
, P̃p(ζ) = exp

(
λ(e−ζ − 1)

)
,

P̂e(ξ) =
λ

λ− iξ
, P̃e(ζ) =

λ

λ+ ζ
.

There are others noted laws, such as the Cauchy distribution µ with parameters
m and c > 0 and the Γ-distribution ν with parameters c > 0 and α > 0 given
by

µ(B) = π−1c

∫
B

[
(x−m)2 + c2

]−1
dx, ∀B ∈ B(R),

ν(B) =
αc

Γ(c)

∫
B∩R+

0

xc−1e−αxdx, ∀B ∈ B(R+
0 ),

with

µ̂(ξ) = exp(−c|ξ|+ imξ),

ν̂(ξ) = (1− iα−1ξ)−c, ν̃(ζ) = (1 + α−1ζ)−c.
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The Cauchy distribution µ does not have a mean value (i.e, µ does not integrate
the function |x|) and the Γ-distribution has mean value equal to c/α. The ex-
ponential distribution is a particular case of the Γ-distribution, c = 1, and the
Γ-distribution with c = n/2 and α = 1/2 is referred to as the χ2-distribution
with n degrees of freedom. All these distributions are infinitely divisible, e.g.,
see Sato [220, Section 1.2, pp. 7-14].

Definition 1.3 (independence). A family A of measurable sets is (mutually)
independent (relative to the probability P ) if their elements are mutually inde-
pendent, i.e., if for any finite number of sets A1, . . . , An in A we have

P (

n⋂
i=1

Ai) =

n∏
i=1

P (Ai). (1.1)

Now, a family of σ-algebras is (mutually) independent if any finite number
of σ-algebras F1, . . . ,Fn in the family and any sets Ai in Fi we have (1.1).
Similarly, a family of random variables is (mutually) independent if the family
of their generated σ-algebras is (mutually) independent.

Actually, for brevity we say a family A of measurable sets is mutually inde-
pendent relative to the probability P , instead of saying a family A composed by
measurable sets which are mutually independent relative to the probability P .
However, in all what follows, we refer to mutually independent by saying only in-
dependent, i.e., we say a family of independent sets and a family of independent
variables (or σ-algebras).

If Ai ⊂ F is a family on a probability space (Ω,F , P ) indexed by i ∈ I,
we define {Ai : i ∈ I} as independent if for any finite number of index J ⊂ I
and for any sets Ai in Ai, i ∈ J, we have (1.1). It is clear that if H and G are
two sub σ-algebras of F , which are generated by the π-systems H0 and G0 (i.e.,
σ(H0) = H and σ(G0) = G (recall that a π-system means a collection of subsets
closed or stable under finite intersections) then H and G are independent if and
only if H0 and G0 are independent, i.e., if and only if P (H ∩ G) = P (H)P (G)
for any H in H0 and G in G0, see Exercise 1.8.

Note that given a family A of three (or more) measurable sets, we may
say that A is pairwise independent if any two subsets A1 and A2 of A are
independent, i.e., P (A1 ∩ A2) = P (A1)P (A2). Clearly, this is distinct from the
concept of mutually independent just defined. The same remark can be used for
two or more families of either sub σ-algebras or random variables. On the other
hand, two families A1 and A2 of measurable sets are (mutually or equivalently
pairwise) independent P (A1 ∩ A2) = P (A1)P (A2) for any A1 in A1 and A2

in A2. Similarly, this definition can be extended to three or more families of
measurable sets, where we need to distinguish between mutually and pairwise
independent.

Note that if A and B are independent, i.e., P (A ∩ B) = P (A)P (B), then a
simple calculation shows that A′ = Ω r A and B are also independent. As a
consequence, if Fi denotes the σ-algebra generated by Fi, i.e., Fi = {Ai,Ω r
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Ai, ∅,Ω}, then a family of measurable sets (events) {Ai : i ∈ I} is independent
if and only if the family of σ-algebras {Fi : i ∈ I} is independent.

Thus, a sequence of independent random variables {xi : i ∈ I} is independent
if and only if

P
( ⋂
j∈J
{ω : xj(ω) ∈ Aj}

)
=
∏
j∈J

P
(
{ω : xj(ω) ∈ Aj}

)
for any measurable sets Aj and any finite subset J of I. In term of the charac-
teristic functions, this is equivalent to

E
{

exp[i
∑
j∈J

αjxj ]
}

=
∏
j∈J

E
{

exp[iαjxj ]
}
,

for any constants αj and any finite subset J of I, where i =
√
−1. There is

a very close connection between the concepts of independence and Cartesian
product. If x and y are two real valued random variables, we may look at (x, y)
as a two-dimensional real valued random variable, then a direct comparison with
the definition of independence shows that the fact that x and y are independent
may be very simply expressed by the equation

P(x,y) = Px × Py,

i.e., the joint distribution of x, y is equal to the Cartesian product of the single
distributions of x and y.

• Remark 1.4. If x is a Normal distributed random variable with parameters m
and r > 0 then it characteristic function is given by

P{exp(iξx)} = exp(−1

2
r2ξ2 + imξ).

Hence, if xi, i = 1, . . . , k are independent Normal distributed random variables
with parameters mi and ri > 0 then any linear combination x = c1x1+· · ·+ckxk,
with ci real numbers, is indeed a Normal distributed random variables with
parameters m = m1 + · · · + mk and r =

√
r2
1 + · · ·+ r2

k. Similarly, if x is a
Poisson distributed random variable with parameter λ > 0 then it characteristic
function is given by

P{exp(iξx)} = exp
(
λ(eiξ − 1)

)
.

Thus, if xi, i = 1, . . . , k are independent Poisson distributed random variables
with parameters λi then the sum x = x1 + · · · + xk is indeed a Poisson dis-
tributed random variables with parameter λ = λ1 + · · · + λk. However, if xi,
i = 1, . . . , k are independent exponentially distributed random variables with
the same parameter λ, i.e., with characteristic function

E{exp(iξx1)} =
λ

λ− iξ
=
(
1− iλ−1ξ

)−1
,
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then the sum x = x1 + · · · + xk has a Gamma distribution with parameters λ
and k, i.e.,

E{exp(iξx)} =
(
1− iλ−1ξ

)−k
or P{x ∈ dt} =

λktk−1e−λt

(k − 1)!
dt.

On the other hand, the process of counting an independent identically expo-
nentially distributed sequence {xi} of random variables with parameter λ, i.e.,
n(t) =

∑
i 1xi≤t, produces a family of random variables, indexed by t ≥ 0,

identically Poisson distributed with parameter tλ.

• Remark 1.5. Certainly, there many other useful distributions, e.g., (1) the
deterministic or delta or Dirac distribution, which is concentrated at one point
say x = x0, i.e., P{x = x0} = 1 and P{exp(iξ·x)} = exp(iξ·x0), (2) the uniform
or Lebesgue distribution, which is uniformly distributed on a region with finite
volume, e.g., a random variable uniformly distributed over an interval [a, b] has
distribution P{α < x ≤ β} = (min{b, β} − max{a, α})/(b − a), for every real
numbers α ≤ β, and (3) the compound Poisson distribution, which is frequently
used and can be described as follows: if n is a Poisson distributed random
variable with parameter λ > 0 which is independent of a sequence of independent
identically distributed random variables {xi} with F as its common distribution
satisfying F (0) = 0, then the random sum x(ω) = x1(ω) + · · · + xn(ω)(ω),
complemented with the condition x(ω) = 0 if n(ω) = 0, has a compound Poisson
distribution with parameters λ and F . Note that the condition that F (0) = 0
ensures that x = 0 only when n = 0. If F is a distribution in Rm∗ = Rmr{0} then
the k-convolution F ∗k is the distribution of the independent sum x1 + · · ·+ xk,
and therefore, the compound Poisson distribution of a random variable x in Rm∗
is given by

P{x ∈ B} = Pcp(B) = exp(−λ)

∞∑
k=0

λk

k!
F ∗k(B),

with its characteristic function

P{exp(iξ · x)} = P̂cp(ξ) = exp
(
λ(eF̂ (ξ) − 1)

)
,

where F̂ is the characteristic function of the distribution F . It is interesting
to remark that the two parameters λ and F can be combined to produce finite
measure π, with λ = π(Rm∗ ) and F = π/λ, i.e., a compound Poisson random
variable x with parameter π has characteristic function

P{exp(iξ · x)} = exp
(∫

Rm∗
(eix·ξ − 1)π(dx)

)
,

which reduces to the (simple) Poisson distribution if F is a deterministic, e.g., if
the finite-measure π is given by π(B) = λδ1(B) = λ11∈B , with B a Borel subset
of [0,∞). It is also clear that a compound Poisson random variable xmay or may
not have first moment (or mean), but if it does, the expression y = x − E{x}
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produces what is called a centered or compensated Poisson distribution with
parameter π and characteristic function

P{exp(iξ · y)} = exp
(∫

Rm∗

(
eix·ξ − 1− ix · ξ

)
π(dx)

)
,

where the finite measure π must integrate the function x 7→ |x| and the random
variable y has zero mean. At this point, let us mention that a distribution is
infinitely divisible if and only if it is a limit of a sequence of compound Poisson
distributions, e.g., see Prabhu [204, Chapter 4, pp.43–68].

The construction of examples of independent sequences of random variables
involve some conditions (infinitely divisible) on the probability space (Ω,F , P ),
for instance if the σ-algebra F = {∅, F,Ω r F,Ω}, with P (F ) > 0, then any
two independent sets A and B must be such that A = ∅ or B = ∅. There are
many (classic) properties related to an independent sequence or series of random
variables, commonly known as the (weak and strong) law of large numbers and
the central limit theorem, e.g., the reader is referred to the classic probability
books Doob [59], Feller [81] and Gnedenko [101], while an analytic view can be
found in Dudley [62], Folland [85, Chapter 10], Halmos [104]), Stromberg [237]
and Stroock [238].

• Remark 1.6 (conditional independence). In elementary probability theory we
define the conditional probability of a event A (i.e., a measurable set) given an-
other event C with P (C) > 0 as P (A |C) = P (A∩C)/P (C). A more sophisticate
concept is the following: Given a measurable set C with 0 < P (C) < 1, a family
A of measurable sets is (mutually) conditional independent given C (relative to
the probability P ) if their elements are mutually conditional independent given
C, i.e., if for any finite number of sets A1, . . . , An in A we have

P
( n⋂
i=1

Ai |C
)

=

n∏
i=1

P
(
Ai |C

)
. (1.2)

Now, a family of σ-algebras is (mutually) conditional independent given C,
if for any finite number of σ-algebras F1, . . . ,Fn in the family and any sets
Ai in Fi we have (1.2). Similarly, a family of random variables is (mutually)
conditional independent given C, if the family of their generated σ-algebras is
(mutually) conditional independent given C. Moreover, if (1.2) holds for every
C with 0 < P (C) < 1 in a σ-algebra C then the sets A1, . . . , An are mutually
conditional independent given C, and similarly, if this holds for every set Ai in
Fi then the family of σ-algebras is (mutually) conditional independent given
(the σ-algebra) C.

Note that if we allow C = Ω then we foldback to the case of complete
independence Definition 1.3. It is also clear that condition (1.2) can be rewritten
as

P
( n−1⋂
j=1

Aij |Ain , C
)

=

n−1∏
j=1

P
(
Ain |C

)
,
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for any permutation {i1, . . . , in} of {1, . . . , n}, provided P (Ain ∩ C) > 0.
As in the case of complete independence, if Fi denotes the σ-algebra gener-

ated by Fi, i.e., Fi = {Ai,Ω r Ai, ∅,Ω}, then a family of events {Ai : i ∈ I} is
conditional independent given C if and only if the family of σ-algebras {Fi : i ∈
I} is conditional independent given C. However, if (1.2) condition holds for C
then it does not necessarily hold for Ω rC, i.e., conditional independence with
respect to an event C is not necessarily the same as conditional independence
with respect to the σ-algebra generated by C, namely, C = {∅,Ω, C,ΩrC}, see
later Definition 1.13 on conditional independence.

Clearly, the conditional probability P (· |C) is itself a probability and thus,
conditional independence given a set C is just independence under the condi-
tional probability. Moreover, condition (1.2) can be rewritten in a less intuitive
way as

P
( n⋂
i=1

Ai ∩ C
)

[P (C)]n−1 =

n∏
i=1

P
(
Ai ∩ C

)
,

which becomes P (A1 ∩ A2 ∩ C)P (C) = P (A1 ∩ C)P (A2 ∩ C) when n = 2. In
particular, the space Ω = A1 is conditional independent of any event A = A2

given any event C with P (C) > 0. Also, if three events A, B and C are pairwise
independent with P (C) > 0 then A and B are conditional independent given C,
if and only if they are mutually independent according to Definition 1.3. Cer-
tainly, if P (C) = 0 the above equality could be used instead of condition (1.2),
but it is trivially satisfied and the definition is meaningless. Some comments on
this concept are given later, with the use of conditional expectation.

Going back to the three examples of distributions in R, we can extend
them to Rd as follows. Consider n independent identically distributed ran-
dom variables (ξ1, . . . , ξn), a linear transformation q from Rn into Rd, and
then for a given m ∈ Rd, we look at the distribution of the random variable
y = m+Q(ξ1, . . . , ξn). Identifying the linear transformation Q with a canonical
matrix, still denoted by Q, we deduce (see Exercise 1.9) that if the common
distribution of (x1, . . . , xn) is Gaussian, then

Py(B) =

∫
B

pn(x)dx, ∀B ∈ B(Rd),

where

pn(x) = [2π det(QQ∗)]−d/2 exp
(
− [(x−m)∗(QQ∗)−1(x−m)]2

2

)
, (1.3)

and the ∗ means the transpose (of a matrix), det(·) is the determinant, and
we have assumed that QQ∗ is invertible. This is a Gaussian d-dimensional
distribution. Similarly, d-dimensional Poisson (or exponential) distribution can
be described.

Sums of independent random variables are studied with the purpose of gen-
eralizing and elaborating the law of the large numbers. Let {xi : i ≥ 1} be a
sequence of independent random variables on a probability space (Ω,F , P ), and
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let {sn : n ≥ 1} be the sequence of partial sum, sn = x1 + · · · + xn. The first
point is the Kolmogorov’s zero-one law, namely, the series sn converges almost
surely or diverges almost surely (i.e., cannot converges for some ω and diverges
for others ω). Next, if the two series of real numbers

∑
i E{xi} (mean) and∑

iV{xi} (variance, V{x} = E
{[
x − E{x}

]2}
) converge then the series

∑
i xi

converges almost surely. Another result, known as the three series theorem, af-
firms that

∑
i xi converges almost surely if and only if the following three series

of real numbers
∑
i E{x′i},

∑
iV{x′i} and

∑
i P{xi 6= x′i} are convergent, where

x′i = xi if −1 ≤ xi ≤ 1 and x′i = 0 otherwise. There are several variants of these
theorems, e.g., the strong law of the large number, namely, if V{xi} is bounded
then

[
sn − E{sn}

]
/n converges to 0 almost surely, or if xi are integrable iden-

tically distributed then sn/n converges to E{x1} almost surely. Further in this
analysis is the central limit theorems and law of the iterated logarithm, where
we define the sequence of random variables tn =

[
sn − E{sn}

]
/
√
V{sn} and

give conditions under which the probability distributions of tn converges to the
Gauss or normal distribution N(0, 1). For instance, if the limit

1

V{sn}

n∑
i=1

E
{
|xi − E{xi}|2, |xi − E{xi}| ≥ ε

√
V{sn}

}
→ 0

holds true for every ε > 0, then the probability distributions of tn converges to
the Gauss or normal N(0, 1), i.e.,

lim
n
P (a < tn < b) = (2π)−1/2

∫ b

a

e−x
2/2dx, ∀b > a,

however we have

lim sup
n

tn = +∞ and lim inf
n

tn = −∞

almost surely. This is used in the Gauss’ theory of errors, namely, for every
n ≥ 1 let ξ1,n, . . . , ξn,k(n) be independent random variables and define σn =∑k(n)
i=1 ξi,k(n). If εn := supi,ω |ξi,k(ω)| → 0, E{σn} → m and V{sn} → v then

the probability distribution of σn converges to the Gauss or normal distribution
N(m, v). On the other hand, if the variables xi,k take only two values, i.e.,
assuming P{ξi,k = 1} = pi,k and P{ξi,k = 0} = 1− pi,k, and if p̄n := maxk pi,k

and
∑k(n)
i=1 pi,k(n) → λ then the probability distribution of σn converges to the

Poisson distribution with parameter λ, this last result is know as Poisson’s law
of rare events. Proofs of the above theorems can be found in several text books
in probability, e.g, Breiman [31, Chapter 9, pp. 185–190] or Itô [111, Chapter
4, pp. 165–211].

It should be clear that given a probability space (Ω,F , P ), it is not possible to
ensure the existence of (independent) random variables (or stochastic processes)
with a prescribed distribution. However, the typical (universal) probability
space where realization are shown is the Lebesgue space on the interval [0, 1]. A
well known example is to write any ω in Ω = [0, 1] in binary, i.e., ω =

∑
k 2−kωk.

Then the sequence of variables πn(ω) = ωn for n = 1, 2, . . . are independent
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coin-tossing variables each taking the values 0 or 1 with probability 1/2. Thus,
given a mapping i, j 7→ k(i, j) which is injective from {1, 2, . . .} × {1, 2, . . .}
into {1, 2, . . .}, the expression Xi =

∑
j 2−k(i,j)ωk(i,j) for i = 1, 2, . . . defines

an independent sequence of random variables, each with the same distribution
as X, X(ω) = ω, i.e., each with the uniform distribution on [0, 1]. In general,
if Si is a Borel space (i.e., a measurable space isomorphic to a Borel subset
of [0, 1], for instance any complete separable metric space), Pi is a probability
measure on the Borel σ-algebra Bi(Si), for i = 1, 2, . . . then there exists a
sequence {ξ1, ξ2, . . .} of independent random variables defined on the universal
Lebesgue probability space [0, 1] such that Pi(B) = P ({ω : ξi(ω) ∈ B}), for
any B in Bi(Si), i = 1, 2, . . . , i.e., the distribution of ξi is exactly Pi, e.g., see
Kallenberg [121, Theorem 3.19, pp. 55–57].

Let ξ be a random (vector) variable having a given (joint) density distribu-
tion pξ. Sometimes we are interested in computing

E{g(ξ)} =

∫
g(x)pξ(x)dx,

for some real-valued function g. In many situation, it is not analytically possible
either to compute the above (multiple) integral exactly or even to numerically
approximate it within a given accuracy. Another way to approximating E{g(ξ)}
is by means of the co-called Monte Carlo simulation method. This goes as fol-
lows: start by generating a random (vector) variable ξ1 having the (joint) den-
sity g, and then compute η1 := g(ξ1). Now generate a second random (vector)
variable ξ2, independent of the first, and compute η2 := g(ξ2). Keep on doing
this, for a fix number of times n, to generate the independent and identically
distributed random (vector) variables ηi := g(ξi), i = 1, . . . , n. As mentioned
later, the strong law of large number applies and we find

lim
n

η1 + · · ·+ ηn

n
= E{ηi} = E{g(ξ)}.

Clearly, the remaining problem is how to generate, or simulate random (vector)
variables having a specific (joint) distribution. The first step in doing this is to
be able to generate random variables from a uniform distribution on (0, 1), i.e.,
a random variable u with valued in the interval (0, 1) such that P{u ≤ λ} = λ
for every λ in [0, 1]. One way of doing this would be to take 10 identical slips of
paper, numbered 0, 1, . . . , 9, place them in a hat and then successively select n
slips, with replacement, from the hat. The sequence of digits obtained (with a
decimal point in from) can be regarded as the value of a uniform (0, 1) random
variable rounded off to the nearest 10−n. This constitutes the so-called random
number tables. Nowadays, digital computers simulate pseudo random numbers
instead of the truly random numbers. Most of the random number generators
start with an initial value ξ0, called the seed, and then recursively compute
values by specifying positive integers a and b and m, and then letting xn+1 be
the remainder of axn + b divided by m, i.e., xn+1 := (axn + b) mod (m). The
quantity un := xn/m is taken as an approximation to a uniform (0, 1) random
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variable. All other distributions are generated from uniform (0, 1) random vari-
ables u. Indeed, the inverse transformation method is based on the fact that
for any right-continuous distribution F, the random variable ξ := F−1(u) has
distribution F. Note the definition of F−1(λ) := inf{s ∈ (0, 1) : F (s) = λ}, so
that t < F (λ) if and only if F−1(λ) < F (t).

The rejection method simulate a random variable η having density f on the
basis of a random variable ξ having density g, it uses a two-step iteration as
follows: for two distributions f and g satisfying f(x) ≤ cg(x) for every x and
some constant c :

Step 1: simulate ξ having density g and simulate a random number u.

Step 2: if u ≤ f(ξ)/[cg(ξ)] set η = ξ, otherwise return to Step 1.

This generates a random variable ξ having density f.
For a continuously differentiable distribution F, the hazard rate function of

F is defined by

λ(t) :=
F ′(t)

F (t)
, ∀t ≥ 0.

The hazard rate method simulates a random variable ξ having λ(t) as its hazard
rate function, provided λ is a given nonnegative bounded function satisfying∫ ∞

0

λ(t)dt =∞.

This is defined as follows:

Step 1: select r ≥ λ(t) for every t ≥ 0 and simulate independent random
variables ui, ηi, i = 1, . . . , where ui are (0, 1) uniform and ηi are exponential
with rate r.

Step 2: stopping at τ := min
{
n : unr ≤ λ(

∑
i≤n ηi)

}
define ξ :=

∑
i≤τ ηi.

It is proven that ξ has hazard rate function λ(t). For instance, we refer to
Ross [217], among others.

1.3 Filtrations and Optional Times

Let (Ω,F) be a measurable space and T be an partially order index set, with a
first element called 0. Generally, the index set is the positive integers or a real
interval, i.e. [0, T ], 0 < T ≤ +∞. Suppose we are given an increasing family
of sub σ-algebras {F(t) : t ∈ T}, i.e. s ≤ t implies F(s) ⊂ F(t). Sometimes
the notation Ft = F(t) is used. Define F+(t) = ∩s>tF(s) for t in T to get
another filtration with F(t) ⊂ F+(t) for any t in T. The filtration is said to be
right continuous if F(·) = F+(·) and it is also denoted by F(t+). In particular,
{F+(t) : t ∈ T} is right continuous.

When a probability measure P is given on (Ω,F), the hypothesis that F(0)
contains the null sets implies that the restriction of a given measure on each
σ-algebra F(t) is complete, but the converse may be false. In most of the cases,
we may assume that F(0) contains the null sets, at a cost of enlarging each
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σ-algebra to the σ-algebra generated by F(t) and the null sets. If the index set
is a real interval [0, T ], or [0,∞), then it is possible without loss of generality to
replace F(·) by the right continuous filtration F+(·). If the index set does not
have a last element, i.e. [0,+∞), then we add a last element denoted by +∞ (or
∞) with F(+∞) equal to the sub σ-algebra generated by all the F(t), t ≥ 0.
Thus we will refer to a filtration satisfying the usual conditions or a standard
filtration when the filtration is completed and right continuous.

Definition 1.7 (filtration). In a (complete) probability space (Ω,F , P ), a fam-
ily of sub σ-algebras {F(t) : t ∈ T} is called a filtration if s ≤ t implies
F(s) ⊂ F(t), F(0) contains all sets of probability zero, and F(t) = ∩s>tF(s)
i.e., unless explicitly stated we assume the usual conditions are satisfied. A
family of random variables {X(t) : t ∈ T} is said adapted to the filtration if
X(t) is F(t)-measurable for any t in T.

Given a stochastic process and a filtration we can talk about a stochastic
process being adapted to a filtration, being progressively measurable, and so
on. Several operations can be performed with processes and filtrations. For a
family {Xγ(·) : γ ∈ Γ} of processes adapted to a common filtration F(·) we may
define the process essential infimum and essential supremum. For instance

X(t) = ess sup
γ∈Γ

Xγ(t),

which can be taken adapted to the same common filtration F(·). Similarly, the
sample integral can be defined for a progressively measurable (see definition
later on) integrable process {X(t),F(t) : t ≥ 0}. The resulting process

Y (t) =

∫ t

0

X(s, ω)ds

can be taken progressively measurable with respect to the same filtration F(·).
The problems of defining what is meant by a random time τ corresponding to

the arrival time of an event whose arrival is determined by the preceding events
and of defining the class F(τ) of preceding events are solved by the following
definition.

Definition 1.8. An optional time (stopping or Markov time) τ with respect to
a filtration F(·) is a function from Ω into [0,+∞] satisfying

{ω : τ(ω) ≤ t} ∈ F(t) ∀t ≥ 0.

If an optional time τ is given, then F(τ), respectively F(τ−), is the σ-algebra
of subsets A in F(+∞) (or in F) for which

A ∩ {τ ≤ t} ∈ F(t), respectively A ∩ {τ < t} ∈ F(t),

for every t ≥ 0.
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Sometime, optional times are defined as nonnegative random variables satis-
fying {ω : τ(ω) < t} ∈ F(t) for every t > 0, e.g., see Karatzas and Shreve [124,
Section 1.2, pp. 6-11]. Since {τ ≤ t} = ∪n≥1{τ < t − 1/n} and F(t − 1/n) ⊂
F(t), we see that stopping time is stronger than optional time. Conversely,
under the right-continuity condition, i.e., F(t) = F(t+), for every t ≥ 0, the
equality {τ ≤ t} = ∩n≥1{τ < t + 1/n} shows that any optional time is also a
stopping time. Thus, unless specially mentioned, we do not differentiate between
optional and stopping times.

Most of the time we use the σ-algebra F(τ), however, when dealing with
jump processes we may need F(τ−). Note that we have ∩ε>0F(τ + ε) :=
F(τ+) = F+(τ) for any optimal time τ. If τ1 and τ2 are two optional times
with τ1 ≤ τ2, the stochastic interval [[τ1, τ2]], is defined by

[[τ1, τ2]] = {(t, ω) ∈ R+ × Ω : τ1 ≤ t ≤ τ2}.

Similarly, we define the open stochastic interval ]]τ1, τ2[[ and the half-open ones
[[τ1, τ2[[, and ]]τ1, τ2]]. Several properties are satisfied by optional times, we will
list some of them (see Exercise 1.6).

(a) If τ is optional, then τ is F(τ)-measurable.

(b) If τ is optional and if τ1 is a random variable for which τ1 ≥ τ and τ1 is
F(τ) measurable, then τ1 is optional.

(c) If τ1 and τ2 are optional, then τ1 ∨ τ2 (max) and τ1 ∧ τ2 (min) are optional.

(d) If τ1 and τ2 are optional and τ1 ≤ τ2, then F(τ1) ⊂ F(τ2); if τ1 < τ2, then
F(τ1+) ⊂ F(τ2).

(e) If τ1 and τ2 are optional, then F(τ1) ∩ F(τ2) = F(τ1 ∧ τ2). In particular,
{τ1 ≤ t} ∈ F(τ1 ∧ t).
(f) If τ1 and τ2 are optional, then the sets {τ1 < τ2}, {τ1 ≤ τ2} and {τ1 = τ2}
are in F(τ1 ∧ τ2).

(g) If τ1 and τ2 are optional and if A ∈ F(τ1), then A ∩ {τ1 ≤ τ2} ∈ F(τ1 ∧ τ2).

(h) Let τ1 be optional and finite valued, and let τ2 be random variable with
values in [0,+∞]. The optionality of τ1 + τ2 implies optionality of τ2 relative
to F(τ1 + ·). Moreover, the converse is true if F(·) is right continuous i.e., if
τ2 is optional for Fτ1(·) := F(τ1 + ·), then τ1 + τ2 is optional for F(·) and
F(τ1 + τ2) = Fτ1(τ2).

(i) Let {τn : n = 1, 2, . . . } be a sequence of optional times. Then supn τn is
optional, and inf τn, lim infn τn, lim supn τn are optional for F+(·). If limn τn =
τ = infn τn, then F+(τ) = ∩nF+(τn). If the sequence is decreasing [resp.,
increasing] and τn(ω) = τ(ω) for n ≥ n(ω), then τ is optional and F(τ) =
∩nF(τn) [resp., F(τ) is equal to the smaller σ-algebra containing ∪nF(τn)].

There are many relations between optional times, progressively measurable
stochastic processes and filtration, we only mention the following result (see
Doob [60, pp. 419–423])
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Theorem 1.9 (exit times). Let B be a Borel subset of [0, T ]× Rd and {X(t) :
t ∈ [0, T ]} be a d-dimensional progressively measurable stochastic process with
respect to a filtration F(·) satisfying the usual conditions on a probability space
(Ω,F), Then the hitting, entry and exit times are optional times with respect to
F(·), i.e., for the hitting time

τ(ω) = inf{t > 0 : (t,X(t, ω)) ∈ B},

where we take τ(ω) = +∞ if the set in question is empty. Similarly, the entry
time is define with t > 0 replaced by t ≥ 0 and the exit time is the entry time of
complement of B, with the convention of being equal to T if the set in question
is empty.

Note that the last hitting time of a Borel set B, which is defined by

τ̂(ω) = sup{t > 0 : (t,X(t, ω)) ∈ B},

is not in general an optional time. However, if τc denotes the hitting time of B by
the process (t+ c,X(t+ c, ω)) then {τ̂ > c} = {τc < +∞} so that measurability
properties for the last hitting time can be considered.

1.4 Conditional Expectation

The concept of independence is fundamental for probability theory and in fact
distinguishes it from classical measure theory. In a sense we may say that
conditioning is basic and fundamental to probability. Conditional measures is
related to disintegration of probability measure, and it is a key concept to study
Markov processes, we refer to Rao [207] for a comprehensive discussion on this
subject.

If x is a real integrable random variable on a probability space (Ω,F , P )
and if G is a sub σ-algebra of F , then the conditional expectation E{x | G} is
(uniquely determined up to null sets) a G-measurable random variable satisfying∫

A

E{x | G}(ω)P (dω) =

∫
A

x(ω)P (dω), ∀A ∈ G.

We can also consider random variables that are only one sided integrable. The
notation E{x | G} always refers to any of the possible choices of the conditional
expectation rather than to the equivalence class. The Radon-Nikodym theorem
(see Exercise 1.10) ensures the existence and uniqueness up to null sets of con-
ditional expectations, i.e., given x and G there exists a null set N (which may
depends on both x and G) such that ω → E{x | G}(ω) is uniquely defined for
ω in Ω rN. If x, y and z are d-dimensional random variables then the relation
x = E{y | z} means that except a set of probability zero, the random variable
x is equal to the conditional expectation of y with respect to the σ-algebra Fz
generated by z. This can be characterized by the condition

E{yϕ(z)} = E{xϕ(z)}, ∀ϕ bounded continuous.
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Actually, we may take only ϕ continuous with compact support, see Exer-
cise 1.11. Some properties follows easily from the definition (see Exercise 1.12,
1.14).

(a) E{y |G} = y a.s. if y is G-measurable, in particular if y is a constant function.

(b) If y is bounded and G-measurable, then E{xy | G} = yE{x | G} a.s.

(c) E{x+ y | G} = E{x | G}+ E{y | G} a.s.

(d) x ≤ y a.s. implies E{x | G} ≤ E{y | G} a.s.

(e) If A ∈ G and if x = y a.s. on A, then E{x | G} = E{y | G} a.s. on A.

(f) If A ∈ G1 ∩ G2 and A ∩ G1 = A ∩ G2 (i.e., if any subset of A is in G1 if and
only if the subset is in G2), then E{x | G1} = E{x | G2} a.s. on A.

(g) If G1 ⊂ G2, then

E{E{x | G1} | G2} = E{E{x | G2} | G1} = E{x | G1} a.s. (1.4)

The next properties are less immediate (see Exercise 1.13)

(h) If x is independent of G, then E{x | G} = E{x} a.s., in particular, if z is a
G-measurable random variable which is independent of G then z = E{z} a.s.

(i) If f is a convex function and if x and f(x) are integrable, then Jensen’s
inequality holds i.e.,

f
(
E{x | G}

)
≤ E{f(x) | G} a.s.. (1.5)

In particular we may take f(·) = | · |p to deduce that E{x | G} ∈ Lp if x ∈ Lp.
Certainly, if 0 < q ≤ p then (E{|x|q | G})1/q ≤ (E{|x|p | G})1/p, which is some
referred to as Lyapunov’s inequality.

(j) If xG = E{x | G}, the family of all conditional expectations {xG : G sub
σ-algebra of F} is uniformly integrable.

(k) If x ∈ Lp and y ∈ Lq, with 1/p + 1/q = 1, then Hölder’s inequality holds
i.e., xy is integrable and

|E{xy | G}| ≤
(
E{|x|p | G}

)1/p(E{|y|q | G})1/q a.s. (1.6)

(l) If x, y ∈ Lp, then Minkowski inequality holds i.e., x+ y ∈ Lp and(
E{|x+ y|p | G}

)1/p ≤ (E{|x|p | G})1/p +
(
E{|y|p | G}

)1/p
a.s. (1.7)

(m) If x ∈ L2 then E{x | G} ∈ L2, and x − E{x | G} is orthogonal to every
G-measurable random variable in L2. Moreover, if z is a G-measurable random
variable in L2 such that x−z is orthogonal to any G-measurable random variable
in L2 then z = E{x | G}.

Recall that when working with the spaces Lp(Ω,F , P ) the elements are ac-
tually classes of equivalence, and that we are implicitly assuming that the σ-
algebra F contains all sets of null probability (measure), i.e., (Ω,F , P ) is a
complete probability space. However, the separability of the space Lp(Ω,F , P ),
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1 ≤ p < ∞, is always an issue. Moreover, the concept of separability of a
complete σ-algebra has to be reviewed. Thus, we say that the σ-algebra F is
(P -)separable or that the probability space (Ω,F , P ) is separable if the space
L1(Ω,F , P ) is separable, i.e., if there exists a sequence of finite-dimensional
subspaces {L1

n : n ≥ 1} such that the closure of its union
⋃
n L

1
n is the whole

space L1(Ω,F , P ).

• Remark 1.10. It is proved (e.g., see Malliavin[162, Section IV.6.0, pp. 219-
220]) that a probability space (Ω,F , P ) is separable if and only if there exists
an increasing sequence of finite σ-algebras F(1) ⊂ · · · ⊂ F(n) ⊂ · · · such that
E{x | F(n)} → x for evert x in L1(Ω,F , P ). In this case, we say that F is
P -generated by the sequence {F(n) : n ≥ 1}.

Some continuity properties for extended real valued random variable are
stated as follows (see Doob [60, pp. 393–397]). If {F(n) : n = 0, 1, . . . } is a
monotone sequence of sub σ-algebras of F , then we denote by F(∞) the σ-
algebras either F(+∞) or F(−∞) according as F(·) is monotone increasing or
decreasing, where F(+∞) is defined as the minimal σ-algebras containing all
F(n), and F(−∞) as the intersection of all F(n).

Theorem 1.11 (Fatou). Let {F(n) : n = 0, 1, . . . } be a monotone sequence
of sub σ-algebras of F and let {x(n) : n = 0, 1, . . . } be a sequence of positive
extended real valued random variables. Then

lim inf
n→∞

E{x(n) | F(n)} ≤ E{lim inf
n→∞

x(n) | F(∞)}

almost surely.

Theorem 1.12 (Lebesgue). Let {F(n) : n = 0, 1, . . . } be a monotone sequence
of sub σ-algebras of F and let {x(n) : n = 0, 1, . . . } be a sequence of posi-
tive extended real valued random variables, with almost sure limit x(∞) and
E{supn |x(n)|} <∞. Then

lim
n→∞

E{x(n) | F(n)} = E{x(∞) | F(∞)}

almost surely.

In the above dominated convergence theorem we can replace the integrability
of the function supn |x(n, ω)| by the assumption that the sequence {x(n) : n =
0, 1, . . . } is uniformly integrable. For instance, a typical application of this result
is as follows. Let x be a real random variable independent of a sub σ-algebra
G of F , and f be a bounded Borel measurable function in R2. If we define
f1(η) = E{f(x, η)}, then f1 is Borel measurable and f1(y) = E{f(x, y) | G} a.s.
(see Exercise 1.16).

Sometimes, if x is a integrable random variable and {x(i) : i ∈ I} is a family
of random variables, then we denote by E{x | x(·)} or E{x | x(i), i ∈ I} the
conditional expectation with respect to the σ-algebra G = σ{x(i) : i ∈ I} (or
simply σ{x(·)}), generated by the family {x(i) : i ∈ I}.

It is rather relevant to observe that the conditional expectation is an operator
defined and valued on classes of equivalence of random variables, i.e., an operator
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on Lebesgue spaces, from Lp(Ω,F , P ) into Lp(Ω,G, P ), for any 1 ≤ p ≤ ∞. It
can be extended to functions such that the positive (or negative) part belongs
to the above Lebesgue spaces.

Another key property of the conditional expectation is the fact that for any
random variable x in L1(Ω,F , P ), the family of random variables

{
y = E{x|G} :

G is a sub σ-algebra of F
}

is uniformly integrable (see Exercise 1.15).
Now, we can discuss the concept of conditional independence (for two events

or σ-algebras or random variables) given another σ-algebra or random variable).

Definition 1.13 (conditional independence). Let (Ω,F , P ) be a probability
space and C be sub σ-algebras of F . We say that two measurable sets A and B
are (conditional) independent given C if

E{1A1B | C} = E{1A | C}E{1B | C}, a.s. (1.8)

holds. Moreover, two sub σ-algebras H and G are (conditional) independent
given C (relative to the probability P ) if (1.8) is satisfied for any sets A ∈ H,
B ∈ G. Particularly, if the sub σ-algebras are generated by a family of random
variables, i.e., H = σ(x(t) : t ∈ T ), G = σ(y(s) : s ∈ S) and C = σ(z(r) : r ∈ R),
then (1.8) is equivalent to

E
{∏

i

hi(x(ti))
∏
j

gj(y(sj))
∏
k

ck(z(rk))
}

=

= E
{
E{
∏
i

hi(x(ti)) | C}E{
∏
j

gj(y(sj)) | C}
∏
k

ck(z(rk))
}
,

where all products are extended to any finite family of subindexes and any
real-valued bounded measurable functions hi, gj and ck.

Certainly this concept extends to a family of measurable sets, a family of
either sub σ-algebras or random variables, where mutually or pairwise (condi-
tional independent given C) are not the same.

Recall that E{
∏
i hi(x(ti)) | C} and E{

∏
j gj(y(sj)) | C} are defined (almost

surely) as C measurable integrable (also, bounded because hi and gj are so)
functions satisfying

E
{∏

k

ck(z(rk))
∏
i

hi(x(ti))
}

= E
{∏

k

ck(z(rk))E{
∏
i

hi(x(ti)) | C}
}
,

and

E
{∏

k

ck(z(rk))
∏
j

gj(y(sj))
}

= E
{∏

k

ck(z(rk))E{
∏
j

gj(y(sj)) | C}
}
.

for any functions hi, gi and ck as above.
The definition of conditional independence applies to two random variables

and a σ-algebra, i.e., a random variable x is (conditional) independent of another
random variable y given a sub σ-algebra C in the probability space (Ω,F , P ) if
for any bounded and measurable functions f and g we have E{f(x) g(y) | C} =
E{f(x) | C}E{g(y) | C} almost surely.
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It is also clear that if C = {Ω, C,ΩrC, ∅}, then the random variable E{1A | C}
is everywhere defined as

E{1A | C} =

{
P (A ∩ C)/P (C) if ω ∈ C,
P
(
A ∩ (Ω r C)

)
/P (Ω r C) if ω ∈ Ω r C,

when 0 < P (C) < 1 and otherwise, only almost surely defined (using only one
part of the above formula).

This means that the concept of two measurable sets A and B being con-
ditional independent given (another measurable set) C (relative to the proba-
bility P ) is properly defined by means of 1A and 1B as random variables and
C = {Ω, C,Ω r C, ∅}, the σ-algebra generated by C (or equivalently 1C). In-
deed, use the equality P (A ∩ B ∩ C)P (C) = P (A ∩ C)P (B ∩ C) and add the
complement equality P (A∩BrC) (1−P (C)) = P (ArC)P (BrC), to deduce
the validity of condition (1.8). In particular, when C = Ω the conditional inde-
pendence coincides with the independence concept of Definition 1.3 and each of
the previous equalities is trivially satisfied.

Nevertheless, in analogy with (elementary) conditional probability, where
P (A |C) = P (A ∩ C)/P (C), we define the conditional expectation of a random
variable x relative to a set C (with positive probability), instead of a σ-algebra
C, by means of

E{x |C} =
E{x1C}
P (C)

,

i.e., expectation with respect to the conditional probability P (· |C). With this
notation, two measurable sets A and B are conditional independent given an-
other measurable set C if E{1A1B |C} = E{1A |C}E{1B |C}, or equivalently,
either P (A∩B |C) = P (A |C)P (B |C) or P (A∩B∩C)P (C) = P (A∩C)P (B∩
C). Similarly, two σ-algebras A and B (or two random variables x and y, where
A and B are the generated by x and y) are conditional independent given a
set C if the previous condition holds for any A in A and B in B. However, we
cannot use the condition E{1A1B |C} = E{1A |C}E{1B |C}, for any C in C,
as definition of conditional independent given a σ-algebra C, since this would
include C = Ω and then A and B would be independent, not just conditional
independent, see Remark 1.6. Thus, we need to recall that conditioning with
respect to a measurable set (event) C yields a number, an evaluation operator.
While, conditioning with respect to a σ-algebra (or a random variable) is an
operator (with values into the sets of random variables) defined almost surely.

Exercise 1.1. Let (Ω,F , P ) be a probability space and C be sub σ-algebras of
F . Prove that two sub σ-algebras H and G are (conditional) independent given
C (relative to the probability P ) if and only if E{1G |H ∨ C} is C-measurable,
for every G in G, where H ∨ C is the σ-algebra generated by H and C. See
Çıinlar [46, Proposition 3.2, Section 4.3].

As mentioned early, conditional expectation can be derived from the orthog-
onal projection, i.e., if G is a sub σ-algebra in (Ω,F , P ), x is an element in the
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Lebesgue space L2(Ω,F , P ), and L2(G) denotes the subspace of L2(Ω,F , P )
composed by all G-measurable functions (actually, equivalent classes) then y =
E{x | G} if and only if x = y + z where y belongs to L2(G) and z is orthogonal
to L2(G), namely

y ∈ L2(G) and E{(y − x)g} = 0, ∀g ∈ L2(G).

Clearly, if x belongs only to L1(G) then the above condition becomes

y ∈ L1(G) and E{(y − x)g} = 0, ∀g ∈ L∞(G),

where L∞(G) is the space of bounded G-measurable functions (actually, equiv-
alent classes). Note that a simple argument of monotone class shows that if
G and H are two sub σ-algebras and x is an element in L1(Ω,F , P ), then
y = E{x | G ∨ H} if and only if

y ∈ L1(G ∨ H) and E{(y − x)1G1H} = 0, ∀G ∈ G, H ∈ H,

where G ∨ H denotes the σ-algebra generated by G and H.
Sometimes, we need to extend notion of conditional expectation to random

variables x which are only σ-integrable with respect to a given sub σ-algebra
G, i.e., x is a measurable functions on Ω such x is integrable on Gn, for any
n, where {Gn} is some increasing sequence of G-measurable. In this case, and
assuming x ≥ 0, we define ξ = E{x | G} as the monotone limit of E{x1Gn | G}.
Certainly, the random variable ξ is the unique G-measurable function satisfying
E{x1G} = E{ξ1G}, for any G in G with E{|x|1G} <∞, e.g., see He et al. [105,
Section I.4, pp. 10–13].

1.5 Regular Conditional Probability

As before, let G be a sub σ-algebra of F and consider the conditional expectation
of E{f | G} for the special case where the random variable f is the indicator
function 1A(·) of a set A in F . We will refer to the conditional expectations as
the conditional probability and denote it by P{A | G}. On the other hand, we
may begin with the conditional probability, i.e., A 7→ E{1A | G} = P{A | G} a
random linear operator with values in [0, 1] (defined almost surely) such that

P{A ∩B} = E
{
P{A | G}1B

}
, ∀A ∈ F , B ∈ G,

then we define E{f | G} for simple functions f and we pass to the limit for any
integrable f, by using the fact that the operator f 7→ E{f | G} is a contraction
in L1(Ω,F , P ).

In any way, the conditional probability has some elementary properties in-
herited from the properties of the conditional expectation. For instance, if A
and B are two disjoint sets in F then

P{A ∪B | G} = P{A | G}+ P{B | G} a.s.
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However, P{A | G} can be altered on a set of measure zero for each A in F ,
we cannot conclude that P{A | G} (which is a random variable for each fixed
A) is a countably (or finitely) additive probability measure on A in F for each
ω outside of a null set. Technically, we have a function P{A | G}(ω) of two
variables A and ω, which is defined A 7→ P{A | G}(·) as a function of A taking
values in a “class-of-equivalence” space in ω and now we want to consider this
function as ω 7→ P{· | G}(ω) taking values in the space of probability measures,
for each ω or even for almost every ω. For this to work, we need first to define the
function P{A | G}(ω) in a “dense” countable set of (A,ω) and then to extend
its definition in a suitable way. A countably generated sub σ-algebra G is a
suitable choice to handle the variable A, but some topology is required in the
base space Ω to deal with ω. In short, this means that we look for a member from
the above equivalence class of functions in such a way that additivity property
(in particular order preserving and positivity) is preserved, see Taylor [248, pp.
210–226].

Theorem 1.14 (regular). Let (Ω,F , P ) be a probability space, where Ω is a
complete separable metric (Polish) space and F = B(Ω) is its Borel σ-algebra.
Then, for any countably generated sub σ-algebra G of F we can choose a regular
conditional probability P{A | G} i.e., (a) for each A in F the function ω 7→
P{A | G}(ω) is G-measurable, (b) for every A ∈ F and B ∈ G we have

P (A ∩B) =

∫
B

P{A | G}(ω)P (dω),

and (c) for each ω in Ω the function A 7→ P{A | G}(ω) is a probability measure
on Ω and P{B | G}(ω) = 1B(ω), for any ω in Ω and B in G.

Note that if we can define P{A | G}(ω) for ω in Ω r N, with P (N) = 0,
satisfying (a), (b) and (c), then we can extend its definition to the whole Ω by
simply setting it equal to P on the null set N. The hard point in the proof of
the above theorem in precisely to construct such a null set (see Stroock and
Varadhan [241]). Essentially we argue as follows: first for any A in F there
exists a null set NA such that P{A | G}(ω) is uniquely determinate for ω outside
of NA, and if the σ-algebra F is generated by a countably π-class (i.e., closed
under finite intersections) Fg, then the same holds true for any A in Fg and ω
outside of the null set N = ∪{NA : A ∈ Fg}. Finally, because Fg generates F ,
the probability measure A 7→ P{A | G}(ω) is also uniquely determinate for any
ω in Ω rN.

The first two conditions (a) and (b) refer to the conditional probability dis-
tributions, while the last condition (c) means regular property. A similar point
of view can be found in Malliavin [162, Chapter IV, Theorem 6.5.1], where an
analogous result is proved under the assumption that L1(Ω,F , P ) is separable
(as a Banach space). Usually, a probability space (Ω,F , P ) is called separable if
the Banach space L1(Ω,F , P ) is separable (i.e., there exists a countable dense
set), which is equivalent to existence of an increasing sequence of finite sub σ-
algebras {Fn : n = 1, 2 . . .} of F such that E{|E{f | Fn} − f |} → 0 for every f
in L1(Ω,F , P ).
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Given a filtration {G(t) : t ≥ 0} (of countably generated σ-algebras) satisfy-
ing the usual conditions, with the same technique of the above theorem we can
prove that a regular conditional probability P{A | G(t)} exists i.e., (a) for each
A in F the function ω 7→ P{A | G(t)}(ω) is B × G(t)-measurable, (b) for every
t ≥ 0, A ∈ F and B ∈ G(t) we have

P (A ∩B) =

∫
B

P{A | G(t)}(ω)P (dω),

and (c) for each t ≥ 0, ω in Ω the function A 7→ P{A | G(t)}(ω) is a probability
measure on Ω. Indeed, since

⋂
s>t G(s) = G(t) for any t ≥ 0, it is enough to

define P{A | G(t)} for t rational and use the monotone convergence.
Remark that if the Borel σ-algebra B(S) of a compact metrizable space S is

countably generated, and because a Polish (Lusin) space is homeomorphic to a
countable intersection of open sets (Borel set) of a compact metric space, the
same is true for Polish or Lusin spaces S.

Let G be a set in F such that both G and Ω rG have positive probability.
In elementary probability, we define the conditional probability of a set A (in
F) given G by the formula P (A |G) := P{A∩G}/P{G}. On the other hand, if
1A(·) denotes the indicator (or characteristic) function of the set A, and σ(G) =
{Ω, ∅, G,Ω r G} the σ-algebra generated by the set G, then P{A |σ(G)} =
E{1A |σ(G)} and

P{A |σ(G)}(ω) =

{
P{A ∩G}/P{G} if ω ∈ G,
P{ArG}/P{Ω rG} if ω ∈ Ω rG,

so that both concepts are reconcilable. However, we should recall that the con-
ditional probability given a set C is an evaluation, while given a σ-algebra is
an operator (with values into the set of probability measures) defined almost
surely. Simple considerations on the random variable g(ω) = P (A |G)1G(ω) +
P (A |ΩrG)1ΩrG(ω) establishes that g is σ[G]-measurable and uniquely deter-
mined (almost surely) by the condition∫

A

g(ω)P (dω) = P (A ∩G), ∀A ∈ σ[G].

It is remarkable to note that the above expression makes perfectly sense when G
is negligible and gives the precise generalization quoted in the previous section.
Moreover, this is better seen if the σ-algebra G is finitely-generated, i.e., G =
σ{G1, . . . , Gn}, where P{A | G)} can be explicitly defined and the σ-additive
condition is easily checked, see Exercise 1.17.

Given any event A, when P (B) > 0 and B ∈ G, we have

P{A |B} =
1

P (B)

∫
B

P{A | G}(ω)P (dω).

Moreover we recall that two events A and B are said conditionally independent
with respect to (or given) the sub σ-algebra L if

P (A ∩B | L) = P (A | L)P (B | L). (1.9)
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Analogously, H and G are called independent given (or with respect to) L, a
sub σ-algebra of F , (relative to the probability P ) if (1.9) is true for any sets
A ∈ H, B ∈ G, see Definition 1.13.

It is interesting to note that given two random variables X and Y with a
joint probability density function fX,Y (x, y), the functions

fX(y) =

∫
fX,Y (x, y)dy, fY (y) =

∫
fX,Y (x, y)dx,

are the (marginal) probability density for X and Y, and the elementary condi-
tional probability density function fX|Y of X given Y is defined by

fX|Y (x, y) =


fX,Y (x, y)

fY (y)
if fY (y) 6= 0,

0 otherwise.

Then for any Borel measurable function h such that

E{|h(X)|} =

∫
|h(x)| fX(x)dx <∞,

we can define the function

g(y) =

∫
h(x)fX|Y (x, y)dx

which provides a version of the conditional expectation of h(X) given σ(Y ), i.e.,
g(Y ) = E{h(X) | Y }. Moreover, the function

ω 7→
∫
A

fX|Y (x, Y (ω))dx

is a regular version of the conditional probability of X given Y or given σ(Y ),
usually denoted by P{X ∈ A | Y }.
• Remark 1.15. For instance, if {Ti : i = 1, . . . , n} is a finite sequence of indepen-
dent random variables, each with exponential distribution with mean E{Ti} =
1/αi, then the above calculation can be used to show that P{S = Tj} = αj/α,
where S = mini{Ti} and α =

∑
i αi. Indeed, the assumptions on the random

variables Ti yield P{Ti > Tj , ∀i 6= j | Tj} = e−(α−αi)Tj . Hence,

P{S = Tj} = E
{
E{1{S=Tj} | Tj}

}
= E

{
e−(α−αi)Tj

}
=
αj
α
,

as desired. Since the event {Tj = t} has zero probability, the natural notation
P{Ti > Tj , ∀i 6= j | Tj = t} = e−(α−αi)t is not clearly justified.

• Remark 1.16. It is clear that the concept of conditional expectation or regu-
lar conditional probability can be applied to σ-finite measures, instead of just
probability measures.
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• Remark 1.17 (regular conditional distribution). Let (Ω,F , P ) be a probability
space as in Theorem 1.14, and let X be a given a random variable with values in
some Polish space (E, E). Then the regular conditional probability (in this case,
also called regular conditional distribution given X) exists for G = X−1(F), the
σ-algebra generated by X. Thus, for any A in F , the function ω 7→ P{A | G} =
P{A |X} is a real-valued measurable with respect to X−1(F) and therefore (see
Exercises 1.4) there exists a (real valued) Borel measurable function x 7→ P (x,A)
on (E, E) (which depends on X) such that P{A |X}(ω) = P (X(ω), A) almost
surely. This is called the transition probability function P (x,A) given X, and
usually denoted by P{A |X = x}. Note the two defining properties: (a) for each
A in F , the function x 7→ P (x,A) is measurable from (E, E) into [0, 1], and (b)
for any x in E, the function A 7→ P (x,A) is a probability measure on (Ω,F).
Clearly, if PX denotes the probability distribution of X then for any A in F the
function x 7→ P{A |X = x} is uniquely determinate outside of a PX -negligible
set. Moreover, condition (b) in Theorem 1.14 can be rewritten as

P
{
A ∩ {X ∈ C}

}
=

∫
{X∈C}

P{A |X} dP, ∀A ∈ F , C ∈ E ,

and in particular, for C = {x}, we have

P{A |X = x} =
P
{
A ∩ {X = x}

}
P{X = x}

,

for any x in E with P{X = x} > 0 and any A in F . The reader may check the
book Taira [245, Chapter 1] for a complete discussion on this point.

• Remark 1.18. Related to the previous discussion on regular conditional dis-
tribution, of particular interest is the case of two E-valued random variables X
and Y, for which we consider the joint distribution PXY on the product Polish
space E2. Independently of the initial probability space, the image (E2, E2, PXY )
is a probability space satisfying the assumptions of Theorem 1.14. Thus, we
may consider the conditional probability distribution given the sub σ-algebra
Ex generated by the projection (x, y) 7→ x of for the first coordinate, i.e.,
PXY {A | Ex} = P{(X,Y ) ∈ A | X}, with A in E2. Thus, we obtain the condi-
tional probability distribution of Y given X, namely PY |X(B) = P{Y ∈ B |X},
after choosing A = E × B. Hence, there exists a transition function P (x,B) of
Y given X, which depends on X and Y and is denoted by P{Y ∈ B |X = x},
i.e., P{Y ∈ B |X}(ω) = P (X(ω), B), for any B in E , see Exercise 1.17.

It is now clear that an essential point is the use of the following two prop-
erties: (1) the σ-algebra E is generated by a countable algebra and (2) any
(E, E)-valued random variable x on any probability space (Ω,F , P ) admits a
regular conditional distribution relative to a sub σ-algebra G of F . This disin-
tegration property (2) can be re-stated as: for any positive and finite measure
m on the product space (E ×B, E ×B) there exist a measurable kernel k(dx, b)
such that m(dx, db) = k(dx, b)mB(db), where mB(db) := m(E,db) is the B-
marginal distribution of m. Any Polish space possess these properties, and in
general, based on these properties we define the so-called Blackwell spaces, see
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Dellacherie and Meyer [58]. Let us mention that only the case of locally compact
Polish spaces will be mainly used here. Clearly, in most of our considerations,
it will be implicitly assumed that we are working on probability spaces having
these two properties.

1.6 Versions of Processes

To fully understand the previous sections in a more specific context, the reader
should acquire some basic background on the very essential about probability,
perhaps the beginning of books such as Jacod and Protter [116] or Williams [253],
among many others, is a good example. This is not really necessary for what
follows, but it is highly recommended.

On a probability space (Ω,F , P ), sometimes we may denote by X(t, ω) a
stochastic process Xt(ω). Usually, equivalent classes are not used for stochastic
process, but the definition of separability and continuity of a stochastic process
have a natural extension in the presence of a probability measure, as almost
sure (a.s.) properties, i.e., if the conditions are satisfied only for ω ∈ Ω r N ,
where N is a null set, P (N) = 0. This is extremely important since we are
actually working with a particular element of the equivalence class. Moreover,
the concept of version is used, which is not exactly the same as equivalence
class, unless some extra property (on the path) is imposed, e.g., separability or
continuity. Actually, the member of the equivalence class used is ignored, but a
good version is always needed. We are going to work mainly with d-dimensional
valued stochastic process with index sets equal to continuous times intervals
e.g., a measurable and separable function X : Ω× [0,+∞]→ Rd.

It is then clear when two processes X and Y should be considered equivalent
(or simply equal, X = Y ), if

P ({ω : Xt(ω) = Yt(ω), ∀t ∈ T}) = 1.

This is often referred as X being indistinguishable from Y , or that X = Y up
to an evanescent set. So that any property valid for X is also valid for Y. When
the index set is uncountable, this notion differs from the assertion X or Y is a
version (or a modification) of the given process, where it is only required that

P ({ω : Xt(ω) = Yt(ω)}) = 1, ∀t ∈ T, (1.10)

which implies that both processes X and Y have the same family of finite-
dimensional distributions. For instance, sample path properties such as (pro-
gressive) measurability and continuity depend on the version of the process in
question.

Furthermore, the integrand of a stochastic integral is thought as an equiv-
alence class with respect to a product measure in (0,∞) × Ω of the form
µ = dα(t, ω)P (dω), where α(t, ω) is an integrable nondecreasing process. In
this case, two processes may belong to the same µ-equivalence class without
being a version of each other. Conversely, two processes, which are versions of
each other, may not belong to the same µ-equivalence class. However, any two
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indistinguishable processes must belong to the same µ-equivalence class. More-
over, a measure µ in the product space (0,∞)×Ω vanishes on every evanescent
set if and only if it has the product form µ = dα(t, ω)P (dω) for some integrable
nondecreasing process α. This is discussed in some detail later, in Chapter 4.

The finite-dimensional distributions are not sufficient to determine the sam-
ple paths of a process, and so, the idea of separability is to use a countable
set of time to determine the properties of a process. The following result (see
Doob [59, Theorem 2.4, pp. 60], Billingsley [27, Section 7.38, pp. 551-563] or
Neveu [188, Proposition III.4.3, pp. 84-85]) is necessary to be able to assume
that we are always working with a separable version of a process.

Theorem 1.19 (separability). Any d-dimensional stochastic process has a ver-
sion which is separable i.e., if X is the given stochastic process indexed by some
real interval T , then there exists a R̄d-valued stochastic process Y satisfying
(1.10) and the condition of separability in Definition 1.1, which may be re-
phrased as follows: there exist a countable dense subset I of T and a null mea-
surable set N, P (N) = 0, such that for every open subset O of T and any closed
subset C of Rd the set {ω ∈ Ω : Y (t, ω) ∈ C, ∀t ∈ O r I} is a subset of N.

By means of the above theorem, we will always assume that we have taken
a (the qualifier a.s. is generally omitted) separable version of a (measurable)
stochastic process provided we accept processes with values in R̄d = [−∞,+∞]d.
Moreover, if we insist in calling stochastic process X a family of random vari-
ables {Xt} indexed by t in T then we have to deal with the separability concept.
Actually, the set {ω : Xt(ω) = Yt(ω), ∀t ∈ T} used to define equivalent or
indistinguishable processes may not be measurable when X or Y is not a mea-
surable process. Even working only with measurable processes does not solve
completely our analysis, e.g., a simple operation as supt∈T Xt for a family of
uniformly bounded random variables {Xt} may not yields a measurable random
variable. The separability notion solves all these problems.

Furthermore, this generalizes to processes with values in a separable locally
compact metric space (see Gikhman and Skorokhod [98, Section IV.2]), in par-
ticular, the above separable version Y may be chosen with values in Rd ∪ {∞},
the one-point compactification of Rd, and with P{Y (t) = ∞} = 0 for every t,
but not necessarily P{Y (t) =∞ ∀t ∈ T} = 0. Thus in most cases, when we refer
to a stochastic process X in a given probability space (Ω,F , P ), actually we are
referring to a measurable and separable version Y of X. Note that in general,
the initial process X is not necessarily separable or even measurable. By using
the separable version of a process, we see that most of the measurable operations
usually done with a function will make a proper sense. The construction of the
separant set used (in the proof of the above theorem) may be quite complicate,
e.g., see Neveu [188, Section III.4, pp. 81–88].

A process X which is continuous in probability i.e., for all t ∈ T and ε > 0
we have

lim
s→t

P ({ω ∈ Ω : |X(s, ω)−X(t, ω)| ≥ ε}) = 0.
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is called stochastically continuous. Similarly, we define left or right stochastically
continuous. Actually, if the interval T is compact, then the process is uniformly
stochastically continuous. In most of the cases, a stochastic process X will be
(right or left) continuous in probability (see below) and then (see Exercise 1.18)
any dense set in T will be separant. Note that the concept of stochastic conti-
nuity (or continuity in probability) is not a sample path property, it does not
depend on the particular version of the process involved. On the contrary, most
of the smoothness properties such as separability, measurability or continuity
are conditions on the sample paths and depend on the version of the process
used to test the property.

It is known (e.g., see Da Prato and Zabczyk [51, p. 72–75], Gikhman and
Skorokhod [98, Section IV.3]) that

Theorem 1.20 (measurability). Any (right or left) stochastically continuous
d-dimensional stochastic process has a version which is measurable. Moreover,
if the stochastic process is adapted then there is a version which is progressively
measurable.

Sometimes we can take (a.s.) continuous modification of a given process on
a bounded interval [0, T ]

Theorem 1.21 (continuity). Let {Xt : t ∈ [0, T ]} be a d-dimensional stochastic
process in a probability space (Ω,F , P ) such that

E|Xt −Xs|α ≤ C|t− s|1+β , ∀s, t ∈ [0, T ], (1.11)

for some positive constants α, β and C. Then there exists a continuous version
Y = {Yt : t ∈ [0, T ]} of X, which is locally Hölder continuous with exponent
γ, for any γ ∈ (0, β/α) i.e., there exist a null set N, with P (N) = 0, an (a.s.)
positive random variable h(ω) and a constant K > 0 such that for all ω ∈ ΩrN,
s, t ∈ [0, T ] we have

|Yt(ω)− Ys(ω)| ≤ K|t− s|γ if 0 < |t− s| < h(ω). 2

The previous result is essentially based on the following arguments, e.g.,
Karatzas and Shreve [124, pp. 53–55]). Estimate (1.11) and the dyadic con-
struction {X(k2−n) : k = 0, 1, . . . , 2n, n = 1, 2, . . .} yields

P{ max
1≤k≤2n

|X(k2−n)−X((k − 1)2−n)| ≥ 2−γ} ≤

≤
2n∑
k=1

P{|X(k2−n)−X((k − 1)2−n)| ≥ 2−γ} ≤ C2−n(β−αγ),

for any γ > 0 such that β > αγ. Hence, the Borel-Cantelli lemma shows that
there exists a measurable set Ω∗ of probability 1 such that for any ω in Ω∗ there
is an index n∗(ω) with the property

max
1≤k≤2n

|X(k2−n, ω)−X((k − 1)2−n, ω)| < 2−γ , ∀n ≥ n∗(ω).
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This proves that for t of the form k2−n we have a uniformly continuous process
which gives the desired modification. Certainly, if the process X itself is separa-
ble, then we get do not need a modification, we obtain an equivalent continuous
process.

An interesting point in this result, is the fact that the condition (1.11) on
the given process X can be verified by means of the so-called two-dimensional
distribution of the process (see below). Moreover, the integrability of the process
is irrelevant, i.e., (1.11) can be replaced by

lim
δ→0

P
{

sup
|t−s|<δ

|X(t)−X(s)| > ε
}

= 0, ∀ε > 0.

This condition is stronger that

lim
δ→0

sup
t
P
{

sup
|s|<δ

|X(t)−X(t+ s)| > ε
}

= 0, ∀ε > 0,

which only yields almost surely continuity at every time t. In any case, if the
process X is separable then the same X is continuous, otherwise, we construct
a version Y which is continuous.

Recall that a real function on an interval [0, T ) (respectively [0,∞) or [0, T ])
has only discontinuities of the first kind if (a) it is bounded on any compact
subinterval of [0, T ) (respectively [0,∞) or [0, T ]), (b) left-hand limits exist on
(0, T ) (respectively (0,∞) or (0, T ]) and (c) right-hand limits exist on [0, T )
(respectively [0,∞) or [0, T )). After a normalization of the function, this is
actually equivalent to a right continuous functions having left-hand limits, these
functions are called cad-lag.

It is interesting to note that continuity of a (separable) process X can be
localized, X is called continuous (or a.s. continuous) at a time t if the set Nt
of ω such that s 7→ X(s, ω) is not continuous at s = t has probability zero
(i.e., Nt is measurable, which is always true if X is separable, and P (Nt) = 0).
Thus, a (separable) process X may be continuous at any time (i.e., P (Nt) = 0
for every t in T ) but not necessarily continuous (i.e., with continuous paths,
namely P (∪tNt) = 0). Remark that a cad-lag process X may be continuous
at any (deterministic) time (i.e., P (Nt) = 0 for every t in T ) without having
continuous paths, as we will se later, a typical example is a Poisson process.

Analogously to the previous theorem, a condition for the case of a modifica-
tion with only discontinuities of the first kind can be given (e.g., see Gikhman
and Skorokhod [98, Section IV.4], Wong [255, Proposition 4.3, p. 59] and its
references)

Theorem 1.22 (cad-lag). Let {Xt : t ∈ [0, T ]} be a d-dimensional stochastic
process in a probability space (Ω,F , P ) such that

E{|Xt+h −Xs|α|Xs −Xt|α} ≤ Ch1+β , ∀ 0 ≤ t ≤ s ≤ t+ h ≤ T, (1.12)

for some positive constants α, β and C. Then there exists a cad-lag version
Y = {Yt : t ∈ [0, T ]} of X.
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Similarly, for processes of locally bounded variation we may replace the
expression | · | in (1.11) by the variation to get a corresponding condition. In
general, by looking at a process as a random variable in RT we can use a complete
separable metric space D ⊂ RT to obtain results analogous to the above, i.e., if
(1.11) holds for the metric d(Xt, Xs) instead of the Euclidean distance |Xt−Xs|,
then the conclusions of Theorem 1.21 are valid with d(Yt, Ys) in lieu of |Yt−Ys|,
e.g., see Durrett [67, p. 5, Theorem 1.6].

The statistics of a stochastic process are characterized by its finite-dimension-
al distributions, i.e., by the family of probability measures

Ps(B) = P ({(X(s1, ω), . . . , X(sn, ω)) ∈ B}), ∀B ∈ B(Rn),

with s = (s1, . . . , sn), n = 1, 2, . . . , for a real valued process {X(t, ω) : t ∈ T}.
This family of finite-dimensional distributions essentially determines a stochastic
processes (i.e., modulo all possible version of a process), but not the process
itself. The above results allow the verification of the (path) continuity properties
of a given stochastic process in term of its two-dimensional distribution.

A typical (sample) path of a stochastic process is the function X(·, ω) for
each fixed ω, and so, a stochastic process (with prescribed finite-dimensional
distributions) can always be constructed in the product space RT , endowed
with the σ-algebra BT (R) generated by the algebra of cylindrical sets, which
may be smaller than the Borel σ-algebra B(RT ). Thus we can view a stochastic
process X as probability measure PX on (RT ,BT (R)), but in general the σ-
algebra BT (R) is not appropriated, it is too small comparatively with the big
space RT of all functions.

If we can find a proper subset Ω ⊂ RT containing almost every paths of X,
i.e., such that P ∗X(Ω) = 1 (where P ∗X is the exterior probability measure defined
for any subset of RT ), then the stochastic process X becomes a probability
measure P on (Ω,B), where Ω ⊂ RT and B = Ω

⋂
BT (R) is the restriction of

BT (R) to Ω with P = P ∗X , i.e., P (Ω∩B) = PX(B). It turn out that B contains
only sets that can be described by a countable number of restrictions on R, in
particular a singleton (a one point set, which is closed for the product topology)
may not be measurable. Usually, B is enlarged with all subsets of negligible
(or null) sets with respect to P, and we can use the completion B∗ of B as the
measurable sets. Moreover, if Ω is an appropriate separable topological space by
itself (e.g., continuous functions) so that the process have some regularity (e.g.,
continuous paths), then the Borel σ-algebra B(Ω), generated by the open sets in
Ω coincides with the previous B. Note that another way to describe B is to see
that B is the σ-algebra generated by sets (so-called cylinders in Ω) of the form
{ω ∈ Ω : (ω(s1), . . . , ω(sn)) ∈ B} for any B ∈ B(Rn), with s = (s1, . . . , sn),
n = 1, 2, . . . .

Note that the arguments in Theorems 1.20, 1.21 or 1.22 are such that if we
begin with a separable process, then we find that the measurable, continuous or
cad-lag version Y is actually indistinguishable from the initial process X, i.e.,
P ({ω : Xt(ω) = Yt(ω), ∀t ∈ T}) = 1.
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Definition 1.23 (process). Given an index set T (usually T ⊂ R), a measurable
space (E, E) (usually E ⊂ Rd) and a probability space (Ω,F , P ), an E-valued
general stochastic process is a measurable function X from (Ω,F) into (ET , ET ),
i.e. a family of E-valued random variables {Xt : t ∈ T}. Moreover, if E is a
Hausdorff topological space, E is its Borel σ-algebra and there exits a topological
sub-space B of the product space ET (which is called sample space and endowed
with its Borel σ-algebra B) such that the restriction to B of the function ω 7→
X(·, ω) (to emphasized, now denoted by X̄) is a B-valued random variable,
then X̄ (or X) is called an E-valued stochastic process with paths in B. Usually
B does not belong to the product σ-algebra BT (E) (generated by all Borel
cylindrical sets), and X̄ (considered with values in ET ⊃ B) is a version of the
general process X. Actually X̄ is identified with its P -equivalence class, and
for each t in T, the canonical (coordinate, evaluation or projection) mapping
X̄ 7→ X̄t from B into E is defined. The probability measure on B induced by X̄
(denoted by PX) is called the law of the process. Furthermore, if the index set
T = [0,∞) then the minimal filtration satisfying the usual conditions (complete
and right-continuous) (FX(t) : t ≥ 0) such that the E-valued random variables
{X̄s : 0 ≤ s ≤ t} are measurable is called the canonical filtration associated
with the given process. On the other hand, given a family of finite-dimensional
distributions on ET of some (general) stochastic process X, a realization of
a stochastic process X with paths in B and the prescribed finite-dimensional
distributions is the probability space (Ω,F , P ) and the stochastic process X̄ as
above.

Clearly, the passage from general stochastic processes (i.e., a family of ran-
dom variables X) to stochastic processes is very subtle (however very significant,
since X becomes a random variable in some topological space). Technically, if
we take the trivial choice B = ET then to label X a stochastic process, we need
to know that X is also measurable for Borel σ-algebra B(ET ), which may be
larger than BT (E), and so not a priori satisfied. Note that we abandon the
trivial choice B = ET because in several arguments, we need that the Borel
σ-algebra B of the topological space B (the sample space, where all paths are)
coincides with the cylindrical Borel σ-algebra in B, i.e., a B-valued function Y
is B(B)-measurable if and only if for each t, the E-valued function Y (t) is B(E)-
measurable. Usually, the definition of the (topological) sample space B involves
some topology on the index set T. Also, if the index set T ⊂ Rn, n ≥ 2 then the
name random field is preferable. The notion of general stochastic processes is as
general as possible, however the concept of stochastic processes imposes some
path regularity. Depending on the interest and the objective of the study under-
taken, there are other possible approaches, for instance, when E = Rd we may
consider (right- or left-)continuous processes, in probability or in mean-square,
where processes are treated as continuous functions from T into L0(Ω,F , P ),
the complete metric space of Rd-valued random variables endowed with the con-
vergence in probability (called stochastically continuous processes), or into the
Hilbert space L2(Ω,F , P ) of square-integrable random variables (usually called
second-order processes). This type of analysis is rarely used here, the interested
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reader may check the book Gikhman and Skorokhod [98], among others.
Starting from a general stochastic process X, usually, a two-step procedure

is applied: first a good version X̄ is chosen and then a good sample space B is
found. For instance, given a R-valued general stochastic process X with index
set T = [0,∞), we can apply Theorem 1.19 to get a separable version of X̄
(with extended values, i.e., in [−∞,+∞]T ). Thus if I is a denumerable separant
subset of indexes then we may consider X̄ as taking valued in [−∞,+∞]I (or
the one-point compactification RI ∪ {∞}), which is not exactly a subset of
RT , but it is essentially the space of all (extended) real-valued sequences. This
point of view is not considered in this book. Alternatively, if we know that the
initial general stochastic process X is right-(or left-)continuous in probability
(so when X is also separable any dense set in T is a separant set) then we may
apply Theorem 1.20 to get a measurable version. Still, this point of view is
rarely used in this book. Finally, the two-step procedure is as follows: first, we
assume that Theorems 1.21 or 1.22 is applicable to X, so that a continuous or at
least cad-lag version X̄ can be found (i.e., first X̄(t, ω) = X(t, ω) is defined for
every ω but only for t in a countable dense subset of [0,∞) and then X̄(t, ω) is
extended for every t in [0,∞) but only for ω outside of a negligible set). Second,
we take as B the space of continuous or cad-lag functions, with a suitable
topology and we forget about the initial general stochastic process X, because
X (technically its version X̄) is considered now as a random variable with values
in a complete separable metric space B endowed with its Borel σ-algebra B. So,
essentially, a version (or modification) of a process is allowed only once, and
then all stochastic processes (with the same path regularity) indistinguishable
of this good version are considered equals. In general we use the following
result, e.g., Kallenberg [121, Lemma 3.24, pp. 58]): Let T be a set of index, and
{Xt : t ∈ T} and {Yt : t ∈ T} be family of random variables (perhaps defined
on distinct probability spaces) taking values in some separable metric space E
such that Xt and Yt have the same finite-dimensional distribution. If the paths
t 7→ Yt lie in some Borel subset B of BT (E) (σ-algebra generated by cylindrical
Borel sets) then there exists a family of random variables {X̃t : t ∈ T} with
paths in B such that P (Xt = X̃t) = 0 for every t in T, i.e., X̃ is a version of X.

Note that the initial probability space is irrelevant in the above context,
we can always reduce to a canonical space of functions. Moreover, by taking
the image measure through the map X if necessary, we can always reduce to
the canonical process, i.e., the probability space becomes (B,B, PX) and the
process is the random variable ω 7→ Xt(ω) = ω(t) from B into itself. So that
the law of a process carried all necessary information. If two or more processes
are involved, then we have to deal with more that one probability measure on
the sample space (B,B). Thus only one process can be reduced to the canonical
process and the others can be viewed as probability measures or as measurable
functions from B into itself. In most of the cases, the sample space B is a
Polish (complete separable metric) space (better than ET ) where the motions
of versions and equivalence classes coincide.

Clearly, most of the properties required for a stochastic process are stated
relative to the probability PX on the (Polish) sample space. However, for in-
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stance, when we state some property relative to the sample path of a process
(such as integrability in one of the variables), the difficulty is the fact we refer
either to the map t 7→ X(t, ω) for a fixed ω or to the map ω 7→ X(t, ω) for any
fixed t. Thus, sometime we are forced to comeback to the initial setting of gen-
eral stochastic process as a family of E-valued random variables. Alternatively,
we may define processes as functions from the base space T × Ω into E, this
is, we consider X as a function of two-variables X = X(t, ω), and immediately
we restrict the attention to (joint) measurable functions, i.e., the so-called mea-
surable processes. This approach yields delicate measurability problems when
dealing with stochastic integration, as carefully discussed in Bichteler [25].

The following type of processes may be useful

Definition 1.24 (Gaussian). A real valued process {X(t) : t ∈ T} is a Gaus-
sian process if for any finite sub-family (t1, . . . , tn) of indexes in T, the ran-
dom variable (X(t1), . . . , X(tn)) has a Gaussian n-dimensional distribution. Its
mean is m(t) := E{X(t)} and its covariance is defined by Γ(s, t) := E{[X(s)−
m(s)][X(t)−m(t)]}, for any s, t in T. The process is called centered if E{X(t)} =
0 for any t in T.

An important property of the Gaussian processes is the fact that its covari-
ance function is always semi-definite positive, i.e., for any (t1, . . . , tn), any n,
the matrix {Γ(ti, tj)} is semi-definite positive. Moreover, any symmetric semi-
definite positive function is the covariance of a centered Gaussian process, see
Revuz and Yor [212, p. 36, Chapter 1].

Another important class of processes is the following

Definition 1.25 (stationary). A E-valued process {X(t) : t ≥ 0} is called
stationary if for every t1, . . . , tn and t we have

P ({X(t1 + t) ∈ A1, . . . , X(tn + t) ∈ An}) =

= P ({X(t1) ∈ A1, . . . , X(tn) ∈ An}),

for any Borel sets A1, . . . , An in E, i.e., its finite-dimensional distribution (see
Section 1.10) is invariant by a time translation.

These processes play a central role in the study of ergodicity or stability, e.g.,
see the books Khasminskii [130] and Skorokhod [230].

1.7 Markov Chains

Let {X(t) : t ∈ T}, T ⊂ R be an E-valued stochastic process, i.e. a (complete)
probability measure P on (ET ,BT (E)). If the cardinality of the state space E
is finite, we say that the stochastic process takes finitely many values, labeled
1, . . . , n. This means that the probability law P on (ET ,BT (E)) is concentrated
in n points. Even in this situation, when the index set T is uncountable, the
σ-algebra BT (E) is rather small (see Exercise 1.33, a set of a single point is
not measurable). A typical path takes the form of a function t 7→ X(t, ω) and
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cannot be a continuous function in t. As discussed later, it turn out that cad-
lag functions are a good choice. The characteristics of the stochastic processes
{X(t) : t ∈ T} are the functions t 7→ xi(t) := P{X(t) = i}, for any i = 1, . . . , n,
with the property

∑n
i=1 xi = 1. We are interested in the case where the index

set T is usually an interval of R.
Now, we turn our attention where the stochastic process describes some

evolution process, e.g., a dynamical system. If we assume that the dimension
of X is sufficiently large to include all relevant information and that the index
t represents the time, then the knowledge of X(t), referred to as the state of
the system at time t, should summarize all information up to the present time
t. This translated mathematically to

P{X(t) = j |X(r), r ≤ s} = P{X(t) = j |X(s)}, (1.13)

almost surely, for every t > s, j = 1, . . . , n. At this point, the reader may
consult the classic book Doob [59, Section VI.1, pp. 235–255] for more details.
Thus, the evolution of the system is characterized by the transition function
pij(s, t) = P{X(t) = j | X(s) = i}, i.e., a transition from the state j at time
s to the state i at a later time t. Since the stochastic process is assumed to
be cad-lag, it seems natural to suppose that the functions pij(s, t) satisfies for
every i, j = 1, . . . , n conditions

n∑
j=1

pij(s, t) = 1, ∀t > s,

lim
(t−s)→0

pij(s, t) = δij , ∀t > s,

pij(s, t) =

n∑
k=1

pik(s, r)pkj(r, t), ∀t > r > s.

(1.14)

The first condition expresses the fact that X(t) takes values in {1, . . . , n}, the
second condition is a natural regularity requirement, and the last conditions are
known as the Chapman-Kolmogorov identities. Moreover, if pij(s, t) is smooth
in s, t so that we can differentiate either in s or in t the last condition, and
then let r − s or t− r approaches 0 we deduce a system of ordinary differential
equations, either the backward equation

∂spij(s, t) =

n∑
k=1

ρ+
ik(s) pkj(s, t), ∀t > s, i, j,

ρ+
ij(s) = lim

r→s
∂spij(s, r) ∀s, i, j,

(1.15)

or the forward equation
∂tpij(s, t) =

n∑
k=1

pik(s, t) ρ−kj(t), ∀t > s, i, j,

ρ−ij(t) = lim
r→t

∂tpij(r, t) ∀t, i, j,
(1.16)
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The quantities ρ+
ij(s) and ρ−ij(s) are the characteristic of the process, referred

to as infinitesimal rate. The initial condition of (1.14) suggests that ρ−ij(s) =

−ρ+
ij(t) := ρij(t), if s = t. Since

∑n
j=1 pij(s, t) = 1 we deduce

ρ(t, i, j) ≥ 0, ∀i 6= j, ρ(t, i, i) = −
∑
j 6=i

ρ(t, i, j). (1.17)

Using matrix notation, R(·) = {ρij}, P (s, t) = {pij(s, t)} we have
∂sP (s, t) = −R(s)P (s, t), ∀s < t,

∂tP (s, t) = P (s, t)R(t), ∀t > s,

lim
t−s→0

P (s, t) = I, ∀t > s.

(1.18)

Conversely, given the integrable functions ρij(t), i, j = 1, . . . , n, t ≥ 0 sat-
isfying (1.17), we may solve the system of (non-homogeneous and linear) or-
dinary differential equations (1.15), (1.16) or (1.18) to obtain the transition
(matrix) function P (s, t) = {pij(s, t)} as the fundamental solution (or Green
function). For instance, the reader may consult the books by Chung [43], Yin
and Zhang [259, Chapters 2 and 3, pp. 15–50].

Since P (s, t) is continuous in t > s ≥ 0 and satisfies the conditions in (1.14),
if we give an initial distribution, we can find a cad-lag realization of the corre-
sponding Markov chain, i.e., a stochastic process {X(t) : t ≥ 0} with cad-lag
paths such that P{X(t) = j |X(s) = i} = pij(s, t), for any i, j = 1, . . . , n and
t ≥ 0. In particular, if the rates ρij(t) are independent of t, i.e., R = {ρij},
then the transition matrix P (s, t) = exp[(t− s)R]. In this case, a realization of
the Markov chain can be obtained directly from the rate matrix R = {ρij} as
follows. First, let Yn, n = 0, 1, . . . be a sequence of E-valued random variables
with E = {1, . . . , n} and satisfying P (Yn = j | Yn−1 = i) = ρij/λ, if i 6= j with
λ = − infi ρii, i > 0, and Y0 initially given. Next, let τ1, τ2, . . . be a sequence
of independent identically distributed exponentially random variables with pa-
rameter λ i.e., P (τi > t) = exp(−λt), which is independent of (Y0, Y1, . . . ). If
we define X(t) = Yn for t in the stochastic interval [[Tn, Tn+1[[, where T0 = 0
and Tn = τ1 + τ2 + · · ·+ τn, then X(t) gives a realization of the Markov chain
with the above infinitesimal rates.

A typical setting includes T = [0,∞) and a denumerable state space E
(with the discrete topology). This type of processes are very useful in modeling
dynamical systems, referred to either as queueing systems or as point processes
very well known in the literature, e.g., Bremaud [33], Kemeny and Snell [129],
Kleinrock [132], Nelson [187].

This study is simplified if the time is discrete, i.e., the Markov chain Xn,
n = 0, 1, . . . , with values in subset E of Rd is defined by recurrence by

P{Xn+1 ∈ · |Xn} = P (Xn, ·), n ≥ 1,

where the stochastic kernel P (x,A) satisfies:

(a) P (x, ·) is a probability measure on B(E) for any x in E
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(b) P (·, A) is measurable in E for any A in B(E).

The finite-dimensional distributions (as discussed later in Section 1.10) of a
Markov chain is given by P{X0 ∈ A0, X1 ∈ A1, . . . Xn ∈ An} =

=

∫
A0

ν(dx0)

∫
A1

P (x0,dx1) · · ·
∫
An

P (xn−1,dxn),
(1.19)

for any A0, A1, . . . , An in B(E), and where ν(·) is the initial distribution. Thus,
given the stochastic kernel we can use Kolmogorov’s construction theorem (see
Theorem 1.30 below) to obtain a Markov chain Xn for n = 0, 1, . . . satisfying
the above equation (1.19). Moreover, we have

P{Xn |X0 = x} = Pn(x, ·)

where Pn(x,A) denote the n kernel convolutions, defined by induction by

Pn(x,A) :=

∫
E

Pn−1(x,dy)P (y,A). (1.20)

The reader may consult the book by Chung [43] and Shields [226], among others,
for a more precise discussion.

Before going further, let us mention a couple of classic simple processes which
can be viewed as Markov chains with denumerable states, e.g., see Feller [81,
Vol I, Sections XVII.2–5, pp. 400–411]. All processes below {X(t) : t ≥ 0} take
values in N = {0, 1, . . .}, with an homogeneous transition given by p(j, t−s, n) =
P{X(t) = j | X(r), 0 ≤ r < s, X(s) = n}, for every t > s ≥ 0 and j, n in
N. Thus, these processes are completely determined by the knowledge of the
characteristics p(t, n) := P{X(t) = n}, for every t ≥ 0 and n in N, and a
description on the change of values.

The first example is the Poisson process where there are only changes from
n to n+ 1 (at a random time) with a fix rate λ > 0, i.e., ∂tp(t, n) = −λ

[
p(t, n)− p(t, n− 1)

]
,

∂tp(t, 0) = −λp(t, 0),
(1.21)

for every t ≥ 0 and n in N. Solving this system we obtain

p(t, n) = e−λt
(λt)n

n!
, t ≥ 0, n ∈ N,

which is the Poisson distribution.
The second example is a pure birth process where the only variation relative

to the Poisson process is the fact that the rate is variable, i.e., the rate is λn > 0
when X(t) = n. This means that (1.21) becomes ∂tp(t, n) = −λnp(t, n) + λn−1p(t, n− 1),

∂tp(t, 0) = −λp(t, 0),
(1.22)
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for every t ≥ 0 and n in N. Certainly, this system can be solved explicitly, but
the expression is rather complicate in general. If X represents the size of a pop-
ulation then the quantity λn is called the average rate of growth. An interesting
point is the fact that {p(t, n) : n ∈ N} is indeed a probability distribution, i.e.,

∞∑
n=1

p(t, n) = 1

if and only if the coefficients λn increase sufficiently fast, i.e., if and only if the
series

∑
n λ
−1
n diverges.

The last example is the birth-and-death process, where the variation is the
fact that either a change from n to n + 1 (birth) with a rate λn or from n to
n − 1, if n ≥ 1 (death) with a rate µn may occur. Again, the system (1.21) is
modifies as follows ∂tp(t, n) = −(λn + µn)p(t, n) + λn−1p(t, n− 1) + µn+1p(t, n+ 1),

∂tp(t, 0) = −λp(t, 0) + µ1p(t, 1),
(1.23)

for every t ≥ 0 and n in N. As in the case of a pure birth process, some
conditions are needed on the rates {λ0, λ1, . . .} and {µ1, µ2, . . .} to ensure that
the birth-and-death process does not get trap in 0 or ∞ and the characteristics
{p(t, n) : n ∈ N} is a probability distribution.

1.8 Processes without after-effect

Markov processes, or stochastic processes without aftereffect, or non-hereditary
(or memory less) stochastic processes refer always to the same property: any
additional knowledge concerning the states of a process {X(·)} at previous times
s < t0 relative to the present time t0 does not affect the statistics of the process
at future times s > t0. As will be noticed later, this means that a stochastic
processes without aftereffect is completed determined by its transition function,
i.e., a function P (s, x, t, dy), which is the condition (transition) probability of
X(t) knowing that X(s) = x. For real valued process, we may use the transition
distribution function F (s, x, t, y), for s < t and x, y in R, associated with {X(·)},
which is the probability that X(t) < y assuming that X(s) = x. Clearly the
function F should satisfies

lim
y→−∞

F (s, x, t, y) = 0, lim
y→∞

F (s, x, t, y) = 1,

and continuity from the left in y

lim
z↑y

F (s, x, t, z) = F (s, x, t, y)

as any distribution function. To be able to use Bayes’ formula for conditional
distribution it is convenient to assume that F is continuous with respect to the
variables s, x and t. This yields the Chapman-Kolmogorov equation (or identity)

F (s, x, t, y) =

∫
R
F (s, x, τ,dζ)F (τ, ζ, t, y),
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valid for any s < τ < t and x, y in R. So, we may complete the definition of
F (s, x, t, y) for s = t by a limit continuation as follows

lim
t→s+

F (s, x, t, y) = lim
s→t−

F (s, x, t, y) = F0(x, y), (1.24)

where F0(x, y) = 1 if y > x and F0(x, y) = 0 otherwise. In what follows, this
condition (1.24) is always assumed.

If a density function f(s, x, t, y) = ∂yF (s, x, t, y) exists then

F (s, x, t, y) =

∫ y

−∞
f(s, x, t, ζ)dζ

and clearly

f(s, x, t, y) =

∫
R
f(s, x, τ, ζ)f(τ, ζ, t, y)dζ,

for any s < τ < t and x, y in R.
For instance, the interested reader should consult the classic books Feller [81,

Vol II, Sections X.3–5, pp. 316–331] and Gnedenko [101, Sections 53–55, pp.
358–376], for a more detailed discussion and proofs of most the results in this
section.

For a continuous stochastic process we assume
lim
t→s+

1

t− s

∫
|y−x|≥δ

F (s, x, t, dy) = 0,

lim
s→t−

1

t− s

∫
|y−x|≥δ

F (s, x, t, dy) = 0,
(1.25)

for every s, x and t, plus the following two conditions: (a) the first and second
partial derivatives ∂xF (s, x, t, y) and ∂2

xF (s, x, t, y) exit and are continuous for
any s < t, x and y, and (b) for every δ > 0 the limits

lim
t→s+

1

t− s

∫
|y−x|<δ

(y − x)2F (s, x, t, dy) = 2a(s, x),

lim
s→t−

1

t− s

∫
|y−x|<δ

(y − x)2F (s, x, t, dy) = 2a(t, x),
(1.26)

and 
lim
t→s+

1

t− s

∫
|y−x|<δ

(y − x)F (s, x, t, dy) = b(s, x),

lim
s→t−

1

t− s

∫
|y−x|<δ

(y − x)F (s, x, t, dy) = b(t, x),
(1.27)

exit uniformly in x for every s < t fixed. Note that the limiting coefficients a
and b in (1.26) and (1.27) seem to depend on the value δ, but in view of the
continuity condition (1.25) is merely apparent.
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Under the above assumptions (1.25), (1.26) and (1.27) we can easily prove
the validity of the backward Kolmogorov equation, namely

∂sF (s, x, t, y) + a(s, x)∂2
xF (s, x, t, y) + b(s, x)∂xF (s, x, t, y) = 0, (1.28)

for any s < t, x and y. Actually, only the first part of conditions (1.26) and
(1.27) play any role here.

However, to deduce the forward Kolmogorov (also called Fokker-Planck)
equation satisfied by the (probability) density function, namely

∂tf(s, x, t, y) + ∂y
[
b(t, y)f(s, x, t, y)

]
= ∂2

y

[
a(t, y)f(s, x, t, y)

]
, (1.29)

for any s < t, x and y, we do need the second part of conditions (1.26) and
(1.27), as well as the existence and continuity of the derivatives ∂tf(s, x, t, y),
∂y
[
b(t, y)f(s, x, t, y)

]
and ∂2

y

[
a(t, y)f(s, x, t, y)

]
.

If the continuity condition (1.25) is slightly strengthen into

lim
t→s+

1

t− s

∫
|y−x|≥δ

(y − x)2F (s, x, t, dy) = 0,

lim
s→t−

1

t− s

∫
|y−x|≥δ

(y − x)2F (s, x, t, dy) = 0,

then conditions (1.26) and (1.27) are valid also for δ = 0, which mean

E{[X(t)−X(s)]− (t− s)b(s,X(s))} = (t− s)ε1,

E{[X(t)−X(s)]2 − 2(t− s)a(s,X(s))} = (t− s)ε2,

where ε1, ε2 → 0 as t− s→ 0+, in term of the first and second moment of the
Markov process x(·). As seem later, the actual construction of the stochastic
process {X(t) : t ≥ 0} is quite delicate, in particular if a > 0 then almost surely
the path t 7→ X(t, ω) are continuous, but with infinite variation.

The transition distribution F of a purely jump Markov process {X(·)} can
be expressed as follows:{

F (s, x, t, y) = [1− (t− s)λ(s, x)]F0(x, y) +

+(t− s)λ(s, x)ρ(s, x, y) + (t− s)ε,
(1.30)

where ε→ 0 as (t− s)→ 0+, uniformly in x and y. Thus, on any time interval
(s, t) the value X(·) remains constant and is equal to X(s) = x with probability
1− (t− s)λ(s, x) + (t− s)ε, with ε→ 0 as t− s→ 0+ (so that it may only have
a jump with a probability (t − s)λ(s, x) + (t − s)ε). The coefficient ρ(s, x, y)
denotes the conditional distribution function of X(s) under the condition that
a jump has indeed occurred at time s and that immediately before the jump
X(·) was equal to X(s−) = x.

Certainly, λ(s, x) and ρ(s, x, y) are nonnegative, y 7→ ρ(s, x, y) is a nonde-
creasing function continuous from the left, ρ(s, x,−∞) = 0, ρ(s, x,∞) = 1,
and we assume that ρ(s, x) is bounded, and that both ρ(s, x) and ρ(s, x, y) are
continuous in s and Borel measurable in x. Under these conditions, (1.30) and
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the continuity (1.24), the following backward and forward Kolmogorov integro-
differential equations

∂sF (s, x, t, y) =

= λ(s, x)

∫
R

[
F (s, x, t, y)− F (s, ζ, t, y)

]
ρ(s, x,dζ),

∂tF (s, x, t, y) =

∫
R

[
λ(s, ζ)− λ(t, ζ)ρ(t, ζ, y)

]
F (s, x, t, dζ),

(1.31)

for any s < t, x and y. In the case of purely jump, the construction of the
process {X(t) :≥ 0} is relatively simple and the path t 7→ X(t, ω) are piecewise
constant (and normalized to be left-hand continuous) almost surely, however,
the average or mean t 7→ E{X(t)} is a continuous function.

Since Gaussian and Poisson processes are the prototypes of continuous and
jump processes, we would like to quote some results related to the convergence
of a sum of independent random variables to the Gaussian and Poisson distri-
butions, e.g., see Gnedenko [101, Sections 49, pp. 336–339].

Let {ξn,1, ξn,2, . . . , ξn,mn} be a set of mn independent random variables for
n = 1, 2, . . . , and set ζn = ξn,1 + ξn,2 + · · · ξn,mn and denote by Fn,m(x) the
distribution function of the random variable ξn,m.

Suppose that we normalize the sequence so that

lim
n→∞

mn∑
m=1

E{ξn,m} = 0,

lim
n→∞

mn∑
m=1

E
{[
ξn,m − E{ξn,m}

]2}
= a > 0.

Then the sequence of distribution functions Gn(x) of the sum of random vari-
ables ζn converge to the Gaussian (or normal) distribution

N(x) :=
1√
2π

∫ x

−∞
exp

(
− y2

2a

)
dy

if and only if

lim
n→∞

mn∑
m=1

∫
|x|>δ

x2Fn,m(dx) = 0,

for every δ > 0.
Alternately, suppose that we normalize the sequence so that

lim
n→∞

mn∑
m=1

E{ξn,m} = λ > 0,

lim
n→∞

mn∑
m=1

E
{[
ξn,m − E{ξn,m}

]2}
= λ.
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Then the sequence of distribution functions Gn(x) of the sum of random vari-
ables ζn converge to the Poisson distribution

P (x) :=


0 for x ≤ 0,

e−λ
∑

0≤k<x

λk

k!
for x > 0

if and only if

lim
n→∞

mn∑
m=1

∫
|x−1|>δ

x2Fn,m(dx+ λn,m) = 0,

for every δ > 0, where λn,m := E{ξn,m}.
Clearly, plenty of general results existent in the current literature regarding

limits of sum of random variables, the point we remark is the fact that a nor-
malization, the sum converges to a Gaussian distribution if the mean and the
variance have limits of different order, one zero and the other non-zero. How-
ever, if the mean and the variance have limits of the same order (non-zero) the
sum converges to a Poisson distribution. This gives the two flavors, continuous
and discontinuous (jumps) processes.

Now, let us discuss (Markov) jump processes from sample space point of
view as in the classic book Doob [59, Section VI.2, pp. 255–273]. Similarly
to the transition distribution function, an homogeneous transition probability
function P (x, t, A), x in a E (usually an open or closed subset of Rd), t > 0 and
A in B(E), the Borel σ-algebra in E, satisfies: (a) for each t > 0 and x in E
the function A 7→ P (x, t, A) is a probability measure on (E,B(E)), (b) for each
t > 0 and A in B(E) the function x 7→ P (x, t, A) is a (Borel) measurable, (c)
for any x in E and A in B(E) we have

lim
t→0

P (x, t, A) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise, (d) for each
t, s > 0, x in E and A in B(E) we have

P (t+ s, x,A) =

∫
E

P (t, x,dy)P (s, y, A)

which is referred to as the Chapman-Kolmogorov identity.
If the continuity condition (c) above is strengthen into (or replace by)

lim
t→0

inf
x∈E

P (x, t, {x}) = 1, ∀x ∈ E, (1.32)

then Doeblin’s result proves that there is a homogeneous piecewise constant
Markov process {X(t) : t ≥ 0} with a cad-lag path and transition probability
function P (x, t, A). By piecewise constant (cad-lag) paths we means that if
X(t, ω) = x then there exists a positive constant δ = δ(t, ω) such that X(s) = x
for every s in the stochastic interval [t, t+ δ).
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By means of the Chapman-Kolmogorov identity and under the continuity
assumption (1.32), where the uniform limit in x is essential, we may use the
transition probability function P (x, t, A) to define the pair of functions λ(x)
and Λ(x,A), for x in E and A in B(E) as follows:

lim
t→0+

1− P (x, t, {x})
t

= λ(x),

lim
t→0+

P (x, t, A)

t
= Λ(x,A),

(1.33)

for any x in E, A in B(E r {x}), where the definition is completed by setting
Λ(x, {x}) = 0. Thus the function x 7→ λ(x) results bounded in E, the function
x 7→ Λ(x,A) is Borel measurable for every fixed A in B(E), the function A 7→
Λ(x,A) is finite Borel measure on E (or in Er {x}) for every fixed x in E, and
λ(x) = Λ(x,E) = Λ(x,Er{x}), so that 0 ≤ Λ(x,A) ≤ λ(x), for every x in E and
B(E). Moreover, both convergence in (1.33) is uniform in x and A in B(Er{x}),
x in E. Usually, we normalize the coefficients so that Λ̄(x,A) := Λ(x,A)/Λ(x,E)
is a probability measure (with a distribution ρ(x,A) if E = R as in the previous
discussion) and λ̄(x) = λ(x)Λ(x,E).

Note that as in the initial discussion with the transition distribution function,
for every x in E and A in B(E) we do have

P (x, t, A) =
[
1− tλ(x)

]
δ(x,A) + tΛ(x,A) + tε,

with ε → 0 as t → 0+, uniformly in x and A in B(E). The Backward and
Forward Kolmogorov integro-differential equations have the form

∂tP (x, t, A) = λ(x)

∫
E

[
P (x, t, A)− P (ζ, t, A)

]
Λ(x,dζ),

∂tP (x, t, A) =

∫
E

λ(ζ)
[
Λ(ζ, E)− Λ(ζ,A)

]
P (x, t,dζ),

(1.34)

for any s < t, x in E and A in B(E). The last equation takes also the form

∂tP (x, t, A) =

∫
ErA

Λ(ζ,A)P (x, t,dζ)−
∫
A

Λ(ζ, E rA)P (x, t,dζ).

Moreover, with suitable assumptions all this extends to non-homogeneous tran-
sition probability functions on Polish (separable, complete and metric) spaces.

1.9 Markov Processes

There is an important class of processes known as Markov process which are
used to model dynamical systems under disturbances. They are based on the
principle that the future is independent of the past when we know the present.
Similar to the state variable model for deterministic dynamical systems. Essen-
tially, it is a matter of what is called state so that any dynamical process can
be view a Markov process with a larger state. However, the price of the Markov
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character is the lack of differentiability in time of the process as we will see later.
It is convenient to assume that state-space is a complete metric space (i.e. a
Polish space) and that the index set T has a natural order e.g., T is a subset of
R. In most of our cases T = [0,∞) and E is a either closed or open subset of
Rd.

A stochastic process X on a (complete) probability space (Ω,F , P ) and
values in a Polish space E satisfies the Markov property if for any n = 1, 2 . . . ,
any bounded measurable (actually continuous suffices, because E is a complete
metric space) functions f1, . . . , fn, g1, . . . , gn, h, and times s1 ≤ · · · ≤ sn ≤ t ≤
t1 ≤ · · · ≤ tn we have

E
{
h(Xt)

( n∏
i=1

f(Xsi)
)( n∏

i=1

g(Xti)
)}

=

= E
{
h(Xt)E{

n∏
i=1

f(Xsi) |Xt)}
n∏
i=1

g(Xti)
}
,

(1.35)

where E{
∏n
i=1 f(Xsi) |Xt} is Xt-measurable functions satisfying

E
{
h(Xt)

n∏
i=1

f(Xsi)
}

= E
{
h(Xt)E{

n∏
i=1

f(Xsi) |Xt)}
}
,

i.e., it is the conditional expectations with respect to the σ-algebra generated
by the random variable Xt. This is briefly expressed by saying that the future is
independent of the past given the present. Clearly, this condition involves only
the finite-dimensional distributions of the process, and (1.35) is equivalent to
(e.g., see Blumental and Getoor [28, Thm 1.3, pp. 12-14]) either

P (Xt ∈ B |Xs1 , . . . , Xsn , Xs) = P (Xt ∈ B |Xs), a.s.

for every t > s ≥ sn > · · · > s1, B in B(E), or

E{f(Xt) |Xs1 , . . . , Xsn , Xs} = E{f(Xt) |Xs}, a.s.,

for every t > s ≥ sn > · · · > s1, and for any arbitrary bounded and continuous
(actually, with compact support when E is locally compact) function f from E
into R.

Definition 1.26 (history). Given a stochastic process X on a (complete) prob-
ability space (Ω,F , P ) we can define the history (or internal history or strict
history) of the process as the increasing family of σ-algebras {H(t) : t ∈ T},
where each H(t) is generated by the random variables {X(s) : s ≤ t} and the
null sets. Similarly, the innovation {H⊥(t) : t ∈ T} is the decreasing family of
σ-algebras, where each H⊥(t) is generated by all sets in some H(s) for s > t
which are independent of H(t) (see Exercises 1.19 and 1.20).

The internal history {H(t) : t ∈ T} of a process X is also denoted by
{FX(t) : t ∈ T} (or {FX(t) : t ∈ T} or with H replacing F) and contains
(or records) all events linked to the process X, up to (and including) the time
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t, i.e., past and present. From the system-science point of view, the history
{FX(t) : t ∈ T} is best thought as an increasing information pattern. On the
other hand the innovation {H⊥(t) : t ∈ T} records all events linked to the
process X, after time t and is unrelated to (independent of) the past.

Based on the observation of a stochastic process up to the present time
we can know whether a causal phenomenon has (or has not) already taken
place. If causally is understood in this way, a random variable τ with values in
[0,∞] can be interpreted as a random time of occurrence of some phenomenon
depending causally upon the process X when the event {ω : τ(ω) ≤ t} is
FX(t)-measurable, which correspond to the notion of optional or stopping times
previously mentioned.

Most of the processes that we are going to discuss will be cad-lag (see Exer-
cises 1.21), and the history {H(t) : t ∈ T} will be right-continuous and therefore
be equal to the canonical filtration (associated with the given process), after be-
ing augmented with all zero-measure sets. By construction H(t) is independent
of H⊥(t) for any t ∈ T, H(t) represents the past and present information at time
t and H⊥(t) is the future new information to come.

Thus, another process Y is said to be adapted to X if Y (t) is measurable
with respect to H(t) for any t ∈ T. Similarly, the process Y is non-anticipative
with respect to X if the random variable Y (t) is independent of H⊥(t) for any
t ∈ T. It is clear that if Y is adapted to X then Y is non-anticipative with
respect to X, but the converse does not hold in general.

Actually, we do not need a process X to define the innovation, if we start
from a filtration {F(t) : t ∈ T} we can define its innovation or independent
complement {F⊥(t) : t ∈ T}, and then we can say that a process X is either
adapted or non-anticipative with respect to the filtration {F(t) : t ∈ T}.

At this point, the Markov property (1.35) can be re-phrased as

P (Xt ∈ B | Hs) = P (Xt ∈ B |Xs), a.s. ∀t > s, B ∈ B(E),

where Ht = H(t) = HX(t). The Markov property identifies only how the finite-
dimensional distributions of the process interact themselves or evolve in time.

Definition 1.27 (Markov). A Markov process with states in E ⊂ Rd is a (com-
plete) probability measure P on (Ω,F), together with a measurable mapping X
(P -equivalence class) from (Ω,F) into (ET ,BT (E)) and an increasing family of
completed σ-algebras (Ft : t ∈ T ) on (Ω,F) satisfying the Markov property

P (Xt ∈ B | Fs) = P (Xt ∈ B |Xs), a.s. ∀t > s, B ∈ B(E).

If the family of σ-algebras (Ft : t ∈ T ) is not mentioned, then it is assumed that
(Ft : t ∈ T ) is the history (H(t) : t ∈ T ) of the process X. Moreover, if (Ft : t ∈
T ) is a filtration satisfying the usual conditions and the paths of (Xt : t ∈ T )
are cad-lag, except in a set of P -probability zero, then (P,Xt : t ∈ T ) is called
a cad-lag Markov process.

As mentioned early, we are concerned with E-valued Markov processes where
E ⊂ Rd, and because cad-lag is usually assumed, the sample space Ω will be a
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Polish (separable, complete and metric) space as discussed later. However, the
above definition is meaningful when E is a Polish, and even when E is only a
Lusin space (homeomorphic to a Borel subset of a compact metric space).

In the above Markov property, assuming we have taken a regular conditional
probability, the equality is true except on a set of probability zero which may
depend on t, s. Thus some regularity is necessary on path of the process to
completely identify the process in term of its finite-dimensional distributions.
In order to avoid extra difficulties, we consider only cad-lag Markov processes,
where the Markov property is satisfied with a complete and right-continuous
increasing family of σ-algebras and the path of the process may have only dis-
continuities of first kind, which are normalized to be cad-lag. The larger the
σ-algebras of the filtration (Ft : t ∈ T ) are, the more significant is the assertion
that (P,Xt,Ft : t ∈ T ) has the Markov property. Thus, the process (Xt : t ∈ T )
is adapted to (Ft : t ∈ T ) and the filtration (Ft : t ∈ T ) is non-anticipative
i.e., Ft is independent of H⊥(t) for any t in T. Note that the Markov property
can be re-phased as follows: for every time t the σ-algebra Ft is independent of
σ(Xs : s ≥ t) given Xt.

In most of the literature, the word standard Markov processes refer to cad-
lag Markov processes which are also quasi-left-continuous and satisfy the strong
Markov property (as discussed later). It will become clear that the strong
Markov property is highly desired, however, some applications involving de-
terministic impulses yield cad-lag Markov processes which are not quasi-left-
continuous.

Usually, when talking about a Markov process we do not refer to a single
process, we really mean a family of processes satisfying the Markov property
and some given initial distribution. The following concept of transition function
is then relevant if we can explicitly write

P{Xt ∈ A |Xs = x} = P (s, x, t, A), ∀s < t, x ∈ E, A ∈ B(E),

for some function P (s, x, t, A). Note that

P{Xt ∈ A |Xs = x} =
P ({Xt ∈ A, Xs = x})

P ({Xs = x})
=

=
1

P ({Xs = x})

∫
{Xs=x}

P{Xt ∈ A |Xs}(ω)P (dω),

whenever P ({Xs = x}) > 0 and P{Xt ∈ A |Xs = x} = 0 when P ({Xs = x}) =
0, under the condition that a regular conditional probability exists.

Definition 1.28 (transition). A transition probability function on a given mea-
surable space (E,F), is a function P (s, x, t, A) defined for s < t in T (T is equal
to [0,+∞) or (−∞,+∞) in most of our cases), x in E and A in F such that

(a) for each s < t in T and x in E the function A 7→ P (s, x, t, A) is a probability
measure on (E,F),

(b) for each s < t in T and A in F the function x 7→ P (s, x, t, A) is a measurable,
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(c) for any s in T , x in E and A in F we have

lim
t→s

P (s, x, t, A) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise,

(d) for each s < r < t in T, x in E and A in F we have

P (s, x, t, A) =

∫
E

P (s, x, r, dy)P (r, y, t, A),

which is referred to as the Chapman-Kolmogorov identity. It is called homo-
geneous if P (s, x, t, A) = P (0, x, t − s,A) for any t > s in T = [0,+∞) (or
T = {0, 1, 2, . . . }), x in E and any Borel measurable subset A of E, in this case
we will denote P (0, x, r, A) by P (r, x,A). In most of the cases, the space E is a
Polish space and F = B(E), its Borel σ-algebra. We say that P (s, x, t, A) is a
Feller transition probability function

(e) if the function (s, x) 7→ P (s, x, t, f), with

P (s, x, t, f) :=

∫
E

f(y)P (s, x, t, dy),

is continuous from [0, t]× E into R, for any fixed t in (0,∞) and any bounded
continuous function f from E into R.

Note that conditions (a) and (b) are natural weak regularity assumptions,
the limit in (c) is a more restrictive (but necessary) initial condition, and the
Chapman-Kolmogorov identity (see Exercise 1.22) follows from the Markov
property in Definition 1.27. Usually, when the space E is locally compact Polish
space and T = [0,∞), we replace the condition (c) by a stronger assumption,
namely, for any compact subset K of E, any s in [0,∞) and any ε > 0 we have

(a) lim
t→s

sup
x∈K

[1− P (s, x, t, B(x, ε))] = 0,

(b) lim
x→∞

sup
0≤s<t≤1/ε

P (s, x, t,K) = 0,
(1.36)

where B(x, ε) is the ball of radius ε and center x, and neighborhood of ∞ are
of the form ErK for some compact K of E. In (1.36), the first condition (a) is
referred to as local uniformly stochastic continuity property, while condition (b)
is only necessary when E is not compact. Note that by adding one dimension
to the space E, e.g., replacing E by E × T, we can always assume that the
transition is homogeneous (see Exercise 1.23).

Theorem 1.29 (strong Markov). Let (P,Xt,Ft : t ∈ T ) be a Markov process
on a Polish space E with cad-lag paths and homogeneous transition function
P (t, x,A). If either P (t, x,A) is a Feller transition, i.e., condition (e) holds, or
at least the process s 7→ P (t,Xs, f) is cad-lag for every t > 0 and any bounded
continuous function f, then (1) (P,Xt,F+

t : t ∈ T ) is a Markov process with
transition P (t, x,A), where F+

t = ∩ε>0Ft+ε, and (2) F+
t = Ft, for every t ≥ 0,
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when ever Ft is the σ-algebra generated by the null sets and {Xs : s ≤ t}.
Moreover, if the cad-lag Markov process (P,Xt,Ft : t ∈ T ) exists for every
initial condition X0 = x, any x in E, and the transition function is Feller or
at least the process s 7→ P (t,Xs, f) is cad-lag for every t > 0 and any initial
condition X0 = x, then (P,Xt,F+

t : t ∈ T ) is a strong Markov process, i.e., for
any τ optional (or stopping) time, any t > 0, and every Borel measurable set A
in E,

P (X(τ + t) ∈ A | F+
τ ) = P (t,X(τ), A), a.s. on {τ <∞},

where F+
τ is the σ-algebra generated by the optional time τ, relative to {F+

t :
t ≥ 0}.

A proof of the above strong Markov property can be founded in Doob [60,
Theorems 8 and 9, pp. 556-560] or in Blumental and Getoor [28, Chapter 1,
Theorem 8.1, pp. 41-42], where almost surely right continuous (instead of cad-
lag) processes is only assumed. Moreover, adding another coordinate to include
time as a new state variable, this result is extended to non-homogenous Markov
processes with almost no changes. Indeed, if P (s, x, t, dξ) is a non-homogeneous
transition probability function then Ṗ (ẋ, t,dξ̇) = P (s, x, τ,dξ)δ(t − τ)dτ is a
homogeneous transition probability function associated to the Markov process
Ẋ(t) = (t−s,X(t−s)) with initial condition Ẋ(s) = (s,X(0)), where δ(t−τ)dτ
is the Dirac measure at {t}, ẋ = (s, x), ξ̇ = (τ, ξ) and Ė = [0,∞) × E, and
the associated Markov process Ẋ(t) = (t − s,X(t − s)) with initial condition
Ẋ(s) = (s,X(0)).

In most of the cases, the Markov process takes values in a locally compact
metric space E endowed with its Borel σ-algebra. Using the fact that Radon
measures can be regarded as linear continuous functions on the space of con-
tinuous functions with compact support, the properties in the Definition 1.28
of transition function including condition (e) and (1.36) can be rephrased as a
family of linear operators P (t, s) : C0(E) −→ C0(E), where C0(E) is the space
of continuous functions vanishing at infinity (i.e., for any ε > 0 there exists a
compact subset K of E such that |ϕ(x)| ≤ ε for every x in E rK), such that

(a) 0 ≤ P (t, s)ϕ ≤ 1, for every ϕ in C0(E) with 0 ≤ ϕ ≤ 1

(b) limt→s P (t, s)ϕ(x) = ϕ(x), for any x in E and ϕ in C0(E)

(c) P (t, s) = P (t, r)P (r, s), for any s < r < t.

Thus, if the transition function is homogeneous, i.e., P (t, s) = P (t−s), we have
a one-parameter semigroup in C0(E).

Sometimes, it is convenient to consider processes with values in a enlarged
space Ē = E∪{∞}, with an isolated point∞ (usually, the one-point compactifi-
cation), and even defined in the whole [0,∞]. In this case, the lifetime formalism
is used, i.e., define the lifetime of a process X(·) as ς(ω) := {t ≥ 0 : X(t) =∞},
and assume that X(t) = ∞ for every t ≥ ς. This allow to relax the condition
(a) of the definition of transition function, only the fact that P (s, x, t, ·) is a
measure with total mass not larger than 1 (instead of a probability measure) is
actually necessary.
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Usually, the transition function P (s, x, t, A) associated with a Markov pro-
cess Xt is continuous in time (i.e., in s and t) and a standard realization makes
Xt a cad-lag process. In this case, an extra property is desirable, the process
Xt = X(t) is quasi-left continuous, i.e., X(Tn) converges to X(T ) on the set
where T <∞, for any increasing sequence of stopping time Tn converging to T,
with Tn < T. It is clear that here the key is fact that Tn are stopping times. In
this sense, the process Xt do not have any deterministic jumps.

If a stochastic process represents some kind of phenomenological process
then it should characterized by its finite-dimensional distributions. Then, a
mathematical model is a realization of such a process in a convenient sample
space, see Section 1.12. However, a Markov process is also characterized by
either its transition function or it infinitesimal generator (see next chapter). It
is important to recognize that when only one stochastic process (or variable) is
involved, it finite-dimensional distributions determine the process in an appro-
priate sample space (usually refer to as a realization of the process), however,
when two or more stochastic processes (or variables) are discussed, it is impor-
tant to know its joint distribution. Thus the concept of version or modification
of a process is relevant, i.e., at the end we are always working with stochastic
processes as random variables which are almost surely equals. Recall that two
stochastic processes need not to be defined in the same probability space to
have the same finite-dimensional distributions, but they do have the same law,
once the sample space has been chosen. However, to be a version (or a modi-
fication) one of each other, they do need to be defined in the same probability
space. After a sample space has been chosen, the stochastic process are treated
as random variable, with values in the sample space. The procedure of selecting
a sample space on which a probability is constructed satisfying its characteristic
properties (e.g., the finite-dimensional distributions are given, or in the case of
a Markov process, its transition function or its infinitesimal generator is given)
is called a realization of the stochastic process.

The reader may consult the classic books by Blumental and Getoor [28],
Dynkin [69, 70] or more recent books, such as, Çınlar [46], Chung [44], Del-
lacherie and Meyer [58], Ethier and Kurtz [76], Marcus and Rosen [166], Rogers
and Williams [214], Taira [245], among many others.

1.10 Construction of Processes

It is clear that a family of finite-dimensional distributions {Ps : s ∈ Tn, n =
1, 2, . . . }, on a Borel (usually open or closed) subset of Rd, derived from a
stochastic process form a projective family, i.e., they must satisfy a set of (nat-
ural) consistency conditions, namely

(a) if s = (si1 , . . . , sin) is a permutation of t = (t1, . . . , tn) then for any Bi in
B(E), i = 1, . . . , n, we have Pt(B1 × · · · ×Bn) = Ps(Bi1 × · · · ×Bin),

(b) if t = (t1, . . . , tn, tn+1) and s = (t1, . . . , tn) and B in B(En) then Pt(B×E) =
Ps(B).
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If a total order is given on the index set T , it is enough to have the finite-
dimensional distributions defined only for (s1, s2, . . . , sn) such that s1 < s2 <
· · · < sn and to satisfy only a consistency conditions of the form

(b’) if t = (t1, . . . , tn) and s = (s1, . . . , sm) with t1 < · · · < tn < r < s1 < · · · <
sm and A×B in B(En)×B(Em) then P(t,r,s)(A×E ×B) = P(t,s)(A×B), for
any n,m = 0, 1, . . . .

The converse of this assertion is given by the following classic Kolmogorov
(sometime called Daniell-Kolmogorov or Čentsov-Kolmogorov) construction or
the coordinate method of constructing a process (see Kallenberg [121], Karatzas
and Shreve [124], Malliavin [163], Revuz and Yor [212], among others, for a
comprehensive treatment).

Theorem 1.30 (Kolmogorov). Let {Ps : s ∈ Tn, n = 1, 2, . . . } be a consistent
family of finite-dimensional distributions on a Borel subset E of Rd. Then there
exists a probability measure P on (ET ,BT (E)) such that the canonical process
Xt(ω) = ω(t) has {Ps} as its finite-dimensional distributions.

Under the consistency conditions, an additive function can be easily defined
on product space (ET ,BT (E)), the question is to prove its σ-additive property.
In this respect, we point out that one of the key conditions is the fact that the
(Lebesgue) measure on the state space (E,B(E)) is inner regular (see Doob [60,
pp. 403, 777]). Actually, the above result remains true if E is a Lusin space,
i.e., E is homeomorphic to a Borel subset of a compact metrizable space. Note
that a Polish space is homeomorphic to a countable intersection of open sets of
a compact metric space and that every probability measure in a Lusin space is
inner regular, see Rogers and Williams [214, Chapter 2, Sections 3 and 6].

We recall that a cylinder set is a subset C of ET such that ω belongs to
C if and only if there exist an integer n, an n-uple (t1, t2, . . . , tn) and B ∈
B(En) such that (ω(t1), ω(t2), . . . , ω(tn)) belongs to B for any i = 1, . . . , n. The
class of cylinder sets with t1, . . . , tn fixed is equivalent to product σ-algebra in
E{t1,...,tn} ' En and referred to as a finite-dimensional projection. However,
unless T is a finite set, the class of all cylinder sets is only an algebra. Based on
cylinder sets, another way of re-phrasing the Kolmogorov’s construction theorem
is saying that any (additive) set function defined on the algebra of cylinder
sets such that any finite-dimensional projection is a probability measure, has a
unique extension to a probability measure on ET . In particular, if T = {1, 2, . . .}
then the above Kolmogorov’s theorem shows the construction of an independent
sequence of random variables with a prescribed distribution. In general, this is
a realization of processes where the distribution at each time is given.

Note that a set of only one element {a} is closed for the product topology of
ET and so it belongs to the Borel σ-algebra B(ET ) (generated by the product
topology in ET ). However, the product σ-algebra BT (E) (generated by cylinder
sets) contains only sets that can be described by a countable number of restric-
tions on E, so that {a} is not in BT (E) if T is uncountable. Thus we see the
importance of finding a subset Ω of ET having the full measure under the outer
measure P ∗ derived from P, which is itself a topological space. For instance,
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combining the last two theorems, if a consistent family of distributions satisfies
the a priori estimate (1.11), then we can redefine the probability measure P of
the above theorem on the space (C,B(C)), of continuous functions.

There is a very important class of stochastic processes so-called Lévy pro-
cesses which provides prototype examples, we refer to Bertoin [21] and Sato [220]
for a comprehensive study.

Definition 1.31 (Lévy process). An E-valued (E ⊂ Rd) Lévy (stochastic) pro-
cess is a couple (PX , X) as in Definition 1.23 satisfying:

(a) its increments are independent of the past i.e., for any t > s ≥ 0 the random
variable Xt −Xs is independent of Xs under PX ,

(b) it has stationary increments i.e., for any t > s ≥ 0 the random variable
Xt −Xs has the same distribution as Xt−s under PX ,

(c) its paths are continuous in probability (referred to as stochastically continu-
ous) i.e., for any ε > 0 and s ≥ 0 we have

lim
t→s

P (|Xt −Xs| ≥ ε) = 0.

Usually the condition PX(X0 = 0) = 0 is added to normalize the process.

Note that a process with independent increments, property (a), has its
finite-dimensional distributions completely determined by the distributions of
(Xt0 , Xt1 −Xt0 , . . . , Xtk −Xtk−1

), for any t0 ≤ t1 ≤ · · · ≤ tk in [0,+∞). More-
over, if the process has stationary increments, property (b), then the distri-
bution of the random variables {Xt : t ≥ 0} in E completely characterize its
finite-dimensional distributions. Adding the continuity condition (c), the Lévy
process is identified. Now, instead of looking at the distributions of Xt under
PX we may consider its characteristic functions, which is its Fourier transform
i.e., for any t ≥ 0

ϕt(ξ) = E{ei(ξ,Xt)} :=

∫
Ω

ei(ξ,Xt(ω))PX(dω),

where (·, ·) is the dot product in Rd and i is the imaginary unit.
It is not so hard (see Exercise 1.25) to check that any characteristic function

ϕ(ξ), ξ ∈ Rd has the following properties:

(a) ϕ(·) is continuous from Rd into C and ϕ(0) = 1,

(b) ϕ(·) is positive definite i.e., for any k = 1, 2, . . . , ζ1, . . . , ζk in C and ξ1, . . . , ξk
in Rd we have

k∑
i,j=1

ϕ(ξi − ξj)ζiζ̄j ≥ 0,

we refer to Shiryayev [227, Section 2.12, pp. 272–294] for a more detail. So,
this is satisfied by the family of characteristic functions {ϕt : t ≥ 0}. Moreover,
since the Lévy process (PX , X) has independent and stationary increments, see
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properties (a) and (b), the one-parameter functions ϕt satisfies ϕt+s = ϕtϕs,
for any t ≥ s ≥ 0. From the property (c) follows that the function t 7→ ϕt(ξ) is
continuous for any ξ ∈ Rd from [0,∞) into C (see Exercise 1.26). Thus the char-
acteristic function are of the form ϕt(ξ) = exp[−tψ(ξ)], for some non-negative
and continuous function ψ with ψ(0) = 0. Actually the Lévy-Khintchine for-
mula (see Protter [206, p. 32, Theorem 43] give a simple expression for the
one-dimensional case

ψ(ξ) =
σ2

2
ξ2 − iαξ +

∫
|x|≥1

(1− eiξx)ν(dx) +

∫
|x|<1

(1− eiξx + iξx)ν(dx),

where ν (called Lévy measure) is a Radon measure on R∗ = Rr {0} satisfying

ν({|x| ≥ 1}) +

∫
|x|<1

|x|2ν(dx) < +∞,

and the constants σ, α are the characteristic parameters of the process i.e.,
uniquely determine the Lévy process. This generalizes to Rd, where now σ2 is
a positive semi-definite quadratic d × d matrix, α, x and ξ are in Rd and the
dot product is used, see Bertoin [21, Theorem I.1, pp. 13–15]. Moreover, the
canonical filtration {F(t) : t ≥ 0} associated with a Lévy process (PX , X) is
right-continuous, i.e. it satisfies the usual conditions, see Definition 1.7.

The converse can be established as follows. First, by means of the classic
Bochner theorem (e.g. see Pallu de la Barrière [193, p. 157, Theorem 1] that
for any non-negative and continuous function ψ with ψ(0) = 0 such that ξ 7→
exp[−tψ(ξ)] is positive definite for any t ≥ 0, is indeed the characteristic function
of some distribution), there exist a family of probability distribution P (t, dx) for
any t ≥ 0 whose characteristic function is precisely exp[−tψ(ξ)]. Now, based on
the properties (a) and (b) of a Lévy process, the finite-dimensional distributions
are determined by

P (X(t1) ∈ B1 , X(t2) ∈ B2 , . . . , X(tn) ∈ Bn) =

= P (X(t1) ∈ B1 , X(ti)−X(ti−1) ∈ Bi −Bi−1 , 2 ≤ i ≤ n) =

= P (t1, B1)P (t2 − t1, B2 −B1) · · ·P (tn − tn−1, Bn −Bn−1) ,

for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. Hence, Kolmogorov construction may be applied.
The fact that the family of characteristic functions exp[−tψ(ξ)] are continuous
in t, locally uniformly in ξ implies that the process is continuous in probability
i.e., condition (c) is satisfied. Therefore, if ν, σ and α are given then there exists
a unique Lévy process with the prescribed characteristic parameters. Moreover,
as proved in Protter [206, p. 21, Theorem 30] any Lévy process has a version
which is cad-lag i.e., the paths t 7→ Xt(ω) are right-continuous functions having
left-hand limits from [0,∞) into E for any ω ∈ ΩrN with PX(N) = 0. In other
words, the Kolmogorov construction is valid on the space of cad-lag functions.

The transition function P (t, x,A) of a Lévy process has the form of convo-
lutions semigroup, i.e., a family of probability measures on Rd such that

(a) νs ∗ νt = νs+t for any s, t
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(b) νt → δ0 in the weak topology,

and

P (t, x,A) :=

∫
Rd
1A(x+ y)νt(dy),

see Revuz and Yor [212, Propositon 2.18, pp. 96-97].
As seen in the classic Kolmogorov construction, the finite-dimensional distri-

butions characterize the statistics of a process, but not its sample properties. If
we are only interested in the statistics of a process, we may adopt another view-
point to identify a process. Instead of given its finite-dimensional distributions,
we may prescribe some time-evolution or dynamics.

Suppose that a transition (probability) function P (s, x, t, A) (see Defini-
tion 1.28) and an initial (i.e. for t = 0) distribution ν are given. Then we
can define an absolute probability function by

P0(t, A) =

∫
P (0, x, t, A) ν(dx), ∀A ∈ F

and a family of finite-dimensional distributions for t1 < · · · < tn as follows

Pt1,...,tn(A1 ×A2 × · · · ×An) =

=

∫
A1

P0(t1,dx1)

∫
A2

P (t1, x1, t2,dx2) · · ·
∫
An

P (tn−1, xn−1, tn,dxn),

for any A1, A2, . . . , An in F . It is not hard to check (see Exercise 1.27) that the
consistency condition (b’) is satisfied.

Thus for a given transition function on (E,F), with E ⊂ Rd, we can use
Kolmogorov construction to get a canonical process (i.e. a probability measure)
on (ET ,B(ET )). Moreover, if the continuity condition (1.11) is satisfied, which
is verifiable in term of the transition function and the initial probability i.e.,∫

E

|x− y|αP (s, x, t, dy) ≤ C|t− s|1+β , ∀s, t ∈ [0, T ], ∀x ∈ E,

for some positive constants α, β and C, then the construction can be performed
over the space C(T,E), with the local uniform convergence topology and the
induced Borel σ-algebra. Similarly, the cad-lag condition (1.12) becomes∫

E

|x− y|αP (s, x, t, dy) ≤ C|t− s| 12 +β , ∀s, t ∈ [0, T ], ∀x ∈ E,

after some simplification (see Exercise 1.28).
If we denote by (PX , X) the process constructed as above on the product

space (ET ,B(ET )), with its canonical filtration {F(t) : t ≥ 0}, then we have
the following property (derived from the Chapman-Kolmogorov identity)

PX(X(t) ∈ · |X(s)) = P (s,X(s), t, ·), ∀t ≥ s (1.37)

So that P (s, x, t, A) represents the conditional probability that the state of the
process belongs to A at time t knowing that initially it was x at time s. This is
referred to as the Markov property.
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We only state now an useful result relative to the construction of stan-
dard Markov process, actually the so-called Markov-Feller processes, There are
several way of construct a good Markov process from a given Markov (or sub-
Markov) transition as in Definition 1.28 conditions (a), (b), (c) and (d). For
instance we refer to Blumental and Getoor [28, Chapter 1, Theorem 9.4, pp.
46-51], Dynkin [70, Chapter III, Theorems 3.5, 3.6, pp. 81-92], Ethier and
Kurtz [76, Chapter 4, Theorem 1.1, pp. 157-169], among others. We summarize
these results in a non-homogeneous form as follows:

Theorem 1.32 (realization). Let P (s, x, t, dy) be a transition probability func-
tion satisfying properties (a), (b), (c), (d) of Definition 1.28 on a Polish space
E. Then, for any given probability measure ν on E and any initial time s ≥ 0,
there exist a unique Markov process (P,Xt,Ft; t ≥ s) satisfying condition (1.37)
and such that Xs has ν as its distribution. If the transition probability func-
tion either (1) is Feller, i.e., the function (s, x) 7→ P (s, x, t, f) is continuous
from [0, t] × E into R for any t in (0,∞) and any bounded continuous func-
tion f from E into R, or (2) satisfies condition (1.36), then the Markov pro-
cess (P,Xt,Ft; t ≥ s) has cad-lag paths and right-continuous filtration. More-
over, if the function (x, t) 7→ P (s, x, t, f) is continuous from [s,∞) × E into
R, for any s in [0,∞) and any bounded continuous function f from E into
R, then (Xt,Ft : t ≥ s) is quasi-left-continuous, i.e., for any increasing se-
quence of stopping time {τn : n = 1, 2, . . .} almost surely strictly convergent to
τ, P (τn ≤ τn+1 < τ < ∞, τ > s) = 1, then Xτn converges to Xτ a.s. (or
equivalently the σ-algebra Fτ is the minimal σ-algebra containing the sequence
of σ-algebra {Fτn : n = 1, 2, . . .}). Furthermore, if

lim
t→s

1

t− s
sup
x∈K
{1− P (s, x, t, B(x, ε))} = 0,

for every s ≥ 0 and x in E, then the Markov process (P,Xt,Ft; t ≥ 0) has
continuous paths.

There are several ways of expressing the continuity condition (Feller’s prop-
erty) assumed in the previous theorem. Sometime, a transition probability
P (s, x, t, dy) is called stochastically continuous if it satisfies

lim
t−s→0

P (s, x, t, {y ∈ E : |y − x| < δ}) = 1, ∀x ∈ E,

see Dynkin [70, Chapter 2]. This is equivalent to the continuity in probabil-
ity of a realization of the Markov process and the Feller character used above.
Moreover, a Markov process satisfying the above regularity on its transition
function is called a Markov-Feller process. Actually, with the aid of the sample
space D([0,∞), E) discussed later, we see that the so-called realization of the
Markov-Feller process given in the previous theorem can be regarded as a prob-
ability measure P on D([0,∞), E), with Xt(ω) = ω(t) the canonical process
and (Ft : t ≥ 0) its canonical filtration. Moreover, it satisfies the strong Markov
property. At this point, a reading of Chapter 4 in Marcus and Rosen [166] could
be of some help.
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We may look at stochastic processes with complex values. In this context,
we have the so-called second-order process, which are well adapted to dynamical
systems.

Definition 1.33 (second-order process). A (complete) probability measure PX
on (Ω,F), where Ω ⊂ CT and Ω

⋂
B(CT ) ⊂ F , together with a measurable

mapping X from Ω into itself satisfying:

(a) EX{|Xt|2} <∞, for all t in T,

(b) t 7→ Xt from T into L2(PX) is continuous

will be called a mean square continuous second-order process (PX , X).

This definition is independent of the sample path of the process, i.e., any
version of the process should satisfy the conditions (a) and (b) above. Thus, as
the case of processes continuous in probability, second-order processes cannot be
regarded as random variables with values in some appropriate (sample) function
space.

For a second-order process we can define the mean and covariance function:

µ(t) := EX{Xt} R(t, s) := EX{(Xt − µ(t))(Xs − µ(s))},

where the over-bar denotes the complex conjugate. Several properties can be
discussed for this class of processes. For instance, we can mention that a second-
order process is continuous in mean square if and only if its covariance function
R(t, s) is continuous. On the other hand, any continuous second-order process
(PX , X) with T = [a, b] has a version of the form

Xt(ω) =

∞∑
n=1

√
λnϕn(t)yn(ω),

where the convergence is in L2(PX), uniformly for t in [a, b], and {ϕn : n =
1, 2, . . . } are the orthonormal eigenfunctions and {λn : n = 1, 2, . . . } are the
eigenvalues of∫ b

a

R(t, s)ϕ(s)ds = λϕ(t), a ≤ t ≤ b

in L2(]a, b[) and {yn : n = 1, 2, . . . } is an orthonormal system in L2(PX) satis-
fying

yx(ω) =
√
λn

∫ b

a

ϕn(t)Xt(ω)dt.

We refer to Shiryayev [227, Section 2.10, pp. 260–272] for the discrete case,
and to Wong [255, Chapter 3, pp. 74–138] for more details.

Related with the second-order processes are the so-called processes with or-
thogonal increment, which are defined as a (complete) probability measure PX
on (Ω,F), where Ω ⊂ CT and Ω

⋂
B(CT ) ⊂ F , together with a measurable

mapping X from Ω into itself satisfying:
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(a) EX{|Xt −Xs|2} <∞, for all t, s in T,

(b) EX{XtXs} = 0, for all t, s in T,

It can be proved that to each such a process corresponds a monotone non-
decreasing functions FX , uniquely determined up to an additive constant, sat-
isfying

EX{|Xt −Xs|2} = FX(t)− FX(s), ∀t > s.

Moreover, the right-hand X(t+) and the left-hand X(t−) limits exists in the
L2(PX) sense, for every t in T, and X(t−) = X(t) = X(t+), except for a count-
able set in T. Thus, processes with orthogonal increments can be normalized
to be cad-lag in mean square sense. We refer to Doob [59, Chapter IX, pp.
425–451].

1.11 Examples of Markov processes

Two typical examples can be given, (a) the standard Wiener process (or Brow-
nian motion) (w(t), t ≥ 0) and (b) the standard Poisson process (p(t), t ≥ 0).
Both are the prototype of Lévy processes (see Definition 1.31). For the Wiener
process, we take the Gauss kernel

p(t, x) = (2πt)−d/2 exp(−|x|
2

2t
), t > 0, x ∈ Rd (1.38)

and consider the transition function

Pw(s, x, t, A) =

∫
A

p(t− s, y − x)dy, ∀t > s, A ∈ B(Rd),

the initial probability P0 as the Dirac measure. Kolmogorov construction and
path regularity apply in this case to generate a probability measure Pw in the
space C([0,+∞),Rd), called Wiener measure. Under Pw, the canonical process
is a standard Wiener process. Certainly there several ways to construct a Brow-
nian motion and a critical point is to show continuity of its paths. In general, a
one-dimension standard Brownian motion is defined as a real valued stochastic
process {B(t) : t ≥ 0} satisfying:

(a) B(0) = 0 and for 0 ≤ s < t < ∞, the difference B(t) − B(s) is a normally
distributed random variable with mean zero and variance t− s, i.e., for every α
in R,

P
(
B(t)−B(s) > α

)
=

∫ +∞

α

(
2π(t− s)

)−1/2
exp

(
− |x|2

2(t− s)
)
dx,

(b) for 0 ≤ t0 < t1 < · · · < tn, the family {B(t0), B(tk)−B(tk−1), k = 1, . . . , n}
is a set of independent random variables.

The above two properties characterize a Brownian motion (or Wiener process)
as an indistinguishable stochastic process. Because it is well know that (e.g.
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Chung [44, p. 145]) any Brownian motion has a version with continuous path
(see 1.29), we work always with a continuous version, actually with the Wiener
measure. A d-dimensional version is constructed by taking d independent one-
dimensional Brownian motions. Note that the characteristic function is given
by

E{exp i(ξ,B(t))} = exp
(
− t |ξ|

2

2

)
, ∀t ≥ 0,

with i =
√
−1. There are many properties on the paths of a Wiener process

{w(t) : t ≥ 0}, we mention some of them (see Itô and McKean [113], Krylov [141,
pp. 36-38])

(a) for any c non zero constant, w(t+ c)−w(c), c−1w(c2t), ∀t ≥ 0 and tw(1/t),
∀t > 0 (and = 0 for t = 0) are also Wiener process;

(b) for any constants α in (0, 1/2) and T in (0,∞) there exists a random variable
C(ω) such that E{|C|p} <∞ for any positive and finite p and

|w(t, ω)− w(s, ω)| ≤ C(ω)|t− s|α, ∀t, s ∈ [0, T ], ω ∈ Ω.

In particular, |w(t, ω)| ≤ C(ω)tα for t ∈ [0, T ] and |w(t, ω)| ≤ C(ω)t1−α for
t > T.

(c) for any ω in Ω rN, with P (N) = 0 we have

lim sup
s↓0

|w(t+ s)− w(t)|√
−2s ln s

= 1, ∀t > 0,

lim sup
t↓0

w(t)√
2t ln(− ln t)

= 1, lim inf
t↓0

w(t)√
2t ln(− ln t)

= −1,

which are referred as the law of the iterated logarithm.

(d) let {t0,n, . . . , tk,n : n = 1, 2, . . . } be a sequence of partition of [a, b] ⊂ [0,∞)
with mesh going to zero, then

lim
n→∞

k∑
i=1

[w(ti)− w(ti−1)]2 = b− a, a.s.

As a consequence, almost surely the sample paths t 7→ w(t, ω) of a standard
Wiener process are of unbounded variation on any interval. It is possible to
construct a Wiener process based on a complete system of orthonormal function
in L2. For instance (Krylov [141, pp. 32]), let {ξn : n = 0, 1, . . . } be a sequence
of independent (standard) normal distributed random variables. Define the
process

wkt (ω) =
1√
π
t ξ0(ω) +

√
2

π

N(k)∑
n=1

ξn(ω)
1

n
sin(nt).

Then there exists increasing sequence of positive integers {N(k) : k = 1, 2, . . . }
such that the sequence of processes wkt converges uniformly for t ∈ [0, π] and
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ω ∈ Ω r N, P (N) = 0 to a Wiener process. Another typical expression is the
locally uniformly convergent series

wt(ω) =

√
2

π

∞∑
n=0

ξn
sin
(
tπ(n+ 1/2)

)
n+ 1/2

,

e.g., see Knight [133, Chapter 1].
Related to a Wiener process (or Brownian motion) is a Brownian motion

with drift, defined by x(t) := σw(t) + bt, for some constants σ and b, where
each random variable x(t) has a Gaussian distribution. Similarly, a geometric
Wiener process is defined by

x(t) := exp[σw(t) + bt], t ≥ 0,

where now x(t) has a log-normal distribution. On the other hand,

x(t) := w(t) + sup
0≤s≤t

{max[w(s), 0]}, t ≥ 0

defines a reflected Brownian motion on [0,∞), and x(t) := w(t) − tw(1), 0 ≤
t ≤ 1 defines a so-called Brownian bridge.

For a one-dimensional standard Poisson process with parameter c > 0, we
define the transition function

Pp(s, x, t, A) = exp
[
− c(t− s)

] ∞∑
k=0

[c(t− s)]k

k!
1A(x+ k) (1.39)

and we apply Kolmogorov construction. Here, the continuity condition (1.11)
is not satisfied, but the process is continuous in probability (see property (c)
of Definition 1.31 and Exercise 1.30). A Poisson process {p(t) : t ≥ 0}, with
parameter c > 0, is characterized by the following properties:

(a) p(0) = 0 and 0 ≤ s < t <∞, the difference p(t)− p(s) is a Poisson random
variable with mean c(t− s) i.e.,

P
(
p(t)− p(s) = n

)
=
[
c(t− s)

]n
exp

[
− c(t− s)

]
/n!, n = 0, 1, . . . ;

(b) for 0 ≤ t0 < t1 < · · · < tn, the family {p(t0), p(tk)− p(tk−1), k = 1, . . . , n}
is a set of independent random variables.

Any Poisson process has a version with right continuous (and left hand limits)
paths (see Chung [44, Theorem 3, p. 29]). Almost surely, the paths of a Poisson
process are constant except for upward jumps of size one, of which there are
finitely many in each bounded interval, but infinitely many in [0,∞]. The times
between successive jumps are independent and exponentially distributed with
parameter c. Thus, if τn is the time between the n and the (n+ 1) jumps, then
P (τn > t) = exp(−ct) for each t ≥ 0. Actually, based on this last property,
a Poisson process can be constructed as follows. Let {τn : n = 1, 2, . . . } be a
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sequence of independent exponentially distributed (with parameter c) random
variables. Define the counting process as

p(t) =

0 if t < τ1,

n if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi

with values in {0, 1, 2, . . . }. It can be proved (see Protter [206, Chapter 1]) that
{p(t) : t ≥ 0} is a Poisson process. Its characteristic function is given by

E{exp(iξp(t))} = exp
[
− tc(1− eiξ)

]
, ∀t ≥ 0.

Similarly, a Compound-Poisson process is given by

p(t) =

0 if t < τ1,

Zn if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi,

where Zn := ζ1+ζ2+· · ·+ζn, and {ζn : n = 1, 2, . . . } is a sequence of independent
identically distributed (with distribution law ν) random variables, independent
of the sequence τ1, . . . , τn. Its transition function is given by the expression of
the form

Pcp(s, x, t, A) = exp
[
− c(t− s)

] ∞∑
k=0

[c(t− s)]k

k!
νk(x+A), (1.40)

where νk = ν ∗ νk−1 is the k measure-convolutions of ν, i.e., the distribution of
the random variable Zk = ζ1 + ζ2 + · · · + ζk. In general, if ν is a distribution
in Rd with ν({0}) = 0 then a compound Poisson process pcp(t) in Rd has the
characteristic function

E{exp(iξ · pcp(t))} = exp
[
− tc(1− ν̂(ξ))

]
, ∀ t ≥ 0,

where ν̂ is the characteristic transform of ν, i.e.,

ν̂(ξ) =

∫
Rd

exp(iξ · x)ν(dx), ∀ ξ ∈ Rd.

In particular, if d = 1 and ν = δ1 then we get an standard Poisson process as
above, e.g., see Sato [220, p.18].

A more general viewpoint is to define a (standard or homogeneous) Poisson
measure (or Poisson point process) {p(t, ·) : t ≥ 0} with Lévy (characteristic or
intensity) measure m(·) by the conditions:

(a) m(·) is a Radon measure on Rd∗ := Rdr{0}, i.e., m(B) <∞ for any compact
subset B of Rd∗;
(b) {p(t, B) : t ≥ 0} is a Poisson process with parameter m(B), for any compact
subset B in Rd∗ (with p(t, B) := 0 if m(B) = 0);

(c) if B1, B2, . . . , Bn are disjoint Borel set in Rd∗ then the Poisson processes
p(·, B1), p(·, B2), . . . , p(·, Bn) are independent.
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Note that the Lévy measure m(·) may have a singularity at the origin (at most)
of order 2, i.e.,∫

Rd∗

(
|x|2 ∧ 1

)
m(dx) <∞.

Clearly from (b) follows

E{p(t, B)} = tm(B), ∀t ≥ 0, B ∈ B(Rd∗).

Also, Poisson measures can be represented by means of Dirac point mass (or
atoms), i.e.,

p(t, B) =
∑

0≤s≤t

1e(s)∈B , ∀t ≥ 0, B ∈ B(Rd∗),

where {e(t) : t ≥ 0} is a Poisson point process with characteristic measure
m(·), i.e., {e(t) : t ≥ 0} is a cad-lag (independent of each other) process taking
values in Rd, which is equal to 0 except for a countable number of times and its
counting process p(t, B) is a Poisson process. Equivalently, a (random) sequence
{(en, τn) : n ≥ 1} in Rd∗ × [0,∞) such that its counting process

p(t, B) =
∑
n

1en∈B 10≤τn≤t, ∀t ≥ 0, B ∈ B(Rd∗)

is a Poisson process. If m(·) is bounded, i.e., m(Rd∗) < ∞ then the following
expression

Pp(s, x, t, A) = exp
[
−m(Rd∗)(t− s)

] ∞∑
k=0

(t− s)k

k!
mk(x+A),

mk(B) =

∫
Rd∗
mk−1(z +B)m(dz), k = 1, 2, . . . ,

gives the corresponding transition function for the Poisson measure process.
Comparing with (1.40), we see that compound Poisson processes are particular
cases of Poisson measure process. We refer to Bensoussan and Lions [17, Chapter
3, Section 5] Bertoin [21], Bremaud [32], Jacod and Shiryaev [117], Protter [206]
and Sato [220] for a systematic discussion of the above statements.

Other less typical processes (but particular cases of the above) are (c) the
Cauchy process (c(t), t ≥ 0) and (d) the deterministic process (d(t), t ≥ 0). For
the one-dimensional Cauchy process, we define the transition function

Pc(s, x, t, A) =

∫
A

π(t− s)dy
(t− s)2 + (y − x)2

, (1.41)

and we apply Kolmogorov construction. It can be proved that (see Exercise 1.31)
the continuity condition (1.11) is not satisfied. Only a cad-lag version of this
process can be constructed. This process can be thought of as the trace on the
real line of trajectories of a two-dimensional Brownian motion, which moves by
jumps.
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For the deterministic process, we use an ordinary differential equation [0, T ]×
Rd, e.g. an initial valued problem

ẏsx = f(t, ysx), t > s, ysx(s) = x, (1.42)

to define the transition function

pd(s, x, t, A) = 1A

(
ysx(t)

)
.

Certainly, the only deterministic model comparable with the previous examples
is the case ysx(t) = (t− s)a+ x, for some constant a, which is homogeneous in
time and space.

In this case we may use Kolmogorov construction with the continuity con-
dition (1.11) satisfied. However, a direct approach show that the probability
measure Pd constructed in the space C([0, T ],Rd) is simply the Dirac measure
with respect to ysx(t), i.e. for all A ∈ B(C)

Pd(A) =

{
1 if y0x(·) ∈ A,
0 otherwise,

where the initial probability is equal to δx.
Note that the Poisson process has values in a countable set and it is a typical

example of the so-called (e) Markov pure jump process. Its (time homogeneous)
transition density function, denoted by p(t, i, j), should satisfy the Chapman-
Kolmogorov identity

p(t− s, i, j) =
∑
k

p(r − s, i, k) p(t− r, k, j), ∀t > r > s, i, j.

Hence, differentiate either in s or in t and let either r− s or t− r approaches 0
to deduce either the backward equation

∂sp(t− s, i, j) =
∑
k

ρ+(s, i, k) p(t− s, k, j), ∀t > s, i, j,

ρ+(s, i, j) = lim
r→s

∂sp(r − s, i, j) ∀s, i, j,
(1.43)

or the forward equation
∂tp(t− s, i, j) =

∑
k

p(t− s, i, k) ρ−(t, k, j), ∀t > s, i, j,

ρ−(t, i, j) = lim
r→t

∂tp(t− r, i, j) ∀t, i, j,
(1.44)

The quantities ρ+(s, i, j) and ρ−(s, i, j) are the characteristic of the process,
and clearly

ρ−(s, i, j) = −ρ+(t, i, j) := ρ(i, j), independent of s, t,

ρ(i, j) ≥ 0, ∀i 6= j, ρ(i, i) = −
∑
j 6=i

ρ(i, j). (1.45)
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As in the deterministic example, instead of prescribing the transition function
we give an infinity array of real numbers {ρ(i, j) : i, j = 1, . . . } satisfying the
above equation (1.45). These functions represent the infinitesimal rate at which
i will jumps to j at time s. We can construct the transition function by solving
the forward equation (1.44) with an initial condition, which is a linear system
of ordinary differential equations if the i, j ranges over a finite set. We have to
solve for p(t, i, j) the equation ṗ(t, i, j) =

∑
k

p(t, i, k) ρ(k, j), ∀t > 0, i, j,

p(0, i, j) = δi,j ,

(1.46)

where the dot means derivative in t and δi,j = 1 if i = j and zero otherwise. It
can be proved (see Exercise 1.32) that this equation (1.46) admits a unique so-
lution which provides a transition function p(t, i, j) as above, see Lamperti [149,
Section 6.2, pp. 114-117]. The cad-lag condition (1.12) is satisfied, so that
by means of Kolmogorov construction a realization of the Markov pure jump
process exists in D([0, T ],R). Actually, a discrete arguments will provide a re-
alization in {1, 2, . . . }[0,T ]. For instance we refer to Chung [43] for a exhaustive
treatment.

A so-called (Gaussian) white noise is generally understood in engineering
literature as a family of independent centered Gaussian random variables {ξ(t) :
t ≥ 0}, i.e., mean E{ξ(t)} = 0 and a covariance R(t − s) = E{ξ(t)ξ(s)} with
constant spectral density, so that

E{exp[−iξ(t)]} =
1

2π
, ∀t ≥ 0.

Such a process has a spectrum on which all frequencies participate with the same
intensity, hence a white spectrum (in analogy with the white light in optics, which
contains all frequencies of visible light, uniformly). However, such a process does
not exist in the traditional sense because we should have R(t − s) = δ(t − s),
where δ is the Dirac’s delta generalized function. All this can be mathematical
interpreted in the Schwartz distribution sense.

Definition 1.34 (generalized process). Denote by S(]0,∞[) the space of rapidly
decreasing infinite differentiable functions and by S ′(]0,∞[) its dual space, the
space of temperate distributions on ]0,∞[. In the same way that a stochastic pro-
cess can be considered as a random variable with values in R[0,∞], a generalized
stochastic process is random variable with values in the Schwartz distribution
space (S ′(]0,∞[),B(S ′)).

Note that S(]0,∞[) and S ′(]0,∞[) are reflexive and Fréchet (locally convex,
complete and metrizable) spaces, e.g., see Schwartz [224], but only with a partial
order. In particular, the concept of a process adapted to a filtration and stopping
time need to be reviewed with generalized processes. Clearly, we may use S(Rd)
and S ′(Rd) instead of S(]0,∞[) and S ′(]0,∞[).
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Thus, a process {x(t) : t ≥ 0} can be regarded as a generalized process Φ,
where

〈Φx(ω), ϕ〉 :=

∫ ∞
0

x(t, ω)ϕ(t)dt, ∀ϕ ∈ S(]0,∞[), ω ∈ Ω,

but it is clear that we loss the complete order on the index set. Also, a
generalized (stochastic) process Φ is said to be Gaussian if for arbitrary lin-
early independent functions ϕ1, ϕ2, . . . , ϕn the n-dimensional random variable
(Φ(ϕ1),Φ(ϕ2), . . . , Φ(ϕn)) is normally distributed. As in the classical sense,
a generalized Gaussian process is uniquely determined by its means and co-
variance. An important advantage of a generalized process is the fact that its
derivative always exists and is itself a generalized stochastic process. In partic-
ular if we start with a Wiener process {w(t) : t ≥ 0} consider the generalized
derivative of its associated generalized process Φw i.e.

〈Φ̇w(ω), ϕ〉 := −〈Φw(ω), ϕ̇〉 ∀ϕ ∈ S(]0,∞[), ω ∈ Ω.

we obtain a Gaussian white noise (generalized) process. Similarly, from a
Poisson process {p(t) : t ≥ 0} we get a Poisson white noise (generalized)
process as the derivative of the generalized process associated with {p̄(t) :=
p(t)− E{p(t)} : t ≥ 0}. For instance we refer to Arnold [7, pp. 50–56], Kallian-
pur and Karandikar [122] and Pallu de la Barrière [193, Chapter 7]. A com-
prehensive analysis on Markov (and Gausssian) processes can be found in the
recent book by Marcus and Rosen [166].

1.12 Sample Spaces

At this point, the reader should be even more familiar with the topological
aspect of real analysis. Perhaps some material like the beginning of the books
by Billingsley [26], Pollard [199] and some points in Dudley [62] are necessary
for the understanding of the next three sections.

Actually, we may look at an E-valued stochastic process {X(t) : t ∈ T} as a
random variable X with values in ET endowed with the product Borel σ-algebra
BT (E) (generated by cylinder sets) Technically, we may talk about a random
variable on a measurable space (without a given probability measure), however,
the above Definition 1.23 assumes that a probability measure is given. If some
information on the sample paths of the process is available (e.g., continuous
paths) then the big space ET and the small σ-algebra BT (E) are adjusted to
produce a suitable topological space (Ω,F) on which a probability measure can
be defined.

When the index set T is uncountable, the σ-algebra BT (E), E ⊂ R is rather
small, since only a countable number of restrictions can be used to define a
measurable set (see Exercise 1.33) so that a set of only one point {ω} is not
measurable. This forces us to consider smaller sample spaces, where a topologi-
cal structure is defined e.g., the space of continuous functions C = C([0,∞), E)
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from [0,∞) into E, with the uniform convergence over compact sets. The space
C([0,∞), E) endowed with the natural metric

dc(ω, ω
′) =

∞∑
k=1

2−k sup{1 ∧ |ω(t ∧ k)− ω′(t ∧ k)| : t ∈ [0,∞)}

becomes a complete separable metric space. Thus, the Borel σ-algebra on C
coincides with the σ-algebra generated by the coordinate mappings (see Exer-
cise 1.34).

Another typical example and perhaps the most commonly used sample space
is the D = D([0,∞), E) the space of right continuous functions ω from [0,∞)
into E having left limits. Note that any function in D([0,∞), E) is locally
bounded and has at most countable many points of discontinuity. The space
D([0,∞), E) can be endowed with a topology which makes it a complete sepa-
rable metric space (see Exercise 1.35). This Skorokhod topology is given by the
metric

d(ω, ω′) = inf{p(λ) ∨
∞∑
k=1

2−kq(ω, ω′, λ, k) : λ ∈ Λ},

where Λ is the collection of strictly increasing functions λ mapping [0,∞) onto
itself and such that

p(λ) = sup{| ln(λ(s)− λ(t))− ln(s− t)| : 0 ≤ t < s}
is finite and

q(ω, ω′, λ, k) = sup{1 ∧ |ω(t ∧ k)− ω′(λ(t) ∧ k)| : t ∈ [0,∞)}.

We remark that the Skorokhod topology relative to C([0,∞), E) coincides with
the locally uniform topology (see Exercise 1.36), so that C can be considered as
a closed subspace of D. On the other hand, given an element ω in D([0,∞), E)
and a positive number ε there exist times 0 = t0 < t1 < · · · < tn = 1/ε such that
the oscillation of ω in each subinterval [ti−1, ti), i = 1, . . . , n is not greater than ε,
i.e., for ωε defined by ωε(t) = ω(ti) for any t in [ti−1, ti), we have |ω(t)−ωε(t)| ≤
ε. This is to say that any function in D([0,∞), E) can be approximated in
the topology of C([0,∞), E) by right-continuous step functions, but it cannot
be approximated in (the topology of) D([0,∞), E) by continuous functions.
Clearly, the cad-lag functions endowed with the locally uniform convergence
(i.e., D with the topology of C) is not a separable topological space. The
interested reader is referred to, e.g., Billingsley [26, Chapter 3, pp. 109–153]
for a comprehensive study. Sometime it is convenient to define the sample
spaces D(]−∞,+∞[, E) and C(]−∞,+∞[, E), and even to assume that E is
only a Polish space (i.e., a complete and separable metric space). Some extra
difficulties appear when E is not locally compact.

Any continuous function f with a compact support in [0,∞) (or in ]0,∞[, if
necessary) defines a linear functional on D([0,∞), E), namely

〈f, ω〉 =

∫ ∞
0

f(t)ω(t)dt,
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which results continuous (with the Skorokhod topology). Hence, the Hausdorff
topology generated by those linear functional is weaker than the Skorokhod
topology and makes D a Lusin space (note that D is not a topological vector
space, the addition is not necessarily a continuous operation).

Recall that if S is a metric space then B(S) denotes the σ-algebra of Borel
subsets of S, i.e. the smallest σ-algebra on S which contains all open subsets of
S. In particular B(E), B(D) and B(C) are the Borel σ-algebras of the metric
space E, D([0,∞), E) and C([0,∞), E), respectively. Sometimes we may use
B, when the metric space is known from the context. In particular, the Borel
σ-algebra of C = C([0,∞), E) and D = D([0,∞), E) are the same as the σ-
algebra generated by the coordinate functions {Xt(ω) = ω(t) : t}, i.e., a subset
A of D belongs to B(D) if and only if A ∩ C belongs to B(C). Also, it is of
common use the canonical right filtration (to be completed when a probability
measure is given)

⋂
s>t{σ-algebra generated by (Xr : r ≤ s)}. It can be proved

that if {Pt : t ≥ 0} is a family of probability defined on F0
t = σ{Xs : 0 ≤ s ≤ t}

such that the restriction of Pt to F0
s coincides with Ps for every s < t, then there

exists a probability P defined on B(D) such that P restricted to F0
t agrees with

Pt, e.g., see Bichteler [25, Appendix, Theorem A.7.1].

Definition 1.35 (continuous). An E-valued, usually E ⊂ Rd, continuous
stochastic process is a probability measure P on (C([0,∞), E),B) together with
a measurable mapping (P -equivalence class) X from C([0,∞), E) into itself. If
the mapping X is not mentioned, we assume that it is the canonical (coordinate,
projection or identity) mapping Xt(ω) = ω(t) for any ω in C([0,∞), E), and
in this case, the probability measure P = PX is called the law of the process.
Similarly, a right continuous having left-hand limits stochastic process is a prob-
ability measure P on (D([0,∞), E),B) together with a measurable mapping X
from D([0,∞), E) into itself.

Note that a function X from (C([0,∞), E),B) into itself is measurable if and
only if the functions ω 7→ X(t, ω) from (C([0,∞), E),B) into E are measurable
for all t in [0,∞) (see Exercise 1.34). Since C([0,∞), E) ⊂ D([0,∞), E) as a
topological space with the same relative topology, we may look at a continu-
ous stochastic process as probability measure on D with support in the closed
subspace C.

Thus, to get a continuous (or cad-lag) version of a general stochastic process
X (see Definition 1.23) we need to show that its probability law PX has support
in C([0,∞), E) (or in D([0,∞), E)). On the other hand, separability of a general
stochastic process can be taken for granted (see Theorem 1.19), after a suitable
modification. However, for general stochastic processes viewed as a collection
of random variables defined almost surely, a minimum workable assumption is
(right or left) stochastic continuity (i.e., continuous in probability). Clearly,
stochastic continuity cannot be stated in term of random variable having values
in some functional space, but rather as a function on [0,∞) with values in some
probability space, such as Lp(Ω, P ), with p ≥ 0.

When two or more cad-lag processes are given, we may think of having
several probability measures (on the suitable space), say P1, . . . , Pn, and we
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canonical process X(t) = ω(t). However, sometimes it may be convenience to
fix a probability measure e.g., P = P1, with a canonical process X = X1 as a
reference, and consider all the other processes P2, . . . , Pn as either the proba-
bility measures P2, . . . , Pn on (D,B) or as measurable mapping X2, . . . , Xn, so
that Pi is the image measure of P through the mapping Xi, for any i = 2, . . . , n.
On the space (D,B) we can also define two more canonical processes, the pure
jumps process ∆X(t) = X(t)−X(t−), for t > 0 and the left-limit process

X(t−) =

{
X(0) if t = 0,

lims↑tX(s) if t > 0,
(1.47)

which may also be denoted by X−(t).
Processes X may be initially given in an abstract space (Ω,F , P ), but when

some property on its sample path is given, such a continuity (see Definition
1.2) then we may look at X as a random variable taking values in a suitable
topological space (e.g. C or D). Then by taking the image measure of P through
X, we may really forget about the initial space (Ω,F , P ) and refer everything
to the sample space, usually C or D.

Given a filtered measurable space, i.e. {Ω,G(t) : t ≥ 0} satisfying the usual
conditions (see Definition 1.7) and a cad-lag stochastic process {PX , X(t) : t ≥
0} (where PX is a probability on (Ω,G), with G(∞) ⊂ G), we can assume that
X(t) is the canonical process ω(t) on Ω = D([0,∞), E). If the process X is
adapted then {G(t) : t ≥ 0} can be viewed as a filtration on D([0,∞), E), sub-
ordinated to the canonical filtration {F(t) : t ≥ 0}, i.e., G(t) ⊂ F(t), for all
t ≥ 0. Here the canonical σ-algebra F(t) is generated by the canonical process
{ω(s) : 0 ≤ s ≤ t} and completed (when necessary) with respect to the prob-
ability measure PX . Therefore, the process {PX , X(t) : t ≥ 0} is progressively
measurable with respect to the canonical filtration {F(t) : t ≥ 0}, i.e., the func-
tion (ω, s) 7→ ω(s) from D([0, t], E) × [0, t] into E is measurable with respect
to the product σ-algebra F(t) × B([0, t]), and PX is a probability measure on
{D([0,∞), E),F(∞)}.

Note the following rather technical result. Let {X(t) : t ≥ 0} be a cad-
lag process and {F(t) : t ≥ 0} be its natural filtration (satisfying the usual
conditions). If {Y (t) : t ≥ 0} is another process adapted to {F(t) : t ≥ 0}
(in short adapted to the process X) then there exists a family {Yt : t ≥ 0} of
measurable functions Yt : D([0, t), E) → E such that Y (t) = Yt

(
X(s) : s ∈

[0, t]
)
, for every t ≥ 0.

It is interesting to remark that D([0,∞),Rd) is not a topological vector
space, i.e., in the Skorokhod topology, we may have αn → α and βn → β, but
αn + βn is not converging to α + β, unless α (or β) belongs to C([0,∞),Rd).
Moreover, the topology in D([0,∞),Rd) is strictly stronger that the product
topology in D([0,∞),Rd1)×D([0,∞),Rd2), d = d1 + d2. The reader is referred
to the book Jacod and Shiryaev [117, Chapter VI, pp. 288–347] for a compre-
hensive discussion.
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1.13 Convergence of Processes

Since the concept of stochastic processes lead to the study of probability mea-
sures on a separable and complete metric space (also called Polish space). A
good discussion on this subject can be founded in Ethier and Kurtz [76, Chapter
3, pp. 95–154] or Ikeda and Watanabe [110, Chapter 1, pp. 1–44]. We are going
to state some of the key elements.

First consider P(Ω) the family of probability measures on (Ω,B), where
B = B(Ω) is the Borel σ-algebra on the Polish space Ω. This is also referred to
as the family of Borel probability measures on Ω. The Prohorov metric on P(Ω)
is defined by

d(P,Q) = inf{ε > 0 : P (A) ≤ Q(Aε) + ε, ∀A closed in Ω},

where Aε = {ω ∈ Ω : infω′∈A dΩ(ω, ω′) < ε}, and dΩ(·, ·) is the metric on Ω.
Thus P(Ω) endowed with the above metric becomes a Polish space.

Denote by Cb(Ω) the space of real-valued continuous function on the Polish
space (Ω, dΩ) with the natural norm ‖f‖ = supω |f(ω)|. A sequence {Pn : n =
1, 2, . . . } in P(Ω) is said to converge weakly to P if

lim
n→∞

∫
f(ω)Pn(dω) =

∫
f(ω)P (dω), ∀f ∈ Cb(Ω).

In the previous condition, it is sufficient to take only functions f which are uni-
formly continuous. Actually, if we know that the limit measure is a probability
then it is enough to satisfy the convergence for uniformly continuous functions
with a bounded support, even more, if the space Ω is locally compact, then it
suffices to use continuous functions with a compact support. The important
point here is that the convergence in the Prohorov metric is equivalent to the
above weak convergence.

A classic result so-called Skorokhod representation given some relation with
the almost surely convergence.

Theorem 1.36 (Skorokhod). Let {Pn : n = 1, 2, . . . } be a sequence of proba-
bility measures on a Polish space Ω which converge weakly to P. Then in some
probability space there exist random variables Xn : n = 1, 2, . . . and X with
values in Ω with distributions Pn : n = 1, 2, . . . and P, respectively, such that
limn→∞Xn = X almost surely.

One of the typical applications of this representation is the fact that the
weak convergence is preserved by Borel mapping which is almost continuous
with respect to the limiting measure (see Exercise 1.37).

Another point is the characterization of pre-compacts or relatively compact
sets (i.e., with a compact closure) set in P(Ω) with the weak convergence i.e.,
endowed with the Prohorov metric.

Theorem 1.37 (Prohorov). A sequence of probability measures {Pn : n =
1, 2, . . . } on a Polish space Ω has a weakly convergent subsequence if and only
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if the sequence is tight i.e, for any ε, δ > 0 there exist ω1, . . . , ωn in Ω such that

Pn(

n⋃
i=1

{ω : dΩ(ωi, ω) ≤ δ}) ≥ 1− ε

for all n = 1, 2, . . . .

Usually, a family of probability measures {Pα} on Ω is said to be tight if for
any ε > 0 there exists a compact set K ⊂ Ω such that Pα(K) ≥ 1 − ε for any
index α. Since a set is pre-compact in Ω if and only if it is totally bounded this
is equivalent to the above condition.

In view of the above characterization of the weak convergence of measures, it
is important to understand the structure of compact sets in the particular spaces
C([0,∞), E) and D([0,∞), E), where (E, dE) is a Polish space, in particular
E = Rd. Classic results applies to say that pre-compact sets are equivalent to
totally bounded and equi-continuous sets. Thus a family {ωα} of functions in
C([0,∞), E) is relatively compact if and only if

(a) for any δ > 0 and rational r ≥ 0, there exist x1, . . . , xn in E such that for
any index α we have

ωα(r) ∈
n⋃
i=1

{x : dE(xi, x) ≤ δ}

(b) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
α, and any t, s in [0, T ] we have dE(ωα(t), ωα(s)) < δ.

The fact that in (a) we require the condition to be satisfied only for rational
is convenient for later. Now, for the space D([0,∞), E) we need to use the
modulus of continuity w(ω, δ, T ) defined by

w(ω, δ, T ) := inf
{ti}

sup
i

sup{dE(ω(t), ω(s)) : ti−1 ≤ s < t < ti}

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn = T,
with ti − ti−1 ≥ δ and n ≥ 1. A shorter version of the modulus of continuity is
given by the expression

w(ω, δ, T ) := sup
0≤t<T−δ

sup
t≤s≤t′≤t+δ

{dE(ω(t′), ω(s)) ∧ dE(ω(s), ω(t))},

where ∧ means the minimum between numbers. Therefore, we replace (b) by
the condition

(b1) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
α we have w(ωα, δ, T ) < ε.

It is cleat that if E = Rd then (a) reduces to

(a1) for any rational r ≥ 0, there N > 0 such that for any index α we have
|ωα(r)| ≤ N.
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Theorem 1.38 (tight). Let X1, X2, . . . be a sequence of random variables with
values in D([0,∞), E), with E a Polish space and P1, P2, . . . be its associated
probability law on D([0,∞), E). Then the sequence P1, P2, . . . is tight (hence
relatively compact) in D([0,∞), E) if an only if the following two conditions
hold:

(a’) for any ε, δ > 0 and rational r ≥ 0, there exist x1, . . . , xk in E such that
for any index n we have

Pn(Xn(r) ∈
k⋃
i=1

{x : dE(xi, x) ≤ δ}) ≥ 1− ε,

(b’) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
n we have

Pn(w(Xn, δ, T ) ≥ ε) < ε.

Moreover, if the sequence is tight, then it is weakly convergent if and only its
finite-dimensional distributions converge.

It is clear that some obvious modifications should be done for a sequence
of random variables in the space C([0,∞), E), i.e., re-defining w(ω, δ, T ) as
sup{dE(ω(t), ω(s)) : |t− s| < δ, s, t ∈ [0, T ]}. In the space C([0,∞),Rd), condi-
tion (b’) simply becomes:

(b’) for each T > 0 and for any ε > 0 there exists δ > 0 such that

Pn( sup
s,t∈[0,T ], |t−s|<δ

|Xn(t)−Xn(s)| ≥ ε) < ε, (1.48)

for any index n.
Naturally, the above result is useful to study cad-lag processes. It may

be convenient to use Aldous’ criterion in D([0,∞),Rd), e.g., see Ethier and
Kurtz [76, p. 137, Theorem 8.6, Chapter 3] or Liptser and Shiryayev [158,
Section 6.3, pp. 515–519]. This is to replace condition (a’) and (b’) of the
previous theorem with the following statement:

(a*) for any ε > 0 there exists M > 0 such that for any index n we have

Pn(|Xn(0)| ≥M) < ε, (1.49)

(b*) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
n we have

sup
0<s≤δ

Pn(|Xn(τn + s)−Xn(τn)| ≥ ε) < ε, (1.50)

for any stopping time (relative to Xn) τn satisfying 0 ≤ τn ≤ T. The key facts
here are that the sup is outside of the integral and that s is a (deterministic)
number, so that τn+s becomes an optional time with respect to processXn(·−s).
Moreover, (b*) is equivalent to the following condition:
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(b”) for each T > 0 and for any ε > 0 there exists δ > 0 such that for any index
n we have

Pn(|Xn(θn)−Xn(τn)| ≥ ε) < ε, (1.51)

for any stopping times (relative to Xn) θn and τn satisfying 0 ≤ θn ≤ τn ≤ T
and τn ≤ θ + δ.

If (Pn, Xn) is a sequence of homogeneous strong Markov processes in the
canonical space D([0,∞),Rd) with transition probability measure Pn(x, t,dy),
and a sequence of stopping times τn, then the equality, with some r > 0,

E
{
E{|Xn(τn + s)−Xn(τn)|r |X(τn)}

}
=

=

∫
Rd

E
{
|y −X(τn)|rPn(X(τn), s,dy)

}
shows that Aldous’ criterion conditions (b*) (1.50) is satisfied if

lim
s→0

sup
n

∫
Rd
|y − x|rPn(x, s,dy) =

= lim
s→0

sup
n

E
{
|Xn(s)−Xn(0)|r |Xn(0) = x

}
= 0

which is a simple condition to verify. Moreover, the expression |y − x|r above
could be replaced by γ(|y − x|) with a strictly increasing continuous function
γ(·) satisfying γ(0) = 0. For instance, the reader may check the book Bass [14,
Chapter 34, pp 259–268].

The convergence of finite-dimensional distributions of a sequence {Xn : n ≥
1} of Rd-valued stochastic processes, means that for any finite number of times
t1, . . . , tk we have

lim
n

E{h(Xn(t1), . . . , Xn(tk))} = E{h(X(t1), . . . , X(tk))},

for any continuous and bounded real-valued function h on Rk. On the contrary
to the convergence in D([0,∞),Rd), no convergence condition on the paths is
involved in this concept.

To control the modulus of continuity of a process X(t), the following estimate
is very useful. For any α, β > 0 there exists a constant C0 = C0(α, β) such that

|f(t′)− f(s′)|α ≤ C0 |t′ − s′|β
∫ T

0

dt

∫ T

0

|f(t)− f(s)|α

|t− s|2+β
ds, (1.52)

for any continuous function f on [0, T ] and any t′, s′ in [0, T ], see Da Prato
and Zabczyk [52, Theorem B.1.5, pp. 311–316] or Stroock and Varadhan [241,
Theorem 2.1.3, pp. 47–49]. Therefore, if for some constants p, q, C > 0 a
process X(t, ω) satisfies

E
{
|X(t)−X(s)|p

}
≤ C|t− s|1+q, ∀t, s ∈ [0, T ], (1.53)
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then by taken p = α and β = r with 0 < r < q we deduce that there is another
constant C0 = C0(p, q, C, r) such that

E
{

sup
t,s∈[0,T ], |t−s|<δ

{|X(t)−X(s)|p}
}
≤ C0 δ

r, ∀δ > 0. (1.54)

Essentially, an estimate in L∞ of the modulus of continuity is obtained based
on an estimate in Lp. This is of particular interest for stochastic processes with
continuous paths.

For cad-lag processes, a bound of the type: for every 0 ≤ t ≤ s ≤ t+ δ ≤ T,
and some positive constants C, p and q,

E
{[
|X(t+ δ)−X(s)| ∧ |X(s)−X(t)|

]p} ≤ Cδ1+q, ∀δ > 0, (1.55)

yields the estimate

E
{

sup
0≤t≤T−δ

sup
t≤s≤s+δ

{|X(t+ δ)−X(s)| ∧ |X(s)−X(t)|}p
}
≤ C0 δ

r, (1.56)

for every δ > 0, any 0 < r < q and another constant C0 = C0(p, q, C, r). The
reader may consult the books Billingsley [26, Chapter 3, pp. 109–153] or Ethier
and Kurtz [76, Chapter 3, pp. 95–154] for a complete discussion.

Sometime we have to use the space B(Ω) of all bounded and Borel measur-
able functions from the Polish space Ω into Rn. The weak topology we need
is the so-called boundedly and pointwise convergence i.e., a sequence of func-
tions {fn : n = 1, 2, . . . } in B(Ω) converge boundedly and pointwise to f if
supn,ω |fn(x)| < ∞ and fn(x) −→ f(ω) for every ω ∈ Ω. The (sequentially)
closure of a set M in this topology is referred to as the bp-closure of M . A typ-
ical application of the Monotone Class Theorem (see Exercise 1.38) shows that
the bp-closure of Cb(Ω) is the whole space B(Ω) i.e., it is bp-dense. Moreover,
since Ω is separable, there exists a sequence {fn : n = 1, 2, . . . } of nonnegative
continuous and bounded functions that span a bp-dense set in B(Ω). Note that
this is not to say that any function in B(Ω) is a boundedly and pointwise limit
of a sequence of function in Cb(Ω). Due to the probability measure, we prefer
to use the Lebesgue space L∞(Ω,F , P ) instead of B(Ω), when ever is possible.
The reader may consult the books Doob [59, Chapters VIII,. . . ,X, pp. 123–
177], Jacod and Shiryaev [117, Chapter VI, pp. 288–347], among other, for a
complete discussion of convergence of measures and processes.

1.14 Existence of Probabilities

At this point, the reader may revise the some of the basic subjects treated in
the book Malliavin [162]. In particular, a revision on measure theory, e.g., as in
Kallenberg [121, Chapters 1 and 2, pp. 1–44], may be necessary.

Perhaps the Gaussian probability in Rn is the best well now situation, i.e.,
the probability space (Rn,Bn, Pn), where Bn is the Borel σ-algebra in Rn and
Pn is the probability measure given by

Pn(A) = (2π)−n/2
∫
A

exp
(
− 1

2

n∑
i=1

|xi|2
)

dx, ∀A ∈ Bn,
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standard normal distribution or Gaussian with mean 0 and variance 1. However,
the extension of this probability to the space R∞ of all sequences of real numbers
(with the product topology) is not so trivial. If Xn denotes the projection from
R∞ into Rn, i.e., Xn(x) = (x1, . . . , xn) the first n coordinates of x, then it
is not immediate to establish the existence of a probability P defined on the
Borel σ-algebra B∞ such that P (A) = Pn(Xn(A)) for any A in B∞. In general,
the two points of interest here are the σ-algebra generated by the cylindrical
sets {X−1

n (A) : A ∈ Bn, n ≥ 1} and the σ-additivity of P . Therefore, on the
probability space (R∞,B∞, P ), we may look at {Xn : n ≥ 1} as a sequence of
Gaussian random variables which generates the σ-algebra B∞. It is well know
that the Hermit polynomials provide an orthonormal basis for the Hilbert space
L2(R1,B1, P1), however some tedious notation and details are needed to deduce
an orthonormal basis for L2(R∞,B∞, P ).

Now, our interest turns into the existence of probability measures, first in
Rn, next in separable Hilbert spaces and finally in Polish spaces, particularly in
the space of tempered distributions. Thus, the discussion about the existence
of a particular stochastic process with values in Rn becomes a discussion on the
existence of probability measures on relatively large spaces, such as the Schwartz
space of tempered distributions, where the Fourier transform can be used.

One way of constructing a probability measure is by prescribing its charac-
teristic function (or its Fourier transform). In finite dimensional spaces we have
the classical Bochner’s Theorem stated as follow:

Theorem 1.39. If Ψ : Rn → C is the characteristic function of a probability
measure (space) (Rn,B(Rn), P ), i.e.,

Ψ(ξ) =

∫
Rn

exp
(
i(ξ, x)

)
P (dx) = E

{
exp

(
i(ξ, ·)

)}
,

with i =
√
−1, then (a) Ψ(0) = 1, (b) Ψ is continuous and (c) Ψ is positive

definite, i.e., for every natural number k, any ξi in Rn and any complex number
zi, i = 1, . . . , k we have

k∑
i,j=1

Ψ(ξi − ξj)ziz̄j ≥ 0,

where (·, ·) denotes the scalar product in Rn and z̄ is the conjugate of a complex
number. Conversely, an arbitrary function Ψ : Rn → C satisfying the above
properties (a), (b) and (c) is the characteristic function of a probability measure
P on Rn.

This is also known as Bochner-Khintchin’s Theorem, for instance, a complete
proof can be find in Gnedenko [101, Section 39, pp. 289–293] or Jacob [115, Vol
1, Theorem 3.5.7, pp. 108–109].

Next, the (Schwartz) space of rapidly decreasing and smooth functions S(R)
and its dual space of tempered distributions S ′(R) is identified (via Hermite
functions, i.e., given a sequence in s we form a function in S(R) by using the
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terms as coefficients in the expansion along the orthonormal basis {ξn(x) : n ≥
1}, with

ξn+1(x) =
e−x

2/2

π1/4
√
n!
pn(
√

2x), n = 1, 2, . . . ,

where pn is the Hermite polynomial of order n) with the Fréchet space of rapidly
decreasing sequences

s =
{
a = {ak}∞k=0 : lim

k
kmak = 0, ∀m = 1, 2, . . .

}
.

This space is decomposed as s =
⋂∞
m=0 sm with sm defined for every integer m

as the space of all sequences a = {ak}∞k=0 satisfying

‖a‖m =
[ ∞∑
k=0

(1 + k2)m|ak|2
]1/2

<∞.

Its dual space is decomposed as s′ =
⋃∞
m=0 s

′
m, with s′m = s−m and the natural

paring between elements in s′ and s (also between s′m and sm), namely,

〈a′, a〉 =

∞∑
k=0

a′kak, ∀a′ ∈ s′, a ∈ s.

Based on Bochner’s result for finite dimensional spaces and Kolmogorov’s
extension, a probability measure with a prescribed characteristic function can
be constructed in the space R∞, the space of all sequences of real numbers.
It takes some more effort (e.g., see Holden et al. [109, Appendix A, pp. 193–
197]) to check that the probability measure is concentrated on the dual space s′.
Indeed, use the continuity and the condition Ψ(0) = 1 to deduce that for any
ε > 0 there exist m > 0 and δ > 0 such that ‖a‖m < δ implies |Ψ(a) − 1| < ε,
which yields∫

R∞
cos(〈a′, a〉)P (da′) ≥ 1− ε− 2δ−2‖a‖2m, ∀a ∈ s. (1.57)

Now, for every sequence b = {bk}, with bk > 0 consider the (Gaussian) proba-
bility measure µn,σ on Rn+1 defined by

µn,σ =

n∏
k=0

(2πσbk)−1/2 exp
[
− a2

k

2σbk

]
dak,

for any σ > 0. Recall that∫
Rn+1

cos(〈a′, a〉)µn,σ(da) = exp
[
− σ

2

n∑
k=0

bk(a′k)2
]
,∫

Rn+1

‖a‖2m µn,σ(da) = σ

n∑
k=0

(1 + k2)mbk,
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and integrate (1.57) with respect to µn,σ on Rn+1 to get∫
R∞

exp
[
− σ

2

n∑
k=0

bk(a′k)2
]
P (da′) ≥ 1− ε− 2δ−2σ

n∑
k=0

(1 + k2)mbk.

Now, take bk = (1 +k2)−m−1 to have
∑n
k=0(1 +k2)mbk = C <∞, which imply,

by means of the monotone convergence,∫
R∞

exp
[
− σ

2
‖a′‖2−m−1

]
P (da′) ≥ 1− ε− 2δ−2σC.

Finally, let σ vanish to get P (s′m+1) ≥ 1− ε, which proves that P (s′) = 1.
At this point, we can state the following version of a Bochner-Minlos the-

orem: On the space of test functions S(R) we give a functional Ψ which is
positive definite, continuous and satisfies Ψ(0) = 1, then there exists a (unique)
probability measure P on the space of tempered distributions S ′(R) having Ψ
as its characteristic function, i.e.,

Ψ(ϕ) =

∫
S′(R)

exp
(
i〈ω, ϕ〉

)
P (dω) = E

{
exp

(
i〈·, ϕ〉

)}
,

where 〈·, ·〉 denote the paring between S ′(R) and S(R), i.e., the L2(R) inner
product.

Certainly, this extends to multi-dimensional case, i.e., S(Rd) and vector-
valued functions S(Rd;Rn). Thus, we can state the following very useful result
regarding the construction of a Lévy martingale measures:

Theorem 1.40 (Lévy noise). Let S ′(R;Rd) be the space of tempered distribu-
tions in R with values in Rd. Suppose that σ is a (real-valued) square d × d
matrix and that π is a Radon measure in Rd satisfying∫

Rd

(
|y|2 ∧ |y|

)
π(dy) <∞, π({0}) = 0. (1.58)

Then, there exists a unique probability measure P on (Ω,B), with Ω = S ′(R;Rd)
and B = B(Ω) such that

E
{

exp
[
i〈·, ϕ〉

]}
= exp

(
− 1

2

∫
R
|σϕ(t)|2dt

)
×

× exp
(∫

R
dt

∫
Rd

[
ei(ϕ(t),y) − 1− i(ϕ(t), y)

]
π(dy)

)
,

(1.59)

where E{·} denotes the expectation with respect to P and | · | and (·, ·) are the
Euclidean norm and scalar product, respectively. In particular, E

{
〈·, ϕ〉

}
= 0,

and if also∫
Rm
|y|2 π(dy) <∞, (1.60)

then

E
{∣∣〈·, ϕ〉∣∣2} =

∫
R

∣∣σϕ(t)
∣∣2dt+

∫
R

dt

∫
Rd

∣∣(ϕ(t), y)
∣∣2π(dy), (1.61)

for any test function ϕ.
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Note that by replacing ϕ with λϕ, taking derivatives with respect to λ and
setting λ = 0 we deduce the isometry condition (1.61), which yields an analogous
equality for the scalar product E

{
〈·, ϕ〉 〈·, ψ〉

}
, with ϕ and ψ in S(R;Rd). Clearly,

from the calculation point of view, the Fourier transform for h in S(Rd)

ĥ(ξ) = (2π)−d/2
∫
Rd
h(x)e−i(x,ξ)dx,

and its inverse

h(x) = (2π)−d/2
∫
Rd
ĥ(ξ)ei(x,ξ)dξ,

are useful to estimate
E{
{
h(〈·, ϕ1〉, . . . , 〈·, ϕd〉)

}
=

= (2π)−d/2
∫
Rd
ĥ(ξ)Ψ(ξ1ϕ1 + . . .+ ξdϕd)dξ,

(1.62)

where Ψ is the characteristic function, i.e., the right-hand-side in (1.59).
Also, from the finite-dimensional case, we know that the functions

exp
(
− |x|2/2

)
, exp

(
ei(x·b) − 1

)
, exp

(
− i(x · b)

)
,

for b fixed, are characteristic functions of the Gaussian, the Poisson and the
Dirac distributions. Therefore, any matrix a = (aij) of the form

aij = exp
{
− |ζi − ζj |2/2 + ei(ςi−ςj)−1

}
is a positive definite matrix. Thus, by approximating the integrals (by partial
sums) in right-hand-side (called Ψ) of (1.59), we show that Ψ is indeed positive
define.

Hence, we have constructed a d-dimensional smoothed (1-parameter) Lévy
noise associated with (σ, π). Indeed, the canonical action-projection process,
which is the natural paring

X(ϕ) = X(ϕ, ω) = 〈ω, ϕ〉, ∀ϕ ∈ S(R;Rd),

can be regarded as a family of R-valued random variables X(ϕ) on the proba-
bility space (Ω,B(Ω), P ), with Ω = S ′(R;Rd) and P as above. Clearly, this
is viewed as a generalized process and the actual Lévy noise is defined by
Ẋ(ϕ) = −〈ω, ϕ̇〉.

Considering the space L2(P ) and the vector-valued space L2
σ,π(R;Rd) with

the inner product defined by

〈ϕ,ψ〉σ,π =

∫
R

(
σϕ(t), σψ(t)

)
dt+

∫
R

dt

∫
Rd

(ϕ(t), y) (ψ(t), y)π(dy),

we can view ϕ 7→ X(ϕ, ·) as an isometry from L2
σ,π(R;Rd) into L2(P ), initially

defined on the test space S(R;Rd) and uniquely extended everywhere. Thus,
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the expression 〈ω, ϕ〉 makes sense almost surely (passing to the limit) for ϕ in
L2
σ,π(R;Rd). Now, for a given test function ϕ we denote by ϕi,t the test function

with only one non-zero component, namely, the i-component which is given by
the expression 1(0,t], i.e., ϕi,t = (0, . . . ,1(0,t], . . . , 0). Thus, a d-dimensional
Lévy (martingale) process `i(t) := X(ϕi,t) for i = 1, 2, . . . , d (with diffusion
matrix σ∗σ/2 and Levy measure π) is almost sure defined. Indeed, because the
scalar product is preserved, the stochastic process ` has orthogonal increments.
Moreover, the linearity in ϕ and the product (or integral and exponential) form
of the characteristic function (1.59) show that the random variable 〈·, ϕ〉 is
independent of 〈·, ψ〉 as long as ϕ and ψ have disjoint support. Thus, the
stochastic process (`(t) : t ≥ 0) is stationary with independent increments. The
existence of a cad-lag version follows from the estimate

E
{
|`i(s+ r)− `i(t)|2|`i(t)− `i(s)|2

}
=

= E
{(
`i(s+ r − t)

)2}E{(`i(t− s))2} ≤ Cr2,

for any i, 0 ≤ s ≤ t ≤ s+r ≤ T, any T > 0 and some positive constant C = CT .
On the other hand, we can impose less restrictive assumptions on the Radon

measure π, i.e., to separate the small jumps from the large jumps so that only
assumption∫

Rd

(
|y|2 ∧ 1

)
π(dy) <∞, π({0}) = 0. (1.63)

is needed. For instance, the Cauchy process in Rd, where σ = 0 and the Radon
measure π has the form∫

Rd
ϕ(y)π(dy) = lim

ε→0

∫
|y|≥ε

ϕ(y)|y|−d−1dy,

π does not integrate the function ϕ(y) = |y|, and

exp
(∫

R
dt

∫
Rd

[
ei(ϕ(t),y) − 1− i(ϕ(t), y)1|y|≤1

]
|y|−d−1dy

)
=

= exp
(∫

R
dt

∫
Rd

2
[

cos(ϕ(t), y)− 1
]
|y|−d−1dy

)
,

replaces the second exponential in (1.59). Sometimes, we require a stronger (at
the origin) integrability assumption on the Radon measure π, namely,∫

Rm

(
|y| ∧ 1

)
π(dy) <∞, π({0}) = 0.

and the second exponential in (1.59) takes the form

exp
(∫

R
dt

∫
Rd

[
ei(ϕ(t),y) − 1

]
π(dy)

)
,

for instance, the case of the Γ-process in Rd, d = 1 with parameters c, α > 0,
where σ = 0 and the measure π is given by∫

R
ϕ(y)π(dy) = lim

ε→0
c

∫ ∞
ε

ϕ(y)y−1e−αydy,
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π does not have a finite mass, and

exp
(
c

∫
R

dt

∫ ∞
0

[
eiϕ(t)y − 1

]
y−1e−αydy

)
replaces the second exponential in (1.59).

The theory of martingales (see Section 3.4 later on) shows that the Lévy
(martingale) process ` can be written as a continuous part (its Wiener process)
and a purely discontinuous part (its Poisson jumps part). Alternatively, we can
split the Rd space into Rn × Rm, namely, ω = (ωn�, ω�m) where ωn� and ω�m

are tempered distributions in R with values in Rn and Rm, respectively. Thus
if ϕ(t) = (ϕn�(t), ϕ�m(t)), where ϕn�(t) and ϕ�m(t) denote test functions in R
with values in Rn and Rm, respectively, then 〈ω, ϕ〉 = 〈ωn�, ϕn�〉 + 〈ω�m, ϕ�m〉.
Hence, we have a (n+m)-dimensional smoothed (1-parameter) Wiener-Poisson
(Lévy) noise, i.e.,

Xn�(ϕ, ω) := 〈ωn�, ϕn�〉, X�m(ϕ, ω) := 〈ω�m, ϕ�m〉,

the action-projection on Rn and Rm, respectively. Clearly, Xn� provides a
Wiener process independent of the Poisson martingale measure obtained from
X�m.

Therefore, by considering the vector-valued space L2
σ,π(R;Rn+m) where we

have separate the first n components from the last m components, we can con-
struct (almost sure defined) a n-dimensional Wiener process wi(t) := X(ϕi,t)
for i = 1, 2, . . . , n (with diffusion matrix σ∗σ/2) and a m-dimensional Poisson
martingale measure qi(t) := X(ϕi,t) for i = n+ 1, n+ 2, . . . , n+m (with Levy
measure π, so that its jumps ∆qi form a Poisson point process). Indeed, the
stochastic process

Xt = x+
(
w1(t), . . . , wn(t), q1(t), . . . , qm(t)

)
, ∀ t ≥ 0, x ∈ Rn+m (1.64)

(also denoted by Xx
t ) has orthogonal increments, which implies that (Xt : t ≥ 0)

is stationary with independent increments, i.e., a Lévy process in law. To take
a cad-lag version (which results continuous in the first n components) under
assumption (1.60), we may use the estimates

E
{
|wi(t)− wi(s)|4

}
= E

{(
wi(t− s)

)4} ≤ C|t− s|2,
E
{
|qj(s+ r)− qj(t)|2|qj(t)− qj(s)|2

}
=

= E
{(
qj(s+ r − t)

)2}E{(qj(t− s))2} ≤ Cr2,

for any i, j, 0 ≤ s ≤ t ≤ s + r ≤ T, any T > 0 and some positive constant
C = CT . However, (for the Poisson point process) if only condition (1.63) holds
then we can obtain suitable estimates using the equality (1.62). We have then
described a way of constructing these processes.

Actually, the only properties used in Lévy’s Theorem 1.40 is the fact that
the complex-valued characteristic function Ψ is continuous (at zero suffices),
positive definite and Ψ(0) = 1. Indeed, this generalizes to separable Hilbert
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spaces, e.g., see the book Da Prato and Zabczyk [51, Theorem 2.13, pp. 49–52],
by adding an extra condition on Ψ. Recall that on a separable Hilbert space H,
a mapping S : H → H is called a nuclear (or trace class) operator if for any (or
some) orthonormal basis {ei : i ≥ 1} in H the series

∑
i |(Sei, ei)| is convergent.

On the other hand, σ : H → H is called a Hilbert-Schmidt operator if for any
(or some) orthonormal basis {ei : i ≥ 1} in H the series

∑
i(σei, σei) is finite.

Theorem 1.41 (Sazonov). A complex-valued function Ψ on a separable Hilbert
space H is the characteristic function of a probability measure P on (H,B(H))
if and only if (a) Ψ is continuous, (b) is positive definite, (c) Ψ(0) = 1 and
satisfies the following condition:

(d) for every ε > 0 there exists a nonnegative nuclear (or trace class) operator
Sε such that each h in H with (Sεh, h) ≤ 1 yields 1−<{Ψ(h)} ≤ ε.

Let σi : H0 → H0 (i = 1, 2) be two (symmetric) Hilbert-Schmidt operators
on a separable Hilbert space H0 with inner product (·, ·)0 and norm | · |0. Now,
on the Hilbert space H = L2(R, H2

0 ), H2
0 = H0×H0, consider the characteristic

function
Ψ(h1, h2) = exp

(
− 1

2

∫
R
|σ1h1(t)|20dt

)
×

× exp
(∫

R
dt

∫
H0

[
ei(σ2h2(t),σ2u)0 − 1− i(σ2h2(t), σ2u)0

]
π(du)

)
,
(1.65)

where π is a measure on B(H0) such that∫
H0

(
|σ2u|20 ∧ |σ2u|0

)
π(du) <∞, π({0}) = 0. (1.66)

Under these assumptions the function Ψ is continuous on H, positive definite,
Ψ(0) = 1 and the condition (d) of Theorem 1.41 is satisfied for a given ε > 0
with a trace class operator Sε : H → H of the form

Sε((bk, b`)ej) =

{
(σ∗1σ1bk, σ

∗
2σ2b`)ej if j ≤ n,

0 otherwise,

for any k, ` = 1, . . . , and for some n = n(ε), where {ej : j ≥ 1} is an orthonormal
basis in Lebesgue space L2(R) and σ∗i is the adjoint of σi, i = 1, 2, while {bk :
k ≥ 1} and {(bk, b`) : k, ` ≥ 1} are orthonormal basis in the spaces H0 and H2

0 ,
this means that,(

Sεh, (bk, b`)ej
)
H

=

∫
R

[
(σ1h1(s), σ1bk)0 + (σ2h2(s), σ2b`)0

]
ej(s)ds,

for every h = (h1, h2), with hi in H0, for any k, ` = 1, . . . , and j = 1, . . . , n
(otherwise, the left-hand term vanishes), where (·, ·)H denotes the inner product
in H.

Therefore Ψ is the characteristic function of a probability measure P on the
Hilbert space H, i.e.,

E
{

ei(h,·)H
}

= Ψ(h1, h2), ∀h = (h1, h2) ∈ H,
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where (·, ·)H denotes the inner product in H = L2(R, H2
0 ). Hence a cad-lag ver-

sion of a Lévy process on R or [0,∞) with parameters (σ1, σ2, π) and values in
H0 is obtained as previously discussed in Rn × Rm. Thus, the Lévy measure
π(σ∗2σ2)−1 is defined on the Hilbert space image H2 = σ∗2σ2(H0) and the proba-
bility P can be considered on canonical sample space Ω = D([0,∞), H1×H2) or
Ω = D([0,∞), H1) ×D([0,∞), H2), with H1 = σ∗1σ1(H0), where the canonical
process X(ω) = ω(t) has Ψ as its characteristic function. Clearly, a drift can
be added and the parameters (σ1, σ2, π) can be time-dependent with suitable
assumptions.

The above arguments extend to the case of a countably Hilbertian space
(of which a typical example is the space S(Rd) of rapidly decreasing smooth
functions with its dual S ′(Rd) of tempered distributions), where the role the
Hilbert-Schmidt operators σi is better understood.

A countably Hilbertian space K is a separable Fréchet (i.e., complete locally
convex topological) space where the topology is given by an increasing sequence
{‖ · ‖n : n ≥ 0} of compatible (i.e., any Cauchy sequence in two norms and
convergent to zero in one norm results convergent to zero also in the other
norm) Hilbertian norms. Moreover, a space K is called nuclear if for any n ≥ 0
there exists m > n such that the canonical injection from Km into Kn is Hilbert-
Schmidt, where Kn denote the completion of K with the Hilbertian norm ‖ ·‖n.
Thus Kn is a sequence of decreasing Hilbert spaces and K = ∩nKn. Next, if
we identify K0 with its dual space K ′0 (by Riezs’ representation theorem) and
we denote the dual space K ′n by K−n (with its dual Hilbertian norm ‖ · ‖−n,
n ≥ 1) then K−n is a sequence of increasing Hilbert spaces, the dual space K ′

is sequentially complete and K ′ = ∪nK−n.

Theorem 1.42 (Minlos). A complex-valued function Ψ on a countably Hilber-
tian nuclear space K is the characteristic function of a probability measure P
on the dual space (K ′,B(K ′)) if and only if Ψ is continuous at 0 in K, positive
definite and Ψ(0) = 1.

Note that if K is a countably Hilbertian nuclear space then so is S(Rd,K)
(for instance, regarding S(Rd,K) as the tensor product S(Rd,K) = S(Rd) ⊗
K) and K = S(Rd;Rm) with K ′ = S ′(Rd;Rm) is a typical example. Also
C([0,∞), X) is a Fréchet space if X is so. However, D([0,∞), X) is a Polish
(not a topological vector) space X is so. If (·, ·) is continuous inner product in
a countably Hilbertian nuclear space K (i.e., the inner product is continuous in
Kn for some n) and H is the Hilbert space completion of K with respect to (·, ·)
then H is called rigged Hilbert space in K, and we have the triplet K ⊂ H ⊂ K ′.
Certainly, any Kn can be used as H, but this is not necessary in general.

On the other hand, a set A in D([0,∞),K ′) (resp. C([0,∞),K ′)) is rela-
tively compact if and only if one of the following conditions is satisfied:

(1) For any k inK the set {〈ω(·), k〉 : ω ∈ A} is relatively compact inD([0,∞),R)
(resp. C([0,∞),R)).

(2) For every T > 0 there exists n such that AT the restriction of A to
D([0, T ],R) (resp. C([0, T ],R)) is relatively compact in D([0, T ],K−n) (resp.
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C([0, T ],K−n)).

Clearly, any k in K defines a measurable map πk from D([0,∞),K ′) (resp.
C([0,∞),K ′)) into D([0,∞),R) (resp. C([0,∞),R)), πk(t, ω) = 〈ω, k〉. Then a
sequence {µi : i ≥ 1} is tight in D([0,∞),K ′) (resp. C([0,∞),K ′)) if and only
if for every k in K the sequence {µiπ−1

k : i ≥ 1} is tight as a Borel probability
measure in D([0,∞),R) (resp. C([0,∞),R)). Moreover, if for every T > 0 there
is n with the property that for every ε > 0 there exists M > 0 such that

µi
(
{ω ∈ D([0, T ],K ′) : sup

0≤t≤T
|ω(t)|−n ≤M}

)
≥ 1− ε,

for every i ≥ 1, then the sequence {µi : i ≥ 1} regarded as Borel probability
measure in D([0, T ],K−m) is tight, with m ≥ n such that the canonical injection
from Km into Kn (and so from K−n into K−m) is Hilbert-Schmidt.

Hence if K ⊂ Hi ⊂ K ′, i = 1, 2 are two rigged Hilbert spaces then there is
a probability measure P on S ′(Rn;H1 ×H2) with characteristic function

E
{

exp
(
i[(ϕ1, ·)1 + (ϕ1, ·)2]

)}
= exp

(
− 1

2

∫
Rn
|ϕ1(t)|21dt

)
×

× exp
(∫

R
dt

∫
H2

[
ei(ϕ2(t),u)2 − 1− i(ϕ2(t), u)2

]
π(du)

)
,

(1.67)

where π is a Radon measure on H2 satisfying∫
H2

(
|u|22 ∧ |u|2

)
π(du) <∞, π({0}) = 0, (1.68)

and (·, ·)i, | · |i denote the inner product and the norm in Hi, i = 1, 2. By com-
parison with (1.65) and (1.66) we see that the nuclear (or trace class) operators
σ1, σ2 are really part of the Hilbert space where the Lévy process takes val-
ues. Moreover, the parameter t may be in Rd and a Lévy noise is realized as a
generalized process.

For instance, the reader is referred to the book by Kallianpur and Xiong [123,
Chapters 1 and 2, pp, 1–83] for details on most of the preceding definitions.

If the probability to be constructed is not space-homogeneous (i.e., it is non-
stationary) then the canonical process (Xx

t : t ≥ 0) does not define a Markov
process under P. Thus, if for each x in Rd we have a d×d square matrix σ(x) and
a Radon measure π(x, dy) in Rd as before, then for every function ψ in L2(R,Rd),
we can construct (assuming some condition on the x-dependency of σ and π)
a probability measure Q(ψ, ·) on Ω = S ′(R;Rd) such that its characteristic
function satisfies

∫
Ω

ei〈ω,ϕ〉Q(ψ,dω) = exp
(
− 1

2

∫
R
|σ(ψ(t))ϕ(t)|2dt+

+

∫
R

dt

∫
Rd

[
ei(ϕ(t),y) − 1− i(ϕ(t), y)

]
π(ψ(t),dy)

)
,

(1.69)

Next, the expected Markov process is the Rd-valued canonical process

Xx(t, ω) = (Xx
i (t, ω) : i = 1, . . . , d), Xx

i (t, ω) := xi + 〈ωi,1(0,t]〉
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under the probability P x, which is defined as the conditional probability

P x{· |Xx} = Q(Xx, ·).

Certainly, a drift and a killing terms can be added, and much more details
are needed to complete this procedure. This involves the so called pseudo-
differential operators, see the treatise by Jacob [115].

Related to the re-construction of probability is the following result (e.g., see
Stroock and Varadhan [241, Theorem 1.3.5, pp. 34-36]). Let X be the canonical
process in the canonical space either C([0,∞), E) or D([0,∞), E), where E is a
Polish space. Assume {τn : n ≥ 0} is a nondecreasing sequence of stopping times
relative to the filtration {F(t) : t ≥ 0}, where F(t) and F(∞) are the σ-algebras
generated by {X(s) : 0 ≤ s ≤ t} and {X(t) : t ≥ 0}, respectively. Now, for each
n ≥ 0 let Pn be a probability measure defined on F(τn). If limn Pn{τn ≤ t} = 0
for every t ≥ 0, and the probability Pn+1 coincides with Pn on F(τn) for any n,
then there exists a probability measure P on F(∞), which coincides with Pn on
F(τn) for every n ≥ 0. Moreover, the same conclusion is true if F(t) is replaced
by F(t+).

The reader interested in a guided tour to measure theoretic probability may
take a look at the recent book by Pollard [200].

1.15 Exercises

This part is not intended as real exercises, but as guide and a complement
to the previous sections, helping to clarify and specify some statements given
previously. The reader may take a look at the book Chaumont and Yor [39].

Exercise 1.2. If F is a collection (or class) of subsets of Ω then F is called a
π-system if for any A and B in F we have A∩B in F and a λ-system if Ω belongs
to F and satisfies (a) for any A and B in F with A ⊂ B we have BrA belongs
to F and (b) for any monotone increasing sequence of sets Ai ⊂ Ai+1 we have
A =

⋃
iAi in F . Prove the following versions of monotone class theorem: (1) If

G ⊂ F and G is a π-system and F is a λ-system then the σ-field or σ-algebra
σ(G) generated by G is contained in F . (2) If F is a π-system and H a linear
space of functions from Ω into R such that 1Ω, 1A and ϕ = limi ϕ belong to
H, for every A in F and for any sequence ϕi in H such that 0 ≤ ϕi ≤ ϕi+1,
ϕi(ω)→ ϕ(ω) and ϕ(ω) is finite for any ω, then H contains all σ(F)-measurable
functions.

Exercise 1.3. Let ∨nFn be the σ-algebra generated by sequence {Fn : n ≥ 1}
of sub σ-algebra in a probability space (Ω,F , P ). Use an argument of monotone
class to show that for any set A in ∨nFn there exists a sequence {Ak : k ≥ 1}
of sets in

⋃
n Fn such that P (A r Ak) and P (Ak r A) converge to 0, e.g., see

Kallenberg [121, Lemma 3.16, p. 54].

Exercise 1.4. Let x be a function from a measurable space (Ω,F) into a Polish
space E (complete metric space), so X is a random variable with values in E.
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Denote by Fx the σ-algebra generated by x. Use an argument of monotone class
to show that any real valued random variable ϕ which is Fx-measurable has the
form ϕ(ω) = f(x(ω)), for some Borel function f from E into R, e.g., see He et
al. [105, Theorem 1.5, p. 5] or Kallenberg [121, Lemma 1.13, p. 7].

Exercise 1.5. Let X(t, ω) be a function from T × Ω into Rd, where T is a
countable and (Ω,F) is a measurable space. Prove that the following statements
are equivalent:

(a) The function (t, ω) 7→ X(t, ω) from is Borel measurable with respect to the
product σ-algebra B(T )×F .
(b) The function ω 7→ X(·, ω) from Ω into L0(T,Rd).
Discuss possible extensions to the case where T is a Borel subset of R, e.g. see
Doob [60, Theorem 2.1.13 in p. 408].

Exercise 1.6. Prove properties (a) to (i) for optional or stopping times.

Exercise 1.7. Calculate the mean and the covariance of random variables with
a Gaussian, Poisson and exponential distributions. Moreover, show that if x is
a Gaussian variable with variance r then the even moments can be calculate by
recurrence, i.e., E{|x|2n+2} = r(2n− 1)E{|x|2n}, for any integer n ≥ 1.

Exercise 1.8. Let (Ω,F) be a measurable space. Recall that a π-systems F0 is
a subset of F which is stable under finite intersections, i.e., if A and B belongs
to F0 then A∩B also belongs to F0. Also, we denote by σ(F0) the minimal sub
σ-algebra of F containing all the elements of F0, i.e. the σ-algebra generated
by F0. Prove that if H and G are two sub σ-algebras which are generated by
the π-systems H0 and G0, then H and G are independent if and only if H0 and
G0 are independent, i.e., if and only if P (H ∩G) = P (H)P (G) for any H in H0

and G in G0 (e.g., see the book by Bauer [15, Section 5.1, pp. 149–154])

Exercise 1.9. Prove that a linear combination of Gaussian random variables is
also a Gaussian random variable. Calculate its mean and covariance, and check
that all moments are finite.

Exercise 1.10. Establish the existence for the conditional expectation on a
given probability space (Ω,F , P ) for an integrable random variable x with re-
spect to a sub σ-algebra G by two ways. Firstly (a) by means of the Radon-
Nikodym theorem, i.e., on the measurable space (Ω,G) consider the probability
measures ν(G) = E{x1G} and µ(G) = E{1G} satisfying ν � µ. Secondly (b)
by means of the orthogonal projection π from the Lebesgue space L2(Ω,F , P )
into the closed subspace L2(Ω,G, P ), i.e., π satisfies (x− π(x), y) = 0, for any y
in L2(Ω,G, P ), where (·, ·) denotes the scalar product.

Exercise 1.11. Let x, y be real random variables on a complete probability
space. If z is a random variable with values in some Polish space E then prove
that the relation x = E{y | z} is characterized by the condition E{yϕ(z)} =
E{xϕ(z)}, for all ϕ : E −→ R which is bounded and continuous. Moreover, if E
is locally compact, then the class of continuous function with compact support
is sufficient to characterized the conditional expectation.
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Exercise 1.12. Prove properties (a) to (g) of the conditional expectation.

Exercise 1.13. Prove properties (h) to (m) of the conditional expectation.

Exercise 1.14. Let G be the σ-algebra generated by a sequence {xi : i =
1, 2, . . .} of measurable functions from (Ω,F) into (R,B), and x be an integrable
random variable in the complete probability space (Ω,F , P ) with values in Rn.
Use an argument of monotone class to show that E{x | G} = 0 if and only if
E{f(x1, x2, . . . , xm)x} = 0 for any m and any bounded continuous function f
from Rn into R, e.g. see Yong and Zhou [261, Proposition 1.12 in p. 13].

Exercise 1.15. Prove that if x is in L1(Ω,F , P ) then the family of elements
in L1(Ω,F , P ), defined by {y = E{x | G} : G, is a sub σ-algebra of F} is
uniformly integrable. Indeed use Jensen’s inequality to establish that kP{|y| >
k} ≤ E{|x|}, for any k, and in view of∫

|y|>k
|y(ω)|P (dω) ≤

∫
|y|>k

|x(ω)|P (dω),

the desired result follows.

Exercise 1.16. On a probability space (Ω,F , P ), let x be a real random variable
independent of a sub σ-algebra G of F , and f be a bounded Borel measurable
function in R2. Define f1(η) = E{f(x, η)}. Prove that f1 is Borel measurable
and f1(y) = E{f(x, y) | G} almost surely.

Exercise 1.17. Let G be a finitely-generated σ-algebra, i.e., G = σ[F1, . . . , Fn].
First, prove that also G can be expressed as σ[G1, . . . , Gm], where the sets
G1, . . . , Gm are pairwise disjoint and minimal in the sense that any proper subset
of {G1, . . . , Gm} does not generate G. Actually, {G1, . . . , Gm} is a partition and
the set Gi are called atoms of G, which has exactly 2m elements. Second, gives
an explicit expression of P{A | G)}(ω) in term of the family of sets G1, . . . , Gm.
Third, if X is a simple random variable (i.e., having a finite number of values,
say x1, . . . , xm with P{X = xi} > 0 and

∑
i P{X = xi} = 1) then show

that σ(X) (i.e., the minimal σ-algebra for which X is measurable) is finitely-
generated, calculate P{A |X = xi}, for i = 1, . . . ,m and consider the function
x 7→ P (x,A) defined as P (x,A) = P{A|X = xi} if x = xi for some i = 1, . . . ,m,
and P (x,A) = P (A) otherwise. Fourth, show that the expression P (X,A) is a
regular conditional probability of A given X, i.e., for any A measurable set we
have P{A |X} = P (X,A) almost surely, see Remark 1.17.

Exercise 1.18. Let {X(t) : t ≥ 0} be a (separable) stochastic process on the
probability space (Ω,F , P ) with valued into R. Prove that if X is either right
or left continuous in probability then any dense set Q on [0,∞) is separant.

Exercise 1.19. On a probability space (Ω,F , P ), let {Xn(t) : t ≥ 0}, n ≥ 1 be
a sequence of families of random variables and Fn(t) be the σ-algebra generated
by the random variables {Xn(s) : 0 ≤ s ≤ t} and all sets of measure zero in F .
Assume that Xn(t) converges in probability to X(t), for every t ≥ 0. Prove that

lim
n→∞

E{y | Fn(t)} = E{y | F(t)}, ∀t ≥ 0,
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for every integrable random variable y such that the above limit exists in prob-
ability.

Exercise 1.20. Let H be a σ-algebra of a probability space (Ω,F , P ). Define
I the collection of all sets in F independent of H. Prove that I is closed under
monotone union and intersection. Deduce that I is the σ-algebra H⊥ generated
by all sets in F independent of H.

Exercise 1.21. Let X = (Xt : t ≥ 0) be a family of random variables with
values in a complete separable metric (Polish) space E defined on a probability
space (Ω,F , P ). Assume that X satisfies the Markov property 1.35 and suppose
that X (regarded as a process) is right-continuous in probability, i.e., for every
ε > 0 and t ≥ 0 there exists δ > 0 such that P{|Xs − Xt| ≥ ε} < ε for every
s in (t, t+ δ). Prove that X satisfies the Markov property as in Definition 1.27
with the natural filtration (Ft : t ≥ 0), i.e., the minimal increasing family of σ-
algebra satisfying the usual conditions such that Xt is Ft-measurable for every
t ≥ 0.

Exercise 1.22. LetX be a Rd-valued adapted stochastic process in (Ω,F ,Ft, P )
and suppose that for some transition function p(s, x, t, dy) we have

P{h(Xt) ∈ B | Fs} =

∫
Rd
h(y)p(s,Xs, t,dy), ∀t > s ≥ 0,

almost surely, for every t > s ≥ 0, and any real-valued continuous and bounded
function h. Verify that X is indeed a Markov process. Which other classes of
functions h could be used? How about processes taking values in some topolog-
ical space E instead of Rd?

Exercise 1.23. Let X = (Xt : t ≥ 0) be a (strong) Markov process with
values in a complete separable metric (Polish) space E defined on a probability
space (Ω,F , P ), and with transition probability function p(s, x, t, B), t > s ≥ 0,
x in E and B in B(E). If necessary, assume that for every B the mapping
(s, x, t) 7→ p(s, x, t, B) is measurable. Define

ṗ((s, x), t,dr × de) := δs+t(dr) p(s, x, s+ t, de), ∀t > 0,

for all (s, x) in Ė := [0,∞) × E, and where δs(dr) is the Dirac unit mass in
[0,∞) concentrated at r = s. Prove that Ẋ := (t,Xt) is a (strong) homoge-
neous Markov process with values in Ė and with transition probability function
ṗ((s, x), t, B), t > 0, (s, x) in Ė and B in B(Ė).

Exercise 1.24. Prove that if X is a d-dimensional stochastic process with inde-
pendent and stationary increments (see properties (a) and (b) of Lévy processes)
then

E{ϕ(X(s)−X(t))ψ(X(t))} = E{ϕ(X(s)−X(t))} E{ψ(X(t))},
E{ϕ(X(s)−X(t))} = E{ϕ(X(s− t))},

for any continuous function from Rd into R with compact support.
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Exercise 1.25. Prove that any characteristic function possesses the properties
(a) and (b) of continuity and positive define stated in the text.

Exercise 1.26. Verify that the characteristic functions of a Lévy process have
exponential form. Discuss to what this correspond on the finite-dimensional
distributions viewpoint.

Exercise 1.27. Verify that the consistency properties are satisfied for a fam-
ily of finite-dimensional distributions constructed from a transition function
P (s, x, t, A), an initial time t0 and probability P0.

Exercise 1.28. Prove that for a Lévy process (PX , X) the continuity condition
(1.11) reduces to

EX{|Xh|α} ≤ Ch1+β ∀h > 0,

for a some positive constants α, β and C. Similarly the cad-lag condition (1.12)
can be expressed by

EX{|Xh|α} ≤ Ch
1
2 +β ∀h > 0,

for a some positive constants α, β and C. Extend this result to processes gen-
erated by a transition function i.e. to Markov processes.

Exercise 1.29. By means of the finite-dimensional distributions proves that
the Wiener process satisfies the continuity condition (1.11) so that its paths are
continuous.

Exercise 1.30. Show that the continuity condition (1.11) is not satisfied for
the Poisson process but a direct calculation proves that it is continuous in prob-
ability, see property (c) of Definition 1.31.

Exercise 1.31. Proved that the cad-lag condition (1.12) is satisfied for the
Cauchy process i.e. there exist positive constants α, β and C such that∫

E

|x− y|αP (s, x, t, dy) ≤ C|t− s| 12 +β , ∀s, t ∈ [0, T ], ∀x ∈ R

for ant T > 0.

Exercise 1.32. Let {ρ(t, i, j) : i, j = 1, . . . , n} be a family of continuous func-
tions from [0,∞) into R satisfying

ρ(t, i, j) ≥ 0, ∀i 6= j, ρ(t, i, i) = −
∑
j 6=i

ρ(t, i, j).

Consider the n-dimensional system of ordinary differential equations

ṗs(t, i, j) =
∑
k

ps(t, i, k) ρ(t, k, j), ∀t > s, i, j.

where the dot means derivative in t and ps is the fundamental solution, i.e. it
satisfies ps(s, i, j) = δi,j .
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(a) First, assume that the data are constants i.e., ρ(t, i, j) = ρ(i, j) and denote
by ρ the square matrix (ρ(i, j) : i, j = 1, . . . , n). Show that in this case, the
fundamental solution ps(t, i, j) = exp[−(t− s)ρd] exp[(t− s)(ρ− ρd)], where ρd
is the diagonal matrix with the coefficients (ρi,i : i = 1, . . . , n). Conclude that
all entries of ps(t, i, j) are non-negative and that each line adds (sum in j) to
one.

(b) Extend the previous conclusion to the general case where the data ρ may
depend on t.

(c) Assume the data are constant in t as in (a) and define λ = − infi ρi, i > 0. Let
Yn be a Markov chain with transition probability P (Yn = j |Yn−1 = i) = ρi,j/λ
if i 6= j for n = 1, 2, . . . , and let τ1, τ2, . . . be a sequence of independent
identically distributed exponentially random variables with parameter λ i.e.,
P (τi > t) = exp(−λt), which is independent of (Y0, Y1, . . . ). Prove that Xt = Yn
for t in the stochastic interval [[Tn, Tn+1[[, where T0 = 0 and Tn = τ1+τ2+· · ·+τn,
gives a realization of the pure jumps Markov with the above infinitesimal rates
(see Durrett [67, p. 250, Example 2.1]).

(d) Discuss the case of the double sequence {ρ(t, i, j) : i, j = 1, 2, . . . } of contin-
uous functions.

Exercise 1.33. Let BT (R) be the product σ-algebra (i.e., generated by the
cylinder sets), which may be smaller that B(RT ) (the minimal σ-algebra con-
taining all open sets in RT , endowed with the product topology). Prove that a
typical set in BT (R) has the form

{ω ∈ RT : (ω(t1), ω(t2), . . . ) ∈ A}

where A ∈ B(R{1,2,... }) and (t1, t2, . . . ) is a sequence in R. Verify that a singleton
(i.e., a set of only one element) belongs to B(RT ), but does not belong to BT (R)
if the index set T is uncountable.

Exercise 1.34. Let F be the σ-algebra generated by the coordinate random
variables ω 7→ ω(t) from C([0,∞), E) into E, where E is a complete separable
metric space and t ranges over a dense set Q of [0,∞). Prove that F = B, where
B is the (Borel) σ-algebra generated by open all sets in C([0,∞), E). Conclude
that a function X from (C([0,∞), E),B) into itself is measurable if and only if
the functions ω 7→ X(t, ω) from (C([0,∞), E),B) into E are measurable for all
t in [0,∞). Prove the same result for the space (D([0,∞), E),B), where now B
is the (Borel) σ-algebra generated by open all sets in D([0,∞), E).

Exercise 1.35. For a function x from [0, T ] into R which have only discontinu-
ities of first class we define two modulii of continuity w(x, h) and w′(x, h) one
by

w(x, h, T ) : = inf
{ti}

sup
i

sup{|x(t)− x(s)| : ti−1 ≤ s < t < ti}

where {ti} ranges over all partitions of the form 0 = t0 < t1 < · · · < tn = T,
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with ti − ti−1 ≥ h and n ≥ 1, and the other by

w′(x, h) : = sup{
√
|x(t+ h)− x(s)| |x(s)− x(t)| :

: −h < t < s < t+ h < T + h},

where we have extended x(t) = x(0) for t < 0 and x(t) = x(T ) for t > T.
Prove that for any x in D([0, T ], E) we have w(x, h) −→ 0 and w′(x, h) −→ 0
as h→ 0. By means of the above modulii of continuity, give a characterization
of pre-compact sets in the the space D([0, T ], E) endowed with the Skorokhod
topology.

Exercise 1.36. Show that the space D([0,+∞], E) complete with the locally
uniform convergence [i.e., the topology in C([0,+∞], E)], but is not separa-
ble. On the other hand, show that C([0,+∞], E) is a closed subspace of
D([0,+∞], E).

Exercise 1.37. Let X be a Borel measurable function form Ω into itself, where
(Ω, dΩ) be a separable and complete metric space. Suppose that {Pn : n =
1, 2, . . . } is a sequence of probability measures on Ω which converges weakly
to P . Define {Qn : n = 1, 2, . . . } and Q as the image measures through the
mapping X of {Pn : n = 1, 2, . . . } and P. Prove that if X is P -almost surely
continuous then the sequence {Qn : n = 1, 2, . . . } converges weakly to the
measure Q.

Exercise 1.38. Let Ω be a complete metric space. Use a monotone class
argument to show that the smallest class of functions M in B(Ω) satisfying:

(a) if {fn} is a sequence in M boundedly and pointwise convergent to f then f
belongs to B(Ω),

(b) if A is open in Ω then the characteristic (or indicator) function 1A belongs
to M,

(c) if f and g are in M then αf + βg is in M for any constant α and β,

is actually B(Ω).
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Chapter 2

Semigroup Theory

This is mainly a service Chapter, it complement the previous part in Probabil-
ity with the analytic counterpart. Again the focus is the connection between
Markov processes and semigroups on function spaces. The first reading may be
a little hard, since only references to proofs are given. The reader should be pre-
pared for a crash introduction to the area of semigroup theory applied to partial
differential equations, starting at a simple level of functional analysis. There
are several sources for the semigroup theory, the reader may consult Engel and
Nagel [74] and Pazy [196] for a general introduction to the semigroup theory
for linear operator, while in Lunardi [160] and Taira [244] a full treatment of
analytic semigroups can be found. An approach via pseudo-differential opera-
tors can be found in Jacob [115], while Dirichlet form techniques are developed
in Fukushima et al. [92]. Also Fattorini [78] and Tanabe [246] have a complete
discussion of evolution equations, while Hille and Phillips [108], Kato [128] and
Yosida [262] are classical references.

On the other hand, stochastic processes and partial differential equations
interplay very deeply, besides semigroup theory, there are many other well es-
tablished exchanges between probability and analysis, as discussed in the books
Bass [12, 13] with great generality. The interested reader may enlarge this
point of view by consulting, for instance, the books Doob [60], Durrett [66],
Dynkin [70], Pinsky [198], Port and Stone [202], Stroock and Varadhan [241],
among others.

2.1 Functions and Operators

Let X and Y be two (complex) Banach spaces. First recall that a linear operator
A : X → Y is continuous (or equivalently bounded) if A maps bounded sets of
X into bounded sets of Y . Also, A is called compact if it maps bounded set
of X into relatively compact sets of Y . Moreover, we denote by L(X,Y ) the
Banach space of linear and bounded operators from X into Y , endowed with
the operator norm ‖A‖ = sup{‖Ax‖ : ‖x‖ ≤ 1}. In the case of X = Y we
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simply set L(X) = L(X,X) and we speak of operators in X. If K is a linear
compact operator between two Banach spaces X and Y , then its transpose or
dual mapping K ′ is also a linear compact operator from Y ′ into X ′, the dual
spaces of Y and X, respectively. If a linear operator A : D(A) ⊂ X → Y is
defined on a subspace D(A) of X and is bounded, we could extend the operator
A to the closure D(A). In the case of a linear unbounded operator A : D(A) ⊂
X → Y , A is said to be closed if its graph {(x, y) ∈ X×Y : y = Ax, x ∈ D(A)}
is closed in X × Y . Also, an operator A : D(A) ⊂ X → Y is called closable if
the closure of its graph defines a closed operator.

• Remark 2.1. An operator A : D(A) ⊂ X → Y is closed if and only if for any
sequence {xn} ⊂ D(A) converging to x, such that also the sequence {Axn} is
convergent to some y, we have that x ∈ D(A) and y = Ax. Also, an operator
A : D(A) ⊂ X → Y is closable if and only if for any sequence {xn} ⊂ D(A)
converging to 0, such that also the sequence {Axn} is convergent to some y, we
have that y = 0. Any bounded operator T ∈ L(X) is a closed operator.

Now recall that if A is a linear closed (possibly unbounded) operator in X,
the resolvent set ρ(A) of A is the set of complex values λ for which λI − A
is invertible i.e., (λI − A)−1 exists and is a bounded linear operator in X.
The spectrum σ(A) of A is the complement in C of ρ(A). The family R(λ,A) =
(λI−A)−1, λ ∈ ρ(A) of bounded linear operators is called the resolvent operators
of A.

It is easy to show the following identity (resolvent identity): for any λ, µ ∈
ρ(A) we have

(λI −A)−1 − (µI −A)−1 = (µI − λ)(λI −A)−1(µI −A)−1. (2.1)

Fixed a point µ ∈ ρ(A), for all λ of the disc of the complex plane centered in µ
given by |λ− µ| ‖(µI −A)−1‖ < 1, we have that the series

∞∑
k=0

(µI − λ)k(µI −A)−k−1.

is (operator norm) convergent to (λI − A)−1. Thus, the resolvent set ρ(A) is
open and the function λ 7→ R(λ,A) is (operator norm) analytic thanks to the
previous identity. Moreover, since ‖R(λ,A)‖ ≥ 1/dist(λ, σ(A)) we deduce that
‖R(λ,A)‖ −→ ∞ as λ approaches σ(A). Hence ρ(A) is the maximal domain of
analyticity of R(λ,A).

• Remark 2.2. It is noteworthy to observe that if we have a family of bounded
operators {R(λ) : λ ∈ O}, with O subset of C, and such that they verify the
identity (2.1), then the family is the resolvent of a unique densely defined closed
operator A if and only if the null space N (R(λ)) = {0} and the range R(R(λ))
is dense in H. Obviously O ⊂ ρ(A), see Pazy [196, p. 36].

Theorem 2.3 (Riesz-Schauder). Let K be compact operator from a Banach
space into itself. Then the following properties hold:

(a) The spectrum σ(K) of K is either finite or a countable set accumulating
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only at 0.

(b) Every non-zero element of σ(K) is an eigenvalue of finite multiplicity i.e.,
we have nul(λI −K) = nul(λI −K ′) < +∞, for all λ 6= 0

(c) For any λ 6= 0, the operator λI−K is one-to-one if and only if it is onto.

2.1.1 Adjoint Operators

If X and Y are (complex) Hilbert spaces with inner products (·, ·)X and (·, ·)Y ,
then, given a densely defined operator A : D(A) ⊂ X → Y , the adjoint operator
(instead of dual mapping) A∗ is defined by A∗y = z, for all those y ∈ Y such
that |(y,Ax)Y | ≤ C |x| and, Riesz’ theorem yields the existence of a unique
z ∈ X such that (y,Ax)Y = (z, x)X . The set of all such y, denoted by D(A∗),
is a vector space that can be the only null vector. If A is a densely defined
and closable operator then its adjoint A∗ is also densely defined and closed,
and its double adjoint A∗∗ is the closure (i.e., its minimum closed extension) of
A. Thus densely defined and closed (or closable) operators are key candidates
for the adjoint concept. In the case of X = Y = H, where H is a Hilbert
space with inner product (·, ·), we say that A : D(A) ⊂ H → H is symmetric if
(Ax, y) = (x,Ay) for every x, y in D(A) where D(A) is dense in H (otherwise it
is sometimes called Hermitian). For a densely defined operator A, the orthogonal
complement of the range is the null space of the adjoint, i.e., R(A)⊥ = N (A∗)
and if R(A) is closed then R(A) = N (A∗)⊥, i.e., the equation Ax = y has a
solution if and only if y belongs to N (A∗)⊥.

In other words a densely defined operator A is symmetric if and only if
A ⊂ A∗ , that is A∗ is an extension of A. If A is a densely defined (closed)
symmetric operator on complex Hilbert H then σ(A) ⊂ R. More specifically

(1) (Ax, x) is real for every x in D(A),

(2) all eigenvalues (i.e., all complex values λ such that λI−A is not one-to-one)
are real,

(3) eigenvectors (i.e., x 6= 0 such that Ax = λx) corresponding to distinct
eigenvalues are orthogonal,

(4) the continuous spectrum (i.e., all complex values λ such that λI − A is
one-to-one and the range is dense, but the inverse defined on the range is not
continuous) is also real.

Summarizing, if A is a symmetric operator we have

A ⊂ Ā = A∗∗ ⊂ A∗,

where Ā is the closure of A. In the case of A = A∗ (this implies the equality
D(A) = D(A∗) of the domains) the operator is called self-adjoint. Any self-
adjoint extension S of a symmetric operator satisfies

A ⊂ Ā = A∗∗ ⊂ S ⊂ A∗.

If also A∗ is symmetric or Ā is self-adjoint, we have a unique self-adjoint exten-
sion, in this case A is called essentially self-adjoint and D(A) a core.
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A typical self-adjoint operator is the orthogonal projection over a closed
subspace. It can be proved (von Neumann Theorem) that if A is a densely
defined closed operator between two Hilbert spaces H and K then the operator
A∗A is self-adjoint onH, the domainD(A∗A) is a core of A and B = (I+A∗A)−1

exists as a bounded linear operator on H. Also, B is symmetric and positive,
‖B‖ ≤ 1 and ‖AB‖ ≤ 1.

Note that the operator Aφ = iφ′ defined in H = L2(0, 1) and domain
D(A) = H1

0 (0, 1) is closed and symmetric, but it is not self-adjoint, because
A∗φ = iφ′ but D(A∗) = H1(0, 1). If the zero-boundary conditions φ(0) =
φ(1) = 0 defining the domain D(A) = H1

0 (0, 1) are replaced by periodic con-
dition φ(0) = φ(1) (actually, φ(0) = cφ(1), for some constant c, suffices) then
A becomes self-adjoint. On the other hand, if the boundary conditions are
only φ(0) = 0 then A is not longer a symmetric operator and its resolvent set
ρ(A) = C, i.e., the spectrum set is empty. So, a densely defined closed and
symmetric operator is not automatically self-adjoint, and the domain plays an
important role, i.e., unless the domain is implicitly given, we are referring to
the couple (D(A), A).

An easy test to determine when a closed symmetric operator is self-adjoint
is given in term of the deficiency indices γ− and γ+, defined as the dimension
of the subspace R(A − iI)⊥ and R(A + iI)⊥, respectively. The statement is
as follows: the closure of densely defined symmetric operator A, (i.e., A∗∗) is
self-adjoint if and only if the deficiency indices are both zero, i.e., γ− = γ+ = 0.
In this case, the compression (or residual) spectrum of A (i.e., all complex values
λ such that λI − A is one-to-one and the inverse defined on the range is not
continuous, but the range is dense) is empty, and so any complex value λ with
a non-zero imaginary part is in the resolvent set ρ(A).

If the operator A : D(A) ⊂ H → H is self-adjoint, there exists a (unique
spectral) family of projection operators {E(λ), λ ∈ R} on H, which is increasing
(if λ < λ′ then E(λ) ≤ E(λ′) or equivalent E(λ′)E(λ) = E(λ′)) and right-
continuous E(λ + ε)x → E(λ)x as ε → 0+, for every x in H, with the limits
E(−∞) = 0 and E(+∞) = I, and commute with A, such that

Ax =

∫
R
λ dE(λ)x, ∀x ∈ D(A).

If also A is non-negative, A ≥ 0, then

Ax =

∫ ∞
0

λ dE(λ)x, A1/2x =

∫ ∞
0

√
λ dE(λ)x, ∀x ∈ D(A).

If A is also bounded the integral is only over some interval [m,M). Similarly, if
the operator A : D(A) ⊂ H → H is skew-adjoint i.e., A∗ = −A, (or equivalent
A = iB for some self-adjoint operator B) then the spectral representation takes
the (obvious) form

Ax =

∫
R
iλ dE(λ)x, ∀x ∈ D(A).
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The previous spectral decomposition applies to a bigger class of operator, so
called normal N (i.e., with the property N∗N = NN∗). In particular, if U :
H → H is an unitary operator, i.e., U∗ = U−1 then

Ux =

∫
[0,2π)

eiλ dE(λ)x, ∀x ∈ H.

In the case of compact self-adjoint operator T : H → H the Hilbert-Schmidt
theorem affirms that there exists a sequence of non-zero real eigenvalues {µi}Ni=1

with N equal to the rank of T , such that |µi| is monotone non-increasing, and
if N =∞ then µi → 0. Moreover, if each eigenvalue is repeated in the sequence
according to its multiplicity, then there exists an orthonormal set {ei}Ni=1 of
corresponding eigenfunctions, i.e., Tei = µiei, which is complete in the range
R(T ) and the following representation

Tx =

N∑
i=1

µi(x, ei)ei, ∀x ∈ H

hold true. Similarly, if A is a densely defined self-adjoint operator on H having
a compact resolvent R(λ,A) then the previous spectral decomposition applies
to T = R(λ,A), and λi = λ− µ−1

i is an eigenvalue for A,

Ax =

N∑
i=1

λi(x, ei)ei, ∀x ∈ D(A)

is also valid. For instance, the reader is referred to either the introductory books
Engel and Nagel [74, Chapter IV], Renardy and Rogers [211, Chapter 7], or to
the classic books Kato [128, Chapter 5], Reed and Simon [210, Chapter VIII],
Riesz and Nagy [213, Chapter IX], Yosida [262, Chapter VIII].

2.1.2 Fredholm Operators

We continue with a definition of a class of operator frequently found in what
follows.

Definition 2.4 (Fredholm). A linear mapping A between two Banach spaces
X and Y is called a Fredholm operator if it satisfies the following five conditions:

(a) the domain D(A) of A is dense in X,

(b) A is a closed operator,

(c) the null space N (A) of A has finite dimension,

(d) the range R(A) is closed in Y,

(f) the range R(A) has finite co-dimension.

The index ind(A) of A is defined as the dimension of the null space N (A) of A
[also called nullity of A and denoted by nul(A)] minus the co-dimension of the
range R(A) of A [also called deficiency of A and denoted by def(A)].
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The Fredholm Alternative theorem affirms that if K : X −→ X is a compact
operator and I denotes the identity operator, then I − K and its transpose
I −K ′ are Fredholm operators, the nullity of I −K and I −K ′ is the same and
ind(I −K) = 0.

There is a nice characterization of Fredholm operators as follows. Let A be
a closed linear operator from X into Y with domain D(A) dense in X. Then
A is a Fredholm operator if and only if there exist a bounded linear operator
S : Y −→ X and compact operators P : X −→ X, Q : Y −→ Y such that

(a) SA = I − P on D(A) and (b) AS = I −Q on S−1(D(A)).

Actually, the operator S in (a) and in (b) may be different, but then it can be
taken to be the same. Moreover, R(P ) = N (A) and the dimension of R(Q) is
equal to the co-dimension of R(A)

Let us mention some other important properties in this context. The com-
position preserves Fredholm operators i.e., if A and B are Fredholm operators,
A from X into Y and B from Y into X, then BA is also a Fredholm operator
and ind(BA) = ind(B) + ind(A). A compact perturbation preserves Fredholm
property i.e., if A is a Fredholm operator form X into Y and K is a compact
linear operator, then A+K is a Fredholm operator and ind(A+K) = ind(A).
Transposition preserves Fredholm operators i.e., if A is a Fredholm operator
form X into Y and Y is reflexive, then the transpose operator A′ from Y ′ into
X ′ is a Fredholm operator and ind(A′) = −ind(A).

Another usual form of the Fredholm Alternative theorem is the following
assertion: Let K be a compact operator from a Banach space X into itself.
Then either (a) for each f in X the equation u−Ku = f has a unique solution
or else (b) the homogeneous equation u−Ku = 0 has non-trivial solutions. In
addition, if (a) holds then the inverse operator (I − K)−1 is continuous, and
if (b) holds then the space of solutions of the homogeneous equation is finite
dimensional, and the non-homogeneous equation u −Ku = f has a solution if
and only if f is orthogonal to the null space of I −K ′.

As we will see, typical candidates for Fredholm operators are obtained from
the study of partial differential equations with some boundary conditions, for
instance we refer to the classic books of Courant and Hilbert [49], Dunford
and Schwartz [63], Kato [128], Wloka [254] for a complete treatment and to
Brezis [35] and Renardy and Rogers [211] for a comprehensive introduction.

2.1.3 Rigged Hilbert Spaces

Sometime we need to use topological vector spaces, in particular when dealing
with stochastic partial differential equations, the notion of Hilbert-Schmidt op-
erators becomes important as well as nuclear spaces. The interested reader is
referred to the standard books, e.g., Conway [48], Dunford and Schwartz [63,
Section XI.6, pp. 1009–1044], Gelfand and Vilenkin [96, Section I.4, pp. 103–
127], Yosida [262].

Let H and K be separable Banach spaces, H ′ and K ′ be their dual spaces
and L(H,K) denote the separable Banach space of all linear bounded operators
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from H into K endowed with the usual supremum norm

‖T‖
L(H,K)

= ‖T‖ = sup
{
‖Th‖

K
: h ∈ H, ‖h‖

H
≤ 1
}
.

An operator T in L(H,K) is called nuclear operator if there exist two sequences
{ki} in K and {h′j} in H ′ representing T, i.e., such that

Th =

∞∑
i=1

ki〈h′i, h〉, ∀h ∈ H, and

∞∑
i=1

‖ki‖K ‖h′i‖H′ <∞,

where 〈·, ·〉 denotes the pairing duality. The set of all nuclear operator from
H to K is denoted by L1(H,K) and forms a separable Banach space with the
norm

‖T‖
L1(H,K)

= ‖T‖1 = inf
{ ∞∑
i=1

‖ki‖K ‖h′i‖H′
}
,

where the infimum is taken over all possible sequences representing T. In par-
ticular, we write L(H) = L(H,H) and L1(H) = L1(H,H). Clearly, for any T
in L1(H,K), R in L(H) and S in L(K) we have RT and TS in L1(H,K), and
‖RT‖1 ≤ ‖R‖ ‖T‖1 and ‖TS‖1 ≤ ‖T‖1 ‖S‖. Moreover, any nuclear operator is
a compact operator.

If {ei} is any complete orthonormal sequence (or basis) in a separable Hilbert
space H, then the expression

Tr(T ) =

∞∑
i=1

(Tei, ei)H (2.2)

define the trace of any element T in L1(H), independently of the particu-
lar choice of the basis. Moreover, |Tr(T )| ≤ ‖T‖1 and Tr(ST ) = Tr(TS) ≤
‖T‖1 ‖S‖ for any S in L(H) and T in L1(H). Furthermore, a nonnegative oper-
ator T in L(H) is nuclear if and only if for some basis the series (2.2) is finite,
and in this case Tr(T ) = ‖T‖1.

In a Hilbert space, nuclear operators are also called trace-class operators.
Moreover, if H and K are two separable Hilbert spaces with basis {ei} and
{fj}, respectively, then a linear bounded operator T from H into K is called a
Hilbert-Schmidt operator if the series

‖T‖2 =

∞∑
i=1

|Tei|2K =

∞∑
i,j=1

|(Tei, fj)K |2 =

∞∑
j=1

|T ∗fj |2H

are finite, where | · | = | · |
H

and (·, ·) = (·, ·)
K

denote the norm and the inner
product in the corresponding space, and T ∗ is the adjoint operator of T. Cer-
tainly, the number ‖T‖2 is independent of the particular choice of basis. The set
of all Hilbert-Schmidt operators from H into K, denoted by L2(H,K), becomes
a separable Hilbert space with the inner product

(S, T )2 = (S, T )
L2(H,K)

=

∞∑
i=1

(Sei, T ei)K ,
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which yields the norm ‖T‖2 are previously defined. Again we write L2(H) =
L2(H,K). Clearly, for any T in L2(H,K), R in L(H) and S in L(K) we have RT
and TS in L2(H,K), and ‖RT‖2 ≤ ‖R‖ ‖T‖2 and ‖TS‖2 ≤ ‖T‖2 ‖S‖.Moreover,
any Hilbert-Schmidt operator is compact, and for any S in L2(H,K) and T in
L2(K,H) we have TS in L1(K) with ‖ST‖1 ≤ ‖S‖2 ‖T‖2. In particular, if T is
in L2(H) then TT ∗ = T ∗T is nonnegative and belongs to L1(H). For instance,
see Da Prato and Zabczyk[51, Appendix C, pp. 415-419].

Recall that a Fréchet space is a complete metrizable locally convex topolog-
ical vector space (i.e., the topology is given by a sequence of seminorms). For
instance, the space S(Rd) of rapidly decreasing smooth functions (the Schwartz
space) and its dual, the space of tempered distributions S ′(Rd).

Definition 2.5. A separable Fréchet space Φ expressed as a decreasing count-
able intersection ∩∞n=0Φn of Hilbert spaces Φn is called a countably Hilbertian
space if Φm is continuously and densely embedded in Φn for any m > n. The
space Φ is said to be nuclear if for any n there exits m > n such that the inclu-
sion from Φm into Φn is a Hilbert-Schmidt operator. Any Hilbert space H ⊂ Φ0

with a inner product (·, ·)
H

continuous in the topology of a nuclear countably
Hilbertian space Φ is called a rigged Hilbert space.

The essential element of a countably Hilbertian space is the expression of
the Hilbertian norm φ 7→ ‖φ‖n =

√
(φ, φ)n, defined for any n and φ in Φ, for

which Φn is the completion of Φ under ‖ · ‖n. Since the inclusion from Φm into
Φn is continuous and dense, for any m > n ≥ 0, any Cauchy sequence in the
m-norm is a Cauchy sequence in the n-norm, and if it converges to zero in the
n-norm then it converges to zero in the m-norm.

Identifying the dual space Φ′0 with Φ0 by Riesz representation, the dual space
Φ′ is sequentially complete and Φ′ = ∪∞n=0Φ−n, where Φ−n = Φ′n is the dual
space of Φn. By means of a Baire category argument, we can show that (1) Φ
is dense in Φ′ and (2) any continuous seminorm in Φ is actually a continuous
seminorm in some Φn. Hence, for every rigged Hilbert space there exists n ≥ 0
such that

Φ ⊂ · · · ⊂ Φn+1 ⊂ H ⊂ Φn ⊂ · · · ⊂ Φ1 ⊂ Φ0 = Φ′0 ⊂ Φ−1 ⊂ · · · ⊂ Φ′,

where all inclusions are continuous and dense. The norm and the inner product
in the dual space Φ−n is denoted by ‖ · ‖−n and (·, ·)−n, respectively. Clearly,
because the dual (anti-dual, if working with complex numbers) of Φ−n is Φn,
the topological dual (anti-dual) space Φ′′ of Φ′ coincides with Φ, i.e., the space
of Φ is reflexive.

A typical example of a nuclear countably Hilbertian space is the Schwartz
space S = S(Rd) of rapidly decreasing functions in Rd. Its dual space S ′ =
S ′(Rd) is the space of tempered distributions. The topology in S is given by
the family of seminorms

‖ϕ‖n,α = sup
x

{
|x|n|Dα

xϕ(x)|
}
,
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for any n ≥ 0 and any (derivative) multi-index α = (α1, · · · , αd) of order |α| =
α1+· · ·+αd in the variable x. The Hilbert space Sn is the Sobolev space Hn(Rd)
with the Hilbertian norm

‖ϕ‖n =
{ ∑
|α|≤n

∫
Rd
|Dα

xϕ(x)|2dx
}1/2

, n = 0, 1, · · ·

and a rigged Hilbert space is any Sobolev space Hs(Rd) with possible fractionary
exponent s ≥ 0. Certainly, the dual spaces are the Sobolev spaces with negative
integer exponents.

Similarly, for a smooth d-dimensional domain O, the space Φ = C∞0 (O)
of functions differentiable of any order and vanishing at the boundary is a nu-
clear countably Hilbertian space and Φn is the Solobev space Hn

0 (O). Moreover,
the space C∞(O) of smooth functions up to the boundary is a nuclear count-
ably Hilbertian space. Indeed, if O = ∩n≥0On, where On is a smooth domain
with On+1 ⊂ On, then C∞(O) = ∩∞n=1H

n
0 (On). Note that the injection from

H0(O) = L2(O) is not dense in the dual space of H1(O). On the contrary,
the space D(O) of smooth functions with compact support endowed with the
inductive topology is not a countably Hilbertian space.

Clearly, any separable Hilbert space H is a countably Hilbertian space if
we take all Φn = H, which is an example of almost no importance. However,
only a finite-dimensional Hilbert space is a nuclear countably Hilbertian space
with Φn = H, for any n ≥ 0. Initially, rigged Hilbert spaces (also called Gelfand
triples) are defined as a Hilbert space H satisfying Φ ⊂ H ⊂ Φ′, with continuous
and dense inclusion. Nevertheless, we required the countably Hilbertian space
Φ to be nuclear to avoid trivialities. On the other hand, we may define a rigged
Banach space B by asking Φ ⊂ B ⊂ Φ′ and Φ ⊂ B′ ⊂ Φ′ (all inclusions are
dense and continuous), i.e., explicitly Φn ⊂ B ⊂ Φ−n and Φn ⊂ B′ ⊂ Φ−n, for
some n ≥ 0. The typical candidates for rigged Banach spaces are the Lebesgue
spaces Lp(O) and the Sobolev spaces Wn,p

0 (O), 1 < p <∞, n ≥ 0.
A rigged Hilbert space can be constructed from a Hilbert space H and a

Hilbert-Schmidt operator T in L2(H) satisfying Ker(T ∗) = {0}, by setting Φ0 =
H and Φn = Tn(H) with the Hilbertian norm ‖h‖n = ‖Tnh‖0. In this case, the
inclusion from Φn+1 into Φn is (besides being continuous and dense) a Hilbert-
Schmidt operator. Note that (Th, k) = 0, for every h in H, implies that T ∗k = 0,
i.e., the image T (H) is dense in H.

On the other hand, for a given rigged Hilbert space H we have Φn+1 ⊂
H ⊂ Φn and for some m > n the inclusion, denoted by T, from Φm into Φn
is Hilbert-Schmidt operator, i.e., we may consider T as an element in L2(H),
and reconstruct Φ from H and T. Thus, the concept of rigged Hilbert space
becomes clear as a Hilbert space and a Hilbert-Schmidt operator with all the
rich structure behind.

Essentially any concept developed on rigged Hilbert spaces can be extended
in a natural way to dual nuclear countably Hilbertian spaces. One of the com-
mon point is to use an orthonormal basis in H with elements in Φ, e.g., the
eigenfunctions of the underlying Hilbert-Schmidt operator. For instance, the
reader is referred to Kallianpur and Xiong [123, Chapter 1, pp. 1-43].
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2.1.4 Integrals and Series

If u(t) is a continuous (sometimes call strongly continuous) function from an
real interval [a, b] into a Banach space X such that∫ b

a

‖u(t)‖dt < +∞

then the Riemann integral of u(t) over [a, b] can be defined just as in the case of
real valued function. In this case we say that the function is (strongly) integrable
on [a, b], and by the triangle inequality we have∥∥∥∫ b

a

u(t)dt
∥∥∥ ≤ ∫ b

a

‖u(t)‖dt.

Similarly, it is defined the concept of (strong) differentiability.
It should be clear by now that in most cases we are interested in finding

the inverse of a given operator, so to conclude this section let us mention the
method of continuity used in various linear boundary problems arising in the
theory of partial differential equations, in particular parabolic and elliptic equa-
tions, e.g., Gilbarg and Trudinger [100], Ladyzhenskaya and Uraltseva [148],
Ladyzhenskaya, Solonnikov and Uraltseva [147], Lieberman [153].

Theorem 2.6 (method of continuity). Let X be a Banach space and Y be a
normed vector space. Suppose that A0 and A1 are two bounded linear operators
from X into Y and there exists a constant C > 0 such that, denoting by Aθ =
θA1 + (1− θ)A0,

‖x‖X ≤ C‖Aθ x‖Y , ∀x ∈ X, (2.3)

for every θ in [0, 1]. Then the operator A0 is surjective if and only if A1 is
surjective.

Actually, (2.3) implies that At is injective for any t ∈ [0, 1]. Hence, if for
some θ, Aθ is also surjective, then A−1

θ exists and (2.3) implies that ‖A−1
θ || ≤ C.

Now, if |t− θ| < δ = C−1‖A1 −A0‖−1, it is easy to see that

A−1
t = (I − (t− θ)A−1

θ (A1 −A0))−1A−1
θ = (I + T + T 2 + T 3 + · · · ) A−1

θ

where T = (t− θ)A−1
θ (A1 −A0) ∈ L(X) has norm strictly less than 1. Usually,

(2.3) is some a priori estimate and A0 is a simple operator which is known to
be invertible.

A (strongly) continuous operator valued function S(t) is a function defined
on an interval [a, b] with values in L(X) satisfying for any point t0

lim
t→t0
‖S(t)x− S(t0)x‖ = 0, ∀x ∈ X.

Continuous in norm at the point t0 means

lim
t→t0
‖S(t)− S(t0)‖ = 0.
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in the L(X) norm, also referred to as the operator norm. Similarly, we define
the concept of differentiability, e.g., S(t) is (strongly) differentiable at the point
t0 if there exist an operator Ṡ(t0) in L(X) such that

lim
t→t0

∥∥∥∥(S(t)− S(t0)

t− t0

)
x− Ṡ(t0)x

∥∥∥∥ = 0, ∀x ∈ X.

Notice that Leibniz formula can be extended to strongly or norm differentiable
functions.

As in the case of real valued series we can define the Exponential function
by the series

exp(tA) =

∞∑
n=0

tn

n!
An, ∀t ∈ R,

where A is a bounded linear operator in X. This series converges in the norm
of the space L(X) and enjoys the following properties: (a) a bound on the norm

‖ exp(tA)‖ ≤ exp(t‖A‖),

(b) multiplication property

exp(tA) exp(sA) = exp[(t+ s)A], ∀t, s ∈ R,

and (c) the function exp(tA) is norm differentiable on R and we have

lim
t→0

∥∥∥∥exp[(t+ s)A]− exp(sA)

s
−A exp(sA)

∥∥∥∥ = 0, ∀s ∈ R.

Perhaps, the reader interested in functional analysis for stochastic processes
may consult the recent book by Bobrowski [29].

2.2 Continuous Semigroups

Complete proofs of most of what we are going to discuss here can be found in
Pazy [196] and Yosida [262].

Definition 2.7 (semigroup). A one-parameter family {S(t) : t ≥ 0} of bounded
linear operators from a Banach space X into itself is called a semigroup of class
(C0) or simply a (continuous) semigroup if it satisfies

(a) S(t+ s) = S(t)S(s), ∀t, s ≥ 0,

(b) lim
t↓0
‖S(t)x− x‖ = 0, ∀x ∈ X.

It is called a contraction if ‖S(t)‖ ≤ 1 for every t ≥ 0.
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The key condition (a) is called the semigroup property. Also, it is clear that
from (b) we must have S(0) = I. Sometimes, the family {S(t) : t ≥ 0} is referred
to as a strongly continuous semigroup. If the property (b) is replaced by the
stronger property limt↓0 ‖S(t)− I‖ = 0, i.e. the convergence is in the operator
norm L(X), then we speak of uniformly continuous semigroup. However, the
only uniformly continuous semigroups are the exponential functions S(t) = eAt,
for some bounded operator A ∈ L(X).

• Remark 2.8. A first property of a semigroup of class (C0) is the fact that
there exist constants M and ω such that

‖S(t)‖ ≤M exp(ωt),

and that the function t 7→ S(t)x is continuous (in X) for t in [0,∞[. We may
change the norm in the space X to

‖x‖0 := inf
t≥0
‖ exp(−ωt)S(t)x‖,

which yields the same topology, i.e.,

‖x‖ ≤ ‖x‖0 ≤M‖x‖, ∀x ∈ X.

Clearly, the new semigroup S̄(t) := exp(−ωt)S(t) is a contraction with the new
norm, i.e., ‖S̄(t)‖1 ≤ 1, e.g., see Ahmed [1].

The infinitesimal generator A of a semigroup of class (C0) is defined as the
linear (possibly unbounded) operator

Ax = lim
t↓0

S(t)x− x
t

,

whose domain D(A) is the set of x in X for which the above limit exists (in the
norm of the space X).

• Remark 2.9. It can be shown that the domain D(A) is a dense vector subspace
of X and that the infinitesimal generator A is a closed operator.

A characterization of a contraction semigroup of class (C0) is given by

Theorem 2.10 (Hille-Yosida). A linear (unbounded) operator A on a Banach
space X is the infinitesimal generator of a contraction semigroup of class (C0)
{S(t) : t ≥ 0} if and only if

(a) A is closed and D(A) is dense in X,

(b) (λI −A) is invertible for every λ > 0 and ‖(λI −A)−1‖ ≤ λ−1.

A similar result holds for a semigroup of class (C0) satisfying ‖S(t)‖ ≤
M exp(ωt), provided we replace the condition (b) by the estimate

‖(λI −A)−n‖ ≤M(λ− ω)−n,

valid for any λ > ω and n = 1, 2, . . .
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An important tool in the proof of the above results is the so-called Yosida
approximations of A

Aλ := λAR(λ,A) = λA(λI −A)−1,

satisfy Aλx→ Ax as λ→ +∞ for every x in X, and the fact that the resolvent
operator can be expressed as

R(λ,A)x =

∫ ∞
0

exp(−λt)S(t)xdt,

and λR(λ,A)x→ x as λ→ +∞ for every x in X.
An exponential formula similar to the Yosida approximations is given by the

“finite difference” approximations for h > 0

Sh(t) = etA(h), A(h)x = h−1[S(h)x− x], x ∈ X,

which satisfies Sh(t)x→ S(t)x, for any x ∈ X and uniformly on bounded set in
t.

Since a semigroup S(t) of class (C0) is uniquely determinate by its infinitesi-
mal generator A, we use the notation S(t) = etA or exp(tA), where the operator
A satisfies (a) and (b) of Hille-Yosida Theorem. Moreover, the inversion of the
Laplace transform holds, i.e., if ‖etA‖ ≤Meωt then for any γ > max{ω, 0} and
any x ∈ D(A) we have∫ t

0

esAxds =
1

2πi

∫ γ+i∞

γ−i∞
λ−1eλtR(λ,A)xdλ, (2.4)

where the integral on the right converges uniformly in bounded interval on t.
If X ′ is the dual of a Banach space X and if x ∈ X, then by the Hahn-Banach

theorem that there exists an element in the dual x′ ∈ X ′ such that

〈x′, x〉 = ‖x‖2 = ‖x′‖2, (2.5)

where 〈·, ·〉 denotes the duality paring.

Definition 2.11 (dissipative). A linear (unbounded) operator A is dissipative if
for every x in D(A) there is an element in the dual x′ ∈ X ′ such that <〈x′, Ax〉 ≤
01 and equality (2.5) hold.

The above definition is equivalent to the following condition

‖(λI −A)x‖ ≥ λ‖x‖, ∀x ∈ D(A), λ > 0,

which may be used as the initial definition. On the other hand, it is clear that if
X is a Hilbert space then an operator is dissipative if and only if <〈x,Ax〉 ≤ 0
for any x in D(A).

It is proved in Pazy [196, Theorems 4.5 and 4.6, pp. 15–17] that if A is a
dissipative operator in a Banach space X then

1Here <(·) denotes the real part of a complex number.
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(a) if for some λ0 > 0 the range R(λ0I − A) = X then R(λI − A) = X for all
λ > 0,

(b) if A is closable then its closure Ā is also dissipative,

(c) if D(A) is dense in X then A is closable,

(d) if for some λ > 0 the range R(λI −A) = X and X is a reflexive space then
D(A) is dense in X.

The sub-differential ∂‖x‖ of ‖ · ‖ (the norm of a real Banach space X) at x
is defined as follows

∂‖x‖ = {x′ ∈ X ′ : ‖x+ y‖ − ‖x‖ ≥ 〈x′, y〉, ∀y ∈ X},

where X ′ is the dual space of X. We can show that for x = 0 we have ∂‖x‖ =
{x′ ∈ X ′ : ‖x′‖ ≤ 1}, while for x 6= 0 we get ∂‖x‖ = {x′ ∈ X ′ : ‖x′‖ = 1
and 〈x′, x〉 = ‖x‖}. Thus, a map A from D(A) into X is dissipative if and only
if for any x, y in D(A) there exists z′ in ∂‖x− y‖ such that 〈z,Ax−Ay〉. This
concept of dissipative maps is very useful for non-linear operators.

Most of the typical semigroup examples are defined on function spaces; the
infinitesimal generator is often defined by analytic expressions that make sense
only for smooth functions. This makes hard to verify condition (a) of Hille-
Yosida Theorem 2.10. Hence, another characterization of a semigroup of class
(C0) is given by

Theorem 2.12 (Lumer-Phillips). Let A be a linear operator with dense domain
D(A) in a Banach space X. We have:

(a) If A is dissipative and there is λ0 > 0 such that the range R(λ0I − A) is
dense in X, then A is closable and its closure Ā is the infinitesimal generator
of a contraction semigroup of class (C0) on X.

(b) If A is the infinitesimal generator of a contraction semigroup of class (C0)
on X then range R(λI−A) is X for all λ > 0. and A is dissipative. Moreover the
condition used in the Definition 2.11 is valid for any dual element x′ satisfying
(2.5).

Notice that if the linear operator A is such that A−cI is dissipative, for some
constant c, then Lumer-Phillips’ theorem may be applied to A−cI, generating a
contraction semigroup Sc(t). Hence, A generates a (so-called quasi-contraction)
semigroup written as S(t) = ectSc(t).

Let {S(t) : t ≥ 0} be a semigroup of class (C0) on a Banach space X, with
infinitesimal generator A defined in D(A). Its dual semigroup {S′(t) : t ≥ 0} is
defined on the dual Banach space X ′ by

〈S′(t)x′, x〉 := 〈x′, S(t)x〉, ∀x ∈ X, x′ ∈ X ′, t > 0.

It is clear that the semigroup property (a) of Definition 2.7 is satisfied by the
one-parameter family {S(t) : t ≥ 0}, however the strong continuity (b) is not
necessarily conserved. Similarly, starting from the infinitesimal generator A, the
dual operator A′ can be defined by

〈A′x′, x〉 := 〈x′, Ax〉, ∀x ∈ D(A), x′ ∈ D(A′),
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where x′ ∈ D(A′) if A′x′ defined as above, a priori on D(A), can be extended
to an element of X ′. Because A is closed and densely defined, then it dual A′

is uniquely determined as an unbounded closed linear operator in X ′. If the
Banach space X is reflexive, then the domain D(A′) of A′ is dense e.g., see
Goldberg [102, p. 56, Theorem II.3.14]. Actually, it can be proved that the
restriction of the dual semigroup {S′(t) : t ≥ 0} to Y ′ the closure (in X ′) of the
D(A′) is a semigroup of class (C0) on a Banach space Y ′, whose infinitesimal
generator is the restriction of A′ to the set of x′ such that A′x′ ∈ Y ′, see
Pazy [196, p. 39, Theorem 10.4].

When the one-parameter family {S(t)} of bounded linear operators from a
Banach space X into itself are defined for any t ∈ R and satisfies the conditions
of Definition 2.7 we say that it forms a groups of bounded operators of class
(C0). It is possible to prove that if {S(t) : t ≥ 0} is a semigroup of class (C0)
and for any t > 0 the inverse S−1(t) exists and is a bounded operator then
{S(t)} can be embedded in a (C0) group. Actually, it is enough to know that
for some t0 > 0 the operator S(t0) has a bounded inverse to conclude that S(t)
is actually a group.

As mentioned early, for an operator A densely defined on a (complex) Hilbert
space H, the adjoint operator A∗ is defined by the relation (Ax, y) = (x,A∗y)
for any x in D(A) and y in D(A∗), where the domain of A∗ is the subspace of
elements y in H such that for some constant C = Cy we have |(Ax, y)| ≤ C‖x‖
for any x in D(A). Thus, a densely defined operator A on a Hilbert space
H is called self-adjoint if A∗ = A and skew-adjoint if A∗ = −A. A bounded
operator U is called unitary if U∗ = U−1. A strongly continuous semigroup
{S(t) : t ≥ 0} defined in a Hilbert space H is called symmetric if each operator
S(t) is symmetric, for every t ≥ 0. It can be proved (see Pazy [196, Corollary
10.6]) that the generator A of a strongly continuous semigroup is self-adjoint if
and only if the semigroup is symmetric.

The following result is very important for the generation of a group of unitary
operators, see Engel and Nagel [74, p. 89, Theorem 3.24] and Pazy [196, p. 41,
Theorem 10.8], where a comprehensive study on semigroups can be found.

Theorem 2.13 (Stone). A densely defined operator A on a Hilbert space gen-
erates a unitary group S(t) if and only if A is skew-adjoint or equivalent if an
only if iA is self-adjoint, where i =

√
−1.

If the infinitesimal generator A is given a priori then a natural notation for
the semigroup S(t) is the expression exp(tA) or etA, even if the operator A is only
closable densely defined in the Banach space X. Sometimes, it is necessary to
combine to infinitesimal generators A and B. For instance, if A and B commute,
i.e., exp(tA) exp(tB) = exp(tB) exp(tA) then exp[t(A+B)] = exp(tA) exp(tB)
as expected. In general the following result, know as Trotter product formula
(see Taylor [249, Vol 2, Chapter 11, Theorem A.1, pp. 381–385]) is useful.

Theorem 2.14 (Trotter). Let A and B be two infinitesimal generators of con-
traction semigroups of class (C0), denoted by exp(tA) and exp(tB), on a Banach
space X. If the closure of A + B is the infinitesimal generator of contraction
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semigroup of class (C0) denoted exp[t(A+B)], then

exp[t(A+B)]x = lim
n→∞

[exp( tnA) exp( tnB)]nx

for any x in X.

Typical examples of semigroups come from evolution equations. For in-
stance, hyperbolic equations generates groups of bounded linear operators and
parabolic equations generates only semigroups.

2.3 Analytic Semigroups

This is an important class of semigroups which carries most of the key prop-
erties of a parabolic equation. Roughly speaking, the properties (a) and (b)
of Definition 2.7 are also valid for t in a sector in the complex numbers of the
positive real numbers, i.e., −a0 < arg(t) < a0, for some a0 > 0. However, most
of the properties are better seen on the infinitesimal generator. We refer to the
books by Lunardi [160] and by Taira [244] for a complete discussion and proofs.
Note that unless explicitly stated, ‖ · ‖ denotes the norm in the Banach space
where “·” belongs to.

Definition 2.15 (sectorial). A linear operator A with domain D(A) in a Banach
space X is said to be sectorial if there exist constants ω ∈ R, θ ∈]π/2, π] and
M > 0 such that

(a) Sω,θ := {λ ∈ C : λ 6= ω, | arg(λ− ω)| < θ} ⊂ ρ(A),

(b) ‖R(λ,A)‖ ≤ M

|λ− ω|
, ∀λ ∈ Sω,θ,

where ρ(A) is the resolvent set of A and R(λ,A) := (λI − A)−1 is the corre-
sponding resolvent operator.

The linear operator A may not be densely defined, i.e., D(A) is not necessar-
ily dense in X, but the fact that the resolvent set of A is not empty implies that
A is closed, so that D(A) endowed with the graph norm ‖x‖D(A) := ‖x‖+‖Ax‖,
is a Banach space. If we insist in having a dense domain for A, we may replace
X by the closure of D(A) in X.

For a given sectorial operator A we can define a family of linear bounded
operators {etA : t ≥ 0} in X by means of the integral

etA :=
1

2πi

∫
ω+γ(r,η)

etλR(λ,A)dλ, t > 0, (2.6)

where r > 0, η ∈]π/2, θ[, and γ(r, η) is the curve {λ ∈ C : | arg(λ)| = η, |λ| ≥
r}
⋃
{λ ∈ C : | arg(λ)| ≤ η, |λ| = r}, oriented counterclockwise. Since η > π/2

and the function λ 7→ etλR(λ,A) is holomorphic in Sω,θ, the definition of etA

makes sense and it is independent of the choice of r and η. To complete the
notation we define e0A as the identity operator. Then, based on the following
properties, we refer to {etA : t ≥ 0} as the analytic semigroup generated by the
sectorial operator A.
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Theorem 2.16. Let A be a sectorial operator with domain D(A) in Banach
space X. Then the family of linear bounded operators {etA : t ≥ 0} in X defined
by (2.6) satisfies the following properties:

(a) The semigroup property holds, i.e., e(t+s)A = etAesA, for any t, s ≥ 0.

(b) The function t 7→ etAx from [0,+∞[ into X is continuous at t=0 if and only
if x belongs to the closure of D(A) in X, which implies that condition (b) of the
Definition 2.7 is satisfied if the D(A) is dense in X.

(c) The mapping t 7→ etA from ]0,+∞[ into L(X) has an analytic extension in
the sector {λ ∈ C : λ 6= 0, | arg(λ)| < θ − π/2}. Moreover, for any x ∈ X, t > 0
and n = 1, 2, . . . , the element etAx belongs to D(An) and entAx = AnetAx.

(d) There constants M0,M1, . . . , such that

‖tk(ωI −A)ketA‖L(X) ≤Mkeωt,

where ω is the constant in Definition 2.15.

It is proved in Lunardi [160, p. 43, Proposition 2.1.11] that if A is a linear
operator defined on D(A) ⊂ X such that the resolvent set ρ(A) contains a half
plane {λ ∈ C : <(λ) ≥ ω}, and

‖λR(λ,A)‖L(X) ≤M, if <(λ) ≥ ω, (2.7)

for some ω ∈ R and M > 0, then A is sectorial.
If the constant ω in Definition 2.15 of the sectorial operator A is strictly

negative, then {etA : t ≥ 0} is a semigroup of contractions. Moreover, fractional
powers of A can be defined by the integral formula

(−A)−α :=
1

2πi

∫
γ(r,η)

(−λ)−αR(λ,A)dλ, α ∈]0, 1[, (2.8)

where γ(r, η) is the curve used in (2.6). It is easy to check that (−A)−α is one-
to-one, which allows to define (−A)α as the inverse of (−A)−α. The operators
(−A)α are called fractional powers of −A and its domain D((−A)α) provided
interpolations spaces. A key representation is the following

(−A)αetA =
1

2πi

∫
γ(r,η)

etλ(−λ)αR(λ,A)dλ, t > 0, (2.9)

More details can be found in Lunardi [160, Chapter 2, pp. 35–67] and Pazy [196,
Chapter 2, pp. 42–75].

• Remark 2.17. The following representations of fractional powers don’t use
complex integration, see Pazy [196, Section 2.6]

(−A)αx =
sin(πα)

π

∫ ∞
0

tα−1A(tI −A)−1x dt, ∀x ∈ D(A),

(−A)−α =
sin(πα)

π

∫ ∞
0

t−α(tI −A)−1dt, in H,

(−A)−α =
1

Γ(α)

∫ ∞
0

t−αetAdt, in H,

for α in (0, 1).
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An important subclass of analytic semigroups are the so called variational.
This semigroups are defined on a Hilbert space H, instead of a Banach space
X, and generated as follows.

Definition 2.18 (variational). A linear operator A with domain D(A) in a
Hilbert space H is variational if there exist a Hilbert space V densely embedded
in H and a continuous bilinear form a : V × V → R such that

a(v, v) ≥ α‖v‖V − β‖v‖H , ∀ v ∈ V

for some constants α > 0 and β ≥ 0, and the conditions{
v ∈ D(A) iff |a(v, h)| ≤Mv‖h‖H , ∀h ∈ H,

a(u, v) = 〈−Au, v〉, ∀u ∈ D(A), v ∈ V.

determine the domain and the operator.

The lower and upper bounds (coercivity and continuity) of the bilinear form
a(·, ·) yield ‖λx − Ax‖H ≥ c0|λ − β| if <(λ) > β, for a constant c0 depending
only the ratio M/α. On the other hand, Lax-Milgram Theorem can be used to
solve the equation Ax + λx = y in x for any y in H. Hence A is a sectorial
operator, as proved in Tanabe [246] (see also Jacob [115, Vol. I, Section 4.7,
Theorem 4.7.10]), i.e.,

Theorem 2.19. If A is a variational operator in a Hilbert space H satisfying
the above definition, then A generate an analytic semigroup {etA : t ≥ 0} such
that ‖etA‖ ≤ eβt, for all t ≥ 0. Moreover, the following energy estimate holds∫ t

0

a(esAv, esAv)ds =
1

2

[
‖v‖2H − ‖etAv‖2H

]
, ∀ t ≥ 0, v ∈ V.

On the other hand, if {S(t) : t ≥ 0} is an analytic semigroup on a Hilbert space
H then there exists a variational operator A satisfying S(t) = etA.

For instance, the reader may check the books Brezis [34] and Zeidler [264]
regarding monotone operators.

Given an analytic semigroup {S(t) : t ≥ 0} on a Hilbert space H, we may
define a family of bilinear forms

a(t)(u, v) =
1

t
(u− S(t)u, v), ∀t > 0

and

D(a) :=
{
u ∈ H : sup

t>0
a(t)(u, u) <∞}

to prove that

a(u, v) := lim
t→0

a(t)(u, v), ∀u, v ∈ D(a),
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e.g., see Fukushima et al. [92], Ma and Röckner [161] for a full discussion on
Dirichlet forms.

This notion is related to the so-called monotone operators in Hilbert spaces
and its application to control theory, e.g. see Zabczyk [263, Part IV, Chapter 1,
pp. 176–205].

Let us give a perturbation result for analytic semigroups, e.g., see Jacob [115,
Vol I, Theorem 4.4.5, p. 323],

Theorem 2.20. Let {etA : t ≥ 0} be an analytic semigroup on a Banach space
(X, ‖ · ‖X). Suppose (D(B), B) is a closed linear operator with D(B) ⊂ D(A)
and such that for every ε > 0 there is β(ε) satisfying

‖Bx‖X ≤ ε‖Ax‖X + β(ε)‖x‖X , ∀x ∈ D(A).

Then (D(A), A+B) generates an analytic semigroup {et(A+B) : t ≥ 0}.

The proof is based on the fact that ‖B(λI −A)−1‖L(X) < 1, so I −B(λI −
A)−1 is invertible, for |λ| sufficiently large within a sector.

2.4 Resolvent Properties

The notation R(λ,A) := (λI − A)−1 (used until know to denote the resolvent
operator) stress the dependency on the infinitesimal generator A of the given
C0 semigroup {S(t) : t ≥ 0} on a Banach space X. However, the resolvent
operators can be constructed independent of A, as the Laplace transform of the
semigroup, i.e.,

R(λ)x :=

∫ ∞
0

e−λtS(t)x dt, (2.10)

which enjoys several characteristic properties used in the following

Definition 2.21 (resolvent). A one-parameter family {R(λ) : λ > 0} of lin-
ear bounded operators from the Banach space X into itself is called a regular
contracting resolvent or strongly continuous contraction resolvent if it satisfies

(a) R(λ)−R(ν) = (ν − λ)R(λ)R(ν), ∀λ, ν > 0,

(b) ‖λR(λ)‖ ≤ 1, ∀λ > 0,

(c) lim
λ→∞

‖λR(λ)x− x‖ = 0, ∀x ∈ X.

Here, (a) is the resolvent equations, (b) means that the operator λR(λ) (not
R(λ)) is a contraction mapping on X, and the regularity condition (c) is the
equivalent of the strong continuity. The resolvent is called closed if there is a
bounded operator denoted by R(0) such that (a) holds for any λ ≥ 0.

For any strongly continuous contraction resolvent {R(λ) : λ > 0} on a
Banach space X there exist a unique closed non-positive and densely define
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operator (D(A), A) on X, called the generator of the resolvent such that R(λ) =
(λI − A)−1. As mentioned later, the operator A can be define in term of the
resolvent.

Given a strong continuous semigroup of contraction {S(t) : t ≥ 0} as in
Definition 2.7 the map t 7→ S(t)x is continuous for any x inX so that the Laplace
transform (2.10) makes sense and satisfies the conditions of a regular contracting
resolvent {R(λ) : λ > 0}. The converse of this statement also holds, i.e., any
regular contracting resolvent is the Laplace transform of a strong continuous
semigroup of contraction, actually we may write

S(t)x := lim
n→∞

(
n
tR(nt )

)n
x, ∀x ∈ X,

see Dellacherie and Meyer [58, Theorem XIII.4, pp. 87–89].
A resolvent {R(λ) : λ > 0} is always infinitely differentiable for any λ > 0.

For a contracting resolvent {R(λ) : λ > 0}, (i.e., when only (a) and (b) of the
Definition 2.21 is satisfied) we may define the regularity space R and co-regularity
space C by the conditions R := {x ∈ X : lim

λ→∞
λR(λ)x = x} and

C := { lim
λ→∞

λR(λ)x = 0}
(2.11)

which are closed subspaces of the initial Banach space X. As mentioned in
Definition 2.21, if R = X the resolvent is called regular, and now it is called co-
regular if C = X. In view of the resolvent equation, the image (or range) space
R(λ)X is independent of λ and its closure produce the regularity space R. Thus
R an invariant subspace. Hence, by restricting the definition of the resolvent
{R(λ) : λ > 0} to the Banach subspace R, we get a regular contracting resolvent.
Hence, in what follows we assume that the given resolvent is regular, i.e., R = X,
without any loss of generality.

Since R′(λ), defined by R′(1/λ) := λ[I − λR(λ)], is a resolvent satisfying
‖λR′(λ)‖ ≤ 2 we see that the image (or range) space

(
I − λR(λ)

)
X is indepen-

dent of λ and its closure produce the co-regularity space C. Thus, the behavior
of R(λ) as λ vanishes can be deduced from the behavior as λ goes to infinity.

The generator of the resolvent {R(λ) : λ > 0} is the linear (possible un-
bounded) operator A with domain D(A) defined by the condition

x ∈ D(A) and Ax = y if and only if lim
λ→∞

λ[λR(λ)− I]x = y.

Similarly, the co-generator V with domain D(V ) defined by the condition

x ∈ D(V ) and V x = y if and only if lim
λ→0

R(λ)x = y.

If the resolvent is closed by a bounded linear operator R(0) then R(0)−R(λ) =
λR(λ)R(0) for any λ > 0. Thus [I − λR(λ)][I + λR(0)] = I and therefore
D(V ) = [I − λR(λ)]X = X, i.e., the resolvent is co-regular and V = R(0). The
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co-generator V may be called the (strong) potential. The various weak versions
of this potential form part of the so-called potential theory and ergodic theory.

Since the resolvent equation (a) of Definition 2.21 implies that R(λ) is injec-
tive and R(λ)X is included in the domain of the generator A. Actually, R(λ) is
an isomorphism from X onto D(A), for any λ > 0, and we have x ∈ D(A) and
Ax = y if and only if form some λ > 0 we have x, y ∈ X and x = R(λ)(λx− y).
This give a characterization of the domain D(A) without involving a passage to
the limit. The generator A coincides with the infinitesimal generator A defined
for a strongly continuous semigroup, see Dellacherie and Meyer [58, Chapters
XI–XVI], Rogers and Williams [214, Section III.5, pp. 303–320] for a compre-
hensive treatment.

Sometimes, the Definition 2.21 of resolvent treats each property (a), (b) and
(c) independently, e.g., see Engel and Nagel [74, Section III.4, pp. 205–218] or
Pazy [196, Section 1.9, pp. 36–38]. In this context, given a subset of the complex
plane, a one-parameter family {R(λ) : λ ∈ Λ} of bounded linear operators from
the Banach space X into itself is called a pseudo-resolvent in Λ if (a) is satisfied
for any λ and ν in Λ. Next, (b) is relaxed as follows: there exists an unbounded
sequence {λn} in Λ such that

(b’) ‖λnR(λn)‖ ≤M, ∀n,

for some constant M > 0. In particular, the resolvent are no longer contractions.
Similarly, (c) is relaxed, the limit is taken within the unbounded sequence {λn},
i.e., there exists a sequence {λn} in Λ such that |λn| → ∞ and

(c’) lim
n
‖λR(λ)x− x‖ = 0, ∀x ∈ X.

There are two typical results for a pseudo-resolvent {R(λ) : λ ∈ Λ}:
(1) The null space N (R(λ)) and the range R(R(λ)) are independent of λ, and
N (R(λ)) is a closed subspace of X.

(2) If condition (c’) holds (or equivalently, the range N (R(λ)) is dense in X and
(b’) is satisfied), then there exits a unique densely defined closed linear operator
A in X such that R(λ) = (λI −A)−1.

As an example, suppose that S(t) satisfies the semigroup property S(t +
s) = S(t)S(s), but it is not a strongly continuous semigroup (i.e., we do not
necessarily have S(t)f → f as t→ 0). However, its Laplace transform

R(λ)f :=

∫ ∞
0

e−λtS(t)fdt, λ ∈ Λ

may be one-to-one (injective) in X, e.g., when X is Banach space of continuous
functions. Because R(λ) satisfies the resolvent identity, there exits a unique
closed operator A such that R(λ) = (λI − A)−1, which is called the generator
of {S(t) : t ≥ 0}.
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2.5 Bilinear Forms

Another way to construct a (C0) semigroup of operators is by means of bilinear
forms (e.g., see Reed and Simon [210, Vol. I, p. 276].

A bilinear form a(u, v) on a real Hilbert space H, with inner or scalar product
(·, ·), is a map a : D(a)×D(a)→ R, where D(a), called the domain of the form,
is a dense subspace of H, such that a(u, v) is separately linear in each variable.
In the sequel we will often use the word “form” for “bilinear form”.

Together with a form a(u, v) we consider the following two bilinear forms

asym(u, v) =
a(u, v) + a(v, u)

2
, aant(u, v) =

a(u, v)− a(v, u)

2
,

respectively the symmetric and the antisymmetric part. Associated to a bilinear
form is the quadratic form q(u) = a(u, u) with u ∈ D(a), i.e., the bilinear form
evaluated on the diagonal, and we have the following polarization identity:

asym(u, v) =
1

4

(
a(u+ v, u+ v)− a(u− v, u− v)

)
,

that shows how it is possible to recover the symmetric part of a form by knowing
the associated quadratic form. Obviously, the form is called symmetric if we
have a(u, u) = asym(u, u) or equivalently aant(u, u) = 0.

• Remark 2.22. Given a bilinear form a(·, ·) on D(a) ⊂ H we can associate an
(possibly unbounded) operator A : D(A) ⊂ D(a)→ H by the formula a(u, v) =
(−Au, v) for every v in D(a) and any u in D(A), where the domain D(A) is
defined by all u in D(a) such that, for some constant Ku, we have |a(u, v)| ≤
Ku |v| for all v in D(a) (recall that D(a) is dense in H), hence we can define
−Au by means of Riesz’ theorem.

2.5.1 Bounded Forms

If the bilinear form a(u, v) satisfies the following property: there exist a constant
C > 0 such that

|a(u, v)| ≤ C|u| |v|, ∀u, v ∈ D(a), (2.12)

then the form is called continuous (or bounded) in H. It can be extended in a
unique way to a form, that we indicate still by a, defined on the whole H. In
this case the previous remark takes the following form: there exists a unique
bounded operator −A such that a(u, v) = (−Au, v) for any u, v ∈ H.

The following result is very important in the variational formulation of par-
tial differential equations,

Theorem 2.23 (Lax-Milgram). Let a(·, ·) be a continuous (or bounded, i.e.,
(2.12) holds) bilinear form defined on a Hilbert space H with inner product (·, ·),
satisfying the following coercivity assumption

|a(v, v)| ≥ κ|v|2, ∀v ∈ H. (2.13)
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Then for any f ∈ H there exists a unique u ∈ H such that

a(u, v) = (f, v), ∀v ∈ H.

Moreover, if the form a(·, ·) is also symmetric the previous solution u is char-
acterized by the property

1
2a(u, u)− (f, u) = min

v∈H

{
1
2a(v, v)− (f, v)

}
.

Furthermore, the mapping T : f 7→ u from the H into itself is a linear homo-
morphism satisfying

κ‖u‖H ≤ ‖T−1u‖H ≤ C‖u‖H , ∀u ∈ H,

where C and κ are the constants in (2.12) and (2.13).

For a given element f in the dual space H ′, we may consider the problem of
finding u in H such that

a(u, v) = 〈f, v〉, ∀v ∈ H.

Again, the mapping f 7→ u is a linear homeomorphism from H ′ onto H.

2.5.2 Positive Forms

A bilinear form (not necessarily bounded) is said positive definite, or only pos-
itive, or nonnegative, if a(u, u) ≥ 0 for all u ∈ D(a). If also a(u, u) = 0 implies
u = 0 then it is called strictly positive.

Given a positive form a(u, v) we will consider, for any α > 0 the following
forms

(u, v)α = asym(u, v) + α (u, u), (2.14)

which are scalar products on D(a) and all the norms ‖u‖α induced are equiv-
alent, see e.g. Ma and Röckner [161, Section I.2, p. 15]. Hence there exists a
unique completion V of D(a) with respect to any of the previous norms, and we
have V ⊂ H. Clearly, V is a Hilbert space with respect to any of the previous
norms: the topology doesn’t change also if the scalar product depends on α.
Thus, a positive form is closed if D(a) = V , i.e., D(a) is complete (or a Hilbert
space) endowed with any norm ‖ · ‖α, α > 0.

• Remark 2.24. It is easy to check that a positive form is closed if and only if
whenever un ∈ D(a), un → u in H and a(un−um, un−um)→ 0, as n,m→∞,
then u ∈ D(a) and a(un − u, un − u) → 0. Hence the property to be closed is
relative only to the symmetric part of a positive form.

• Remark 2.25. Note that the symmetric part asym(u, v) of a positive form sat-
isfies asym(u, v)2 ≤ asym(u, u)asym(v, v), for every u and v in D(a). Hence we have

|asym(u, v)| ≤ ‖u‖α‖v‖α, ∀u, v ∈ D,

i.e., the symmetric part of a positive form is continuous in D(a), endowed with
any norm ‖ · ‖α, or simply it is bounded in V . If the form is strictly positive,
then the symmetric part itself asym(u, v) is a scalar product.
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• Remark 2.26. A generalization of positive form is the notion of semibounded
form (also called lower bounded or bounded below form), i.e. a(u, u) ≥ −M |u|2
for some M > 0 and all u ∈ D(a). Many results for positive forms hold true
also for semibounded forms. Also, note that the symmetry of the form is not
required in the above definition.

We have (e.g., see Reed and Simon [210, Vol I, Thm VIII.15])

Theorem 2.27 (symmetric). Given a closed, positive and symmetric form
a(u, v) there is a unique (non positive and densely defined) self-adjoint oper-
ator A : D(A) ⊂ D(a) ⊂ H → H such that a(u, v) = (−Au, v) for u ∈ D(A).
Conversely, given a non positive, self-adjoint operator A, the form a(u, v) =
((−A)1/2u, (−A)1/2) with u, v ∈ D(a) = D((−A)1/2) is a closed, positive and
symmetric form.

• Remark 2.28. A closed, positive and symmetric form a(u, v) is always a con-
tinuous (bounded) form in V = D(a).

For the non-symmetric case we have

Theorem 2.29 (non symmetric). Let a(·, ·) be a closed and positive bilinear
form on D(a) ⊂ H, which is continuous in D(a) = V with the norm ‖ · ‖1 as in
(2.14) for α = 1, i.e.,

|a(u, v)| ≤M‖u‖1‖v‖1, ∀u, v ∈ D(a), (2.15)

for some constant M . Then there exits a unique (densely defined) operator
A : D(A) ⊂ D(a) ⊂ H → H, such that a(u, v) = (−Au, v) for any u ∈ D(A)
and v ∈ D(a). Moreover, A is the infinitesimal generator of a strongly continu-
ous contraction semigroup. Conversely given a strongly continuous contraction
semigroup, with infinitesimal generator A, there exists a minimal closed and
positive bilinear form a(·, ·), on D(a) ⊂ H, such that D(A) ⊂ D(a), satisfying
(2.15).

• Remark 2.30. The continuity condition (2.15) is also called weak sectorial
in Ma and Röckner [161]. Actually, considering the operator A extended to
the complexification of H, it generates an analytic semigroup. In view of Re-
mark 2.25, the bound (2.15) is equivalent to

|aant(u, v)| ≤M‖u‖1‖v‖1, ∀u, v ∈ D,

which clearly is a condition on the antisymmetric part, in other words, it gives
control of the antisymmetric part with the symmetric part.

• Remark 2.31. The previous theorem states thatA is the infinitesimal generator
of a strongly continuous contraction semigroup. Hence for α > 0, αI − A has
a bounded inverse (αI − A)−1 in H such that α‖(αI − A)−1‖L(H) ≤ 1 and,
denoting u = (α−A)−1f with f in H, we have that u is the unique element in
D(a) such that a(u, v) + α(u, v) = (f, v) for every v in D(a).
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2.5.3 Closable Forms

The usual way to define a positive closed form is first to define it on a suitable
domain D and then trying to extend the form to a closed form. This procedure
requires the form to closable.

A positive form is closable if whenever un ∈ D, un → 0 in H and a(un −
um, un − um)→ 0, as n,m→∞, then a(un, un)→ 0.

Also this property of closability is a condition on the symmetric part. In fact,
in the case of a closable positive symmetric form a(u, v), it is easy to check that
the form has a smallest closed extension to V = D, where D is the completion
of D with respect to the norm ‖ · ‖1.

Another application is the following (see Reed and Simon [210, Vol II, Thm
X.23])

Theorem 2.32 (Friedrichs extension). Let A be a positive symmetric operator
and let a(u, v) = (Au, v) for every u, v ∈ D(A). Then a(·, ·) is a closable sym-
metric positive bilinear form and if â(·, ·) denotes its smallest closed symmetric
positive bilinear extension form then there exists a unique positive self-adjoint
operator Â, which is an extension of A, such that â(u, v) = (Â1/2u, Â1/2v) for
every u, v ∈ D(Â1/2).

The closability of the form is due mainly to the fact that the operator A is
a symmetric operator. Clearly, Theorem 2.27 is used to obtain the extension Â.

Let us consider the following example taken from Reed and Simon [210,
p. 280]: let H = L2(0, 1) and define the operator Au = −u′′ on D(A) =
C∞0 (0, 1), i.e., infinite differentiable functions with compact support in (0, 1).
This operator is a positive, symmetric and D(A∗) = H2(0, 1), the classic Sobolev
space of order 2. The closure A∗∗ has the domain D(A∗∗) = {u ∈ H2(0, 1) :
u(0) = u(1) = u′(0) = u′(1) = 0}. The Friedrichs (self-adjoint) extension Â
has the domain D(Â) = H1

0 (0, 1) ∩H2(0, 1). There are many other self-adjoint
extensions as D(Aa,b) = {u ∈ H2(0, 1) : au(0) + u′(0) = bu(1) + u′(1) = 0}.

On the other hand, there are positive symmetric forms which are not clos-
able, e.g., take H = L2(R), D(a) = C∞0 (R) and a(u, v) = u(0) v(0).

• Remark 2.33. Let a(·, ·) be a positive definite bilinear form with domain D(a),
not necessarily closed, but satisfying the sector (or continuity) condition (2.15).
It is clear that the bound (2.15) holds for a1(·, ·) = a(·, ·) + (·, ·) instead of a(·, ·)
with another constant M ′. Thus, the inequality

a1(u, u) ≤ a1(u− v, u− v) +M ′
√
‖u− v‖1 ‖u‖1 + a1(u, v),

where ‖ · ‖1 =
√
a1(·, ·), shows that if {vn : n ≥ 1} is a Cauchy sequence in

the graph norm ‖ · ‖1, vn → 0 in H and a(v, vn)→ 0 for every v in D(a), then
a(vn, vn) → 0. Therefore, following Theorems 2.29 and 2.32, for a given closed
non positive definite densely defined operator A with domain D(A) ⊂ H, we
define the bilinear form a(u, v) = (−Au, v) for any u and v in D(a) = D(A). If
a(·, ·) satisfies the sector (or continuity) condition (2.15) then the bilinear form
a(·, ·) is closable, and its closure is defined on D(a) = V, with D(A) ⊂ V ⊂ H,
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and A is the infinitesimal generator of a strongly continuous analytic contraction
semigroup, see Theorem 2.19 on variational generators.

Thus, in the non symmetric case, if the closable form a(u, v) satisfies also
condition (2.15), or in other words it is (weak) sectorial, then it is possible to
define its smallest closed form on V = D that extends a(·, ·).

Given a positive form a(u, v) with (dense) domain D(a), let us suppose there
exists a Hilbert space V , such that D(a) ⊂ V ⊂ H, where the inclusion of V
in H is supposed continuous and D(a) is supposed dense in V . We will call the
form coercive (with respect to V ), or V -elliptic as Lions-Magenes [155, p. 217],
if

a(u, u) ≥ m‖u‖2V − λ|u|2, ∀u ∈ D(a), (2.16)

for some positive constant m,λ > 0. If a coercive positive form is continuous
on V , i.e., there exists a constant M > 0 such that

|a(u, v)| ≤M‖u‖V ‖v‖V , ∀u, v ∈ D(a), (2.17)

then it is closable. Hence it is possible to extend the form to all V in such a
way the form is a positive closed form that verifies (2.17). Notice that a bilinear
form satisfying (2.16) is not necessarily positive, only a(·, ·) + λ(·, ·) is actually
positive.

• Remark 2.34. If a(·, ·) is a closable, positive and continuous bilinear form
with domain D(a) ⊂ H, then we can extend the definition of a(·, ·) to a Hilbert
space V ⊂ H with continuous and dense inclusion, actually V is the completion
of D(a) with the any of the graph norm induced by the inner product (2.14),
e.g., (·, ·)1 = (·, ·) + asym(·, ·) which becomes the inner product (·, ·)V in V. Thus,
a(·, ·) + α(·, ·) with α > 0 is a continuous and coercive bilinear form in V so
that Lax-Milgram Theorem 2.23 can be used, i.e., for any f in the dual space
V ′ there is a unique u in V such that

a(u, v) + α(u, v) = 〈f, v〉, ∀v ∈ V.

Setting u = Rαf, we have a linear homeomorphism from V ′ into V. In particular,
if f belong to H and 〈f, v〉 = (f, v) the family of operators Rα : H → H, α > 0
is a resolvent with α‖Rα‖L(H) ≤ 1, i.e., a contraction resolvent. If a(u, v) =
(−Au, v) for every u, v in D(A) then Rα = (αI − A)−1 and D(A) = Rα(H).
Since

αRαf − f = Rα[αf − (αI −A)f ] = RαAf,

which yields |αRαf − f | ≤ |Af |/α. This proves that the resolvent operators are
strongly continuous, i.e., |αRαf − f | → 0 as α→ 0 for every f in H.

• Remark 2.35. Let (D(A), A) be a non positive closed densely defined operator
on H. Define the bilinear form a(u, v) := (−Au, v) for any u and v in D(A) and
assume that it satisfies a weak sectorial condition, namely,

|(Au, v)| ≤M‖u‖1‖v‖1, ∀u, v ∈ D(A), (2.18)
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with ‖ · ‖1 is the norm corresponding to the scalar product

(u, v)1 := 1
2 [(−Au, v) + (u,−Av)] + (u, v),

in particular this hold if A is symmetric. Then, according to Remark 2.33,
the form a(·, ·) is closable and its closure is defined in the Hilbert space V, the
completion of D(A) with the norm ‖ · ‖V := ‖ · ‖1. Denote by Rα := (αI −A)−1

the (Lax-Milgram) resolvent operators given in Remark 2.34. Now, define the
family of bilinear forms

a(α)(u, v) = α(u− αRαu, v), ∀α > 0

and

D(a) :=
{
u ∈ H : sup

α>0
a(α)(u, u) <∞}.

Then D(a) = V and

a(u, v) := lim
α→∞

a(α)(u, v), ∀u, v ∈ D(a),

e.g., see Fukushima et al. [92], Ma and Röckner [161].

• Remark 2.36. In the case of a complex Hilbert space the theory of bilin-
ear forms can be extended to the so called sesquilinear forms. Recall that a
sesquilinear form is a map a(·, ·) : D(a) × D(a) → C, which is linear in the
first variable and antilinear(2) in the second variable (analogously to a complex
scalar product).

2.6 Abstract Cauchy Problem

Given a linear (not necessarily bounded) operator A, with a dense domain D(A)
on a Banach space X and an initial value x in X, consider the following linear
evolution equation in X{

u̇(t) = Au(t), ∀ t ≥ 0,

u(0) = x,
(2.19)

where the dot means derivative in t or time derivative. This is an initial value
problem (IVP) or the Cauchy problem relative to the operator A.

The Cauchy problem is well posed if we have a unique solution (existence
and uniqueness) and continuous dependency of initial data i.e.,

(a) for any x in D(A) there exists exactly one strongly differentiable function
u(·) on the set [0,+∞[, satisfying (2.19), and

(b) if {xn : n = 1, 2, . . . } is a sequence in D(A) converging to 0 in X, then for
all t ≥ 0 the corresponding solutions un(t) of (2.19) converge to 0.

2A antilinear map is also said semilinear. The prefix sesqui derives from the latin language,
it means “one and a half”. In fact sesquilinear describes the fact that the map is linear in the
first variable and semilinear in the second one.
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The semigroup theory was built on the above Cauchy problem. The next
step is to consider a non homogeneous Cauchy problem in a Banach space,
namely{

u̇(t) = Au(t) + f(t), ∀ t ≥ 0,

u(0) = x,
(2.20)

where f(·) is a given function. Here it is necessary to specify the class of func-
tions f(·) that we will allow, which in turn will determine where the solution will
belongs. We will make use of the following Banach spaces, with their natural
norms and for some T in (0,+∞),

C([0, T ], X) or C([0, T ], DA) (strongly) continuous functions on [0, T ] with val-
ues in X or DA, where DA is the Banach space D(A) endowed with the graph
norm x 7→ ‖x‖+ ‖Ax‖ associated with the operator A,

C1([0, T ], X) (strongly) continuously differentiable functions on [0, T ] with val-
ues in X, Lp(]0, T [, X), 1 ≤ p ≤ +∞ Lebesgue space of p-integrable functions
on ]0, T [ with values in X, and similarly with DA instead of X,

W 1,p(]0, T [, X), 1 ≤ p ≤ +∞ defined as the closure of C1([0, T ], X) in the
Sobolev norm f 7→ ‖f‖Lp + ‖ḟ‖Lp as a subspace of Lp(]0, T [, X). Notice that
the space W 1,p(]0, T [, X) has a dense and continuous inclusion into C([0, T ], X).

Thus, a strict solution in Lp(]0, T [, X) [resp. in C([0, T ], X)] is a func-
tion u that belong to W 1,p(]0, T [, X) ∩ Lp(]0, T [, DA) [resp. in C1([0, T ], X) ∩
C([0, T ], DA) and fulfills equation (2.20). On the other hand, a weak solution is
a function u in C([0, T ], X) such that for every ϕ in D(A′),

〈ϕ, u(t)〉 = 〈ϕ, x〉+

∫ t

0

〈A′ϕ, u(s)〉ds+

∫ t

0

〈ϕ, f(s)〉ds,

where A′ is the dual operator of A.
We refer to Da Prato and Zabczyk [51, Appendix A] for more details.

Theorem 2.37. Let A be the infinitesimal generator of a semigroup {S(t) : t ≥
0} of class (C0) on X, and let f be in L1(]0, T [, X). Then for any x in D(A)
there exists a unique weak solution u of the IVP (2.20) and the variation of
constant formula

u(t) = S(t)x+

∫ t

0

S(t− s)f(s)ds, ∀ t ∈ [0, T ], (2.21)

holds. This is called a mild solution.

By means of the Yosida approximations An = nA(nI − A)−1 of A, we see
that

un(t) = exp(tAn)x+

∫ t

0

exp[(t− s)An]f(s)ds, ∀ t ∈ [0, T ]

is the unique solution in W 1,1(]0, T [, X) of an IVP similar to (2.20), with An
instead of A, and moreover un → u in C([0, T ], X).
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Theorem 2.38. Let A be the infinitesimal generator of a semigroup {S(t) :
t ≥ 0} of class (C0) on X, and let x be in D(A). If f belongs to the space
W 1,p(]0, T [, X), 1 ≤ p ≤ +∞, [resp. to Lp(]0, T [, DA)], then the IVP (2.20) has
a unique strict solution u in Lp(]0, T [, X) [resp. in C([0, T ], X)], which is given
by the formula (2.21) and moreover u belongs to C1([0, T ], X) ∩ C([0, T ], DA)
[resp. W 1,p(]0, T [, X) ∩ C([0, T ], DA).

More properties can be found in Fattorini [78]. There are several results
about regularity of the solution, for instance, if f is in Cα([0, T ], X), for some
0 < α < 1 (i.e., Hölder continuous function), then the solution u of the IVP
(2.20) belongs to C1([0, T ], X). Results of maximal regularity involve the use
of fractional powers operator and interpolation spaces, see Lunardi [160] for
example.

In some case, it is necessary to consider an initial value problem of the form{
u̇(t) = A(t)u(t) + f(t), ∀ t ∈ [s, T ],

u(s) = x,
(2.22)

which is usually referred to as an evolution equation. Here. {A(t) : t ≥ 0} is
a one-parameter family of densely defined operators in a Banach space X, and
0 ≤ s ≤ t ≤ T.

To study this type of evolution systems or equations (2.22) a two-parameters
semigroup is used, namely {U(s, t) : 0 ≤ s ≤ t ≤ T} is a family of linear and
bounded operators in X satisfies

(a) U(s, s) = I, U(s, r)U(r, t) = U(s, t), ∀0 ≤ s ≤ r ≤ t ≤ T,
(b) (s, t) 7→ U(s, t)x is continuous for any 0 ≤ s ≤ t ≤ T and any x ∈ X.
This involves the concept of stable family of infinitesimal generators, see Fried-
man [89, Part 2, pp. 91–197], Pazy [196, Chapter 5, pp. 126–182], Tanabe [246].

This technique can be used to study also quasi-linear equations (e.g., a com-
pact perturbation of a linear equation). Moreover, a natural extensions to the
case of monotone operators and variational inequalities (see Bensoussan and
Lions [16, 17], Brezis [34], Duvaut and Lions [68], Friedman [91]).

For instance, in Da Prato and Zabczyk [52, Proposition 5.5.6, pp. 75–79] an
abstract result relative to the non-linear equation{

u̇(t) = Au(t) + F (t, u(t)), ∀ t ≥ 0,

u(0) = x,
(2.23)

is proved. If (1) the (linear unbounded) operator A generates a semigroup
{S(t) : t ≥ 0} of class (C0) on X, satisfying ‖S(t)‖ ≤ eωt for any t ≥ 0 and some
ω ≥ 0, and (2) F is continuous from [0, T ] ×X into X and A + F (t, ·) − ηI is
dissipative for any t in [0, T ] and some η ≥ 0, then there exist one and only one
mild solution u for any given x in X. Moreover, it is actually a strong solution
i.e., there is a sequence {un} of functions in C1([0, T ], X) ∩ C([0, T ], DA) such
that un → u and u̇−Aun−F (·, un)→ 0 in C([0, T ], X). It is clear that if F (t, x)
is continuous in t and uniformly Lipschitz continuous in x then condition (2) is
satisfied.
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2.7 Applications to PDE

In general, the theory of (analytic) semigroups applies to time-independent
parabolic PDE whilst an operator group can be constructed for some time-
independent hyperbolic PDE. In all cases, the starting point is a deep knowledge
of the unbounded operator to be used as infinitesimal generator, i.e., to apply
the semigroup theory to partial differential equations the starting point is to
establish several key estimates on elliptic PDE. On the other hand, starting
from a semigroup built from the theory of parabolic PDE, all results concerning
infinitesimal generator can be applied to elliptic PDE.

Besides the classic references like Ladyzhenskaya and Uraltseva [148] and
Gilbarg and Trudinger [100] for a deep treatment of second order elliptic equa-
tions, the reader may consult (among others) the books Hellwig [106] and Lan-
dis [150] for a graduate student level approach and recently the book Evans [77].

2.7.1 Parabolic Operators

First consider second-order elliptic operator A in the Hilbert (Lebesgue) space
L2(Ω), on a smooth domain Ω of Rd. Thus, we consider a bilinear form a(u, v)
defined by

a(u, v) =

∫
Ω

[ d∑
i,j=1

(aij∂iu+ aju)∂jv +

d∑
i=1

(ai∂iu+ a0u)v

]
dx ,

for any u, v in the Hilbert space H1(Ω) (functions whose first-order derivatives
belong to L2), where the coefficients satisfy

aij , a
j , ai, a0 ∈ L∞(Ω) and

∃ µ > 0 such that

d∑
i,j=1

aijξiξj ≥ µ|ξ|2 a.e. in Ω, ∀ξ ∈ Rd .

Thus a(·, ·) is a continuous and coercive bilinear form on H1(Ω), i.e., there exist
constants M0, µ0, λ0 depending only on the L∞ bounds of the coefficients and
on the ellipticity constant µ, such that

|a(u, v)| ≤M0 ‖u‖ ‖v‖ , ∀ u, v ∈ H1(Ω) ,

a(u, u) + λ0 |u|2 ≥ µ0 ‖u‖2 , ∀ u ∈ H1(Ω) ,

where ‖ ·‖ and | · | denotes the (Hilbert) norm in H1(Ω) and L2(Ω), respectively.
For a fixed u inH1(Ω), we may consider the mapping v 7→ a(u, v) as a continuous
linear functional, denoted be a(u, ·), on H1(Ω), or in H1

0 (Ω), (closure of functions
with support on Ω) or in general in H1

0 (Ω∪Γ) (closure of functions with support
on Ω ∪ Γ, with Γ a part of the boundary ∂Ω).

If the functions aij and aj are differentiable and (·, ·), (·, ·)∂Ω denote the
inner products in L2(Ω), L2(∂Ω), respectively, then an integration by parts plus
a density argument show that

a(u, v) = (Lu, v) + (Bu, v)∂Ω , ∀ u ∈ H2(Ω) , v ∈ H1(Ω),
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where H2(Ω) is the Hilbert space of functions whose derivatives up to the 2
belong to L2, and L is the elliptic second order differential operator in divergence
form given by

Lu = −
d∑

i,j=1

∂j(aij∂iu+ aju) +

d∑
i=1

ai∂iu+ a0u ,

and B is the boundary first order differential operator given by

Bu =

d∑
i=1

bi∂iu+ b0u ,

where

bi =

d∑
j=1

aijnj , b0 =

d∑
j=1

ajnj ,

and nj(x), j = 1, . . . , d are the components of the exterior unit normal vector to
Ω at the point x in ∂Ω. Notice that some degree of smoothness of the boundaries
∂Ω and Γ are necessary to establish the above Green formula, for instance
piecewise C1 boundary.

It is worthwhile to notice that the definition of the principal part of L uses
only the symmetric part of the matrix (aij), i.e., we could define L with (aij +
aji)/2 instead of (aij). However, even the non-symmetric part of matrix (aij)
is involved into the definition of the boundary operator B or the whole bilinear
form a(·, ·). Actually, B is called the co-normal boundary operator associated
with L if in the above (formal) expression the matrix (aij) is symmetric.

Thus, as a distribution in Ω, we may identify a(u, ·) with the expression Lu,
i.e., a(u, ϕ) = 〈Lu, ϕ〉 for any test function ϕ in D(Ω). Then, as a distribution in
the whole space Rd (a priori with support in Ω), we may identify a(u, ·)−〈Lu, ·〉
with Bu, with support in ∂Ω, i.e., a(u, ϕ) − 〈Lu, ϕ〉Ω = 〈Bu,ϕ〉∂Ω for any test
function ϕ in D(Rd). Thus, the mappings L and B are linear and bounded
operators from H1(Ω) into its dual space.

Considering the bilinear form a(·, ·) on the space V := H1
0 (Ω ∪ Γ), we are

on the assumption of Theorem 2.19, and therefore Au := a(u, ·) is a varia-
tional infinitesimal generator. Again if the functions aij and aj are differ-
entiable then A = −L, otherwise the expression is only formal. The do-
main D(A) of A is the closure in the H2(Ω) norm of smooth functions v
satisfying the boundary conditions v = 0 on ∂Ω r Γ and Bv = 0 on Γ.
When Γ is a proper part of the boundary ∂Ω and Γ is connected with ∂Ω r
Γ several technical difficulties appear. We refer to Baiocchi and Capelo [8],
Chen and Wu [40], Evans [77], Edmunds and Evans [71], Kinderlehrer and
Stampacchia [131], Lieberstein [154], Necas [186], Oleinik and Radkevic[192],
Schechter [221], Troianiello [250], Wloka [254], among others, for a comprehen-
sive treatment, while specific oblique boundary conditions can be found, e.g. in
Popivanov and Palagachev [201], Yanushaskas [257].
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The reader may compare the semigroup theory with a more direct approach
used to study second order parabolic equations, e.g. see Eidelman [72], La-
dyzhenskaya et al. [147] and Lieberman [153], among others.

This Hilbert space theory generalize to bilinear forms of any even order.
Essentially, based on the so-called G̊arding’s inequality, the same arguments
can be followed, e.g., Friedman [89].

The Lp theory is more involved, several steps are necessary. The starting
point is a second order (uniformly) elliptic differential operator L of the form

L(x, ∂x)ϕ(x) = −
d∑

i,j=1

aij(x)∂ijϕ(x) +

+

d∑
i=1

ai(x)∂iϕ(x) + a0(x)ϕ(x) ,

(2.24)

and a boundary first order operator B of the form

B(x, ∂x)ϕ(x) = −
d∑
i=1

bi(x)∂iϕ(x) + b0(x)ϕ(x) , (2.25)

where Ω is a domain with C2 boundary and the coefficients satisfy

d∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2, ∀ ξ ∈ Rd , x ∈ Ω ,

aij ∈ C0(Ω), ai, a0 ∈ L∞(Ω),
d∑

i,j=1

aijninj =

d∑
i=1

bini in ∂Ω, bi, b0 ∈ C1(Ω),

(2.26)

When Ω = Rd the second-order coefficients are uniformly continuous (and
bounded) and certainly, for Dirichlet boundary conditions, the boundary op-
erator B is not involved.

Consider L as an unbounded operator in Lp(Ω), with either Dirichlet bound-
ary conditions or oblique B-boundary conditions. First, a priori elliptic (Agmon-
Douglis-Nirenberg) estimates are obtained for (uniformly) elliptic differential
operator of the following type: for any 1 < p < ∞ there is a positive constant
C = Cp depending only on p, µ, the bounds of the coefficients aij , ai, a0, the
modulus of continuity of aij and the domain Ω such that{

‖u‖2,p ≤ C
[
‖Lu‖0,p + ‖u‖p

]
, ∀u ∈W 2,p(Ω),

satisfying either u = 0 on ∂Ω or Bu = 0 on ∂Ω,
(2.27)

where ‖ · ‖p is the norm in Lp(Ω), W 2,p(Ω) is the Banach (Sobolev) space of
functions whose derivatives up to the 2 belong to Lp, with the natural norm
‖ · ‖2,p. When Ω = Rd, the same a priori bounds hold for u in W 2,p(Rd).
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Next, based on the above a priori estimate applied to the (complex) elliptic
operator L(x, ∂x) + eiθ∂2

t in n+ 1 variables (x, t), with θ in (−π/2, π/2), we can
deduce that for some constants Cp > 0 and ωp > 0 the following estimate holds

‖∂2
xu‖p + |λ|1/2‖∂xu‖p + |λ|‖u‖p ≤ Cp‖λu+ Lu‖p, (2.28)

for every u belonging to W 2,p(Ω) satisfying either u = 0 on ∂Ω or Bu = 0 on
∂Ω, and for any λ with <(λ) ≥ ωp. Hence, the operator A := −L with domain
D(A) defined as the Sobolev space W 2,p(Ω) with one of the boundary conditions
either u = 0 on ∂Ω or Bu = 0 on ∂Ω, generates an analytic semigroup in Lp(Ω).

Once the a priori estimates have been obtained, the above argument applies
to Hölder space Cα(Ω), 0 < α < 1 and to some extend to C1(Ω), C0(Ω), L1(Ω)
and L∞(Ω), e.g., Lunardi [160, Chapter 3, pp. 69–119].

If the operator L is given in divergence form, as in the beginning of this
subsection, then it is possible to establish the fact that A is an infinitesimal
generator of an analytic semigroup in Lp(Ω) directly, without using the deep
result about a priori estimates, see Pazy [196, Theorem 3.6, pp. 215–219].

2.7.2 Coercive Forms

Let D be domain (the closure of D is the closure of its interior) in the Euclidean
d-dimensional space Rd and m be a nonnegative Radon measure on D, i.e.,
finite on compact subsets K of D. Let D be a subspace of C∞(D̄) (restriction
of function in C∞0 (Rd) to D̄) which contains C∞0 (D). Now, suppose that the
bilinear form

((u, v)) :=

d∑
i=1

∫
D

(∂iu)(∂iv)dm+

∫
D

uvdm, ∀u, v ∈ D, (2.29)

is closable in the Hilbert spaceH = L2(D,m), i.e., the differentiation ∂i (initially
defined on D) is a closable operator. For instance, if m(dx) = ρ(x)dx, with ρ ≥ 0
locally integrable in D then we need the following condition: there exists a set
N of zero Lebesgue measure such that for every x in DrN satisfying ρ(x) > 0
there exists ε > 0 such that ess sup{ρ(y) : |y − x| < ε} > 0. In particular, this
holds if ρ is lower semicontinuous.

The norm and the inner product in L2(D,m) are denoted by | · | and (·, ·),
respectively. Since ((·, ·)) is closable, the closure D̄ of D under the norm ‖ · ‖,
induced by the inner product ((·, ·)), is a Hilbert space, e.g., if D = C∞0 (D) or
D = C∞(D̄) then we get either H1

0 (D,m) or H1(D,m).
Let {aij : i, j = 1, . . . , d} be a (uniformly) positive definite matrix of m-

integrable functions in D which is sectorial (not necessarily symmetric), i.e., for
every x in D rN with m(N) = 0, the following inequalities hold

d∑
i,j=1

ξiξj aij(x) ≥ c
d∑
i=1

ξ2
i , ∀ξ ∈ Rd, (2.30)
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and ∣∣∣ d∑
i,j=1

ξiηj aij(x)
∣∣∣ ≤ C ( d∑

i,j=1

ξiξj aij(x)
)1/2( d∑

i,j=1

ηiηj aij(x)
)1/2

, (2.31)

for every ξ and η in Rd, and for some constants C, c > 0. Clearly, if the non-
symmetric part of (aij) is bounded, i.e., there exists C > 0 such that |aij(x)−
aji(x)| ≤ C, for m-almost every x, then we find that the sector condition (2.31)
is satisfied, after using the coerciveness assumption (2.30).

The following bilinear form

a(u, v) :=

d∑
i,j=1

∫
D

aij(∂iu)(∂jv)dm, ∀u, v ∈ D

is coercive in L2(D,m) and satisfies a sectorial condition, i.e.,

a(u, u) + c|u|2 ≥ c‖u‖2, ∀u ∈ D,
and

|a(u, v)| ≤ C
√
a(u, u)

√
a(v, v), ∀u, v ∈ D.

where the constants C and c are the same as in (2.30) and (2.31).
To check that a(·, ·) is closable, let {un : n ≥ 1} be a sequence in D such that

un → 0 in L2(D,m) and a(un − uk, un − uk) → 0 as n, k → ∞. Because a(·, ·)
is coercive, we have ‖un‖ → 0 which yields ∂iuk → 0 in m-measure. Hence, by
means of Fatou lemma and the coerciveness assumption (2.30), we have

a(un, un) ≤ lim inf
k

a(un − uk, un − uk),

which can be made as small as desired, provided n is sufficiently large. This
shows that a(un, un)→ 0, i.e., (a(·, ·),D) is a positive closable bilinear form on
L2(D,m). We can consider its closure defined on the Hilbert space V, which is
the closure of D under the norm ‖ · ‖V , induced by the symmetric part of the
form a(·, ·)+(·, ·). Note that V ⊂ D̄, and that a(·, ·) is not necessarily continuous
on H1(D,m) or in D̄, but it satisfies a sectorial condition in V. It is clear that
the above technique remains valid if D ⊂ Rd1 , d1 ≥ d, and the summation in
conditions (2.29), (2.30) and (2.31) are kept only up to d, so that a(·, ·) may be
degenerate in (d1 − d) variables.

Therefore, we have a positive closed (coercive) and continuous bilinear form
a(·, ·) on a Hilbert space V ⊂ H = L2(D,m). Then, the unique operator A
satisfying a(u, v) = (−Au, v), for every u in D(A) and v in V, is densely defined.
Moreover, A generates a strongly continuous (analytic) semigroup of contrac-
tions on L2(D,m). Actually, as mentioned later, {etA : t ≥ 0} is also a Markov
semigroup.

On the other hand, let b0, bi and bj , for i, j = 1, . . . , d, be functions in
L1(D,m). Consider the (first order) bilinear form

b(u, v) :=

d∑
i=1

∫
D

(∂iu)bivdm+

d∑
j=1

∫
D

ubj(∂jv)dm+

∫
D

ub0vdm,
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in L2(D,m). It is clear that b(·, ·) by itself cannot satisfy a sectorial condition
in general. However, if all coefficients b0, bi and bj belongs to L∞(D,m), i.e.,
they are bounded, then there exists a constant C > 0 such that

|b(u, v)| ≤ C
[
‖u‖ |v|+ |u| ‖v‖+ |u| |v|

]
, ∀u, v ∈ D,

proving that a(·, ·) + b(·, ·) is coercive (although not necessarily positive) and
satisfies a sectorial condition. Therefore, a(·, ·) + b(·, ·) generates a strongly
continuous (analytic) semigroup of contractions on L2(D,m). Certainly, this
includes the case where D is open, m(dx) = dx is the Lebesgue measure. More-
over, if D = D̄ is closed then we may consider measures (or densities) on the
boundary ∂D of D to study non-homogeneous boundary conditions.

On the other hand, assuming that

µ(ϕ) :=

∫
D

[
2b0ϕ+ (bi + bi)∂iϕ

]
dm ≥ 0, ∀ϕ ∈ D, ϕ ≥ 0,

i.e., 2b0 −
∑
i ∂i(bi + bi) ≥ 0 if m is the Lebesgue measure and D = C∞0 (D),

then the identity

2b(u, u) =

∫
D

[
(bi + bi)∂iu

2 + 2b0u
2
]
dm = 2

∫
D

u2dµ

show that the (first order) bilinear form b(·, ·), initially defined onD, is a positive.
Moreover, even when the coefficients bi and bj are not necessarily bounded
(and b0 is only bounded from below), if the Radon measure µ has a density
with respect to m then a(·, ·) + b(·, ·) is closable in L2(D,m), by means of an
arguments similar to the one used with a(·, ·). Furthermore, if the initial Radon
measure m is the Lebesgue measure then the assumption that the (first order)
coefficients bi and bj belong to Ld(D), D ⊂ Rd and b0 is in Ld/2(D) suffices to
prove that the sum a(·, ·) + b(·, ·) is a closable and sectorial form. Alternatively,
if it is known a priori that a(·, ·) + b(·, ·) is positive and sectorial then we could
use Remark 2.33 to show that it is also closable.

For instance, the reader is refer to the books Fukushima et al. [92], Ja-
cob [115, Vol I], Ma and Röckner [161] for Dirichlet forms and to Baiocchi and
Capelo [8], Bensoussan and Lions [16], Brezis [34], Friedman [91], Kinderlehrer
and Stampacchia [131], Lions and Magenes [155], for variational inequalities
techniques.

2.7.3 Hyperbolic Operators

The starting point is an (uniformly) elliptic second order differential operator
L(x, ∂x), either in divergence form or not in divergence form, in a domain Ω
of Rd and first order boundary differential operator B(x, ∂x). In the previous
setting, we have the Sobolev space W 1,p(Ω) or H1(Ω) with Dirichlet or B-
oblique boundary conditions, which is now denoted by V. Also we have the
Lebesgue space Lp(Ω) or L2(Ω), which is now denoted by H. Thus, two Banach
(or Hilbert) spaces V ⊂ H, with dense image. The Banach space V carries the
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boundary conditions and the operator L is densely defined on H, actually with
domain W ⊂ V, where W is either W 2,p(Ω)∩V or H2(Ω)∩V. A typical example
is the wave equation where L = −∆, with ∆ being the Laplacian operator. To
treat the hyperbolic equation ∂2

t u(x, t) + L(x, ∂x)u(x, t) = 0 plus initial and
boundary conditions, we consider the matrix operator A defined by

A :=

(
0 1

−L 0

)
so that the hyperbolic equation becomes ∂tu(t) = Au(t), where now u(t) is the
column vector with components u1(t) = u(x, t) and u2(t) = ∂tu(x, t). By setting
u1(t) = −λw1−w2 and u1(t) = λw2−Lw1, we reduce the equation λu−Au = f
to the one-dimensional equation λ2wi + Lwi = fi, which is solved as in the
previous subsection for <(λ2) > ω, in particular for λ >

√
ω. Hence, the matrix

operator A is an infinitesimal generator of a (C0) semigroup in the space V ×H.
Actually, the above argument applies to the matrix operator −A, so that etA is
a (C0) group in V ×H. It is clear that depending on the smoothness assumptions
on the coefficients of the differential operators L(x, ∂x) and B(x, ∂x), the above
technique can be used in the Hölder space C1,α(Ω)× Cα(Ω).

Another typical case is the Schrödinger equation in the whole space Rd of
the type −i∂tu(x, t) + L0(x, ∂x)u(x, t) + V (x)u(x, t) = 0 where L0(x, ∂x) is
a symmetric (uniformly) elliptic second order operator (with real coefficients)
(e.g., the Laplacian ∆) and V is a (real-valued) function called the potential.
By setting A := −iL0 − iV with domain D(A) := H2(Rd), we get a skew-
adjoint operator A, provided the potential function V (x) is real and belongs to
Lp(Rd), with p > d/2. Thus by means of Stone’s Theorem, the operator A is
the infinitesimal generator of a (C0) group of unitary operator etA, we refer to
Pazy [196, pp. 219–225] for details.

Also, symmetric hyperbolic systems can be studied. For instance, for d
symmetric n× n matrices ak(x) = (akij(x)), with x in Rd, consider the (vector)
operator

Au(x) =
∑
k

ak(x)∂ku(x), ∀x ∈ Rd,

where u = (ui) is a (vector-value) function in L2(Rd;Rn). Assuming that the co-
efficients of ak are bounded and Lipschitz continuous, by means of an integration
by parts we obtain

(u,Au) =
∑
ijk

∫
Rd
ui(x)akij(x)∂kuj(x)dx =

= −1

2

∑
ijk

∫
Rd
ui(x)

[
∂ka

k
ij(x)

]
uj(x)dx,

proving that A− cI is dissipative, for some constant c sufficiently large. Hence,
Lumber-Phillips’ theorem applies if we consider A as an unbounded operator on
L2(Rd;Rn) with domain D(A), which contains the Sobolev space H1(Rd;Rn).
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Some details are needed to completely identify the close extension of the operator
A. Thus, A−cI is an infinitesimal generator of a semigroup of contractions Sc(t),
so that A generates the semigroup S(t) = ectSc(t). The interested reader may
consult, for instance, the book Renardy and Rogers [211, Section 11.3, pp. 407–
411] or in general the book Engel and Nagel [74] for a comprehensive treatment
oriented to evolution equations.

2.8 Markov-Feller Semigroups

Let E be a locally compact Polish (i.e., complete separable metric) space and
B(E) be the σ-algebra of Borel subsets of E. Usually, E ⊂ Rd, is an smooth
domain. Moreover, in this section we may even take E to be a locally compact
Hausdorff space with countable basis. As before, B(E) denotes the space of
Borel measurable and bounded functions from E into Rd, endowed with the
supremum norm ‖ · ‖. Recall that a function f vanishes at infinity if for any
ε > 0 there is a compact set K such that |f(x)| < ε for any x ∈ E rK. Also,
Cb(E), respectively C0(E), stands for the space of continuous functions which
are bounded, respectively vanishing at infinity. It is clear that if the whole space
E = K is compact then Cb(K) = C0(K), in this case we use the notation C(K).
The Riesz representation theorem states that any bounded linear functional on
C(K) may be uniquely written in the form

µ(f) :=

∫
K

f(x)µ(dx), ∀f ∈ C(K),

where µ is a regular bounded (signed) measure on E = K (recall that regular
means that for any measurable subset A of E and for every ε > 0 there exits
an open set O and a closed set F, with F ⊂ A ⊂ O and µ(O r F ) < ε),
see Dunford and Schwartz [63, p. 265, Theorem IV.6.3]. Moreover, if E is a
locally compact Polish space, we may construct its one-point compactification
Ē = E ∪{∞} where open sets in Ē are of the open sets in E and the sets of the
form {∞} ∪ (E rK)) for any compact subsets K of E. Any regular bounded
measure µ in Ē satisfying µ({∞} = 0), have the property that for any ε > 0
there exits a compact subset K of E such that µ(E r K) < ε, which usually
refer to as µ being tight in E. The Banach space C0(E) of continuous functions
on E vanishing at infinity can be identified with the Banach space of continuous
function on Ē satisfying the zero boundary condition at infinity f(∞) = 0.
Thus, any bounded linear functional on C0(E) can be uniquely represented by
a regular bounded (signed) measure (tight) in E, e.g., see Folland [85, Chapter
7] or Malliavin [162, Chapter II]. Therefore, we assume that the base space E is
such that bounded linear nonnegative on B(E) are uniquely given by (regular)
bounded measures on E.

Definition 2.39 (Markov). Let E be a locally compact Hausdorff space with
countable basis and denote by B(E) its Borel σ-algebra.

(1) A one-parameter family {S(t) : t ≥ 0} of bounded linear operators from the
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Banach space B(E) into itself is called a (sub-)Markov semigroup with (sub-
)Markovian kernels {P (t, x,A) : t ≥ 0, x ∈ E, A ∈ B(E)} given by

S(t)f(x) =

∫
E

f(y)P (t, x,dy), ∀f ∈ B(E),

if it satisfies
(a) S(t+ s) = S(t)S(s), ∀t, s ≥ 0,
(b) S(t)f(x) ≥ 0, ∀t ≥ 0, x ∈ E if f(x) ≥ 0, ∀x ∈ E,
(c) S(t)1E(x) ≤ 1, ∀t ≥ 0, x ∈ E.

or equivalently
(a)′ for each s, t ≥ 0, x in E and A in B(E) we have

P (s+ t, x,A) =

∫
E

P (s, x,dy)P (t, y, A),

which is referred to as the Chapman-Kolmogorov identity.
(b)′ for each t and x the function A 7→ P (t, x,A) is a (non-negative) measure

on B(E) with P (t, x, E) ≤ 1 and P (0, x, {x}) = 1,
(c)′ for each t and A in B(E) the function x 7→ P (t, x,A) is a Borel measur-

able,

(2) It is called a transition function if for every A in B(E) the mapping (t, x) 7→
P (t, x,A) is jointly Borel measurable in [0,∞)× E.
(3) It is called stochastically continuous if

lim
t→0

P (t, x,O) = 1,

for every x in E and any open neighborhood O of x.

(4) It satisfies the (pointwise) Feller property (respectively, strong Feller prop-
erty) if for every t > 0 the function x 7→ S(t)f(x) is continuous at each point of
continuity of the function f (respectively, at each point x).

Here, we have denoted by 1A the characteristic function of the subset A, i.e.,
1A(x) = 1 if x belongs to A and zero otherwise. It is clear that condition (a)
is the usual semigroup property, condition (b) is the weak maximum principle
and inequality (c) is a normalization condition. Actually, condition (c) can be
replaced by the equality S(t)1E(x) = 1, for any t ≥ 0, x ∈ E, without any
lost of generality, by using the one-point compactification. This give rise to the
distinction between Markov and sub-Markov semigroups.

If the base space E is not locally compact, then we normally add the condi-
tion

(d) A 7→ S(t)1A(x) is σ-additive on B(E), ∀t ≥ 0, x ∈ E

to the definition of a Markov semigroup. This condition is automatically sat-
isfied if E is a locally compact Polish space. We refer to a Markov semigroup
S(t) or to a Markov kernels P (t, x, ·) indistinctly.
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In general, a Markov semigroup is not strongly continuous in B(E), even if
it satisfies the above Feller property. Moreover, a joint measurability condition
is needed to define the resolvent operators

Rλf(x) :=

∫ ∞
0

e−λtS(t)f(x)dt, ∀x ∈ E, λ > 0,

as a mapping from B(E) into itself. This is precisely the condition (2) in
Definition 2.39, i.e., a Markov transition function.

If E is a Polish space, the Markov semigroup {S(t) : t ≥ 0} or its Markov
kernels P (t, x, ·) is stochastically continuous if and only if

lim
t→0

P (t, x,B(x, δ)) = 1, ∀x ∈ E, δ > 0,

where B(x, δ) is the ball of center x and radius δ in E. Notice that the above
Feller property refers to the space variable x, whilst stochastically continuous
involves the time variable t. Even if the base space E is not locally compact,
it is proved in Da Prato and Zabczyk [52, p. 13] that a Markov semigroup
{S(t) : t ≥ 0} is stochastically continuous if and only if S(t)f(x) converges to
f(x) as t → 0, for any x ∈ E and any function f which is either (a) bounded
and continuous or (b) bounded and uniformly continuous or (c) bounded and
Lipschitz continuous.

It is clear that a stochastically continuous Markov semigroup {S(t) : t ≥
0} is (Borel) measurable, i.e, (t, x) 7→ S(t)f(x) is jointly Borel measurable in
[0,∞)×E, i.e, a Markov transition function. Thus we can use the general results
in Dellacherie and Meyer [58, Section XIV.24, pp. 169–172]) to construct a cad-
lag realization of the associated Markov (strong Markov, since it is stochastically
continuous) Markov process as described in Chapter 1. Note that a systematic
study on analytic methods for Markov diffusion semigroup can be found in
Bertoldi and Lorenzi [22].

2.8.1 Feller Semigroups

A good way is to consider the semigroup restricted to the space Cb(E) or C0(E)
and impose the Feller property.

Definition 2.40 (Feller). Let E be a Polish space. Then a one-parameter
family {S(t) : t ≥ 0} of bounded linear operators from a closed subspace C of
the Banach space Cb(E) (e.g., C0(E) or the whole space Cb(E)) into itself is
called a Feller semigroup if it satisfies

(a) S(t+ s) = S(t)S(s), ∀t, s ≥ 0,

(b) 0 ≤ S(t)f ≤ 1, ∀t ≥ 0 if 0 ≤ f ≤ 1,

(c) lim
t↓0
‖S(t)f − f‖ = 0, ∀f ∈ C.
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Actually, a Feller semigroup need not to be strongly continuous as indicated by
condition (d), usually only a weakly continuous condition, namely

(e) lim
t↓0

S(t)f(x) = f(x), ∀x ∈ E, ∀f ∈ C

is required. However, since our base space E is locally compact (see Dellacherie
and Meyer [58, Theorem XIII.19, pp. 98–99]) these two conditions are equiva-
lent.

Roughly speaking, a Markov semigroup is semigroup associated with some
Markov process and a Feller semigroup (or Markov-Feller semigroup or Feller-
Dynkin semigroup) is a Markov semigroup which satisfies the Feller property.
Actually, most of the key results on Markov theory requires a stochastically
continuous Markov semigroup.

The measure theory ensures that any Feller semigroup in either Cb(E) or
C0(E) can be extended to be a Markov semigroup in B(E). It is clear that
for a Feller semigroup, the condition (e) above on weakly continuous is the
equivalent of stochastically continuous for a Markov semigroup. Clearly, in a
locally compact Polish space, a stochastically continuous Markov semigroup is
indeed a Feller semigroup as mentioned in the above definition.

The following result (on locally compact Polish space E) is taken from
Taira [243, Chapter 9, Section 2, pp. 333–340],

Theorem 2.41 (Markov-Feller). Let {S(t) : t ≥ 0} be a Markov semigroup in
B(E), which leaves invariant the subspace C0(E) (i.e., S(t)f ∈ C0(E), ∀t >
0, f ∈ C0(E)) and is uniformly stochastically continuous (i.e., the continuity
condition in t at 0 holds uniformly on compact set in x). Then the restriction
of S(t) to C0(E) is a Feller semigroup if and only if the following property is
satisfied

(L) For any T, ε > 0 and any compact C ⊂ E there exists another compact set
K = K(T, ε, C) of E such that P (t, x, C) < ε, for any t ∈ [0, T ] and any
x ∈ E rK,

where P (t, x, ·) is the Markov transition function associated with {S(t) : t ≥
0}.

Since a Feller semigroup S(t) on C0(E) is strongly continuous, the general
(contraction) semigroup theory applies to characterize the infinitesimal gener-
ator A of S(t). The extra property involved in term of the resolvent operator
R(λ,A) = (λI −A)−1 can be formulated as

f ∈ C0(E), f ≥ 0 =⇒ R(λ,A)f ≥ 0, (2.32)

which is referred to as the weak Maximum Principle. In connection with this, we
mention the following result, see Taira [243, Chapter 9, Section 3, pp. 340–349],

Theorem 2.42. Let E be a compact Polish space and A be a linear operator
(not necessarily bounded) in C(E) = Cb(E) = C0(E) densely defined on the
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domain D(A). Assume that for some λ ≥ 0 the range R(λI − A) of λI − A
is dense in C(E). If the weak Maximum Principle is satisfied in the following
sense

(wMP) If u belongs to D(A) and it takes a positive maximum at the point x0

in E then Au(x0) ≤ 0,

then the closure Ā of the operator A is the infinitesimal generator of a Feller
semigroup in the space C(E).

Since a Feller semigroup {S(t) : t ≥ 0} has the property that (t, x) 7→
S(t)f(x) is Borel measurable, the Laplace transform (2.10) defines the resolvent
operators {R(λ) : λ > 0} from B(E) into itself. The specific properties of a
Markov semigroup {S(t) : t ≥ 0} (on B(E) Borel bounded functions on E) as
in Definitions 2.39 or 2.40 become (a) R(λ)f ≥ 0, ∀f ≥ 0, λ > 0,

(b) λR(λ)1E(x) ≤ 1, ∀x ∈ E.
(2.33)

If the initial data is a contracting resolvent (see (a) and (b) of Definition 2.21)
then by reducing the space B(E) to the regularity space R, we may construct
its associated (strongly continuous) semigroup on R.

For instance, the reader may consult the books Jacob [115, Vol I, Chapter
4] and Taira [243, Chapters 9 and 10] for a detailed presentation on Feller
semigroups, among other topics.

2.8.2 Markov Process Realization

Until know, we have mentioned several results concerning the construction of
a Markov process starting from a transition probability function. To under-
stand better the relation between Markov processes and Markov semigroups,
we discuss the main steps and difficulties to construct a realization of a given
Markov semigroup S(t) with transition function P (t, x,dy) on a compact base
space Ē, the one-point compactification of E, assumed locally compact and
P (t, x, {∞}) := 1 − P (t, x, E), so that P (t, x, Ē) = 1. Intuitively, given any
initial position x in Ē at time 0, the probability distribution for a location of
the stochastic process X at a future time t > 0 is P (t, x,dy). Thus to construct
a separable version (see Definition 1.1) of the stochastic process X, we need
to construct a measure on the space of paths ĒI , where I is a countable dense
set in (0,∞), for instance I is the set of positive rational numbers. Since Ē
is compact and I countable, the product topology in ĒI produces a compact
metrizable space. In view of Riesz representation theorem, to construct a prob-
ability measure on ĒI , it suffices to construct a positive linear functional Ex
from the space C(ĒI) of real-valued continuous functions to R. Naturally, first
we define Ex on the subspace Cc(Ē

I) of cylindrical functions, consisting of con-
tinuous functions that depend on only finitely many factors of ĒI , i.e., functions
on C(ĒI) of the form ψ(ω) = F (ω(t1), ω(t2), . . . , ω(tn)), t1 < t2 < · · · < tn, for

Section 2.8 Menaldi January 7, 2014



CHAPTER 2. SEMIGROUP THEORY 130

some n ≥ 1, where F is a continuous function in Ēn and ti belongs to I for
i = 1, 2, . . . , n. We set

Ex(ψ) :=

∫
P (t1, x1 − x,dx1)

∫
P (t2 − t1, x2 − x1,dx2) . . .

. . .

∫
F (x1, x2, . . . , xn)P (tn − tn−1, xn − xn−1,dxn),

(2.34)

which is well defined in view of the semigroup or Chapman-Kolmogorov iden-
tity, see Section 1.10). Hence, Ex : Cc(Ē

I) → R is a positive linear functional
satisfying Ex(1) = 1. By the Stone-Weierstrass theorem on polynomial approx-
imations, the subspace Cc(Ē

I) is dense and then Ex has a unique continuous
extension to C(ĒI), with the same properties. Then, we have a unique proba-
bility measure Px on C(ĒI) such that

Ex(ψ) =

∫
Ē

ψ(ω)Px(dω)

and (2.34) holds on Cc(Ē
I). To go further in this construction, we need some

regularity in the variable t, i.e., the function

ρ(ε, δ) := sup
x

∫
|y−x|≥ε

P (δ, x,dy)

as δ goes to zero for any fixed ε. If we want to get a probability measure Px on
the space C([0,∞), Ē) of continuous functions from [0,∞) into Ē, then we need
to show first that the set Clu(I, Ē), of uniformly locally continuous functions
(which are extended uniquely to continuous functions from [0,∞) into Ē) is a
Borel subset of ĒI , which contains the support of Px. Actually, this is the hard
point in the construction of the measure Px. To this purpose, the set Clu(I, Ē)
can be expressed as a countable intersection of a countable union closed sets,
namely

Clu(I, Ē) =

∞⋂
k,`=1

∞⋃
n=1

F ′(k, 1/`, 1/n),

where F ′(k, ε, δ) is the complement of the set

F (k, ε, δ) :=
⋃{

E(a, b, ε) : 0 ≤ a < b ≤ a+ δ ≤ k
}
,

E(a, b, ε) :=
{
ω ∈ ĒI : ∃ t, s ∈ I ∩ [a, b], |ω(t)− ω(s)| > 2ε

}
.

Since the complement of E(a, b, ε) is closed in ĒI , the set F (k, ε, δ) is open and
therefore Clu(I, Ē) is a Borel set. Next, assuming

Px{E(a, b, ε)} ≤ 2ρ(ε/2, b− a)), (2.35)

we have

Px{F (k, ε, δ)} ≤ 2
k

δ
ρ(ε, δ))
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and if ρ(ε, δ)/δ goes to zero as δ goes to zero, we can deduce the equality
Px{Clu(I, Ē)} = 1. To obtain the estimate (2.35), we may express the set
E(a, b, ε) as an increasing limit of sets of the form A = {ω : ∃ i, j such that
|ω(ti)−ω(tj)| > 2ε, for some ε, δ, n and t1 < t2 < · · · < tn in I, with tn− t1 ≤ δ.
Each set A of the above form is contained in the union B∪(C1∩D1) . . . (Cn∩Dn),
where B := {ω : |ω(tn) − ω(t1)| > ε}, Ci := {ω : |ω(tn) − ω(ti)| > ε} and
Di := {ω : |ω(t1)−ω(ti)| > 2ε and |ω(t1)−ω(tj)| ≤ 2ε, ∀j ≤ i− 1}. It is clear
that Px(B) ≤ ρ(ε, δ) and Px(Ci) ≤ ρ(ε, δ). Since Ci is independent of Di, we
have Px(Ci ∩Di) = Px(Ci)Px(Di), which allow us to conclude, see Taylor [249,
Vol 2, Chapter 11, pp. 303–307].

The point here is that under the assumption ρ(ε, δ)/δ → 0 as δ → 0, we
are able to construct the probability measure in the sample space of continuous
paths C([0,∞), Ē), e.g. the Wiener measure. In some cases, e.g., the (com-
pound) Poisson measure, we have only [ρ(ε, δ)]2/δ → 0 as δ → 0 so that the
construction in the sample space C([0,∞), Ē) fails. Then, the sample space
of right-continuous (with left-hand limits) paths D([0,∞), Ē) is used, see Sec-
tion 1.12. In this case, the set E(a, b, ε) is re-defined as

E(a, b, ε) :=
{
ω ∈ ĒI : ∃ t, s, r ∈ I, such that

|ω(t)− ω(s)| ∧ |ω(s)− ω(r)| > 2ε a ≤ r < s < t ≤ b
}
.

Using the fact that the two events {|ω(t)−ω(s)| > 2ε} and {|ω(s)−ω(r)| > 2ε}
are actually of the previous form and independent of each other, we notice that
estimate (2.35) is modified as follows

Px{E(a, b, ε)} ≤ 2[ρ(ε/2, b− a))]2. (2.36)

Naturally, instead of the subspace Clu(I, Ē) we use the subset Dlu(I, Ē) of ĒI

composed by the restriction to I of functions in D([0,∞), Ē). Some more de-
tailed analysis is needed to effectively give a realization of the Markov process
in the sample space D([0,∞), Ē). The interested reader may take a look at Ja-
cob [115, Vol III, Chapter 3] for a more complete overview on Feller semigroups
and processes.

2.8.3 Pointwise Continuous Semigroups

First, notice that for a given strongly continuous semigroup in a Banach space,
the weak infinitesimal generator denoted by Ā is not a genuine extension of the
strong infinitesimal generator A, indeed their domain of definition are the same
and they agree on it. Moreover, a weakly continuous semigroup in a Banach
space is actually strongly continuous, see Pazy [196, Chapter 2, Section 2, pp.
42–44].

Thus, one way to proceed is to consider the weak-star topology in B(E), i.e.,
boundedly pointwise convergence. Hence, the notion of pointwise continuous
semigroup (also called weakly continuous) and weak-star infinitesimal generator
(also called weak infinitesimal generator) are necessary, see Dynkin [70]. Given
a stochastically continuous Markov semigroup {S(t) : t ≥ 0}, we restrict our
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attention to the subspace B0(E) of real bounded Borel functions f on E such
that the map t 7→ S(t)f(x) is continuous for any x in E. It is clear that B0(E)
contains Cb(E) and it is invariant under S(t) for any t ≥ 0. Thus {S(t) : t ≥ 0}
is a pointwise continuous semigroup on B0(E), i.e., besides (a), (b) and (c)
of Definition 2.39 it also satisfies the condition S(t)f(x) → f(x) for any x in
E and any f in B0(E). Then, the weak-star infinitesimal generator Ā can be
(densely) defined on B0(E) be means of the boundedly pointwise convergence,
i.e., Āf = g if and only if [S(t)f − f ]/t converges (boundedly pointwise) to g,
this means

sup
t>0

|S(t)f(x)− f(x)|
t

≤ C, ∀x ∈ E,

for some constant C = Cf > 0 and

lim
t→0

S(t)f(x)− f(x)

t
= g(x), ∀x ∈ E,

where necessarily g = Āf belongs to B(E).
This approach is more relevant when the base space E is not locally compact

Polish space, i.e., E may be an infinite dimensional Hilbert space endowed with
the weak or strong topology. For instance, as in [172], suppose that a (strong)
homogeneous Markov process y(t, x) is know (e.g., via stochastic differential
equations) and then, a semigroup is define as follow

Φα(t)h(x) := E{e−αth(y(t, x))}, (2.37)

for any α > 0, on the space of Cb(X) of real (uniformly) continuous and bounded
functions, where X is an open subset (or the closure of an open subset) in a
separable Banach space. Sometimes, we are required to consider the semigroup
{Φα(t) : t ≥ 0} on a space with unbounded functions, e.g., C0

p(X) be the space
of real uniformly continuous functions on any ball and with a growth bounded
by the norm to the p ≥ 0 power, in another words, the space of real functions
h on X such that x 7→ h(x)(1 + |x|2)−p/2 is bounded and locally uniformly
continuous, with the weighted sup-norm

‖h‖ = ‖h‖C0
p

:= sup
x∈X
{|h(x)|(λ+ |x|2)−p/2}, (2.38)

with λ > 0. Suppose that the Markov process y(t, x), defined on some probabil-
ity space (Ω,F , P ), satisfies the conditions:

(1) x 7→ y(t, x) is locally uniformly continuous (in x), locally uniformly contin-
uous for t in [0,∞), i.e., for any ε > 0 there is a δ > 0 such that for any x, x̄ in
X satisfying |x− x̄| < δ, |x| ≤ 1/ε and |x̄| ≤ 1/ε we have

P
{

sup
0≤t≤1/ε

|y(t, x)− y(t, x̄)| ≥ ε
}
< ε. (2.39)

(2) t 7→ y(t, x) is locally uniformly continuous (in t), for any x in X, (actually
in a dense subset suffices) i.e., for any x in X and for any ε > 0 there is a δ > 0
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such that

P
{

sup
0≤t≤δ

sup
0≤s≤1/ε

|y(t+ s, x)− y(s, x)| ≥ ε
}
< ε. (2.40)

(3) For any p > 0 there are positive constants α0 and λ sufficiently large such
that the following estimate

E{sup
t≥0

e−α0t(λ+ |y(t, x)|2)p/2} ≤ Cp (λ+ |x|2)p/2, ∀t ≥ 0, x ∈ O (2.41)

holds, with some Cp ≥ 1 and Cp = 1 if the sup is removed in the left-hand side.

Here we are using the notation | · | for either the Euclidean norm or the norm
in the Banach space containing X.

It is clear that (2.41) plays a role only when X is unbounded and that
the closure of an open subset, say X̄ could be used instead of X in all that
follows. The associate semigroup Φα(t) is not necessarily a strongly continuous
semigroup on Cb(X) nor on C0

p(X). Actually, we have in mind X = Rd (i.e.,
an stochastic ODE where the above conditions are easily verified and Φα(t) is
strongly continuous) but these conditions apply also for more general situations
(stochastic PDE), such as the stochastic Navier-Stokes equation, e.g. Menaldi
and Sritharan [175, 176].

It is clear that Cb(X) ⊂ C0
q (X) ⊂ C0

p(X) for any 0 ≤ q < p. Then for any
α ≥ 0, the (linear) semigroup (Φα(t), t ≥ 0) with an α-exponential factor is a
weak-star continuous Markov semigroup in the space Cp(X), i.e.,

Φα(t+ s) = Φα(t)Φα(s), ∀ s, t ≥ 0,

‖Φα(t)h‖ ≤ ‖h‖, ∀ h ∈ Cbp(X),

Φα(t)h(x)→ h(x) as t→ 0, ∀ h ∈ C0
p(X),

Φα(t)h(x) ≥ 0, ∀ h ≥ 0, h ∈ C0
p(X).

(2.42)

This follows immediately from the conditions (2.39), (2.40) and (2.41) imposed
on the Markov process y(t, x).

Since the semigroup is not strongly continuous, we cannot consider the strong
infinitesimal generator as acting on a dense domain in C0

p(X). However, this
Markov semigroup {Φα(t) : t ≥ 0} may be considered as acting on real Borel
functions with p-polynomial growth, which is a Banach space with the norm
(2.38) and is denoted by Bp(X). It is convenient to define the family of semi-
norms on Bp(X)

p0(h, x) := E
{

sup
s≥0
|h(y(s, x))| e−α0s

}
, ∀x ∈ X, (2.43)

where 2α, 2p and λ satisfy the estimate (2.41), and when p = 0 we may take
α0 = 0. If a sequence {hn} of equi-bounded functions in Bp(X) satisfies p0(hn−
h, x)→ 0 for any x in X, we say that hn → h boundedly pointwise relative to the
above family of semi-norms. In view of (2.40), it is clear that p0(Φα(t)h−h, x)→
0 as t→ 0, for any function h in C0

p(X) and any x in X.
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Let us defined B0
p(X) be the subspace of functions h̄ in Bp(X) such that the

mapping t 7→ h̄[y(t, x)] is almost surely continuous on [0,∞) for any x in X and
satisfies

lim
t→0

p0(Φα(t)h̄− h̄, x) = 0, ∀x ∈ X. (2.44)

where p0(·, ·) is the semi-norm given by (2.43). This is the space of functions
(uniformly) continuous over the random field y(·, x), relative to the family of
semi-norms (2.43), and it is independent of α, as long as (2.41) holds. Hence, we
may consider the semigroup on the Banach spaceB0

p(X), endowed with the norm

(2.38). The weak-star infinitesimal generator Āα with domain Dp(Āα) (as a
subspace of B0

p(X)) is defined by the boundedly pointwise limit [Φα(t)h−h]/t→
Āαh as t→ 0, relative to the family of semi-norms (2.43). Also, it is clear that
p0(Φα(t)h̄, x) ≤ p0(h̄, x) for any t ≥ 0, h̄ in B0

p(X) and x in X. We include the
proof of the following results for the sake of completeness,

Proposition 2.43 (density). If assumptions (2.39), (2.40) and (2.41) hold,
then C0

p(X) ⊂ B0
p(X), the semigroup {Φα(t) : t ≥ 0} leaves invariant the space

B0
p(X), and for any function h̄ in B0

p(X), there is an equi-bounded sequence

{h̄n} of functions in Dp(Āα) satisfying p0(h̄n − h̄, x)→ 0 for any x in X.

Proof. Indeed, since any function h in Cp(X) is such that x 7→ h(x) (λ +
|x|2)−q/2, q > p, is uniformly continuous for x in X, we may use the estimate
(2.41) to reduce the proof of the property (2.44) to the following condition

lim
t→0

P
{

sup
0≤s≤T

|y(t+ s, x)− y(s, x)|
}

= 0, ∀x ∈ X, T > 0, (2.45)

which follows from (2.40). This verifies the fact that C0
p(X) ⊂ B0

p(X).
Next, from the strong Markov property we deduce

p0(Φα(t)h̄, x) = E
{

sup
s≥0

E{|h̄[y(t+ s, x)]|e−α0(t+s) | y(t, x)}e−(α−α0)t
}

≤ E
{

sup
s≥0
|h̄[y(t+ s, x)]|e−α0(t+s)

}
= p0(h̄, x),

for any x in O and t ≥ 0. Therefore,

p0(Φα(r + t)h̄− Φα(t)h̄, x) = p0(Φα(t)[Φα(r)h̄− h̄], x) ≤
≤ p0(Φα(r)h̄− h̄, x),

which proves that the space B0
p(O) is invariant under the semigroup.

Finally, to approximate a function h̄ in B0
p(O) by regular functions, we can

define the sequence {h̄n n = 1, 2, . . . } by

h̄n(x) := n

∫ ∞
0

e−ntΦα(t)h̄(x)dt =

∫ ∞
0

e−tE
{
h̄(y(

t

n
, x))e−α( tn )

}
dt,
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and apply the Markov property to get∣∣E{ sup
s≥0

[h̄n(y(s, x))− h̄(y(s, x))]e−α0s
}∣∣ ≤

≤
∫ ∞

0

e−t
[
E
{

sup
s≥0
|h̄(y(s+

t

n
, x))e−α( tn ) − h̄(y(s, x))|e−α0s

}]
dt.

Thus, from the estimates (2.40) and (2.41) we deduce

lim
n→∞

∣∣E{ sup
s≥0

[h̄n(y(s, x))− h̄(y(s, x))]e−α0s
}∣∣ = 0,

for any fixed x in X.

A clear consequence of the above results is that given α > 0, p ≥ 0, λ
sufficiently large to ensure (2.41), and a function h̄ in B0

p(O), there is another

function ū in Dp(Āα) such that −Āαū = h̄, where the solution admits the
explicit representation

ū =

∫ ∞
0

Φα(t)h̄dt. (2.46)

The right-hand side is called the weak-star resolvent operator and is denoted by
either Rα := (−Āα)−1 or Rα := (αI − Ā0)−1. For any α > α0 we obtain

‖Φα(t)h̄‖ ≤ e−(α−α0)t ‖h̄‖, p0(Φα(t)h̄, x) ≤ e−(α−α0)tp0(h̄, x), (2.47)

for any t ≥ 0, and

‖Rαh̄‖ ≤
1

α− α0
‖h̄‖, p0(Rαh̄, x) ≤ 1

α− α0
p0(h̄, x), (2.48)

for any x in X and where the norm ‖ · ‖ and the semi-norms p0(·, x) are given
by (2.38) and (2.43), respectively. Notice that α0 = 0 for p = 0, and it is clear
that for any h̄ ≤ h (pointwise) we have Rαh̄ ≤ Rαh, which is a weak form of
the maximum principle.

Limiting the operator to the space Cu(X) of bounded uniformly continu-
ous functions, we find the so-called π-semigroups as proposed in Priola [205].
When the Φα(t) is a strongly continuous Markov-Feller semigroup (typically an
stochastic ODE) the weak version of the semigroup is of limited importance,
since the domain of the infinitesimal generator is dense (in norm) in the space
C0
p(O) of locally uniformly continuous functions with a growth bounded by the

p-power of the norm. In general, we only have a weakly continuous Markov-
Feller semigroup (typically stochastic PDE) and this weak version is very useful.

2.8.4 Invariant Distribution

Let E be a (locally compact) Polish space and {S(t) : t ≥ 0} be a stochastically
continuous Markov semigroup on Banach space B(E) of all bounded Borel real-
valued functions on E, with Markov transition function {P (t, x, ·) : t ≥ 0, x ∈
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E},

S(t)f(x) =

∫
E

f(y)P (t, x,dy), ∀t ≥ 0, x ∈ E.

We begin with the following

Definition 2.44 (invariant). A probability measure µ on the Borel σ-algebra
B(E) is called an invariant distribution or invariant probability measure of the
Markov semigroup {S(t) : t ≥ 0} if∫

E

S(t)fdµ =

∫
E

fdµ,

or in term of the kernels∫
E

µ(dx)

∫
E

f(y)P (t, x,dy) =

∫
E

f(x)µ(dx),

for every f in B(E) and every t > 0.

Notice that if an invariant distribution µ exits then the Markov semigroup
satisfies S(t)1 = 1 or equivalently P (t, x, E) = 1, for every t ≥ 0 and x in E,
i.e, the semigroup has to be Markov, not sub-Markov, see Definition 2.39.

If {S(t) : t ≥ 0} is also a Markov-Feller semigroup then, besides S(t) :
B(E) → B(E), we have S(t) : C → C for some closed subspace C of Cb(E),
the space of bounded continuous real-valued functions on E, e.g., C could be
continuous functions vanishing at infinity or uniformly continuous functions or
the whole space Cb(E). Then {S(t) : t ≥ 0} is strongly continuous in C and the
infinitesimal generator (D(A), A) is densely defined on C and

S(t)f − f =

∫ t

0

AS(s)fds =

∫ t

0

S(s)Afds,∫
E

[S(t)f − f ]dµ =

∫
E

A
(∫ t

0

S(s)fds
)

dµ,

for any probability measure µ. This proves that µ is an invariant distribution if
and only if∫

E

Afdµ = 0, ∀f ∈ D(A),

provided {S(t) : t ≥ 0} is a Markov-Feller semigroup.
The following result give a condition for the existence of an invariant prob-

ability measure, see Doob, Khasminskii, Krylov-Bogoliubov theorems in Da
Prato and Zabczyk [52, Chapters 3 and 4],

Theorem 2.45 (existence). Let {P (t, x, ·) : t ≥ 0, x ∈ E} be a stochastically
continuous Markov transition function on a Polish space E. If the family of
time-average probabilities {R(t, x, ·) : t ≥ 0, x ∈ E},

R(t, x, ·) :=
1

t

∫ t

0

P (s, x, ·)ds,
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is tight for t in [t0,∞), for some x = x0 and t0 > 0, then there exists an
invariant distribution µ.

Recall that a family of probabilities {R(t, x0, ·) : t ≥ t0} is tight when for
every ε > 0 there exits a compact subset K = Kε of E such that R(t, x0,K) ≥
1 − ε, for every t ≥ t0. Thus, any weak limit as t → ∞ of the time-average
probabilities is an invariant probability measure.

As it was defined early, {S(t) : t ≥ 0} is strongly Feller if S(t0) : B(E)→ C,
for some t0 > 0. Also, a Markov transition function {P (t, x,B) : t ≥ 0, x ∈
E, B ∈ B(E)} is called irreducible if there exist t0 > 0 such that for every
non-empty open subset O of E and for any x in O we have P (t0, x,O) > 0.
Furthermore, it is called regular if there exists t0 > 0 such that all transition
probabilities {P (t0, x, ·) : x ∈ E} are mutually equivalent.

Theorem 2.46 (uniqueness). Let µ be an invariant distribution of a stochas-
tically continuous Markov transition function {P (t, x, ·) : t ≥ 0, x ∈ E} on a
Polish space E. If it is strongly Feller and irreducible then it is also regular, the
invariant distribution is unique and

(1) for any x in E and B in B(E) we have P (t, x,B)→ µ(B) as t→∞,
(2) there exists t0 > 0 such that all probabilities measures {P (t, x, ·) : t ≥ t0, x ∈
E} are equivalent to µ.

A set B in B(E) is called invariant with respect to a stochastically continuous
Markov transition function {P (t, x,B) : t ≥ t0, x ∈ E, B ∈ B(E)} having an
invariant probability measure µ if except in a set of µ-measure zero, P (t, ·, B) =
1B , for every t > 0. Then an invariant probability measure µ is called ergodic
if the only invariant sets have µ measure 0 or 1, i.e., if P (t, ·, B) = 1B µ-a.s.
implies µ(B) = 0 or µ(B) = 1. It can be proved that an invariant distribution µ
is ergodic if and only if the time-average commute with the space average, i.e.,

1

T

∫ T

0

dt

∫ T

0

f(y)P (t, ·,dy)→
∫
E

f(y)µ(dy) in L2(E,µ),

as T →∞, for every f in L2(E,µ).
Sometimes a stronger convergence than (1) in Theorem 2.46 is necessary, e.g.,

exponential convergence. Based on Doob’s ergodicity Theorem on a compact
space E, the so-called Doeblin’s condition, namely, there exist t0 > 0 and δ > 0
such that

P (t0, x,B)− P (t0, y, B) ≤ 1− δ, ∀x, y ∈ E, B ∈ B(E), (2.49)

imply the existence of a unique invariant probability measure µ and the expo-
nential convergence∣∣∣ ∫

E

f(y)P (t, x,dy)−
∫
E

f(y)µ(dy)
∣∣∣ ≤ Ce−ωt sup

y∈E
|f(y)|,

for some positive constants C and ω, and for every x in E, as long as E is
compact.
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Typical conditions to ensure the tightness of the probability measures needed
in Theorem 2.45 are given in term of the existence of Liapunov functions, see
Khasminskii [130]. For instance, if there exists a function ϕ in D(A) such that
ϕ ≥ 0 and satisfying ϕ(x) → −∞ as |x| → ∞ (which means that for every
m > 0 there is a compact set K = Km of E such that ϕ(x) < −m for every
x in E rK) the family {P (t, x0, ·) : t ≥ 0, x ∈ E} is tight for every x0 fixed.
The existence of a Liapunov function satisfying ϕ(x) → +∞ as |x| → ∞ and
Aϕ−αϕ ≤ C for some positive constants α and C, yields the uniqueness of the
invariant probability measure.

If µ is an invariant distribution then Jensen’s inequality yields∣∣∣ ∫
E

f(y)P (t, x,dy)
∣∣∣p ≤ ∫

E

|f(y)|pP (t, x,dy) =

∫
E

|f(y)|pµ(dy),

for every p in [1,∞). The stochastically continuous Markov semigroup {S(t) :
t ≥ 0} can be extended to a strongly continuous semigroup of contractions in the
Lebesgue spaces Lp(E,µ). Moreover, any other probability measure ν which is
equivalent to µ (i.e., ν is absolutely continuous with respect to µ and conversely)
can be used to extend the semigroup to Lp(E, ν).

In a finite-dimensional setting, let D be a domain in Rd (i.e., the closure
of the interior of D is equal to its closure) and let (A,D) be a linear operator
defined on a linear sub-space D of C∞(D̄) containing C∞0 (D). Assume that
there exist a probability measure µ on D such that

Av ∈ L1(D,µ) and

∫
D

Av(x) µ(dx) = 0, ∀v ∈ D.

Then, we want to find a unique extension of (A,D) which generates a strongly
continuous Markov semigroup {T (t) : t ≥ 0} in Lp(D,µ), 1 ≤ p <∞, having µ
as an invariant measure. Several conditions are given in the literature to ensure
this construction, e.g., see Stannat [235] and references there in.

2.9 Dirichlet Forms

Of particular interest is the Dirichlet form theory, e.g., see the books Fukushima
et al. [92], Silverstein [228], and for a non symmetric extension we refer to Ma
and Röckner [161].

Consider a Hausdorff space X and a σ-finite nonnegative Borel measure m
on X (i.e., defined on the Borel σ-algebra B(X), which is assumed to be also
generated by all the continuous functions on X), such that L2(X,m) is a (real)
separable Hilbert space. In most of the cases, X is a locally compact separable
Hausdorff space and m is a measure finite on compact sets and strictly positive
on each non empty open set. Let us denote φ(x) = (0 ∨ x) ∧ 1. Clearly, if
u ∈ L2(X,m) then φ(u) is still in L2(X,m), so that φ is in a sense a cut-off
function.

A bounded linear operator T : L2(X,m)→ L2(X,m) is called Markovian if
0 ≤ Tu ≤ 1 m-a.e. whenever 0 ≤ u ≤ 1 m-a.e., i.e. 0 ≤ T (φ(u)) ≤ 1 m-a.e. for
any u ∈ L2(X,m).

Section 2.9 Menaldi January 7, 2014



CHAPTER 2. SEMIGROUP THEORY 139

Denote by C0
0 (X) the Frèchet space of all real-valued continuous functions

with compact support in X and by C0(X) the Banach space of all real-valued
continuous functions vanishing at infinity (i.e., C0(X) is the closure of C0

0 (X)
in Cb(X), the Banach space of continuous and bounded functions). As previ-
ously mentioned, starting with a closable positive and continuous (or bounded)
bilinear form a(·, ·) with domain D(a) ⊂ H, we can extend the form to a Hilbert
space V (the completion of D(a) in a graph norm) where aα(·, ·) = a(·, ·)+α(·, ·),
with α > 0 is a coercive and continuous bilinear form, i.e., there exist constant
M ≥ κ > 0, κ = κα such that{

a(u, u) + α|u|2 ≥ κ‖u‖, ∀u ∈ V,

|a(u, v)| ≤M‖u‖ ‖v‖, ∀u, v ∈ V,
(2.50)

where ‖ ·‖ = ‖ ·‖V denotes the norm in V, i.e., ‖ ·‖1, and | · | = ‖ ·‖H is the norm
in H. Recall that if a(·, ·) is a closed positive symmetric form then aα(·, ·) is
coercive and continuous form. The continuity of the form a(·, ·) is only needed
in the non-symmetric case.

Let us consider a closed, positive and continuous bilinear form a(·, ·) on
L2(X,m), i.e., a(·, ·) is defined on a Hilbert space V , which is densely and
continuously included in H = L2(X,m) and condition (2.50) is satisfied.

Definition 2.47 (Dirichlet form). A closed, positive and continuous bilinear
form a(·, ·) defined on D(a) ⊂ H, H = L2(X,m) is called a Dirichlet form if
φ(u) ∈ D(a) for any u ∈ D(a) and

a
(
u+ φ(u), u− φ(u)

)
≥ 0 and a

(
u− φ(u), u+ φ(u)

)
≥ 0, (2.51)

for every u in D(a), with φ(t) = (0∨ t)∧ 1. Moreover, a Dirichlet form is called
regular if C0

0 (X) ∩ D(a) is dense in D(a) with the graph norm ‖u‖1 and dense
in C0(X).

Usually, to verify that a particular bilinear form a(·, ·) with domain D(a)
satisfies the above condition (2.51) we replace the cut-off function φ(t) = (0 ∨
t) ∧ 1 by smooth functions φε(t), for ε > 0, satisfying

φε : R→ [−ε, 1 + ε], φε(t) = 1, ∀t ∈ [0, 1],

0 ≤ φε(t)− φε(t′) ≤ t− t′, ∀t < t′.

Then, condition (2.51) is satisfied if φε(u) ∈ D(a) for any u ∈ D(a) and

lim inf
ε→0

a
(
u± φε(u), u∓ φε(u)

)
≥ 0,

for every u in D(a), When a(·, ·) is symmetric, condition (2.51) becomes

φ(u) ∈ D(a), a
(
φ(u), φ(u)

)
≤ a(u, u), (2.52)

or

lim sup
ε→0

a
(
φε(u), φε(u)

)
≤ a(u, u),
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for every u in D(a).
The Dirichlet form is a particular case of positive, closed, bilinear form.

Hence, there is a unique contraction operator semigroup associated with a
Dirichlet form and, when extended to the complexification of H, i.e. the (classes
of) functions of L2(X,m) are complex valued, the semigroup is analytic. Actu-
ally we have

Theorem 2.48 (symmetric case). Given a symmetric Dirichlet form a(u, v)
there exists a unique (non positive and densely defined) self-adjoint operator
A : D(A) ⊂ D(a) ⊂ L2(X,m) → L2(X,m) such that a(u, v) = (−Au, v) for u
in D(A) and the corresponding semigroup Tt = eAt is Markovian. Conversely,
given a non positive, self-adjoint operator A on L2(X,m), such that Tt = eAt

is Markovian, the form a(u, v) = ((−A)1/2u, (−A)1/2v) with u, v in D(a) =
D((−A)1/2) is a symmetric Dirichlet form.

For the non symmetric case we have

Theorem 2.49 (non symmetric case). Given a Dirichlet form a(u, v) there is
a unique contraction semigroup Tt = eAt, such that Tt and T ∗t are Markovian
and that a(u, v) = (−Au, v) for u in D(A). Conversely, given a a contraction
semigroup Tt = eAt, such that Tt and T ∗t are Markovian, the form a(u, v) =
(−Au, v) with u, v in D(A) is closable and the minimal extension is a Dirichlet
form.

A typical example of symmetric Dirichlet form is the following. Let P (t, x,A)
be a Markov transition function, with St the corresponding Markov semigroup,
such that:∫

X

Stu v dm =

∫
X

uStv dm (2.53)

for any non negative measurable u, v and any t. If

lim
t→0

Stu(x) = u(x), m− a.e.

for any u in C0
0 (X), then St is strongly continuous in L2(X,m). Hence it is a

Markovian semigroup, and in view of Theorem 2.49, there is a corresponding
Dirichlet form. A Markov process with a transition function P (t, x,A) on the
states space X, where its associated semigroup {St : t ≥ 0} satisfies (2.53) is
called a symmetric Markov process (with respect to the measure m), i.e., the
operators St : H → H, with H = L2(X,m), are symmetric.

There are also relations with the Markov process theory. Fukushima et
al. [92, Theorem 6.2.1] proved the following result for symmetric forms, and its
extension to non symmetric forms can be found in Ma and Röckner [161].

Theorem 2.50. Given a (symmetric) regular Dirichlet form on L2(X,m), there
exists a (symmetric) Markov process (actually a Hunt process), whose Dirichlet
form is the given one.
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We have also the uniqueness of the Markov (Hunt) process in the following
sense of equivalence between Markov processes. First let us define the concept
of exceptional set: a subset N ⊂ X is called exceptional if there exists a Borel set
Ñ ⊃ N such that Pm(σÑ < +∞) = 0, where σA = inf{t > 0 : Xt ∈ A} and Pm
is the product measure of transition functions and m as initial measure. Any
exceptional set has null m-measure and, with the potential theory language, a
set is exceptional if and only if it has capacity zero.

Among the exceptional sets, it is important to define, as properly exceptional
sets, those sets N that are Borel, m(N) = 0 and X rN are “invariant” for the
process Xt, that is Px(Ω̃) = 1 for any x ∈ X rN , where

Ω̃ = {ω : Xt(ω) ∈ X rN, Xt−(ω) ∈ X rN, ∀t ≥ 0}.

In other words, it is possible to restrict the process Xt to Ω̃ without changing
the statistical properties of Xt.

Two m-symmetric Markov (Hunt) processes are equivalent if there is one
common properly exceptional set, outside which their transition functions coin-
cide and both processes are associated to the same Dirichlet form.

• Remark 2.51. Comparing with the result of Stroock and Varadhan [240], we
obtain basically the same type of results. However, we have to observe that the
martingale method is valid also in directions forbidden to the method of Dirichlet
form (e.g. second order differential operators not in divergence form). On the
other hand the method of Dirichlet forms works also in infinite dimensions or
on topological space of fractal nature.

Perhaps, the following setting is a typical example of jump Dirichlet form.
Let (X, ρ) be a locally compact (separable complete metric) Polish space (i.e.,
essentially, a Borel subset of Rd) and m be a positive Radon measure on X with
full support, i.e., m is a nonnegative measure defined on the Borel σ-algebra
B(X), finite on compact sets and strictly positive on non-empty open sets, with
supp(m) = X. Let j(x, ·) be a kernel in X, i.e., (a) for every B in B(X) the
function x 7→ j(x,B) is measurable and (b) for every x in X the mapping
B 7→ j(x,B) is a nonnegative measure in B(X). The kernel j(x, ·) is such that∫

K

m(dx)

∫
X

(
ρ2(x, ξ) ∧ 1

)
j(x, dξ) <∞, (2.54)

for every compact subset K of X, and there exists another kernel denoted by
j∗(x, ·) satisfying the above integrability condition and∫

A

j(x,B)m(dx) =

∫
B

j∗(x,A)m(dx), ∀A,B ∈ B(X).

The j∗ kernel is the m-adjoint of j kernel, and clearly, whenever j = j∗, the
kernel is called m-symmetric. It is clear that j(x, dξ)m(dx) and j∗(x, dξ)m(dx)
can be regarded as Radon measures (denoted by jm and j∗m) on X × X with
support outside of the diagonal set {(x, y) ∈ X ×X : x = y}. Now, define the
positive bilinear form

a(u, v) :=

∫
X×X

[u(x)− u(y)][v(x)− v(y)] jm(dx, dy),
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on L2(X,m), with domain D(a) := {u ∈ L2(X,m) : a(u, u) <∞}. Note that if
the measure m is bounded then D(a) contains all Lipschitz continuous functions.
Since jm is a nonnegative measure, the sectorial estimate

|a(u, v)| ≤
√
a(u, u)

√
a(v, v), ∀u, v ∈ D(a)

is granted from the definition. On the other hand, setting Γε = {(x, y) ∈ K×K :
ρ(x, y) > ε}, for any ε > 0, we have∫

Γε

[u(x)− u(y)]2 jm(dx,dy) ≤ 2

∫
Γε

[u2(x) + u2(y)] jm(dx,dy)

and ∫
Γε

[u2(x) + u2(y)] jm(dx, dy) =

=

∫
K

u2(x)m(dx)

∫
K

1{ρ(x,ξ)>ε}[j(x,dξ) + j∗(x, dξ)].

Hence, in view of condition (2.54), we deduce that u = 0m-a.e. implies a(u, u) =
0. By means of this last property, we can shows that a(·, ·) is closable and indeed
a (regular) Dirichlet form if D(a) is dense in L2(X,m). Alternatively, let aε(·, ·)
be as a(·, ·) but integrating only on the region Γε instead of X ×X, and define
the operator

Au = lim
ε→0

Aεu, Aεu(x) =

∫
ρ(x,ξ)>ε

[u(ξ)− u(x)] [j(x, dξ) + j∗(x, dξ)],

with domain D(A) ⊂ L2(X,m), where D(A) is the set of all u in D(a) such
that the above limit Au exits in L2(X,m). Since Aε is a bounded operator,
aε(u, v) = (−Aεu, v), for every u, v in L2(X,m), and

a(u, v) = (−Au, v) = lim
ε→0

(−Aεu, v), ∀u ∈ D(A), v ∈ D(a),

the argument of Remark 2.33 shows that a(·, ·) is closable, if the domain D(A)
is dense in L2(X,m). This is the case when X is a domain D on Rd, so that
C∞0 (D) ⊂ D(A). Moreover, by means of smooth cut-off functions φε we can
prove that a(·, ·) satisfies (2.51) or equivalently, that A and Aε satisfy the weak
maximum principle.

• Remark 2.52. It is clear that the previous example of jump Dirichlet form can
be complemented with diffusion terms, as in Subsection 2.7.2.

To study time-dependent coefficients, we use spaces of the type L2(0, T ;V )
or L2(R, V ) and adapting this concept lead to the so-called generalized Dirich-
let forms, which sill have corresponding generators, strongly continuous con-
traction semigroups and resolvents. These are (mainly non-symmetric) bilin-
ear forms represented as the sum of a coercive and continuous bilinear form
a0(·, ·) defined in Hilbert space D(a0), densely and continuously included in
H = L2(X,m), (i.e., conditions (2.16) and (2.17) in Subsection 2.5.3) and a
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linear (unbounded) operator (D(A1), A1) in L2(X,m), which is a small pertur-
bation in the sense that (D(A1), A1) and its adjoint (D(A∗1), A∗1) generate a pair
of strongly continuous semigroups of contractions etA1 and etA

∗
1 , such that etA1

and etA
∗
1 can be extended (as a strongly continuous semigroup, not necessarily

of contractions) to the dual space D′(a0), where the infinitesimal generators are
denoted by (D1, A1) and (D∗1 , A∗1). Thus the generalized bilinear forms is defined
by the expressions

a(u, v) :=

{
a0(u, v)− 〈A1u, v〉, ∀u ∈ D(a0) ∩ D1, v ∈ D(a0),

a0(u, v)− 〈A∗1v, u〉, ∀u ∈ D(a0), v ∈ D(a0) ∩ D∗1 .

where 〈·, ·〉 denotes the dual pairing between D′(a0) and D(a0). Note that V =
D(a0) ∩ D1 and V∗ = D(a0) ∩ D∗1 are Hilbert spaces, and we have D(a0) ⊂
H ⊂ D′(a0), V ⊂ H ⊂ V ′, and V∗ ⊂ H ⊂ V ′∗, all with continuous and dense
inclusions, where H = L2(X,m) has been identified with its dual space H′.
Moreover, for the above setting, the bilinear form a(·, ·) and its adjoint are such
that the conclusions of Lax-Milgram Theorem 2.23 holds on the Hilbert space
V and V∗. Some specific conditions (similar to Definition 2.47) are imposed on
the bilinear form a(·, ·) to be called a generalized Dirichlet form.

Perhaps a typical example is as follows:

a0(u, v) :=

∫
R
a

(t)
0 (u(t), v(t))dt, ∀u, v ∈ D(a0) := L2(R, V ),

where a
(t)
0 (·, ·) is a family of coercive and continuous (i.e., satisfying a sector

condition) bilinear forms (uniformly in t) defined in a common domain V (which
is a subspace of a Hilbert space H), and the unbounded linear operator A1 is
the time-derivative ∂t with initial domain H1(R, H) and extended to the space

D1 :=
{
v ∈ L2(R, H) : ∂tv ∈ L2(R, V ′)

}
.

Clearly, V is itself a Hilbert space densely and continuously included in H =
L2(X0,m0), V = V∗ = L2(R, V ) ∩ D1 and the reference space H = L2(X,m)
is given with X = R × X0 and m = dt × m0. Certainly, there are may other
interesting examples, the interested reader is referred to Stannat [236, 234, 235]
and references there in.

2.10 Dynamical Systems

The concept of dynamical system is related to Markovian systems, which in turn
are related with Markov processes and semigroups. A quadruple (Ω,F ,P, θ) is
called a dynamical system if (Ω,F ,P) is a probability space and θ = (θt, t ∈ R)
is a group of invertible, measurable transformation from Ω into itself, preserving
the probability measure P, i.e.,

P(θtA) = P(A) ∀A ∈ F , t ∈ R.
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The group θ = (θt, t ∈ R) induces a group of linear transformations (Ut, t ∈ R),
either on the real Hilbert space H := L2(Ω,F ,P;R) or complex Hilbert space
HC := L2(Ω,F ,P;C), by the expression

Utξ(ω) := ξ(θtω), ∀ξ ∈ HC, ω ∈ Ω, t ∈ R.

The dynamical system is strongly mixing if

lim
t→∞

P(θtA ∩B) = P(A)P(B).

Let E be a Polish space, denote by E := B(E) the Borel subsets of E, by
B(E) the bounded and Borel functions with real (or complex) values, byM1(E)
the (convex) set of all probability measures on (E, E), and by B(x, δ) the open
ball in E with center x and radius δ > 0. A Markovian transition function is a
family (Pt(x,A), t ≥ 0, x ∈ E, A ∈ E) of transformation satisfying:

(a) for each t ≥ 0 and x ∈ E the mapping A 7→ Pt(x,A) is a probability
measure,

(b) for each t ≥ 0 and A ∈ E the function x 7→ Pt(x,A) is measurable with
respect to E ,

(c) for each x ∈ E and A ∈ E , P0(x,A) = 1A(x),

(d) the identity

Pt+s(x,A) =

∫
E

Pt(x, dy)Ps(y,A), ∀t, s ≥ 0, x ∈ E, A ∈ E ,

holds true. A Markovian transition function defines a semigroup of linear oper-
ators (Pt, t ≥ 0) on the space B(E) by the formula

Pth(x) :=

∫
E

h(y)Pt(x,dy), ∀x ∈ E, h ∈ B(E),

which is called the Markovian semigroup associated with the given transition
function. Now, either the Markovian semigroup (Pt, t ≥ 0), or the Markovian
transition function (Pt(x,A), t ≥ 0, x ∈ E, A ∈ E), is called stochastically
continuous if

lim
t→0

Pt(x,B(x, δ)) = 1, x ∈ E, δ > 0.

This is equivalent to the condition Pth(x)→ h(x), for every x in E and h con-
tinuous, or uniformly continuous or Lipschitz continuous. The dual semigroup
(P ∗t , t ≥ 0) on M1(E) is defined by

P ∗t µ(A) :=

∫
E

Pt(x,A)µ(dx), ∀t ≥ 0, A ∈ E ,

and a measure ν is called invariant if P ∗t ν = ν, for every t ≥ 0.
Next, given a Markovian semigroup (Pt, t ≥ 0) with an invariant measure

ν, a canonical dynamical system (Ω,F ,Pν , θ) can be constructed as described
below, with Ω := ER, the space of all functions from R into E, F := ER
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the product Borel σ-algebra, θtω(s) := ω(t + s) the translation group, Pν the
Kolmogorov extension of the transition function and the invariant measure,
where the canonical process X(t) := ω(t), with t in R, will be Markovian with
transition function (Pt(x,A), t ≥ 0, x ∈ E, A ∈ E), and stationary with a
stationary distribution ν.

As mentioned in previous sections, the Kolmogorov extension is constructed
as follows, for any cylindrical set C = {ω ∈ E[0,∞) : ω(t1) ∈ A1, ω(t2) ∈
A2, . . . , ω(tn) ∈ An}, where 0 ≤ t1 < · · · < tn, A1, . . . , An in E , we define

Px(C) :=

∫
A1

Pt1(x, dx1)

∫
A2

Pt2−t1(x2 − x1,dx2) . . .

. . .

∫
An

Ptn−tn−1
(xn − xn−1,dxn),

which can be extended to a unique probability Px on (E[0,∞), E [0,∞)). Similarly,
define the probability measure on the cylindrical set C by

Pν(C) :=

∫
A1

ν(dx1)

∫
A2

Pt2−t1(x2 − x1,dx2) . . .

. . .

∫
An

Ptn−tn−1(xn − xn−1,dxn),

which can be extended to a unique probability Pν on (ER, ER), again by means
of Kolmogorov extension theorem. It is clear that for every Γ in ER and ε > 0
there is a cylindrical set C such that

Pν(Γ r C) + Pν(C r Γ) ≤ ε.

If Ft is the σ-algebra generated by the canonical processes (X(s), s ≤ t) for
every t in R, then we have Pν almost surely

Pν(X(t+ s) ∈ A | Ft) = Pν(X(t+ s) ∈ A | σ(X(t)) =

= Ps(X(t), A),

for every A in E , and s ≥ 0. Or even more general,

Pν(X(t+ ·) ∈ Γ | Ft) = Pν(X(t+ ·) ∈ Γ | σ(X(t)) = PX(t)(Γ),

for every Γ in E [0,∞).
The group θ = (θt, t ∈ R) of invertible and measurable transformation from

Ω = ER into itself, defined by

θtω(·) := ω(·+ t), ∀ω ∈ Ω, t ∈ R,

is the group of translations. Since ν is invariant, the canonical process X(t, ω) :=
ω(t), t in R is stationary, i.e.,

Pν(X ∈ θtΓ) = Pν(X ∈ Γ), ∀t ∈ R, Γ ∈ F ,
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where

θtΓ := {ω ∈ Ω : θ−1
t ω ∈ Γ},

and the transformation θt preserve the measure Pν .
Notice that the canonical process X in (Ω,F ,Pν) is stochastically continuous

if and only if the Markovian transition function (Pt(x,A), t ≥ 0, x ∈ E, A ∈ E)
is stochastically continuous in the above sense. Moreover, under this condition,
the group (Ut, t ∈ R) of linear transformations on the (real of complex) Hilbert
space Hν := L2(Ω,F ,Pν) is continuous, i.e.,

lim
t→s

Utξ = Usξ, ∀ξ ∈ Hν , s ∈ R.

On the other hand, other conditions (see Theorem 2.41) are necessary to show
that support of the probability Pν is indeed C0(E), the space of continuous
functions vanishing at infinity. The reader is referred to the book Da Prato and
Zabczyk [52] for a comprehensive treatment.

A Markovian semigroup (Pt, t ≥ 0) on B(E) with an invariant measure ν
has a unique extension to a semigroup of nonnegative contraction operators in
Lp(E,F , ν), with p = 1, 2,∞. Moreover, the mean ergodic theorem holds, i.e.,
for every h in Lp(E,F , ν), with p = 1, 2, the average limit

lim
n→∞

1

n

n∑
k=1

Pkh = h∗

exists in Lp(E,F , ν), and

P1h
∗ = h,

∫
E

h(x)ν(dx) =

∫
E

h∗(x)ν(dx),

see Yosida [262, Theorems XIII.1.1 and XIII.1.2, pp. 381–382]. It is clear that
(Pt, t ≥ 0) is also a C0-semigroup in L2(E,F , ν), whenever it is stochastically
continuous.

2.11 Integro-differential Operators

We are interested in integro-differential operators associated with diffusion pro-
cesses with jumps, see Gikhman and Skorokhod [99, p. 245] and Bensoussan
and Lions [17, p. 178]. For a comprehensive treatment on (elliptic/parabolic)
integro-differential operators, we refer to the books Garroni and Menaldi [93, 94].

A Radon measure M(x, dz) on Rd∗ = Rd r {0}, for any x in Rd, determines
this operator. Depending on the assumptions on the singularity at the origin
of the Lévy kernel M(x, dz) we may classify these integro-differential operators.
The expression

I1ϕ =

∫
|z|<1

[ϕ(·+ z)− ϕ]M1(·,dz), (2.55)
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with ∫
|z|<1

|z|M1(·,dz) <∞

define an integro-differential operator of order 1, since, in view of the mean value
theorem, the expression (2.55) makes sense for bounded continuously differen-
tiable functions. However, a form

I2ϕ =

∫
|z|<1

[ϕ(·+ z)− ϕ− z · ∇ϕ]M2(·,dz), (2.56)

with ∫
|z|<1

|z|2M2(·,dz) <∞

gives an integro-differential operator of order 2, since, by Taylor’s formula,
the expression (2.56) makes sense for bounded twice-continuously differentiable
functions. On the other hand,

I0ϕ =

∫
Rd∗

[ϕ(·+ z)− ϕ]M0(·,dz), with

∫
Rd∗
M0(·,dz) <∞ (2.57)

provides a bounded (or order 0) integral (or non-local) operator, since the ex-
pression (2.57) makes sense for bounded functions.

Note that in the definitions (2.55) and (2.56) of the operators I1 and I2, we
may replace the region of integration {|z| < 1} by one of the form {|z| < r},
for any r > 0. The interesting part is the singularity at the origin, i.e., small
jumps. On the other hand, in the definition (2.57) of the operator I0 we may
use {|z| ≥ r}, for any r > 0, as the region of integration, instead of the whole
space Rd∗. Here the interest is on the integrability at infinity, i.e., large jumps.

Let us present some typical examples. First, an operator of order 0,

I0ϕ = λ[ϕ(·+ ζ)− ϕ],

for some constants λ > 0, ζ ∈ Rd∗. Here the Lévy kernel is M0(x, ·) = λδζ , where
δζ denotes the Dirac measure at ζ. Second, two examples of order 1,

I1ϕ =

∫
|z|<1

[ϕ(·+ z)− ϕ]|z|−ddz,

where the Lévy kernel M1(x, dz) = 1|z|<1|z|−ddz, and

I1ϕ =

∞∑
n=1

λn[ϕ(·+ ζn)− ϕ],

with

λn ≥ 0,

∞∑
n=1

λn =∞,
∞∑
n=1

λn|ζn| <∞.
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Here ζn → 0 as n→∞ and the Lévy kernel M1(x, ·) =
∑∞
n=1 λnδ(·− ζn). Next,

two examples of order 2,

I0ϕ+ I2ϕ =

∫
Rd∗

[ϕ(·+ z)− ϕ− z · ∇ϕ1|z|<1]|z|−d−1dz,

where the Lévy kernels are M0(x, dz) = 1|z|>1|z|−d−1dz and M2(x,dz) =

1|z|<1|z|−d−1dz, and

I2ϕ =

∞∑
n=1

λn[ϕ(·+ ζn)− ϕ− ζn · ∇ϕ], with

λn ≥ 0,

∞∑
n=1

λn(1 + |ζn|) =∞,
∞∑
n=1

λn|ζn|2 <∞.

where the Lévy kernel M2(x, ·) =
∑∞
n=1 λnδ(·−ζn). Notice that in all examples,

the Lévy kernels M(x, dz) are independent of x.
Working with operators of the type (2.55) or (2.56), we see that the Lévy

kernel M1(·,dz) and M2(·,dz) can be approximated by bounded kernels of the
form

Mi,ε(·,dz) = 1|z|≥εMi(·,dz), i = 1, 2.

We see that as ε goes to 0, the integro-differential operators (2.55) or (2.56) are
limits of bounded non-local operators of the type (2.57).

Definition 2.53 (order γ). We say that an integro-differential operator I = Iγ
is (a) of order γ = 0 (or bounded) if

Iϕ =

∫
Rd∗

[ϕ(·+ z)− ϕ]M(·,dz), with

∫
Rd∗
M(·,dz) <∞,

(b) of order γ in (0, 1] if

Iϕ =

∫
Rd∗

[ϕ(·+ z)− ϕ]M(·,dz),

with

∫
|z|<1

|z|γM(·,dz) +

∫
|z|≥1

M(·,dz) <∞,

(c) of order γ in (1, 2] if

Iϕ =

∫
Rd∗

[ϕ(·+ z)− ϕ− z · ∇ϕ1|z|<1]M(·,dz),

with

∫
|z|<1

|z|γM(·,dz) +

∫
|z|≥1

M(·,dz) <∞.

In all cases, γ is also referred to as the order of the Lévy kernel M(·,dz) =
Mγ(·,dz).
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Notice that the order γ of an integro-differential operator does not (com-
pletely) characterize the behaviour of the singularity of the Lévy kernel M(·,dz).
Actually, the most significant values are γ = 0 (where the operator is bounded),
γ = 1 (where the expression used to define operator changes), and in general
γ = 2. The use of “order” of the operator may be questionable, since an operator
of order γ is also an operator of order γ′, for any γ ≤ γ′ ≤ 2. For the sake of
simplicity we use the expression “of order γ” instead of “of order at most γ”.

It is hard to track the dependency on the variable x of the Lévy kernel
M(x, dz) to ensure that the integro-differential operator I acts on Lebesgue
(Sobolev) and Hölder spaces. We will make precise how the variable x intervenes
on the Lévy kernel M(x, dz), allowing enough flexibility to include modulation
of the amplitude (or intensity) of jumps (well adapted for stochastic differential
equations, see Gikhman and Skorokhod [99, p. 215]) and the density (or size) of
jumps (better adapted for the martingale problem theory, see Bensoussan and
Lions [17, p. 251]).

A priori the integro-differential operator is defined for functions ϕ(x), with
x in the whole space Rd. However, we want to consider equations on a domain
Ω of Rd, with either Dirichlet or Neumann boundary conditions, and even with
oblique boundary conditions. We then need to localize the operator into Ω, e.g.,
by extending the data ϕ onto RdrΩ. Thus Iϕ becomes Iϕ̃, where ϕ̃ is a suitable
extension of ϕ (defined only on Ω) to the whole space Rd. The extension depends
on the boundary value problem under consideration, which has a probabilistic
interpretation. For instance, it is natural to use the zero-extension to study
homogeneous Dirichlet boundary conditions. This corresponds to stopping the
diffusion process with jumps (in the whole space Rd) at the first exit time of the
domain Ω. It is clear that the zero-extension will present some extra difficulties,
e.g., if ϕ belongs to W 1,p

0 (Ω) ∩W 2,p(Ω) then the zero-extension ϕ̃ belongs to
W 1,p

0 (Rd) but in general, it is not an element of W 2,p(Rd).
As seen later, to treat the homogeneous Neumann (or oblique) boundary

conditions, we will use a condition on the jumps (namely, no jumps outside
of Ω) that will make the extension unnecessary, i.e., any extension ϕ̃ of ϕ will
produce the same value for Iϕ̃.

2.11.1 The Epsilon-estimates

We need to describe the dependency of the variable x in the Lévy kernel
M(x, dz). Suppose that there exist a σ-finite measure space (F,F , π), two Borel
measurable functions j(x, ζ) and m(x, ζ) from Rd × F into Rd∗ and [0,∞), re-
spectively, such that

M(x,A) =

∫
{ζ:j(x,ζ)∈A}

m(x, ζ)π(dζ), (2.58)

for any Borel measurable subset A of Rd∗. The functions j(x, ζ) and m(x, ζ)
are called the jump size (or amplitude) and the jump density (or intensity),
respectively. The conditions (2.55), (2.56) or (2.57) on the singularity at the
origin of the Lévy kernel M(x,dz) will be assumed to hold uniformly in x, so
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that for some measurable function ̄(ζ) from F into (0,∞) and some constant
C0 > 0 we have |j(x, ζ)| ≤ ̄(ζ), 0 ≤ m(x, ζ) ≤ 1,∫

{̄<1}
[̄(ζ)]γπ(dζ) +

∫
{̄≥1}

π(dζ) ≤ C0,
(2.59)

where 0 ≤ γ ≤ 2 is the order of the Lévy kernel. Actually, we may allow
0 ≤ m(x, ζ) ≤ C if we re-define the measure π(dζ).

Thus, for any smooth function ϕ the integro-differential operator has the
form 

Iϕ =

∫
F

[ϕ(·+ j(·, ζ))− ϕ]m(·, ζ)π(dζ) =

=

∫ 1

0

dθ

∫
F

j(·, ζ) · ∇ϕ(·+ θj(·, ζ))m(·, ζ)π(dζ),
(2.60)

for 0 ≤ γ ≤ 1 and
Iϕ =

∫
{̄<1}

[ϕ(·+ j(·, ζ))− ϕ− j(·, ζ) · ∇ϕ]m(·, ζ)π(dζ) +

+

∫
{̄≥1}

[ϕ(·+ j(·, ζ))− ϕ]m(·, ζ)π(dζ),
(2.61)

for 1 < γ ≤ 2, where the first term can be rewritten as∫ 1

0

(1− θ)dθ
∫
{̄<1}

j(·, ζ) · ∇2ϕ(·+ θj(·, ζ))j(·, ζ)m(·, ζ)π(dζ).

In order to study this integro-differential operator as acting on Lebesgue
(Sobolev) spaces, we will need to perform a change of variables. Assume that
the jump amplitude function j(x, ζ) is continuously differentiable in x for any
fixed ζ, and that there exist a constant c0 > 0 such that for any x, x′ and
0 ≤ θ ≤ 1 we have

c0|x− x′| ≤ |(x− x′) + θ[j(x, ζ)− j(x′, ζ)]| ≤ c−1
0 |x− x′|. (2.62)

This implies that the change of variables X = x+ θj(x, ζ) is a diffeomorphism
of class C1 in Rd, for any θ in [0, 1] and ζ in F. Moreover, the Jacobian of the
transformation satisfies

c−1
1 ≤ det[Id + θ∇j(x, ζ)] ≤ C1, (2.63)

for any x, ζ, θ and some constants C1, c1 ≥ 1. Here Id is the identity matrix in
Rd, ∇j(x, ζ) is the matrix of the first partial derivatives in x, and det[·] denotes
the determinant of a matrix.

In order to study the integro-differential operator in the Hölder space Cα,
we also need Hölder continuity of the amplitude and density of jumps. For some
exponent 0 < α < 1 we assume that there exist a measurable function (again
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denoted by) ̄(·) from F into (0,∞) and some constant M0 > 0 such that for
any x, x′ and ζ we have

|j(x, ζ)− j(x′, ζ)| ≤ ̄(ζ)|x− x′|α,

|m(x, ζ)− m(x′, ζ)| ≤M0|x− x′|α,∫
{̄<1}

[̄(ζ)]γπ(dζ) +

∫
{̄≥1}

π(dζ) ≤M0.

(2.64)

Let O be a bounded subset of Rd and set Oε = {x ∈ Rd : x = y + z, y ∈
O, |z| < ε}. Due to the non-local character of the integro-differential operator
I we need a function ϕ to be defined in a neighborhood of the closure O to
consider Iϕ in O. Thus, we define the support of I as the closed subset OI of
Rd, where

OI =
⋃
{x+ suppM(x, ·) : x ∈ O} (2.65)

and suppM(x, ·) means the support of the Lévy kernel (or measure)

M(x,B) =

∫
j(x,ζ)∈B

m(x, ζ)π(dζ) , B ⊂ Rd∗ measurable Borel .

Proposition 2.54 (ε-estimates). If the integro-differential operator I has the
form (2.60) or (2.61), and conditions (2.59) and (2.62) are satisfied then for ev-
ery ε > 0 there exists constants C and C(ε) depending only on ε, the dimension
d, the bounds C0 and c1 of conditions (2.59) and (2.63) such that

‖Iϕ‖Lp(O) ≤ C‖ϕ‖Lp(OI), if γ = 0,

‖Iϕ‖Lp(O) ≤ ε‖∇ϕ‖Lp(Oε) + C(ε)‖ϕ‖Lp(OI), if 0 < γ ≤ 1

and, if 1 < γ ≤ 2, then

‖Iϕ‖Lp(O) ≤ ε‖∇2ϕ‖Lp(Oε) + C(ε)

[
‖ϕ‖Lp(OI) + ‖∇ϕ‖Lp(O)

]
,

for 1 ≤ p ≤ ∞. Moreover, if we also assume the Hölder condition (2.64) on the
coefficients, then the above estimates are valid with the Cα-norm instead of the
Lp-norm, and in this case the constants C and C(ε) depends also on the bounds
M0 of assumption (2.64).

At this point, it should be clear that the integro-differential operator I is
naturally non-local, i.e., we need to use functions defined on the whole space Rd.
So, a direct approach to consider I as acting on functions ϕ defined only on a
(proper) domain Ω of Rd, is to extend first ϕ to the whole space. Thus, denoting
by ϕ̃ a suitable extension of ϕ, we have Iϕ = Iϕ̃, by definition. However, if we
assume that

m(x, ζ) 6= 0 implies x+ θj(x, ζ) ∈ Ω, ∀θ ∈ [0, 1], (2.66)
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valid for any (x, ζ) in Ω×F, then we see that the value Iϕ = Iϕ̃ is independent
of the extension ϕ 7→ ϕ̃ used. Indeed, notice that Iϕ̃ is always defined as the
limit Iεϕ̃, where the Lévy kernel of Iε is Mε(·,dz) = 1(|z|>ε)M(·,dz). Condition

(2.66) means that all jumps from Ω are within Ω. Hence, under this condition
(2.66), we may consider Iϕ without any reference to the extension used for its
proper definition (included estimates on its norm).

From the stochastic process viewpoint, some action should be taken when the
jumps are outside of the region under consideration, e.g., we may stop or reflect
the jumps, so that condition (2.66) will be eventually satisfied for the actual (or
modified) jumps. So that in general, this will take care of Dirichlet, Neumann
and oblique boundary conditions. However, for homogeneous Dirichlet bound-
ary conditions problems, we have a natural zero-extension which corresponds
to stopping the stochastic process at the first exit time of Ω. The problem with
zero-extension is that a function ϕ in W 2,p(Ω)∩W 1,p

0 (Ω) gives a zero-extension
ϕo in W 1,p(Rd), but the first order derivative may be discontinuous across the
boundary ∂Ω. To overcome this difficulty, we need to impose some integrability
conditions on the functions

mΩ(x, ζ) = 1(x+j(x,ζ) 6∈Ω)m(x, ζ),

m1
Ω(x, ζ) = j(x, ζ)mΩ(x, ζ)

as seen below. Indeed, let denote by IΩ the integro-differential operator corre-
sponding to the density mΩ, i.e. for a smooth function v in the whole space Rd
and for 1 < γ ≤ 2 we have

IΩv(x) = lim
ε→0

∫
̄≥ε

[v(x+ j(x, ζ))− v(x)]mΩ(x, ζ)π(dζ)

− lim
ε→0

∫
ε≤̄<1

∇v(x+ j(x, ζ)) · m1
Ω(x, ζ)π(dζ).

Thus, we can write Iv = IΩv+(I− IΩ)v and, for any x in Ω, the first term (i.e.,
IΩv) reduces to only one integral and the second term vanishes if the function
v vanishes in Ω. Hence, if ϕo and ϕ̃ are two extensions to the whole space of
a given function in Ω (e.g., ϕo the zero-extension and ϕ̃ a smooth extension)
then v = ϕo − ϕ̃ vanishes in Ω. Assuming v smooth (which may not be the
case!) we may use the previous argument to see that Iϕo = Iϕ̃ + IΩ(ϕo − ϕ̃).
Thus, we have the following localization of the operator I, by imposing the above
vanishing property for non-smooth functions.

Definition 2.55 (localization). Let Ω be a bounded domain in Rd with smooth
boundary, e.g., C2+α, and let I be the integro-differential operator given by
(2.60) or (2.61) of order γ in [0, 2]. For a smooth function ϕ defined on Ω we
denote by ϕo the zero-extension to whole space Rd and by ϕ̃ a smooth (say
C2+α) extension. Under the conditions (2.59) we define the localization of I (to
the domain Ω) as Iϕo = Iϕ̃+ IΩ(ϕo − ϕ̃), where the operator IΩ is given by

IΩ(ϕo − ϕ̃) = −
∫
{ζ∈F : x+j(x,ζ)6∈Ω}

ϕ̃(·+ j(·, ζ))m(·, ζ)π(dζ),
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with the above notation.

If I has the form (2.61) of order γ in (1, 2], then we assume that for some
γ1 in [1, γ] there exist a measurable function λ1(ζ) and a constant K1 > 0 such
that for every x in Ω and ζ with x+ j(x, ζ) belonging to Rd r Ω, |j(x, ζ)|m(x, ζ) ≤ d1−γ1(x, ∂Ω)λ1(ζ),∫

̄<1

λ1(ζ)π(dζ) ≤ K1,
(2.67)

where d(x, ∂Ω) denotes the distance from x to the boundary ∂Ω, and ̄(ζ) is the
function in (2.59). Notice that if x is in Ω but x+ j(x, ζ) is not in Ω then

|j(x, ζ)|m(x, ζ) = |j(x, ζ)|γ |j(x, ζ)|1−γm(x, ζ) ≤

≤ |j(x, ζ)|γd1−γ(x, ∂Ω)m(x, ζ).

The function λ(ζ) = supx |j(x, ζ)|γm(x, ζ) is bounded by [̄(ζ)]γ , which is inte-
grable in view of assumption (2.59). This show that condition (2.67) is always
satisfied with γ1 = γ. This γ1 in [1, γ] is called the boundary order of I (and of
the Lévy Kernel) with respect to the bounded domain Ω.

In Hölder spaces, we need to assume that the function mΩ(x, ζ) = m(x, ζ)
only if x+ j(x, ζ) 6∈ Ω and zero otherwise, satisfies the following inequalities for
any x, x′ and ζ

∫
F

(
̄Ω(ζ) ∧ 1

)1−α
mΩ(x, ζ)π(dζ) ≤M1,∣∣∣∣ ∫

̄<1

j(x, ζ)mΩ(x, ζ)π(dζ)−

−
∫
̄<1

j(x′, ζ)mΩ(x′, ζ)π(dζ)

∣∣∣∣ ≤M1|x− x′|α,∫
F

(
̄Ω(ζ) ∧ 1

)
|mΩ(x, ζ)− mΩ(x′, ζ)|π(dζ) ≤M1|x− x′|α,

(2.68)

where the function ̄(ζ) is as in assumption (2.59), ̄Ω(ζ) = sup{|j(x, ζ)| : x ∈
Ω, x+j(x, ζ) 6∈ Ω}, the constant M1 is positive and the exponent α is the same
as in condition (2.64).

We modified Proposition 2.54 as follows.

Proposition 2.56 (ε-loc-estimates). If the integro-differential operator I has
the form (2.60) or (2.61), and conditions (2.59), (2.62) and (2.67) are satisfied
then for any smooth function ϕ which vanishes on the boundary ∂Ω we have the
following estimates:
(1) if γ = 0 and 1 ≤ p ≤ ∞ then

‖Iϕ‖Lp(Ω) ≤ C‖ϕ‖Lp(Ω),

(2) if 0 < γ ≤ 1 and 1 ≤ p ≤ ∞ then

‖Iϕ‖Lp(Ω) ≤ ε‖∇ϕ‖Lp(Ω) + C(ε)‖ϕ‖Lp(Ω),
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(3) if 1 < γ1 ≤ γ ≤ 2 and 1 ≤ p < d/(γ1 − 1) or if γ1 = 1 and 1 ≤ p ≤ ∞ then

‖Iϕ‖Lp(Ω) ≤ ε‖∇2ϕ‖Lp(Ω) + C(ε)

[
‖∇ϕ‖Lp(Ω) + ‖ϕ‖Lp(Ω)

]
,

where ε > 0 is arbitrary and the constant C and the function C(ε) depend
only on d, γ1, Ω and the bounds in conditions (2.59) and (2.62). Moreover, if
γ > 1−α, (2.64) and (2.68) are satisfied, then we have the following estimates:
(1) if γ = 0 then

‖Iϕ‖Cα(Ω) ≤ C‖ϕ‖Cα(Ω),

(2) if 0 < γ ≤ 1 then

‖Iϕ‖Cα(Ω) ≤ ε‖∇ϕ‖Cα(Ω) + C(ε)‖ϕ‖Cα(Ω),

(3) if 1 < γ ≤ 2 then

‖Iϕ‖Cα(Ω) ≤ ε‖∇
2ϕ‖Cα(Ω) + C(ε)

[
‖∇ϕ‖Cα(Ω) + ‖ϕ‖Cα(Ω)

]
,

where ε > 0 is arbitrary and the constant C and the function C(ε) depend only
on d, Ω and the bounds in conditions (2.59), (2.64), (2.67) and (2.68).

2.11.2 A Priori Estimates

The starting point of the Lp theory is a second order (uniformly) elliptic differ-
ential operator L of the form (2.24) and a boundary first order operator B of the
form (2.25) where Ω is a domain with C2 boundary and the coefficients satisfy
(2.26). When Ω = Rd the second-order coefficients are uniformly continuous
(and bounded) and certainly, for Dirichlet boundary conditions, the boundary
operator B is not necessary.

Consider L − I as an unbounded operator in Lp(Ω), with either Dirichlet
boundary conditions or B-oblique boundary conditions. Mixed boundary con-
ditions can be used as long as the boundary ∂Ω is composed by two smooth
(closed and disjointed) portions Γ and ∂ΩrΓ on which Dirichlet and B-oblique
boundary conditions are imposed. Unless Ω is the whole space Rd, the integro-
differential operator I need to be localized and assumptions should be such that
the ε-estimates hold. For instance, besides hypotheses (2.59) and (2.62), if (ho-
mogeneous) Dirichlet boundary conditions are used then we need to impose
also (2.67) with boundary order γ1 such that (γ1 − 1)p < d. However, for (ho-
mogeneous) B-oblique boundary conditions we need to impose (2.66), i.e., the
localization is trivial since no jumps outside Ω are allowed.

Set A := I − L, based on the ε-estimates of the Proposition 2.56 and the
Agmon-Douglis-Nirenberg estimates (2.27) for (uniformly) elliptic differential
operator L, we deduce that for any 1 < p < ∞ there is a positive constant
C = Cp depending only on p, µ, the bounds of the coefficients aij , ai, a0, the
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modulus of continuity of aij , the domain Ω and the bounds in the assumptions
on I, such that{

‖u‖2,p ≤ C
[
‖Au‖0,p + ‖u‖p

]
, ∀u ∈W 2,p(Ω),

satisfying either u = 0 on ∂Ω or Bu = 0 on ∂Ω,
(2.69)

where ‖ · ‖p is the norm in Lp(Ω), W 2,p(Ω) is the Banach (Sobolev) space of
functions whose derivatives up to the 2 belong to Lp, with the natural norm
‖ · ‖2,p. When Ω = Rd, the same a priori bounds hold for u in W 2,p(Rd).

Therefore, we deduce that for some constants Cp > 0 and ωp > 0 the
following estimate holds

‖∂2
xu‖p + |λ|1/2‖∂xu‖p + |λ|‖u‖p ≤ Cp‖Au− λu‖p, (2.70)

for every u in W 2,p(Ω) satisfying either u = 0 on ∂Ω or Bu = 0 on ∂Ω, and for
any λ with <(λ) ≥ ωp. Hence, the (elliptic) integro-differential operator A with
domain D(A) defined as the Sobolev space W 2,p(Ω) with one of the boundary
conditions either u = 0 on ∂Ω or Bu = 0 on ∂Ω, generates an analytic semigroup
in Lp(Ω).

Once a priori estimates have been obtained, the above argument applies to
Hölder space Cα(Ω), 0 < α < 1 and to some extend to C1(Ω), C0(Ω), L1(Ω)
and L∞(Ω).

2.11.3 Maximum Principles

In order to apply the theory of Markov-Feller semigroups we need to establish the
maximum principle for (elliptic) integro-differential operators. There are several
versions (depending on regularity imposed on the solution) of the maximum
principle valid for elliptic second-order differential operators of the form (2.24).
Moreover, the type of maximum principle we need to obtain a Markov-Feller
semigroup is of a global character and related to an equation of the form{

Iu− Lu = f in Ω

u = 0 on Rd r Ω,
(2.71)

and {
Iu− Lu = f in Ω

Bu = 0 on ∂Ω,
(2.72)

or even mixed boundary conditions. The maximum principle is formally stated
as follows: Let u be a function satisfying (2.71) or (2.72) with f ≥ 0 then
u ≥ 0. Certainly, the function space where u belongs and the assumptions on
the coefficients of the operators L and I determine the meaning of the above
equations.

The interested reader should consult the books Garroni and Menaldi [93,
94] for a comprehensive study on second-order integro-differential problems,
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and Portenko [203] and Skubachevskii [231], among others, for more general
boundary conditions.

For unbounded domains Ω an extra conditions of the type a0(x) ≥ c > 0 for
some positive constant c is necessary to prevent ergodic situations. Really, to
generate a Markov-Feller semigroup S(t) satisfying S(t)1 = 1 for every t ≥ 0 we
need a0(x) = 0, for any x, otherwise, we have a sub-Makovian Feller semigroup.

To conclude, let us mention that the analytic semigroup generated under the
conditions of the previous section, is also a Feller-Markov semigroup in C0(Ω).

2.12 Green and Poisson Functions

This is a short comment on (elliptic/parabolic) integro-differential operators
with oblique boundary conditions as discussed in the books by Garroni and
Menaldi [93, 94]. For instance, for a comprehensive analysis on the oblique
boundary conditions for parabolic second-order differential equations we can
see Tsuchiya [251, 252], and for Wentzell boundary conditions we can check
Menaldi and Tubaro [177], and even more general type of boundary conditions
can be found in the books Portenko [203] and Skubachevskii [231], among others.

The modern (analytic) semigroup theory is a powerful method to treat many
problems. Perhaps a classic application is to study parabolic equations from el-
liptic equations, where starting from a priori (elliptic) estimates the whole theory
of parabolic equations can be developed. For elliptic and parabolic equations
there are (classic) direct arguments based on so called Green and Poisson func-
tions. Essentially, the inverse of an integro-differential problem is a Fredholm
operator of an integral type, and in the case of parabolic equations this is related
with a Markov process. Actually, the density probability transition function of
a Markov process is the Green functions and the so-called local time is related
with the Poisson function.

Let L−I be an elliptic integro-differential operator as in the previous section.
Given three functions f(x, t), ψ(x, t) and ϕ(x) defined for x ∈ Ω and t ∈ [0, T ],
we consider the second order integro-differential parabolic equation

∂tu+ Lu = Iu+ f in Ω× (0, T ] ,

u = ϕ on Ω× {0} ,
Bu = 0 on ∂Ω× [0, T ] ,

(2.73)

with homogeneous oblique boundary conditions, and
∂tv + Lv = Iv in Ω× (0, T ] ,

v = 0 on Ω× {0} ,
Bv = ψ on ∂Ω× [0, T ] ,

(2.74)

with non homogeneous oblique boundary conditions.

Definition 2.57 (Green/Poisson function). A measurable function G(x, t, ξ)
defined in Ω×(0, T ]×Ω and locally integrable in (t, ξ) is called a Green function
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for the parabolic second order integro-differential operator L − I in Ω, with
oblique boundary conditions given by first order differential operator B on ∂Ω
if for any smooth functions f(ξ, τ) and ϕ(ξ) with compact supports in Ω×(0, T ]
and Ω, respectively, the potential function

u(x, t) =

∫ t

0

dτ

∫
Ω

G(x, t− τ, ξ)f(ξ, τ)dξ +

∫
Ω

G(x, t, ξ)ϕ(ξ)dξ

is either a classic solution, i.e., in the space C2,1(Ω×(0, T ])∩C1,0(∂Ω×(0, T ]) or
a strong solution, i.e., in the space W 2,1

p (Ω× (0, T )) of the problem (2.73) with
homogeneous oblique boundary conditions. Similarly, the Poisson function is a
measurable function P (x, t, ξ) defined in Ω× (0, T ]× ∂Ω and locally integrable
in (t, ξ) such that the potential function

v(x, t) =

∫ t

0

dτ

∫
∂Ω

P (x, t− τ, ξ)ψ(ξ, τ)dξ

is either a classic solution, i.e., in the space C2,1(Ω× (0, T ])∩C1,0(∂Ω× [0, T ])
or a strong solution, i.e., in the space W 2,1

p (Ω × (0, T )) of the problem (2.74)
with non homogeneous oblique boundary conditions, for any smooth function
ψ(ξ, τ) with a compact support in ∂Ω× (0, T ].

The differential part of the Green function GL is the piece of the Green
function due to the differential operator L, i.e., the solution u of the equation

∂tu+ Lu = f in Ω× (0, T ] ,

u = ϕ on Ω× {0} ,
Bu = 0 on ∂Ω× [0, T ] ,

with homogeneous oblique boundary conditions, is given by the expression

u(x, t) =

∫ t

0

dτ

∫
Ω

GL(x, t− τ, ξ)f(ξ, τ)dξ +

∫
Ω

GL(x, t, ξ)ϕ(ξ)dξ ,

for any smooth functions f(ξ, τ) and ϕ(ξ) with compact supports in Ω× (0, T ]
and Ω. Actually, in view of the estimates on GL, the above representation for-
mula remains valid for a more general class of functions, either in the Hölder
space C2+α,1+α/2(Ω×(0, T ]), 0 < α < 1 or in the Sobolev space W 2,1

p (Ω×(0, T )),
1 < p <∞.

The following results are found in Solonnikov [232, 233] and Ivasǐsen [114]

Theorem 2.58. Let Ω be a bounded domain in Rd with its boundary ∂Ω of
class C1,α, with 0 < α < 1, and L and B be the operators as above, satisfying
(2.26). Then the strong Green function for the parabolic second order differential
operator ∂t+L in Ω×(0, T ], with oblique boundary conditions given by first order
differential operator B on ∂Ω× [0, T ] exists and satisfies the following estimate

|∇`GL(x, t, ξ)| ≤ Ct−(d+`)/2 exp(−c|x− ξ|2/t) ,
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for every (x, t, ξ) in Ω×(0, T ]×Ω, for any ` = 0, 1, 2 and some positive constants
C and c. Moreover, if the boundary ∂Ω is of class C2,α and the lower order
coefficients ai are in Cα(Ω) and the boundary coefficients bi are in C1+α(∂Ω),
then GL is the classic Green function and enjoys the estimates

|∇`GL(x, t, ξ)−∇`GL(y, t, ξ)| ≤M |x− y|αt−(d+`+α)/2 ×

×[exp(−m|x− ξ|2/t) + exp(−m|y − ξ|2/t)] ,

|∇`GL(x, t, ξ)−∇`GL(x, s, ξ)| ≤M |t− s|α/2 ×

×[t−(d+`+α)/2 exp(−m|x− ξ|2/t) +

+s−(d+`)+α/2 exp(−m|x− ξ|2/s)] ,

for every x, y in Ω, s, t in (0, T ] and ξ in Ω, and{
|∇`GL(x, t, ξ)−∇`GL(x, t, η)| ≤M |ξ − η|αt−(d+`+α)/2 ×

×[exp(−m|x− ξ|2/t) + exp(−m|x− η|2/t)]| ,

for every x in Ω, t in (0, T ] and ξ, η in Ω, for any ` = 0, 1, 2 and some positive
constants C, c, M and m. In all estimates, the constants C, c, M and m depend
only on the bounds imposed on the coefficients (of the differential operators L
and B) throughout the various assumptions and, on the domain Ω × (0, T ].
Estimates similar to the above hold for the Poisson function.

Let GL be the Green function associated with the differential operator L. To
construct the Green function G associated with the integro-differential operator
∂t + L− I, we solve a Volterra equation{

either find QI such that QI = QL +QL ? QI ,

or find G such that G = GL +GL ? IG ,
(2.75)

with the relations QL = IGL and G = GL +GL ? QI . Recall that the bullet ?
means the kernel-convolution, i.e., for any ϕ(x, t, y, s) and ψ(x, t, y, s)

(ϕ ? ψ)(x, t, y, s) :=

∫ T

0

dτ

∫
Rd
ϕ(x, t, z, τ)ψ(z, τ, y, s)dz,

and, in particular for any ϕ(x, t, y) and ψ(x, t, y),

(ϕ ? ψ)(x, t, y) :=

∫ t

0

dτ

∫
Rd
ϕ(x, τ, z)ψ(z, t− τ, y)dz,

for every t > 0, x and y in Rd. Actually, we express QI as the following series

QI =

∞∑
n=1

Qn , Q0 = QL, Qn = QL ? Qn−1 , n ≥ 1, (2.76)

where the convergence is in the sense of following Green spaces.
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To estimate the Green function of the integro-differential operator ∂t+L−I
we consider a number of semi-norms used to define the Green function spaces in
the domain Ω× (0, T ]. For any kernel ϕ(x, t, ξ), with x, ξ ∈ Ω, t ∈ (0, T ], k ≥ 0
and 0 < α < 1, we define

C(ϕ, k) = inf{C ≥ 0 : |ϕ(x, t, ξ)| ≤ Ct−1+(k−d)/2, ∀x, t, ξ}, (2.77)

K(ϕ, k) = K1(ϕ, k) +K2(ϕ, k), (2.78)



K1(ϕ, k) = inf{K1 ≥ 0 :

:

∫
Ω

|ϕ(x, t, ξ)|dξ ≤ K1t
−1+k/2, ∀x, t},

K2(ϕ, k) = inf{K2 ≥ 0 :

:

∫
Ω

|ϕ(x, t, ξ)|dx ≤ K2t
−1+k/2, ∀t, ξ},

(2.79)

M(ϕ, k, α) = M1(ϕ, k, α) +M2(ϕ, k, α) +M3(ϕ, k, α), (2.80)

{
M1(ϕ, k, α) = inf{M1 ≥ 0 : |ϕ(x, t, ξ)− ϕ(x′, t, ξ)| ≤

≤M1|x− x′|αt−1+(k−d−α)/2, ∀x, x′, t},
(2.81)


M2(ϕ, k, α) = inf{M2 ≥ 0 : |ϕ(x, t, ξ)− ϕ(x, t′, ξ)| ≤

≤M2|t− t′|α/2[t−1+(k−d−α)/2 ∨ t′−1+(k−d−α)/2
],

∀x, t, t′, ξ},

(2.82)

{
M3(ϕ, k, α) = inf{M3 ≥ 0 : |ϕ(x, t, ξ)− ϕ(x, t, ξ′)| ≤

≤M3|ξ − ξ′|αt−1+(k−d−α)/2, ∀x, t, ξ, ξ′},
(2.83)

{
N(ϕ, k, α) = N1(ϕ, k, α) +N2(ϕ, k, α) +

+N3(ϕ, k, α) +N4(ϕ, k, α),
(2.84)

 N1(ϕ, k, α) = inf{N1 ≥ 0 :

∫
Ω

|ϕ(x, t, ξ)− ϕ(x′, t, ξ)|dξ ≤

≤ N1|x− x′|αt−1+(k−α)/2, ∀x, x′, t, s},
(2.85)


N2(ϕ, k, α) = inf{N2 ≥ 0 :

∫
Ω

|ϕ(x, t, ξ)− ϕ(x, t′, ξ)|dξ ≤

≤ N2|t− t′|α/2[t−1+(k−α)/2 ∨ t′−1+(k−α)/2
],

∀x, t, t′},

(2.86)
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N3(ϕ, k, α) = inf{N3 ≥ 0 :

∫
Ω

|ϕ(x, t, ξ)− ϕ(x, t′, ξ)|dx ≤

≤ N3|t− t′|α/2[t−1+(k−α)/2 ∨ t′−1+(k−α)/2
],

∀t, t′, ξ},

(2.87)

 N4(ϕ, k, α) = inf{N4 ≥ 0 :

∫
Ω

|ϕ(x, t, ξ)− ϕ(x, t, ξ′)|dx ≤

≤ N4|ξ − ξ′|αt−1+(k−α)/2, ∀t, ξ, ξ′},
(2.88)

R(ϕ, k, α) = R1(ϕ, k, α) +R2(ϕ, k, α), (2.89)


R1(ϕ, k, α) = inf{R1 ≥ 0 :

:

∫
Ω

|ϕ(Z, t, ξ)− ϕ(Z ′, t, ξ)|Jη(Z,Z ′)dz ≤

≤ R1η
αt−1+(k−α)/2, ∀Z,Z ′, t, ξ and η > 0},

(2.90)


R2(ϕ, k, α) = inf{R2 ≥ 0 :

:

∫
Ω

|ϕ(x, t, Z)− ϕ(x, t, Z ′)|Jη(Z,Z ′)dz ≤

≤ R2η
αt−1+(k−α)/2, ∀x, t, Z, Z ′ and η > 0},

(2.91)

where the change of variables Z(z) and Z ′(z) are diffeomorphisms of class C1

in Rd, and the Jacobian

Jη(Z,Z ′) = |det(∇Z)| ∧ | det(∇Z ′)| (2.92)

if |Z − Z ′| ≤ η and Z, Z ′ belong to Ω, and vanishing otherwise, here det(·)
means the determinant of a d×d matrix, ∇Z, ∇Z ′ stand for the matrices of the
first partial derivatives of Z(z), Z ′(z) with respect to the variable z, and ∧,∨
denote the minimum, maximum (resp.) between two real numbers.

Definition 2.59 (Green function spaces). Let us denote by Gα,
α
2

k (or Gα,
α
2

k (Ω×
(0, T ],Rn) when necessary), k ≥ 0, n ∈ N and 0 < α < 1, the space of all
continuous functions (or kernels) ϕ(x, t, ξ) defined for x, ξ in Ω ⊂ Rd and 0 <
t ≤ T , with values in Rn (usually n = 1 and k ≥ 0) and such that the above
infima (semi-norms) (2.77),. . . , (2.91) (of order k) are finite. Thus the maximum
of the quantities (2.77),. . . , (2.91), denoted by [[ · ]]k,α = [[ · ]]

G
α, α

2
k

, is the norm of

the Banach space Gα,
α
2

k . When α = 0, we denote by G0
k (or G0

k(Ω × (0, T ],Rn)
when necessary), k ≥ 0, and n ∈ N, the space of all measurable functions (or
kernels) ϕ(x, t, ξ) defined for x, ξ in Ω ⊂ Rd and 0 < t ≤ T , with values in Rn
(usually n = 1 and k ≥ 0) and such that the two infima (2.77) and (2.78) (of
order k) are finite, with the norm [[ · ]]k,0 = [[ · ]]G0

k
.
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The Volterra equations (2.75) is solved in a Green function space Gα,
α
2

k . We
have

Theorem 2.60 (Green function). Under suitable conditions on the coefficients
as discussed above, and in particular if the boundary coefficients bi belongs to
C1+α(∂Ω), for any i = 1, . . . , d, then there exists the (strong) Green function
G(x, t, ξ) for the parabolic second order integro-differential operator ∂t + L − I
in Ω × (0, T ], with oblique boundary conditions given by first order differential
operator B on ∂Ω× [0, T ]. Moreover G = GL +GL ?Q, where Q is the solution
of the Volterra equation (2.75) in the Green function space G0

2−γ , given by (2.76)

with Q0 = IGL and the semi-norms C(∇`GL?Q, 4−`−γ), K(∇`GL?Q, 4−`−γ),
Mi(∇`GL ? Q, 4− `− γ, α), i = 1, 2, Ni(∇`GL ? Q, 4− `− γ, α), i = 1, 2, 3 and
R1(∇`GL ? Q, 4 − ` − γ, α) are finite, for ` = 0, 1. Furthermore, if we assume
Hölder continuous coefficients then G(x, t, ξ) is also the classic Green function

and solution of the Volterra equation (2.75) in the Green function space Gα,
α
2

2−γ . In

this case, the semi-norms M3(∇`GL ?Q, 4− `−γ, α), N4(∇`GL ?Q, 4− `−γ, α,
R2(∇`GL ?Q, 4−`−γ, α), for ` = 0, 1, and the semi-norms C(∇2GL ?Q, 2−γ),
K(∇2GL ?Q, 2−γ), M2(∇GL ?Q, 2−γ, 2α), M(∇2GL ?Q, 2−γ, α), N(∇2GL ?
Q, 2 − γ, α), Ni(∇GL ? Q, 2 − γ, 2α), i = 2, 3 and R(∇2GL ? Q, 2 − γ, α) are
finite.

If G(x, t, ξ) and P (x, t, ξ) are the Green function and the Poisson kernel,
respectively, then any smooth solution of the following (parabolic, differential)
boundary value problem

∂tu+ Lu = Iu+ f in Ω× (0, T ] ,

u = ϕ on Ω× {0} ,
Bu = ψ on ∂Ω× [0, T ] ,

is given by the expression

u(x, t) =

∫ t

0

dτ

∫
Ω

G(x, t− τ, ξ)f(ξ, τ)dξ +

+

∫
Ω

G(x, t, ξ)ϕ(ξ)dξ +

+

∫ t

0

dτ

∫
∂Ω

P (x, t− τ, ξ)ψ(ξ, τ)dξ ,

and the Chapman-Kolmogorov identity

G(x, t+ s, ξ) =

∫
Ω

G(x, t, y)G(y, s, ξ)dy ,

for every x, ξ in Ω and t, s in (0, T ] is satisfied. In particular for f = a0, ϕ = 1
and ψ = b0 we obtain

1−
∫

Ω

G(x, t, ξ)dξ =

∫ t

0

dτ

∫
Ω

G(x, t− τ, ξ)a0(ξ)dξ +

+

∫ t

0

dτ

∫
∂Ω

P (x, t− τ, ξ)b0(ξ)dξ .
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In particular, if a0 = 0 and b0 = 0 then∫
Ω

G(x, t, ξ)dξ = 1 ∀ (x, t) ∈ Ω× (0, T ] ,

which is one of the key property of a transition density function, used to describe
Markov processes. The weak maximum principle implies that G ≥ 0 and some-
time the strong maximum principle yields the strictly positivity of the Green
(and Poisson) functions.

All the above estimates are valid on Ω×[0, T ] for any T > 0. In an unbounded
time interval we have the following

Theorem 2.61 (time-unbounded). Let G(x, t, ξ) be the Green function for the
parabolic second order integro-differential operator ∂t + L − I in Ω × (0,∞],
with oblique boundary conditions given by first order differential operator B on
∂Ω× [0,∞] as given by Theorem 2.60. Then we have the following estimates:
for every δ > 0 there exist positive constants C0, M0 such that for any t, t′ ≥ δ

|∇`G(x, t, ξ)| ≤ C0, ` = 0, 1, 2, (2.93){
|∇`G(x, t, ξ)−∇`G(x′, t′, ξ′)| ≤M0

(
|x− x′|α +

+|t− t′|α/2 + |ξ − ξ′|α
)
,

(2.94)

for any ` = 0, 1, x, ξ and x′, ξ′ in Ω. Moreover, if we assume Hölder continuous
coefficients then for any δ > 0 there exists a positive constant c = c(δ) > 0 such
that

G(x, t, ξ) ≥ c, ∀(x, t, ξ) ∈ Ω× (δ,∞]× Ω , (2.95)

we also have the estimate

|∇G(x, t, ξ)−∇G(x, t′, ξ)| ≤M0 |t− t′|α, (2.96)

and we may let ` = 2 in estimate of (2.94).

• Remark 2.62. Notice that from the technique used in proving of the above
Theorem 2.61 we can estimate the constants C0 and M0 appearing in (2.93),
(2.94) and (2.96) as t, t′ become large, i.e., if we define

q(t) := sup
x

∫
Ω

G(x, t, y)dy, t ≥ 1 (2.97)

then we have for any t′ ≥ t ≥ T the estimates

C0 ≤ CG q(T ), and M0 ≤MG q(T ), T ≥ 1 (2.98)

where the constants CG and MG depend on the semi-norms K2(∇`G, 2 − `),
K2(G, 2), M1(∇`G, 2 − `, α), M3(∇`G, 2 − `, α) and N3(∇`G, 2 − `, α), but all
on the time interval [0, 1]. This means that estimates for the Green function
G(x, t, ξ) on the Green spaces in the time interval [0,∞) are obtained from
estimates on any bounded time interval [0, δ], with δ > 0 plus a bound on the
expression (2.97) of q(t) as t becomes large.
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In all theses estimates applied to integro-differential (or Lévy-type) oper-
ators with a dominant second order differential part. Other situation can be
found in Jacob [115, Vol II, Section 2.7, pp. 138–151], Kolokoltsov [134], Ko-
matsu [135, 136], Mikulevicius and Pragarauskas [181, 182] and Mikulevicius
and Rozovskii [183], among others.

2.13 Examples of Transition Functions

Green and transition functions are essentially the same objects, one is seen as
the inverse of a functional operator (e.g., an integro-differential operator) and
the other is the essence of a Markov-Feller processes.

Let us start with a couple of simple one-dimensional prototypes first in the
whole real line and with boundary conditions in the real semi-line. First recall
that given a locally compact separable complete metric space E, we define C0(E)
as the Banach space of all continuous real functions on E vanishing at infinity,
i.e., f : E → R, continuous and for any ε > 0 there exists a compact subset K
of E such that |f(x)| < ε for any x in ErK. Note that we are using indistinctly
p(t, x,B) or p(x, t, B) for the transition functions.

2.13.1 One-Dimensional

Example 2.1 (Wiener process). On the state space R with its Borel σ-algebra
B we consider

p(t, x,B) :=
1√
2πt

{∫
B

exp
[
− (y − x)2

2t

]
dy
}
,

for any t > 0, x in R and B in B. This is the typical one-dimensional Brownian
motion or Wiener process. The associated semigroup in C0(R) is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) =

=
1√
2π

∫ ∞
−∞

f(x+
√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R. Its infinitesimal generator A is the differential
operator A

D(A) := {f ∈ C0(R) ∩ C2(R) : f ′′ ∈ C0(R)}, Af :=
1

2
f ′′.

The associated resolvent operator in C0(R) is given by

R(λ)f(x) :=

∫
R
f(y) r(λ, x,dy) =

=
1√
2λ

∫ +∞

−∞
f(x+

z√
2λ

) exp
(
− |z|

)
dz,
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where the resolvent kernel is

r(λ, x,B) :=
1√
2λ

∫
B

exp
(
−
√

2λ|x− y|
)
dy.

for every λ > 0, x in R, and B in B. A constant drift b can be added so that
Af = 1

2f
′′+bf ′ and a realization with continuous paths can be constructed.

Example 2.2 (Poisson process). On the state space R with its Borel σ-algebra
B and for a given positive constant c, we consider

p(t, x,B) := e−ct
∞∑
k=0

(ct)k

k!
1B(x+ k),

for any t > 0, x in R and B in B. This is the typical one-dimensional Poisson
process. The associated semigroup in C0(R) is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) = e−ct

∞∑
k=0

(ct)k

k!
f(x+ k),

for every t > 0 and x in R. Its infinitesimal generator is

D(A) := C0(R), Af(x) := c[f(x+ 1)− f(x)], ∀x ∈ R,

Notice that A is a nonlocal operator and that only a cad-lag realization of the
above Poisson process can be constructed. We can generalize this example to a
compound Poisson process (Pt : t ≥ 0), with parameters (c, µ), where c > 0 and
µ is a probability distribution on R. The probability transition function is

p(t, x,B) = e−ct
∞∑
k=0

(ct)k

k!
µk(B), µ0 = δ0, and

µk(B) = (µk−1 ? µ)(B) =

∫
R×R

1B(y + z)µk−1(dy)µ(dz),

for k = 1, 2, . . . , for any t > 0, x in R and B in B, where δ0 is the Dirac measure
at the origin. Since µk are all probability measures, the above series converges.
The associated semigroup in C0(R) is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) =

= e−ct
∞∑
k=0

(ct)k

k!

∫
R
f(x+ y)µk(dy),

for every t > 0 and x in R. Its infinitesimal generator is the bounded (integral)
linear operator on C0(R), defined by

Af(x) := c

∫
R

[f(x+ y)− f(x)]µ(dy), ∀x ∈ R.

Again, only a cad-lag realization of the above Poisson process can be con-
structed.

Section 2.13 Menaldi January 7, 2014



CHAPTER 2. SEMIGROUP THEORY 165

Example 2.3 (Cauchy process). On the state space R with its Borel σ-algebra
B we consider

p(t, x,B) :=
1

π

∫
B

t

t2 + (y − x)2
dy,

for any t > 0, x in R and B in B. The associated semigroup in C0(R) is given
by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) =

1

π

∫ ∞
−∞

f(x+ tz)
1

1 + z2
dz,

for every t > 0 and x in R. Its infinitesimal generator is of the form

Af(x) :=
1

π

∫ ∞
0

f(x+ y) + f(x− y)− 2f(x)

y2
dy, ∀x ∈ R,

and the domain D(A) contains all twice-differentiable functions with compact
support in R. Notice that A is a nonlocal operator and that only a cad-lag
realization of the above Cauchy process can be constructed.

Example 2.4 (Wiener-Poisson). On the state space R with its Borel σ-algebra
B and for a given positive constant c, we consider

p(t, x,B) := e−ct
∞∑
k=0

(ct)k

k!

1√
2πt

{∫
B

exp
[
− (x+ k − y)2

2t

]
dy
}
,

for any t > 0, x in R and B in B. This is the sum of independent Wiener and
Poisson processes. The associated semigroup in C0(R) is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) =

= e−ct
∞∑
k=0

(ct)k√
2π k!

∫ ∞
−∞

f(x+ k +
√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R. Its infinitesimal generator A is the closure of the
(closable) operator Å

D(Å) := C0
0 (R) ∩ C2(R),

Åf(x) :=
1

2
f ′′(x) + c[f(x+ 1)− f(x)], ∀x ∈ R,

Only a cad-lag realization can be constructed as (x + Pt + Wt : t ≥ 0), where
(Wt : t ≥ 0) is a standard Wiener process independent of the Poisson process
(Pt : t ≥ 0). We can generalize this example to a (Wt : t ≥ 0) Wiener process
(with drift b and covariance σ2) and a (Pt : t ≥ 0) compound Poisson processes
(with parameters (c, µ)), independent of each other. Thus b is a real constant,
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σ , c > 0, and µ is a probability distribution on R. Again, a cad-lag realization
is given by (Xt = x+Wt +Pt : t ≥ 0) and the probability transition function is

p(t, x,B) =

∫
B

e−ct
∞∑
k=0

(ct)k

2πt k!
pk(t, x− y)dy,

p0(t, x) =
{∫

R

1√
2πt

exp
[
− (x+ bt− y)2

2t

]
µ(dy)

}
,

pk(t, x) =

∫
R
pk(t, x− y)µ(dy), k = 1, 2, . . . ,

for any t > 0, x ≥ 0 and B in B. Again, since p0 is a probability density and µk

is a probability measure the above series converges. Notice that if µk denotes
the k convolution as defined in Example 2.2, then pk can be expressed as pw?µ

k,
where pw is the probability density transition function of a Wiener process. The
associated semigroup in C0(R) is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) = e−ct

∞∑
k=0

(ct)k√
2π k!

×

×
∫
R
µk(dy)

∫ ∞
−∞

f(x+ y +
√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R. The infinitesimal generator is the closure of the
(closable) integro-differential operator Å

D(Å) := C0
0 (R) ∩ C2(R),

Åf(x) :=
1

2
σf ′′(x) + bf ′(x) + c

∫ ∞
0

[f(x+ y)− f(x)]µ(dy),

for every x in R. Again, notice the nonlocal character of this unbounded oper-
ator.

Example 2.5 (reflecting barrier). On the state space R+
0 := [0,∞) with its

Borel σ-algebra B we consider

p(t, x,B) :=

:=
1√
2πt

(∫
B

{
exp

[
− (y − x)2

2t

]
+ exp

[
− (y + x)2

2t

]}
dy

)
,

for any t > 0, x ≥ 0 and B in B. This represents Brownian motion with reflecting
barrier at x = 0 and the process itself can be constructed as (Xt = |x + Wt| :
t ≥ 0), where (Wt : t ≥ 0) is a standard Wiener process in R. Its associated
semigroup in C0(R+

0 ) is given by

S(t)f(x) :=

∫
R+

0

f(y) p(t, x,dy) =

=
1√
2πt

∫ ∞
−∞

f̌(y) exp
[
− (y − x)2

2t

]
dy,
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where f̌(y) := f(y) if y ≥ 0 and f̌(y) := f(−y) if y ≤ 0, for every t > 0 and
x ≥ 0. The infinitesimal generator is the differential operator

D(A) := {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = 0},

Af :=
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f
′′ + bf ′ and Xt := |x + bt +

Wt|.

The reflected Brownian motion of above Example 2.5 can also be constructed
by means of local time as follows. First, for an given x ≥ 0 we define τx the first
exit time of the open region (0,∞), i.e., τx := inf{t ≥ 0 : x + Wt ≥ 0}. Next,
we look at its running maximum, i.e., Mt := max{x+Ws : τx ≤ s ≤ t}, which
except for a factor 1/2 is called the local time of (x+Wt : t ≥ 0) at the origin.
It can be proved that the process (|x + Wt| : t ≥ 0) has the same law as the
process (x + Mt −Wt : t ≥ 0), which gives another realization of the reflected
Brownian motion.

Example 2.6 (absorbing barrier). On the state space R+ := (0,∞) with its
Borel σ-algebra B we consider

p(t, x,B) :=

:=
1√
2πt

(∫
B

{
exp

[
− (y − x)2

2t

]
− exp

[
− (y + x)2

2t

]}
dy

)
,

for any t > 0, x > 0 andB in B. This represents Brownian motion with absorbing
barrier at 0, i.e., the Brownian motion particle dies at the first time when it hits
the boundary {0}. The process itself can be constructed by stopping (or killing)
the process x+Wt at the first instant τx when it hits the boundary {0}, where
Wt is a standard Wiener process in R, i.e.,

τx := inf{t > 0 : x+Wt = 0},

Xt := x+Wt t < τx, x > 0,

thus (Xt : t ≥ 0) is the Brownian motion with initial value x at time t = 0
and absorbed (or otherwise said killed) at the origin. τx is the lifetime of the
process Xt. Often we introduce an extra point (indicated by 4, or ∞ or ∂) to
the state space R+ := (0,∞), called the coffin state, and defines Xt for all times
by Xt = 4 for t ≥ τx. Its associated semigroup in C0(R+) is given by

S(t)f(x) :=

∫
R+

f(y) p(t, x,dy) =

=
1√
2πt

∫ ∞
−∞

f̂(y) exp
[
− (y − x)2

2t

]
dy,

where f̂(y) := f(y) if y ≥ 0 and f̂(y) := −f(−y) if y ≤ 0, for every t > 0 and
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x ≥ 0. The infinitesimal generator is the differential operator

D(A) := {f ∈ C0(R+) ∩ C2(R+) : f ′′ ∈ C0(R+)},

Af :=
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f
′′+bf ′. Notice that p(t, x,R+) <

1 so that the process Xt dies, i.e., it does hit the boundary x = 0 in a finite time.
The semigroup S(t) may be extended to the space of continuous and bounded
function in [0,∞), where S(t)1 = 0 for all t > 0. Moreover, the Banach space
C0(R+) includes a vanishing boundary condition at infinity and also at x = 0,
so that actually the condition f(0) = 0 in the definition of D(A) is redundant.
Generally, we look at this as a process in the closure [0,∞) and we use the
Banach space C0([0,∞[) instead of C0(]0,∞[).

Sometimes we may use the complementary error function

Erfc(x) :=
2√
π

∫ ∞
x

e−v
2

dv, (2.99)

which satisfies Erfc(0) = 1 and

2

x+
√
x2 + 2

≤
√
π ex

2

Erfc(x) ≤ 2

x+
√
x2 + 1

. (2.100)

Indeed, by considering the functions

f(x) :=
1

x+
√
x2 + 1

− ex
2

∫ ∞
x

e−y
2

dy,

g(x) := ex
2

∫ ∞
x

e−y
2

dy − 1

x+
√
x2 + 2

,

which satisfy f(0) = 1− π
2 > 0 and g(0) = π

2 −
1
2 > 0, we can estimate

ex
2

∫ ∞
x

e−y
2

dy ≤ 2

x
ex

2

∫ ∞
x

2y e−y
2

dy =
1

x
,

so that |f(x)| ≤ 2
x and |g(x)| ≤ 2

x . Calculations show that f ′(x) − 2xf(x) ≤ 0
and g′(x)− 2xg(x) ≤ 0, for any x ≥ 0, and the desired estimate (2.100) follows.

Example 2.7 (sticking barrier). On the state space R+
0 := [0,∞) with its Borel

σ-algebra B we consider

p(t, x,B) :=
1√
2πt

(∫
B

{
exp

[
− (y − x)2

2t

]
− exp

[
− (y + x)2

2t

]}
dy

)
+

+ Erfc
( x√

2πt

)
1B(0),

for any t > 0, x ≥ 0 and B in B. This represents Brownian motion with sticking
barrier at x = 0, i.e., when the Brownian motion particle reaches x = 0 for the
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first time, it sticks there forever. The infinitesimal generator of its associated
semigroup in C0(R+

0 ) is the differential operator

D(A) := {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′′(0) = 0},

Af :=
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f
′′+ bf ′. Notice that comparing

with the previous Example 2.6, now the state space R+
0 includes the barrier

x = 0 and p(t, x,R+
0 ) = 1 for any t > 0 and x in R+

0 . The semigroup takes the
form

S(t)f(x) :=

∫
R+

0

f(y) p(t, x,dy) =

=
1√
2πt

∫ ∞
−∞

f̂(y) exp
[
− (y − x)2

2t

]
dy,

for every x in R+
0 and t > 0. Notice that the function y 7→ f̂(y), where f̂(y) :=

f(y) if y ≥ 0 and f̂(y) := 2f(0)− f(−y) if y < 0, is continuously differentiable
whenever f is so. Thus, the function x 7→ S(t)f(x) can be defined as a smooth
function, for every x in R. The process itself can be constructed by stopping the
process x+Wt at the first instant τx when it hits the boundary {0}, where Wt

is a standard Wiener process in R, i.e.,

τ := inf{t > 0 : x+Wt = 0},

Xt := x+Wt∧τx t ≥ 0, x > 0,

thus (Xt : t ≥ 0) is the Brownian motion with initial value x at time t = 0 and
stopped at the origin.

We may combine the reflecting barrier Example 2.5 and this sticking barrier
to get a process where the domain of the infinitesimal generator D(A) has a
boundary condition of the form f ′(0) − cf ′′(0) = 0 with a positive constant
c instead of just f ′′(0) = 0. This is called sticky barrier. Similarly, we may
combine the reflecting barrier Example 2.5 with the absorbing barrier to get a
process where the domain of the infinitesimal generator D(A) has a boundary
condition of the form f ′(0)− cf(0) = 0 with a positive constant c. This is called
elastic barrier. The construction of a sticky Brownian motion or an elastic
Brownian motion is more delicate, it starts with the reflecting Brownian motion
and its local time at the barrier, the reader is referred to the classic book by Itô
and McKean [113] for a complete analysis.

Example 2.8 (sticky Wiener). On the state space R+
0 := [0,+∞) with its Borel

σ-algebra B we consider

p(t, x, y) :=
1√
2πt

(
exp

[
− (y − x)2

2t

]
− exp

[
− (y + x)2

2t

])
+

+δ(y) e
t+2cx

2c2 Erfc
( t+ cx

c
√

2t

)
+

1

c
e
t+2c(x+y)

2c2 Erfc
( t+ c(x+ y)

c
√

2t

)
,
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for any t > 0, x ≥ 0, y ≥ 0. This represents a slowly reflecting Brownian motion
on [0,+∞), i.e., when the Brownian motion particle reaches x = 0, it sticks there
for some time. The infinitesimal generator of its associated semigroup in C0(R+

0 )
is the differential operator

D(A) := {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = cf ′′(0)},

Af :=
1

2
f ′′.

We can visualize this process as a Brownian motion with a suitable time change,
more specifically, starting with a standard Wiener process x + Wt we have
Xt = x+W`x(t), where

`x(t) = inf{s : As ≤ t}, At =

∫ t

0

1{x+Ws>0} ds+ cMt,

with Mt := max{x+Ws : τx ≤ s ≤ t} and τx := inf{t ≥ 0 : x+Wt ≥ 0}.

Example 2.9 (elastic Wiener). On the state space R+
0 := [0,+∞) with its

Borel σ-algebra B we consider

p(t, x, y) :=
1√
2πt

(
exp

[
− (y − x)2

2t

]
+ exp

[
− (y + x)2

2t

])
−

−c exp
(
c(x+ y) +

c2t

2

)
Erfc

(x+ y + ct√
2t

)
,

for any t > 0, x ≥ 0, y ≥ 0. This represents reflecting Brownian motion on
[0,+∞) killed elastically at x = 0. The infinitesimal generator of its associated
semigroup in C0(R+

0 ) is the differential operator

D(A) := {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = cf(0)},

Af :=
1

2
f ′′.

We can visualize this process as a reflected Brownian motion killed at a random
time r, where P ({r > t}∩B) = E{1B exp(−cτ(t))}, B is any Borel set of C(R+

0 )
and τ(t) is the local time of the Wiener process.

Example 2.10 (doubly reflected Wiener). We consider now a Brownian motion
with state space [0, a]. where a is a positive real number. On the state space
[0, a] with its Borel σ-algebra B we consider

p(t, x,B) :=
∑
k∈Z

1√
2πt

(∫
B

{
exp

[
− (2ka+ y − x)2

2t

]
+

+ exp
[
− (2ka+ y + x)2

2t

]}
dy

)
,

for any t > 0, 0 ≤ x ≤ a and B in B, where Z is the set of all integer numbers.
This represents Brownian motion with reflecting barrier at x = 0 and at x = a.
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The process itself can be constructed as (Xt = ϕa(x + Wt) : t ≥ 0), where
(Wt : t ≥ 0) is a standard Wiener process in R and ϕa is the function x 7→
min{(2a − x), x} for x in [0, 2a] and extended to R as a continuous periodic
function with 2a-period, so that ϕa maps R onto [0, a]. The associated semigroup
in C([0, a]) is given by

S(t)f(x) :=

∫ a

0

f(y) p(t, x,dy) =

=
1√
2πt

∫ ∞
−∞

f [ϕa(y)] exp
[
− (y − x)2

2t

]
dy,

for every t > 0 and 0 ≤ x ≤ a. The infinitesimal generator is the differential
operator

D(A) := {f ∈ C2([0, a]) : f ′(0) = 0, f ′(a) = 0},

Af :=
1

2
f ′′.

A constant drift b can be added so that Af = 1
2f
′′+bf ′ andXt := ϕa(x+bt+Wt).

Notice that p(t, x, [0, a]) = 1 for any t > 0 and x in [0, a].

Example 2.11 (doubly absorbed Wiener). We consider now a Brownian motion
with state space (0, a), where a is a positive real number. On the state space
(0, a) with its Borel σ-algebra B we consider

p(t, x,B) :=
∑
k∈Z

1√
2πt

(∫
B

{
exp

[
− (2ka+ y − x)2

2t

]
−

− exp
[
− (2ka+ y + x)2

2t

]}
dy

)
,

for any t > 0, 0 ≤ x ≤ a and B in B, where Z is the set of all integer numbers.
This represents Brownian motion with absorbing barrier at x = 0 and at x = a,
i.e., the Brownian motion particle dies at the first time when it hits the boundary
x = 0 or x = a. The process itself can be constructed as (Xt = x+Wt∧τ : t ≥ 0),
where (Wt : t ≥ 0) is a standard Wiener process in R and τ is the first exit time
from the open set (0, a) for the process x+Wt, i.e.,

τ := inf{t > 0 : x+Wt ≤ 0 or x+Wt ≥ a}, t ≥ 0, x > 0,

The associated semigroup in C0(]0, a[) is given by

S(t)f(x) :=

∫
R+

0

f(y) p(t, x,dy) =

=
1√
2πt

∫ ∞
−∞

f̂a(y) exp
[
− (y − x)2

2t

]
dy,

for every t > 0 and 0 ≤ x ≤ a, where now f̂a(y) = f [ϕa(y)] if y ≥ 0 and f̂a(y) =
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−f [ϕa(y)] if y ≤ 0. The infinitesimal generator is the differential operator

D(A) := {f ∈ C0(]0, a[) ∩ C2(]0, a[) :

: f ′′ ∈ C0(]0, a[), f(0) = 0, f(a) = 0},

Af :=
1

2
f ′′.

Technically, the points 0 and a does not belong to the domain of definition of
functions f in the Banach space C0(]0, a[), but we identify C0(]0, a[) with the
subspace of C([0, a]) = C0([0, a]) satisfying f(0) = f(a) = 0. Again notice that
p(t, x, ]0, a[) < 1 and that the semigroup S(t) may be considered as defined on
the Banach C([0, a]) where S(t)1 = 0 for all t > 0, so that the state of the
process could be regarded as [0, a]. A constant drift b can be added so that
Af = 1

2f
′′ + bf ′. and Xt := x + bt ∧ τ + Wt∧τ ), where τ is now the first exit

time from the open set (0, a) for the process (bt+Wt : t ≥ 0).

Some details on Brownian motion on a finite interval relative to Exam-
ples 2.10 and 2.11 can be found in Karatzas and Shreve [124, Section 2.8.c, pp.
97–100].

Example 2.12 (periodic Wiener). We consider now a Brownian motion with
state space [0, a]. where a is a positive real number. On the state space [0, a]
with its Borel σ-algebra B we consider

p(t, x,B) :=
∑
k∈Z

1√
2πt

(∫
B

{
exp

[
− (ka+ y − x)2

2t

]}
dy

)
,

for any t > 0, 0 ≤ x ≤ a and B in B, where Z is the set of all integer numbers.
This represents Brownian motion on a circle (the interval [0, a], with 0 and
a identified). The process itself can be constructed as (Xt = ψa(x + Wt) :
t ≥ 0), where (Wt : t ≥ 0) is a standard Wiener process in R and ψa(x) =
x− a[x/a] (where [x] denotes the integral part of x), which maps R onto [0, a].
The associated semigroup in C#(0, a) = {f ∈ C([0, a]) : f(0) = f(a)} is given
by

S(t)f(x) :=

∫ a

0

f(y) p(t, x,dy) =

=
1√
2πt

∫ ∞
−∞

f [ψa(y)] exp
[
− (y − x)2

2t

]
dy,

for every t > 0 and 0 ≤ x ≤ a. The infinitesimal generator is a closed extension
of the differential operator Af := 1

2f
′′ with domain

D(A) := {f ∈ C#(0, a) ∩ C2([0, a]) : f ′′(0) = f ′′(a)}.

Notice that even if ψa is not continuous, the composition x 7→ f [ψa(x)] is
continuously differentiable for any continuous function f in the domain D(A).
Also, a constant drift b can be added so that Af = 1

2f
′′ + bf ′ and Xt :=

ψa(x+ bt+Wt).
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More generally, we may consider a Sturm-Liouville problem in [0, a] of the
form 

1

2
u′′ + λu = 0, in (0, a),

α0u(0)− β0u
′(0) = αau(a) + βau

′(a) = 0,

(2.101)

where α0, β0, αa, βa ≥ 0, α0 + β0 > 0 and αa + βa > 0. A periodic condition
of the form u(0) − u(a) = u′(0) − u′(a) = 0 can also be used. There is a
sequence of (positive) eigenvalues (0 < λ0 < λ1 < · · · ), λn → ∞ as n → ∞,
with its corresponding eigenfunctions (u0, u1, . . .), satisfying the boundary value
problem (2.101) and form an orthonormal basis in L2(0, a). Certainly, un is a
linear combination of sin(x

√
2λn) and cos(x

√
2λn) and if a = π then when

α0αa = β0βa = 0 and α0βa 6= αaβ0 we have 2
√

2λn = 2n + 1 and when
α0βa = αaβ0 and α0αa 6= 0 or β0βa 6= 0 we have

√
2λn = n. In the case of

periodic boundary conditions, if a = 2π then
√

2λn = n. Define

p(t, x,B) :=

∞∑
n=0

e−tλnun(x)

∫
B

un(y)dy, (2.102)

for every x in [0, a], t > 0 and B in B. The maximum principle ensures that p
in nonnegative, i.e, 0 ≤ p(t, x,B) ≤ 1, for every t, x,B. Parseval equality yields∫ a

0

|p(t, x,B)|2dx =

∞∑
n=0

e−tλn |B|, ∀x ∈ [0, a], t > 0, B ∈ B,

where |B| denotes the Lebesgue measure of the Borel set B. Some more details
are needed to discuss the convergence of the series (2.102), which is the eigen-
values and eigenfunctions expansion of the Green function or Green operator
relative to the boundary value problem (2.101). From here, the associate semi-
group and the stochastic process can be constructed. The interested reader may
consult the pioneer paper Feller [80] related to parabolic differential equations
and the associated semigroups.

Example 2.13 (reflecting Wiener-Poisson). On the state space R+
0 := [0,∞)

with its Borel σ-algebra B and for a given positive constant c, we consider

p(t, x,B) := e−ct
∞∑
k=0

(ct)k

2πt k!

(∫
B

{
exp

[
− (x+ k − y)2

2t

]
+

+ exp
[
− (x+ k + y)2

2t

]}
dy

)
,

for any t > 0, x ≥ 0 and B in B. This is a Wiener-Poisson process with reflecting
barrier at x = 0 and the process itself can be constructed as (Xt = |x+Wt+Pt| :
t ≥ 0), where (Wt : t ≥ 0) is a Wiener process independent of the Poisson process
(Pt : t ≥ 0), both in in R. Its associated semigroup in C0(R+

0 ) is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) =

= e−ct
∞∑
k=0

(ct)k√
2π k!

∫ ∞
−∞

f̌(x+ k +
√
tz) exp

(
− z2

2

)
dz,
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where f̌(y) := f(y) if y ≥ 0 and f̌(y) := f(−y) if y ≤ 0, for every t > 0 and
x ≥ 0. The infinitesimal generator is the differential operator

D(A) := {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = 0},

Af(x) :=
1

2
f ′′(x) + c[f(x+ 1)− f(x)], ∀x ∈ R+

0 .

Only a cad-lag realization can be constructed. We can generalize this example
to a (Wt : t ≥ 0) Wiener process (with drift b and covariance σ) and a (Pt : t ≥
0) compound Poisson processes (with parameters (c, µ)), independent of each
other and with reflecting barrier at x = 0. The compound process is indeed
a subordinator, i.e., increasing in t so that all jumps of the sum process (x +
Wt + Pt : t ≥ 0) are inside the real semi-line [0,∞). Thus c > 0 and µ is
a probability distribution on (0,∞). Again, a cad-lag realization is given by
(Xt = |x+Wt + Pt| : t ≥ 0) and the probability transition function is

p(t, x,B) =

∫
B

e−ct
∞∑
k=0

(ct)k

2πt k!
pk(t, x, y)dy,

pk(t, x, y) =
1√
2πt

(∫ ∞
0

{
exp

[
− (x− y − z)2

2t

]
+

+ exp
[
− (x+ y − z)2

2t

]}
µk(dz)

)
,

µ0 = µ, µk(B) =

∫
R×R

1B(y + z)µk−1(dy)µ(dz),

for every k = 1, 2, . . . , for any t > 0, x ≥ 0 and B in B. Here some work is
necessary to ensure the proper convergence of the above series. Again notice
that µk = µk−1 ?µ is the k convolution of µ. Its associated semigroup in C0(R+

0 )
is given by

S(t)f(x) :=

∫
R
f(y) p(t, x,dy) = e−ct

∞∑
k=0

(ct)k√
2π k!

×

×
∫ ∞

0

µk(dy)

∫ ∞
−∞

f̌(x+ y +
√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x ≥ 0. The infinitesimal generator is the integro-differential
operator

D(A) := {f ∈ C0(R+
0 ) ∩ C2(R+

0 ) : f ′′ ∈ C0(R+
0 ), f ′(0) = 0},

Af(x) :=
1

2
σf ′′(x) + bf ′(x) + c

∫ ∞
0

[f(x+ y)− f(x)]µ(dy),

for every x in R+
0 . If the compound Poisson process Pt has the parameter-

distribution µ in the whole space R then the sum process x+Wt +Pt may have
a jumps outside of the semi-line [0,∞). In this case, we may keep the expression
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(Xt = |x+Wt +Pt| : t ≥ 0) and make appropriated modifications. For instance
the semigroup takes the form

S(t)f(x) := e−ct
∞∑
k=0

(ct)k√
2π k!

×

×
∫
R
µk(dy)

∫ ∞
−∞

f̌(x+ y +
√
tz) exp

(
− z2

2

)
dz,

for every t > 0 and x in R and f̌ as above, however, the boundary condition
for the domain of the infinitesimal generator needs more work. It is clear that
absorbing and sticking barriers can be considered for Wiener-Poisson processes
by means of the expression with f̂ and the stopping argument.

As in Examples 2.6 and 2.7, we can discuss absorbing and sticking barriers
for Wiener-Poisson processes by means of arguments similar to Example 2.13.
This is on the space either R+ = (0,∞) or R+

0 = [0,∞) with its Borel σ-algebra
B and for a given positive constant c, we consider

p(t, x,B) := e−ct
∞∑
k=0

(ct)k

2πt k!
pi(t, x+ k,B), (2.103)

for any t > 0, x ≥ 0 and B in B, where pi(t, x,B) is the transition function for
absorbing barrier with i = 1 or for sticking barrier with i = 2, as in previous
examples. Notice that

p2(t, x,B) = p1(t, x,B) + [1− p1(t, x,R)]1B(0).

In the case of the Wiener-Poisson process, the boundary condition for the ab-
sorbing barrier is clearly f(0) = 0. However, for the sticking barrier boundary
condition is

1

2
f ′′(0) + c[f(0 + 1)− f(0)] = 0,

i.e., the equation is satisfied up to the boundary.
Also the case of a Wiener-Poisson process with periodic conditions can be

easier studied, e.g., a Wiener-Poisson process in R is combined with the opera-
tion modulo [0, a], ψa, as in Example 2.12, which maps R into [0, a].

Trying to extend the doubly reflected Wiener in an interval, Example 2.10, to
a Wiener-Poisson process, we encounter a new difficulty, we may jump outside
the interval. This forces us to make a decision on the jumps, e.g., a natural
extension or reflection. This is a more delicate issue. For instance, if we want
the reflection on an interval [0, a], first we make a periodic condition on [−a, a]
and then we take the absolute value. However, if we want a natural extension,
first we make a constant and continuous extension outside of the given interval
[0, a] and then we use the process in the whole line.

For instance, the reader may consult the books Mandl [164] for a compre-
hensive treatment of one-dimensional Markov processes. On the other hand,
several examples (without jumps) can be found in Borodin and Salminen [30,
Appendix 1, pp. 102-119]
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2.13.2 Multi-Dimensional

In the whole space Rd, d ≥ 2 we have more difficulties. A central role is played
by the Gauss kernel Γ0 defined by

Γ0(x, t, a) :=
1

(2πt)d/2
√

det a
exp

(
− x · a−1x

2t

)
, (2.104)

for every t > 0 and x in Rd, where a is an invertible symmetric nonnegative
d × d-matrix, if we write by components a = (aij) then its inverse a−1 = (aij)
and x ·a−1x =

∑
ij a

ijxixj . When a is the identity matrix 1 we write Γ0(x, t) :=
Γ0(x, t,1). In analysis the constant 1/2 is replaced by 1/4 and called heat kernel.
This function is infinitely differentiable in all its arguments and in particular, for
any derivative ∂`, with ` = (`1, `2, . . . , `d, `t, `a) and |`| = `1 + `2 + · · ·+ `d + 2`t
we have

|∂`Γ0(x, t, a)| ≤ Ct−(d+|`|)/2 exp
(
− c |x|

2

t

)
, (2.105)

for every t > 0 and x in Rd, for some positive constants C = C(d, `, δ) and
c = c(d, `, δ), where the symmetric matrix a satisfies δ|ξ|2 ≤ ξ · aξ ≤ |ξ|2/δ for
any ξ in Rd, for some δ > 0. Also we have∫

Rd
∂`Γ0(x, t, a) dx =

1 if ` = 0,

0 otherwise.
(2.106)

This Γ0(x, t, a) is the probability density transition function of a Wiener process
in Rd, with zero mean and co-variance a. The corresponding resolvent kernel is
given by

R(λ, x) :=
1

(2πt)−d/2
√

det a

∫ ∞
0

exp
(
− x · a−1x

2t
− λt

)
dt =

=
2

(2πt)−d/2

( 2λ

x · a−1x

)(d/4−1/2)

Kd/2−1

(√
2λx · a−1x

)
,

for every λ > 0 and x in Rd, where Kν is the modified Bessel function of 2nd

kind. In particular,

Kn−1/2(z) =

√
π

2z
zn
(
− 1

z

d

dz

)n
ez, n = 0, 1, . . . ,

and so

R(λ, x) :=
1

4π|x|
exp(−

√
2λ|x|),

for d = 3 and a = 1, the identity matrix.
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Example 2.14 (d-dimensional Wiener). A Wiener process with vector mean
b and co-variance matrix a has a transition probability function on the state
space space Rd with its Borel σ-algebra B defined by

p(t, x,B) :=

∫
B

Γ0(x− bt− y, t, a)dy,

for every x in Rd, t > 0 and B in B, where Γ0(x, t, a) is the Gauss kernel
(2.104). Notice that if (Wt : t ≥ 0) is a standard Wiener process starting at the
origin, i.e., with W0 = 0, zero mean and co-variance matrix 1 or equivalently
p(t, x,dy)Γ(x − dy, t) as its transition probability function, then the process
Xt := x+ bt+

√
aWt is a realization of the above Wiener process starting at x.

Also this can be constructed as the product of d independent one dimensional
Brownian motions, i.e., the probability transition density function Γ0(x, t) is
the product of d similar one dimensional expressions Γ0(xi, t) as the one used
in Example 2.1. The associated semigroup in C0(Rd) is given by

S(t)f(x) :=

∫
Rd
f(y) p(t, x,dy) =

=

∫
Rd
f(x+ bt+

√
ta z) Γ0(z, 1) dz,

for every t > 0 and x in Rd. Its infinitesimal generator A is the closure of the
(closable) differential operator Å

D(Å) := C0
0 (Rd) ∩ C2(Rd),

Åf :=
1

2

d∑
i,j=1

aij ∂
2
ijf +

d∑
i=1

bi ∂if,

where aij and bi are the entries of the matrix a and the vector b.

Example 2.15 (Ornstein-Uhlenbeck). This is a modification of a Wiener pro-
cess where a linear drift is added. Two matrices a and b describe the process
X, namely,

Xt(x) = ebtx+

∫ t

0

√
a eb(t−s) dWt,

where (Wt : t ≥ 0) is a standard Wiener process. The process Xt(x) has a
Gaussian distribution with mean ebtx and covariance

qt =

∫ t

0

ebsaeb
∗sds, t > 0,

where b∗ is the adjoint matrix. Thus, the transition probability function of the
Ornstein-Uhlenbeck process (Xt(x) : t ≥ 0) on state space Rd with its Borel
σ-algebra B is given by

p(t, x,B) :=

∫
B

Γ0(ebtx− y, 1, q−1
t ) dy,
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for every x in Rd, t > 0 and B in B, where Γ0(x, t, a) is the Gauss kernel (2.104).
The associated semigroup in C0(Rd) is given by

S(t)f(x) :=

∫
Rd
f(y) p(t, x,dy) =

=

∫
Rd
f(ebtx+ qt z) Γ0(z, 1) dz,

for every t > 0 and x in Rd. Its infinitesimal generator is the closure of the
(closable) differential operator Å

D(Å) := C0
0 (Rd) ∩ C2(Rd),

Åf :=
1

2

d∑
i,j=1

aij ∂
2
ijf +

d∑
i,j=1

bijxj ∂if,

where aij and bij are the entries of the matrices a and b.

Example 2.16 (compound Poisson). A compound poisson process with param-
eter c > 0 and µ, where µ is a distribution in Rd∗ := Rd r {0} has a transition
probability function on the state space space Rd with its Borel σ-algebra B
defined by

p(t, x,B) = e−ct
∞∑
k=0

(ct)k

k!

∫
Rd∗
1B(x+ y)µk(dy),

µ0 = µ, µk(B) =

∫
Rd∗×Rd∗

1B(y + z)µk−1(dy)µ(dz),

for every k = 1, 2, . . . , for any t > 0, x in Rd and B in B. The probability
measures µk = µk−1?µ are called the k-convolution of µ. Based on two sequences
of independent identically distributes random variables with exponential and µ
distribution, a canonical realization of the compound Poisson process can be
constructed. The associated semigroup in C0(Rd) is given by

S(t)f(x) :=

∫
Rd
f(y) p(t, x,dy) =

= e−ct
∞∑
k=0

(ct)k

k!

∫
Rd∗
f(x+ y)µk(dy),

for every t > 0 and x in Rd. Its infinitesimal generator is the integral operator

D(A) := C0(Rd), Af(x) := c

∫
Rd∗

[f(x+ y)− f(x)]µ(dy),

which is clearly a nonlocal operator. If the distribution µ has support in an
open semi-space Rd+ := Rd−1 × (0,∞) then we may consider the compound
Poisson process only in Rd+, which is called subordinator in the one dimensional
case.
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It is clear that we may mix Examples 2.14 and 2.16 to produce a d-dimension-
al Wiener-Poisson process with probability density transition function defined
by 

Γ(x, t) = e−ct
∞∑
k=0

(c t)k

k!
(Γ0 ? µ

k)(x, t),

µ0 := δ0, µk(B) :=

∫
Rd∗×Rd∗

1B(x+ y)µ(dx)µk−1(dy),

(Γ0 ? µ
k)(x, t) :=

∫
Rd∗

Γ0(x− y, t)µk(dy),

(2.107)

for every x in Rd and t > 0, where δ0 is the Dirac measure at the origin.
Since µ is a probability measure on Rd∗, so is µk and the above series is clearly
convergent. The infinitesimal generator takes the form

Af(x) :=
1

2

d∑
i,j=1

aij ∂
2
ijf(x) +

d∑
i=1

bi ∂if(x) +

+c

∫
Rd∗

[f(x+ y)− f(x)]µ(dy),

(2.108)

which is a second order integro-differential (non-local) operator.

Example 2.17 (Neumann). This is a half-space normal reflecting barrier, i.e.,
on the semi-space R̄d+ := Rd−1 × [0,∞), with the notation x = (x̃, xd), we
consider the function

GN0 (x̃, xd, t, ξd) := Γ0(x̃, xd − ξd, t) + Γ0(x̃, xd + ξd, t),

for every t > 0, xd, ξd ≥ 0, and x̃ in Rd−1. As in Example 2.5, we may define a
transition probability function on the state space R̄d+ with its Borel σ-algebra B

p(t, x,B) :=

∫
B

GN0 (x̃− ξ̃, xd, t, ξd) dξ,

for any t > 0, x in R̄d+ and B in B. The arguments are the same, even the con-
struction of the (standard) normal reflected Wiener process in a d-dimensional
half-space is simple, since this is a (d − 1)-dimensional Wiener process and an
independent one-dimensional Wiener process with reflecting barrier at xd = 0.
Expressions for the associated semigroup and its infinitesimal generator can be
obtained, e.g.,

D(A) := {f ∈ C0(R̄d+) : ∆f ∈ C0(R̄d+), ∂df(x̃, 0) = 0},

Af :=
1

2
∆f,

where ∆ is the usual Laplacian operator
∑d
i=1 ∂

2
i , here in the sense of Schwartz

distribution derivative. Except for the 1/2 factor, the local time correspond to
the so-called Poisson kernel which is P0(t, x, ξ̃) := −2 Γ0(x̃ − ξ̃, xd, t), for any
t > 0, x = (x̃, xd) in Rd−1 × (0,∞) and ξ̃ in Rd−1.
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Example 2.18 (Dirichlet). This is a half-space normal reflecting barrier, i.e.,
on the semi-space Rd+ := Rd−1 × (0,∞), with the notation x = (x̃, xd), we
consider the function

GD0 (x̃, xd, t, ξd) := Γ0(x̃, xd − ξd, t)− Γ0(x̃, xd + ξd, t),

for every t > 0, xd, ξd > 0, and x̃ in Rd−1. As in Example 2.6, we may define a
transition function on the state space Rd+ with its Borel σ-algebra B

p(t, x,B) :=

∫
B

GD0 (x̃− ξ̃, xd, t, ξd) dξ,

for any t > 0, x in Rd+ and B in B. The arguments are the same, even the con-
struction of the (standard) stopped Wiener process in d-dimensional half-space
is simple, since this is a (d−1)-dimensional Wiener process and an independent
one dimensional Wiener process with absorbing barrier at xd = 0. If the barrier
xd = 0 is of some interest, then we may proceed as in Example 2.7 and convert
p into a probability transition function. To that effect, we notice that

GD0 (x̃, xd, t, ξd) =
1√
2πt

{
exp

[
− (xd − ξd)2

2t

]
−

− exp
[
− (xd + ξd)

2

2t

]}
Γd−1(x̃, t),

where Γd−1(x̃, t) has the same expression (2.104) with the identity matrix a = 1

in dimension (d− 1). Then we define

p(t, x,B) :=

∫
B

{
1√
2πt

(
exp

[
− (xd − ξd)2

2t

]
−

− exp
[
− (xd + ξd)

2

2t

])
+
[
1− 1√

2πt
×

×
∫ xd

−xd
exp

(
− z2

2t

)
dz
]
1B(ξ̃, 0)

}
Γd−1(x̃− ξ̃, t)dξ,

for any t > 0, x in R̄d+ and B in B. This yields the (standard) sticking Wiener
process in a d-dimensional half-space. Expressions for the associated semi-
group and its infinitesimal generator are obtained immediately from the one-
dimensional case.

A reflected Wiener process with zero mean and co-variance matrix a in a d-
dimensional half-space presents more difficulties. After a rotation of coordinates,
we can reduce the general case of a Wiener process with zero mean and co-
variance matrix a to the case where a is the identity matrix, but the boundary
condition is a oblique reflection, i.e., instead of the condition ∂df(x̃, 0) = 0 on
the domain of the infinitesimal generator A = ∆/2 we have b · ∇f(x̃, 0) = 0,
where ∇ is the gradient operator in the first d-dimensional variable, i.e., x, and
b = (b1, . . . , bd) is a vector with bd > 0. For the boundary value problem

∂tu− 1
2∆u(x, t) = 0, ∀x ∈ Rd+, t > 0,

u(x, 0) = 0, ∀x ∈ Rd+,
b · ∇u(x, t) = ψ(x, t), ∀x ∈ ∂Rd+, t > 0,

(2.109)
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where ∂Rd+ := Rd−1 × {0}, we can calculate the Poisson kernel P b0 as

P b0 (x̃, xd, t) := ϕb(x̃, xd, t) Γ0(x̃, xd, t), (2.110)

and

ϕb(x̃, xd, t) := − 1

|b|2
{
bd +

|b|2xd − bd(b · x)

|b|
√
t/2

×

× exp
[ (b · x)2

2t|b|2
]∫ +∞

(b·x)/|b|
√

2t

e−r
2

dr
}
,

for any t > 0, x = (x̃, xd) in Rd+. Actually, we use P b0 (x̃− ξ̃, xd, t) with ξ̃ in ∂Rd+.

Example 2.19 (oblique). This is a half-space oblique reflecting barrier in the
direction of the vector b = (b1, . . . , bd) with bd > 0. On the semi-space R̄d+ :=
Rd−1 × [0,∞), with the notation x = (x̃, xd), we consider the function

Gb0(x̃, xd, t, ξd) := Γ0(x̃, xd − ξd, t)− Γ0(x̃, xd + ξd, t)−

−2 bdP
b
0 (x, xd + ξd, t),

for every t > 0, xd, ξd ≥ 0, and x̃ in Rd−1. This yields a transition probability
function on the state space R̄d+ with its Borel σ-algebra B

p(t, x,B) :=

∫
B

Gb0(x̃− ξ̃, xd, t, ξd)dξ,

for any t > 0, x in R̄d+ and B in B. This is not a product of (d − 1) indepen-
dent Brownian motions in R with an independent reflected Brownian motion in
[0,∞), certainly, the function ϕb in (2.110) makes the coupling. Expressions for
the associated semigroup and its infinitesimal generator can be obtained, e.g.,

D(A) := {f ∈ C0(R̄d+) : ∆f ∈ C0(R̄d+), b · ∇f(x̃, 0) = 0},

Af :=
1

2
∆f,

but a realization of a d-dimensional (standard) Wiener process in R̄d+ with
oblique reflection at the barrier xd = 0 is obtained from general existence theo-
rems based on the above transition probability function.

The fact that an explicit expression can be found for the above transition
function give specific estimates allowing the construct Green function for vari-
able coefficients and integro-differential operators, the reader may consult the
books Garroni and Menaldi [93, 94]. The case of a normal reflected Wiener-
Poisson process can be treated as in the one dimensional case Example 2.13,
however, the oblique reflection needs another method. Let us consider the case
of an integro-differential operator of the form A := ∆/2 + I, where

Iϕ(x) := c

∫
Rd+

[ϕ(x+ y)− ϕ(x)]µ(dy), ∀x ∈ Rd+, (2.111)
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where µ is now a probability measure in R̄d+ and c > 0. We define

Gb := Gb0 +Gb1 + · · ·+Gbk + · · · , Gbk := Gb0 ? IG
b
k−1, (2.112)

where I is considered acting on the first d-dimensional variables, i.e., for any
fixed t > 0, ξd ≥ 0

IGbk(x̃, x, t, ξd) = c

∫
Rd+

[Gbk(x+ y, t, ξd)−Gbk(x, t, ξd)]µ(dy),

for every x = (x̃, xd) in Rd+, for any k ≥ 0, and the kernel-convolution
(ϕ ? ψ)(x̃, xd, t, ξd) :=

=

∫ t

0

ds

∫
Rd+
ϕ(x̃− ỹ, xd, t− s, yd)ψ(ỹ, yd, s, ξd)dy,

(2.113)

for x̃ in Rd−1, xd, ξd ≥ 0 and t > 0.
The semigroup property or Chapman-Kolmogorov identity for the transition

function Gb0, namely

Gb0(x̃, xd, t+ s, ξd) =

∫
Rd+
Gb0(x̃− ỹ, xd, t, yd)Gb0(ỹ, yd, s, ξd)dy,

for every x̃ in Rd−1, xd, ξd ≥ 0 and s, t > 0, and the explicit form of the function
Gb0 given in Example 2.19 yield the identity Gk(x, t, ξd) = (tk/k!) IkGb0(x, t, ξd),
where Ik is the k-iteration of the integral operator I.

Certainly, we use the technique of Section 2.12 to check in what sense the
above series (2.112) converges. First we define the Green space G0

k of continuous
kernels ϕ(x, t, ξd) for x in R̄d+, t > 0 and ξd ≥ 0 such that

|ϕ(x, t, ξd)| ≤ C0 t
−1+k−d/2, ∀x, t, ξd,∫

Rd+

[
|ϕ(ỹ − ξ̃, yd, t, ξd)|+ |ϕ(x̃− ỹ, xd, t, yd)|

]
dy ≤

≤ K0 t
−1+k/2, ∀x, t, ξ,

(2.114)

for some constants C0 and K0, and the infimum of all such constants, denoted
by C(ϕ, k) and K(ϕ, k), are semi-norms for k > 0.

It is easy to check that I maps the Green space G0
k into itself,

C(Iϕ, k) ≤ 2cC(ϕ, k) and K(Iϕ, k) ≤ 2cK(ϕ, k), (2.115)

for every ϕ, k, and that Gb0 belongs to G0
2 in view of (2.105), which is valid for

Gb0 instead of Γ0.
Therefore, Gbk belongs to G0

2k+2 and
C(∂`Gbk, 2k + 2− |`|) ≤ (2c)k

k!
C(∂`Gb0, 2− |`|),

K(∂`Gbk, 2k + 2− |`|) ≤ (2c)k

k!
K(∂`Gb0, 2− |`|),

(2.116)
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for every k = 1, 2, . . . and ∂`, with ` = (`1, `2, . . . , `d, `t, `a) and |`| = `1 +
`2 + · · · + `d + 2`t. Because of the identity Gk(x, t, ξd) = (tk/k!) IkGb0(x, t, ξd),
the expression Gbk = Gb0 ? IG

b
k−1 is not really used, not integration in the time

variable is needed in this explicit case and the semi-norms (2.114) are meaningful
even for k ≤ 0. Recall that c > 0 is the constant used in the definition of the
integral operator I in (2.111).

At this point we have proved that the remainder of the series (2.112) defining
∂`Gb, i.e., ∂`Gbk+∂`Gbk+1+· · · converges in the Green space G0

2k+2−|`|, for ` ≥ 0,

so that Gb is infinitely many time differential in all its arguments. Moreover, Gb

satisfies the Volterra equation Gb = Gb0 +Gb0 ? IG
b, the Chapman-Kolmogorov

identity, and∫
Rd+
Gb(x̃− ξ̃, xd, t, ξd) dξ =

∫
Rd+
Gb0(x̃− ξ̃, xd, t, ξd)dξ = 1,

since IGbk has means zero for any k ≥ 1.
To complete this explicit calculation, we denote by ∆0 the Dirac measure at

the origin to have

Ikϕ(x) =

k∑
i=0

(
k

i

)
(−1)k−1 (c t)k

k!

∫
Rd+
ϕ(x+ y) µ̄k(dy),

µ0 := δ0, µk(B) :=

∫
Rd+×Rd+

1B(x+ y)µ(dx)µk−1(dy),

for every k ≥ 1, which implies

Gb(x, t, ξd) =

∞∑
k=0

k∑
i=0

(
k

i

)
(−1)k−1 (c t)k

k!
µkGb0(x, t, ξd),

µkGb0(x, t, ξd) :=

∫
Rd+
Gb0(x+ y, t, ξd)µ

k(dy),

and interchanging the order of the summation we obtain

Gb(x, t, ξd) = e−ct
∞∑
k=0

(c t)k

k!
µkGb0(x, t, ξd),

µ0 := δ0, µk(B) :=

∫
Rd+×Rd+

1B(x+ y)µ(dx)µk−1(dy),

µkGb0(x, t, ξd) :=

∫
Rd+
Gb0(x+ y, t, ξd)µ

k(dy),

(2.117)

for every k ≥ 1, for any x in R̄d+, ξd ≥ 0 and t > 0. Since µ is a probability mea-
sure on R̄d+, so is µk and the above series is clearly convergent as the initial one
given by (2.112). These arguments complement the one dimensional examples.

Example 2.20 (oblique Wiener-Poisson). This is a half-space oblique reflecting
barrier in the direction of the vector b = (b1, . . . , bd) with bd > 0, for a standard
Wiener process in Rd and a compound Poisson process with parameters c > 0
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and µ, where µ is a distribution on the open semi-space Rd+ := Rd−1 × (0,∞),
with the notation x = (x̃, xd). In the state space R̄d+ := Rd−1 × [0,∞), the
closed semi-space, we consider the function Gb defined by (2.112) or (2.117).
This yields a transition probability function on the state space R̄d+ with its
Borel σ-algebra B

p(t, x,B) :=

∫
B

Gb(x̃− ξ̃, xd, t, ξd)dξ,

for any t > 0, x in R̄d+ and B in B. Expressions for the associated semigroup
and its infinitesimal generator can be obtained, e.g.,

D(A) := {f ∈ C0(R̄d+) : ∆f ∈ C0(R̄d+), b · ∇f(x̃, 0) = 0},
Af :=

1

2
∆f + If,

where the integral operator I is given by (2.111). A realization of a d-dimensional
(standard) Wiener-Poisson process in R̄d+ with parameter c > 0 and µ, and
oblique reflection at the barrier xd = 0 is obtained from general existence theo-
rems based on the above transition probability function.

It is possible to use an integral operator I of the form
Iϕ(x) :=

∫
Rd+

[ϕ(x+ y)− ϕ(x)− y · ∇ϕ(x)]m(dy),

∀x ∈ Rd+, with

∫
Rd+

|y|2

1 + |y|
m(dy) <∞.

(2.118)

The definition (2.112) of Gb still valid but not (2.117). Because of the con-
stant coefficients we can make explicit calculations and Gbk = Gb0 ? IG

b
k−1 =

(tk/k!)IkGb0 but we need to work harder to show the convergence of the series.
For instance, if we assume∫

Rd+

|y|2−α

1 + |y|
m(dy) <∞, α ∈ (0, 2],

then the integral operator I maps the Green space G2
k (kernel ϕ satisfying con-

dition (2.114) for ∂`ϕ of order k − |`|, with |`| ≤ 2) into the Green space G0
k+α,

with appropriate estimates, see previous Section 2.12 and the books Garroni
and Menaldi [93, 94] for details.

On the other hand, the spectral theory of compact operators can be used to
give an eigenvalues and eigenfunction expansion of the Green function or Green
operator as in the Sturm-Liouville case.
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Chapter 3

Stochastic Processes

A general stochastic process with values in a Polish space (separable complete
metric space) E, usually locally compact (e.g., closed subset of Rd or a one-
point compactification of an open), on a probability space (Ω,F , P ) is a family
of random variables (measurable mappings, almost surely defined), denoted by
either X = X(t) or X = Xt, from Ω into E indexed by a set T (usually a
subset of real numbers). We suppress the qualifier general when a suitable reg-
ularity on the paths is imposed, i.e., at least separable and measurable. From
the phenomenological viewpoint, a stochastic process is identified by prescribed
properties given on the family of finite-dimensional distributions. A priori, a
stochastic process can be viewed as a random variable X with values in the prod-
uct topological space ET , which is not a Polish space if E and T are uncountable.
Mathematically, we add some regularity conditions (such as continuity) on the
paths of the stochastic process (X(·, ω), for each ω), so that we can consider a
much smaller subset of ET , with a structure of Polish space (non-locally com-
pact), where the process actually lives. Usually, these Polish spaces are either
C([0,∞), E), the space of E-valued continuous functions, or D([0,∞), E), the
space of cad-lag functions as described in section 1.12. Actually, we use always
the cad-lag regular form of a stochastic process, that is, given a stochastic pro-
cess {Y (t) : t ∈ T} with an uncountable (index) subset T ⊂ [0,∞), the cad-lag
regularisation (usually this is also a version of Y (t)) is the stochastic process X
given by X(t, ω) = lims∈Q,s→t Y (t, ω) and defined for any t in T, where the lim-
its from the right and from the left (on the rational or dyadic-rational numbers
Q) exist finitely. Therefore, we say that the stochastic process Y is regularisable
if the cad-lag regularisation is defined for any t in T. It can be proved that a
process is regularisable if and only if the process and its (rational) up-crossings
are locally bounded, moreover, the set of regularisable stochastic processes is
measurable, see Rogers and Williams [214, Chapter 2, Section 5, pp. 163–166].

We are going to deal only with stochastic processes admitting a cad-lag
version, unless otherwise stated. Thus for the initial (nominal or reference)
stochastic process, we take a canonical realization, i.e., a complete probabil-
ity space (Ω,F , P ) and a random variable X with values in the Polish space
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D([0,∞), E). Usually, we may want to set Ω = D([0,∞), E), F = B(Ω),
X(t) = ω(t), X−(t) = ω(t−), and use the (complete) σ-algebras {F(t), t ∈ T}
and {F−(t), t ∈ T} generated by the family of E-valued random variables
{X(s), s ≤ t, s ∈ T} and {X−(s), s ≤ t, s ∈ T}, respectively. Most of the
times, E ⊂ Rd and P is the (unique) Wiener measure on D([0,∞),Rd) with
support in C([0,∞),Rd). Other processes Y , Z, . . . are regarded as random
variables with values in the (non-locally compact) Polish space D([0,∞), E) or
with values in C([0,∞), E) if possible. Sometimes, these processes are regarded
also as a maps from Ω × T into E. For instance, an increasing process Y will
have also the property (on the paths) that t 7→ Y (t, ω) is increasing, for ev-
ery ω in Ω r N, with P (N) = 0. Thus, unless otherwise stated, a E-valued
stochastic process is a measurable function from a complete probability space
(Ω,F , P ) into the canonical space D([0,∞), E), i.e., a D([0,∞), E)-valued ran-
dom variable, which imposes the cad-lag regularity on paths. In any case, it
is implicitly assumed that we have choose a probability space (Ω,F , P ) where
regular conditional probability exists.

Our main interest is (strong) Markov processes admitting a cad-lag realiza-
tion and having a (continuous) transition function. These stochastic processes
are identified by (1) a prescribed (continuous) transition function, or (2) a given
(continuous) Markov-Feller semigroup, which in turn can be obtained by its in-
finitesimal generator. With the previous introduction, the purpose of this chap-
ter is to discuss (in some detail) certain topics in stochastic analysis as a tool
to describe (or generate) Markov processes. Certainly, it is implicity assume
a minimum understanding of probability, e.g., see Bremaud [32, Appendix A1,
pp. 255–295].

3.1 Discrete Time

To motivate some delicate points in the theory of continuous time processes we
discuss first sequences of random variables, i.e., random processes in discrete
time. First, a filtered space is a complete probability space (Ω,F , P ) and an
increasing sequence (so-called filtration) of sub σ-algebras (Fn : n = 0, 1, . . .),
Fn−1 ⊆ Fn, for all n = 1, 2, . . . , such that F0 contain all null sets. A stochastic
sequence (or process) (Xn : n = 0, 1, . . .) is a sequence of R-valued (or Rd-
valued) random variables, ‘identified’ almost surely (i.e., P -equivalence class).
Its associated natural filtration is the sequence (Fn : n = 0, 1, . . .) of sub σ-
algebras generated by {X0, X1, . . . , Xn} and augmented with all null sets, i.e.,
σ[X0, X1, . . . , Xn] and all null sets. Given a filtered space, a stochastic sequence
(or process) (Xn : n = 0, 1, . . .) is called adapted if every random variable Xn

is Fn-measurable. Also, it is called predictable if every random variable Xn is
Fn−1-measurable, for any n = 1, 2, . . . , here X0 is ignored or taken equal to
zero. A stopping time η is a maps (identified almost surely) from Ω into the set
{0, 1, . . . ,∞} such that {η ≤ n} (or equivalently {η = n}) belongs to Fn for any
n ≥ 0, where F∞ := F . For an given stopping time, the σ-algebra Fη is defined
as the collection of all subsets A in F such that A ∩ {η ≤ n} (or equivalently
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A ∩ {η = n}) belongs to Fn, for any n ≥ 0. Note that a typical stopping time
is the hitting time (or entry time) of a Borel subset B of B(R) (or B(Rd)) for a
stochastic sequence (Xn : n = 0, 1, . . .), i.e., η := inf{n ≥ 0 : Xn ∈ B}, where
η =∞ if Xn does not belong to B for any n ≥ 0.

Similar to Kolmogorov’s extension theorem (see Theorem 1.30 in Chap-
ter 1) we can mention the following construction of the direct product of prob-
ability spaces (e.g., Halmos [104, Section VII.38, Theorem B, pp. 157–158]),
namely, there exists a unique probability measure P on the (countable) prod-
uct space Ω =

∏
n Ωn with the product σ-algebra F (generated by the col-

lection of cylindrical sets Cn =
∏n
k=1 Fk ×

∏∞
k=n+1 Ωk, with Fk in Fk,) such

that P (Cn) =
∏n
k=1 Pk(Fk) for every cylindrical set. Note that the countable

assumption is really not an issue, it can be easily dropped.
A direct consequence of the above result is the construction of sequences of

independent and identically distributed Rd-valued random variables, i.e., given
a distribution µ on Rd the exists a stochastic sequence (Zn : n = 0, 1, . . .) on a
complete probability space (Ω,F , P ) such that

(1) P (Zk ∈ B) = µ(B), ∀B ∈ B(Rd),

(2) P (Zk ∈ Bk, ∀k = 1, . . . , n) =

n∏
k=1

P (Zk ∈ Bk),

for every Bk in B(Rd) and any n ≥ 1, where B(Rd) is the Borel σ-algebra in
Rd. Thus, the series of partial sum X0 := 0, Xn :=

∑n
k=1 Zk is called a random

walk in Rd or a d-dimensional random walk with incremental distribution µ.
The reader is also referred to Tulcea’s theorem (e.g., Neveu [188, Section

V.1, pp. 153–159], Shiryayev [227, Section II.9, Theorem 2, pp. 243–250]),
which is specially designed for construction of Markov chains (processes) from
transition functions. To present this result on product probability , we need some
notation. First, a transition probability between two measurable spaces (Ω,F)
and (Ω′,F ′) is a function Q : Ω × F ′ → [0, 1], Q(ω, F ′), which is measurable
in ω and a probability in F ′. Note two particular cases, (1) Q(ω, F ′) = P (F ′)
a fixed probability on (Ω′,F ′) for every ω in Ω, and (2) Q(ω, F ′) = 1{q(ω)∈F ′}
where q : Ω→ Ω′ is a measurable function.

For (Ωi,Fi) a sequence of measurable spaces, the product σ-algebra F =∏∞
i=1 Fi on the product space Ω =

∏∞
i=1 Ωi is generated by the cylindrical sets

Cn :=

n∏
i=1

Fi ×
∞∏

i=n+1

Ωi, with Fi ∈ Fi, ∀i, n = 1, 2, . . . (3.1)

For a fixed n, denote by Fn a sub σ-algebra of F generated by the n-cylindrical
sets as above. It is clear that Fn can be identified with the σ-algebra

∏n
i=1 Fi

of finite product space
∏n
i=1 Ωi, and that F is generated by the algebra ∪nFn.

Let P1 be a probability on (Ω1,F1) and Qk be a transition probability from

finite product space (
∏k−1
i=1 Ωi,

∏k−1
i=1 Fi) into (Ωk,Fk), for k ≥ 2. We desire to

construct a probability P on the infinite product space (Ω,F) such that

P (Cn) =

∫
F1

P1(dω1)

∫
F2

Q2(ω1,dω2) . . .

∫
Fn

Qn(ω1, . . . , ωn−1,dωn),
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for any cylindrical set Cn as in (3.1). Note that if Pn denotes the restriction of
P to

∏n
i=1 Fi (i.e., the finite-dimensional distributions of P ) then the right-hand

term prescribes a particular form for Pn, where a disintegration (by means of the
transition probability Qn) is assumed a priori. Comparing with Kolmogorov’s
extension theorem, we assume that the finite-dimensional distributions enjoy a
disintegration condition, instead of a topological assumption in the spaces Ωi.

Now, for a fixed n, consider the following expression constructed backward
by induction:

P (ω1, . . . , ωn;F ) = 1Fn(ω1, . . . , ωn), F = Fn×
∞∏

i=n+1

Ωi, F
n ∈

n∏
i=1

Fi,

P (ω1, . . . , ωk−1;F ) =

∫
Ωk

P (ω1, . . . , ωk−1, ωk;F )Qk(ω1, . . . , ωk−1,dωk),

P (ω1;F ) =

∫
Ω2

P (ω1, ω2;F )Q2(ω1,dω2),

P (F ) =

∫
Ω1

P (ω1;F )P1(dω1).

A Fubini-Tonelli type theorem ensures that each step of the above construction
is possible and that P (ω1, . . . , ωk;F ) is a transition probability from the (finite)

product space (
∏k
i=1 Ωi,

∏k
i=1 Fi) into (Ω,Fn), for any k = n, . . . , 1; and that

P (F ) is a probability on (Ω,Fn). It is also clear that for cylindrical sets as (3.1)
we have

P (Cn) =

∫
F1

P1(dω1)

∫
F2

Q2(ω1,dω2) . . .

∫
Fn

Qn(ω1, . . . , ωn−1,dωn),

P (ω1, . . . , ωk−1;F ) =
( k−1∏
i=1

1Fi(ωi)
)∫

Fk

Qk(ω1, . . . , ωk−1,dωk)×

×
∫
Fk+1

Qk+1(ω1, . . . , ωk−1, ωk,dωk+1) . . .

∫
Fn

Qn(ω1, . . . , ωn−1,dωn),

P (ω1, . . . , ωn;Cn) =

n∏
i=1

1Fi(ωi),

and therefore, P (ω1, . . . , ωn;F ) = P (ω1, . . . , ωn−1;F ) for any F in Fn−1. This
last property allows us to consider n = 1, 2, . . . and to extend (uniquely) the
definition of P (ω1, . . . , ωn;F ) to F in the algebra ∪nFn.

Theorem 3.1 (Tulcea). Under the above notation, the function Pn(ω, F ) =
P (ω1, . . . , ωn;F ), with ω = (ω1, . . . , ωn, . . .), is a transition probability from
(Ω,Fn) into (Ω,F). Moreover (Ω,F , P ) is a probability space on which Pn pro-
vides a regular conditional probability for Fn.

Proof. Only a brief idea is given. The central point is show the σ-additivity of
Pn on the algebra ∪nFn with P0 = P, and then to use Caratheodory exten-
sion to have a probability on F . To this purpose, suppose that there exists a
decreasing sequence {Ak} in ∪nFn such that ∩kAk = ∅ with limk P (Ak) 6= 0.
Then, the above construction of the P1 show that there exists a ω∗1 such that
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limk P (ω∗1 ;Ak) 6= 0, and by induction, we can construct a sequence ω∗ =
(ω∗1 , . . . , ω

∗
n, . . .) such that limk P (ω∗1 , . . . , ω

∗
n;Ak) 6= 0. Since Ak belongs to some

Fm with m = m(k), from the construction of P we obtain P (ω∗1 , . . . , ω
∗
n;Ak) =

1Ak(ω∗) if n ≥ m(k). Hence ω belongs to Ak for every k, which is a contradic-
tion.

First let us discuss Kolmogorov’s extension theorem (see Theorem 1.30 in
Chapter 1) in a general product space Ω =

∏
t∈T Ωt, F =

∏
t∈T Ft. We assume

given a family of finite-dimensional distributions {Ps : s ∈ Tn, n = 1, 2, . . .}
on Ωs = Ωt1 × · · · × Ωtn , with s = (t1, . . . , tn) which satisfies the consistency
conditions, namely

(a) if s = (si1 , . . . , sin) is a permutation of t = (t1, . . . , tn) then for any Bi in
Fti , i = 1, . . . , n, we have Pt(B1 × · · · ×Bn) = Ps(Bi1 × · · · ×Bin),

(b) if t = (t1, . . . , tn, tn+1) and s = (t1, . . . , tn) and B in Fs = Ft1 × · · · × Ftn
then Pt(B × Ωtn+1) = Ps(B).

If a total order is given on the index set T , it is enough to have the finite-
dimensional distributions defined only for (s1, s2, . . . , sn) such that s1 < s2 <
· · · < sn and to satisfy only a consistency conditions of the form

(b’) if t = (t1, . . . , tn) and s = (s1, . . . , sm) with t1 < · · · < tn < r < s1 < · · · <
sm and A × B in F t × Fs then P(t,r,s)(A × Ωr × B) = P(t,s)(A × B), for any
n,m = 0, 1, . . . .

Consistency along is not sufficient to ensure the existence of a probability P
defined on (Ω,F) such that Ps be the restriction (or image trough the projection)
of P over (Ωs,Fs). Some sort of topology is necessary on Ωt so that Ps results
inner regular (e.g., see Doob [60, pp. 403, 777], Neveu [188, Section III.3, pp.
74–81]), for instance, if Ωt is a Lusin space (i.e., Ωt is homeomorphic to a
Borel subset of a compact metrizable space) and Ft = B(Ωt) its Borel σ-algebra
then every probability measure is inner regular. Under these conditions, the
construction of the measure P is possible.

It is interesting to note that there is almost no difficulty to extend Tulcea’s
construction to a general product space with an index non necessarily countable.
Indeed, we assume that Ps, with s = (t1, . . . , tn), has the form

Ps(Cn) =

∫
F1

Pt1(dω1)

∫
F2

Qt1,t2(ω1,dω2) . . .

∫
Fn

Qt1,...,tn(ω1, . . . , ωn−1,dωn),

for some family of transition probabilities {Qs : s = (s′, t), s′ ∈ Tn−1, n ≥ 2, t ∈
T} from (Ωs

′
,Fs′) into (Ωt,Ft), and any cylindrical set Cn =

∏
t∈T Ft with

Ft = Ωt if t 6= ti for every i, and Fti ∈ Fti . Hence, we can construct a family of
consistent probability on any countable product. Since only a countable number
of finite-dimensional is involved in proving the σ-additivity, we have a probabil-
ity in general product space Ω. Thus, the disintegration of the finite-dimensional
distributions in term of the transition probabilities {Qs : s ∈ Tn, n ≥ 2} replace
the extra condition on inner regular measures. Moreover, Tulcea’s construction
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yields an expression for a regular conditional distribution on any countable sub-
set of indexes.

A very useful and well know result is the following

Lemma 3.2 (Borel-Cantelli). Let (F1, F2, . . .) a sequence of measurable sets in
a probability space Ω,F , P ). (1) If

∑
n P (Fn) < ∞ then P (∩n ∪k≥n Fk) = 0.

(2) If (F1, F2, . . .) is independent and
∑
n P (Fn) =∞ then P (∩n ∪k≥n Fk) = 1.

It may be worthwhile to recall that independence is stable under weak con-
vergence, i.e., if a sequence (ξ1, ξ2, . . .) of Rd-valued random variables converges
weakly (i.e., E{f(ξn)} → E{f(ξ)} for any bounded continuous function) to a
random variable ξ then the coordinates of ξ are independent if the coordinates
of ξn are so. On the other hand, for any sequence (F1,F2, . . .) of σ-algebras
the tail or terminal σ-algebra is defined as Ftail := ∩n ∨k≥n Fk, where ∨k≥nFk
is the smaller σ-algebra containing all σ-algebras {Fk : k ≥ n}. An important
fact related to the independence property is the so-called Kolmogorov’s zero-
one law, which states that any tail set (that is measurable with respect to a tail
σ-algebra) has probability 0 or 1.

Another typical application of Borel-Cantelli lemma is to deduce almost
surely convergence from convergence in probability, i.e., if a sequence {xn} con-
verges in probability to x (i.e., P{|xn − x| ≥ ε} → 0 for every ε > 0) with a
stronger rate, namely, the series

∑
n P{|xn−x| ≥ ε} <∞, then xn → x almost

surely.
A key tool to study sequences of random variables is the martingale concept.

Definition 3.3 (discrete martingale). A stochastic sequence (Xn : n = 0, 1, . . .)
is called a martingale relative to a filtration (Fn : n = 0, 1, . . .) if

E{|Xn|} <∞, ∀n, and E{Xn | Fn−1 } = Xn−1, a.s., n ≥ 1.

A super or sub martingale is defined similarly, replacing the equal sign = by the
≤ or ≥ signs, respectively.

Note that Xn turns out to be Fn-measurable and it is determined almost
surely, actually we take Xn as a Fn-measurable function defined everywhere.
If only the complete probability space (Ω,F , P ) is given, then the filtration
(Fn : n = 0, 1, . . .) is naturally generated by the stochastic sequence (Xn :
n = 0, 1, . . .), i.e., Fn is the smallest sub σ-algebra of F containing all null
sets and rendering measurable the random variables {X0, X1, . . . , Xn}. A super-
martingale decreases on average while a sub-martingale increases on average.
Since X0 is integrable, we may focus our attention on sequences with X0 = 0. A
typical example of martingale is a real valued random walk or Rd-valued random
walk since (super-/sub-) martingales can be defined by coordinates when dealing
with Rd-valued random variables. Also, if ϕ is a convex and increasing real-
valued function such that E{ϕ(Xn)} < ∞ for some sub-martingale (Xn : n =
0, 1, . . .) then the stochastic sequence (ϕ(Xn) : n = 0, 1, . . .) is also a sub-
martingale.
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In most cases, the filtration Fn is generated by another sequence of random
variables {Y0, Y1, . . .}, i.e., Fn = σ[Y0, . . . , Yn], which is regarded as the history.
In this case, Xn = hn(Y0, . . . , Yn) for some Borel function hn : Rn+1 → R, e.g.,
see Karr [127].

Many important results are found in the study of martingales, related to
estimates and representation, we will mention only some of them. For Doob’s
upcrossing estimate, denote by UN (X, [a, b]) the number of up-crossings of [a, b]
by time N for a fixed ω, i.e., the largest k such that 0 ≤ s1 < t1 < · · · <
sk < tk ≤ N, Xsi < a and Xti > b, for any i = 1, 2, . . . k. Then for any
super-martingale the estimate

(b− a)E{UN (X, [a, b])} ≤ E{(XN − a)−} (3.2)

holds. Note that the number of steps does not appear directly on the right-
hand side, only the final variable XN is relevant. To show this key estimate, by
induction, we define C1 := 1X0<a, i.e., C1 = 1 if X0 < a and C1 = 0 otherwise,
and for n ≥ 2,

Cn := 1Cn−1=1 1Xn−1≤b + 1Cn−1=0 1Xn−1<a

to construct a bounded nonnegative super-martingale Yn :=
∑n
k=1 Ck(Xk −

Xk−1). Clearly, the sequence (Cn : n = 1, 2, . . .) is predictable. Based on the
inequality

YN ≥ (b− a)UN (X, [a, b])− [XN − a]−,

for each ω, the estimate (3.2) follows.
The Doob’s super-martingale convergence states that for a super martingale

(Xn : n = 0, 1, . . .) bounded in L1, i.e., supn |Xn| <∞ the limits X∞ := limnXn

exists almost surely. The convergence is in L1 if and only if the sequence (Xn :
n = 0, 1, . . .) is uniformly integrable, and in this case we have E{X∞ | Fn} ≤ Xn,
almost surely, with the equality for a martingale. To prove this convergence,
we express the set Ω0 of all ω such that the limit limnXn(ω) does not exist in
the extended real number [−∞,+∞] as a countable union of subsets Ωa,b where
lim infnXn(ω) < a < b < lim supnXn(ω), for any rational numbers a < b. By
means of the upcrossing estimate (3.2) we deduce

Ωa,b ⊆
∞⋂
m=1

∞⋃
n=1

{ω : Un(X, [a, b]) > m},

P (

∞⋂
m=1

∞⋃
n=1

{ω : Un(X, [a, b]) > m}) = 0,

which yields P (Ω0) = 0. Thus the limit exists in [−∞,+∞] and by Fatou’s
Lemma, it is finite almost surely.

If p > 1 and (Xn : n = 0, 1, . . .) is a nonnegative sub-martingale bounded in
Lp then Doob’s Lp inequality reads as follows

‖ sup
n
Xn‖p ≤ p′ sup

n
‖Xn‖p, with 1/p+ 1/p′ = 1, (3.3)
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where ‖ · ‖p denotes the in Lp := Lp(Ω,F , P ). Note that (p′)p ≤ 4 for every
p ≥ 2. Indeed, if the set Ωrn of all ω where supk≤nXk ≥ r is expressed as the
disjoint union

Ωrn =

n⋃
k=0

Ωrn,0 with

Ωrn,k := {X0 < r} ∩ {X1 < r} ∩ · · · {Xk−1 < r} ∩ {Xk ≥ r},

and Ωrn,0 := {X0 ≥ r}, then we have Xk ≥ r on Ωrn,k, which yields the Doob’s
maximal inequality

r P
(

sup
n
Xn ≥ r

)
≤ E{Xn1supnXn≥r} ≤ E{Xn}.

Using the above estimate for |Xn|p instead of Xn, we obtain the p-estimate
(3.3).

The Doob’s decomposition gives a clean insight into martingale properties.
Let (Xn : n = 0, 1, . . .) be a stochastic sequence of random variables in L1, and
denote by (Fn : n = 0, 1, . . .) its natural filtration, i.e., Fn := σ[X0, X1, . . . , Xn].
Then there exists a martingale (Mn : n = 0, 1, . . .) relative to (Fn : n = 0, 1, . . .)
and a predictable sequence (An : n = 0, 1, . . .) with respect to (Fn : n = 0, 1, . . .)
such that

Xn = X0 +Mn +An, ∀n, and M0 = A0 = 0. (3.4)

This decomposition is unique almost surely and the stochastic sequence (Xn :
n = 0, 1, . . .) is a sub-martingale if and only if the stochastic sequence (An :
n = 0, 1, . . .) is monotone increasing, i.e., An−1 ≤ An almost surely for any n.
Indeed, define the stochastic sequences (An : n = 1, . . .) by

An :=

n∑
k=1

E{Xk −Xk−1 | Fk−1}, with Fk := σ[X0, X1, . . . , Xk]

and (Mn : n = 1, . . .) with Mn := Xn −X0 − An to obtain the decomposition
(3.4). This implies that the only deterministic martingale is a constant.

Given a martingale M = (Mn : n = 0, 1, . . .) with each Mn in L2 and
M0 = 0, we may use the above decomposition to express the sub-martingale
M2 = (M2

n : n = 0, 1, . . .) as M2 = N + A, where N = (Nn : n = 0, 1, . . .) is
a martingale and A = (An : n = 0, 1, . . .) is a predictable increasing sequence,
both N and A null at n = 0. The stochastic sequence A is written as 〈M〉 and
called the angle-brackets sequence of M. Note that

E{M2
n −M2

n−1 | Fn−1} = E{(Mn −Mn−1)2 | Fn−1} = An −An−1,

for every n ≥ 1. Similarly, define the stochastic sequence (of quadratic variation)

[M ]n :=

n∑
k=1

(Mk −Mk−1)2, ∀n ≥ 1,
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and [M ]0 = 0. Then the stochastic sequence V = (Vn : n = 1, 2, . . .),

Vn := M2
n − [M ]n =

n∑
k=1

2Mk−1Mk

is a martingale. Note that [M ] is an adapted sequence while 〈M〉 is predictable,
so the strength of the Doob’s decomposition. It is clear that

E{|Mn|2} = E{〈M〉n} = E{[M ]n}, ∀n ≥ 1,

which combined with the p-estimate (3.3), p = 2, yields

E{sup
k≤n
|Mk|2} ≤ 4 sup

k≤n
E{〈M〉k}, ∀n ≥ 1.

Actually, this generalize into the following Davis-Burkhölder-Gundy inequality

cp E{([M ]n)p/2} ≤ E{sup
k≤n
|Mk|p} ≤ Cp E{([M ]n)p/2}, (3.5)

valid for any n ≥ 1 and p > 0 and some constants Cp > cp > 0 independent
of the martingale (Mn : n = 0, 1, . . .). Even for p = 1, we may use C1 = 3 in
the right-hand side of (3.5). Moreover, the L2-martingale (Mn : n = 0, 1, . . .)
may be only a local martingale (i.e., there exists a sequence of stopping times
η = (ηk : k = 0, 1, . . .) such that Mη,k := (Mη,k

n : n = 0, 1, . . .), defined by
Mη,k
n (ω) := Mn∧ηk(ω)(ω), is a martingale for any k ≥ 0 and ηk → ∞ almost

surely), the time n may be replaced by a stopping time η (or ∞), the angle-
brackets 〈M〉 can be used in lieu of [M ], and the above inequality holds true.
All these facts play an important role in the continuous time case.

Let X = (Xn : n = 0, 1, . . .) be a sub-martingale with respect to (Fn :
n = 0, 1, . . .) and uniformly integrable, i.e., for every ε there exists a suffi-
ciently large r > 0 such that P (|Xn| ≥ r) ≤ ε for any n ≥ 0. Denote by
A := (An : n = 0, 1, . . .) and M := (Mn : n = 0, 1, . . .) the predictable and
martingale sequences given in the decomposition (3.4), Xn = X0 +Mn+An, for
all n ≥ 0. Since X is a sub-martingale, the predictable sequence A is monotone
increasing. The Doob’s optional sampling theorem implies that the martingale
M is uniformly integrable, moreover A∞ := limnAn is integrable and the fam-
ilies of random variable {Xη : η is a stopping} and {Mη : η is a stopping} are
uniformly integrable. Furthermore, for any two stopping times η ≤ θ we have

E{Mθ | Fη} = Mη, a.s. and E{Xθ | Fη} ≥ Xη, a.s. (3.6)

We skip the proof (easily found in the references below) of this fundamental
results. Key elements are the convergence and integrability of the limit M∞ :=
limnMn (almost surely defined), which allow to represent Mn as E{M∞ | Fn}.
Thus, specific properties of the conditional expectation yield the result.

For instance, the reader is referred to the books Bremaud [32], Chung [43],
Dellacherie and Meyer [58, Chapters I–IV], Doob [59, 61], Karlin and Tay-
lor [125, 126], Nelson [187], Neveu [189], Williams [253], among others.
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3.2 Filtered Spaces

We have seen that the study of stochastic processes leads to the discussion on
probability measures in separable complete metric spaces, i.e., in Polish spaces
(recall that a countably product of Polish spaces is a Polish space with the
product topology and that any Borel set of a Polish space is a continuous image
of the product Polish space N∞, sequences of nonnegative integer numbers).
Natural models for stochastic dynamical systems are the Markov processes.
Since past, present and future information are represented by sets of events, a
systematic analysis of families of σ-algebras is necessary, see Section 1.9. Thus,
the starting point is a (complete) probability space with either a filtration or a
process with its natural filtration.

Remark that all properties concerning a Filtered space are not preserved
accross any possible version of a given process, e.g., if X and Y are versions of
the same process (namely, P{X(t) 6= Y (t)} = 0 for every t ≥ 0) then X may be
adapted to the filtration but not Y . In this way, for a given process X we can
take any version, but as soon as a filtration is involved, the given version kept.
However, changing the processes in an evanescent set is fine, since the filtration
is complete.

Definition 3.4. Given a filtered space (Ω,F , P,F(t) : t ≥ 0), this is a (usually
complete) probability space (Ω,F , P ) and a (standard) filtration F = (F(t) :
t ≥ 0), i.e., F(0) contains all P -negligible (or P -null) sets in F (complete)
and F(t) =

⋂
ε>0 F(t + ε) (right-continuous). Sometimes, this is also called

stochastic basis, see Jacod and Shiryaev [117, Chapter 1].
(a) The σ-algebraM of progressively measurable sets is composed by all subsets
A of Ω × [0,∞) such that A ∩ (Ω × [0, t]) belongs to F(t) × B([0, t]) for every
t ≥ 0.
(b) The σ-algebra O of optional or well-measurable sets is generated by sets of
the form F0 × {0} and F × [s, t), where F0 ∈ F(0) and F ∈ F(s) for s < t in
(0,∞).
(c) The σ-algebra P of predictable sets is generated by sets of the form F0×{0}
and F × (s, t], where F0 ∈ F(0) and F ∈ F(s) for s < t in (0,∞).

Note that sometimes the variables t and ω may be exchanged so that the σ-
algebrasM, O and P are regarded as defined on [0,∞)×Ω instead of Ω×[0,∞).
As long as no confusion arrives, we will ignore this fact.

It may be convenient to use the notation F = (F(t) : t ≥ 0) for a filtration
and assume that F is the minimal σ-algebra containing all sets belonging to
F(t) for some t ≥ 0, so that (Ω,F, P ) denotes a stochastic basis. If a given
filtration (F0(t) : t ≥ 0) does not satisfy the usual conditions of completeness
and right-continuity then its usual augmentation (F(t) : t ≥ 0) is defined as the
minimal filtration satisfying F0(t) ⊂ F(t) for all t, plus the usual conditions.
The σ-algebra F(t) can be constructed in two steps, first F0(t) is completed
with all null sets to a new σ-algebra F̄0(t) and second F̄0(t) is made right-
continuous by defining F(t) =

⋂
s>t F̄0(s). Thus, for any F in F(t) there exists

a F0 in F0(t+) =
⋂
s>t F0(s) such that F∆F0 = (FrF0)∪(F0rF ) is a null set.

Section 3.2 Menaldi January 7, 2014



CHAPTER 3. STOCHASTIC PROCESSES 195

Completing the family of increasing σ-algebras to become a filtration (satisfying
the usual condition) is a routing task, however this is an important issue when
dealing with the strong Markov property as discussed later on. The passage
from F0(t) to F0(t+) is a very technical matter that we have to deal when the
realization or simulation of a processes is studied. For instance, it can be easily
proved that the completion of history of a Lévy process (or of a right-constant
process) is actually right-continuous, e.g., see Bremaud [32, Appendix A2.3, pp.
303–311], Davis [56, Appendix A2, Theorem A2.2, pp. 259–261], Protter [206,
Section 1.4, Theorem 31, pp. 22–23].

Note that the three σ-algebras defined in term of the filtration (F(t) : t ≥ 0)
are all on Ω × [0,∞) and not on Ω alone. We have P ⊂ O ⊂ M and it can
be proved that the predictable class P (optional class O, resp.) is the minimal
σ-algebra for which adapted left-continuous (right-continuous, resp.) processes
are measurable as function from Ω× [0,∞) into the state space (e.g., E ⊂ Rd).

Recall that a random variable τ with values in [0,∞] is called a stopping
time (or optional time) if sets of the form {ω : τ(ω) ≤ t} are measurable with
respect to F(t) for every t ≥ 0. This is equivalent to imposing that the stochastic
interval Jτ,∞J is optional, see Definition 1.8 in Chapter 1. Thus, P (O, resp.)
are generated by stochastic interval of the form J0, τK (J0, τJ, resp.) where τ
is any stopping time. Filtration satisfying the usual condition (right-continuity
and completeness) are necessary to be able to identify a stopping time with it
equivalent class, as explained below.

Assume that a right-continuous filtration F = {F (t) : t ≥ 0} is given. If O
is an open set of Rd and X is a cad-lag F-adapted process with values in Rd,
then the hitting time τO of an open set O is a stopping time, where

τO := inf
{
t > 0 : X(t) ∈ O

}
,

and τO = +∞ if X(t) ∈ RdrO for every t ≥ 0. Indeed the relation τO (ω) < t if
and only if X(s, ω) ∈ O for some rational number in [0, t) shows that the event
{τO < t} belongs to F(t) and so {τO ≤ t} is in F(t+). Similarly, if C is a closed
set of Rd then the contact time τ̃

C
of a closed set C is also an stopping time,

where

τ̃
C

:= inf
{
t ≥ 0 : either X(t) ∈ C or X(t−) ∈ C

}
,

with X(0−) = X(0). Indeed, use the fact that τ̃
C

(ω) ≤ t if and only if the
infimum over all rational numbers s in [0, t] of the distance from X(s, ω) to C
is zero. However, if K is a compact set of Rd then to check that the entry time
τ̄
K

of a compact set K is also an stopping time, where

τ̄
K

:= inf
{
t ≥ 0 : X(t) ∈ K

}
,

is far more delicate. The argument uses ordinal numbers and involves the as-
sumption of P -completion F̄ for the filtration F, i.e., F̄ is the minimal right-
continuous filtration such that F(0) contains all P -nulls sets in F̄ , the P -
completion of F . In this case, for any F̄-stopping time T there exists a F-stopping
time S such that P{T = S} = 1 and F̄ (T ) is the smaller σ-algebra containing
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F(S+) all P -null sets. Furthermore, by means of the so-called analytic sets
(i.e., continuous or Borel images of Borel sets in a Polish space), a deeper result
shows that the hitting time of any Borel set is indeed a stopping time, e.g., see
Doob [60, pp. 419–423] or Rogers and Williams [214, Sections II.73–76].

A process X with values in E ⊂ Rd is progressively measurable (resp. op-
tional or predictable) if the map (t, ω) 7→ X(t, ω) or equivalently (t, ω) 7→(
t,X(t, ω)

)
is measurable with respect to M (resp. O or P). In particular,

if (t, x) 7→ a(t, x) is a Borel function and X is progressively measurable (re-
spectively, optional or predictable) then so is the map (t, ω) 7→ a

(
t,X(t, ω)

)
.

On the other hand, a stopping time τ is called predictable if there exists an
announcing sequence of stopping times {τn : n = 1, 2, . . . }, i.e., τn increases to
τ and P (τn < τ if τ > 0) = 1; sometimes the condition P (τ > 0) = 1 is also
requested. It is not hard to show that τ is a predictable time if and only if
the stochastic interval Jτ,∞J is predictable. Note that τ + ε is a predictable
(stopping) time for any stopping time τ and any constant ε > 0. Moreover, if
τ and θ are predictable times then all stochastic intervals that have τ, θ, 0 or
∞ as endpoints are predictable sets. There are many interesting measurability
question on these points, e.g., see Bichteler [25, Section 3.5]

Based on the alternative way of generating the σ-algebras O and P (as
mentioned above), we deduce that a right-continuous (resp. left-continuous)
progressively measurable process is optional (resp. predictable). When working
with cad-lag (continuous) processes, the difference between the progressively
measurable and optional (predictable) processes have almost no importance.
Recall that given a filtered space (Ω,F , P,F(t) : t ≥ 0) a stochastic process X
is called adapted if the random variable ω 7→ X(t, ω) is F(t)-measurable for any
t ≥ 0. Thus, any adapted cad-lag process is progressively measurable.

The concept of a predictable (also called previsible) or optional process im-
plies that of adapted process (to a given filtration) in a way suggested by the
name. Denote by PR the family of subsets of Ω×[0,∞) containing all sets of the
form F0×{0} and F × (s, t], where F0 ∈ F(0) and F ∈ F(s) for s < t in (0,∞),
is called the class of predictable rectangles. Sometimes, the sets F0 × {0} need
special consideration and some authors prefer to remove these type of sets from
the definition of the σ-algebra P. As it was defined, the σ-algebra P of subsets
of [0,∞)×Ω generated by all predictable rectangles is called the predictable σ-
algebra associated with the filtration {F(t) : t ≥ 0}. Another equivalent way of
generating the predictable σ-algebra is to define P as generated by the stochas-
tic intervals of the form J0, τK, for stopping times τ with respect to the given
filtration {F(t) : t ≥ 0}.

Sometimes, the filtration {F(t) : t ≥ 0} is quasi-left continuous, namely,
F(τ−) = F(τ) for any predictable stopping time τ. This is the case of a (contin-
uous) Markov-Feller process (see Rogers and Williams [214, Chapter 6, Theorem
18.2, pp. 346–347]).

It should be clear by now that filtered spaces are a fundamental feature of
the theory of stochastic processes and definitions of our central object, Markov
processes, will involve a filtration. Heuristically speaking, the σ-algebra F(t)
is the collection of event that may occur before or at the time t (i.e., the set
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of possible pasts up to time t). In what follows, unless otherwise stated, we
assume that filtered space (Ω,F , P,F(t) : t ≥ 0) is given, sometime denoted by
(Ω,F, P ) and also called stochastic basis, with F = (F(t) : t ≥ 0), F = σ{F(t) :
t ≥ 0}, and the three σ-algebras P ⊂ O ⊂ M, called predictable, optional
and progressively measurable, respectively, as in Definition 3.4. Moreover, if
Ω is also a Polish space then F contains the Borel σ-algebra B(Ω), actually,
F = B(Ω) in most of the cases.

On a given measurable space (Ω,F) we may define its universal completion
F0 =

⋂
P FP , where FP is the completion of F relative to P, and the intersec-

tion is over all probability measures P on F . This is to say that A ∈ F0 if and
only if for every P there exist B and N in F such that BrN ⊂ A ⊂ B∪N and
P (N) = 0 (since B and N may depend on P, clearly this does not necessarily
imply that P (N) = 0 for every P ). Thus, a universally complete measurable
space satisfies F = F0. The concept of universally measurable is particularly
interesting when dealing with measures in a Polish space Ω, where F = B(Ω)
is its Borel σ-algebra, and then any subset of Ω belonging to F0 is called uni-
versally measurable. In this context, it is clear that a Borel set is universally
measurable. Also, it can be proved that any analytic set is universally mea-
surable, and on any uncountable Polish space there exists a analytic set (with
not analytic complement) which is not a Borel set, e.g., see Dudley [62, Section
13.2].

A detailed discussion on the strong Markov property involves a measured
filtration (Ω,F,P), i.e., besides the filtration (Ω,F), we have a class of probability
measures P on (Ω,F), with F = F(∞). Then, the P-universal completion F0

(i.e., the family P is implicitly understood in the notation) of the filtration F is
defined by adding all null sets, i.e.,

F0(t) =
⋂
ε>0

⋂
P∈P

σ
(
F(t+ ε),NP

)
, ∀t ≥ 0,

where NP denotes the σ-algebra of (P,F)-null sets (i.e., all the subsets of some
set N in F with P (N) = 0). Hence the new filtration F0 is right-continuous and
universally complete (i.e., the universal completion of F0(t) is again F0(t), for
every t) by construction but not necessarily complete with respect to a particular
probability P in the class P. Furthermore, sometimes not all (P,F)-null sets are
necessary, and completion arguments are reviewed. Countable unions of sets N
with P (N) = 0 and the property of being F(t)-measurable (for some finite t)
are called P -nearly empty sets. Thus, a set N in F = F(∞) with P (N) = 0
which is not in F(t), for every t finite, may not be nearly empty. Then, a
measured filtration is called P-regular if F(t) = FP(t) for every t ≥ 0, where
FP(t) =

⋂
P∈P FP (t), with FP (t) the σ-algebra of all subsets A of Ω such that

for every P in the class P, the symmetric difference (A r AP ) ∪ (AP r A) is
P -nearly empty for some AP in F(t). Note that FP (t) contains the completion
of F(t) relative to the restriction of P to F(t) (so it is universally complete),
but it could be smaller than σ

(
F(t),NP

)
. Moreover, filtration {FP(t+) : t ≥ 0}

is also P-regular, and called the P-natural enlargement of F. Essentially, as long
as we work with a right-continuous regular filtration, the technical points about
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measurability are resolved, this is usually referred to as the natural conditions.
For instance, see the book Bichteler [25, Section 1.3] for a comprehensive study.

When a process is viewed as a function of two-variables, (t, ω) 7→ X(t, ω),
properties like continuity or monotonicity refers to the path (i.e., to the function
t 7→ X(t, ω) for a fixed ω, which are global property on the variable t only), while
properties like integrable or bounded may refer to either one of the variables
or even to both variables. However, the qualifier integrable usually refers to
the random variable ω 7→ X(t, ω), for a fixed t ≥ 0. As discussed later, when
a filtration is given, the term locally will apply to any property of a process
involving both variables with a precise meaning, e.g., a process X is locally
bounded if there is a (increasing) sequence (τn : n ≥ 1) of stopping times
satisfying P (τn ↑ ∞) = 1 such that the stopped process Xn(t) := X(t ∧ τn) is
bounded. In all statements and procedures, processes are considered equals if
their paths differ in a set of measure zero (i.e., they are indistinguishable one of
each other), but sometimes we may select a particular element of its equivalent
class to perform a specific construction. All these terminologies become clear
from the context of the discussion.

3.3 Bounded Variation

Let us consider real-valued (or Rd-valued) processes (X(t) : t ≥ 0) in a prob-
ability space we (Ω,F , P ). If a filtration F = (F(t) : t ≥ 0) is also given then
the term adapted (to F) is implicitly assumed (although sometimes is explic-
itly mentioned) and the qualifier raw is to be used to explicitly assume not
necessarily adapted.

3.3.1 Pathwise Properties

An (monotone) increasing [(monotone) decreasing, resp.] stochastic process
(X(t) : t ≥ 0) is such that the function t 7→ X(t, ω) is increasing [decreasing,
resp.] for every ω, except perhaps in a null set. Because an increasing function
has left and right-hand limits at each points, it is convenient to normalize the
process to be right-continuous. Thus an increasing process is a random variable
X (almost surely defined) with values in the sample space D([0,∞),R) such that
X(t) ≥ X(s) for every t ≥ s. Also, vector valued process (i.e., in D([0,∞),Rd))
can be considered.

Similarly, a stochastic process X = (X(t) : t ≥ 0) is said to be of locally
bounded variation in [0,∞) (or simplifying, of finite variation) if it is a random
variable X with values in the sample space D([0,∞),R) and its variation process
{var(X, [0, t]) : t ≥ 0} is finite,

var(X, [0, t]) := sup{
n∑
i=1

|X(ti)−X(ti−1)| : 0 = t0 < t1 < · · · < tn = t},

where the supremum is taken over all partitions of the interval [0, t], var is
referred to as the variation operator . Clearly, as long as the process is cad-lag,

Section 3.3 Menaldi January 7, 2014



CHAPTER 3. STOCHASTIC PROCESSES 199

we may only consider some countable family of partitions, e.g., partitions with
ti = i2−n for i = 0, 1, . . . , 2n. It can be defined the positive {var+(X, [0, t]) :
t ≥ 0} and the negative {var−(X, [0, t]) : t ≥ 0} variation processes exchanging
the absolute value | · | with the positive part [ · ]+ and the negative part [ · ]−
of a real number in the above definition. Note that because X is cad-lag, the
supremum can be taken over partitions with end points t1 < · · · < tn−1 in a
countable dense set so that the functions X 7→ var(X, ·), X 7→ var+(X, ·) and
X 7→ var−(X, ·) are measurable from D([0,∞),R) or C([0,∞),R) into itself.

It can be checked that, e.g., Gordon [103, Chapters 4 and 6],

var(X, [0, t]) = var+(X, [0, t]) + var−(X, [0, t]) and

Xt −X0 = var+(X, [0, t])− var−(X, [0, t]) ∀t ∈ [0,∞),

and that the three variation processes

{var(X, [0, t]) : t ≥ 0}, {var+(X, [0, t]) : t ≥ 0}, {var−(X, [0, t]) : t ≥ 0}

are (monotone) increasing (and cad-lag); and they are adapted, optional or
predictable if the initial process X is so. Thus we can look at a locally bounded
variation process X as two random variables var+(X, [0, t]) and var−(X, [0, t])
with values in the sample space D = D([0,∞),R), i.e., a probability measure P
on D with the Borel σ-algebra B(D) and two increasing and measurable maps
var+(X, [0, t]) and var−(X, [0, t]) from D into itself. Note that var+(X, [0, t])
and var−(X, [0, t]) are minimal in the sense that if X is of bounded variation
and X = Y − Z with each Y and Z monotone increasing then var+(X, [0, t])−
var+(X, [0, s]) ≤ Yt−Ys and var−(X, [0, t])−var−(X, [0, s]) ≤ Zt−Zs, for every
t ≥ s. This is the so-called Jordan decomposition. On the other hand, given a
(cad-lag) bounded variation process X, its continuous part is defined as Xc(t) :=
X(t)−Xjp(t), where the jump part is defined by Xjp(t) :=

∑
0<s≤t δX(s), with

δX(s) = X(s) −X(s−). It is clear that, by rearranging the jumps, we can re-
write the jumps part as Xjp(t) =

∑
n[X(τn)−X(τn−)]1τn≤t, where the series

converges absolutely for any t and the random times τn are stopping times if
the process Xjp is adapted, see Sato [220, Lemma 21.8, Chapter 4, pp. 138–
140]. Moreover, since the continuous part Xc(t) is still of bounded variation,
it is differentiable almost everywhere and we have Xc(t) = Xac(t) + Xsc(t),

where Xac(t) :=
∫ t

0
Ẋc(s)ds is called the absolutely continuous part and Xsc(t)

is the singular continuous part . Thus, any bounded variation process X can be
written as a unique sum Xac +Xsc +Xjp called Lebesgue decomposition.

On the other hand, for any cad-lag process X and any ε > 0 we can define
the ε-jumps process as

Xεj(t) :=
∑

0<s≤t

δX(t)1|δX(t)|≥ε, ∀t > 0,

and the ε-almost continuous process Xεc(t) := X(t) − Xεj(t). However, the
continuous part, i.e., limε→0X

εc(t) may not be defined in general. Certainly,
this would be Xc(t) when X has locally bounded variation. However, the above
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limit will make sense in the L2 topology for square integrable local martingales
and defined for every process which is a local martingale, as discussed later.

A monotone increasing or a locally bounded variation process X induces a
Borel (positive or signed) measure on [0,∞) by setting

µ({0}) = X(0, ω) and µ(]a, b]) = X(b, ω)−X(a, ω), 0 < a < b,

for each sample path X(·, ω), which is referred to as the Lebesgue-Stieltjes
measure. Conversely, if a (Borel) locally finite signed measure µ on [0,∞) is
defined for ω which is weakly measurable i.e. ω 7→ µ(A,ω) is measurable for
each Borel subset A of [0,∞) then we can define process of bounded variation
as X(t, ω) = µ([0, t], ω), for any t ≥ 0. Based on Fubini’s theorem, it can be
proved that given two processes X and Y of locally bounded variation (cad-lag)
we have the integration-by-part formula

X(b)Y (b)−X(a)Y (a) =

∫
(a,b]

X(t−)dY (t) +

+

∫
(a,b]

Y (t−)dX(t) +
∑
a<t≤b

δX(t) δY (t).

When the integrands Y (t−) and X(t−) are left-continuous and the integrator
X(t) and Y (t) are right-continuous as above, the integral can be regarded in
the Riemann-Stieltjes sense, where X(t−) is the left-hand limit at t. Also, the
last two terms may be grouped and considered as an integral in the sense of
Lebesgue-Stieltjes, i.e.,∫

(a,b]

Y (t)dX(t) =

∫
(a,b]

Y (t−)dX(t) +
∑
a<t≤b

δX(t) δY (t),

where δX(t) = X(t)−X(t−) is the jump at t. Moreover, given a locally bounded
variation (cad-lag) process Y , the equation

X(t) = 1 +

∫
(0,t]

X(t−)dY (t), ∀t ≥ 0,

has a unique solution X, in the class of locally bounded variation process (cad-
lag), which is explicitly given by the formula

X(t) = exp
[
Y c(t)− Y c(0)

] ∏
0<s≤t

(1 + δY (s)),

where Y c(t) = Y (t)−
∑

0<s≤t δY (s) is the continuous part of the process (Y (t) :
t ≥ 0), the (infinite) product is the exponential of the absolutely convergence
series

∑
0<s≤t ln(1 + δY (s)), and clearly, if Y (τ)− Y (τ−) = −1 for some τ > 0

then X(t) = 0 for any t ≥ τ, see Shiryayev [227, pp. 204–208], Doob [61, pp.
160–166], Chung and Williams [45, pp. 4–6].

An elementary process (or piecewise constant over stochastic intervals) is a
stochastic process of the form

Y (t) =

n∑
i=1

Yi−11(τi−1,τi](t), t ≥ 0, (3.7)
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where 0 = τ0 ≤ τ1 ≤ . . . ≤ τn are stopping times and Yi−1 is a F(τi−1)
measurable random variable for any i. It is called bounded if all Yi−1 are bounded
random variables. The set of (bounded) elementary processes form a subalgebra
(i.e., closed by natural addition and multiplication) of predictable sets. Note
that processes of the form (3.7) are left-continuous with right-hand limits, i.e.,
the (right-hand limit) process Y (t+) is cad-lag, and satisfies Y (0) = 0.

If Y is an elementary process and X is a locally bounded variation process
(cad-lag) then we may take Y as an integrand andX as an integrator to construct
the integral process for t ≥ 0 by

Z(t) =

∫
(0,t]

Y (s)dX(s) =

n∑
i=1

Yi−1[X(t ∧ τi)−X(t ∧ τi−1)]. (3.8)

This integral extends to all predictable processes Y in either Riemann-Stieltjes
or Lebesgue-Stieltjes sense. In particular, the above integral makes sense for any
bounded adapted cag-lad (left-continuous with right-hand limits) Y. Actually,
if the Lebesgue-Stieltjes integral is used then dX(t) means dµX (the signed
measure induced by the cad-lag bounded variation process X) integration over
the interval (0, t], but if the Riemann-Stieltjes integral is used then we mean∫

(0,t]

Y (s)dX(s) = lim
α→0+, β→t+

∫ β

α

Y (s)dV (s) =

∫
]0,t]

Y (s)µ
X

(ds).

Clearly, the Lebesgue-Stieltjes integral makes also sense when the integrand Y
is not necessarily cag-lad. Moreover, from the integration by part formula we
deduce the following property. If a function f is continuously differentiable from
Rd into R and X = (X1, . . . , Xd) is a stochastic process with values in Rd where
each components Xi is a process of locally bounded variation then we have

f(X(t))− f(X(0)) =

∫
(0,t]

∇f(X(s−))dX(s)+

+
∑

0<s≤t

[
f(X(s))− f(X(s−)−∇f(X(s−)) δX(s))

]
,

(3.9)

If the initial process X is adapted then the integral (3.8) defines an adapted
cad-lag stochastic process (Z(t) : t ≥ 0) of locally bounded variation, with

var(Z, [0, t]) =

∫
(0,t]

|Y (s)| var(X,ds).

Actually, as long as the above integral is finite (in Lebesgue sense) with a pre-
dictable processes Y (s) and locally bounded variation process X(s), the integral
(3.8) defines a process Z(t) with locally bounded variation.

Sometimes it is necessary to make a time change in Stieltjes integrals. For
a given increasing cad-lag process A with values in [0,∞] consider

A−1(s) := inf{t ≥ 0 : A(t) > s}, ∀s ≥ 0, (3.10)
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with A−1(s) = 0 for s ≤ sup{t ≥ 0 : A(t) = 0}, and A−1(s) := +∞ if A(t) ≤ s
for all t ≥ 0. This define a cad-lag process (A−1(s) : s ≥ 0) with the properties

A−1(s−) = inf{t ≥ 0 : A(t) ≥ s}, ∀s ≥ 0,

A[A−1(s)] ≥ s, ∀s ≥ 0,

A(t) = inf{s ≥ 0 : A−1(s) > t}, ∀t ≥ 0.

If A is continuous then A−1 may not be continuous (when A is not strictly
increasing). The following change of variables formula can be obtained. For any
nonnegative Borel measurable function f on [0,∞) we have∫

[0,∞)

f(t)dA(t) =

∫ ∞
0

f(A−1(s))1A−1(s)<∞ds,∫
[u(a),u(b)]

f(t)dA(t) =

∫
[a,b]

f(u(t))dA(u(t)),

for any continuous non-decreasing process u on the bounded interval [a, b].
A typical example is a real-valued Poisson process X(t) with parameter

c > 0, which is a process of bounded variation and a jumps process of the form
X(t) =

∑
n 1t≥θn , where θn := τ1 + · · · + τn and (τ1, τ2, . . .) is a sequence of

independent exponentially distributed (with parameter c) random variables. If
Y is a (cad-lag) bounded adapted process with respect to X then the following
(cad-lag) adapted processes are defined by the Riemann-Stieltjes integrals

M(t) :=

∫
]0,t]

Y (s−)dX(s)− c
∫ t

0

Y (s)ds, ∀t ≥ 0,

N(t) := M2(t)− c
∫ t

0

Y 2(s)ds, ∀t ≥ 0,

E(t) := exp
{∫

]0,t]

Y (s−)dX(s) + c

∫ t

0

[1− eY (s)]ds
}
, ∀t ≥ 0.

Taking the left-hand limit Y (s−) in the integral with respect to X is essential
to make the Riemann-Stieltjes integral meaningful. It will be seen later that
these three processes M, N, E are martingales and the above integral will be
called stochastic integral when the process Y is predictable with respect to X.

Note that all arguments made above for locally bounded variation process
are of a pathwise character, without any assumption of integrability in Ω.

3.3.2 Integrable Finite Variation

No specific difference was made in the previous pathwise discussion regarding
path with bounded variation within any bounded time-interval and within the
half (or whole) real line, i.e., bounded variation paths (without any other qua-
litication) refers to any bounded time-interval, and so the limit A(+∞) for a
monotone paths could be infinite. Moreover, no condition on integrability (with
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respect to the probability measure) was assumed, and as seen later, this inte-
grability condition (even locally) is realted to the concept of martingales.

Now, we mention that an important role is played by the so-called integrable
increasing processes in [0,∞), i.e., processes A with (monotone) increasing path
such that

E{sup
t
A(t)} = E{ lim

t→∞
A(t)} = E{A(∞)} <∞,

and processes with integrable bounded variation or integrable finite variation
on [0,∞), i.e., processes A where the variation process {var(A, [0, t]) : t ≥ 0}
satisfies

E{sup
t

var(A, [0, t])} = E{var(A, [0,∞[)} <∞,

or equivalently, A = A+ −A− where A+ and A− are integrable increasing pro-
cesses in [0,∞). These two concepts are localized as soon as a filtration is given,
e.g., if there exists a (increasing) sequence of stopping times (τn : n ≥ 1) sat-
isfying P (limn τn = ∞) = 1 such that the stopped process An(t) := A(t ∧ τn)
is an integrable increasing process in [0,∞) for any n then A is a locally inte-
grable increasing process in [0,∞). Note that processes with locally integrable
bounded variation or locally integrable finite variation on [0,∞), could be mis-
interpreted as processes such that their variations {var(A, [0, t]) : t ≥ 0} sat-
isfy E{var(A, [0, t])} < ∞, for any t > 0. It is worth to remark that any
predictable process of bounded (or finite) variation (i.e., its variation process
is finite) is indeed of locally integrable finite variation, e.g., see Jacod and
Shiryaev [117, Lemma I.3.10]. Moreover, as mentioned early, the qualifiers
increasing or bounded (finite) variation implicitly include a cad-lag assump-
tion, also, the qualifier locally implicitly includes an adapted condition. In the
rare situation where an adapted assumption is not used, the tern raw will be
explicitly used.

A simple application of the change of time (3.10), i.e., the following expres-
sion for a cad-lag increasing process A,

E
{∫ T

0

X(t)dA(t)
}

=

∫ ∞
0

E
{
X
(
A−1(s)

)
1A−1(s)<∞

}
ds,

proves that for any two nonnegative measurable processes (non necessarily
adapted) X and Y satisfying E

{
X(τ)1τ<∞

}
= E

{
Y (τ)1τ<∞

}
, for every stop-

ping time τ, we have

E
{∫ r

0

X(t)dA(t)
}

= E
{∫ r

0

Y (t)dA(t)
}
, ∀r ∈ (0,∞].

Now, if Fτ denotes the σ-algebra associated with a stopping time (see Defini-
tion 1.8) then the condition

E
{
X(τ)1τ<∞

∣∣F(τ)
}

= E
{
Y (τ)1τ<∞

∣∣F(τ)
}
, a.s.
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implies

E
{∫ ∞

τ

X(t)dA(t)
∣∣F(τ)

}
= E

{∫ ∞
τ

Y (t)dA(t)
∣∣F(τ)

}
, (3.11)

almost surely, which is used later with martingale.
On the other hand, we can verify that if A and B are two cad-lag increasing

processes (non necessarily adapted) such that

E
{
A(t)−A(s)

∣∣F(s)
}

= E
{
B(t)−B(s)

∣∣F(s)
}
, a.s.,

for every (extended) real numbers 0 ≤ s ≤ t ≤ ∞, then we have

E
{∫ T

0

X(t−)dA(t)
∣∣F(τ)

}
= E

{∫ T

0

X(t−)dB(t)
∣∣F(τ)

}
, (3.12)

for every T ≥ 0 and for every nonnegative cad-lag adapted process X.
Let us go back to the relation of locally bounded variation process X with

a Borel (positive or signed) measure on [0,∞)

µ({0}) = X(0, ω), µ(]a, b]) = X(b, ω)−X(a, ω), 0 < a < b

and abandon the pathwise analysis. Similar to the null sets in Ω, a key role
is played by evanescent sets in [0,∞) × Ω, which are defined as all sets N in
the product σ-algebra B([0,∞))×F such that P ({∪tNt}) = 0, where Nt is the
t section {ω : (ω, t) ∈ N} of N. For a given process A of integrable bounded
variation, i.e., such that

E{sup
t

var(A, [0, t]} <∞,

we may define (bounded) signed measure µA (this time) on [0,∞) × Ω by the
formula

µA(]a, b]× F ) = E
{
1F

∫
]a,b]

dA(t)
}
, ∀b > a ≥ 0, F ∈ F . (3.13)

Since progressively, optional or predictable measurable sets are naturally iden-
tified except an evanescent set, the measure µA correctly represents a process
A with integrable bounded variation. Conversely, a (bounded) signed measure
µ on [0,∞) × Ω corresponds to some process A if and only if µ is a so-called
signed P -measure, namely, if for any set N with vanishing sections (i.e., satis-
fying P{ω : (ω, t) ∈ N} = 0 for every t) we have µ(N) = 0. A typical case is
the point processes, i.e.,

A(t) :=
∑
n

an1τn≥t,

where τn−1 ≤ τn and τn−1 < τn if τn < ∞ is a sequence of stopping times and
an is F(τn)-measurable random variable with values in R∗ := Rr{0}, for every
n. Then, for each fixed ω the function t → A(t, ω) is piecewise constant, but
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even if all the random variable an are bounded, the variation of the process A
may not be integrable. The measure µA takes the form

µA(X) =
∑
n

E{anX(τn)} = E
{∫

[0,∞)

∫
R∗
aX(t, ω) νA(dt, da, ω)

}
,

νA(B,ω) := #{n : (τn(ω), an(ω)) ∈ B},

for every B in B([0,∞)×R∗), where # denotes the number of elements in a set
and X is any bounded measurable process, in particular of the form X(t, ω) =
1]a,b](t)1F (ω), for some set F in F . It may seem more complicate to use the
random measure νA defined on [0,∞) × R∗, but indeed this is characteristic
to jumps processes. The reader is referred to the discussions in the books by
Dellacherie and Meyer [58, Section VI.2, pp. 113–164], Jacod and Shiryaev [117,
Section 1.3, pp. 27–32], Rogers and Williams [214, Sections VI.19–21, pp. 347–
352], and Elliott [73], Protter [206], among others, to complement the above
remarks and following theorem–definition

Definition 3.5 (compensator). Let (Ω,F , P,F(t) : t ≥ 0) be a given filtered
space. For any bounded (or integrable) measurable process X there exists a
unique predictable process pX, called predictable projection, such that for any
predictable stopping time τ we have E{pX1τ<∞} = E{X1τ<∞}. It is proved
that a process A with integrable bounded variation is predictable if and only
if µA(X) = µA(pX) for any bounded measurable process X, see (3.13). Now,
given a process A with integrable bounded variation with a corresponding signed
P -measure µA on [0,∞)×Ω, the dual predictable projection of µA is defined by
duality as follows

µpA(X) = E
{∫

[0,∞)

pX(t, ω)dA(t, ω)
}
,

for any bounded measurable process X. Since µpA is a signed P -measure which
commutes with the predictable projection, its corresponding process with inte-
grable bounded variation, denoted by Ap, is predictable and satisfies

E{
∫

[0,∞)

X(t, ω)dAp(t, ω) = E{
∫

[0,∞)

pX(t, ω)dA(t, ω),

for any bounded measurable process X, and called the compensator of A.

Similarly to above, we may define the optional projection, and dual optional
projection, with the notations oX, µoA and Ao. Clearly, the above statements can
be localized, i.e., the process X can only be assumed locally bounded or locally
integrable, and the process A can only be supposed with locally integrable finite
variation.

It will be stated later that the dual predictable projection µpA corresponding
to a signed P -measure µA of an adapted process A with integrable bounded
variation is actually characterized by the fact that the (Stieltjes integral) process∫

[0,t]

X(t−, ω)dA(t, ω)−
∫

[0,t]

X(t−, ω)dAp(t, ω). t ≥ 0
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is a martingale for any bounded adapted process X. It is clear that t 7→ X(t−)
is a predictable process and that in the above martingale condition it suffices
to take processes of the form X(t) := 1t≤τ for some stopping time τ, i.e., the
process t 7→ A(t ∧ τ)−Ap(t ∧ τ) is a martingale.

Related with the compensator definition is the (unique) decomposition of
any positive increasing adapted right-continuous process A into the sum of a
continuous increasing adapted process cA with cA(0) = 0 and a right-continuous
increasing adapted process jA which can be expressed as follows:

jA(t) =
∑
n

an 1t≥τn ,

where {τn} is a sequence of stopping times with bounded disjoint graphs and
an is a bounded positive F(τn)-measurable function for every n. The proof of
this fact is rather simple, first define inductively τ i,0 = 0 and

τ i,j = inf{t > τ i,j : A(t+)−A(t−) ≥ 1/i},

and then τ i,jk := τ i,j if A(t+) − A(t−) ≤ k + 1 and τ i,j ≤ k, and τ i,jk := ∞
otherwise. Clearly {τ i,jk } is countable and can be rewritten as {τ ′n : n = 1, 2, . . .},
which is a sequence of stopping times with bounded graphs. Again, defining
τn := τ

′

n if τi 6= τn for every i = 1, . . . , n and τn := ∞ otherwise, we get the
desired sequence, with an := A(τn+)−A(τn−).

Similarly, if A is as above and ϕ : [0,∞)→ [0,∞) is a continuously differen-
tiable function and for a given r ≥ 0 we set

τr = inf{t ≥ 0 : A(t) ≥ r} and θr = inf{t ≥ 0 : A(t) > r},

which are both stopping times (as seen later, τr is predictable), then for every
bounded measurable process X we have∫ ∞

0

X(s)dϕ(A(s)) =

∫ ∞
0

X(τr)ϕ
′(r)1τt<∞dr =

=

∫ ∞
0

X(θr)ϕ
′(r)1θt<∞dr.

Details on the proof of these results can be found in Bichteler [25, Section 2.4,
pp. 69–71].

As mentioned above, another measure associated with a process X is the
so-called jumps measure, which is a random measure on [0,∞)×R∗, with R∗ =
Rr {0} with integer values and defined, for each ω, by

ν(]a, b]×B) := #{t : a < t ≤ b, X(t)−X(t−) ∈ B},

for every b > a ≥ 0 and B in B(R∗), i.e., ν is the number of jumps of the
process X in the time interval ]a, b] which belongs to the set B. Typically,
if X = P is a Poisson measure process then the compensator of ν is indeed
the (deterministic) Lévy measure m. Clearly, the above integer-valued random
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measure is defined even if the process X is not of locally bounded variation,
only the cad-lag property is used.

On the other hand, we may define the quadratic variation of X over a par-
tition π = (t0 < t1 < · · · < tn) is given by

var2(X,π) :=

n∑
i=1

|X(ti)−X(ti−1)|2,

and then quadratic variation operator as{
var2(X, [0, t]) := lim

r→0
var2(X, [0, t], r),

var2(X, [0, t], r) := sup{var2(X,π)}, ∀t > 0,
(3.14)

where the supremum is taken over all partitions πt = (0 = t0 < · · · < tn = t) of
the interval [0, t], with ti − ti−1 ≤ r. It is easy to imagine a process with only
jumps such that var2(X, [0, t]) <∞ but var(X, [0, t]) =∞ for any t > 0, i.e., the
sum of small jumps at the origin is infinite but the sum of the square converges.
Moreover, if the process X is continuous with bounded variation then the esti-
mate var2(X,π) ≤ w(X,π) var(X,π) shows that necessarily var2(X,π) → 0 as
the mesh of the partition δ(π) := maxi{ti − ti−1} vanishes, where w(X,π) is
the modulus of continuity of X on π, namely,

w(X,π) = sup
i

sup
{
|X(t)−X(s)| : t, s ∈ [ti−1, ti]

}
.

However, we may construct a continuous process X with unbounded variation
and with the above vanishing quadratic variation property. Furthermore, for
a process X with vanishing quadratic variation we can setup and define the
Riemann-Stieltjes integral to show that∫ b

a

[X(t)]m dX(t) =
1

m+ 1

[
[X(b)]m+1 − [X(a)]m+1

]
,

for every b > a ≥ 0. For instance, if X = W is a Wiener process then
E{var2(W,π)} = tn − t0 and the relevance of the quadratic variation is clear
when a pathwise analysis is not available. As seen later, this is a typical be-
havior for martingale processes. We refer the interested reader to Doob [61,
Chapters X–XI, pp. 157–204] for a neat analytic approach.

The technique to treat cad-lag processes is essentially as follows. On one
hand, the pathwise study is efficient for cad-lag process with local bounded
variation paths. This includes (1) continuous process with local bounded varia-
tion path and (2) jump processes X with jumps of local bounded variation, i.e.,∑
s≤t |δX(s)| < ∞ for every t > 0. For every cad-lag jump process X, there is

only a finite number of jumps that are larger than any deterministic constant
r, so the number of larger jumps is finite, i.e.,

∑
s≤t 1{|δX(s)|≥r} <∞. Thus,

X(t) = lim
r→0

∑
s≤t

1{|δX(s)|≥r}δX(s), ∀t > 0,
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but the series may not converge absolutely. In particular, we look at jumps
processes with jumps satisfying

∑
s≤t |δX(s)|2 <∞ for every t > 0, which does

not necessarily have local bounded variation paths. For these processes, the
pathwise arguments are not longer valid. By imposing a local integrability (with
respect to the path, i.e., E{

∑
s≤τk |δX(s)|2} <∞), for some increasing sequence

of stopping time {τ1, τ2, . . .} with τk →∞, the compensator/martingale theory
can be used. This is part of the stochastic integral theory, where jump processes
are better viewed as random measure. Continuous martingale processes with no
local bounded variation paths are also studied with non-pathwise technique. A
more pure analytic point of view is the use of the so-called orthogonal random
measure, see Definition 3.33.

Some arguments use a enumeration of the jumps, certainly, they are denu-
merable but to have them in a ordered way, we need to use ordinal numbers.
An intuitive feeling is the fact that we can count through countable ordinals
(where each nonempty subset has a first element) as follows:

1, 2, 3, . . . ,∞,∞+ 1,∞+ 2, . . . , 2∞, 2∞+ 1, . . .

3∞, 3∞+ 1, . . . ,∞2, . . . ,∞3, . . . ,∞∞,∞∞ + 1, . . .

where∞ is the first infinite ordinal. Each countable ordinal is either a successor
α+ 1 of some countable ordinal α or a limit ordinal β = sup{α : α < β}, which
is the supremum of ordinals less than it. For instance, to count the jumps of a
cad-lag process X, first we set τ0 = 0, a0 = X(0) and given an ordinal i with
successor i+ 1 we define

τi+1 = inf
{
t ≥ τi : X(t) 6= X(t−)

}
, ai+1 = X(τi+1)−X(τi+1−),

while, given a limit ordinal i we define

τi = sup
j<i

τj , ai = X(τi)−X(τi−).

Thus, for each countable ordinal i we have defined τi and ai such that i ≤ j
implies τi ≤ τj , where τi may be infinite for some ω. Because there is a countable
number of jumps, we have supi τi(ω) =∞ and so, for every t and ω there is a first
(necessary countable) ordinal such that for κ = κ(t, ω) we have τi ∧ t = τi+1 ∧ t,
for every i ≥ κ. This means that all the jumps of X within [0, t] are listed
with τi and ai for i ≤ κ, the problem is that the possible values of the κ(t, ω) is
uncountable (in much the same way that the number of finite ordinals is infinite),
so that τi may not be an stopping time for some limit ordinal i. However, τi is
almost surely equal to a stopping time. Indeed, set

ci = E{exp(−τi)}, c = inf
i
ci,

where the infimum is taken over all countable ordinals. Thus, there exists a
sequence of (countable) ordinals {ι(n) : n ≥ 1} independent of ω such that
cι(n) → c as n→∞. If ι(∞) is the countable ordinal limn ι(n) we have cι(∞) = c

and the stopping time sup
{
τι(n) : n

}
is equal to τι(∞) almost surely. Hence,
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each τi in the above construction can be chosen to be a stopping time. On the
other hand, to construct a (purely) jump process from its jumps, we need some
assumptions on the cad-lag process, e.g., locally bounded variation. Indeed, by
induction procedure, we may define the sum or series, starting from S0 = a0, we
set Si+1 = ai+1 +Si if i has a successor and Si = ai+

∑
j<i Sj (which converges

absolutely) if i is a limit ordinal. Hence, the process Sκ(t,ω)(ω) or equivalently∑
i≤κ(t,ω) ai(ω) is optional. This same argument applies to semi-martingales, as

seen in the next section.

3.4 Martingales

Related to the Markov processes with values in Rd, is the concept of (vec-
tor) martingales. Moreover, the martingale property can be extended to pro-
cesses with values in Hilbert, Banach or co-nuclear (the strong dual of a nuclear
space) spaces, e.g., see Kallianpur and Xiong [123, Chapter 3, pp. 85–126] and
Métivier [178].

Definition 3.6 (general martingale). A (general) martingale with states in
E ⊂ Rd is a (complete) probability measure P on (Ω,F), together with a mea-
surable mapping M (P -equivalence class) from (Ω,F) into (ET ,BT (E)) and an
increasing family of completed σ-algebras (Ft : t ∈ T ) on (Ω,F) satisfying the
martingale property

E{|Mt|} <∞, ∀t, E{Mt | Fs} = Ms, a.s. ∀t > s,

where Mt is the t-component of M. If the family of σ-algebras (Ft : t ∈ T )
is not mentioned, then it is assumed (Ft : t ∈ T ) is the history (Ht : t ∈ T )
of the process (Mt : t ∈ T ), i.e., Ht is generated by the random variables
{Ms : s ≤ t} and the null sets. Moreover, we say that the martingale is cad-lag
if (Ft : t ∈ T ) is a filtration satisfying the usual conditions and except on a set
of P -probability zero, the paths of (Mt : t ∈ T ) are cad-lag. The martingale is
continuous if their paths are continuous. Furthermore, if d = 1, i.e., with values
in R, we may define also super - or sub-martingale by replacing the equal sign
by either ≤ or ≥ in the above condition.

In most of the cases considered here, the index T is a bounded real interval or
[0,∞), and the probability P is fixed, so that a (good) particular member of the
P -equivalence class is used and called (super- or sub-)martingale. As usually,
the conditional expectation operator identifies an equivalence class of processes
satisfying the above condition and so another condition on the sample path is
needed to make the above martingale condition workable in continuous time,
e.g., a minimal condition would be a separable martingale and a more reasonable
condition is right-continuity in probability. It is clear that if (Mt : t ≥ 0) is a
cad-lag martingale relative to (or with respect to) (Ft : t ≥ 0) then it is also a
cad-lag martingale relative to its canonical (or natural) filtration (Ht : t ≥ 0),
the history of the process, see Definitions 1.26 and 1.27 on Markov processes in
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Chapter 1. Certainly, if (Mt : t ≥ 0) is a super-martingale then (−Mt : t ≥ 0)
is a sub-martingale.

When the filtration is the history of the process, the second condition in the
martingale property of the above Definition 3.6 can be rephrased as follows

E
{
M(t)

n∏
i=1

hi
(
M(si)

)}
= E

{
M(s)

n∏
i=1

hi
(
M(si)

)}
(3.15)

for any integer n, for every 0 ≤ s1 < s2 ≤ · · · ≤ sn ≤ s < t, any (real-valued)
Borel and bounded (in Rd) functions hi, i = 1, . . . , n. Moreover, if the process
(Mt : t ≥ 0) is right-continuous in L1, i.e.,

lim
t↓s

E{|Mt −Ms|} = 0, ∀s ≥ 0,

then, applying the martingale property (3.15) to continuous functions hi and
si + εi, s+ ε, with 0 < εi ≤ ε, we deduce another expression of the martingale
property, namely,

E
{
M(t)

n∏
i=1

hi
(
M(si + 0)

)}
= E

{
M(s)

n∏
i=1

hi
(
M(si + 0)

)}
(3.16)

for any integer n, for every 0 ≤ s1 < s2 ≤ · · · ≤ sn ≤ s < t, any (real-
valued) continuous and bounded (in Rd) functions hi, i = 1, . . . , n. Note that
relation (3.16) represents the second condition in the martingale property of
Definition 3.6, where (Ft : t ≥ 0) is the smallest filtration satisfying the usual
conditions which makes the process (Mt : t ≥ 0) adapted. This proves that if
(Mt : t ≥ 0) is a right-continuous (actually it suffices that it be right-continuous
in probability) martingale with respect to (Ft : t ≥ 0) then (Mt : t ≥ 0)
is also a martingale relative to the (possible larger) right-continuous filtration
(F̄t : t ≥ 0), with F̄t = ∩ε>0Ft+ε. Clearly, if (Mt : t ≥ 0) and (Nt : t ≥ 0) are
two sub-martingales (or super-martingales, respectively) relative to the same
filtration (Ft : t ≥ 0) then the new process (Mt∨Nt : t ≥ 0) (or (Mt∧Nt : t ≥ 0),
respectively) is also a sub-martingale (or super-martingale, respectively).

It is clear that the martingale condition does not distinguish modifications of
the process, so it may be possible to have a (general) martingale which paths are
not necessarily cad-lag, with a filtration which is not necessarily right-continuous
(or completed). Thus, the assumption of a setup with a filtration satisfying
the usual conditions is not at all granted, completion with null sets is a rather
technical condition, but the right-continuity is essential to the well behavior and
mathematically workable study of (sub-/super-) martingale processes. This is
illustrated by the Doob’s regularization result, which uses the following concept.

Let D be a countable dense set in R (e.g., the rational numbers) and x be a
function from D into R. The function x is called regularisable if the right-hand
and left-hand limits exist finitely within D for every real value, i.e., for every t
in R there exist real values x(t+) and x(t−) such that for every ε > 0 there is
a δ > 0 (possible depending on ε, x(·) and t) such that 0 < s − t < δ implies
|x(s) − x(t+)| < ε and 0 < t − s < δ implies |x(s) − x(t−)| < ε. Clearly, when
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the initial function x is defined in an interval I of R, first the function x is
restricted to the set I ∩D and then the above definition is applied for t in the
interval I. In most cases, the countable dense set D can be arbitrary chosen or
easily understood from the context. Usually I = [0,∞) and so x(0−) is either
not defined or set equal to 0 for the sake of completeness. If a function x is
regularisable (within D) then x+ and x− (right and left limits) denote the new
functions obtained as the pointwise limits.

An interesting point is that a function x : D ∩ [0,∞)→ R is regularisable if
and only if for every integer N and any compact interval [a, b] with a < b in D,
the following expressions are finite,

‖x‖∞,D∩[a,b] := sup
{
|x(s)| : s ∈ D ∩ [a, b]

}
,

UN (x, [a, b]) := sup
{
k : 0 ≤ s1 < r1 < s2 < . . . < sk < rk ≤ N,

x(si) < a, x(ri) > b, si, ri ∈ D, ∀i
}
.

As in the discrete case, UN (x, [a, b]) is called the upcrossings of the interval [a, b]
by time N.

Theorem 3.7. Let M = {Mt : t ≥ 0} be a real-valued family of random
variables in a probability space (Ω,F , P ) which satisfies the (super- or sub-)
martingale property relative to an increasing family of σ-algebras {F(t) : t ≥ 0},
i.e.,

E{|M(t)|} <∞, ∀t, E{M(t) | Fs} = Ms, a.s. ∀t > s ≥ 0,

with = replaced by ≤ or ≥ when (super- or sub-) is used. Then M is regularisable
except in a set of probability zero, and the processes M+ = {M(t+) : t ≥ 0}
and M− = {M(t−) : t ≥ 0} are cad-lag (super- or sub) martingales relative to
{F(t+) : t ≥ 0} and {F(t−) : t ≥ 0}, respectively. Moreover, if the function
t 7→ E{M(t)} is right-continuous (resp., left-continuous) then M+ (resp., M−)
is a version of M.

For a complete detail on the proof see, e.g., Dellacherie and Meyer [58,
Section VI.1] or Rogers and Williams [214, Section II.5, Subsections 65–67,
pp. 169–174]. Clearly, the above results include the following statement. Let
{F(t) : t ≥ 0} be a right-continuous and complete the filtration, and assume that
the function t 7→ E{M(t)} is right-continuous (e.g., this mean right-continuity
holds if M is a martingale). Then M+ is a version of M, which is a cad-lag
(super- or sub-) martingale relative to the filtration {F(t) : t ≥ 0}. Moreover,
if M is separable then so is M+ and therefore M+ is indistinguishable from M,
i.e., M itself is a cad-lag (super- or sub-) martingale.

An integrable process with independent increments and zero mean is not
always a typical example of martingale, some regularity on the path is needed.
For instance, if {w(t) : t ≥ 0} is a standard Wiener process in Rd then it is also
a continuous martingale, and if {p(t) : t ≥ 0} is a standard Poisson process then
(Mt : t ≥ 0), with Mt = p(t) − E{p(t)}, is a cad-lag martingale. In general,
we will see that if (Xt : t ≥ 0) is a cad-lag Markov process with infinitesimal
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generator A (see Section 2.8 on Markov-Feller semigroups in Chapter 2) then
the stochastic process

Mt = ϕ(Xt)−
∫ t

0

Aϕ(Xs)ds, ∀t ≥ 0

is a cad-lag martingale, for any (smooth) function ϕ in the domain D(A) of
the infinitesimal generator A. In fact, as seen later, this is a characterization
of the Markov processes in terms of the so-called martingale problem. On the
other hand, the concept of martingale is a sort of complementary definition with
respect to bounded variation processes, in the sense that the only continuous
martingale of bounded variation is the trivial or constant process.

To study martingales we begin with either (1) a filtered space (Ω,F , P,Ft :
t ≥ 0) satisfying the usual conditions and we look at cad-lag stochastic processes
(Xt : t ≥ 0) as random variables with valued in the canonical spaceD([0,∞),Rd)
or (2) a canonical space D = D([0,∞),Rd), with its Borel σ-algebra B, the
canonical process (Xt := ω(t), t ≥ 0) and it associated the filtration (Ft : t ≥
0) and we look for probability measures on D. Thus, a cad-lag martingale is
viewed as a random variable with values in the canonical space D, identified
with its equivalence class, namely, all processes which are indistinguishable (or
equivalent) of it, and as long as we use cad-lag (or separable) processes this
agree with the notion of version (or modification), see Section 1.6 in Chapter 1.

We rephrase the above martingale concept

Definition 3.8 (martingale). A martingale (process) relative to a given filtered
space (Ω,F , P,F(t) : t ≥ 0) is a random variable M (P -equivalence class) with
values into the canonical space D([0,∞),Rd) satisfying the martingale property

E{|M(t)|} <∞, ∀t, E{M(t) | F(s)} = M(s), a.s. ∀t > s,

where M(t) := M(ω)(t). If the filtration {F(t) : t ≥ 0} is not mentioned,
then it is assumed that {F(t) : t ≥ 0} is the smallest filtration satisfying the
usual condition, which renders the process {M(t) : t ≥ 0} adapted. Moreover,
the martingale is called continuous if M take values into the canonical space
C([0,∞),Rd) almost surely, and it is called uniformly integrable if the family of
random variables {M(t), t ≥ 0} is uniformly integrable, i.e., for any ε > 0 there
is a r > 0 sufficiently large such that P{|M(t)| ≥ r} ≤ ε, for any t in [0,∞).
When d = 1, i.e., with values in R, we may define also super - or sub-martingale
by replacing the equal sign by either ≤ or ≥ in the above condition. Sometimes,
martingales are considered in a bounded time interval instead of the semi-line
[0,∞).

First, note the role of uniformly integrability by mentioning Doob’s martin-
gale convergence and optional-sampling results

Theorem 3.9. If M is martingale bounded in L1, i.e., supt E{|M(t)|} <∞, the
limit M(∞) := limt→∞M(t) exists almost surely and the convergence of M(t)
to M(∞) is in L1 if and only if the martingale is uniformly integrable. On the
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other hand, if M is an uniformly integrable martingale then (a) the family of Rd-
valued random variable {M(τ) : τ is a stopping time} is uniformly integrable,
and (b) for any stopping times τ ≤ θ the equality E{M(θ) |F(τ)} = M(τ) holds
almost surely.

As in the discrete case, the proof is mainly based on the Doob’s upcross-
ing estimate. A (super-/sub-) martingale M satisfying the property (a) of the
above theorem is called of class (D) (Dirichlet class). Note that an uniformly
integrable super(or sub)-martingale need not to be of class (D). However, for
any nonnegative sub-martingale X we have

r P
(

sup
s≤t

X(s) ≥ r
)
≤ E{X(t)1sups≤tX(s)≥r} ≤ E{X(t)}, (3.17)

and therefore

‖ sup
s≤t

X(s)‖p ≤ p′ ‖X(t)‖p, with 1/p+ 1/p′ = 1, (3.18)

actually, valid even if t is replaced by a stopping time τ. Here ‖ · ‖p denotes the
norm in Lp(Ω, P,F).

Note that (3.11) implies that for any positive cad-lag martingale M, which
is written as M(t) = E{M(∞)|F(t)} if M is uniformly integrable, and any local
integrable increasing process A with A(0) = 0, we have

E
{
X(t)A(t)

}
= E

{∫ t

0

Y (s)dA(s)
}
, ∀t ∈ (0,∞),

and even for t =∞ if M is uniformly integrable.
Now, based on (3.12), an local integrable increasing process A with A(0) = 0

is called natural if

E
{∫ T

0

M(t)dA(t)
}

= E
{∫ T

0

M(t−)dA(t)
}
, ∀T ∈ R, (3.19)

for every nonnegative, bounded and cad-lag continuous martingale M. Since the
process Y (t) = Y (t)1t<τ + Y (τ)1s≥τ is a martingale for any stopping time τ,
we deduce that (3.19) is equivalent to either

E
{∫ ∞

0

M(t)dA(t)
}

= E
{∫ ∞

0

M(t−)dA(t)
}
, (3.20)

or

E
{∫ τ

0

M(t)dA(t)
}

= E
{∫ τ

0

M(t−)dA(t)
}
, ∀ stopping time τ,

and that the increasing process B(t) = B(t)1t<τ + B(τ)1s≥τ is also natural.
Finally, if A is an integrable increasing natural process then (3.20) holds for any
uniformly integrable cad-lag martingale M.

With all these properties in place, we can check that if X is a cad-lag sub
martingale and A and B are two cad-lag increasing natural processes such that
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A(0) = B(0) = 0 and X − A and X − B are (cad-lag) martingale then A(t) =
B(t), almost surely, for every t ≥ 0.

As we can check later, this notion of (cad-lag) increasing natural process
agrees with the more general condition of (cad-lag) increasing predictable pro-
cess. For further details, the reader may want to take a look at certain points
in the book by Meyer [179].

The following decomposition is extremely useful to extend the previous result
to sub-martingales.

Theorem 3.10 (Doob-Meyer). If X is a (continuous) sub-martingale of class
(D) then there exists a uniformly integrable martingale M and an integrable
predictable (continuous) monotone increasing process A, both null at time zero
such that X = X(0) +M +A. Moreover, this decomposition is unique.

For instance, a comprehensive proof of this fundamental results can be found
Rogers and Williams [214, Section VI.6, pp. 367–382]. In particular, if X is an
adapted (cad-lag) increasing process satisfying E{supt |X(t)|} <∞ then X is a
sub-martingale of class (D) and the above decomposition yields the predictable
compensator as in Definition 3.5. Certainly, this can be extended to integrable
bounded variation processes, by using the positive and negative variation.

Therefore, the previous convergence Theorem 3.9 can be extended to super-
/sub-martingales of class (D) and the process A = AX is called the (predictable)
compensator of the sub-martingale M. Note that µA on [0,∞) × Ω associated
with the increasing process A, as defined by (3.13), satisfies

µA(Kτ, θK) = E{Aθ −Aτ} = E{Xθ −Xτ},

for any stopping times τ ≤ θ and where the the stochastic interval Kτ, θK is viewed
as the subset {(ω, t) : τ(ω) < t ≤ θ(ω)} of [0,∞) × Ω. This is one of the key
elements used in the definition of the process A, i.e., the fact that for any given
sub-martingale X of class (D) we can construct a unique bounded (positive)
measure on [0,∞)× Ω defined by µA(]τ, θ]) = E{Xθ −Xτ}. Actually, it is also
established in the Doléans’ proof of the above decomposition, that for a quasi-
leftcontinuous (or regular) sub-martingale X (i.e., E{X(τ)} = E{X(τ−)} for
any predictable stopping time τ or equivalently A is continuous) the predictable
(or conditional) variation for a partition π = (t0 < t1 < · · · < tn),

pvar(X,π) :=

n∑
i=1

E{X(ti)−X(ti−1) | F(ti−1)}, (3.21)

which is equal to pvar(A, π), has the following property: for any ε > 0 there is
a δ > 0 such that E{|pvar(X,πt) − A(t)|} ≤ ε for any partition π = πt with
tn = t and ti − ti−1 ≤ δ, for every i = 1, 2, . . . , n.

Let us denote by M2(Ω, P,F ,F(t) : t ≥ 0) the space of square-integrable
martingales M null at time zero, i.e., besides the martingale conditions in Defi-
nition 3.8 we impose M(0) = 0 and supt≥0 E{|M(t)|2} <∞. A square-integrable
martingale M is uniformly integrable and the convergence theorem applies to
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produce a F(∞)-measurable random variable M∞ = M(∞) with values in R
(or Rd) and square-integrable such that M(t) = E{M(∞) | F(t)}. Hence, the
space M2(Ω, P,F ,F(t) : t ≥ 0) can be identified with the closed subspace of
the Hilbert space L2(Ω, P,F∞), F∞ = F(∞), satisfying E{M(∞) | F(0)} = 0.
Note that if M∗ denotes the sup-process defined by M∗(t) := sups≤t |M(s)| and
its limit M∗(∞) := supt≥0 |M(t)| then we have

E{|M∗(∞)|2} ≤ 4 sup
t≥0

E{|M(t)|} = 4E{|M(∞)|2},

after using Doob’s estimate (3.18). Therefore, we can treat M2(Ω, P,F ,F(t) :
t ≥ 0) as a Banach space with the norm ‖M∗(∞)‖p, with p = 2, for any element
M, without changing the topology. Moreover, the space of continuous square-
integrable martingale processes, denoted by M2

c (Ω, P,F ,F(t) : t ≥ 0) is a closed
subspace of the Hilbert space M2(Ω, P,F ,F(t) : t ≥ 0). Thus, we may consider
its orthogonal complement referred to as purely discontinuous square-integrable
martingale processes null at time zero and denoted by M2

d (Ω, P,F ,F(t) : t ≥
0), of all square-integrable martingale processes Y null at time zero satisfying
E{M(∞)Y (∞)} = 0 for all elements M in M2

c (Ω, P,F ,F(t) : t ≥ 0), actually,
M and Y are what is called strongly orthogonal, i.e., (M(t)Y (t) : t ≥ 0) is an
uniformly integrable martingale. The concept of strongly orthogonal is actually
stronger than the concept of orthogonal in M2 and weaker than imposing M(t)−
M(s) and Y (t)− Y (s) independent of F(s) for every t > s.

Let M be a (continuous) square-integrable martingale process null at time
zero, in a given filtered space (Ω, P,F ,F(t) : t ≥ 0). Based on the above ar-
gument M2 is a sub-martingale of class (D) and Doob-Meyer decomposition
Theorem 3.10 applies to get a unique predictable (continuous) increasing pro-
cess 〈M〉, referred to as the predictable quadratic variation process. Thus, for
a given element M in M2(Ω, P,F ,F(t) : t ≥ 0), we have a unique pair Mc

in M2
c (Ω, P,F ,F(t) : t ≥ 0) and Md in M2

d (Ω, P,F ,F(t) : t ≥ 0) such that
M = Mc + Md. Applying Doob-Meyer decomposition to the sub-martingales
Mc and Md we may define (uniquely) the so-called quadratic variation (or op-
tional quadratic variation) process by the formula

[M ](t) := 〈Mc〉(t) +
∑
s≤t

(Md(s)−Md(s−))2, ∀t > 0. (3.22)

Note that [Mc] = 〈Mc〉 and Md(t) −Md(t−) = M(t) −M(t−), for any t > 0,
but that 〈M〉 is the predictable (dual) projection of the increasing process [M ],
as defined in Section 3.3. We re-state these facts for a further reference

Theorem 3.11 (quadratic variations). Let M be a (continuous) square-integra-
ble martingale process null at time zero, in a given filtered space (Ω, P,F ,F(t) :
t ≥ 0). Then (1) there exists a unique predictable (continuous) integrable mono-
tone increasing process 〈M〉 null at time zero such that M2 − 〈M〉 is a (con-
tinuous) uniformly integrable martingale, and (2) there exists a unique optional
(continuous) integrable monotone increasing process [M ] null at time zero such
that [M ](t) − [M ](t−) = (M(t) −M(t−))2, for any t > 0, and M2 − [M ] is a
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(continuous) uniformly integrable martingale. Moreover M = 0 if and only if
either [M ] = 0 or 〈M〉 = 0.

Also, the optional quadratic variation can be defined by means of the stochas-
tic integral and for any ε > 0 there is a δ > 0 such that

E
{

sup
0<t≤1/ε

|var2(M,πt)− [M ](t)|
}
≤ ε,

for any partition πt = (0 = t0 < t1 < · · · < tn = t) with 0 < ti − ti−1 ≤ δ,
for every i = 1, 2, . . . , n, where var2(M,πt) is the optional quadratic variation
operator

var2(M,πt) :=

n∑
i=1

E{|M(ti)−M(ti−1)|2}, (3.23)

and ti in the partition may be stopping times. This previous limit could be used
as definition of [M ], and then we may define the predictable variation process
〈M〉 as the compensator of the optional quadratic variation [M ].

If the filtration can be chosen quasi-left continuous (i.e., satisfying F(τ−) =
F(τ) for every predictable stopping time τ) or equivalently if the predictable
variation process 〈M〉 is continuous then for any ε > 0 there is a δ > 0 such
that E{|pvar2(M,πt)−〈M〉(t)|} ≤ ε for any partition πt = (0 = t0 < t1 < · · · <
tn = t) with 0 < ti − ti−1 ≤ δ, for every i = 1, 2, . . . , n, where var2(M,πt) is
the optional quadratic variation operator and pvar2(M,πt) is the predictable
quadratic variation operator defined by (3.21), i.e., pvar2(M,πt) converges in
L1 to 〈M〉 as the mesh goes to zero.

These are key results in the study of martingales and foundation of the
stochastic integrals for continuous martingales. To understand the conver-
gence in the L1-norm of the predictable quadratic variation as defined in The-
orem (3.11), first we realize that the predictable quadratic variation operator
on M is equal to the predictable variation operator on 〈M〉, i.e., pvar2(M,π) =
pvar(〈M〉, π), as defined by (3.21). Setting Ak(s) := min{〈M〉(s), k}, for s ≥ 0,
for a given partition πt = (0 = t0 < t1 < · · · < tn = t) we consider the (finite)
sequence of bounded random variables

xi := E{Ak(ti)−Ak(ti−1) | F(ti−1)} − [Ak(ti)−Ak(ti−1)],

for i = 1, 2, . . . , tn, which are orthogonal in L2(Ω,F , P ). Based on the elemen-
tary bound (a− b)2 ≤ 2a2 + 2b2 and Jensen’s inequality we obtain

E{x2
i } ≤ 4E{[Ak(ti)−Ak(ti−1)]2},

which yields

E{[pvar(Ak, πt)−Ak(t)]2} =

n∑
i=1

E{x2
i } ≤

≤ 4

n∑
i=1

E{[Ak(ti)−Ak(ti−1)]2} ≤ 4E{ρ(Ak, [0, t], δ)Ak(t)},
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where ρ(Ak, [0, t], δ) is the modulus of continuity of Ak, i.e.,

ρ(Ak, [0, T ], δ) := sup{Ak(t)−Ak(s) : 0 ≤ s < t ≤ T},

and 0 < ti − ti−1 ≤ δ, i ≥ 1. Since

E{|pvar2(M,πt)− 〈M〉(t)|} ≤

≤ E{|pvar(Ak, πt)−Ak(t)|}+ E{〈M〉(t)−Ak(t)},

we obtain the L1 convergence stated in quadratic variation theorem above, when
we assume that 〈M〉 is continuous, which is equivalent to the quasi-left conti-
nuity of the filtration.

Moreover, if M is a continuous martingale with M(t) = 0 then

pvar2(M,πt) ≤ pvar(M,πt) ρ(M, [0, t], δ),

for any partition πt = (0 = t0 < t1 < · · · < tn = t) with 0 < ti − ti−1 ≤ δ,
i = 1, 2, . . . . Thus, the predictable square variation process 〈M〉 vanishes, when
M has almost surely path of bounded variation, i.e., M is the null process.

Similarly, the predictable `-variation (` > 2) of any `-integrable martingale
M null at time zero is defined by

pvar`(M,π) :=

n∑
i=1

E{|M(ti)−M(ti−1)|` | F(ti−1)}, (3.24)

with π = (t0 < t1 < · · · < tn). Therefore, the inequality

pvar`(M,πt) ≤ pvar2(M,πt) [ρ(〈M〉, [0, t], δ)]`/2−1,

for any partition πt = (0 = t0 < t1 < · · · < tn = t) with 0 < ti − ti−1 ≤ δ,
i = 1, 2, . . . and ` > 2, proves that pvar`(M,πt) → 0 almost surely as the
mesh of the partition δ vanishes. These two facts about the convergence of the
predictable quadratic variation and `-variation (` > 2) are essential to define
the stochastic integral.

With all this in mind, for any two square-integrable martingale process null
at time zero M and N we define the predictable and optional quadratic covari-
ation processes by{

〈M,N〉 :=
(
〈M +N〉 − 〈M −N〉

)
/4,

[M,N ] :=
(
[M +N ]− [M −N ]

)
/4,

(3.25)

which are processes of integrable bounded variations.
Most of proofs and comments given in this section are standard and can

be found in several classic references, e.g., the reader may check the books
by Dellacherie and Meyer [58, Chapters V–VIII], Jacod and Shiryaev [117],
Karatzas and Shreve [124], Neveu [189], Revuz and Yor [212], among others.
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Given a cad-lag integrable process X we can associate the so-called Föllmer
finitely additive measure on the ring R generated by all predictable rectangles
by the expression{

λX(]s, t]× F ) := E{(Xt −Xs)1F }, ∀t > s ≥ 0, F ∈ Fs,

λX({0} × F ) := 0 ∀F ∈ F0.
(3.26)

The variation of λX for any A in R is defined by

|λX |(A) := sup
{ n∑
i=1

|λX(Ai)|
}
, (3.27)

where the supremum is taken over all finite partition of A, i.e., A = ∪ni=1Ai,
with Ai in R and Ai ∩ Aj = ∅ if i 6= j. Replacing the absolute value | · | in
the above definition (3.27) with the positive or negative part, the positive or
negative variation λ+

X or λ−X is also defined. It satisfies λ+
X + λ−X = |λX | and

λ+
X − λ

−
X = λX . It is easily seen that the three variations |λX |, λ+

X and λ−X are
finitely additive measure.

The process X is called a quasi-martingale if its variation |λX |([0, t] × Ω)
given by (3.27) is finite for every t > 0. An interesting point is that the sum
of a bounded martingale and an adapted (cad-lag) integrable process or the
difference of two non-negative super (or sub) martingale is a quasi-martingale,
and indeed (see Protter [206, Theorem II.3.8, pp. 96-97]) any quasi-martingale
admits a decomposition as a difference of two positive right continuous super
(or sub) martingales. The notion of quasi-martingale can be easily generalized
to the multi-dimensional case (even with values in a Banach space). It can be
proved that X is a quasi-martingale if and only if

sup
{ n∑
i=1

∣∣E{X(ti)−X(ti−1) | F(ti−1)}
∣∣} <∞,

where the supremum is taken over all partition of the form 0 = t0 < ti < · · · <
tn = t, any n ≥ 1.

If the initial process X has integrable bounded variation then λX can be
extended to a σ-additive measure on the predictable σ-algebra P. Conversely,
the finitely additive measure λX on R can be extended to σ-additive measure
on P if X is a quasi-martingale of the class (D), i.e., such that the family of
random variables {X(τ) : τ is a stopping time} is uniformly integrable. The
interested reader may consult the book by Métivier [178].

3.5 Semi-Martingales

Starting from a (super-/sub-) martingale (M(t) : t ≥ 0) relative to a filtration
(F(t) : t ≥ 0) and a stopping time τ, we may stop M at time τ and preserve the
martingale property, i.e., define a new (super-/sub-) martingale (M(t ∧ τ) : t ≥
0) relative to the (stopped) filtration (F(t ∧ τ) : t ≥ 0). Thus, the martingale
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property is stable under the above stopping time operation and give rise to the
following concept.

Definition 3.12 (localization). Let (Ω,F , P,F(t) : t ≥ 0) be a given filtered
space. The term locally or local is applied to a property relative to a stochastic
processes {X(t) : t ≥ 0} with the understanding that there exists a sequence
of stopping times τn, with τn →∞, such that the stopped process {X(t ∧ τn) :
t ≥ 0} satisfies the required property for any n, e.g., we say that {X(t) : t ≥ 0}
is a local martingale or locally integrable or locally bounded if for any n the
process {X(t∧τn) : t ≥ 0} is respectively a martingale or integrable or bounded.
The sequence {τn : n = 1, 2, . . .} is called a reducing sequence for the process
{X(t) : t ≥ 0}.

In some cases, it may be some ambiguity regarding the above definition, e.g.,
when we refer to a local uniform integrable martingale or to a uniform integrable
local martingale, fortunately, we can prove that all cases used here are exactly
the same. One of the reasons for using the above localization is the following
construction: if (τn : n ≥ 1) is a reducing sequence of stopping times for a local
martingale X defined on [0, τ), τn → τ then define τ0 := 0 and

γ(t) :=

{
t− k + 1 if τk−1 + k − 1 ≤ t < τk + k − 1,

τk if τk + k − 1 ≤ t < τk + k,

which yields γ(t) = t on [0, τ1], γ(t) = τ1 on [τ1, τ1 + 1], γ(t) = t − 1 on
[τ1 + 1, τ2 + 1], γ(t) = τ2 on [τ2 + 1, τ2 + 2], γ(t) = t − 2 on [τ2 + 2, τ3 + 2],
γ(t) = τ3 on [τ3 + 2, τ3 + 3], etc. Strictly speaking γ compresses the time
interval [0,∞) onto [0, τ) and Xγ := (X(γ(t)) : t ≥ 0) is well defined, actually
Xγ is a martingale relative to (F(γ(t)) : t ≥ 0). This construction is a key
element to extend previous results on (super-/sub-) martingales to local (super-
/sub-) martingales, where integrability is no more an issue. Actually, by means
of the Doob’s optional sampling theorem if (super-/sub-) martingale X relative
to the filtration (F(t) : t ≥ 0) then Xγ := (X(γ(t)) : t ≥ 0) is a (super-/sub-)
martingale relative to the filtration (F(γ(t)) : t ≥ 0) for any family of stopping
times such that P (γ(s) ≤ γ(t) <∞) = 1 for any 0 ≤ s ≤ t, for instance, see the
books by Ikeda and Watanabe [110, pp. 32–34] or Durrett [67, pp. 38–42] for
more details and comments.

A very important point in the localization principle is the fact that when a
property is localized, we are not given away only the integrability E{|X(t)|} <
∞, for any t ≥ 0, more is included. For instance, there are continuous non-
negative super-martingales which are local martingales but not martingales, a
typical example is a M(t) := 1/|W (t)|, where W is a Wiener process in R3

with |W (0)| = 1. Indeed, by means of the (Gaussian) density of W we may
show that E{|M(t)|} < ∞ and because 1/|x| is a fundamental solution for the
Laplace equation we can complete the argument. Note that τn := inf{t ≥ 0 :
|M(t)| > n} is a reducing sequence for M but the family of random variables
{M(t ∧ τn) : n = 1, 2, . . .} is not uniformly integrable. On the other hand, a
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local (super-/sub-) martingale X satisfying

E{sup
s≤t
|X(s)|} <∞, ∀t,

is indeed a (super-/sub-) martingale, note the sup inside the mathematical ex-
pectation.

For any local sub-martingale we may define a reducing sequence as follows
τn := inf{t ∈ [0, n] : |X(t)| ≥ n}. Thus, a local sub-martingale is locally of class
(D) and Theorem 3.10 applies to the stopped process. Thus the uniqueness
yields the following local version of Doob-Meyer decomposition: A local sub-
martingale X can be expressed as X = X(0) + M + A, where M is a local
martingale and A is a predictable locally integrable monotone increasing process,
both null at time zero. The case where the (local) predictable compensator A is
continuous is very import. As mentioned above, these are quasi-left continuous
processes, which are characterized by the condition either F(τ) = F(τ−) or
P{X(τ) = X(τ−)} = 1 valid for any predictable stopping time τ.

Note that not all local martingales are locally square-integrable martingale.
For instance a local martingale X with locally square-integrable jump process
δX = (X(t)−X(t−) : t > 0) is actually a locally square-integrable martingale,
so that continuous local martingales are locally square-integrable martingale.
Hence, for a given local martingale M the predictable quadratic variation pro-
cess 〈Mc〉 is defined as the unique predictable locally integrable monotone in-
creasing process null at time zero such that M2

c − 〈Mc〉 is a (continuous) local
martingale. Next, the (optional) quadratic variation process [M ] is defined as

[M ](t) := 〈Mc〉(t) +
∑
s≤t

[M(s)−M(s−)]2, ∀t ≥ 0, (3.28)

where the second term in the right-hand side is an optional monotone increasing
process null at time zero, not necessarily locally integrable (in sense of the
localization in Ω defined above). An important point here is the fact that the
square of the jumps are locally integrable, i.e., the process

√
[M ] is locally

integrable and therefore∑
s≤t

[M(s)−M(s−)]2 <∞, ∀t > 0, (3.29)

almost surely. This follows from the use the compensator of Definition 3.5 and
two facts: (1) for any cad-lag process there is only a finite number of jumps
greater than a positive constant, i.e., |M(s) −M(s−)| > ε, almost surely, and
(2) any local martingale with jumps bounded by a constant is locally square-
integrable.

On the other hand, given a local martingale M and a real number κ there
exists two local martingales Vκ and Nκ such that M = Vκ + Nκ, where V is a
locally bounded (or finite) variation process and the jumps of N are bounded
by κ. Thus, a local martingale is the sum of a local square-integrable martingale
and a locally finite variation process.
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It is also clear that we can write M = Mc +Md, where Mc is the continuous
local martingale part and Md is the so-called purely discontinuous local mar-
tingale part, so that M(t) −M(t−) = Md(t) −Md(t−) for any t > 0. Beside
the defining fact that any square-integrable purely discontinuous martingale is
orthogonal to any square-integrable integrable continuous martingale, we may
define purely discontinuous martingales as locally uniform L2-limits of local
martingales with local finite variation, i.e., Md is purely discontinuous if and
only if there exists a sequence {Xn : n ≥ 1} of locally integrable finite variation
processes of the form

Xn(t) = Md(0) +An(t)−Apn(t), An(t) =
∑

0<s≤t

(
Xn(s)−Xn(s−)

)
,

where Apn is the compensator of An as in Definition 3.5, such that

E
{

sup
0≤t≤T

|Xn(t)−Md(t)|2
}
→ 0,

for any constant T > 0, e.g., see Kallenberg [121, Theorem 26.14, pp. 527–529].
On the other hand, if the local martingale M is also locally square-integrable

then the predictable quadratic variation process 〈M〉 is defined as the unique
predictable locally integrable monotone increasing process null at time zero
such that M2 − 〈M〉 is a local martingale. In this case 〈M〉 is the predictable
compensator of [M ]. Hence, via the predictable compensator we may define the
angle-bracket 〈M〉 when M is only a local martingale, but this is not actually
used. An interesting case is when the predictable compensator process 〈M〉
is continuous, and therefore [M ] = 〈M〉, which is the case when the initial
local martingale is a quasi-left continuous process. Finally, the optional and
predictable quadratic variation processes are defined by coordinates for local
martingale with values in Rd and even the co-variation processes 〈M,N〉 and
[M,N ] are defined by orthogonality as in (3.25) for any two local martingales
M and N. For instance we refer to Rogers and Williams [214, Theorem 37.8,
Section VI.7, pp. 389–391]) where it is proved that [M,N ] defined as above
(for two local martingales M and N) is the unique optimal process such that
MN − [M,N ] is a local martingale where the jumps satisfy δ[M,N ] = δM δN.

It is of particular important to estimate the moments of a martingale in term
of its quadratic variation. For instance, if M is a square-integrable martingale
with M(0) = 0 then E{|M(t)|2} = E{[M ](t)} = E{〈M〉(t)}. If M is only locally
square-integrable martingale then

E{|M(t)|2} ≤ E{[M ](t)} = E{〈M〉(t)}.

In any case, by means of the Doob’s maximal inequality (3.18), we deduce

E{ sup
0≤t≤T

|M(t)|2} ≤ 4E{〈M〉(T )},

for any positive constant T, even a stopping time. This can be generalized to
the following estimate: for any constant p in (0, 2] there exists a constant Cp
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depending only on p (in particular, C2 = 4 and C1 = 3) such that for any local
martingale M with M(0) = 0 and predictable quadratic variation 〈M〉 we have
the estimate

E{ sup
0≤t≤T

|M(t)|p} ≤ Cp E{
(
〈M〉(T )

)p/2}, (3.30)

for every stopping time T. If 〈M〉 is continuous (i.e., M is quasi-left continuous),
we can proceed as follows. For a given r > 0 and a local martingale M we set
τr := inf{t ≥ 0 : 〈M〉(t) ≥ r2}, with τr = 0 if 〈M〉(t) < r2 for every t ≥ 0. Since
〈M〉 is continuous we have 〈M〉(τr) ≤ r2 and (M(t ∧ τr) : t ≥ 0) is a bounded
martingale. Thus, for any c > 0 we have

P ( sup
t≤T∧τr

M2(t) > c2) ≤ 1

c2
E{M2(T ∧ τr)} =

=
1

c2
E{〈M〉(T ∧ τr)} ≤

1

c2
E{r2 ∧ 〈M〉(T )}.

Hence, for r = c we obtain

P (sup
t≤T

M2(t) > c2) ≤ P (τc < T ) + P ( sup
t≤T∧τc

M2(t) > c2) ≤

≤ P (〈M〉(t) > c2) +
1

c2
E{c2 ∧ 〈M〉(T )}.

Now, setting c = r1/p, integrating in r and using Fubini’s theorem we deduce

E{sup
t≤T
|M(t)|p} =

∫ ∞
0

P (sup
t≤T

M2(t) > r2/p) dr ≤

≤
∫ ∞

0

[
P (sup

t≤T
〈M〉(t)r2/p) +

+
1

r2/p
E{r2/p ∧ 〈M〉(T )}

]
dr =

4− p
2− p

E
{[
〈M〉(T )

]p/2}
,

so that we can take Cp = (4−p)/(2−p), for 0 < p < 2. If 〈M〉 is not continuous,
then it takes longer to establish the initial bound in c and r, but the estimate
(3.30) follows. This involves Lenglart–Robolledo inequality, see Liptser and
Shiryayev [158, Section 1.2, pp. 66–68].

A very useful estimate is the so-called Davis-Burkhölder-Gundy inequality
for local martingales vanishing at the initial time, namely

cp E{
(
[M ](T )

)p/2} ≤ E{sup
t≤T
|M(t)|p} ≤ Cp E{

(
[M ](T )

)p/2}, (3.31)

valid for any T ≥ 0 and p ≥ 1 and some universal constants Cp > cp > 0
independent of the filtered space, T and the local martingale M. In particular,
we can take C1 = C2 = 4 and c1 = 1/6. Moreover, a stopping time τ can be
used in lieu of the time T and the above inequality holds true.

Note that when the martingale M is continuous the optional quadratic varia-
tion [M ] may be replaced with the predictable quadratic variation angle-brackets
〈M〉. Furthermore, the p-moment estimate (3.30) and (3.31) hold for any p > 0
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as long as M is a continuous martingale. All these facts play an important
role in the continuous time case. By means of this inequality we show that any

local martingale M such that E{|M(0)| +
(

supt>0[M ](t)
)1/2} < ∞ is indeed

a uniformly integrable martingale. For instance, we refer to Kallenberg [121,
Theorem 26.12, pp. 524–526], Liptser and Shiryayev [158, Sections 1.5–1.6, pp.
70–84] or Dellacherie and Meyer [58, Sections VII.3.90–94, pp. 303–306], for a
proof of the above Davis-Burkhölder-Gundy inequality for (non-necessary con-
tinuous) local martingale and p ≥ 1, and to Revuz and Yor [212, Section IV.4,
pp. 160–171] for continuous local martingales.

Now, combining bounded variation processes with martingales processes and
localization arguments, we are led to the following definition.

Definition 3.13 (semi-martingale). Let (Ω,F , P,F(t) : t ≥ 0) be a given
filtered space. A semi-martingale is a random variable X (P -equivalence class)
with values into the canonical space D([0,∞),Rd) which can be expressed as
X = X(0)+A+−A−+M, where X(0) is a Rd-valued F(0)-measurable random
variable, A+, A−, are adapted monotone increasing locally integrable processes
and M is a local martingale, satisfying A+(0) = A−(0) = M(0) = 0. Thus,
A := A+ − A− is a process with locally integrable bounded variation paths.

Based on the uniqueness of Doob-Meyer decomposition, a local martingale
null at time zero with locally bounded variation is identically zero if it is pre-
dictable (in particular if it is continuous or deterministic). Since there are
non-constant martingales with locally bounded variation paths (e.g., purely
discontinuous local martingales), the decomposition in the definition of semi-
martingale is not necessarily unique. Usually, the above definition of semi-
martingale is known as special semi-martingale, but this is sufficiently general
for our study. These (special) semi-martingales include a natural condition of lo-
cal integrability (local first moment) on the bounded variation part (the adapted
process A). The equivalent of this local integrability property, applied to the
martingale part (the process M), is actually a necessary condition for martin-
gale. Unless explicitly mentioned, we drop the adjective special in using of the
name semi-martingale but we may call general or non-special semi-martingale
when the process A in the above definition may not be locally integrable. Note
that the only reason why the process A may not be integrable is because of the
large jumps. It is clear then that a (special) semi-martingale is the difference
of two local sub-martingales. Moreover, a local sub-martingale zero at the ori-
gin can be written in a unique manner as the sum of a local martingale and
an increasing predictable process, both zero at the origin. Thus, the concept
of special semi-martingales is equivalent to that of quasi-martingales, e.g. see
Kallenberg [121], Protter [206].

Theorem 3.14. Let (Ω,F , P,F(t) : t ≥ 0) be a filtered space. Then every semi-
martingale X = (X(t) : t ≥ 0) admits the unique canonical decomposition X =
X(0) +A+M, where A is a predictable process with locally integrable variation
and M is a local martingale, both satisfying A(0) = M(0) = 0. Moreover,
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the quadratic variation [M ] defined by (3.28) is the unique optional monotone
increasing process such that M2−[M ] is a local martingale and the jumps δ[M ] =
δM δM, where δM(t) := M(t)−M(t−). Furthermore, the processes

√
[M ] (by

coordinates) and sup{|X(s) − X(0)| : 0 ≤ s ≤ t} are locally integrable. If the
semi-martingale X is quasi-left continuous (i.e., either P{X(τ−) = X(τ)} = 1
or F(τ−) = F(τ) for every predictable stopping time τ), then the process A in
the semi-martingale decomposition is continuous.

Note that the local martingale appearing in the above expression has a
unique representation M = Mc+Md, where Mc (respectively Md) is the contin-
uous (purely discontinuous) part. Also, if M is a local martingale with M(0) = 0
and [M ] denotes its (optional) quadratic variation (or characteristic) then for
any t > 0 and any sequence of partitions (πk : k = 1, 2, . . .), with πk of the form
(0 = t0 < t1 < · · · < tn = t) and the mesh (or norm) of πk going to zero we have
var2(M,πk) → [M ](t) in probability as k → 0, see Liptser and Shiryayev [158,
Theorem 1.4, pp. 55–59].

Semi-martingales are stable under several operations, for instance under
stopping times operations and localization, see Jacod and Shiryaev [117, Theo-
rem I.4.24, pp. 44-45].

Observe that a process X with independent increments (i.e., which satis-
fies for any sequence 0 = t0 < t1 < · · · < tn−1 < tn the random variables
{X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1)} are independent) is not necessar-
ily a semi-martingale, e.g., deterministic cad-lag process null at time zero is a
process with independent increments, but it is not a general semi-martingale
(not necessarily special!) unless it has finite variation. It is clear that Rd-valued
processes with independent increments are completely described by their char-
acteristic functions, namely

X̂(λ, t) := E{exp(iλ ·X(t))}, ∀t ≥ 0, λ ∈ Rd,

which is a complex-valued cad-lag function. It can be proved that a process
X with independent increments is a general semi-martingale if and only if the
(deterministic) function t 7→ X̂(λ, t) has locally bounded variation for any λ
in Rd. Moreover, a process X with independent increments has the form X =
Y +A, where Y is a general semi-martingale with independent increments and
A is a deterministic cad-lag process (or function) from [0,∞) into Rd+ with
A(0) = 0. On the other hand, if X is an integrable (cad-lag!) process with
independent increments, i.e., E{|X(t)|} <∞ for every t ≥ 0, and (F(t) : t ≥ 0)
is its natural filtration then

E{X(t) | F(s)} = E{X(t)−X(s)}+X(s), a.s.,

for any t ≥ s ≥ 0. Hence, X is a (super-/sub-) martingale if and only if E{X(t)−
X(s)} = 0 (≤ 0/≥ 0) for any t ≥ s ≥ 0.

The only reason that a semi-martingale may not be special is essentially the
non-integrability of large jumps. If X is a semi-martingale satisfying |X(t) −
X(t−)| ≤ c for any t > 0 and for some positive (deterministic) constant c > 0,
then X is special. Indeed, if we define τn := inf{t ≥ 0 : |X(t)−X(0)| > n} then
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τn → ∞ as n → ∞ and sup0≤s≤τn |X(s) −X(0)| ≤ n + c. Thus X is a special
semi-martingale and its canonical decomposition X = X(0) + A + M satisfies
|A(t)−A(t−)| ≤ c and |M(t)−M(t−)| ≤ 2c, for any t > 0.

Similar to (3.31), another very useful estimate is the Lenglart’s inequality:
If X and A are two cad-lag adapted processes such that A is monotone increas-
ing and E{|Xτ |} ≤ E{Aτ}, for every bounded stopping time τ, then for every
stopping time τ and constants ε, η > 0 we have P

{
sup
t≤τ
|Xt| ≥ ε

}
≤ 1

ε

[
η + E

{
sup
t≤τ

(At −At−)
}]

+

+P
{
Aτ ≥ η

}
,

(3.32)

and if A is also predictable then the term with the jump (At−At−) is removed
from the above estimate. A simple way to prove this inequality is first to reduce
to the case where the stopping time τ is bounded. Then, defining θ := inf{s ≥
0 : |Xs| > ε} and % := inf{s ≥ 0 : As > η}, since A is not necessarily continuous,
we have A%− ≤ η and

Aθ∧τ∧% ≤ η + sup
t≤τ

(At −At−),{
sup
t≤τ
|Xt| > ε

}
⊂
{
θ ≤ τ < %

}
∪
{
Aτ ≥ η

}
.

Hence, by means of the inequality

P
{
θ ≤ τ < %

}
≤ P

{
|Xθ∧τ∧%| ≥ ε

}
≤ 1

ε
E
{
Aθ∧τ∧%

}
,

we obtain (3.32). However, if A is predictable then % is a predictable time,
and there is a sequence of stopping times (%k : k ≥ 1) converging to % such
that %k < % if % > 0. Thus Aθ∧τ∧% ≤ A%− almost surely, which completes
the argument. Given a local martingale M, a good use of (3.32) is when the
predictable compensator process 〈M〉 is continuous, and therefore [M ] = 〈M〉,
so that

P
{

sup
t≤τ
|Mt| ≥ ε

}
≤ η

ε2
+ P

{
〈M〉τ ≥ η

}
, ∀ε, η > 0, (3.33)

for any stopping time τ. This is the case of a quasi-left continuous local martin-
gale M.

For a comprehensive treatment with proofs and comments, the reader is
referred to the books by Dellacherie and Meyer [58, Chapters V–VIII], Liptser
and Shiryayev [158, Chapters 2–4, pp. 85–360]. Rogers and Williams [214,
Section II.5, pp. 163–200], among others. A treatment of semi-martingale
directly related with stochastic integral can be found in Protter [206].

Let us insist on the following concept, which characterize a large class of
Markov processes suitable for modelling.

Definition 3.15 (quasi-left continuous). As mentioned previously, a filtration
(F(t) :≥ 0) of a probability space (Ω,F , P ) is called quasi-left continuous or
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regular if for any increasing sequence of stopping time {τn : n = 1, 2, . . .} almost
surely strictly convergent to τ, P (τn ≤ τn+1 < τ < ∞, τ > 0) = 1, the σ-
algebra F(τ) is the minimal σ-algebra containing the sequence of σ-algebra
{F(τn) : n = 1, 2, . . .}. This is equivalent to the condition F(τ) = F(τ−) for
any predictable stopping time, recall that a stopping time τ is predictable if
there exists an announcing sequence of stopping times {τn : n = 1, 2, . . . }, i.e.,
τn increases to τ and P (τn < τ, τ > 0) = 1. A (cad-lag) integrable stochastic
process X adapted to a filtration {F(t) : t ≥ 0} is called quasi-left continuous or
regular if X(τn) converges to X(τ) almost surely for any announcing sequence
of stopping times τn convergent to τ.

It can be proved (e.g., Rogers and Williams [214, Chapter VI, Theorems
18.1-2, pp. 346-347]) that a filtration {F(t) : t ≥ 0} is quasi-left continuous if
and only if every uniformly integrable martingale M relative to {F(t) : t ≥ 0}
satisfies M(τ) = M(τ−) for any predictable stopping time and that any Markov-
Feller process (also called Feller-Dynkin process) is regular with respect to its
natural filtration, the discussion goes as follows.

Let E be a locally compact Polish (i.e., complete separable metric) space
(usually, E is an open or closed subset of Rd). A Markov-Feller process with
states in E possesses a Feller semigroup {P (t) : t ≥ 0} in C0(E), with infinites-
imal generator A with domain D(A) ⊂ C0(E), see Definition 2.40 in Chapter 2.
Its transition function P (t, x,dy) can be defined on a compact base space Ė,
the one-point compactification of E, by P (t, x, {∞}) := 1 − P (t, x, E), so that
P (t, x, Ė) = 1. For any initial distribution on Ė, we denote by P the (com-
plete) probability measure induced by the transition function P (t, x,dy) on the
canonical space D([0,∞), Ė) with its Borel σ-algebra B, its canonical process
X(t) := ω(t) and its filtration {F(t) : t ≥ 0}, see Definition 1.28 and Theo-
rem 1.32 in Chapter 1. Note that the probability measure P and the completion
necessary to generate the filtration {F(t) : t ≥ 0} depend on the initial distri-
bution r → P{X(0) ≤ r}. All these elements constitute a standard realization
of a Markov-Feller or Feller-Dynkin process with state in E (strictly speaking
in Ė).

Now, for a function f in C0(Ė) and λ > 0 the resolvent operator is given by

Rλf(x) :=

∫ ∞
0

e−λt P (t)f(x) dt =

∫ ∞
0

dt

∫
E

e−λt f(y)P (t, x,dy),

and satisfies

Rλf(x) = E{ξ |X(0) = x}, with ξ :=

∫ ∞
0

e−λt f(X(t))dt.

Denoting by Ex{·} the (conditional) expectation with respect to the probability
measure P with the Dirac measure at x as the initial distribution and applying
Markov property, we find that

Ex{ξ | F(t)} =

∫ t

0

e−λs f(X(s))ds+ e−λtRλf(X(t)), a.s. ∀t > 0,
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which proves that the right-hand side is a uniformly integrable martingale. Thus
the Optional-Stopping Theorem 3.9, part (b), yields

Ex
{∫ τ

0

e−λt f(X(t))dt
}

+ Ex{e−λτRλf(X(τ))} = Rλf(x).

Hence, if f = (λ − A)ϕ for some ϕ in the domain D(A) of the infinitesimal
generator A we deduce that the process Y (t) = Y (t, ϕ, λ) given by

Y (t) := e−λt ϕ(X(t)) + ϕ(x) +

∫ t

0

e−λs (λ−A)ϕ(X(s))ds,

is a uniformly integrable martingale relative to (P x,F(t) : t ≥ 0). Therefore,
the following identity, so-called Dynkin’s formula

E{ϕ(Xθ)} = E{ϕ(Xτ )}+ E{
∫ θ

τ

Aϕ(X(t)) dt} (3.34)

holds for any function ϕ in D(A) and any stopping time satisfying P{τ ≤ θ <
∞} = 1. Moreover, the filtration {F(t) : t ≥ 0} is quasi-left continuous, i.e.
F(τ) = F(τ−) and X(τ) = X(τ−) (almost surely) for any predictable stopping
time τ.

For instance, we refer to Rogers and Williams [214, Chapter III, pp. 227–
349], Dellacherie and Meyer [58, Chapters XI–XVI], Dynkin [70], among others.
Also, the reader interested in a comprehensive study on the theory of martingales
may consult the books He et al. [105] or Liptser and Shiryayev [158].

3.6 Strong Markov Processes

Starting from a filtered space (Ω,F , P,F(t) : t ≥ 0), we may consider stochastic
processes X with values in some Polish space E (complete separable metric
space, usually locally compact) as (1) a family of E-valued random variables
{X(t) : t ≥ 0}, (2) a function on a product space X : [0,∞) × Ω → E, (3)
a function space valued random variable, i.e., either a random variable with
values in some sub-space of E[0,∞) or a mapping from [0,∞) into the space of
E-valued random variables. Except when explicitly mentioned, we are looking
at a stochastic process as a random variable with values in some function space,
a Polish space non-locally compact which most of the cases is either D([0,∞), E)
or C([0,∞), E), with E being an Borel (usually open or closed) subset of Rd.

A stochastic process X with values in a Polish space E (even more general,
E could be a Lusin space, i.e., a topological space homeomorphic to a Borel
subset of a complete separable metric space) is called a Markov process in the
filtered space (Ω,F , P,F(t) : t ≥ 0) if the Markov property is satisfied, i.e.,

E{f(X(t) | F(s)} = E{f(X(t) |X(s)}, (3.35)

for every t ≥ s and any bounded Borel real function f on E. This is an almost
surely equality due to the use of conditional probability. It means that the only
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information relevant for evaluating the behavior of the process beyond time s is
the value of the current state X(s). This implies in particular that X is adapted.
Points x in E are called states and E is the state space of X.

A Markov process can be identified by its transition function, which is de-
fined by taking a particular class of function f in (3.35), namely characteristic
or indicator functions f = 1B of Borel subsets B of E, i.e., with B in B(E).
The transition function p(s, x, t, B) is defined with following (minimal) regular-
ity conditions:

(1) for fixed 0 ≤ s ≤ t, x in E, the function B 7→ p(s, x, t, B) is a probability
measure on

(
E,B(E)

)
,

(2) for fixed 0 ≤ s ≤ t, B in B(E) the function x 7→ p(s, x, t, B) is Borel mea-
surable,

(3) for every 0 ≤ s ≤ t, x in E, B in B(E) we have the identity p(s,X(s), t, B) :=
E{1B(X(t)) | F(s)}, almost surely.

Really, (1) and (2) are necessary conditions to make sense to the key con-
dition (3). However, the Markov property alone is not sufficient to define the
transition function. Condition (3) implies that for every s ≥ 0, x in E, B in
B(E) we have p(s, x, s, B) = 1B(x) and standard properties of the conditional
probability yield the Chapman-Kolmogorov identity

p(s, x, t, B) =

∫
E

p(r, y, t, B)p(s, x, r, dy), (3.36)

valid for any 0 ≤ s < r < t, x in E and B in B(E).
Markov processes are mathematical model for phenomena which evolve in

time, in a random way and following some dynamic or evolution law. Most
often, statistical experiments or physical considerations give only information
about the so-called finite-dimensional distributions of a process. This means
that for a given initial probability measure µ on

(
E,B(E)

)
and times 0 ≤ t0 <

t1 < · · · < tn the probabilities Pt0,t1,...,tn on En+1 defined by
Pt0,t1,...,tn(B0 ×B1 × · · · ×Bn) =

=

∫
B0

µ(dx0)

∫
B1

p(t0, x0, t1,dx1)

∫
B2

p(t1, x1, t2,dx2) · · ·

· · ·
∫
Bn−1

p(tn−2, xn−2, tn−1,dxn−1) p(tn−1, xn−1, tn, Bn)

(3.37)

are the finite-dimensional distributions. Thus, starting from a function p satis-
fying the properties (1) and (2) of a transition function, and if the function p sat-
isfies the Chapman-Kolmogorov identity (3.36), then the above relation (3.37)
defines a consistent family of finite-dimensional distributions on the canonical
product space E[0,∞). Note that the Dirac measure δ(x0), i.e., the unit mass
concentrated at x0, is the typical initial distribution at time t0. For simplicity,
let us discuss homogeneous Markov process, i.e., the case where the transition
function is time invariant, i.e., p(s, x, t, B) = p(0, x, t − s,B) for every t ≥ s, x
in E and B in B(E). Hence, the transition function can be taken as p(x, t, B),
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with t ≥ 0. Remark that by adding an extra variable (the time), we can al-
ways reduce to homogeneous case. Thus, Kolmogorov’s existence theorem can
be used to construct a Markov process with the given transition function p, for
each initial probability measure µ at time t0 = 0, and then we have a family of
Markov processes. Therefore, by a realization of Markov process with transi-
tion probability function p we mean a collection (Ω,F ,Ft, Xt, Px, t ≥ 0, x ∈ E)
where Px is the probability measure constructed as above with initial probabil-
ity µ = δx, the Dirac measure at x. In Kolmogorov’s construction, the process
Xt(ω) = X(t, ω) := ω(t) is the coordinate (or identity) mapping and F(t) is
the natural filtration associated with the process X(t), which is not always
right-continuous. Some difficulties appear since F(t) should be completed with
respect to the probability measure Px, given a completed filtration Fx(t) or
Fµ(t), which depend on initial parameter x or µ.

By means of the transition probability function, we may re-write the Markov
property (3.35) as

P{X(s+ t) ∈ B | F(s)} = p(X(s), t, B), (3.38)

for every t ≥ s ≥ 0 and any Borel subset B of E. Now, a strong Markov process
is one for which the Markov property holds at stopping times of the filtration
{F(t) : t ≥ 0}, i.e.,

P{X(T + t) ∈ B | F(T )}1T<∞ = p(X(T ), t, B)1T<∞, (3.39)

for every t ≥ 0, any stopping time T and any Borel subset B of E. This says
that the probabilistic evolution of the process after the stopping time T is just
that of another process restarted at T, i.e., the process restarts at stopping time.
The reader is referred to Doob [60, Theorems 8 and 9, pp. 556-560], see The-
orem 1.29 in Chapter 1, for conditions ensuring the right-continuity of the fil-
tration and the strong Markov property. In the statement (3.39), we remark
the interest in using a filtration satisfying the usual condition, in particular the
need of having a completed σ-algebra F(0). A useful definition in this context
is the so-called universally completed filtration, which is constructed as follows.
First, let {F(t) : t ≥ 0} be the filtration (history) generated by the canonical
process X(t, ω) = ω(t), not necessarily satisfying the usual conditions. Denote
by {Fµ(t) : t ≥ 0} the filtration which is obtained by completing F(0) with
respect to the probability measure Pµ. Now the universally completed filtration
is {F0(t) : t ≥ 0}, where F0(t) := ∩µFµ(t), for every t ≥ 0. Note that the
filtration {F0(t) : t ≥ 0}, does not necessarily satisfies the usual conditions, but
it is right-continuous if the initial filtration {F(t) : t ≥ 0} is so.

As discussed earlier, the product space E[0,∞) does not provide a suitable
mathematical setting, we need to use the Polish sample space D([0,∞), E) or
C([0,∞), E). This imposes more conditions on the transition function p, and
eventually we are lead to the study of Markov-Feller processes and semigroups.

The reader may consult the classic references Blumental and Getoor [28],
Dynkin [70] or more recent books, e.g., Davis [56], Rogers and Williams [214].

One of the most simple Markov processes in continuous time is the Poisson
process. If {τn : n, n = 1, 2, . . .} is a sequence of independent exponentially
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distributed (with parameter λ) random variables, then the random variable
θn := τ1 + · · · + τn has a Γ-distribution with parameters λ and n − 1, for
n = 1, 2, . . . , i.e.,

P{θn ≤ t} =
λn

(n− 1)!

∫ t

0

sn−1e−λxds, ∀ t ≥ 0,

and the counting process defined by

p(t, ω) :=

∞∑
n=1

1θn(ω)≤t, ∀ t ≥ 0 (3.40)

is a Poisson process, i.e., p(0) = 0, p(t) − p(s) is a Poisson variable with mean
λ(t− s), namely

P{p(t)− p(s) = n} =
[
λ(t− s)

]n
exp

[
− λ(t− s)

]
,

for every n = 0, 1, . . . , and for any 0 ≤ t0 < t1 < · · · < tn the family
{p(t0), p(tk) − p(tk−1) : k = 1, 2, . . . , n} is a set of independent random vari-
ables. The parameter λ is usually called jump rate.

In a compound Poisson process the construction (3.40) is modified as follows

pc(t, ω) :=

∞∑
k=1

ηn(ω)1θn(ω)≤t, ∀ t ≥ 0, (3.41)

where {ηn : n = 1, 2, . . .} is a sequence of independent identically distributed
(with distribution law ν and independent of the {τn}) Rd-valued random vari-
ables. A integer-valued measure process can be associated, namely

ρc(t, B, ω) :=

∞∑
k=1

1θk(ω)≤t1ηk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd), (3.42)

which captures all features of the compound process and extends to the so-called
Poisson measures. Note that E{ρc(t, B, ω)} = t λ ν(B). The parameters λ and
ν yield the integral operator

Ih(x) := λ

∫
R

[
h(x+ y)− h(x)

]
ν(dy), ∀x ∈ Rd, (3.43)

which is a characteristic element of the compound Poisson process. This integral
operator is the infinitesimal generator of the Markov process, which in turn is
determined by its kernel, the Lévy measure M(dy) := λ ν(dy). Note that to
make the expression (3.42) interesting, we assume ν({0}) = 0 and then the
mass of the origin M({0}) does not play any role in the definition of I, thus the
Lévy measure is on Rd∗ := Rd r {0}.

All these examples are time and spatially homogeneous Markov processes.
To relax the homogeneity, we must allow the Lévy measure to depend on t
and x. For instance, we take M(x, dy) in the expression (3.43) of the integral
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operator. The dependency on x of the kernel could be very general and in some
cases hard to track. A typical assumption is the representation

M(x,B) = λ(x) `({ζ ∈ [0, 1] : x+ j(x, ζ) ∈ B}), (3.44)

for every x in Rd and B in B(Rd∗), where ([0, 1],L, `) is the canonical Lebesgue
probability measure space, λ : Rd → [0,∞) and j : Rd × [0, 1] → Rd∗ are
measurable functions, on which some regularity (such as continuity) in x may
be required.

If {Zn, Un : n = 1, 2, . . . } are double sequence of independent uniformly
distributed random variables in ([0, 1],L, `), then the transformation

Θ(x, u) := inf
{
t ≥ 0 : exp[−t λ(x)] ≤ u

}
, (3.45)

with Θ(x, 0) := +∞, yields the construction of the following Markov jump
process by induction. Given θk−1 and xk−1 we define

θk := θk−1 + Θ(xk−1, Uk),

xk := xk−1 + j(xk−1, Zk)

and for any t in the stochastic interval [[θk−1, θk[[ set x(t) := xk. Naturally, we
can start from any initial time θ0 and state x0, but we use θ0 = 0 and any given
x0. Assuming that θn → ∞ (e.g., this hold if λ(·) is bounded) the process x(t)
is defined for every time t ≥ 0. Its associated integer-valued measure process is
given by

ρ(t, B, ω) :=

∞∑
k=1

1θk(ω)≤t1xk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd). (3.46)

The integral operator becomes

Ih(x) := λ(x)

∫
[0,1]

[
h(x+ j(x, ζ))− h(x)

]
`(dζ), ∀x ∈ Rd, (3.47)

which make sense for any bounded Borel measurable function h. The process
{x(t) : t ≥ 0} a cad-lag realization (and piecewise constant) of a strong Markov
process. Several other variations are possible.

3.7 Extended Generators

Let E be a Borel subset of Polish space, let B(E) be the Banach space of
bounded Borel measurable functions f from E into R with sup-norm ‖ · ‖,
and let (Ω,F ,Ft, Xt, Px, t ≥ 0, x ∈ E) be a (strong) Markov process. For
t ≥ 0, define an operator P (t) : B(E) → B(E) by P (t)f(x) := Ex{f(X(t)},
where Ex{·} denotes the mathematical expectation relative to Px. It is clear
that P (t) is a contraction, i.e. ‖P (t)f‖ ≤ ‖f‖, for every t ≥ 0, and that the
Chapman-Kolmogorov identity (3.36) are equivalent to the semigroup property
P (t)P (s) = P (s+ t), for every t, s ≥ 0.
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Denote by B0 the subset of B(E) consisting of those functions f for which
‖P (t)f −f‖ vanishes as t goes to zero. The contraction property shows that B0

is a closed subspace of B(E) and {P (t) : t ≥ 0} is called strongly continuous on
B0. Moreover, (1) B0 is invariant under P (t), for every t ≥ 0, and (2) for every
f in B0 (which is itself a Banach space), the function t 7→ P (t)f is continuous
from [0,∞) into B0.

Now, let A be the strong infinitesimal generator of {P (t) : t ≥ 0} with
domain D(A) ⊂ B0 ⊂ B(E), i.e, f belong to D(A) and Af = g if and only if

lim
t→0

∥∥∥P (t)f − f
t

− g
∥∥∥ = 0.

Note that the domain D(A) is as important as the expression of A, there are
examples of two different Markov process with the same expression for the in-
finitesimal generator A but with disjoint domains D(A), see Davis [56, Chapter
2].

Based on properties of derivatives and Riemann integrals of continuous func-
tions with values in a Banach space, we can establish:

(1) if f ∈ B0 and t ≥ 0 then∫ t

0

P (s)fds ∈ D(A) and A

∫ t

0

P (s)fds = P (t)f − f,

(2) if f ∈ D(A) and t ≥ 0 then P (t) ∈ D(A) and

d

dt
P (t)f = AP (t)f = P (t)Af,

P (t)f − f =

∫ t

0

AP (s)fds =

∫ t

0

P (s)Afds.

In probabilistic terms, if u(t) = u(x, t) := Ex{f(X(t))} = P (t)f(x) with f in
D(A) then u satisfies

∂tu(t) = Au(t), u(0) = f, (3.48)

which is an abstract version of the so-called Kolmogorov backward equation. The
semigroup is determined by (3.48) and this determines the transition (probabil-
ity) functions p(x, t, B), which determines the finite-distributions and hence the
probability measure Px, i.e., the Markov process itself. Certainly, some tech-
nical conditions are required to turn this calculation into reality. For practical
calculations it is more important the second expression in (2) which can be
written as

Ex{f(X(t)} = f(x) + Ex
{∫ t

0

Af(X(s)ds
}
, (3.49)

for every f in D(A), which is known as Dynkin formula.
Let f be in D(A) and define the real-valued process {Mf (t) : t ≥ 0} by

Mf (t) := f(X(t))− f(X(0))−
∫ t

0

Af(X(s))ds. (3.50)
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By using the semigroup property and conditional expectation arguments, we
can show that for every x in E the process {Mf (t) : t ≥ 0} is a martingale in
(Ω,F , Px,F(t), t ≥ 0), i.e.,

Ex{Mf (t) | F(s)} = Mf (s), ∀t ≥ s ≥ 0.

A natural extension of the domain D(A) of the (strong) infinitesimal gener-
ator is as follows.

Definition 3.16 (extended generator). Let B∗(E) be the space of all Borel
measurable functions, not necessarily bounded, from E into R. We say that
a function f belongs to the domain of the extended (infinitesimal) generator
if there exists another function g in B∗(E) such that t 7→ g(X(t)) is locally
integrable Px-almost surely and the process {Mf (t) : t ≥ 0} defined by

Mf (t) := f(X(t))− f(X(0))−
∫ t

0

g(X(s))ds

is a local martingale, i.e., there exists an increasing sequence of stopping times
{τn : n = 1, 2, . . .}, with τn → +∞ such that the stopped process Mn

f (t) :=
Mf (t∧ τn) is a uniformly integrable martingale for each n. We use the notation
D(Ā) for the extended domain and Āf := g for the extended generator.

Note that D(A) ⊂ D(Ā) and that Āf is uniquely defined (module subset
of potential zero). Indeed, if f = 0 then the process {Mf (t) : t ≥ 0} is a
continuous martingale with locally bounded variation, therefore Mf (t) = Mf (0)
is the constant process zero. Hence, Af = 0 except possibly on some measurable
set B of E such that∫ ∞

0

1B(X(t))dt = 0, Px − a.s.,

for every x in E. Such a set B is said to have potential zero. The process
{X(t) : t ≥ 0} spend no time in B, regardless of the starting point, so the
process {Mf (t) : t ≥ 0} does not depend on the values of Af for x in B, and
Af is unique up to sets of zero potential.

When {Mf (t) : t ≥ 0} is a martingale, Dynkin formula (3.49) holds. Usually,
it is quite difficult to characterize D(Ā) but in most of the cases, there are easily
checked sufficient conditions for membership in the extended domain D(Ā). For
instance, the reader is refereed to the books by Davis [56, Chapter 1], Ethier
and Kurtz [76, Chapter 4] for more details.

Let us go back to the examples in the previous section. For the particu-
lar case of the Poisson process (p(t) : t ≥ 0) given by (3.40), the extended
infinitesimal generator is

Af(x) = λ[f(x+ 1)− f(x)], ∀x ∈ R

while for the compound Poisson process (pc(t) : t ≥ 0) (3.40), A is the integral
operator I given by (3.43). What is perhaps more relevant is the extended
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domain D(Ā), which have not restriction at all (i.e., all real-valued function
defined on R) for the Poisson process, while a condition on local integrability,
i.e., a measurable function f : R → R belongs to D(Ā), for the compound
Poisson process with parameters λ and ν, if and only if

E{
∞∑
i=1

|f(x+ ηi)− f(x)|1θi<σn} <∞, ∀x, n,

where σn is a sequence of stopping times with σn →∞ almost surely.
For the class of Markov jump process constructed by induction, see (3.45)

and (3.46), the full description of the extended domain D(Ā), with A = I as
in (3.47), is as follow. First, we say that a process {h(x, t, ω) : t ≥ 0, x ∈ Rd}
belongs to L1(ρ), (where ρ is the integer-valued measure process) if

E
{ ∞∑
i=1

h(xk, θk, ω)
}
<∞.

Similarly, h belongs to L1
loc(ρ), if there exists a sequence {σk : k ≥ 0} of stopping

times with σn →∞ almost surely such that

E
{ ∞∑
i=1

h(xk, θk ∧ σn, ω)
}
<∞, ∀n.

Now, a measurable function f belongs to D(Ā) if the process h(x, t, ω) := f(x)−
f(x(t−, ω)) belongs to L1

loc(ρ). This is particular case of Davis [56, Theorem
26.14, pp. 69–74].

3.8 Poisson Processes and Queues

In a practical way, a stochastic process is a mathematical model of a proba-
bilistic experiment that generates a sequence of numerical values as it evolves
in time. Each numerical value in the sequence is modelled by a random vari-
able, so a stochastic process is simply a (finite or infinite) sequence of random
variables. However, the properties of the evolution in time become essential
when the focus is on the dependencies in the sequence of values generated by
the process. Typically, arrival-type or outcome-type processes occur very fre-
quently (“arrival” of such as message receptions at a receiver, job completions
in a manufacturing cell, customer purchases at a store, trials of coin tosses, etc),
where the focus is on modeling the “inter-arrival” (times between successive ar-
rivals) are independent variables. These processes become Markov processes as
the dimension is increased. In Markov processes, the experiments that evolve
in time exhibit a very special type of dependence: the next value depends on
the past values only through the current value, the present.

Clearly, the way how time is measured is critical. Essentially, there are
only two ways, “discrete time” (where a unit time is identified and used, i.e.,
integer numbers are the model) and “continuous time” (where the time goes
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continuously, i.e., real numbers are the model). For instance, if the arrivals
occur in discrete time and the inter-arrival times are geometrically distributed,
this is the Bernoulli process described as a sequence {x1, x2, . . .} of independent
random variables xi with P{xi = 1} = p (arrival occurs in the i trial with
probability 0 < p < 1) and P{xi = 0} = p (arrival does not occur in the i trial).
Here, arrival also means success in the outcome under consideration. Standard
calculations show that if Sn := x1 +x2 + · · ·+xn denotes the number of arrivals
in n independent trials then

P{Sn = k} =

(
n

k

)
pk(1− p)k, k = 0, 1, . . . , n,

with a mean E{Sn} = np and a variance E{Sn−np}2 = np(1−p), i.e., a binomial
distribution with parameters p and n. Similarly, if T := inf{i ≥ 0 : xi = 1}
denotes the number of trials up to (and including) the first arrival then

P{T = k} = (1− p)k−1p, k = 1, 2, . . . ,

with mean E{T} = 1/p and a variance E{Sn − 1/p}2 = (1 − p)/p2, i.e., a
geometric distribution with parameter p. This yields the memoryless fact that
the sequence of random variables {xn+1, xn+2, . . .} (the future after n) is also
a Bernoulli process, which is independent of {x1, . . . , xn}. Also, the fresh-start
property holds, i.e., for a given n define Tn := inf{i ≥ n : xi = 1} then Tn−n has
a geometric distribution with parameter p, and is independent of the random
variables {x1, . . . , xn}.

The equivalent of this in continuous time is the Poisson process, where the
inter-arrival times are exponentially distributed, i.e., given a sequence of inde-
pendent identically exponentially distributed random variables {τ1, τ2, . . .}, the
counting process

p(t) =

0 if t < τ1,

n if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi

with values in {0, 1, 2, . . . }, is called a Poisson process. A realization of this
process requires some properties on the probability space.

Perhaps the simplest example of an uncountable probability space is the
unit interval with the Lebesgue measure ([0, 1],L, `), where L is the Lebesgue
σ-algebra. The real-valued random variable U(ω) := ω satisfies `(U ≤ r) =
(r ∧ 1) ∨ 0 for every r in Rd, which is referred to as the uniform distribu-
tion on [0, 1]. More general the Hilbert cube Ω := [0, 1]{1,2,...}, i.e., the space
of sequences ω = (ω1, ω2, . . .) with values in [0, 1], endowed with the product
σ-algebra F := L{1,2,...} and the product measure P := `{1,2,...}, provides a
canonical space for a sequence of independent random variables (U1, U2, . . .),
each having uniform distribution on [0, 1], defined by Ui(ω) := ωi, for every
ω = (ω1, ω2, . . .). In theory, almost all statistical simulation is based on this
probability space. Random number generator in computers produce sequences
of numbers which are statistically indistinguishable (as much as possible) from
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samples (U1, U2, . . .). Random variables with other distributions are then pro-
duced by well-known transformations. For instance, given a distribution F in
the real line, i.e., a function F : R → [0, 1] monotonically increasing and right-
continuous with F (−∞) = 0 and F (+∞) = 1, its inverse function defined by
F−1(ρ) := inf{r : F (r) ≥ ρ} satisfies F−1(ρ) ≤ r if and only if ρ ≤ F (r). Thus,
if U is a random variable uniformly distributed in [0, 1] then V := F−1(U)
satisfies P (V ≤ r) = F (r), i.e., F is the distribution of V.

Given a Borel subset E of Rd, it is possible to construct a one-to-one Borel
function φ : E → [0, 1] such that φ(E) is a Borel subset of [0, 1] and φ−1 :
φ(E)→ E is Borel measurable. From this we deduce that for any measure µ on a
Borel subset E of Rd there exists a measurable function Υ : [0, 1]→ E such that
`(Υ−1(B)) = µ(B) for every B in B(E), the Borel σ-algebra B(Rd) restricted
to E. Indeed, setting F (r) := µ(φ−1([0, r])) and F−1(ρ) := inf{r : F (r) ≥ ρ} as
above we may take Υ(ρ) := φ−1(F−1(ρ)) for any F−1(ρ) belongs to φ(E) and
Υ(ρ) := 0 otherwise.

One of the advantages of stochastic modeling is that calculations are greatly
facilitated if the model is formulated as a Markov process, so that general meth-
ods for computing distributions and expectations (based on the Dynkin formula
and the Kolmogorov backward equation) are available. If the randomness is
in the form of point events then the prototype is the Poisson process. A non-
negative real random variable T is exponentially distributed if its survivor func-
tion F (t) = FT (t) := P (T > t), for every t ≥ 0, has the form F (t) = e−λt, for
some constant λ > 0. The mean and the standard deviation of T are both equal
to 1/λ. The memoryless property of the exponential distribution relative to the
conditional distribution, i.e.,

P (T > t+ s | T > s) =
F (t+ s)

F (s)
= F (t) = e−λt,

make T a prototype of a (Markov) stopping time. Thus the conditional dis-
tribution of the remaining time (i.e., given T > s) is just the same as the
unconditional distribution of T, regardless of the elapsed time s. Another way
of expressing this is in terms of the hazard rate, which is by definition a function
h(t) satisfying

lim
δ→0

P (T ∈]s, s+ δ] | T > s)− h(s)

δ
= 0,

i.e., h(s)δ expresses, to first order, the probability that T occurs ’now’ given that
it has not occurred ’so far’. In the exponential case we have P (T ∈]s, s+δ] | T >
s) = 1− e−λδ, so that the hazard rate is constant, h(t) = λ. For a non-negative
random variable with a general density function ψ the hazard rate is given by

h(s) =
ψ(s)

Ψ(s)
, ∀s ∈ [0, c[, with

Ψ(s) :=

∫ ∞
s

ψ(r)dr, c := inf{r : Ψ(r) = 0},
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where Ψ(s) is the corresponding survivor function. In fact, there is a one-to-one
correspondence between h and Ψ based on the ordinary differential equation
Ψ̇ = −hΨ and the initial condition Ψ(0) = 1. Thus the exponential is the only
distribution with constant hazard rate.

Let us construct a sequence of independent identically distributed (expo-
nential with parameter λ > 0) random variables (τ1, τ2, . . .) in the canonical
Hilbert cube (Ω,F , P ). Let (U1, U2, . . .) be the canonical sequence of indepen-
dent random variables each having uniform distribution on [0, 1] as above. Then
setting Ψ(t) := e−λt and Ψ−1(u) := inf{t ≥ 0 : Ψ(t) ≤ u}, for every u > 0,
we define τi := Ψ−1(Ui(ω)) = − ln[Ui(ω)]/λ, for every i ≥ 1, which satisfies
P (τi > t) = Ψ(t), i.e., exponentially (with parameter λ) distributed and inde-
pendent.

Now define θ0 = 0, θn := τ1 + τ2 + . . . + τn, which has Γ(λ, n), i.e., P (θn ∈
dt) =

(
λns(n−1)/(n− 1)!

)
e−λtdt, and

N(t) :=

∞∑
i=1

1t≥θi , i.e., N(t) := n if θn ≤ t < θn+1.

The sample functions of (N(t) : t ≥ 0) are right-continuous step functions with
jumps of height 1 at each τi, in particular it is cad-lag, belonging to the canonical
sample space D([0,∞[). The random variable N(t) has a Poisson distribution
P (N(t) = n) = e−λt(λt)n/n!, with mean E{N(t)} = λt. Denote by (Ft : t ≥ 0)
it natural filtration, i.e., Ft is the σ-algebra generated by the random variables
{N(s) : 0 ≤ s ≤ t}. Fix t > 0 and denote by θt the last jump time before
t, i.e, θt(ω) = θn(ω), with θn(ω) ≤ t < θn+1(ω) and n = nt(ω). In view of
the memoryless property of the exponential, if τ∗1 := θn+1 − t and τ∗i := τn+i,
for i ≥ 2, with n = nt(ω), then the conditional distribution of τ∗1 given Ft (or
equivalently, given that τn+1 > t−θn) is exponential, P (τ∗1 > s | Ft) = e−λt, and
so the sequence {τ∗1 , τ∗2 , . . .} is independent identically distributed (exponential
with parameter λ > 0). It follows that N∗(s) := N(t + s) − N(t), s ≥ 0 is
a Poisson process independent of Ft, i.e., the process ’restart’ at time t. In
particular, it has independent increments, i.e., N(t2)−N(t1) and N(t4)−N(t3)
are independent variables for any 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. This implies that (N(t) :
t ≥ 0) is a Markov process, indeed, for any bounded and Borel measurable
function and t > s ≥ 0 we have

E{f(N(t)) | Fs} = eλ(t−s)
∞∑
k=0

f(k +Ns)
[λ(t− s)]k

k!
,

since N(t)−N(s) is Poisson distributed with mean λ(t− s). The Poisson pro-
cess may be considered as a Markov process in either the integer numbers
E = {0,±1,±2, . . .} or the non-negative integer numbers E = {0, 1, 2, . . .}.
The process i+N(t) yields probability measure Pi and the transition function
is

p(i, t, j) :=

eλt (λt)j−i

(j−i)! , if j ≥ i,

0 otherwise,
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for any i, j in E. This defines a semigroup P (t) := E{f(x+N(t))} on the space
B(E) of real (Borel) bounded functions on E. The infinitesimal generator A is

Af(x) := lim
t→0

E{f(x+N(t))}
t

= λ[f(x+ 1)− f(x)], ∀x ∈ E,

where the domain D(A) of the strong infinitesimal generator is the space func-
tions f for which the above limit exists uniformly in x. Consider the process

Mf
x (t) := f(x+N(t))− f(x)−

−λ
∫ t

0

[f(x+N(r) + 1)− f(x+N(r))]dr, t ≥ 0

for any f in B(E) and x in E. In view of the independent increment property
and the fact that N(t)−N(s) is Poisson distributed, we have for t > s

E{f(x+N(t))− f(x+N(s)) | Fs} =

= e−λ(t−s)
∞∑
k=0

[f(k + x)− f(x)]
[λ(t− s)]k

k!

and

E{λ
∫ t

s

[f(x+N(r) + 1)− f(x+N(r))]dr} =

= λ

∞∑
k=0

[f(x+ k + 1)− f(x+ k)]

∫ t

s

e−λr
(λr)k

k!
dr,

which yields E{Mf
x (t) −Mf

x (s) | Fs} = 0, i.e., (Mf
x (t) : t ≥ 0) is a martingale.

Actually, this calculation remains valid for any function (because E is countable,
all functions are Borel measurable) such that E{|f(x + N(t))|} < ∞, for every
x in E and t ≥ 0. By the optional sampling theorem, the process Mf,n

x (t) :=
Mf
x (t ∧ n ∧ θn) is also a martingale, since n ∧ θn is a bounded stopping time.

However, the process (Mf,n
x (t) : t ≥ 0) involves only the values of f on the

finite set {x, x + 1, . . . , x + n}. Therefore, the process (Mf
x (t) : t ≥ 0) is a

local martingale for any function. Thus the domain D(Ā) of the extended
infinitesimal generator Ā consists of all functions f : E → R with not restriction
at all.

The renewal process is closely related to the Poisson process. It is a point
process (N(t) : t ≥ 0) defined in a similar way to the Poisson process but
with the inter-arrival time τi now being a sequence of independent identically
distributed random variables with some density function ψ on [0,∞), not nec-
essarily exponential. The process clearly ’restarts’ at each ’renewal time’ θi and
the well-known renewal equation

m(t) := E{N(t)}, m(0) = 0,

m(t) =

∫ t

0

[1 +m(t− r)]ψ(r)dr, ∀t ≥ 0,
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which can be solved by the Laplace transform methods.
The sequences of inter-arrival time {τ1, τ2, . . .} is now constructed as follows.

Then setting Ψ(t) :=
∫∞
t
ψ(r)dr and Ψ−1(u) := inf{t ≥ 0 : Ψ(t) ≤ u}, for every

u > 0, we define τi := Ψ−1(Ui(ω)), for every i ≥ 1, which satisfies P (τi > t) =
Ψ(t), i.e., independent identically distributed with density ψ.

When τi is not exponentially distributed, the memoryless property does not
hold and the conditional distribution of the residual time τ∗1 := θn+1 − t (as
defined above for the Poisson process) given Ft depends on the time t−θn since
the last jump. Therefore, the renewal process itself is not a Markov process,
if we add a new variable S(t) := t − θn, the time since the last jump where
θn ≤ t < θn+1, then the new two-component process X := {(N(t), S(t)) : t ≥ 0}
is a Markov process on E := {0, 1, 2, . . .}× [0,∞). Its evolution can be simulate
as follows. For a fixed (n, s) and with ψ(t), Ψ(t) as above, we set first

λ(r) :=


ψ(r)

Ψ(r)
if 0 ≤ r < cΨ,

0 otherwise,

with cΨ := inf{r : Ψ(r) = 0}, and then

Ψ(s, t) := exp
(
−
∫ t

s

λ(r)dr
)
, ∀t ≥ s ≥ 0.

Note that Ψ(0, t) = Ψ(t), for every t ≥ 0. Thus, we re-define

Ψ−1(s, u) := inf{t ≥ 0 : Ψ(s, t) ≤ u}, τ1(ω) = θ1(ω) := Ψ−1(s, U1(ω)),

with the convention that Ψ−1(s, u) := +∞ if Ψ(s, t) > u for every t ≥ 0.
The sample path X(t, ω) is then (n, s + t) if 0 ≤ t < θ1(ω) and (n + 1, 0) if
t = θ1(ω) < ∞. Next, if θ1(ω) < ∞ we restart with the initial state (n + 1, 0)
and the same recipe. This is τ2(ω) := Ψ−1(0, U2(ω)), θ2(ω) := θ1(ω) + τ2(ω)
and

X(t, ω) :=

(n+ 1, t− θ1(ω)) if θ1(ω) ≤ t < θ2(ω),

(n+ 2, 0) if t = θ2(ω) <∞,

and so on. The key point is that this construction generalizes to a much more
general situation.

The formal expression of the infinitesimal generator is

Af(n, s) := lim
t→0

E{f(n+N(t), s+ S(t)} − f(n, s)

t
=

= ∂sf(n, s) + λ(s)[f(n+ 1, 0)− f(n, s)],

where the hazard rate λ(t) := ψ(t)/Ψ(t) and ∂s means the partial derivative
in the second variable, i.e., in s. The domain D(A) of the strong infinitesimal
generator should include conditions to ensure that the above limit exists uni-
formly in (n, s), in particular f(n, s) should be differentiable in s. However, the
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domain D(Ā) of the extended infinitesimal generator would only impose that
s 7→ f(n, t) be absolutely continuous.

Another typical example is a single-server queue. Customers arrive at a
queue at random times {θ1 ≤ θ2 ≤ · · · } which require a service time {ς1, ς2, . . .},
measured in units of time for processing. The total service load presented up
to time t is L(t) := L0 +

∑
i ςi1θi≤t, where L0 ≥ 0 is the service load existing

at time 0. The virtual waiting time V (t) is the unique solution of the equation

V (t) = L(t)−
∫ t

0

1V (r)>0dr, ∀t ≥ 0,

and represents the time a customer arriving at time t waits for service to begin,
or equivalently, the amount of unprocessed load at time t.

A similar way to describe a queueing system is by means of the relation
Q(t) = Q0+A(t)−D(t), where (A(t) : t ≥ 0) and (D(t) : t ≥ 0) are non-explosive
point processes without common jumps, i.e., A(t) = n for θn ≤ t < θn+1 and
D(t) = n for ϑn ≤ t < ϑn+1, θ0 = ϑ0 = 0, θn, ϑn → ∞ as n → ∞ and
P (θi = ϑj) = 0, for every i, j. The random variable Q0 is the initial state and the
state process satisfies Q(t) ≥ 0, for any t ≥ 0, which is interpreted as the number
of customer waiting in line or being attended by the server (i.e., in the system).
The processes A and D are called arrival and departure processes. Thus, if A
and B are two nonexplosive point processes without common jumps then to
achieve the condition Q(t) ≥ 0 we set Y (t) := Q0 + A(t) − B(t) and m(t) :=
min{Y (r)∧0 : r ∈ [0, t]}. Hence, a simple queueing systemQ(t)+Q0+A(t)−D(t)

can be constructed with Q(t) := Y (t)−m(t), D(t) :=
∫ t

0
1Q(r−)>0dB(r), where

also m(t) =
∫ t

0
1Q(r−)=0dB(r).

There is a conventional classification A/B/n of queueing systems, where A
refers to the arrival process (i.e., statistics of the increasing sequence of random
variables {θ1, θ2, . . .}), B to the service process (i.e., statistics of the sequence
of random variables {ς1, ς2, . . .}) and n is the number of servers. For instance,
consider a M/G/1 queue, i.e., the letter M (for Markov) means that arrival
are independent and exponential, i.e., from a Poisson process, and G (for gen-
eral) means that the service time independent identically distributed with some
arbitrary distribution on (0,∞).

A variable ν indicates whether the queue is busy ν = 1 or empty ν = 0. This
means that ν vanishes, ν = 0, if and only if the virtual waiting time vanishes,
v = 0. Thus, starting from a time t0 ≥ 0 with ν(t0) = 1 and V (t0) = v, the
process v(t) := V (t) decreases at unit rate until it hits zero, say at time t1.
Then ν(t1) becomes zero, ν(t1) = 0, and v(t) = 0 until a new arrival t2 > t1
which takes an exponential time, and (ν, v) jumps to (1, ϑ), i.e., ν(t2−) = 0,
ν(t2+) = 1, v(t2−) = 0 and v(t2+) = ς. The state (ν, v) has a Markov evolution
on the set E = {(0, 0)} ∪ {1} × (0,∞), which is normalized to be a cad-lag
process. Roughly speaking, if the initial state is (1, v) then after a short time
δ the state becomes (1, v − δ) with probability (1− λδ), while with probability
λδ the Markov process jumps to the new state (1, v + ς − δ), where ς has the
distribution on (0,∞) of the services time, namely Fϑ, and λ is the parameter
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of the exponential distribution of the arrival times. With this in mind, the
infinitesimal generator has the expression

Af(1, v) = −∂vf(1, v) + λ

∫
(0,∞)

[f(1, v + z)− f(1, v)]Fϑ(dz),

Af(0, 0) = λ

∫
(0,∞)

[f(1, z)− f(0, 0)]Fϑ(dz),

for any v in (0,∞). It is clear that this formula of the infinitesimal generator A
does not include the fact that the process jumps from (1, 0) to (0, 0), immediately
after hitting (1, 0). This is the boundary conditions

f(1, 0) =

∫
[0,∞)

f(1, z)Fϑ(dz)

added to the strong domain D(A) or extended D(Ā).
A construction of the Markov process starting at x := (ν, v) is described

in the canonical Hilbert cube (Ω,F , P ), where (U1, U2, . . .) is sequence of inde-
pendent random variables each having uniform distribution on [0, 1]. First we
set

Q(x,B) :=

∫
[v,∞)

1B(z)Fς(dz),

X(x, t) :=

(ν, v − t) if ν = 1,

(ν, v) otherwise,

and

T(x) :=

v if ν = 1,

+∞ otherwise.

Given an initial state x = (ν, v) in E = {(0, 0)} ∪ {1} × (0,∞) we define

Ψ(x, t) := 1t<T(x)e
−λt,

the survivor function of the first jump time θ1 of the process and its (generalized)
inverse

Ψ−1(x, u) := inf{t ≥ 0 : Ψ(x, t) ≤ u},

τ1(ω) = θ1(ω) := Ψ−1(x, U1(ω)),

with the convention that Ψ−1(x, u) := +∞ if Ψ(x, t) > u for every t ≥ 0.
This yields P (θ1 > t) = Ψ(x, t). As mentioned above, we are working in the
canonical Hilbert cube and there exist a measurable function Υ from E × [0, 1]
into E̊ := {1} × (0,∞) such that `({u : Υ(x, u) ∈ B}) = Q(x,B), for every B
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in B(E), where ` is the Lebesgue measure on [0, 1]. The sample path X(t, ω) is
defined up to the first jump as follows:

X(t, ω) := X(x, t), if 0 ≤ t < θ1(ω),

X(θ1(ω), ω) := Υ(X(x, θ1(ω)), ω), U2(ω)), if θ1(ω) <∞.

Note that when ν = 1, as long as t < θ1(ω) we have v− t > 0. If t = θ1(ω) <∞
then v − t ≥ 0. On the other hand, when ν = 0 we have θ1(ω) < ∞ and
X(t, ω) = (0, v) for every t < θ1(ω). In any case, the definition of Υ ensure
that X(θ1(ω), ω) belongs to E̊ = {1} × (0,∞). Now, if θ1(ω) < ∞ the process
restarts from X(θ1(ω), ω) according to the same recipe. Thus, if θ1(ω) <∞ we
define

τ2(ω) := Ψ−1(X(θ1(ω), ω), U3(ω)),

θ2(ω) := θ1(ω) + τ2(ω)

and the sample path X(t, ω) up to the next jump is given by

X(t, ω) := X(x, t− θ1(ω)), if θ1(ω) ≤ t < θ2(ω),

X(θ2(ω), ω) := Υ(X(x, τ2(ω)), ω), U4(ω)), if θ2(ω) <∞,

and so on.
This procedure define the sample path X(t, ω) if the sequence θk(ω) → ∞.

Hence, a common assumption is to impose that

E{N(t)} <∞, with N(t) :=
∑
k

1t≥θk ,

which yield some condition on the distribution Fς(t) of the sequence {ς1, ς2, . . .}
associated with the service time. Since

P (t < τi <∞) = 1t<T(x)e
−λt

a condition on the type P (ς > ε) = 1 for some positive ε, on the service time
distribution ensures the required assumption.

If the arrival process is a renewal process instead of a Poisson process then we
need one more variable to have a Markov process, the time since the last jump
s, so that the state is x = (ν, v, s) in E = {(0, 0)}× [0,∞)∪{1}×(0,∞)× [0,∞)
and an intensity or hazard rate λ(t) := ψ(t)/Ψ(t), where ψ is the density of
the arrival times. The previous simulation can be adapted, where s + t is the
evolution in last variable, which is reset to zero each time a new arrival occurs.

It is clear that the above technique can be used for more general situation,
e.g., a G/G/n queue system and many other stochastic models.

Another type of common jump process is the so-called doubly stochastic
Poisson process or conditional Poisson process (N(t) : t ≥ 0) with stochastic
intensity λ = λ(t, ω) ≥ 0 relative (i.e., adapted) to the filtration (Ft : t ≥ 0) on
a probability space (Ω,F , P ), which is defined by the condition

E
{

eiζ[N(t)−N(s)] | Fs
}

= exp
[(

eiu − 1
) ∫ t

s

λ(r)dr
]
,
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for every t ≥ s ≥ 0, where λ(r) is an F0-measurable and almost surely integrable
function in [0, t]. Usually, the intensity takes the form λ(t, ω) = λ(t, Y (t, ω)),
where the process (Y (t) : t ≥ 0) is F0-measurable and the function (t, y) 7→
λ(t,m) is a nonnegative Borel measurable with some appropriate integrability
conditions. This means that on one hand we have a Poisson process with in-
tensity λ(t, y) where the parameter y is replaced by an independent process
y = Y (t) and the σ-algebra F0 is augmented with the σ-algebra generated by
(Y (t) : t ≥ 0) to meet the F0-measurability condition. A conditional Poisson
process (N(t) : t ≥ 0) is characterized by the property

E
{∫ ∞

0

X(t)dN(t)
}

= E
{∫ ∞

0

X(t)λ(t)dt
}
,

valid for any Ft-predictable process (X(t) : t ≥ 0), c.f., Bremaud [32, Chapter
2, Theorem T4]. Thus its predictable jumps compensator is the integral process

〈N〉(t) =
∫ t

0
λ(r, ω)dr. Conditional Poisson processes are in general not Markov

processes, however, if the intensity function λ(t, ω) = λ(Y (t)), where (Y (t) :
t ≥ 0) is a F0-measurable Markov process, then the couple (N,Y ) becomes a
Markov process with a suitable filtration, actually a compound Poisson process.

To end this section let us mention the so-called multivariate point processes
which are defined by means of two sequences {θ0, θ1, θ2, . . .} and {ζ1, ζ2, . . .}
of random variables with values in [0,∞] and {1, 2, . . . , d}, respectively, and
satisfying θ0 = 0, if θn < ∞ then θn < θn+1, and called nonexplosive when
θ∞ := limn θn = ∞. The sample path is defined by the d-counting process
(Ni(t) : t ≥ 0), i = 1, 2, . . . , d

Ni(t) :=

∞∑
n=1

1θn≤t 1ζn=i,∀t ≥ 0.

Both the d-vector process (N(t) : t ≥ 0) with nonnegative integer-values com-
ponents as above and the double sequence {θn, ζn : n = 1, 2, . . .} are called
d-variate point process. Note each component (Ni(t) : t ≥ 0) is a (simple or
univariate) point process and that only one component jumps at a given time,
i.e., there is not common jumps among all the processes (Ni(t) : t ≥ 0), for
i = 1, 2, . . . , d. For instance, if the double sequence {θn, ζn : n = 1, 2, . . .} is
independent identically distributed, θn Γ(λ, n) distributed and ζn such that
P (ζn = 1) = p, P (ζn = 2) = 1 − p, with some constant p in (0, 1), then in-
terpreting N1(t) as the births and N2(t) as the deaths up to time t of a given
population, the expression N1(t)−N2(t) is a birth-and-death process.

For instance, the reader is refereed to the books by Bremaud [32, 33], Daley
and Vere-Jones [55], Davis [56, Chapter 1], Revuz and Yor [212, Section XII.1,
pp. 471–480], among others.

3.9 Piecewise Deterministic Processes

Non-diffusion stochastic models called piecewise-deterministic Markov processes
(PDP) is proposed as a general framework for studying problems involving
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non-diffusion continuous-time dynamical systems whose deterministic motion
is punctuated by random jumps. A great number of applications in engineering
systems, operations research, management science, economic and applied prob-
ability show the importance of these systems. Queuing systems, investment
planning, stochastic scheduling and inventory systems are some examples, we
refer to Davis [56] for a comprehensive study.

3.9.1 Vector Fields and ODE

Let g : Rd → Rd be a globally Lipschitz continuous function, i.e., there exists
a constant M > 0 such that |g(x) − g(x′)| ≤ M |x − x′| for every x, x′ in Rd.
It is well-know that the ordinary differential equation (ODE) relative to g, i.e.,
the initial value problem (IVP) ẋ(t) = g(x(t)), x(0) = x, has a unique solution
defined for every x in Rd. We denote by X(x, t) its solution, i.e.,

∂tX(x, t) = g(X(x, t)), ∀t ∈ R, X(x, 0) = x, ∀x ∈ Rd,

which has the properties:

(1) the map Xt : x 7→ X(x, t) is Lipschitz continuous (uniformly in t), one-to-one
and onto, indeed, X−1(x, t) = X(x,−t), for every x in Rd and t in R,
(2) the family {Xt : t ∈ R} is a group, i.e., Xt ◦ Xs = Xt+s, or more explicitly
X(x, t+ s) = X(X(x, s), t), for every x in Rd and t, s in R.
This is referred to as an homogeneous Lipschitz flow in Rd.

If f is a real valued continuously differentiable function, i.e., f in C1(Rd),
then we may consider X as a first-order differential operator, G : C1(Rd) →
C0(Rd), defined by

Gf(x) :=

d∑
i=1

gi(x)∂if(x), ∀x ∈ Rd,

where ∂if means the first partial derivative with respect to the variable xi. By
means of the chain rule we deduce that t 7→ x(t) is a solution of the ODE relative
to g if and only if

Gf(x(t)) :=

d∑
i=1

gi(x(t))∂if(x(t)), ∀t ∈ R, , ∀f ∈ C1(Rd),

which is a coordinates-free form of the differential equation, the operator G (and
the function g) is know as the vector field associated with the flow X = {Xt : t ∈
Rd}.

If the function g is continuously differentiable then the function homeomor-
phism x 7→ X(x, t) is indeed a diffeomorphism and it satisfies the linear system
of ODEs

∂tXi,j(x, t) =

d∑
k=1

gi,k[X(x, t)] Xk,j(x, t),
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for every i, j = 1, . . . , d, x in Rd and t ∈ R, where the subscript i, j as in Xi,j
denotes the the first partial derivative in the xj variable of the i component of
X(x, t), i.e., ∂jXi(x, t).

This analysis can be extended to non-flat manifolds and the assumption on
g can be weakened. Of particular interest for us is the case where Rd is replaced
by a finite intersection of nonempty domain D having a representation of the
form {

D := {x ∈ Rd : φ(x) < 0},

φ ∈ C1(Rd), |∇φ(x)| ≥ 1, ∀x ∈ ∂D,
(3.51)

which implies that D is an open set with an outward unit normal vector given
by ∇φ(x)/|∇φ(x)| on the boundary ∂D. The function g defining the vector
field G and the flow X is usually assumed locally Lipschitz continuous in D̄
and with linear growth when D is unbounded. Local uniqueness and existence
of solution to the IVP is ensure by the local Lipschitz continuity, and so the
solution is extended to its maximum interval of existence with bounds (which
may be infinite) t∧

D̄,x
< t∨

D̄,x
. If t∨

D̄,x
< ∞ (or t∧

D̄,x
< ∞) then we assume that

there exist t < t∨
D̄

(t > t∧
D̄

) such that X(x, t) does not belongs to D̄. This non-
explosive condition effectively rule out the case where an explosion occurs in
closure D̄. The linear growth condition implies this non-explosion assumption,
but it is not necessary. Thus under this non-explosion condition we can define
the first exit time from any Borel subset E of D̄ as follows

τE(x) := inf{t ≥ 0 : X(x, t) 6∈ E}, ∀x ∈ D̄,

with the convention that τE(x) = ∞ if X(x, t) belongs to E for every t ≥ 0. It
is clear that τE(x) = 0 for any x in D̄rE and that x 7→ τE(x) is a measurable
[0,∞]-valued function. Also, if g(x) · ν(x) > 0, with ν(x) := ∇φ(x)/|∇φ(x)| the
exterior unit normal vector at x in ∂D, then τD̄(x) = 0. On the other hand, if
g(x) · ν(x) ≤ 0 for every x in ∂D then τD̄(x) > 0 for any x in ∂D, i.e., X(t, x)
belongs to D̄ for every x in D̄ and t ≥ 0.

It is convenient to divide the flow X = {Xt : t ∈ Rd} into two flows, a forward
flow X = {Xt : t ≥ 0} and a backward flow X = {Xt : t ≤ 0}.

Theorem 3.17. Let g : Rd → Rd be a locally Lipschitz continuous function
which yields a forward flow X = {Xt : t ≥ 0} without explosions in D̄ as above,
so that the first exist times τD from the open set D and τD̄ from the closed
set D̄. Then the functions x 7→ τD(x) and x 7→ τD̄(x) are lower and upper
semi-continuous, respectively. If ∂0D := {x ∈ ∂D : τD̄(x) = 0} then τD̄(·) is
continuous if and only if ∂0D is closed.

Proof. Take x and s such that τD̄(x) < s. Then there exists s′ such that X(x, s′)
does not belongs to D̄. If xn → x, by the continuity of X(·, s′) and because
Rd r D̄ is open, there exists N such that X(xn, s

′) does not belongs to D̄, for
any n ≥ N. Thus τD̄(xn) ≤ s′. This proves that lim supn τD̄(xn) ≤ τD̄(x), i.e.,
x 7→ τD̄(x) is upper semi-continuous.
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Similarly, take x and s such that τD(x) > s. Then the closed set {X(x, t) :
0 ≤ t ≤ s} is contained in the open set D. If xn → x, again by continuity, there
exists N such that {X(xn, t) : 0 ≤ t ≤ s} contained in D, for any n ≥ N. Thus
τD(xn) ≥ s. This proves that lim infn τD(xn) ≥ τD(x), i.e., x 7→ τD(x) is lower
semi-continuous.

If τD̄(·) is continuous then it is clear that ∂0D is closed. On the other
hand, take x in D̄ such that τD̄(x) <∞. Since the composition property yields
X(x, t+ τD̄(x)) = X(X(x, τD̄(x)), t), we deduce that X(x, τD̄(x)) must belongs to
∂0D. Hence the forward flow exists necessarily though ∂0D. If τD̄(x) > s then
the closed set {X(x, t) : 0 ≤ t ≤ s} has a positive distance to the closed set ∂0D.
As in the case of τD(·) we deduce that τD̄(·) is lower semi-continuous.

We state for further reference the following concept.

Definition 3.18 (locally Lipschitz continuous forward flow). Let E be a set in
Rd having the following property, either

(1) E is the union of an open set E̊ in Rd and a relative open part ∂Er ∂0E of
its boundary ∂E (which is the non-active boundary , so that the active boundary
∂0E is closed); the interior set E̊ is a finite intersection of nonempty domain D
having a representation of the form (3.51), or

(2) after a permutation of coordinates the set E has the form E = E1 × E2,
where E1 is as in (1) but relative to Rd1 with d1 < d and E2 is a single point in
Rd−d1 and the corresponding vector field g has only d1 non-zero components,
i.e., g can be considered as a function from Rd into Rd1 .
If g is a locally Lipschitz function from the closure Ē into Rd then the following
ODE ẋ(t) = g(x(t)), for any t > 0, can be uniquely solved for any given initial
condition x(0) = x in Rd and locally define flow (x, t) 7→ X(x, t) as the solution
of the above IVP on the maximal interval of existence [0, t∨x [, i.e., for any x in
Rd the solution x(t) = X(x, t) is defined for every 0 ≤ t < t∨x ≤ +∞. We say
that X = {X(x, t) : t ≥ 0, x ∈ E} is a locally Lipschitz forward flow associated to
the vector field g on E ⊂ Rd or to first-order differential operator G on C1(Rd),
with active boundary ∂0E if for any x in E we have either (1) t∨x = +∞ and
X(x, t) belongs to E for any t ≥ 0 or (2) X(x, t) belongs to ∂0E for some t in
]0, t∨x [. The forward flow X = {X(x, t) : t ≥ 0} is locally Lipschitz continuous in
x in E, locally uniformly in t and the first exit time τE(x) from E is denoted
by T(x). We may use the notation XE and TE to emphasize the dependency on
the domain E.

If the boundary ∂E of E (or E1 if necessary) is smooth (e.g., E := {x ∈ Rd :
φ(x) < 0} as above) so that the outward normal vector ν(x) at x can be defined
then every x in ∂E satisfying g(x) · ν(x) > 0 belongs to ∂0E (active boundary)
while and g(x) · ν(x) < 0 implies that x in the non-active boundary. The fact
that we assume ∂0E closed or ∂E r ∂0E relatively open ensure that the ∂0E
is the closure of x in ∂E satisfying g(x) · ν(x) > 0. Moreover, a key property is
the continuity of the first exit time from E, i.e.,

T(x) := inf{t > 0 : X(x, t) 6∈ E} = inf{t > 0 : X(x, t) ∈ ∂0E},
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which is defined for any x in E, with the convention that T(x) = ∞ if X(x, t)
belongs to E for every t > 0. This means that the sets {x : T(x) < ∞} and
{x : T(x) = ∞} are disjointed (one of them may be empty), and that the
function x 7→ T(x) is continuous on {x : T(x) < ∞}. Note that the part of the
boundary ∂E r ∂0E plays no role, and it is actually ignored. Two interesting
cases are when either (1) ∂0E = ∅ so that E is closed, E = Ē, or (2) ∂0E = ∂E
so that E is relative open E = E̊1 × E2, where E2 is a single point in Rd−d1 .
Moreover, the simplest situation is when E = Rd1×E2 and g is locally Lipschitz
in Rd with a linear growth.

Given a locally Lipschitz continuous forward flow X = {X(x, t) : t ≥ 0, x ∈ E}
with (closed!) active boundary ∂0E then

P (t)f(x) := f(X(x, t ∧ T(x))), ∀t ≥ 0, x ∈ E,

defines a semigroup on the C∗(E), real-valued bounded continuous functions on
E vanishing on ∂0E. If f is a C1 function then

P (t)f(x)− f(x) =

∫ t

0

P (s)Gf(x)ds =

∫ t

0

GP (s)f(x)ds,

for every t ≥ 0 and x in E. Thus the extended infinitesimal generator of the
semigroup {P (t) : t ≥ 0}, denoted by Ḡ has the domain D(Ḡ) which are all real-
valued measurable functions f on E vanishing on ∂0E such that the function
t 7→ P (t)f(x) is absolutely continuous on [0, T ] for every positive real number
T ≤ T(x) and for every x in E. In this case, the expression P (s)Gf(x) is only
defined almost every where in s relative to the Lebesgue measure. The function f
is only continuous along the flow, not necessarily continuous in other directions.

In same situations, it is important to single out the time variable so that
weaker assumptions can be made. For instance, we may call X = {X(s, x, t) :
t ≥ s ≥ 0, x ∈ E} a nonhomogeneous locally Lipschitz forward flow associated
with the time-variant vector fields G = {G(t) : t ≥ 0} the solution of the IVP
ẋ(t) = g(x(t), t), x(s) = x. Typical assumptions are (1) the function x 7→ g(x, t)
is locally Lipschitz continuous with linear growth, uniformly in t, i.e., for any
compact subset K of Ē and any T > 0 there exists a constant M such that
|g(x, t) − g(x′, t)| ≤ M |x − x′| for every x, x′ in K, and t in [0, T ], and if E
is unbounded then there exist a constant C such that |g(x, t)| ≤ C(1 + |x|),
for any x in Ē and t ≥ 0, and the function t 7→ g(x, t) is (Borel) measurable.
Under this assumptions, the IVP has only absolutely continuous solutions and
the flow have the composition property Xr,t ◦Xs,r = Xs,t or equivalent X(s, x, t) =
X(s, X(r, x, t), r), for every t ≥ r ≥ s. Differentiating with respect to the initial
data, we deduce the well-known relations between the flow and the vector field,
namely ∂sX(s, x, t) = −G(s)X(s, x, t), i.e.,

∂sXi(s, x, t) = −gj(x, s) ∂jXi(s, x, t), ∀t ≥ s ≥ 0, x ∈ E,

and ∂tX(s, x, t) = −G∗(t)X(s, x, t), i.e.,

∂tXi(s, x, t) = ∂j
[
gj(x, t) Xi(s, x, t)

]
, ∀t ≥ s ≥ 0, x ∈ E,
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which are the deterministic equivalent of Kolmogorov backward and forward
equations. Also, we refer the reader to the book by Ladde and Lakshmikan-
tham [146] for a complete treatment of ODE with random coefficients.

3.9.2 Definition of PDP

Again, this is a generalization of the Poisson process in the direction of strong
Markov processes as in a queueing system. Essentially, this stochastic process
has deterministic evolutions between two consecutive jumps, instead of being
constant as a Poisson process. The deterministic dynamic are characterized by a
family vector fields, namely g(n, x) defined for every x in E ⊂ Rd and each n in a
countable set N. The jump mechanism has a jump rate λ(n, x) and a transition
distribution Q(n, x, ·). Note that the jump rate determines when to jump, so a
vanishing jump rate (i.e., λ = 0) means not jump at that particular position,
while an infinite jump rate (i.e., λ = +∞) translates into a instantaneous jump.
The transition distribution rate Q(n, x, ·) determines where to jump, also called
transition probability measures of jumps.

Let X = {X(n, x, t) : t ≥ 0, x ∈ E, n = 0, 1, . . .} be a family (indexed by n) of
locally Lipschitz forward flows associated to vector fields g(n, ·) on E ⊂ Rd or
to first-order differential operator G(n, ·) on C1(Rd), with active boundary ∂0

nE
(which may depend on n) and first exit from E time T(n, x) (or first hitting time
to ∂0En), see Definition 3.18. Occasionally, we may use Xn(x, t) := X(n, x, t)
to emphasize the countable index n. Note that the dimension d is fixed and
generally large, since g(n, ·) may have several zero components which change
with n. Clearly, the case where only finitely many n are used may be defined as
a module operation in the variable n. Moreover, it may be useful to allow the
set E to depend on n, i.e., En ⊂ Rdn , but we chose to disregard this case for
now.

There are two type of jumps: (1) interior jumps, which are produced while
inside region Er∂0

nE and (2) boundary jumps, which are produced while on the
active boundary ∂0

nE. Note that a point x belongs to the active boundary ∂0
nE

if and only if T(n, x) = 0. The forward flow X(n, x, t) is defined for t in [0, T(n, x)]
and for every (n, x) the backward flow X(n, x,−t) belongs to the inside Er∂0

nE
for t sufficiently small. Also, the functions x → T(n, x) and (x, t) → X(n, x, t)
are continuous for every n. The interior jumps have the same exogenous origin
as the one produced in the Poisson process, but the boundary jumps are forced
or imposed by the continuous dynamic of the forward flow X.

The state space of this piecewise deterministic process is N × E, where N
is a countable set (possible finite). Sufficient conditions on g to construct a
locally Lipschitz forward flow have been discussed in the previous section, and
the assumption of the jump are the following:

(1) the map (n, x) 7→ λ(n, x) is a Borel measurable function from N × E
into [0,∞] and for each (n, x) there exists ε = ε(n, x) > 0 such that t 7→
λ(n, X(n, x, t)) is integrable in the interval [0, ε),

(2) for each B in B(N × E) the map (n, x) 7→ Q(n, x,B) is measurable, and
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for each (n, x) in N × E the map B 7→ Q(n, x,B) is a probability measure on
N × E satisfying Q(n, x, {(n, x)}) = 0.

Note that the integrability condition of (1) ensure that after any jumps,
we do have a continuous evolution following the forward flow for a positive
time, while the last condition of (2) ensure a state discontinuity at every jump
time. Piecewise deterministic processes viewed as Markov processes have state
in N×E, a discrete (piecewise constant in t) component {n(t) : t ≥ 0} in N and
a continuous (piecewise continuous in t) component {x(t) : t ≥ 0} in E ⊂ Rd.
These conditions are mainly necessary to make sense to the jump mechanism,
however, we need another condition to forbid the accumulation of boundary
jumps.

Perhaps, the most typical situation in hybrid system modelling, including
most of the queueing systems, is the case of finitely many n, i.e., the state space
is {0, 1, 2, . . . ,K} × E, and the locally Lipschitz forward flows {Xn(x, t) : t ≥
0, x ∈ E} are indexed by n = 0, 1, . . . , N. The particular case when with only
one n, namely n = 0, is essentially different from the others, the discrete com-
ponent is useless, and we may work directly on E. This is, we do have a Markov
process in E which generalize the Poisson process, without adding a discrete
component. Even in this simple situation, we do not have a Feller process. The
active boundary introduces instantaneous predictable jumps, producing a de-
terministic discontinuity. Thus, unless there is not active boundary, a piecewise
deterministic process is not a Feller process, but we do have a strong Markov
process. According to the definition and assumptions on the locally Lipschitz
forward flow Xn in Definition 3.18, the active boundary ∂0

nE is closed and con-
tains all reachable points from the inside E r ∂0

nE, i.e., defining{
T(n, x) := inf{t > 0 : X(n, x, t) 6∈ E} =

= inf{t > 0 : X(n, x, t) ∈ ∂0
nE},

(3.52)

which is defined for any x in E, with the convention that T(n, x) =∞ if X(n, x, t)
belongs to E for every t > 0. The sets {x : T(n, x) <∞} and {x : T(n, x) =∞}
are disjointed (one of them may be empty), and that the function x 7→ τ(n, x)
is continuous on {x : T(n, x) < ∞}. To effectively rule out the accumulation of
boundary jumps, see Davis [56, Proposition 24.6, pp 60–61], we may assume λ
is bounded and that there exists ε > 0 such that

Q(n, x, {(n, x) : T(n, x) ≥ ε}) = 1, ∀ (n, x), x ∈ ∂0
nE, (3.53)

which include the particular case of an empty active boundary, i.e.,

T(n, x) =∞, ∀ (n, x) ∈ N × E.

Let us discuss a realization (or construction) of piecewise deterministic pro-
cesses are described above, similarly to Section 3.8, but to emphasize the two
components (discrete and continuous), we use the notation (n, x) instead of x.
Thus the Markov process with sample path (n(t), x(t) : t ≥ 0), starting form a
fixed initial point (n(0), x(0)), is realized in the canonical Hilbert cube (Ω,F , P ),
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where (U1, U2, . . .) is sequence of independent random variables each having uni-
form distribution on [0, 1]. We suppose given the characteristics g, λ and Q on
the state space N×E which determine the flow X, T as in Definition 3.18 satisfy-
ing (3.52). The jump mechanism satisfies the conditions (1) and (2) mentioned
above and assumption (3.53).

First we define

Ψ(n, x, t) := 1t<T(n,x) exp
[
−
∫ t

0

λ(n, X(n, x, s))ds
]
, (3.54)

the survivor function of jumps times and its (generalized) inverse

Ψ−1(n, x, u) := inf{t ≥ 0 : Ψ(n, x, t) ≤ u}, (3.55)

with the convention that Ψ−1(n, x, u) := +∞ if Ψ(n, x, t) > u for every t ≥ 0.
Note that P{Ψ−1(n, x, Uk) > t} = Ψ(n, x, t), for any k. Secondly, as mentioned
above, we are working in the canonical Hilbert cube and there exists a measur-
able function satisfying{

Υ : N × E × [0, 1] −→ {(n, x) : T(n, x) ≥ ε} ⊂ N × E,

`({u : Υ(n, x, u) ∈ B}) = Q(n, x,B), ∀B ∈ B(N × E),
(3.56)

where ε is as in (3.53) and ` is the Lebesgue measure on [0, 1].
Now the sample path

(
n(t, ω), x(t, ω) : t ≥ 0

)
is defined by induction as

follows. Given θk−1, nk−1 and xk−1, with k = 1, 2, . . . , we set

θk(ω) := θk−1(ω) + Ψ−1(nk−1(ω), xk−1(ω), U2k−1(ω)), (3.57)

and if θk−1(ω) ≤ t < θk(ω) then

n(t, ω) := nk−1(ω), x(t, ω) := X(nk−1(ω), xk−1(ω), t), (3.58)

and if θk(ω) <∞ then

(nk, xk) := Υ
(
nk−1(ω), x(θk(ω)−, ω), U2k(ω)

)
, (3.59)

where x(s−, ω) is the left-hand limit at a time s. If θk−1(ω) = θk(ω) then we skip
(3.58), define x(θk(ω)−, ω) = xk−1(ω) and go to (3.59). Therefore, if θk(ω) =∞
then we have define the sample path for every time t ≥ θk−1, otherwise we have
define the sample path in the stochastic interval [[θk−1, θk[[ as well as θk, nk and
xk, and we can iterate (3.57),. . . ,(3.59) with the initial θ0 = 0.

To actually see that the sample path is defined for every time, we will show
that

lim
k→∞

θk =∞, a.s.. (3.60)

Indeed, define the counting jump process Nt := k if θk−1 ≤ t < θk with N0 := 0
and k ≥ 1. By means of (3.54) and the fact that λ is bounded (λ ≤ c), we can
construct a Poisson process (Np

t : t ≥ 0) with rate c, that dominate the counting
process (Nt : t ≥ 0), i.e, Nt ≤ Np

t . Thus E{Nt} ≤ E{Np
t } = ct, which implies

the condition (3.60).
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We will only consider the class of piecewise deterministic processes satisfying
the condition (3.60) is satisfied, or even more if E{Nt} <∞ for every , besides
the assumptions made on the vector fields Xn, Tn and (1) and (2) above on the
jump mechanism.

Since (n(t) : t ≥ 0) is piecewise constant, (x(t) : t ≥ 0) is piecewise continu-
ous and both are right-continuous, we take pass to the canonical sample space
D([0,∞), N × E) and define the integer-valued measure process

ρ(t, B, ω) :=

∞∑
k=1

1θk(ω)≤t1xk(ω)∈B , ∀ t ≥ 0, B ∈ B(Rd) (3.61)

associated with the piecewise deterministic process constructed above. When
necessary, we may write ρnx(t, ω,B) to indicate dependency on the initial state
n0 = n, x0 = x at time θ0 = 0.

It is proved in Davis [56, Sections 25, 26, Theorems 24.3, 25.5, 26.14] that the
filtration (history) generated by the piecewise deterministic processes is right-
continuous, that

(
n(t, ω), x(t, ω) : t ≥ 0

)
is an homogeneous strong Markov

process in the canonical sample space D([0,∞), N × E). Also, the extended
infinitesimal generator has complete description as follows.

The expression of the extended infinitesimal generator

Āf(n, x) := Gnf(n, x) + If(n, x),

Gnh(x) :=

d∑
i=1

gi(n, x)∂ih(x),

If(n, x) := λ(n, x)

∫
N×E

[f(η, ξ)− f(n, x)]Q(n, x,dη × dξ)

(3.62)

where the first-order differential operator Gn is acting only on the continuous
variable x, while the integral operator I may involves both variable n and x.

To full describe the extended domain D(Ā) we need the following concept.
Now we say that a process {h(n, x, t, ω) : n ∈ N, x ∈ Rd, t ≥ 0, } belongs to
L1(ρ), with ρ = ρ(t, ω,B) given by (3.61) if

E
{∫

N×E×R+

hdρ
}

:= E
{ ∞∑
i=1

h(nk, xk, θk, ·)
}
<∞. (3.63)

Similarly, h belongs to L1
loc(ρ), if there exists a sequence {σk : k ≥ 0} of stopping

times with σn →∞ almost surely such that

E
{ ∞∑
i=1

h(nk, xk, θk ∧ σn, ·)
}
<∞, ∀n,

i.e., h(n, x, t, ·)1t<σn belongs to L1(ρ).
A measurable function f : N ×E → R belongs to D(Ā) if and only if several

conditions are met:
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(1) we have f(n, X(n, x,−t))→ f(n, x) as t→ 0 and

f(n, x) =

∫
N×E

f(η, ξ)Q(n, x,dη × dξ)

for every n in N , x in E such that T(n, x) = 0,

(2) the function t→ f(n, X(n, x, t)) is absolutely continuous on [0, T(n, x) ∧ T [,
for every T > 0, n in N and x in E,

(3) for every n in N and x in E, the process

h(n, x, t) := f(n, x)− f(n(t−, ω), x(t−, ω)), ∀ t > 0,

with h(n, x, 0) = 0, belongs to L1
loc(ρnx).

Property (1) is called boundary condition since T(n, x) = 0 if and only if
x belongs to the active boundary ∂0

nE, which is mainly related to the discrete
variable n. Condition (2) involves only the continuous variable x and provided
a weak sense to the differential operator Gf(n(t), x(t)) as the derivative (almost
every t, the discrete variable n and ω are regarded as parameters) of the function
t→ f(n, X(n, x, t)). Property (3) can be re-written as

E
{ n∑
k=1

|f(nk, xk)− f(nk−1, X(nk−1, xk−1, θk)|1θk ≤ n
}
<∞,

for every n ≥ 1, by taken σn := θn∧n, which is certainly verified if f is bounded.
To complete this discussion let as mention that when T(n, x) = ∞ for ev-

ery (n, x) and the jump rate λ(n, x) is bounded then a piecewise deterministic
process is a Feller process. In general, a piecewise deterministic process is a
Borel right process. This means that (a) the state space N × E is topological
homeomorphic to a Borel subset of a compact metric space, (b) the semigroup
P (t)h := E{h(n(t), x(t)} maps the bounded Borel functions into itself, (c) the
sample paths t → (n(t), x(t)) are right continuous almost surely, (d) if f is an
α-excessive function for {P (t) : t ≥ 0} then the function t → f(n(t), x(t))
is right continuous almost surely. Recall that a non-negative function f is
called α-excessive (with α ≥ 0) if exp(−tα)P (t)f ≤ f for every t ≥ 0 and
exp(−tα)P (t)f → f as t→ 0.

As mentioned early, a comprehensive study on piecewise deterministic pro-
cess can be found in Davis [56].

3.10 Lévy Processes

Random walks capture most of the relevant features found in sequences of ran-
dom variables while Lévy processes can be thought are their equivalent in con-
tinuous times, i.e., they are stochastic processes with independent and station-
ary increments. The best well known examples are the Poisson process and
the Brownian motion. They form the class of space-time homogeneous Markov
processes and they are the prototypes of semi-martingales.
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Definition 3.19. A Rd-valued or d-dimensional Lévy process is a random vari-
able X in a complete probability space (Ω,F , P ) with values in the canonical
D([0,∞),Rd) such that

(1) for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn the Rd-valued random variables
X(t0), X(t1) − X(t2),. . . ,X(tn) − X(tn−1) are independent (i.e., independent
increments),

(2) for any s > 0 the Rd-valued random variables X(t)−X(0) and X(t+s)−X(s)
have the same distributions (i.e., stationary increments),

(3) for any s ≥ 0 and ε > 0 we have P (|X(t) −X(s)| ≥ ε) → 0 as t → s (i.e.,
stochastically continuous) and

(4) P (X(0) = 0) = 1.

An additive process is defined by means of the same properties except that
condition (2) on stationary increments is removed.

Usually the fact that the paths of a Lévy process are almost surely cad-lag
is deduced from conditions (1),. . . ,(4) after a modification of the given process.
However, we prefer to impose a priori the cad-lag regularity. It is clear that
under conditions (2) (stationary increments) and (4) we may replace condition
(3) (on stochastically continuous paths) by condition P (|X(t)| ≥ ε) → 0 as
t→ 0, for every ε > 0.

A classic tool to analyze distributions in Rd is characteristic functions (or
Fourier transform). Thus, for a given distribution µ of a random variable ξ in
Rd, the characteristic function µ̂ : Rd → C is defined by

µ̂(y) :=

∫
Rd

ei x·y µ(dx) = E{ei y·ξ}.

Several properties relating characteristic functions are known, e.g., if µ̂ is in-
tegrable in Rd then µ is absolutely continuous with respect to the Lebesgue
measure, with a bounded continuous density g given by the inversion formula

g(x) := (2π)−d
∫
Rd

e−i x·y µ̂(y)dy.

In particular y 7→ µ̂(y) is uniformly continuous from Rd into the complex plane
C, µ̂(0) = 1 and µ̂ is positive definite, i.e., for any k = 1, 2, . . . , ζ1, . . . , ζk in

C and x1, . . . , xk in Rd we have
∑k
i,j=1 µ̂(xi − xj)ζiζ̄j ≥ 0. Moreover, Bochner

Theorem tell us that the converse, i.e., any complex-valued continuous function
ϕ in Rd with ϕ(0) = 1 and positive definite is the characteristic function of a
distribution, e.g., Da Prato and Zabczyk [51, Theorem I.2.3, pp. 48–52] for a
proof valid in separable Hilbert spaces.

If µ1 and µ2 are the distributions of two Rd-valued independent random
variables ξ1 and ξ2 then the convolution µ1 ? µ2 defined by

(µ1 ? µ2)(B) :=

∫
Rd×Rd

1B(x+ y)µ1(dx)µ2(dy), ∀B ∈ B(Rd)
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is the distribution of the sum ξ1 + ξ2. We have µ̂1 ? µ2 = µ̂1 µ̂2, and therefore,
the characteristic functions of independence of random variables is product of
characteristic function of each variable.

If X is a Lévy process then we may consider the characteristic function of
the Rd-valued random variable X(1), i.e.,

µ̂(y) := E{ei y·X(1)}.

Since X(1) = X(1/n) + [X(2/n) − X(1/n)] + · · · + [X(1) − X(1 − 1/n)], the
random variable X(1) can be expressed as the sum of n independent identically
distributed random variables. Therefore, µ is the n-fold convolution of some
distribution µn, i.e., µ = µn?n , µn is the distribution of X(1/n). A distribution
µ with the above property is called infinitely divisible. For instance, Gaussian,
Cauchy and Dirac-δ distributions on Rd, as well as Poisson, exponential and Γ
distributions on R, are infinitely divisible, for instance see Stroock [238, Section
3.2, pp. 139–153].

Any infinitely divisible distribution µ has a never vanishing characteristic
function µ̂ which can be expressed as an exponential function, i.e.,

µ̂(y) = exp[−φ(y)], ∀y ∈ Rd,

where φ is uniquely determined as a complex-valued continuous function in Rd
with φ(0) = 1, which is called characteristic exponent or the Lévy symbol.
Thus, we have E{ei y·X(t)} = exp[−tφ(y)] for t rational and by continuity for
any t ≥ 0. Since the Fourier transform is one-to-one, the expression

µ̂?t(y) := exp[−tφ(y)], ∀y ∈ Rd, t > 0,

define the ?t-convolution. Moreover, µ?t is also an infinitely divisible distribu-
tion.

A key result is Lévy-Khintchine formula states that a complex-valued func-
tion φ is the characteristic exponent of an infinitely divisible distributions µ if
and only if

φ(y) = i g · y +
1

2
Qy · y +

∫
Rd∗

[
1− ei y·x + i y · x1|x|<1

]
m(dx),

for every y in Rd, where g belongs to Rd, Q is a non-negative semi-definite
d×d-matrix and m is a Radon measure on Rd∗ := Rdr{0} which integrates the
function x 7→ |x|2 ∧ 1. The representation of φ by (g,Q,m) is unique. However,
the cut-off function 1|x|<1 may be replaced by a bounded smooth function which
is equal to 1 at the origin, e.g. (1+|x|2)−1. In this case, the parameter g changes
and we have for every y in Rd,

φ(y) = i f · y +
1

2
Qy · y +

∫
Rd∗

[
1− ei y·x + i

y · x
1 + |x|2

]
m(dx),

f = g +

∫
Rd
x
[ 1

1 + |x|2
− 1|x|<1

]
m(dx).
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We may also use sinx as in Krylov [142, Section 5.2, pp. 137–144], for the
one-dimensional case.

An important class of Lévy processes are the so-called (compound) Poisson
processes. A Lévy process X is called a Poisson process with parameter c > 0, if
X(t) has a Poisson distribution with mean c t, for every t ≥ 0. Similarly, a Lévy
process X is called a compound Poisson process with parameters (c, γ), where
c > 0 and γ is a distribution in Rd with γ({0}) = 0 (i.e., γ is a distribution
in Rd∗), if E{ei y·X(t)} = exp[−t c(γ̂(y) − 1)], for any t ≥ 0 and y in Rd. The
parameters (c, γ) are uniquely determined by X and a simple construction is
given as follows. If {ζn : n = 1, 2, . . . } is a sequence of independent identically
distributed (with distribution law γ) random variables, and {τn : n = 1, 2, . . . }
is another sequence of independent exponentially distributed (with parameter
c) random variables, with {ζn : n = 1, 2, . . . } independent of {τn : n = 1, 2, . . . },
then for θn := τ1+τ2+· · ·+τn (which has a Gamma distribution with parameters
γ and n), the expressions

X(t) :=

∞∑
n=1

ζn1t≥θn , with δX(t) := X(t)−X(t−)

δX(θn) = ζn, and δX(t) = 0 if t 6= θn, ∀n, or equivalently

X(t) := ζ1 + ζ2 + · · ·+ ζn if

n∑
i=1

τi = θn ≤ t < θn+1 =

n+1∑
i=1

τi,

are realizations of a compound Poisson process and its associate point (or jump)
process. Indeed, for any integer k, any 0 ≤ t0 < t1 < · · · < tk and any Borel sub-
sets B0, B1, . . . , Bk of Rd we can calculate the finite-dimensional distributions
of X by the formula

P (X(t0) ∈ B0, X(t1)−X(t0) ∈ B1, . . . , X(tk)−X(tk−1) ∈ Bk) =

= P
(
X(t0) ∈ B0

)
P
(
X(t1)−X(t0) ∈ B1

)
. . .

. . . P
(
X(tk)−X(tk−1) ∈ Bk

)
.

This yields the expression

E{ei y·X(t)} = exp[−t c (1− γ̂(y))], ∀y ∈ Rd, t ≥ 0,

which is continuous in t. Then, all conditions in Definition 3.19, including the
stochastic continuity of path (3), are satisfied. Note that for a pairwise disjoint
family of Borel sets of the form ]si, ti] × Bi, with 0 ≤ si < ti, Bi in B(Rd),
i = 1, 2, . . . , k the integer-valued random variables

ν(]si, ti]×Bi) :=

∞∑
n=1

1si<θn≤ti 1ζn∈Bi , ∀i = 1, 2, . . . , k

are independent identically Poisson distributed, with parameter (or mean) c (ti−
si)γ(Bi).
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An interesting point is the fact that a compound Poisson process in R, with
parameters (c, σ) such that c > 0 and σ is a distribution in (0,∞), is increasing
in t and its Laplace transform is given by

E{e−ξX(t)} = exp
[
− t c

∫
(0,∞)

(e−ξx − 1)σ(dx)
]
, ∀ξ ∈ R, t ≥ 0.

These processes are called subordinator and are used to model random time
changes, possible discontinuous. Moreover, the Lévy measure m of any Lévy
process with increasing path satisfies∫

R1
∗

|x|m(dx) =

∫ ∞
0

x m(dx) <∞,

e.g., see books Bertoin [21, Chapter III, pp. 71-102], Itô [112, Section 1.11] and
Sato [220, Chapter 6, pp. 197-236].

Another interesting case is the so-called symmetric Lévy processes where the
characteristic exponent (also called Lévy exponent) φ(y) (defined early) satisfies∫

Rd

∣∣ 1

1 + φ(y)

∣∣ dy <∞,
which implies that φ(y) is a positive real-valued even function. Moreover, the
only possible case occurs when the dimension d = 1, and actually, φ(y) takes
the form

φ(y) =
1

2
Qy2 + 2

∫
Rd∗

[
1− cos(xy)

]
m(dx), ∀y ∈ R

for some nonnegative constant Q and some measure m on R which integrates
the function (1 ∧ x2). In this one-dimensional case, the resolvent (measure)∫

R
f(y)R(λ,dy) =

∫ ∞
0

e−λtE
{
f
(
X(t) + x

)}
dt,

has the density

r(λ, y) =
1

π

∫ ∞
0

cos(xy)

λ+ φ(y)
dt, ∀y ∈ R,

while the transition densities are given by

p(t, x) =
1

π

∫
R

e−xy e−tφ(y)dy, ∀t > 0, x ∈ R,

see the book by Marcus and Rosen [166, Section 4.1, pp. 135-144] for details.
The interested reader, may consult the book by Applebaum [6], which discuss
Lévy process at a very accessible level.

The next typical class Lévy processes is the Wiener processes or Brownian
motions. A Lévy process X is called a Brownian motion or Wiener process
in Rd, with (vector) drift b in Rd and (matrix) co-variance σ2, a nonnegative-
definite d× d matrix, if E{ey·X(t)} = exp [−t(|σy|2/2− i b)], for any t ≥ 0 and y
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in Rd, i.e., if X(t) has a Gaussian distribution with (vector) mean E{X(t)} = bt
and (matrix) co-variance E{(X(t)− bt)∗(X(t)− bt)} = tσ2. A standard Wiener
process is when b = 0 and σ2 = 1, the identity matrix. The construction of
a Wiener process is a somehow technical and usually details are given for the
standard Wiener process with t in a bounded interval. The general case is an
appropriate transformation of this special case. First, let {ξn : n = 1, 2, . . . } be
a sequence of independent identically normally distributed (i.e., Gaussian with
zero-mean and co-variance 1) random variables in Rd and let {en : n = 1, 2, . . . }
be a complete orthonormal sequence in L2(]0, π[), e.g., en(t) =

√
2/π cos(nt).

Define

X(t) :=

∞∑
n=1

ξn

∫ t

0

en(s)ds, t ∈ [0, π].

It is not hard to show that X satisfies all conditions of a Wiener process, except
for the stochastic continuity and the cad-lag sample property of paths. Next,
essentially based on the (analytic) estimate: for any constants α, β > 0 there
exists a positive constant C = C(α, β) such that

|X(t)−X(s)|α ≤ C |t− s|β
∫ π

0

dt

∫ π

0

|X(t)−X(s)|α |t− s|−β−2ds,

for every t, s in [0, π], we may establish that that series defining the process X
converges uniformly in [0, π] almost surely. Indeed, if Xk denotes the k partial
sum defining the process X then an explicit calculations show that

E{|Xk(t)−X`(s)|4} = E
{∣∣∣ k∑

n=`+1

ξn

∫ t

s

en(r)dr
∣∣∣4} ≤ 3|t− s|2,

for every t ≥ s ≥ 0 and k > ` ≥ 1. After using the previous estimate with α = 4
and 1 < β < 2 we get

E{ sup
|t−s|≤δ

|Xk(t)−X`(s)|4} ≤ C δβ , ∀δ > 0, k > ` ≥ 1,

for a some constant C > 0. This proves that X is a Wiener process with continu-
ous paths. Next, the transformation tX(1/t) (or patching k independent copies,
i.e., Xk(t) if (k− 1)π ≤ t < kπ, for k ≥ 1.) produces a standard Wiener process
in [0,∞) and the process b t+ σX(t) yields a Wiener process with parameters
b and σ.

The above estimate is valid even when t is multidimensional and a proof can
be found in Da Prato and Zabczyk [52, Theorem B.1.5, pp. 311–316]. For more
details on the construct arguments, see, e.g., Friedman [90] or Krylov [141].

We are ready to state the general existence result

Theorem 3.20 (construction). Let m be a Radon measure on Rd∗ such that∫
Rd∗
|x|2 ∧ 1m(dx) <∞,
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Q be a nonnegative-definite d × d matrix and g be a vector in Rd. Then there
exists a unique probability measure P on the canonical probability space Ω =
D([0,∞),Rd) such that the canonical process (X(t) := ω(t) : t ≥ 0) is a Lévy
process with characteristic (g,Q,m), i.e.,

E{ei y·X(t)} = exp[−t φ(y)], ∀y ∈ Rd, t ≥ 0, with

φ(y) := i g · y +
1

2
Qy · y +

∫
Rd∗

[
1− ei y·x + i y · x1|x|<1

]
m(dx).

Conversely, given a Lévy process X the characteristic (g,Q,m) are uniquely
determined through the above formula.

Proof. Only some details are given. First, consider the case where Q = 0, which
corresponds to Poisson measures and point processes, a step further from the
compound Poisson processes. Essentially, a point process is the jumps process
constructed from a cad-lag process. Poisson measures are particular case of
integer-valued measures, which are the distribution of the jumps of cad-lag
processes. More extensive comments are given in Section 4.1.3, here we recall
a couple of arguments used to construct a Poisson measure. Let m be a Radon
measure in Rd∗ (which integrates the function |x|2 ∧ 1 is used later) and write
m =

∑
kmk, where mk(B) := m(B ∩ Rk), Rd∗ = ∪kRk, m(Rk) < ∞ and

Rk ∩ R` = ∅ if k 6= `. To each mk we may associate a compound Poisson and
point processes

Yk(t) :=

∞∑
n=1

ζn,k1t≥θn,k or Yk(t) = Zn,k if θn−1,k < t ≤ θn,k,

δYk(t) := Yk(t)− Yk(t−) = ζn,k1t=θn,k , ∀t ≥ 0,

where θn,k := τ1,n,k+τ2,n,k+ · · ·+τn,n,k, {τi,n,k : i = 1, . . . , n, n = 1, 2, . . . } is a
sequence of independent exponentially distributed (with parameterm(Rk) = ck)
random variables, and Zn,k := ζ1,k + ζ2,k + · · · + ζn,k, {ζn,k : n = 1, 2, . . . }
is another sequence of independent identically distributed (with distribution
law mk/ck) random variables, the family {τi,n,k, ζn,k : i = 1, . . . , n, n, k ≥
1} is independent. Since the processes {Yk : k ≥ 1} are independent, the
characteristic function of the point process Y :=

∑
k Yk is the product of those

of Yk, which should reconstruct the measure m. The independence property
and the diffuse character (non atoms) of the exponential distribution ensure
that there are no simultaneous jumps among the {Yk : k ≥ 1}. Hence, the jump
process δY =

∑
k δYk is indeed a Poisson point process with characteristic

measure m, i.e.,

ν(]s, t]×B) :=

∞∑
n,k=1

1s<θn,k≤t 1ζn,k∈B , ∀t > s ≥ 0, B ∈ B(Rd∗)

is a Poisson random measure with intensity measure E{ν(]s, t] × B)} = (t −
s)m(B). In general, we cannot re-order the jumps in a increasing manner as
those of a compound Poisson process. Next, some martingale estimates are
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necessary to establish good behavior of the process Y. First the exponential
formula, for any complex-valued Borel function f on Rd∗

if

∫
Rd∗

|1− ef(x)|m(dx) <∞ then ∀t ≥ 0 we have

E
{

exp
[ ∑

0≤s≤t

f(δY (s))
]}

= exp
{
− t
∫
Rd∗

[1− ef(x)]m(dx)
}
.

Secondly, the Doob’s maximal inequality for the compensated jumps

E
{

sup
0≤t≤T

∣∣∣ ∑
0≤s≤t

f(δY (s))− t
∫
Rd∗

f(x)m(dx)
∣∣∣2} ≤

≤ 4T

∫
Rd∗

|f(x)|2m(dx),

valid for any real valued Borel function f on Rd∗ and any T > 0, see Sections 3.3
and 3.4 for more detail and references.

After compensate the small jumps, this Poisson measure ν and its associated
jump process δY yield a Lévy process with characteristic (0, 0,m). Indeed, define

X1(t) :=

∫
]0,t]×{|x|≥1}

x ν(ds× dx) =
∑
s≤t

δY (s)1|δY (s)|≥1,

and

Xε
2(t) :=

∫
]0,t]×{ε≤|x|<1}

x ν(ds× dx)−

−E
{∫

]0,t]×{ε≤|x|<1}
x ν(ds× dx)

}
=

=
∑
s≤t

δY (s)1ε<|δY (s)|≤1 − t
∫
ε≤|x|<1

xm(dx),

for t, ε > 0, which are two compound Poisson processes with characteristic
exponents

φ1(y) =

∫
|x|≥1

[
1− ei y·x

]
m(dx), ∀y ∈ Rd,

φε2(y) =

∫
ε≤|x|<1

[
1− ei y·x + i y · x

]
m(dx), ∀y ∈ Rd,

respectively, after using the above exponential formula. In view of the martin-
gale inequality

E
{

sup
t≤T
|Xε

2(t)−Xδ
2 (t)|2

}
≤ 4T

∫
δ≤|x|<ε

|x|2m(dx),
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for every T > 0, ε > δ > 0, and because the intensity measure m integrates the
function |x|2∧1, the family of processes {Xε

2 : ε > 0} converges to a process X2

and

E
{

sup
t≤T
|Xε

2(t)−X2(t)|2
}
≤ 4T

∫
|x|<ε

|x|2m(dx),

for every T > 0 and ε > δ > 0. This cad-lag process X2 has stationary indepen-
dent increments, so a Lévy process with characteristic exponent

φ2(y) =

∫
|x|<1

[
1− ei y·x + i y · x

]
m(dx), ∀y ∈ Rd.

Therefore, X1 +X2 is a Lévy process with characteristic (0, 0,m).
Now to conclude, consider given a drift g in Rd and a co-variance Q (non-

negative-definite d× d matrix). If B is a standard Wiener process independent
of (X1, X2) (i.e., of the previous construction) then define X3 := (

√
QB(t)−g t :

t ≥ 0), which is a Lévy process with characteristic exponent

φ3(y) = i g · x+
1

2
Qy · y, ∀y ∈ Rd.

Finally, X := X1 + X2 + X3 is a Lévy process with the desired characteris-
tic (g,Q,m). The converse follows from Lévy-Khintchine formula for infinitely
divisible distributions.

An important point to remark is that the above construction shows that
any Lévy process is a Wiener process plus the limit of a sequence of compound
Poisson processes. Also note that any infinitely divisible probability measure on
Rd can be viewed as the distribution of a Lévy process evaluated at time 1.

It is perhaps relevant to remark that even if any Lévy process can be ex-
pressed as a limit of compound Poisson processes, the structure of a typical
graph of Levy process eludes us. For instance, almost surely, the jumping times
J = {t : X(t, ω) 6= X(t−, ω)} are countable, and (a) if the Levy measure sat-
isfies m(Rd) = ∞ then J is dense in [0,∞) while (b) if m(Rd) < ∞ then J
can be written as an increasing sequence {τk : k ≥ 1}, τk ≤ τk+1, of indepen-
dent random variables having exponential distributions with mean 1/m(Rd), see
Sato [220, Theorem 21.3, pp. 136–137].

Note that for a given Lévy process X with the characteristic (g,Q,m) we
can define δX(t) := X(t) − X(t−) and the integer-valued (random) measure
νX associated with the jumps δX of X, and its martingale measure µX :=
νX −m, since m = νpX is the predictable jump compensator (which is actually
deterministic). To make sense to discontinuous (purely jumps) part Xd(t) of X,
which is the compensated sum of all jumps

∑
s≤t δX(s), and therefore define its

continuous part as Xc = X −Xd we proceed essentially as above. For t, ε > 0,
consider

X1(t) :=

∫
]0,t]×{|x|≥1}

x νX(ds× dx) =
∑
s≤t

δX(s)1|δX(s)|≥1,
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and

Xε
2(t) :=

∫
]0,t]×{ε≤|x|<1}

xµX(ds× dx) =

=
∑
s≤t

δX(s)1ε<|δX(s)|≤1 − t
∫
ε≤|x|<1

xm(dx)

are compound Poisson process, and using the canonical semi-martingale de-
composition, the limit process Xd := X1 + limε→0X

ε
2 is a Lévy process with

characteristic exponent

φδ(y) =

∫
Rd∗

[
1− ei y·x + i y · x

]
1|x|<1m(dx), ∀y ∈ Rd,

which is called the discontinuous (purely jumps) part of X. If the jumps are
not of bounded variation, the series

∑
s≤t δX(s) is meaningless, unless it is

compensated with the small jumps (we used jumps greater than 1, but it suffices
greater than some positive constant). Sometimes we ignore large jumps (by
assuming that the Lévy measure m integrates z at infinite), and so the Lévy
process corresponding to the characteristic exponent

φd(y) =

∫
Rd∗

[
1− ei y·x + i y · x

]
m(dx), ∀y ∈ Rd.

is uniquely determined could be used as Xd.
Since X is quasi-left continuous, we have δX = δXd. Due to the indepen-

dence of increments, X(t)−X(t−) results independent of X(t−) = Xc(t), i.e.,
the processes Xc and Xd are independent and the characteristic exponent of Xc

must be

φc(y) = i g · x+
1

2
Qy · y, ∀y ∈ Rd.

Thus Xc is a Wiener process and the characteristic (g,Q,m) can also be found
as

g := −E{Xc(1)}, Q := E{[Xc(1) + g]∗[Xc(1) + g]
}
,

m(B) := E
{ ∑

0<t≤1

1δX(t)∈B
}
, ∀B ∈ B(Rd),

where δX(t) := X(t)−X(t−), Xc := X−Xd and (·)∗ is the transpose operator.
On the other hand, if A is a n × d matrix then AX := (AX(t) : t ≥ 0) is a

n dimensional Lévy process with characteristic

g = Ag +

∫
Rd∗
Ax[1|Ax|<1 − 1|x|<1]m(dx),

QA = AQA∗, mA = mA−1,

where mA−1(B) = m({x : Ax ∈ B}).
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If Q = 0 and the Lévy measure m integrates the function |x| ∧ 1 then the
characteristic exponent may be re-written in a simpler way, as

φ(y) = −i g · x+

∫
Rd∗

[
1− ei y·x

]
m(dx), ∀y ∈ Rd,

where g is now referred to as the drift coefficient. In this case, the Lévy process
has locally bounded variation, not necessarily integrable, unless m integrates
the function |x|. Certainly, if X has a finite Lévy measure m on Rd∗ then X is a
compound Poisson process plus a drift.

Now we take a look at the resolvent operators associated with Lévy processes.
Let {P (t) : t ≥ 0} be the semigroup associated with a Lévy process, i.e.,

P (t) : C0(Rd)→ C0(Rd), P (t)f(x) := E{f(X(t) + x)}, (3.64)

where C0(Rd) is the Banach space of continuous functions vanishing at infinity.
Then, the family {R(λ) : λ > 0} of linear and bounded operators from C0(Rd)
into itself and the family of {R(λ, dy) : λ > 0} of finite measures on Rd, defined
by 

R(λ)f(x) :=

∫ ∞
0

e−λ t P (t)f(x)dt,∫
Rd
f(y)R(λ, dy) := E

{∫ ∞
0

e−λ t f(X(t))dt
}
,

(3.65)

which satisfies

R(λ)f(x) = E
{∫ ∞

0

e−λ t f(X(t) + x)dt
}

∫
Rd
f(y)R(λ, dy) = R(λ)f(0),

are called the resolvent operators and the resolvent kernel associated with the
Lévy process X. It is also clear that R(λ) is a convolution operator, i.e.,

if

∫
Rd
f(y)Ř(λ, dy) := E

{∫ ∞
0

e−λ t f(−X(t))dt
}

then (Ř(λ, ·) ? f)(x) :=

∫
Rd
f(x− y)Ř(λ, dy) = R(λ)f(x).

The resolvent operators describe the distribution of the Lévy process evalu-
ated at independent exponential times, i.e., if τ = τ(λ) is an independent (of
X) random variable having an exponential law with parameter λ > 0, then
E{f(X(τ) + x)} = λR(λ)f(x).

The semigroup property yields the identity{
R(λ)−R(µ) = (µ− λ)R(λ)R(µ), ∀λ, µ > 0 or

Ř(λ, ·)− Ř(µ, ·) = (µ− λ)Ř(λ, ·) ? Ř(µ, ·)
(3.66)
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so-called resolvent equation. Thus the image of C0(Rd) under R(λ), denoted by
D, does not depend on λ > 0. Since

λR(λ)f(x)− f(x) =

∫ ∞
0

e−s[P (s/λ)f(x)− f(x)]ds

we deduce that λR(λ)f → f in C0(Rd) as λ → ∞. Therefore, D is a dense
subspace of C0(Rd). Moreover, if R(λ)f = R(λ)g for some λ > 0, the resolvent
equation shows that R(λ)f = R(λ)g for any λ > 0 and then, as λ → ∞ we
deduce f = g, i.e., R(λ) is a one-to-one mapping from C0(Rd) onto D. The
infinitesimal generator A from D into C0(Rd) is defined by the relation

R(λ)(λI −A) = I or equivalently A := λI − [R(λ)]−1, (3.67)

where I is the identity mapping, and D = DA is called the domain of the
infinitesimal generator A.

The Fourier transform for f in L1(Rd), namely

f̂(ξ) :=

∫
Rd

ei x·ξf(x)dx, ∀ξ ∈ Rd,

yields simple expressions of these operators in term of the characteristic expo-
nent

φ(ξ) := − ln(E{eiX(1)·ξ})

of the Lévy process X. We have for any f in L1(Rd) ∩ L∞(Rd){
P̂ (t)f(ξ) = e−tφ(−ξ)f̂(ξ), ∀t ≥ 0, ξ ∈ Rd,

R̂(λ)f(ξ) = [λ+ φ(−ξ)]−1f̂(ξ), ∀λ > 0, ξ ∈ Rd,
(3.68)

and, for any f in DA such that Af belongs to L1(Rd)

Âf(ξ) = −φ(−ξ)f̂(ξ), ∀ξ ∈ Rd. (3.69)

Hence, Lévy-Khintchine formula and the inversion of Fourier transform yield
the following expression for the infinitesimal generator of Lévy processes

Af(x) := −g · ∇f +
1

2
∇ ·Q∇f +

+

∫
Rd∗

[
f(·+ y)− f − 1|y|<1 y · ∇f

]
m(dy),

(3.70)

for any smooth function f, e.g., twice-continuously differentiable and bounded
function f.

Let us mention a result from Blumental and Getoor [28]. If the resolvent
kernel R(λ, x+ dy) is absolutely continuous (with respect to the Lebesgue mea-
sure) for some λ > 0 and some x in Rd then it is absolutely continuous for
every λ > 0 and every x in Rd. Moreover this is equivalent to the so-called
strong Feller property of the resolvent operators, namely, for any λ > 0 and f
in L∞(Rd) the function x 7→ R(λ)f(x) is continuous.
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To conclude this section we briefly discuss the so-called local time associated
with a Levy process, full details can be found in the book Bertoin [21, Chapter V,
pp. 125–154]. Let X(t) a one dimensional Lévy process, then its characteristic
function is given by

E{exp(iξX(t))} = e−tψ(ξ)

where ψ is characterized by

ψ(ξ) = −iγξ + 1
2σ

2ξ2 −
∫
R

(
eiξy − 1− iξy1{|y|<1}

)
dm(y)

where dm(y) is the Lévy measure. For instance, the choice γ = 0, σ = 1 and
dm = 0 yields the Brownian motion, while γ = 0 and σ = 0 produces a pure
jump processes. In particular, m = δ1 corresponds to the Poisson process and
for dm(y) = 1

|y|1+α dy, with 0 < α < 2, we get the so-called α-stable Lévy

processes with ψ(ξ) = 2
c |ξ|

α, where

|ξ|α = − c
2

∫
R

(
eiξy − 1− iξy1{|y|<1}

)
m(dy),

1

c
=

∫ ∞
0

1− cos s

s1+α
ds,

i.e., c = 2
πΓ(1 + α) sin(πα2 ).

For any t > 0, the occupation measure µ(t, dx) on the time interval [0, t] of
the Lévy process X is defined as

µ(t, B, ω) :=

∫ t

0

1{X(s,ω)∈B}ds,

for every Borel subset of R.

Theorem 3.21 (occupation measure). For any t ≥ 0, the occupation measure
µ(t,dx) is absolutely continuous with respect to the Lebesgue measure with a
density in L2(dy × P ) if and only if∫

R
<
{ 1

1 + ψ(y)

}
dy <∞. (3.71)

Moreover, if the above condition fails, then µ(t, dx) is singular with respect to
the Lebesgue measure for any t > 0 and with probability 1.

Brownian motions and α-stable Lévy processes with 1 < α < 2 satisfy
condition (3.71) and therefore theirs occupation measures have densities with
respect to the Lebesgue measure. While Poisson processes and α-stable Lévy
processes with 0 < α ≤ 1 do not satisfy (3.71).

Now, if condition (3.71) is satisfied then for every t > 0 and any x in R we
can define

`(t, x) = lim sup
ε→0

1
2ε

∫ t

0

1{|X(s)−x|<ε}ds,

which is referred to as the local time at the level x and time t for the Lévy
process X. It is clear that {`(t, x) : x ∈ R} serves as a F(t)-measurable version
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of the density of µ(t, dx). Note that for every x, the process `(·, x) is (cad-
lag) nondecreasing, which may increase only when X = x. Thus, ` is jointly
measurable.

To end this section, let us take a look at the path-regularity of the Lévy
processes. If we drop the cad-lag condition in the Definition 3.19 then we use
the previous expressions (for either Lévy or additive processes in law) to show
that there exits a cad-lag version, see Sato [220, Theorem 11.5, p. 65], which is
actually indistinguishable if the initial Lévy or additive process was a separable
process.

Proposition 3.22. Let y be an additive process in law on a (non-necessarily
completed) probability space (Ω,F , P ), and let F0

t (y) denote the σ-algebra gen-
erated by the random variables {y(s) : 0 ≤ s ≤ t}. Define Ft(y) = F0

t (y) ∨ N ,
the minimal σ-algebra containing both F0

t (y) and N , where N = {N ∈ F :
P (N) = 0}. Then Ft(y) = ∩s>tFs(y), for any t ≥ 0.

Proof. Set F+
t (y) = ∩s>tFs(y) and F0

∞(y) = ∨t≥0F0
t (y). Since both σ-algebras

contain all null sets in F , we should prove that E(Z | F+
t (y)) = E(Z | Ft(y)) for

any F0
∞(y)-measurable bounded random variable Z, to get the right-continuity

of the filtration. Actually, it suffices to establish that

E{ei
∑n
j=1 rjy(sj) | F+

t (y)} = E{ei
∑n
j=1 rjy(sj) | Ft(y)}

for any choice of 0 ≤ s1 ≤ s2 ≤ . . . ≤ sn, (r1, r2, . . . , rn), and n. Moreover, only
the case s1 > t need to be considered. To this purpose, we use the character-
istic function ft(r) = E{eiry(t)} which satisfies ft+s(r) = ft(r)fs(r), and the
martingale property of Mt(r) = eiry(t)/ft(r) with respect to Ft(y).

Now, let s1 > t′ ≥ t and consider

E{ei
∑n
j=1 rjy(sj) | Ft′(y)} = fsn(rn)E{ei

∑n−1
j=1 rjy(sj)Msn(rn) | Ft′(y)} =

= fsn(rn)E{ei
∑n−1
j=1 rjy(sj)Msn−1

(rn) | Ft′(y)} =

= fsn−sn−1
(rn)fsn−1

(rn−1 + rn)×
× E{ei

∑n−2
j=1 rjy(sj)Msn−1

(rn−1 + rn) | Ft′(y)}) =

= . . . = fsn−sn−1(rn)fsn−1−sn−2(rn−1 + rn)×
× fsn−2−sn−3(rn−2 + rn−1 + rn)×

× . . .× fs2−s1(r2 + · · ·+ rn−2 + rn−1 + rn)eir1y(s1),

i.e., we have

E{ei
∑n
j=1 rjy(sj) | Ft+ε(y)} = E{ei

∑n
j=1 rjy(sj) | Ft(y)}, ∀ε > 0.

and the proof is finished by passing to the limit as ε→ 0.

• Remark 3.23. Sometimes, an adapted process y (not necessarily cad-lag) is
called additive with respect to a filtration F (non necessarily right-continuous
or complete) if the random variable y(s)− y(t) is independent of F(t), for any
s > t ≥ 0. Because y is adapted and F(t) increasing, this is equivalent to a
stronger condition, namely, the σ-algebra G(t) generated by {y(s2) − y(s1) :
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s2 > s1 ≥ t} is independent of F(t) for any t ≥ 0. Now, let N be the σ-algebra
of all null sets in F and set F(t+) = ∩ε>0F(t + ε). If y is right-continuous in
probability then we want show that E{· | F(t+)} = E{· | F(t)}. Indeed, for any
t there is a sequence {tn}, tn > t convergent to t and a set of measure null
such that y(tn, ω)→ y(t, ω), for every ω in Ω rN. Since y(s)− y(tn), s > t, is
independent of F(tn) ⊃ F(t+), we have

E
{
f
(
y(s)− y(tn)

)
1F

}
= E

{
f
(
y(s)− y(tn)

)}
E{1F }, ∀F ∈ F(t+),

for every continuous function f. Hence, y(s)−y(t), s > t is independent of F(t+),
i.e., G(t)∨N is independent of F(t+), for every t ≥ 0. Now, if A is in F(t) and
B in G(t)∨N then the F(t)-measurable random variable 1A P (B) is a version of
the conditional expectation E{1A1B | F(t+)}, and a class monotone argument
shows that for any bounded and F(t) ∨ G(t) ∨ N -measurable random variable
h we have a F(t)-measurable version of the E{h | F(t+)}. This proves that
F(t+) = F(t) ∨ N , i.e., another way of proving the previous Proposition 3.22.
This proof is inspired by Letta [152], based on a personal communication.

The reader is referred to the books by Bremaud [32], Elliott [73], Prot-
ter [206]), and the comprehensive works by Bertoin [21, Chapters O and I, pp.
1–42] and Sato [220, Chapters 1 and 2, pp. 1–68].

3.11 Transition Functions

Now we focus on the transition functions of spatially homogeneous Markov pro-
cesses or additive processes. There are several aspects of a Markov Process,
depending on the specific emphasis given to the discussion, one of the following
elements is first studied and then other elements are derived. A Markov process
with valued in Rd may be presented as

(a) a family of Rd-valued stochastic processes X = Xsx indexed by the initial
distribution X(s) = x, s ≥ 0,

(b) a probability transition function P (s, x, t, A) with t > s ≥ 0, x ∈ Rd and A
a Borel subset of Rd,
(c) a family of linear and bounded evolution operators Φ(t, s) from B(Rd), the
Banach space of bounded Borel real-valued function on Rd into itself, indexed
by t ≥ s ≥ 0,

(d) a family of linear and bounded operators R(λ) from B(Rd) into itself, in-
dexed by λ > 0,

(e) a family of linear possible unbounded (infinitesimal generator) operators
A(t) defined in a subspace D(A(t)) of B(Rd) into B(Rd), indexed by t ≥ 0.

Certainly, each of these (a),. . . ,(e) elements should satisfy some specific condi-
tions to yield a Markov process.

The elements R(λ) in (d) are called resolvent operators and are mainly used
with time-homogeneous Markov processes, i.e., when (a) Xsx = X0x for any
s > 0 or (b) P (s, x, t, A) = P (0, x, t − s,A) for any t > s ≥ 0 or (c) the
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evolution operators Φ(t, s) = Φ(t− s) for any t > s ≥ 0 or (e) A(t) = A for any
t ≥ 0. It is clear that by adding a new dimension to Rd we may always assume
we are in the time-homogeneous, however, in most of the cases, we prefer to
live the special time variable t with its preferential role and to work with non-
time-homogeneous Markov processes. It is possible to use a Polish (separable
complete metric space) O instead of the Euclidean space Rd, usually O is locally
compact since the infinite-dimensional case needs some special care.

The principle stating that the future is independent of the past given the
present is called Markov property and formally is written as

P{X(t) ∈ B |X(r), r ≤ s} = P{X(t) ∈ B |X(s)}, (3.72)

for every t > s ≥ 0 and B ∈ B(Rd), which should be satisfied by the family of
processes. This same property viewed by the transition function is called the
Chapman-Kolmogorov identity ,

P (s, x, t, B) =

∫
Rd
P (s, x, r, dy)P (r, y, t, B), (3.73)

for every t > r > s, x in Rd and B in B(Rd). For the evolution operators this is
called the semigroup property are written as

Φ(t, s) = Φ(t, r)Φ(r, s) in B(Rd), ∀t > r > s > 0, (3.74)

and in the case of time-homogeneous Markov processes, the resolvent operators
satisfy the so-called resolvent equation, namely

R(λ)−R(ν) = (ν − λ)R(λ)R(ν) in B(Rd), ∀λ, ν > 0. (3.75)

The resolvent {R(λ) : λ > 0} is mainly used in potential theory, the semi-group
{Φ(t) : t ≥ 0} and the infinitesimal generator A are well know in analysis, while
the family of stochastic processes X and the transition function P (s, x, t, B)
are more probabilistic tools. At this general level, we ramark that the Markov
property (3.72) is almost surely satisfied, i.e., only version of the stochastic
processes are involved and therefore a property on the sample path should be
added. The evolution and resolvent operators are defined on B(Rd), which is a
non-separable Banach space, so that in general the theory is very delicate.

Out interest is in Markov-Feller or Feller-Dynkin processes, instead of the
large space B(Rd) we use the separable Banach space C0(Rd), of all continuous
functions vanishing at infinity (i.e., for any ε > 0 there exists a compact subset
K of Rd such that |ϕ(x)| ≤ ε for every x in Rd rK). Thus, after a one-point
compactification method, we are reduced to C(R̄d), with R̄d = Rd ∪ {∞} being
a compact Polish space. For the family of stochastic processes Xx, this yields
a cad-lag condition on the sample path. Regarding the Chapman-Kolmogorov
identity (3.73) we have

Definition 3.24 (transition function). A (Markov) transition function on the
Borel space (Rd,B), B = B(Rd), is a function P (s, x, t, B) defined for t > s ≥ 0,
x in Rd and B in B such that
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(a) for each t > s ≥ 0 and x in Rd the function B 7→ P (s, x, t, B) is a positive
measure on (Rd,B), with P (s, x, t,Rd) ≤ 1,

(b) for each t > 0 and B in B the function (s, x) 7→ P (s, x, t, B) is a measurable,

(c) for any s ≥ 0, for any compact subset K of Rd and any ε > 0 we have

lim
t→s

sup
x∈K

[
1− P (s, x, t, {y ∈ Rd : |y − x| ≤ ε})

]
= 0,

so-called uniformly stochastic continuous,

(d) for each t > r > s ≥ 0, x in Rd and B in B we have

P (s, x, t, B) =

∫
Rd
P (s, x, r, dy)P (r, y, t, B),

i.e., Chapman-Kolmogorov identity.

These properties can be rephrased in term of linear non-negative operators from
B(Rd), the space of real-valued bounded and Borel functions on Rd, into itself,
defined by

P (t, s)ϕ(x) :=

∫
Rd
ϕ(y)P (s, x, t, dy) = P (s, x, t, ϕ), (3.76)

for every t > s ≥ 0 and x in Rd, which satisfies

(a’) for each t > s ≥ 0 and ϕ in B(Rd) with 0 ≤ ϕ ≤ 1 we have 0 ≤ P (t, s)ϕ ≤ 1,

(b’) for each t > s ≥ 0 and x in Rd the mapping B 7→ P (t, s)1B(x) is σ-additive
on B(Rd),
(c’) for any s ≥ 0 and ϕ in C0(Rd), continuous functions on Rd vanishing at
infinity, we have

lim
t→s

P (t, s)ϕ(x) = ϕ(x), ∀x ∈ Rd,

i.e., the stochastic continuity property , a weaker version of (c),

(d’) for each t > r > s ≥ 0, x in Rd and B in B we have

P (t, s) = P (t, r)P (r, s), in B(Rd),

usually referred to as the semigroup property , and the transition function is
called a Feller transition if the following condition (e) , so-called Feller property ,
is satisfied

(e) for each t > s ≥ 0 and ϕ in C0(Rd) we have P (t, s)ϕ in C0(Rd), i.e., P (t, s)
can be considered as acting on C0(Rd).
It is called time-homogeneous if P (s, x, t, B) = P (0, x, t − s,B) and spatially-
homogeneous if P (s, x, t, B) = P (s, 0, t, B − x), for any t > s ≥ 0, x in Rd and
B in B. It is called a transition probability function if P (s, x, t,Rd) = 1, for any
t > s ≥ 0 and x in Rd.
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Certainly, to define a transition function we only need a measurable space
(E, E) and t belonging to some set T with a complete order, instead of the Eu-
clidean space Rd and the real semi-line [0,∞). However, for time-homogeneous
transition function, essentially we need the semi-line [0,∞) and for the spatially-
homogeneous transition function E has to be a vector space, e.g., Rd.

Condition (b’) is satisfied when E is locally compact, i.e., Rd, but it is
mentioned above as a difficulty when considering the infinite-dimensional case.
Instead of the transition function in the form P (s, x, t, B) we may look at the
family of linear non-negative operators P (t, s) from C0(Rd) into itself as a two-
parameter C0-semigroup, which satisfies 0 ≤ P (t, s)ϕ ≤ 1 for any 0 ≤ ϕ ≤ 1.

For instance, the reader is referred to Stroock and Varadhan [241, Chapter
9, pp. 208–247] for some useful estimates on the transition probability functions
for diffusion processes in Rd.

In either of these two equivalent forms of transition function we complete the
definition by using the one-point compactification of E, say Ē = E ∪ {∞} with
P (s, x, t, {∞}) = 1 − P (s, x, t,Rd), so that P (s, x, t, B) is a transition function
in compact Polish space Ē. Thus, time-homogeneous means P (t, s) = P (t − s)
while spatially-homogeneous means that P (t, s) commutes with the translations
operators Thϕ(x) := ϕ(x − h), i.e., for any t > s ≥ 0 and h in Rd we have
P (t, s)Th = Th P (t, s) in C0(Rd).

Condition (c) or (c’) means that the Markov process X is stochastically
continuous, i.e., for any ε > 0 and s ≥ 0 there is a δ > 0 such that P{|X(t) −
X(s)| ≥ ε} < ε for any t in ](s − δ) ∧ 0, s + δ[. On a bounded interval, this
is equivalent to a uniformly stochastically continuous property, namely for any
ε > 0 there is a δ > 0 such that P{|X(t)−X(s)| ≥ ε} < ε for any t, s in [0, 1/ε]
satisfying |t − s| ≤ δ. Actually, because the Polish space E is locally compact,
both conditions (c) and (c’) are equivalent under the Feller assumption (d).

The relation between a transition function and the evolution operators (or
semigroup) is clearly (3.76) with Φ(t, s) = P (t, s). In the time-homogeneous
case, this relates with the resolvent operators by

R(λ)ϕ(x) =

∫ ∞
0

e−t λ Φ(t)ϕ(x)dt =

=

∫ ∞
0

e−t λdt

∫
Rd
ϕ(y)P (t, x,dy), ∀x ∈ Rd,

(3.77)

which may be generalized to the non-homogeneous case.
A crucial relation between the transition function P (s, x, t, B) and the family

of stochastic processes X = Xsx is the equality

P{X(t) ∈ B |X(r), r ≤ s} = P (s,X(s), t, B), (3.78)

for every t > s ≥ 0 and B in B(Rd), which is the Markov property itself. This
is the primary building block, in the sense that when the family of stochastic
processes X is given first, some property on their paths is necessary to construct
the transition function, condition (3.72) is not sufficient. The general theory of
Markov processes is rather delicate, so that we prefer to limit ourself to the case
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of standard Markov processes, i.e., cad-lag path and stochastically continuous
in a filtered spaces (satisfying the usual conditions).

Generally, a Markov process is used for modelling the dynamic of a motion
(e.g., of a particle). Intuitively, the Markov property expresses a prediction
of subsequent motion (of a particle), knowing its position at time t, does not
depend on what has been observed during the time interval [0, t]. In most of the
cases, the above (simple) Markov property is not sufficient, this starting afresh
property need to be used with stopping times. This is called the strong Markov
property and written as

P{X(t+ τ) ∈ B |X(r + τ), r ≤ 0} = P (τ, t,X(τ), B), (3.79)

for every t ≥ 0, B in B(Rd), and every stopping time. It is clear that any Markov
process with cad-lag paths and a Feller transition satisfies the strong Markov
property (3.79).

Only in very particular cases the transition function is explicitly known, such
as a Wiener or a Poisson process, see (1.38) or (1.39) in Chapter 1. In most of
the cases, the transition function is constructed from a family of linear possible
unbounded (infinitesimal generator) operators A(t) defined in a domain D(A(t))
and indexed in t ≥ 0. Moreover, what is actually known is the expression to
the operators A(t) for smooth or test functions, e.g., A(t) is a second order
elliptic differential operator with given coefficients, or more general an integro-
differential operator of a particular form. The semigroup theory or the theory of
evolution operators address this question, i.e., (1) if a semigroup {Φ(t) : t ≥ 0}
is given then characteristic properties on its so-called infinitesimal generator A
are listed and (2) if a given operator A satisfies the characteristic properties of
an infinitesimal generator then a semigroup {Φ(t) : t ≥ 0} can be constructed.
For a linear and bounded operator A the arguments go back to the exponential
function, i.e.,

Aϕ := lim
t→0

Φ(t)ϕ− ϕ
t

and Φ(t) :=

∞∑
n=0

(t A)n

n!
= etA.

In general, a much more sophisticated argument is necessary, Conditions (a’) and
(e’) of the Definition 3.24 are characteristic properties of the so-called Markov-
Feller (or Feller-Dynkin) semigroups, which is the main tool we use to model
stochastic dynamics. Clearly, assumption (e’) imposes a certain type of regu-
larity, while (a’) translates into the so-called maximum principle satisfied by its
infinitesimal generator, see Chapter 2 for an overview of the semigroup Φ(t) and
its infinitesimal generator A

For a given transition probability function P (s, x, t, B) as in Definition 3.24,
since P (s, x, t, B) and an initial distribution determine the finite-dimensional of
the Markov process, we may use Kolmogorov’s construction to define a family
of Rd-valued random variables {Xsx(t) : t ≥ 0} for each initial time s ≥ 0 and
initial distribution x in Rd such that the Markov property (3.78) is satisfied,
i.e., for any real numbers s < t1 < · · · < tn and Borel subsets B1, . . . , Bn of Rd
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the family of probability measures

Psx,t1,...,tn(B1 × . . .×Bn) :=

∫
B1

P (s, x, t1,dx1)×

×
∫
B2

P (t1, x1, t2,dx2) . . .

∫
Bn

P (tn−1, xn−1, tn,dxn),

for any s < t1 < · · · < tn, has the consistency property. Therefore there exists a
unique probability measure Psx on the space Ω of all functions from [s,∞) into
Rd such that Psx{X(t) ∈ B} = P (s, x, t, B) for any t > 0 and B in B(Rd), where
X is the canonical (coordinate or projection) process, namely X(t, ω) := ω(t) for
any ω in Ω. Besides this, for any bounded and measurable function f(x1, . . . , xn)
we have

Esx{f(X(t1), . . . , X(tn))} =

∫
P (s, x, t1,dx1)×

×
∫
P (t1, x1, t2,dx2) . . .

∫
f(x1, . . . , xn)P (tn−1, xn−1, tn,dxn).

Thus, the Markov property (3.78) holds true for this construction. Since no
condition on the paths is assumed, this is referred to as a Markov process in
law, where the crucial Markov property may be re-written as

Esx{f(X(s1), . . . , X(sm)) g(X(r + t1), . . . , X(r + tn))} =

= Esx{f(X(s1), . . . , X(sm))h(X(r))},

where h(ξ) := Erξ{g(X(r + t1), . . . , X(r + tn))} and s < s1 < . . . < sm ≤ r ≤
t1 < . . . < tn. Note that only conditions (a), (b) and (d) in Definition 3.24 of
transition function are used to construct a Markov process in law. As mentioned
previously, if the transition function P (s, x, t, B) is not a full probability, i.e.,
P (s, x, t,Rd) ≤ 1 then we need to use the one-point compactification R̄d of Rd

and define P (s, x, t, {∞}) = 1 − P (s, x, t,Rd) and P (s,∞, t, {∞}) = 1. In this
case, the above random variables {Xsx(t) : t ≥ 0} take values in R̄d.

Given a transition function P (s, x, t, B) we define the modulus of stochastic
continuity by{

α(ε, T, δ,K) := sup
{

1− P
(
s, x, t, {y : |y − x| ≤ ε}

)
:

: ∀x ∈ K, s, t ∈ [0, T ], 0 < t− s ≤ δ
}
,

(3.80)

where K ⊂ Rd. Because of assumption (c) or (c’) on a transition function we
know that for any ε, T > 0 and any x in Rd we have α(ε, T, δ, {x}) → 0 as
δ → 0. However, we need to assume that

lim
δ→0

α(ε, T, δ,Rd) = 0, ∀ε, T > 0, (3.81)

This condition (3.81) is satisfied for a Feller transition.
The following result addresses the construction of standard Markov processes
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Theorem 3.25. Let P (s, x, t, B) be a transition probability function satisfy-
ing (3.81). Then for any initial condition (s, x) there exists a probability mea-
sure Psx on the canonical space D([0,∞),Rd) such that the canonical process
X(t, ω) := ω(t) is a Markov process with transition function P (s, x, t, B), which
satisfies Psx{X(t) = x, t ≤ s} = 1. Moreover, if the transition function satisfies

lim
δ→0

α(ε, T, δ,Rd)
δ

= 0, ∀ε, T > 0, (3.82)

then the support of the measure Psx is the canonical space C([0,∞),Rd). Fur-
thermore, if P (s, x, t, B) is a Feller transition function then the strong Markov
property relative to the canonical filtration (F(t) : t ≥ 0) (universally completed
with respect to the family {Psx : (s, x)} and right-continuous), i.e.,

Psx{X(θ) ∈ B | F(τ)} = P (τ,X(τ), θ, B), ∀B ∈ B(Rd), (3.83)

for any finite stopping times θ ≥ τ ≥ s, and the filtration (F(t) : t ≥ 0) is
quasi-left continuous.

Proof. Since this is a classic result for the construction of Markov processes,
only the key points will be discussed here, for instance, reader may consult the
book by Dellacherie and Meyer [58, Section XIV.24, pp. 169–172] or Sato [220,
Theorem 11.1, pp. 59–63] for details.

First, we need some notation. Let R be a subset of times in [0,∞) and ε > 0.
We say that a family X = {X(t) : t ≥ 0} of Rd-valued random variables (1)
has ε-oscillations n-times in R for a fixed ω if there exist t0 < t1 < · · · < tn in
R such that |X(ti)−X(ti−1)| > ε for any i = 1, . . . , n, or (2) has ε-oscillations
infinitely often in R for a fixed ω if for any n the family X has ε-oscillations
n-times in R. Denote by BX(n, ε,R) and BX(∞, ε, R) the set of ω where X has
ε-oscillations n-times and infinitely often in R, respectively.

Most of the arguments is to find a modification of the Markov process in
law constructed above. To that effect, denote by Ω2 the set of ω such that the
one-sided limits

lim
s→t, s<t s∈Q

X(s, ω) and lim
s→t, s>t s∈Q

X(s, ω)

exist in Rd for any t ≥ 0. Note that for any strictly decreasing sequence {tn} to
t, of rational numbers in [0, `], there exists N = N(ε, `) such that |X(tn, ω) −
X(tN , ω)| ≤ ε for any n ≥ N and ω in ΩrBX(∞, ε, [0, `]∩Q). This shows that
Ω2 contains the set

Ω∗2 := Ω r
∞⋃
`=1

∞⋃
k=1

BX(∞, 4/k, [0, `] ∩Q),

which is measurable since Q is countable.
The following modification, X∗(t, ω) := 0 for every ω ∈ Ω r Ω∗2, and

X∗(t, ω) := lim
s→t, s<t s∈Q

X(s, ω), ∀ω ∈ Ω∗2,
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has cad-lag paths and because the stochastically continuity we obtain

P{X(t, ω) = X∗(t, ω), ω ∈ Ω∗2} = 1.

To complete this cad-lag modification we need to show that P (Ω∗2) = 1.
The following estimate, proved by induction on the integer n, yields the

result as discussed below. If 0 ≤ s1 < · · · < sm ≤ r ≤ t1 < · · · < tk < r+ δ ≤ T
and R := {t1, . . . , tk} then we have

E{Z 1BX(n,4ε,R)} ≤ E{Z} [2α(ε, T, δ,Rd)]n, (3.84)

for every Z = f(X(s1), . . . , X(s`)) with a nonnegative measurable function f,
and where α(ε, T, δ,Rd) is defined by (3.80). A key point is the fact that the
right-hand side does not depend on k.

Thus, to show that P (Ω∗2) = 1 we will prove that P{BX(∞, 4/k, [0, `]∩Q)} =
0 for any integer k and `. Indeed, by making a subdivision of [0, `] into j equal
intervals, we obtain

P{BX(∞, 4/k, [0, `] ∩Q)} ≤

≤
j∑
i=1

lim
n→∞

P{BX(n, 4/k, [(i− 1)`/j, i`/j] ∩Q),

and from the above estimate (3.84) with {t1, t2, . . .} := [(i − 1)`/j, i`/j] ∩ Q
deduce

P{BX(n, 4/k, [(i− 1)`/j, i`/j] ∩Q)} ≤ [2α(1/k, `, `/j,Rd)]n,

for every n = geq1. In view of condition (3.81), for a given ` we can select the
integer j sufficiently large so that 2α(1/k, `, `/j,Rd) < 1. Hence, as n → ∞ we
get P{BX(n, 4/k, [(i− 1)`/j, i`/j] ∩Q)} = 0, which implies P (Ω∗2) = 1.

When condition (3.82) is satisfied, we have to find a measurable set Ω∗1 with
P (Ω∗1) = 1 and such that X∗(t, ω) = X∗(t−, ω) for any t > 0 and ω in Ω∗1.
Indeed, for a given ` > 0, consider the set R(n, ε, ω), with n = 1, 2, . . . and
ε > 0, defined as the number of i = 1, . . . , n such that |X∗(i`/n, ω) −X∗((i −
1)`/n, ω)| > ε. Then, ω 7→ R(n, ε, ω) is measurable and

E{R(n, ε, ·)} ≤ nα(ε, `, `/n).

Hence, condition (3.82) and Fatou’s lemma yield E{lim infn→∞R(n, ε, ·)} = 0
and therefore the set

Ω∗1(`) :=

∞⋂
k=1

{
ω : lim inf

n→∞
R(n, 1/k, ω) = 0

}
is measurable with full measure, i.e., P{Ω∗1(`)} = 1. Moreover, if ω is in Ω∗1(`)
then for any t in (0, `] we have |X∗(t, ω)−X∗(t−, ω)| ≤ ε, for every ε > 0. Thus
Ω∗1 :=

⋂
` Ω∗1(`) has the desired property.

It is clear that once a cad-lag version, namely X∗, has been found, we can
take the image probability measure in the canonical space to produce Psx as
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required. On the other hand, the stochastic continuity and the cad-lag regularity
of the paths imply that P{X∗(t) = X∗(t−)} = 1 for any t > s.

The right-continuity of paths ensures that the process X∗ is adapted to
F(t) := Fsx(t+) =

⋂
ε>0 Fsx(t), where Fsx(t) is the σ-algebra generated by

the canonical process and P -null sets. Thus (3.83) is satisfied after using the
continuity of the transition probability function and approximating any finite
stopping time.

Regarding the quasi-left continuity we proceed as follows. Let {τn : n ≥ 1}
be a sequence of stopping times convergence almost surely to τ, with P (τn <
τ <∞, τ > s) = 1. For any two functions f and g in C0(Rd) we have

lim
t→0

lim
n→∞

E{f(X∗(τn)) g(X∗(τn + t))} =

= lim
t→0

E{f(X∗(τ−)) g(X∗(τ + t−))} = E{f(X∗(τ−)) g(X∗(τ))},

because the right-continuity of the paths. On the other hand, the strong Markov
property (3.79) and the Feller property imply

lim
n→∞

E{f(X∗(τn)) g(X∗(τn + t))} = E{f(X∗(τ−))P (τ, τ + t,X∗(τ−), g)}

and

lim
t→0

E{f(X∗(τ−))P (τ, τ + t,X∗(τ−), g)} = E{f(X∗(τ−)) g(X∗(τ−))}.

Hence,

E{f(X∗(τ−)) g(X∗(τ))} = E{f(X∗(τ−)) g(X∗(τ−))},

i.e., P{X∗(τ) = X∗(τ−)} = 1 and X∗ is almost surely continuous at τ.

Usually, condition (3.81) is replaced by
(a) lim

|x|→∞
sup

0≤s<t≤T
P (s, x, t,K) = 0,

(b) lim
δ→0

α(ε, T, δ,K) = 0, ∀ε, T > 0,
(3.85)

for any compact subset K of Rd, and assumption (3.82) can be substituted by

lim
δ→0

α(ε, T, δ,K)

δ
= 0, ∀ε, T > 0, any compact K ⊂ Rd, (3.86)

and in general this construction ie valid for a transition function, without the
probability condition P (s, x, t,Rd) = 1, see Taira [243, Chapter 9 and 10, pp.
273–424].

To properly handle the strong Markov property, we need to use the univer-
sally complete σ-algebra, i.e., first we remark that the above construction can
be used with any initial law µ at any time 0 and the corresponding filtration is
{F0µ(t) : t ≥ 0}. Thus F0(t) :=

⋂
µ F0µ(t), which is not necessarily complete

with respect to P 0µ, but it satisfies F0(t+) = F0(t), i.e., it is right-continuous,
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and the so called Blumenthal’s zero-one law, i.e., P (A) = 0 or P (A) = 1 for any
A in

⋂
t>0 F0(t).

Let us look at the particular case of additive processes, see Definition 3.19,
which include the Lévy processes. The transition function of an additive process
is spatially homogeneous, i.e., if P (s, x, t, B) is the transition function of an
additive process X then P (s, x, t, B) = P (s, 0, t, B − x) and we only have to
consider transition functions of the form P (s, t, B). Thus, any additive processX
yields a transition function P (s, t, B) := P{X(t)−X(s) ∈ B}, for any t > s ≥ 0
and B in B(Rd) so that X is a (stochastically continuous) Markov process in
Rd stating at 0. Its associated semigroup is called a convolution semigroup, i.e.,

P (t, s)ϕ(x) :=

∫
Rd
ϕ(x+ y)P (s, t,dy)

and Chapman-Kolmogorov identity is re-written as

P (s, t, B) =

∫
Rd
P (s, r,dx)P (r, t, B − x),

for every t > r > s ≥ 0 and B in Rd. It is also clear that the previous Theo-
rem 3.25 applies to this case, to obtain a cad-lag of additive processes in law.
Because the transition function P (s, t, B) is spatially homogeneous, it satisfies
the Feller conditions and the process is quasi-left continuous, see Definition 3.15.

Lévy processes X are also time-homogeneous and its semigroup is a true
convolution and the infinitely divisible distribution µ := X(1) completely deter-
mines the process, see Section 3.10. Thus to each infinitely divisible distribution
µ there corresponds a Lévy process. For instance, Poisson and compound Pois-
son processes correspond to Poisson and compound Poisson distributions. The
Lévy process on Rd corresponding to a Cauchy distribution with parameters γ
in Rd and c > 0, namely, for any B in B(Rd), µ(B) := π−(d+1)/2Γ(d+1

2 ) c

∫
B

(
|x− γ|2 + c2

)−(d+1)/2
dx,

and µ̂(y) = e−c|y|+i γ·y, ∀y ∈ Rd,
(3.87)

is called a Cauchy process. However, the Lévy process on R corresponding to
an exponential distribution is called a Γ-process, since it has a Γ distribution at
any t > 0.

If X is an additive process on Rd with a Gaussian distribution at each t,
then X has continuous paths almost surely, see Sato [220, Theorem 11.7, pp.
63-64]. For instance, for dimension d = 1, the characteristic function is

E{ei y·X(t)} = e−t y
2/2, ∀t ≥ 0, y ∈ Rd,

and a simple calculation shows that condition (3.82) of Theorem 3.25 is satisfied.
Actually, the only additive process with continuous paths are Wiener processes.

For a given additive process X we consider the σ-algebra F(t) generated by
all null sets and the family of random variables X(s) with s ≤ t. Because of
the independence of increments, an application of Kolmogorov’s zero-one law
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to a tail σ-algebra shows that F(t) is already right-continuous, so that it is the
filtration associated with X.

The reader is referred to the books by Blumental and Getoor [28], Dellacherie
and Meyer [58, Chapters XI–XVI], Ethier and Kurtz [76], Sato [220, Chapter 1
and 2, pp. 1–68], among others.

3.12 Hunt and Standard Processes

In the modern theory of Markov processes, the emphasis is put on Markov tran-
sition functions p(t, x,A), where t ≥ 0, x ∈ E, a locally compact Hausdorff
space, and A is any element of the Borel σ-algebra in E, as described in the pre-
vious Section 3.11 for the case E = Rd. Thus, starting from a Markov transition
function (or its Laplace transform, the resolvent), the actual construction of a
Markov process having the prescribed transition functions is known a realization
of the Markov process. Certainly, Kolmogorov construction and path regular-
ity is the natural approach. Moreover, the strong Markov property is a highly
desired. Therefore, continuous time Markov processes are usually constructed
in the canonical cad-lag sample space Ω = D([0,∞), E), i.e., we construct a
probability measure P on Ω such that the canonical process Xt(ω) = ω(t) is the
desired Markov process. Furthermore, to simplify the notation, only the time-
homogenous Markov process is considered, since by adding one dimension to the
space (i.e., using E× [0,∞) instead of E) all assumptions can be transported to
the time-dependent case. Clearly, it is not necessary to have an explicit form for
the transition function (or resolvent). Only a number of properties are involved,
which can be obtained from a given semigroup. The semigroup is described in
term of its infinitesimal generator or its Dirichlet form.

Essentially based on super-median functions and super-martingales argu-
ments, the general theory of processes (e.g. Dellacherie and Meyer [58, Section
XIV.24, pp. 169–172]) shows that a cad-lag realization can be constructed for
any Markov transition function, i.e., satisfying (a), (b) and (d) of Definition 3.24,
see also Section 1.9 in Chapter 1 and Section 2.8 in Chapter 2, i.e.,

(a) for each t > 0 and x in E the function B 7→ P (t, x,B) is a probability
measure on (E,B(E)),

(b) for each B in B(E) the function (t, x) 7→ P (t, x,B) is a measurable,

(c) for any x in E and B in B(E) we have

lim
t→0

P (t, x,B) = δx(A),

i.e., the limit is equal to 1 if x belongs to A, and 0 otherwise,

(d) for each s, t > 0, x in E and B in B(E) we have

P (s+ t, x,B) =

∫
E

P (s, x,dy)P (t, y, B),

i.e., the Chapman-Kolmogorov identity holds.
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Condition (c) is not actually necessary, but certainly is a natural complement
to (d), which becomes necessary for the sub-Markov transitions, see below.
Note that the Chapman-Kolmogorov identity combined with the inequality 0 ≤
P (t, x,B) ≤ 1 show that the limit in (c) is monotone decreasing.

Besides the Feller property, there is another key property (necessary to build
a nice theory), the so called quasi-left continuity . Moreover, the one-point
compactification Ē = E ∪ {∞} (where the symbol ∞ does not belong to E)
of a locally compact Hausdorff space E (the state space) and the concept of a
coffin state and a lifetime are necessary (recall that for a locally compact space
E, a point ∞ is adjoined to E as the point at infinity if K is not compact, and
as an isolated point if K is compact). Typically, given a stopping time ς and
an adapted E-valued cad-lag process Y on a filtered probability space (Ω,F, P ),
F = (Ft : t ≥ 0), we define a new process X as follows

X(t) =

{
Y (t) if t < ς,

∞ if t ≥ ς,

which is Ē-valued with lifetime ς. Clearly, the process Y needs only to be defined
on the semi-open stochastic interval J0, ςJ. Now, a cad-lag (up to its lifetime)
process X with values in Ē has the lifetime ς := inf{t ≥ 0 : X(t) = ∞} if
X(t) = ∞ for every t ≥ ς. It is important to observe that X with values in Ē
may not be “fully” cad-lag, the limit as t→ ς does not necessarily exist. Thus,
the canonical cad-lag space D([0,∞), E) cannot be used with Ē instead of E,
this requires some adjustment, via the so-called Ray resolvent. This means that
the coffin state and one-point compactification state space are just convenient
notations, the key elements are the lifetime ς and the E-valued process X, which
is cad-lag only up to ς, i.e., the pathwise left-hand limit X(ς−) may not exist,
even on ς <∞.

Definition 3.26 (quasi-left continuity). Let ς be a stopping time on a filtered
probability space (Ω,F, P ), F = (Ft : t ≥ 0). A cad-lag adapted process X
with valued in E is called quasi-left continuous on J0, ςJ if X(τn) → X(τ)
almost surely on {τ < ς}, for any increasing sequence {τn} of stopping times
converging to τ, with τn < τ almost surely.

Note that for a (cad-lag) quasi left-continuous we have P{X(t) = X(t−)} =
0 for every t in J0, ςJ and the set of probability zero, where Xτn fails to converge,
depends on the stopping time τ and the sequence {τn}. Hence, in general the
process is not continuous on the left, because it may not be possible to find a
common set of probability zero for all times, i.e., a continuous modification of
X does not necessarily exist.

Recall also that a stopping time τ is predictable if and only if that there
exists an increasing sequence of stopping times τn with τn < τ almost surely
and converging to τ . Also, a stopping time τ is called totally inaccessible if for
any predictable stopping time θ we have that P (τ = θ <∞) = 0.

It is proved in Jacod and Shiryaev [117, Propositions 1.32, 2.26], that the
random set of discontinuities of any cad-lag process X, i.e., the set of random
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jumps JX = {(t, ω), X(t−, ω) 6= X(t, ω)} has the form JX =
⋃
nJτnK where τn

is a sequence of stopping times, which is called a sequence that exhausts the
jumps of X. Moreover, the following statements are equivalent:

(1) the process X is quasi left-continuous on J0,∞J,
(2) we have X(τ−) = X(τ) almost surely on {τ < ∞} for every predictable
time τ,

(3) there exists a sequence of totally inaccessible stopping times that exhausts
the jumps of X.

3.12.1 Digression on Markov processes

As mentioned early and mainly for the notation simplicity, details are given only
for time-homogeneous Markov processes.

Definition 3.27 (Markov processes). A cad-lag Markov process with values in
a Hausdorff space E is composed by the following elements:

(1) the canonical cad-lag space D = D([0,∞), E) endowed with σ-algebra F ,
the σ-algebra generated by the canonical process Xt(ω) = ω(t),

(2) a right-continuous increasing family of σ-algebras F = (Ft : t ≥ 0) on (D,F),
i.e., a not necessarily completed filtration,

(3) a family of cad-lag processes (Pµ, X) or (P,Xµ) (depending on what is to
be emphasized) indexed by µ, i.e., Pµ is a probability measure on (D,F) and
Xµ a measurable function from D into itself, such that the E-valued random
variable X(t) is Ft-measurable, for every t ≥ 0, and µ is the initial distribution
on the state space E, i.e., P{X(0) ∈ B} = µ(B), for every B in B(E),

(4) a transition function p on E, i.e., (a),. . . , (d) above are satisfied,

All these elements come together in the Markov property

P (X(t) ∈ B | Fs) = p(t− s,X(s), B), ∀t ≥ s ≥ 0, ∀B ∈ B(E), (3.88)

which is an almost surely equality.

Observe that the left hand side in the Markov property is only defined almost
surely, while the right hand side is well defined everywhere. This means that for
every µ there exists a subset N = Nµ of the canonical space D with Pµ(N) = 0
such that equality (3.88) holds outside of N.

The above definition may take place in an arbitrary probability space (Ω,F),
but since the processes are cad-lag, the canonical sample can be used to con-
cretize arguments. Moreover, with the notation (Pµ, X) the probability measure
is emphasized with X(t, ω) = ω(t) the canonical process, while (P,Xµ) suggests
a fixed probability with a selectable process Xµ.

The indexation in term of distributions µ on the state space is not actually
necessary, a smaller class suffices. Indeed, if the Markov process can be con-
structed for any µ = δx with x in E and some measurability conditions are im-
posed on the mapping x 7→ (Px, X) or x 7→ (P,Xx), where Px andXx correspond
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to the initial distribution δx, e.g., Px{X(0) = x} = 1 or P{Xx(0) = x} = 1.
Clearly, we have Pµ = Px µ(dx).

The filtration F needs to be universally completed with respect to the prob-
ability measures Pµ or Px. This is to enlarge each F0 (and consequently Ft
for every t > 0) with sets which have measure zero relative to each Pµ, i.e.,
first define Fµt by completing Ft with respect to Pµ, next set F0

t = ∩µFµt
and finally, take F̄t = ∩ε>0F0

t+ε to make it right-continuous if necessary, i.e.,
F̄ := (F̄t : t ≥ 0). In most of the cases, the initial filtration F is just the history
of the process X, which may depends on µ if we insist in the (P,Xµ) setting.
So, by using the embedding in the canonical space (Pµ, X) with X(t, ω) = ω(t)
the canonical processes, the initial filtration is fixed and F̄ is usefully.

For this universally completed filtration F̄, we consider an equality similar
to (3.88), namely, for every almost surely finite stopping time τ relative to F̄
assume

P (X(τ + t) ∈ B | F̄τ ) = p(t,X(τ), B), ∀t ≥ 0, ∀B ∈ B(E), (3.89)

which is again an almost surely equality, and where F̄τ is the σ-algebra generated
by the stopping time τ. This is referred as the strong Markov property and
a Markov process satisfying this condition is called a strong Markov process.
Certainly, condition (3.89) can be relative to the initial filtration F, but some
technical reasons lead to the universally completed filtration F̄.

For the canonical cad-lag space, the so-called shift operator ϑt(ω) := ω(·+ t)
is viewed as mapping D into itself, and satisfying

Xs ◦ ϑt = Xt ◦ ϑs = Xs+t, ∀t, s ≥ 0,

where the composition Xs ◦ ϑt(ω) = Xs(ϑt(ω)) is used. In the abstract setting
the shift map ϑ is postulate with the above properties. The strong Markov
property takes the form

P (Xt ◦ ϑτ ∈ B | F̄τ ) = p(t,Xτ , B), ∀t ≥ 0, ∀B ∈ B(E),

for every almost surely finite stopping time τ relative to F̄.
In all the above, it is clear that the transition function is the main element

in the definition of Markov processes. The construction of a Markov transi-
tion function is quite delicate and several ways are known. Starting from a
infinitesimal generator or a Dirichlet form, functional analysis and in particu-
lar the semigroup theory are used to obtain suitable transition functions. Its
probabilistic counterpart starts with simple (or known) Markov processes and
via some transformations a transition function is obtain, the key arguments are
stochastic differential equations and its generalizations. In some cases, the tran-
sition function obtained is not quite a Markov transition function, it is what is
called a sub-Markov transition function, i.e., all conditions are satisfied, except
for (a) where p(t, x, ·) is only a sub-probability, i.e., B 7→ p(t, x,B) is a measure
with p(t, x, E) ≤ 1. In this case, the condition (c) is more important.

Some restrictions on the state space E are necessary to deal with sub-Markov
transition function, namely, E is now a locally compact Hausdorff. This is
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necessary to consider its one-point compactification Ē = E ∪ {∞} and the
companion argument about coffin state and lifetime of a process. This sub-
Markov case is reduced to the preceding Markov theory by extending the given
sub-Markov transition function in E to a Markov transition function on Ē.
Indeed, set p̄(t, x,B) = p(t, x,B) for any Borel set B in E, p̄(t, x, {∞}) =
1 − p(t, x, E), p̄(t,∞, {∞}) = 1 and p̄(t,∞, E) = 0. As mentioned early, this
extra point is often called the coffin state. The extra coffin state ∞ does not
belong to E, it is the point at “infinity” when E is non compact and it is an
isolated point when E is compact.

Hence, the sub-Markov case is reduced to a Markov case on a compact space
Ē, which has a particular isolated point. For the Markov process X correspond-
ing to the Markov transition function p̄ on the one-point compactification Ē,
the lifetime functional

ς = inf
{
t ≥ 0 : X(t) =∞

}
(3.90)

acting on the canonical space plays a fundamental role. Again, observe that the
canonical cad-lag space still being D([0,∞), E) and not D([0,∞), Ē), because
X̄ with values in Ē is not “fully” cad-lag, the limit as t→ ς does not necessarily
exist. Hence, a Markov process with values in the compact space Ē with lifetime
ς = ∞ (almost surely for every Pµ) is actually a realization of a Markov tran-
sition on the initial locally compact space E. A sub-Markov transition function
produces either a E-valued cad-lag sub-Markov process with a lifetime ς < ∞
with positive probability or equivalently a Ē-valued cad-lag (up to its lifetime)
Markov process.

Most of the interest is on state spaces E, which are actually Polish spaces
(complete separable metric spaces) so that the canonical cad-lag sample space
D([0,∞), E) is also a Polish space. The locally compact character is used when
dealing with sub-Markov transition functions.

The canonical process Xt(ω) = X(t, ω) := ω(t) and the shift map ϑt(ω) =
ϑ(t, ω) := ω(·+ t), which are defined on the canonical space D([0,∞), E), may
be considered as E-valued and D-valued cad-lag processes, respectively (note
that X = {X(t) : t ≥ 0} can be regarded as a D-valued random variable).
If we work on the one-point compactification state space Ē and the canonical
filtration F is used (i.e., generated by the canonical process) then the lifetime
functional (3.90) can be interpreted as a stopping time. There are other type of
functionals or processes that we may consider

Definition 3.28 (functional). Let A and L be measurable functions from the
canonical cad-lag space D([0,∞), E) into D([0,∞),R). Then A is called an
additive functional if A0(ω) = 0 and At(ω)−As(ω) = At−s(ω(·+ s)), for every
t ≥ s ≥ 0 and ω in D([0,∞), E). Also L is called a multiplicative functional
if L0(ω) = 1 and Lt(ω)Ls(ω) = Lt−s(ω(· + s)), for every t ≥ s ≥ 0 and
ω in D([0,∞), E). Similarly, an additive functional A is called increasing (or
nondecreasing) ifAt−As ≥ 0, for every t > s ≥ 0, and a multiplicative functional
L is called positive (or nonnegative) if Lt ≥ 0, for every t > 0. If A or L is
considered on the one-point compactification state space Ē then we also require
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A or L to be constant on the stochastic interval Jς,∞J, i.e., it has been extended
to [0,∞) with values in Ē.

It is possible to generalize and suppose that At has bounded variation trajec-
tories, still having the possibility to integrate with respect to At in the Stieltjes
sense. Typical examples are

At =

∫ t

0

c(Xs)ds and Lt = exp
{∫ t

0

c(Xs)ds
}
,

where c is a positive (measurable) function defined on E, and in the case of Ē
we suppose c(∞) = 0.

If one is working on an abstract measurable space (Ω,F) then the shift
operator ϑ is used to re-write the conditions as At−As = At−s ◦ϑs and LtLs =
Lt−s ◦ ϑs, for every t > s ≥ 0. In this case, functionals are regarded as either
R-valued cad-lag processes or D([0,∞),R)-valued random variables.

As usually, the difficulty appears as soon as a probability (or a family of
probabilities, as in the case of Markov processes) is assigned on the canoni-
cal space D([0,∞), E). The functionals are almost surely defined and we are
interested in having “good” versions (or modifications) of them.

3.12.2 Classification of Markov processes

Concrete examples of Markov processes like diffusion processes, jump processes
and Lévy processes have many properties in common besides the Markov prop-
erty. They have all the Feller property, i.e., the semigroup associated to the
transition functions is a (strongly) continuous on C0(E), in particular, it maps
the function space C0(E) in itself or equivalent the Feller property is satisfied.
Here the state space E is a locally compact Hausdorff space (usually a Polish
space), and C0(E) is the space of continuous functions null at infinity. Note
that the Feller processes are defined just starting from the transition functions,
see Section 2.8 in Chapter 2.

It can be proved that given a Feller transition function p(t, x,A) in E, there
exist strong Markov processes (with cad-lag quasi left-continuous trajectories)
having p as its transition function, e.g. see Rogers and Williams [214, Chap-
ters III and VI]. The class of processes defined by these properties is the class of
Hunt processes, which contains the Feller processes. A Hunt process can be con-
structed from any regular symmetric Dirichlet form (see Fukushima et al. [92]).
However, to extend this result to regular non-symmetric Dirichlet forms (see
Ma and Röckner [161]), it is necessary to consider a light generalization of Hunt
process, that of standard process, introduced by Blumenthal and Getoor [28].

Roughly speaking, we can schematize

Feller processes ⊂ Hunt processes ⊂ standard processes ⊂ right processes
Ray processes

where formal definitions are given below.
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Definition 3.29 (Hunt and standard). Let us be a time-homogeneous cad-lag
Markov process (as in Definition 3.27) with values in a Hausdorff space E (i.e.,
obtained form a Markov transition function on E where its lifetime functional
ς = ∞ by definition) or with values in the one-point compactification Ē of a
locally compact Hausdorff space E (i.e., obtained form a sub-Markov transition
function on E where ς denotes its lifetime functional).

(a) It is called a Hunt process if the strong Markov property (3.89) is satisfied
and the paths are quasi left-continuous on [0,∞), with respect to any probability
Pµ.

(b) It is called a standard process if the strong Markov property (3.89) is satisfied
and the paths are quasi left-continuous on [0, ς), with respect to any probability
Pµ.

(c) Finally, it is special standard if also the random variable Xτ is
∨
n Fτn-

measurable, for any increasing sequence {τn} of stopping times converging to τ,
with τn < τ almost surely.

Here
∨
n Fτn is the smaller σ-algebra which contains Fτn , for every n ≥ 1.

Note the small difference with Hunt and Standard processes on the quasi left-
continuous property that is valid almost surely on {τ < ζ}, instead of {τ <∞}.
Thus a standard process is a Hunt process if its lifetime is infinite or is it is
quasi left-continuous at ς, i.e., a Hunt process is realized in the canonical space
D([0,∞), E) or D([0,∞], Ē). Clearly, it can be proved that any Hunt process is
a special standard process.

The following result holds:

Theorem 3.30. A Hunt process admits a Lévy system, i.e., there exists a
continuous additive functional H and a family of kernel N(x, dy) on E, such
that t 7→ Ht is a continuous, N(x, {x}) = 0 for any x ∈ E, and

Eµ
( ∑

0<s≤t

f(Xs−, Xs)1JX (s, ω)
)

=

= Eµ
(∫ t

0

dHs

∫
E

f(Xs, y)N(Xs,dy)
) (3.91)

for any Borel positive f , defined on E×E, and any initial distribution µ on E,
where JX = {(t, ω), X(t−, ω) 6= X(t, ω)}.

Recall that a kernel N(x, dy) on E means (a) for each x in E the map
B 7→ N(x,B) is a (σ-finite) measure on B(E) and (b) for each B in B(E)
the map x 7→ N(x,B) is measurable. For instance, a proof can be found in
Benveniste and Jacod [20] or Sharpe [225, Section 73, pp. 342–350].

Note that if we consider any Borel positive f , defined on E×E with f(x, x) =
0 then (3.91) reads

Eµ
( ∑

0<s≤t

f(Xs−, Xs)
)

= Eµ
(∫ t

0

dHs

∫
E

f(Xs, y)N(Xs,dy)
)
,
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and for f = 1 out of diagonal we get that Eµ{number of jumps in (0, t]} =
Eµ{Ht}.

Following the discussion in Rogers and Williams [214, Chapter III], the class
of Ray processes (defined in a axiomatic way) is the most convenient, among the
various classes of Markov processes, to cope all the (time-continuous) Markov
chains. They are in a sense “equivalent” to the class of right processes, intro-
duced by Meyer (la classe droite), see also Dellacherie and Meyer [58, Chapters
XI–XVI] or Sharpe [225, Chapter I].

As already pointed out, to give a Markov transition function p(t, x,A) on
E (which is jointly measurable in t and x) is equivalent to give the Laplace
transform, called in this context a resolvent kernel

Rλ(x,A) =

∫ ∞
0

e−λt p(t, x,A) dt

For any bounded Borel function f on E we consider also the resolvent operator

Rλf(x) =

∫
E

f(y) Rλ(x, dy)

that verifies the resolvent identity Rλ −Rµ + (λ− µ)RλRµ = 0 and λRλ1 = 1.
If it happens that the resolvent operator maps C0(E) into itself and λRλ → I in
the uniform convergence of C0(E), then the Markov process associated is Feller
process.

Ray weakened the condition of strong continuity in zero, introducing the
so called Ray resolvent. To this end, let us introduce the concept of α-super-
median function, i.e. a positive, continuous and bounded function on E such
that

λRλ+αf ≤ f, ∀λ > 0,

and let us denote the cone of α-super-median functions by CSMα.
Now, {Rλ} is called a Ray resolvent on E if each Rλ maps Cb(E)→ Cb(E)

and ⋃
α≥0

CSMα separates points of E.

In other words, given two points x, x′ in E, there exist a α and a α-super-median
function f such that f(x) 6= f(x′). The canonical Markov process associated
to a Ray resolvent admits a cad-lag modification that has the strong Markov
property.

• Remark 3.31. In potential theory the resolvent operator Rλ is called the λ-
potential operator. There is a concept similar to α-super-median functions in
term of the semigroup Pt associated to the Markov transition function p(t, x,A),
namely, a positive Borel function f is called α-super-mean-valued (also called α-
super-averaging, see Chung [44, p. 45]) if e−αtPtf ≤ f for all t ≥ 0. A α-super-
mean-valued function is also a α-super-median function, but, in general, the
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converse is not true, i.e., a α-super-median function is not necessarily a α-super-
mean-valued function. In potential theory it is important also the concept of α-
excessive function f , i.e., a α-super-mean-valued function f such that e−αtPtf ↑
f as t ↓ 0. This class of functions are useful generalization of super-harmonic
functions in classical potential theory.

Definition 3.32 (right and Ray processes). The class of right processes with
state space E is the class of time-homogeneous cad-lag strong Markov processes,
such that the process f(Xt) is almost surely right continuous for any α > 0 and
any α-super-mean-valued function f . On the other hand, a Ray process is one
with Ray resolvent, i.e., the super-median functions ∪α≥0CSM

α separates points
of E.

A useful result is the fact that any standard process is a right process,
which is not so simple to prove. As mentioned early, Ray processes are (time-
homogeneous) cad-lag strong Markov processes.

3.12.3 Some Examples and Remarks

First we give a couple of examples.

Example 3.1. Consider jump Markov processes, for instance, see the books
Bremaud [32], Feller [81, II, Section X.3, pp. 316–320], Ethier-Kurtz [76, Section
8.1, pp. 376–382], Sharpe [225, Section 72, pp. 339–342]. Let {Xt} be a cad-
lag piecewise constant process. In order that {Xt} be a Markov process, we
introduce a kernel Q(x,B) on E, which describes the probability distribution of
the points where the process jumps away from x, and a function λ(x) ≥ 0, that
describes the rate of jumps, i.e. P x(τ > t) = e−λ(x)t, where τ = inf{t : Xt 6=
X0}. We set τ0 = 0 and define recursively τn = τn−1 + τ(ϑτn−1

) the subsequent
jump times. Alternatively we describe the process by means of infinitesimal
generator

Af(x) = λ(x)

∫
E

[
f(y)− f(x)

]
Q(x, dy).

In this case, if λ is bounded then then Lévy system can be taken as

Ht =

∫ t

0

λ(Xs)ds, N(x,B) = Q(x,B).

If λ is not bounded we can take

Ht = t, N(x,B) = λ(x)1λ(x)<∞Q(x,B).

In general the Lévy system for a Markov process is not uniquely determined.

Example 3.2. In the case of a Lévy process in Rn, with Lévy measure ν, then
we choice for a Lévy system can be

Ht = t, N(x,B) = ν(B − x).
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For example, consider the symmetric Cauchy process, i.e. a purely jump Lévy
process with Lévy measure

ν(dy) =
1

π

1

y2
dy

on Rr {0}.

Now, let us show some application of additive functionals. Given a Hunt
process {Xt} with Markov transition function p(t, x,A), consider a continuous
positive additive functional At and the multiplicative functional

Lt = e−At

as in Definition 3.28. We will consider two other Hunt processes, starting from
Xt.

The first is XA
t , the canonical subprocess of Xt with respect to the multi-

plicative functional Lt. It is constructed starting from the Markov transition
function pA(t, x,B), given by the semigroup

PAt f(x) = Ex{Ltf(Xt))}, x ∈ E, f Borel and positive.

It is possible also to construct XA
t by introducing a new “lifetime”

ςA = inf{t < ζ : At ≥ ζ},

where ζ is a random variable exponentially distributed with mean value 1 and
independent of the Hunt process Xt with respect to P x, for every x ∈ E. Then
define

XA
t = Xt, for t < ςA

and XA
t =∞ otherwise. For details see Fukushima et al. [92, pag. 326].

The second process is given by

X̌t = Xτt , τt(ω) = inf{s > 0 : As(ω) > t}.

with its natural filtration F̌t = Fτt , for t ≥ 0. It can proved that the process
{X̌t} is a strong Markov process, with respect to the filtration {F̌t : t ≥ 0}.
Moreover, if At is a strictly positive continuous additive functional, then {X̌t}
is a Hunt process.

There are other functionals (besides additive or multiplicative) that can
be used to transform Markov processes, e.g., the first exit time from a region
(usually a smooth open or closed subset of Rd). For instance, if O is an open
connected subset of Rd (which is the interior of its closure) then the procedure
of stopping the process at the first exit time from the closure of O, namely,

XOt = Xt∧τ , τ(ω) = inf{s ≥ 0 : Xs(ω) ∈ Rd rO},

produces a Hunt Markov process if the initial we were so. However, XO may not
be a Feller process when X is Feller. Note that the Hunt character of the process
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has to do mainly with time-regularity of the paths, which is clearly preserved by
the above functional (even if O is only a Borel set), while the Feller character
involves the study of τ = τx as a functional depending on the initial condition
X0 = x. The reader may consult, among other sources, the papers Stroock and
Varadhan [239, 240] for a complete study on the (degenerate) diffusion processes
with boundary conditions.

Perhaps, the prototype of Hunt processes are the diffusions process (with
jumps) in infinite dimension or with boundary conditions. For instance, a Levy
or Wiener process in infinite dimension does not produce a strongly continuous
semigroup in C0, even if the Feller property (i.e., mapping C0 into itself) is
satisfied. If we stop a degenerate diffusion in Rd at the first exit time from a
smooth domain then we produce a simple example of a Markov process without
the Feller property, which is stochastically continuous and produces a Hunt pro-
cess. Moreover, piecewise deterministic processes (see Davis [56] and references
therein) may not be Feller processes (this is mainly due to the nature of the
boundary conditions or jump-mechanism, they may have predictable jumps, so
they are not necessarily quasi left-continuous, see Section 3.9), but they are
cad-lag strong Markov processes, actually, Ray and right processes. If a Markov
transition function yields a Hunt process then we may expect that a sub-Markov
transition functions (with the same degree of regularities) should yield a special
standard process. On the other hand, most examples of sub-Markov transition
functions are obtained form Markov processes and multiplicative functional, so
that really they produce Hunt processes. More representative are stochastic
differential equations with unbounded coefficients (e.g., see Stroock and Varad-
han [241, Chapter 10, pp. 248–260], which may yield explosions or solutions with
a finite lifetime, i.e., special standard processes which are not Hunt processes.

3.13 Random Orthogonal Measures

Before going further, we take a look at the Lp and Lp spaces, for 1 ≤ p < ∞.
Let µ be a complete σ-finite measure on the measurable space (S,B) and Π be
a total π-system of finite measure sets, i.e., (a) if F and G belong to Π then
F ∩G also belongs to Π, (b) if F is in Π then m(F ) <∞, and (c) there exists
a sequence {Sk : k ≥ 1} ⊂ Π such that Sk ⊂ Sk+1 and S =

⋃
k Sk. For any

measurable function f with values in the extended real line [−∞,+∞] we may
define the quantity

‖f‖p :=
(∫
|f |p dµ

)1/p

,

which may be infinite. The set of step or elementary functions E(Π, µ) is defined
as all functions of the form

e :=

n∑
i=1

ci1Ai ,

where ci are real numbers and Ai belongs to Π for every i = 1, . . . , n, i.e., the
function e assumes a finite number of non-zero real values on sets in Π. Denote
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by Lp(Π, µ) the sets of B-measurable functions f with values in [−∞,+∞] for
which there exists a sequence (e1, e2, . . .) of step functions E(Π, µ) such that
‖f − en‖p → 0 as n→∞. Since

|f |p ≤ 2p−1|en|p + 2p−1|f − en|p,

all functions in Lp(Π, µ) satisfies ‖f‖p <∞, and in view of the triangle inequal-
ity

‖f + g‖p ≤ ‖f‖p + ‖g‖p, ∀f, g ∈ Lp(Π, µ),

the map f 7→ ‖ · ‖p is a semi-norm. For p = 2, we may use the bilinear form

(f, g) :=

∫
f g dµ, ∀f, g ∈ L2(Π, µ)

as a semi-inner product, which yields the semi-norm ‖ · ‖2.
If f, fn belong to Lp(Π, µ) and ‖f − fn‖p → 0 as n → ∞ we say that

fn converges to f in Lp(Π, µ). Also if fm, fn belong to Lp(Π, µ) and ‖fm −
fn‖p → 0 as m,n→∞ we say that {fn} is a Cauchy sequence in Lp(Π, µ). It is
clear that any Cauchy sequence in Lp(Π, µ) has a almost everywhere convergent
sub-sequence. Next, essentially based on the triangular inequality and Fatou’s
Lemma, we deduce that Lp(Π, µ) is a complete vector space, i.e., (1) for any
f, g in Lp(Π, µ) and any a, b in R the function af + bg is in Lp(Π, µ) and (2)
any Cauchy sequence in Lp(Π, µ) converges to a function in Lp(Π, µ). Thus, if
σµ(Π) is the smaller sub-σ-algebra of B containing Π and all µ-null sets then
Lp(Π, µ) = Lp(σµ(Π), µ), after using a monotone class argument.

If we should identify functions which are equals almost everywhere, i.e., use
classes of equivalence f ∼ g if and only if f = g almost everywhere, then the
quotient space Lp(Π, µ) := Lp(Π, µ)/∼ is a Banach (Hilbert for p = 2) space.

Definition 3.33 (random orthogonal measure). A family of real-valued random
variables {ζ(A) : A ∈ Π} on a complete probability space (Ω,F , P ) is called a
random orthogonal measure with structural measure µ if

(a) E{|ζ(A)|2} <∞ for any A in Π,

(b) E{ζ(A) ζ(B)} = µ(A ∩B) for any A,B in Π.

Note that the random variables ζ(A) are almost surely defined, i.e., they are
elements in L2(Ω,F , P ), and the measure µ and the π-system Π are as above.

Clearly, the above condition (b) translates the orthogonal condition, whist
the word measure can be justified as follows: if A is a disjoint union of sets in
Π, i.e., A = ∪iAi, Ai ∩Aj = ∅ if i 6= j, then(

1A −
∑
i

1Ai

)2

= 1Ar∪iAi = 1A −
∑
i

1Ai ,

which yields

E
{(

1A −
∑
i

1Ai

)2}
= µ

(
1Ar∪iAi

)
,
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i.e., for each sequence {Ai} as above, there exists a set Ω0 in F with P (Ω0) = 1
such that ζ(A,ω) =

∑
i ζ(Ai, ω) for every ω in Ω0. This is not to say that a

regular selection exists, i.e., to show that (except for set of probability zero)
the mapping A 7→ ζ(A) can be extended to a measure in σ(Π), which involves
a countable generated π-system Π and some topology on ω, as in the case of
regular conditional probability measures.

Let as define the operator e 7→ I(e) from the set of elementary (or step)
functions E(Π, µ) into the Hilbert space L2(Ω,F , P ) = L2(F , P ) by the formula

if e =

n∑
i=1

ci1Ai then I(e) =

∫
edζ :=

n∑
i=1

ci ζ(Ai), (3.92)

which is clearly independent of the particular representation of the given ele-
mentary function. Thus, we have

(I(e), ζ(A))F = (e,1A)Π, ∀A ∈ Π,

‖I(e)‖2,F = ‖e‖2,Π,

where (·, ·)F and (·, ·)Π denote the inner or scalar products in the Hilbert spaces
L2(Ω,F , P ) and L2(Π, µ) = L2(σµ(Π), µ), respectively. Next, by linearity the
above definition is extended to the vector space generated by E(Π, µ), and by
continuity to the whole Hilbert space L2(Π, µ). Hence, this procedure constructs
a linear isometry map between the Hilbert spaces L2(Π, µ) and L2(F , P ) satis-
fying  I : f 7→

∫
fdζ, ∀f ∈ L2(Π, µ),

(I(f), I(g))F = (f, g)Π, ∀f, g ∈ L2(Π, µ).
(3.93)

Certainly, there is only some obvious changes if we allow integrand functions
with complex values, and if the spaces Lp(Π, µ) are defined with complex valued
functions, and so, the inner product in L2 need to use the complex-conjugation
operation.

The above construction does not give a preferential role to the time vari-
able as in the case of stochastic processes, and as mentioned in the book by
Krylov [141, Section III.1, pp. 77-84], this procedure is used in several oppor-
tunities, not only for the stochastic integral. The interested reader may consult
Gikhman and Skorokhod [98, Section V.2] for a detailed analysis on (vector
valued) orthogonal measures.

3.13.1 Orthogonal or Uncorrelated Increments

Random orthogonal measures is a generalization of stochastic processes with
orthogonal (or uncorrelated) increments, the reader is referred to the classic
book Doob [59, Chapter IX, pp. 425–451] for more details. A Rd-valued (for
complex valued use conjugate) x is said to have uncorrelated increments if the
increments are square-integrable and uncorrelated, i.e., if (a) E{|x(t)−x(s)|2} <
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∞, for every t > s ≥ 0 and (b) E{(x(t1) − x(s1)) (x(t2) − x(s2))} = E{x(t1) −
x(s1)}E{x(t2)−x(s2)} for any 0 ≤ s1 < t1 ≤ s2 < t2. Similarly, x has orthogonal
increments if E{(x(t1) − x(s1)) (x(t2) − x(s2))} = 0. It is clear that a process
with independent increments is also a process with uncorrelated increments and
that we may convert a process x with uncorrelated increments into a process
with orthogonal (and uncorrelated) increments y by subtraction its means, i.e.,
y(t) = x(t)− E{x(t)}. Thus, we will discuss only orthogonal increments.

If y is a process with orthogonal increments then we can define the (deter-
ministic) monotone increasing function Fy(t) = E{|y(t)− y(0)|2}, for any t ≥ 0,
with the property that E{|y(t) − y(s)|2} = Fy(t) − Fy(s), for every t ≥ s ≥ 0.
Because the function Fy has a countable number of discontinuities, the mean-
square left y(t−) and right y(t+) limit of y(t) exist at any t ≥ 0 and, except
for a countable number of times y(t−) = y(t) = y(t+). Therefore, we can define
real-valued random variables {ζ(A) : A ∈ Π+}, where Π+ is the π-system of
semi-open intervals (a, b], b ≥ a ≥ 0 and

ζ(A) = y(b+)− y(a+), A = (a, b],

which is a random orthogonal measure with structural measure µ, the Lebesgue-
Stieltjes measure generated by Fy, i.e., µ(A) = Fy(b+) − Fy(a+), for any A =
(a, b]. Certainly, we may use the π-system Π− of semi-open intervals [a, b), b ≥
a ≥ 0 and ζ(A) = y(b−) − y(a−), with A = [a, b), or the combination of the
above π-system, and we get the same structural measure (and same extension
of the orthogonal measure ζ). Moreover, we may even use only the π-system
of interval of the form [0, b) (or (0, b]) to initially define the random orthogonal
measure.

Now, applying the previous we can define the stochastic integral for any
(deterministic) function in L2(σµ(Π), µ)∫

R
f(t)dy(t) =

∫
fdζ

as an equivalence class of square-integrable random variables, even if we actually
think of a particular member. Moreover, the way how this is defined (via limit
of elementary or step functions) allows us to that the stochastic integral process

Φ(s) =

∫
R
ϕ(s, t)dy(t)

can be chosen measurable if ϕ is a measurable function with respect to the
Lebesgue-Stieltjes measure dsdF (t) satisfying∫

R
ϕ(s, t)dF (t),

all s except in a set of zero Lebesgue measure. Clearly, the stochastic integral
over a Borel (even µ-measurable) set of time A can be define as∫

A

f(t)dy(t) =

∫
f1Adζ.
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A Fubini type theorem holds, for the double integral, and in particular, if h is
an absolutely continuous function and 1{s≤t} denotes the function equal to 1
when s ≤ t and equal to 0 otherwise, then exchanging the order of integration
we deduce∫ b

a

ds

∫
(a,b]

h′(s)1{s≤t}dy(s) =

∫
(a,b]

[h(t)− h(a)]dy(t) =

= [h(b)− h(a)][y(b+)− y(a+)]−
∫ b

a

[y(t)− y(a+)]dt,

for any b > a ≥ 0.

3.13.2 Typical Examples

There two typical constructions of random orthogonal measures, based on the
Poisson and the Gaussian distributions, or equivalent on the Poisson process
and the Wiener process, both are processes with independent increments.

Perhaps a simple (constructed) example of a random orthogonal measure
begins with a given (structural) finite measure m on S = Rd∗ = Rd r {0},
where the π-system Π plays almost not role. Let {τn, zn : n ≥ 1} be a se-
quence of independent random variables in a probability space (Ω,F , P ), such
that each τn is exponentially distributed with parameter m(Rd∗) and zn has
the distribution law A 7→ m(A)/m(Rd∗). Define the compound Poisson process

pt =
∑
n zn 1t≥θn , with θn = τ1 + · · ·+τn. This can be written as pt =

∑Nt
n=1 zn,

where Nt =
∑
n 1t≥θn is the Poisson process counting the jumps, which has a

Poisson distribution with intensity λ = m(Rd∗), i.e., P{Nt = n} = e−λt(λt)n/n!,
n = 0, 1, 2, . . . , and thus E{Nt} = λt and E{(Nt − λt)2} = λt.

If the emphasis is only on the jumps then the series defining the Poisson
process pt is regarded as the sum-of-jumps of the sequence of jumps {zn, θn :
n ≥ 1}, which is referred to as a Poisson point process, where zn is the size of
the jump at the time θn. Note that if initially the measure m is given on Rd and
m({0}) 6= 0 then the above expression of Nt does not count the actual jumps of
the compound Poisson process pt, i.e., the random process qt =

∑
n 1zn=01t≥θn

intervenes.
The independence of the random variables {zn} and {θn} and the fact all

random variables zn have the same distribution, imply that

E{pt} = E{z}
∑
n

E{1t≥θn} = m(z)t,

where m(z) means the integral of the function z 7→ z with respect to the measure
m, i.e., m(z) = E{z1}m(Rd∗). Similarly, if m(|z|2) = E{|z1|2}m(Rd∗) then more
calculations show that the variance E{|pt −m(z)t|2} = m(|z|2)t, and also

E{eirpt} = exp
[
m(Rd∗)t

(
E{eirz1} − 1

)]
= exp

[
tm(eirz − 1)

]
is its characteristic function. Moreover, these distributions also imply that

E{1zn∈A} =
m(A)

m(Rd∗)
and

∑
k

E{1θn+k≤t} = m(Rd∗)t,
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for every t ≥ 0 and A in Π. Therefore, this yields the Poisson orthogonal
measure

ζt(A) =
∑
n

[
1zn∈A 1t≥θn − E{1zn∈A 1t≥θn}

]
, ∀A ∈ Π.

Indeed, by construction E{ζt(A)} = 0,
∑
n E{1zn∈A 1t≥θn} = m(A)t, and

E{1zn∈A 1t≥θn 1zk∈B 1t≥θk} =
m(A)m(B)

m(Rd∗)
E{1t≥θn∨k},

E{1zn∈A 1t≥θn 1zn∈B 1t≥θn} =
m(A ∩B)

m(Rd∗)
E{1t≥θn}, ∀n, k,

and because
∑
n,k =

∑
n +2

∑
n

∑
k=n+1 we have∑

n,k

E{1zn∈A 1t≥θn 1zk∈B 1t≥θk} = m(A ∩B)t+ 2m(A)m(B)t

which yields

E{ζt(A)ζt(B)} =
∑
n

E{1zn∈A∩B 1t≥θn} = tm(A ∩B),

as desired. Recall that the mapping A 7→ ζ(A,ω) is regarded as defined on for
any A in Π and taking values in L2(Ω,F , P ), i.e., properly saying the symbol
ζ(A) is a class of equivalence of square-integrable random variables.

In general, if m is measure in Rd∗ = Rd r {0} that integrates the function
x 7→ 1 ∧ |x|2 and {Rk : k ≥ 1} is a countable partition of finite m-measure, i.e.,
Rd∗ =

⋃
k Rk with m(Rk) < ∞ and Rk ∩ Rn = ∅, for k 6= n, then we repeat

the previous procedure with the finite measure A 7→ m(A ∩ Rk) to construct
an independent sequence of compound Poisson processes {pt(Rk) : k ≥ 1},
which yields the independent sequence Poisson orthogonal measures {ζt(Rk) :
k ≥ 1}. Since E{ζt(Rk)} = 0, the sequence of Poisson orthogonal measures is
an orthogonal system in L2(Ω,F , P ), and so the series ζt(A) =

∑
k ζk(A), for

every A in Π, defines a Poisson orthogonal measure with structural measure
A 7→ tm(A). Summing-up, if for a fixed k = 1, 2, . . . , (Nk

t , t ≥ 0) is the Poisson
process and {zkn : n ≥ 1} is the iid sequence with distribution m(·∩Rk) then the
compound Poisson processes pt(R1), pt(R2), . . . are independent and the series

of jumps
∑
k

∑Nkt
n=1 z

k
n defines a Poisson point process with Lévy measure m,

which yields the same Poisson orthogonal measure, namely,

ζt(A) =
∑
k

[ Nkt∑
n=1

1zkn∈A − E
{ Nkt∑
n=1

1zkn∈A
}]
, ∀A ∈ Π, t ≥ 0, (3.94)

where the series (in the variable k) converges in the L2-norm, i.e., for each k
the series in n reduces to a finite sum for each ω, but the series in k defines
ζt(A) as an element in L2(Ω,F , P ). Note that in this construction, the variable
t is considered fixed, and that A 7→ µ(A) = tm(A) is the structural measure
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associated with the Poisson orthogonal measure A 7→ ζt(A). Therefore, any
square-integrable (deterministic) function f , i.e., any element in L2(Π, µ) =
L2(σµ(Π), µ).

As seen in the previous section, any process with orthogonal increments
yields a random orthogonal measure, in particular, a one-dimensional standard
Wiener process (w(t), t ≥ 0) (i.e., w(t) is a standard normal variables, t 7→
w(t) is almost surely continuous, and E{w(t) ∧ w(s)} = t ∧ s) has independent
increments and thus the expression ζ(]a, b]) = w(b) − w(a) defines a random
orthogonal measure on the π-system of semi-open intervals Π+ = {]a, b] : a, b ∈
R} with the Lebesgue measure as its structural measure, i.e., E{ζ(]a, b])} = b−a.

Similarly, the Poisson orthogonal measure ζt(A) defined previously can be
regarded as a random orthogonal measure on π-system Π (which is composed
by all subsets of S = Rd∗ × (0,∞) having the form K × (0, t] for a compact set
and a real number t ≥ 0) with structural measure µ = m× dt, where dt is the
Lebesgue measure.

With this argument, we are able to define the stochastic integral of an (deter-
ministic) integrand function L2(σµ(Π), µ) with respect to a random orthogonal
measure constructed form either a Poisson point process with Lévy measure m
or a (standard) Wiener process, which are denoted by either

ζ(K × (0, t]) = p̃(A× (0, t]), and

∫
Rd∗×]0,T

f(t)p̃(dz,dt),

or

ζ(]a, b]) = w(]a, b]), and

∫ b

a

f(t)dw(t).

Note that this is not a pathwise integral, e.g., the paths of the Wiener process
are almost surely of unbounded variation on any bounded time-interval and
something similar holds true for the Poisson point process depending on the
Lévy measure.

Perhaps a simple construction of a Wiener process begins with a sequence
of independent standard normally distributed random variables {ei,n : i =
1, 2, . . . , 4n, n ≥ 1}. Since each ei,n has zero mean and are independent of each
other, the sequence is orthogonal in L2 = L2(Ω,F , P ), actually, it is an orthonor-
mal system since all variances are equal to 1. Recalling the dyadic expressions
that if t = k2−m = (k2n−m)2−n, 1 ≤ k ≤ 4m then k2n−m ≤ 4n, 1i2−n≤t = 1

if and only if i = 1, . . . , k2n−m, which yields
∑4n

i=1 1i2−n≤t = k2n−m = t2n if

k2n−m = t2n ≥ 1, we deduce t =
∑
n 4−n

∑4n

i=1 1i2−n≤t, so that the random
variable

w(t) =
∑
n

2−n
4n∑
i=1

ei,n1i2−n≤t, (3.95)

is defined as a convergent series in L2(Ω,F , P ), for every t > 0. Indeed, regard
the expression as an orthogonal series expansion, and set w(0) = 0, for any
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t ≥ s ≥ 0, to have

E{|w(t)− w(s)|2} =
∑
n

4−n
4n∑
i=1

E{|ei,n|2}1s<i2−n≤t =

=
∑
n

4−n
4n∑
i=1

1s<i2−n≤t = (t− s).

Thus, t 7→ w(t) provides a L2-norm continuous random process satisfying (a)
w(t) is a Gaussian random variable with mean E{w(t)} = 0 and variance
E{|w(t)|2} = t, and (b) w(s) is independent of w(t) − w(s) for every t > s.
The fact that there is a continuous version of the limiting process (w(t) : t ≥ 0),
which is called a Wiener process plays not an important role in this analysis. In-
deed, the expressions (3.95) of a Wiener process and (3.94) of a centered Poisson
point process are cad-lag and therefore, the corresponding random orthogonal
measures are measures, for every fixed ω almost surely.

Certainly, for dimension d higher than 1 we should use the covariance ma-
trix, i.e., E{w(t)w∗(t)} = tId, with Id the identity matrix. In this case, this
could take us to discuss vector-valued random orthogonal measure, or simply
consider a sum of independent Wiener processes and their corresponding or-
thogonal measures.

However, with little effort, an index j = 1, . . . , d could be added to the iid
sequence {eji,n}, so that d-intervals (0, t] = (0, t1]×· · ·× (0, td] on S = (0,+∞)d

could be used to define

w(t1, . . . , td) =
∑
n

2−n
4n∑
i=1

d∑
j=1

eji,n1i2−n≤t1, ..., i2−n≤td , (3.96)

as a convergent series in L2(Ω,F , P ). Besides being a Gaussian random variable
with mean zero, note that

1i2−n≤t1 · · ·1i2−n≤td = 1i2−n≤t1, ..., i2−n≤td

implies

E{|w(t1, . . . , td)|2} =
∑
n

4−n
4n∑
i=1

d∑
i=1

E{|eji,n|
2}1i2−n≤t1, ..., i2−n≤td =

=

d∏
j=1

[∑
n

4−n
4n∑
i=1

1i2−n≤tj

]
=

d∏
j=1

tj ,

which yields the (random) Gaussian orthogonal measure ζ(]0, t]) := w(t1, . . . , td)
in Rd, with the Lebesgue measure on (0,∞)d.

Clearly, this last example is related with the so-called white noise measure,
and Brownian sheet or space-time Brownian motion, e.g., see Kallianpur and
Xiong [123, Section 3.2, pp. 93–109].
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3.13.3 Filtration and Martingales

At this point, only deterministic integrand can be taken when the integrator
is a standard Wiener process or a Poisson point process with Lévy measure
m. To allow stochastic integrand a deeper analysis is needed to modify the π-
system. Indeed, the two typical examples of either the Poisson or the Gaussian
orthogonal measure suggests a π-system of the form either Π = {K×]0, τ ] ⊂
Ω×Rd∗× (0,∞)}, with the structural measure µ(K×]0, τ ]) = E{τ}m(K) for the
underlying product measure P ×m× dt, or Π = {]0, τ ] ⊂ Ω× (0,∞)}, with the
structural measure µ(]0, τ ]) = E{τ} for the underlying product measure P ×dt,
for a compact set K of Rd∗ and a bounded stopping time τ . This means that
there is defined a filtration F in the probability space (Ω,F , P ), i.e., a family of
sub σ-algebras Ft ⊂ F such that (a) Ft ⊂ Fs if s > t ≥ 0, (b) Ft =

⋂
s>t Fs if

t ≥ 0, and (c) N belongs to F0 if N is in F and P (N) = 0. Therefore, of relevant
interest is to provide some more details on the square-integrable functions that
can be approximated by a sequence of Π-step functions, i.e., the Hilbert space
L2(Π, µ) or better L2(Π, µ).

This filtration F should be such that either t 7→ ζ(K×]0, t]) or t 7→ ζ(]0, t])
is a F-martingale. Because, both expressions (3.95) of a Wiener process and
(3.94) of a Poisson point process have zero-mean with independent increments,
the martingale condition reduces to either ζ(K×]0, t]) or ζ(]0, t]) being Ft-
measurable, i.e., adapted to the filtration F.

Under this F-martingale condition, either the Poisson or the Gaussian or-
thogonal measure can be considered as defined on the above Π with structural
(product) measure either P × m × dt or P × dt, i.e., just replacing a deter-
ministic time t with a bounded stopping time τ . All this requires some work.
In particular, a key role is played by the so-called predictable σ-algebra P in
either Ω × Rd∗ × (0,∞) or Ω × (0,∞), which is the σ-algebra generated by the
π-system Π, and eventually completed with respect to the structural measure µ.
For instance, in this setting, a real-valued process (f(t), t ≥ 0) is an integrand
(i.e., it is an element in L2(Π, µ)) if and only if (a) it is square-integrable, (i.e.,
it belongs to L2(F × B, µ), B is the Borel σ-algebra either in Rd∗×]0,∞[ or in
]0,∞[), and (b) its µ-equivalence contains a predictable representative. In other
words, square-integrable predictable process are the good integrand, and there-
fore its corresponding class of µ-equivalence. Sometimes, stochastic intervals are
denoted by Ka, bK (or Ja, bJ) to stress the randomness involved. Certainly, this
argument also applies to the multi-dimensional Gaussian orthogonal measures
(or Brownian sheet). On the other hand, the martingale technique is used to
define the stochastic integral with respect to a martingale (non-necessarily with
orthogonal), and various definitions are proposed. In any way, the stochastic
integral becomes very useful due to the stochastic calculus that follows.

Among other sources, regarding random orthogonal measures and processes,
the reader may consult the books by Krylov [141, Section III.1, pp. 77-84],
Doob [59, Section IX.5, pp. 436–451], Gikhman and Skorokhod [98, Section
V.2] and references therein for a deeper analysis.
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Chapter 4

Stochastic Calculus

Let (Xt = X(t, ω) : t ≥ 0) be a family of Rd-valued random variables in a
given (complete) probability space (Ω,F , P ). Certainly, measurability is a first
difficulty encountered, i.e., when the whole family is bounded we expect that an
operation like supt≥0Xt or inft≥0Xt should produce a random variable, which is
not the case in general. A way to fix this problem is to use a separable family of
random variables, i.e., there exist a countable dense subset I of [0,∞) and a null
measurable set N, P (N) = 0, such that for every open subset O of [0,∞) and
any closed closed subset C of Rd the set {ω ∈ Ω : Xt(ω) ∈ C, ∀t ∈ O r I} is a
subset of N. In this approach, instead of working in the continuum set of indexes
[0,∞) we are actually working in a countable set I, which is called a separant.
Many situations are resolved with this analysis, but any limit operation in the
variable t forces us to complete the space and go back to [0,∞). Moreover, this
condition depends on the particular version used, i.e., if X is separable and Y
is another process satisfying P{Xt = Yt} = 1 for every t ≥ 0 then Y may not
not be separable. However, we can prove that any process X has a separable
version Y, but Y have values in the one-point compactification Rd ∪ {∞}, with
P{Y (t) =∞} = 0 for every t.

To make aware the reader of some difficulties that may arrive in the theory
of general processes, we discuss some initial issues. A (stochastic) process is a
family of Rd-valued random variables where some regularity in the t-variable
index have been imposed. For instance:

(1) a stochastically (left or right) continuous process (Xt : t ≥ 0) satisfies
Xs → Xt in probability as s→ t (s < t or s > t for left or right continuous) for
any t ≥ 0, or

(2) a (left or right) continuous process has almost surely (left or right) continuous
paths, i.e., t 7→ Xt(ω) is (left or right) continuous for any ω outside of a null
set.

Note that condition (2) implies condition (1). However, these two conditions
are essentially very different one from the other. Condition (1) is intrinsic to the
joint finite-dimensional distributions of the family of random variables {X(t) :
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t ≥ 0} and therefore remains valid for any version of the process (Xt : t ≥ 0),
while condition (2) is attached to the particular version of the process, say a
pathwise condition. In the first case (1), we are looking at the process as a
function from [0,∞) into the set of Rd-valued random variables, while in the
second case (2), we have random variables with values in the space of (left or
right) continuous Rd-valued functions, almost surely. Both concept are intended
to address the difficulty presented by the fact that the conditions

(a) P{Xt = Yt} = 0, ∀t ≥ 0,

(b) P{Xt = Yt, ∀t ≥ 0} = 0,

are not equivalent, since t ranges on a uncountable set. If both processes (Xt :
t ≥ 0) and (Yt : t ≥ 0) are left or right continuous (or separable) then (a) and
(b) are actually equivalent. Indeed, take a countable dense set I and consider
the event N =

⋃
t∈I{ω : Xt(ω) 6= Yt(ω)} for two processes satisfying (a). Since

the union is countable, P (N) = 0 and the continuity of their paths imply that
Xt(ω) = Yt(ω) for any ω in ΩrN and any t. If both processes are only separable
(see Definition 1.1) then we take I = IX ∪IY (where IX or IY are a separant set
associated with X or Y ) and proceed along the line of the previous argument.

On the other hand, if the processes are only stochastically right (or left)
continuous then (a) and (b) may not be equivalent. However, a simple argument
shows that given a separable stochastically right (or left) continuous process X
then any countable dense set is separant. Indeed, for any countable dense set
I = {t1, t2, . . .} we can find a sequence of positive numbers {δ1, δ2, . . .} such that
P{|X(t)−X(tn)| ≥ 2−n} < 2−n for any t in [tn, tn + δn]. By the Borel-Cantelli
lemma the set

Nt :=
⋂
m

⋃
n≥m

{
ω : |X(t, ω)−X(tn, ω)| ≥ 2−n

}
has probability zero. Since R = ∪n[tn, tn + δn], for any t in R and any ω in
ΩrNt there is a sequence of indexes in I such that X(tk, ω) converges to X(t, ω).
Because X is separable, there is countable dense set J and null set N, P (N) = 0
such that for any t in R and ω in Ω r N the previous convergence holds with
indexes in J. Therefore, for ω outside of the null set N̄ = N ∪t∈J Nt, we can
find a is a sequence of indexes in I such that X(tk, ω) converges to X(t, ω).
Moreover, for the given process X, this argument shows that there exists a
separable process Y satisfying (a), but not necessarily (b). Indeed, it suffices
to define Yt(ω) = Xt(ω) for any t and ω such that ω belongs to Ω r Nt and
Yt(ω) = 0 otherwise.

In a typical example we consider the Lebesgue measure on [0, 1], two pro-
cesses Xt(ω) = t for any t, ω in [0, 1] and Yt(ω) = t for ω 6= t and Yt(ω) = 0
otherwise. It is clear that condition (a) is satisfied, but (b) does not hold. The
process X is continuous (as in (2), sometimes referred to as pathwise continu-
ity), but Y is only stochastically continuous (as in (1), sometimes referred to as
continuous in probability), since is clearly almost sure continuous. Also, note
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that a stochastic process (Xt : t ≥ 0) is (right or left) continuous if its restriction
to a separant set is so.

Another key issue is the filtration, i.e., a family of sub σ-algebras (Ft : t ≥ 0)
of F , such that Fs ⊂ Ft for every t > s ≥ 0. As long as the probability P
is unchanged, we may complete the F and F0 with all the subsets of mea-
sure zero. However, in the case of Markov processes, the probability P = Pµ
depends on the initial distribution µ and the universally completed filtration
is used to properly express the strong Markov property. On the other hand,
the right-continuity of the filtration, i.e., the property Ft = Ft+, for every
t ≥ 0, where Ft+ := ∩s>tFs, is a desirable condition at the point that by fil-
tration we understand a right-continuous increasing family of sub σ-algebras
(Ft : t ≥ 0) of F as above. Usually, the filtration (Ft : t ≥ 0) is attached
to a stochastic process (Xt : t ≥ 0) in the sense that the random variables
(Xs : s ≤ t) are Ft-measurable. The filtration generated by a process (or the
history of the process, i.e, Ft = Ht is the smaller sub σ-algebra of F such
that all random variables (Xs : s ≤ t) are measurable) represents the infor-
mation obtained by observing the process. The new information is related
to the innovation, which is defined as the decreasing family of sub σ-algebras
(It : t ≥ 0), where It = F⊥t is the smaller sub σ-algebra of F containing all
set independent of Ft, i.e., a bounded function f is F⊥t -measurable if and only
if E{f g} = E{f}E{g} for any integrable g in Ft-measurable. Hence, another
stochastic process (Yt : t ≥ 0) is called adapted if Yt is Ft-measurable for ev-
ery t ≥ 0 and non-anticipating (or non-anticipative) if Yt is independent of
the innovation I, which is equivalent to say that Yt is I⊥t -measurable or F⊥⊥t -
measurable, i.e., E{ϕ(Yt) g} = E{ϕ(Yt)}E{g} for any bounded real Borel mea-
surable function ϕ and any integrable g satisfying E{f g} = E{f}E{g} for every
integrable f which is Ft-measurable. Notice that the filtration (Ft : t ≥ 0), the
process or the concept adapted can be defined in a measurable space (Ω,F),
but the innovation (It : t ≥ 0) or the concept of non-anticipative requires a
probability space (Ω,F , P ), which involves the regularity in the t-variable index
discussed above. Thus, for a filtered space (Ω,F , P,Ft : t ≥ 0), we understand
a probability space endowed with a filtration, which is always right-continuous.
As long as P is fixed, we may assume that F0 is complete, even more that
Ft = F⊥⊥t for every t ≥ 0 and F = ∨t≥0Ft. Sometimes we may change the
probability P, but the filtration may change only when the whole measurable
space is changed, except that it may be completed with all null sets as needed.

Let (Ω,F , P,Ft : t ≥ 0) be a filtered space. A minimum condition we require
of a stochastic process is to be measurable, i.e., the function (t, ω) 7→ X(t, ω) is
measurable with respect to the product σ-algebra B ×F , where B := B([0,∞[)
is the Borel σ-algebra in [0,∞[= [0,∞). When general processes are involved,
subsets N of B × F with the property that P

(
∪t≥0 {ω : (t, ω) ∈ N}

)
= 0

are called evanescent and two processes which differ in an evanescent set are
considered equals, every concepts and results are valid except an evanescent set,
without special mention. As mentioned above, if the processes have some extra
path regularity, such as separable or stochastically left (or right) continuous,
then this is the same as modification or version of the process. However, the
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standard technique is to make a regular (e.g., cad-lag) modification of a general
process and refer always to this version. Related to the adapted processes are the
progressively measurable processes, which are stochastic processes such that the
function (t, ω) 7→ X(t, ω) is measurable with respect to the product σ-algebra
B([0, T ]) × F , when considered as a mapping from Ω × [0, T ], for every T in
[0,∞[. There are a couple of useful sub σ-algebras of B × F :

(1) the predictable σ-algebra P, generated by sets of the form {0} × F0 and
(s, t]× Fs for any Fs in Fs, any t > s ≥ 0

(2) the optional (or well measurable) σ-algebra O, generated by sets of the form
{0} × F0 and [s, t)× Fs for any Fs in Fs, any t > s ≥ 0.

For the sake of convenience and as long as no confusion may arrive, we may
exchange the order of the variables t and ω so that Ω × [0,∞) or [0,∞) × Ω
are regarded as the same. Clearly P ⊂ O ⊂ B([0,∞[) × F , where in general
the inclusions are strict. It can be proved that P is the σ-algebra generated
by continuous (or left continuous) adapted processes, and that O is generated
by right continuous (or cad-lag) adapted processes. A stochastic process X is
called predictable (or optional) if the function (t, ω) 7→ X(t, ω) is measurable
with respect to P (or O). However, a F-measurable function from Ω into [0,∞]
is called an optional (or stopping) time if {τ ≤ t} (or {τ < t} because Ft = Ft+)
is in Ft for every t ≥ 0 and Fτ is the σ-algebra of all sets A in F∞ := ∨t≥0Ft
such that A ∩ {τ ≤ t} belongs to Ft for every t ≥ 0. If τ and θ are optional
times then stochastic intervals of the form [0, τ ] and (θ, τ ] are predictable. A
stopping time is called predictable if there exists a (announcing) sequence of
stopping time {τ1 ≤ τ2 ≤ τk < τ} convergent to τ. It can be proved that τ is
optional (or predictable) if and only if the function (t, ω) 7→ 1t≥τ is an optional
(or predictable) process. Notice that if two processes X and Y are equals
except in an evanescent set then X is predictable (or optional or progressively
measurable or adapted) if and only if Y is so. These measurability properties
are not preserved when using versions of the same process. For instance, if X
is a stochastically left continuous adapted process then for every t, ε > 0 there
exists δ = δ(t, ε) such that P{|X(t)−X(s)| ≥ ε} ≤ ε, for any s in [t−δ, t]. Thus,
for every sequence of partitions πn := {0 = t0,n < t1,n < · · · < tk,n < · · · }, with
supk(tk,n − tk−1,n) vanishing as n→∞, we can define

Xn(t, ω) :=

X(0, ω) if t = 0,

X(tk−1,n, ω) if tk−1,n < t ≤ tk,n, k ≥ 1.

It is clear that Xn is predictable and so is the subset A of Ω× [0,∞), where the
sequence Xn(t, ω) is convergent is also predictable. Therefore the limit

Y (t, ω) :=

limnXn(t, ω) for (t, ω) ∈ A,

0 otherwise,
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is also a predictable process. By Borel-Cantelli lemma the set

Nt :=
⋂
m

⋃
n≥m

{
ω : ∃ k such that tk−1,n < t ≤ tk,n,

, |X(t, ω)−X(tk,n, ω)| ≥ 2−n
}

has probability zero for every t > 0. Hence, for any ω in Ω r Nt the sequence
Xn(t, ω) is convergent toX(t, ω), i.e., P{X(t) = Y (t)} = 1, for every t ≥ 0. Thus
any stochastically left continuous adapted process has a predictable version. It
is clear that X and Y does not necessarily differ on an evanescent set, i.e., the
complement of A is not an evanescent set.

As discussed later, the integrand of a stochastic integral is thought as an
equivalence class with respect to a product measure in (0,∞) × Ω of the form
µ = dα(t, ω)P (dω), where α(t, ω) is an integrable nondecreasing process. In this
case, two processes may belong to the same µ-equivalence class without being a
version of each other. For instance, if α(t, ω) is constant on a subinterval (a, b)
then two processes x and y may belong to the same µ-equivalence class even if
x(t, ω) 6= y(t, ω) for every (t, ω) in (a, b) × Ω. Conversely, two processes, which
are versions of each other, may not belong to the same µ-equivalence class.
For instance, if dα(t, ω) = α1(t, ω)dβ(t) for some deterministic measure dβ(t)
then Fubini’s Theorem ensures that two processes x and y belong to the same
µ-equivalence class whenever we have a version of the other. However, indepen-
dently of the form of dα(t, ω), two undistinguishable processes (i.e., differing
on an evanescent set) must belong to the same µ-equivalence class. Moreover,
a measure µ in the product space (0,∞) × Ω vanishes on every evanescent set
if and only if it has the product form µ = dα(t, ω)P (dω) for some integrable
nondecreasing process α, e.g., see Dellacherie and Meyer [58, Section VII.1]).

Martingales plays a key role in stochastic analysis. Recall that a martingale
is a cad-lag process X with the following property relative to the conditional
expectation

E{X(t) |X(r), 0 ≤ r ≤ s} = X(s), ∀t ≥ s > 0.

When the = sign replaced by the ≥ sign in the above property, the process X
is called a sub-martingale, and similarly a super-martingale with the ≤ sign.
The conditional expectation requires an integrable process, i.e., E{|X(t)|} <∞
for every t ≥ 0 (for sub-martingale E{[X(t)]+} < ∞ and for super-martingale
E{[X(t)]−} < ∞ are sufficient). Moreover, only a version of the process X is
characterized by this property, so that a condition on the paths is also required.
A minimal condition is to have a separable process X, but this theory becomes
very useful when working with cad-lag process X. We adopted this point of view,
so in this context, a martingale is always a cad-lag integrable process. Most of
the time we replace the conditional expectation property with a more general
statement, namely

E{X(t) | F(s)} = X(s), ∀t ≥ s > 0,

where now X is a cad-lag integrable process adapted to the filtration (F(t) :
t ≥ 0), which is always assumed right-continuous and even completed when
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necessary. However, the concept of martingale is independent of the filtration
as soon as some regularity on the paths is given. Actually, the conditional
expectation property is equivalent to the condition

E
{
X(t)

n∏
i=1

hi
(
(X(si)

)}
= E

{
X(s)

n∏
i=1

hi
(
X(si)

)}
,

for every 0 ≤ s1 < s2 · · · ≤ sn ≤ s < t, any (real-valued) Borel and bounded
functions hi, i = 1, . . . , n, any integer n. Nevertheless, to weaker the condition
on integrability, a technical localization procedure is used, and a local martingale
is a cad-lag process X such that Xk : t 7→ X(t ∧ τk)−X(0) is a martingale for
some increasing sequence of stopping times τk satisfying τk → ∞. This forces
the use of a filtration.

Note the contrast of the previous property and the Markov property valid for
a Markov process X: for any n = 1, 2 . . . , any bounded measurable (actually
continuous suffices) functions f1, . . . , fn, g1, . . . , gn, h, and times s1 ≤ · · · ≤
sn ≤ t ≤ t1 ≤ · · · ≤ tn we have

E
{
h(Xt)

( n∏
i=1

f(Xsi)
)( n∏

i=1

g(Xti)
)}

=

= E
{
h(Xt)E{

n∏
i=1

f(Xsi) |Xt)}E{
n∏
i=1

g(Xti) |Xt}
}
,

where E{
∏n
i=1 f(Xsi |Xt)} and E{

∏n
i=1 g(Xti) |Xt} are Xt-measurable func-

tions satisfying

E
{
h(Xt)

n∏
i=1

f(Xsi)
}

= E
{
h(Xt)E{

n∏
i=1

f(Xsi) |Xt)}
}
,

E
{
h(Xt)

n∏
i=1

g(Xti)
}

= E
{
h(Xt)E{

n∏
i=1

g(Xti) |Xt)}
}
,

i.e., they are the conditional expectations with respect to the σ-algebra gener-
ated by the random variable Xt. This is briefly expressed by saying that the
past and the future are independent given the present. Clearly, this condition in-
volves only the finite-dimensional distributions of the process, and no condition
on integrability for X is necessary for the above Markov property.

Actually, in this chapter we may use the concept of second-order processes,
namely, to consider a process X = {Xt : t ≥ 0} as a family of random variables
with values in L2(Ω,F , P ) or better, as an element belonging to the Hilbert
space L2

(
(0, T );L2(Ω,F , P )

)
or the Banach space C0

(
[0, T ], L2(Ω,F , P )

)
. A

posteriori, we may take a continuous or cad-lag version, i.e., to consider elements
in the less structured space of random variables with values in either C([0, T ])
or D([0, T ]).

For instance, the reader is referred to the books Chung and Williams [45],
Bichteler [25], Dudley [62, Chapter 12, pp. 439–486], Durrett [67], Elliott [73],
Kuo [145], Medvegyev [168], Protter [206], among others, for various presenta-
tions on stochastic analysis.
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4.1 Probability Measures and Processes

We are interested in the law of two particular type of Lévy processes, the Wiener
and the Poisson processes in Hilbert spaces. There is a rich literature on Gaus-
sian processes, but less is known in Poisson processes, actually, we mean com-
pensated Poisson processes. For stochastic integration we also use the Poisson
random measures and in general integer random measures.

Definition 4.1 (Lévy Space). For any nonnegative symmetric square matrix
a and any σ-finite measure π in Rd∗ = Rd r {0} satisfying∫

Rd∗

(
|y|2 ∧ 1

)
π(dy) <∞,

there exists a unique probability measure Pa,π, called Lévy noise space, on the
space S ′(R,Rd) of Schwartz tempered distributions on R with values in Rd such
that

E
{

ei〈·,φ〉
}

= exp
(
− 1

2

∫
R
aφ(t) · φ(t)dt

)
×

× exp
(∫

R
dt

∫
Rd∗

[
eiφ(t)·y − 1− i1{|y|<1} φ(t) · y

]
π(dy)

)
,

for any test function φ in S(R,Rd). Therefore, a cad-lag version ` of the stochas-
tic process t 7→ 〈·,1(0,t)〉 is well define and its law P on the canonical sample

space D = D([0,∞),Rd) with the Skorokhod topology and its Borel σ-algebra
B(D) is called the canonical Lévy space with parameters a and π, the diffusion
covariance matrix a and the Lévy measure π.

Clearly, ` is a Lévy process (see Section 3.10 in Chapter 3)

〈ω, φ〉 =

∫
R
ω(t) · φ(t) dt, ∀ω ∈ S ′(R,Rd), φ ∈ S(R,Rd)

and · denotes the scalar product in the Euclidian space Rd. To simplify notation
and not to the use 1{|y|<1}, we prefer to assume a stronger assumption on the
Lévy measure, namely∫

Rd∗

(
|y|2 ∧ |y|

)
π(dy) <∞,

and even to have a finite second moment, we assume∫
Rd∗
|y|2π(dy) <∞.

The existence of the probability Pa,π was discussed in Section 1.14 of Chapter 1,
and obtained via a Bochner’s type theorem in the space of Schwartz tempered
distributions (we may also use the Lebesgue space L2(]0, T [,Rd), for T > 0).

The expression of the characteristic function contains most of the properties
of a Lévy space. For instance, we can be construct Pa,π as the product Pa×Pπ
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of two probabilities, one corresponding to the first exponential (called Wiener
white noise, if a is the identity matrix)

exp
(
− 1

2

∫
R
ax(t) · x(t)dt

)
,

which has support in C([0,∞),Rd), and another one corresponding to the second
exponential (called compensated Poisson noise)

exp
(∫

R
dt

∫
Rd∗

[
eix(t)·y − 1− i1{|y|<1} x(t) · y

]
π(dy)

)
.

The canonical process corresponding to Pa and Pπ, denoted by w(t) and p̄(t),
are independent. Moreover, they may be assumed to take valued in Rn and Rm,
respectively. The topological space Ω = C([0,∞),Rn)×D([0,∞),Rm) with the
probability P = Pw×Pp̄ on the Borel σ-algebra F and the two canonical process
w and p̄ is called the canonical Wiener-Poisson space.

On the other hand, also the process

t 7→
exp

[
ix · `(t)

]
E
{

eix·`(t)
}

is a complex-valued martingale, where

E
{

eix·`(t)
}

= exp
(
− t

2
ax · x+ t

∫
Rd∗

[
eix·y − 1− i1{|y|<1} x · y

]
π(dy)

)
,

for any x in Rd. The process ` is a Rd-valued martingale itself, with `(0) = 0,
and ` = w + p̄, where w is a Wiener process (continuous martingale) and p̃ is a
compensated Poisson process (purely discontinuous martingale).

A generalization of this to infinite-dimensional spaces involves Sazonov’s
Theorem 1.41 and Minlos’ Theorem 1.42, and the concept of nuclear operators,
see Section 2.1.3 in Chapter 2. For instance, a Wiener random measure and
a (compensated) Poisson random measure are constructed as follows, replacing
Rd by and L2 space. Given a (nonnegative) Radon measure m on Rd, we get a
probability measure Pm on L2

m = L2(R× Rd,dt× dm) such that

E
{

ei(·,h)
}

= exp
(
− 1

2

∫
R

dt

∫
Rd
|h(t, x)|2m(dx)

)
, ∀h ∈ L2

m,

where (·, ·) denotes the scalar product in L2
m. Then we choose a continuous

version w(t, B) of the stochastic process (t, B) 7→ (·,1(0,t)1B), t ≥ 0, B in

B(Rd) and bounded. Thus, t 7→ w(t, B)/m(B) is a standard Wiener process,
and B 7→ w(t, B) is a (random) measure. Moreover, if B1, . . . , Bn are disjoint
sets then w(t, B1), . . . , w(t, Bn) are independent processes. Similarly, given a
σ-finite measure π in Rd∗ as in Definition 4.1, we get a probability measure Pπ
on L2

π(R× Rd∗) with the product measure dt× π(dy) such that

E
{

ei(·,φ)
}

= exp
(∫

R
dt

∫
Rd∗

[
eiφ(t,y) − 1− iφ(t, y)

]
π(dy)

)
,
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for any function φ in L2
π(R × Rd∗), where now (·, ·) denotes the scalar product

in L2
π(R × Rd∗). Therefore, we can justify the use of φ(t, y) = 1(a,b)(t)1B(y),

and then we choose a cad-lag version p̃(t, B) of the stochastic process (t, B) 7→
(·,1(0,t) 1B), t ≥ 0, B in B(Rd∗), with B̄ ∩ {0} = ∅, B̄ is the closure. Moreover,
B 7→ p̃(t, B) is a (random) measure, and if B1, . . . , Bn are disjoint sets then
p̃(t, B1), . . . , p̃(t, Bn) are independent processes. Actually, p(t, B) = p̃(t, B) +
tπ(B) is a (Poisson) integer-valued measure because

E
{

eirp(t,B)
}

= exp
(
tπ(B)

[
eir − 1

])
, ∀r ∈ R, (4.1)

for any B in B(Rd∗), with B̄ ∩ {0} = ∅, and any t ≥ 0.

• Remark 4.2. First recall the separability of the σ-algebra B(Rd) or B(Rd∗), i.e.,
there is an increasing sequence of finite σ-algebras {Bk} such that B = ∨kBk,
e.g. see Malliavin [162, Section 6.1, pp. 219–220]. It is clear now that we are
able to show that for any t in a countable set and for each ω outside of a null
set, the function B 7→ w(t, B, ω) (or B 7→ p̃(t, B, ω)) is a (positive) measure on
any Bk, k ≥ 1. Hence, we can take a version so that for any B in B the process
t 7→ w(t, B) (or t 7→ p̃(t, B)) is continuous or cad-lag, and for any t ≥ 0 the
set function B 7→ w(t, B) (or B 7→ p̃(t, B)) is a measure on B(Rd) (or B(Rd∗),
respectively). Actually, w and p̃ are random measures in both variables, i.e., in
R×Rd. Note that sometimes it is convenient to use the notation p(B, t), p̃(B, t)
and p̄(B, t), i.e., we may exchange the order of the variable t and B as long no
confusion is made.

As discussed later to study the jumps, we may use the construction of the Rd-
valued compensated Poisson process p̄(t) or the compensated Poisson “point”
process if the emphasis is on the jumps δp(s) = p(s) − p(s−). We define the
Rd-valued Poisson measure

p̄(t, B) =
∑

0<s≤t

[p̄(s)− p̄(s−)]1{p̄(s)−p̄(s−)∈B}, ∀B ∈ B∗,

where the sum has a finite number of terms and B∗ denotes the ring of Borel
sets B in B(Rd∗) satisfying B̄ ∩ {0} = ∅, B̄ is the closure. We have

E
{

eix·p̄(t,B)
}

= exp
(
t

∫
B

[
eix·y − 1

]
π(dy)

)
, ∀x ∈ Rd, B ∈ B∗,

which implies

E
{
x · p̄(t, B ∩ {|y| < 1})

}
= t

∫
B

x · y 1{|y|<1}π(dy), ∀x ∈ Rd, B ∈ B∗,

for any t ≥ 0.
Sometimes, instead of using the (Poisson) point processes p̄(t) or (Poisson)

vector-valued measure p̄(t, B), we prefer to use the (Poisson) counting (integer)
measure

p(t, B) = p(]0, t]×B) =
∑

0<s≤t

1{p̄(s)−p̄(s−)∈B}, ∀B ∈ B∗,
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which is a Poisson process with parameter π(B), i.e., (4.1) holds for any B in
B∗, or equivalently

P{p(t, B) = n} =

(
tπ(B)

)n
n!

e−tπ(B), ∀B ∈ B∗, n = 0, 1, . . . ,

for any t > 0. Moreover, because there are a finite number of jumps within B,
the integral

p̄(t, B) =

∫
]0,t]×B

zp(dt,dz), ∀B ∈ B∗, t > 0

is finite and reproduces the Rd-valued Poisson measure initially defined. To
reproduce p̄(t) on this context, we should make sense to the limit

p̄(t) = p̄(t, {|y| ≥ 1}) + lim
ε→0

[
p̄(t, {ε ≤ |y| < 1})− tπ({ε ≤ |y| < 1})

]
,

by means of the stochastic integral. All theses facts are particular cases of the
theory of random measures, martingale theory and stochastic integral.

4.1.1 Gaussian Processes

A Rd-valued random variable ξ is Gaussian distributed (also called normally dis-
tributed) with parameters (c, C) if its (complex-valued) characteristic function
has the following form

E{exp(iλ · ξ)} = exp(iλ · c− λ · Cλ/2), ∀λ ∈ Rd,
or equivalently if its distribution has the form

P (ξ ∈ B) =

∫
B

[
(2π)n

√
det(C)

]−1/2
exp

(
− C−1(x− c) · (x− c)

2

)
dx,

for every Borel subset of Rd, where c is the (vector) mean E{ξ} and C is the
(matrix) covariance E{(ξ−c)2}. When c = 0 the random variable ξ is called cen-
tered or symmetric. Notice that the expression with the characteristic function
make sense even if C is only a symmetric nonnegative definite matrix, which
is preferred as the definition of Gaussian variable. It is clear that a Rd-valued
Gaussian variable has moments of all orders and that a family of centered Rd-
valued Gaussian variables is independent if and only if the family is orthogonal
in L2(Ω,F , P ). Next, an infinite sequence (ξ1, ξ2, . . .) of real-valued (or Rd-
valued) random variables is called Gaussian if any (finite) linear combination
c1ξ1 + · · ·+ cnξn is a Gaussian variable. Finally, a probability measure µ on the
Borel σ-algebra B of a separable Banach space B is called a (centered) Gaussian
measure if any continuous linear functional h is (centered) Gaussian real-valued
random variable when considered on the probability space (B,B, µ). If B=H a
separable Hilbert space then the mean c value and covariance C operator are
well defined, namely,

(c, h) =

∫
H

(h, x)µ(dx), ∀h ∈ H,

(Ch, k) =

∫
H

(h, x)(k, x)µ(dx)− (c, h)(c, k), ∀h, k ∈ H,
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where (·, ·) is the inner product in H. Moreover, the covariance C operator is a
trace-class operator, i.e., for any (or some) orthonormal basis {en : n ≥ n} in
H the series Tr(C) :=

∑
n(Cen, en) converges.

A fundamental result is the following Fernique’s bound∫
B

eλ ‖x‖
2

µ(dx) ≤ e16λ r2 +
e2

e2 − 1
, (4.2)

valid for any centered Gaussian measure µ on the separable Banach space (B,B)
and any λ, r > 0 such that

ln
(
1− µ({x : ‖x‖ ≤ r})

)
+ 32λ r ≤ ln

(
µ({x : ‖x‖ ≤ r})

)
− 1,

where ‖ · ‖ is the norm in B.
In particular, any continuous linear functional ϕ on B has a finite second

moment. Thus, the dual space B′ of B can be identified with a subspace of
L2(B,B, µ) and call B̄′ the Hilbert space obtained as the closure of this subspace.
Recalling that any ϕ in B′ is a centered Gaussian variable with covariance |ϕ|2L2 ,
we define the mapping J by setting

J : L2(B,B, µ)→ B,

J(ϕ) :=

∫
B

xϕ(x)µ(dx), ∀ϕ ∈ L2(B,B, µ),

but we consider J only acting from B̄′ ⊂ L2(B,B, µ) into B. Since the linearity
and continuity of ϕ and Hölder inequality yield

ϕ(J(ϕ)) =

∫
B

|ϕ(x)|2 µ(dx),

‖J(ϕ)‖2 ≤ |ϕ|2L2

∫
B

‖x‖2 µ(dx),

the mapping J is one-to-one, continuous and linear. The image H = J(B̄′) is
continuously embedded in B as a Hilbert space with the inner product

(f, g)H =

∫
B

J−1(f)(x) J−1(g)(x)µ(dx), ∀f, g ∈ H.

Moreover, any ϕ in the dual space B′ is a centered Gaussian random variable
on (B,B, µ) with covariance |ϕ|2H , where the dual norm is given by |ϕ|2H :=
sup{|ϕ(x)| : |x|H ≤ 1}. The space H = Hµ is called a reproducing kernel space
for the centered Gaussian measure (B,B, µ). Now, denote by H0

µ the image of
B′ by J, i.e., H0

µ := J(B′), which is dense in Hµ.
Let {e1, e2, . . .} be a orthonormal basis in Hµ with elements in H0

µ, and
let {ξ1, ξ2, . . .} be a sequence of independent real-valued random variables with
standard normal distribution (i.e., Gaussian with parameters 0, 1) relative to a
(complete) probability space (Ω,F , P ). Then, it can be proved that the sequence
of partial sums {

∑n
k=1 ξk ek : n = 1, 2, . . .} converges almost surely in B to a

random variable ξ with law µ. Notice that the above series does not converges
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almost surely in Hµ, but the map h 7→ X(h) :=
∑
k ξk (h, ek) is well defined for

any h in Hµ, and called white noise, see Da Prato and Zabczyk [51, Theorems
1.2.6–12, pp. 37–48].

This procedure can be done backward, i.e., starting from the Hilbert space
H. With respect to the previous construction, now H is the dual space of Hµ.
Pick an orthonormal basis {e1, e2, . . .} in H and a sequence {ξ1, ξ2, . . .} of in-
dependent real-valued random variables with standard normal distribution in a
(complete) probability space (Ω,F , P ). Since

E{[
n∑
k=`

ξk (h, ek)]2} =

n∑
k=`

[(h, ek)]2E{|ξk|2} =

n∑
k=`

[(h, ek)]2,

for every n > ` ≥ 1, we may define X(h) :=
∑
k ξk (h, ek), for any h in H,

as a convergent series in L2(Ω,F , P ). The map h 7→ X(h) is linear, X(h) is a
centered Gaussian random variable with covariance E{[X(h)]2} = |h|2, for any
h in H. Actually, the series also converges almost surely and X(h) is indeed
an equivalence class. The space {X(h) : h ∈ H} is a Gaussian subspace of
L2(Ω,F , P ), which is isomorphic to H. In particular E{X(f)X(g)} = (f, g), for
any f and g in H. This show that X(f) is independent of X(g) if and only if f
and g are orthogonal (because independence and orthogonality are equivalent in
a Gaussian space). The family {X(h) : h ∈ H} is called an isonormal Gaussian
stochastic process. If H = L2(A,A, µ), where (A,A, µ) is a σ-finite measure
space, the mapping X is called a Gaussian measure or white noise with intensity
µ on (A,A). When F belongs to A we write X(F ) := X(1F ). Thus, if F and G
are sets with µ(F ) <∞ and µ(G) <∞ then E{X(F )X(G)} = µ(F ∩G), and so
that X(F ) and X(G) are independent when F and G are disjoint. Notice that
if {Fk : k = 1, 2, . . .} is a pairwise disjoint sequence of subset in A, F = ∪kFk
with µ(F ) <∞ then X(F ) =

∑
kX(Fk) almost surely so that some regularity

(as in the case of regular conditional probability) is need to ensure the existence
of a good selection, in order that F 7→ X(F, ω) is a measure for ω outside of a
set of probability zero.

Sometimes, the initial point is a family of centered Gaussian random vari-
ables X = {X(h) : h ∈ H} in a complete probability space (Ω,F , P ), where the
index H is a separable Hilbert space, the σ-algebra F is the smallest complete
σ-algebra such that X(h) is measurable for any h in H and E{X(f)X(g)} =
(f, g)H , for any f and g in H. This is called a Gaussian process on H. Notice
that mapping h 7→ X(h) has to be linear and provides an isometry from H onto
a closed subspace of L2(Ω,F , P ), where all elements are zero-mean Gaussian
random variables.

Consider the Hermite polynomials, which are defined by

h0(x) := 1, hn(x) :=
(−1)n

n!
ex

2/2 dn

dxn
e−x

2/2, n = 1, 2, . . . ,

which satisfies several properties, e.g.,

exp
[x2

2
− (x− t)2

2

]
=

∞∑
n=0

tn hn(x), ∀t, x,
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h′n = hn−1, (n+1)hn+1(x) = xhn(x)−hn−1(x), hn(−x) = (−1)n hn(x), hn(0) =
0 if n is odd and h2n(0) = (−1)n/(2n n!). It is not hard to show that for any
two random variables ξ and ζ with joint standard normal distribution we have
E{hn(ξ)hm(ζ)} = (E{ξ ζ})/n! if n = m and E{hn(ξ)hm(ζ)} = 0 otherwise.
Essentially based on the one-to-one relation between signed measures and their
Laplace transforms, we deduce that only the null element ξ in L2(Ω,F , P ) (recall
that F is generated by {X(h) : h ∈ H}) satisfies E{ξ exp(X(h))} = 0, for any
h in H. Hence, the space H can be decomposed into an infinite orthogonal sum
of subspaces, i.e.,

L2(Ω,F , P ) = ⊕∞n=0Hn,

where Hn is defined as the subspace of L2(Ω,F , P ) generated by the family
random variables {hn(X(h)) : h ∈ H, |h|H = 1}. Thus, H0 is the subspace of
constants and H1 the subspace generated by {X(h) : h ∈ H}. This analysis
continues with several applications, the interest reader is referred to Hida et
al. [107], Kallianpur and Karandikar [122], Kuo [144], among others.

Going back to our main interest, we take H = L2(R+) with the Lebesgue
measure, initially the Borel σ-algebra, and we construct the family of equivalence
classes of centered Gaussian random variables {X(h) : h ∈ H} as above. Thus
we can pick a random variable b(t) within the equivalence class X([0, t]) =
X(1[0,t]). This stochastic process b = (b(t) : t ≥ 0) has the following properties:

(1) The process b has independent increments, i.e. for any sequence 0 = t0 <
t1 < · · · < tn−1 < tn the random variables {b(t0), b(t1) − b(t0), . . . , b(tn) −
b(tn−1)} are independent. Indeed, they are independent since b(tk)− b(tk−1) is
in the equivalence class X(]tk−1, tk]) which are independent because the interval
]tk−1, tk] are pairwise disjoint.

(2) The process b is a Gaussian process, i.e., for any sequence 0 = t0 < t1 <
· · · < tn−1 < tn the Rn+1-valued random variable (b(t0), b(t1), . . . , b(tn)) is a
Gaussian random variables. Indeed, this follows from the fact that {b(t0), b(t1)−
b(t0), . . . , b(tn)− b(tn−1)} is a family of independent real-valued Gaussian ran-
dom variable.

(3) For each t > 0 we have E{b2(t)} = t and b(0) = 0 almost surely. Moreover,
using the independence of increments we find that the covariance E{b(t) b(s)} =
t ∧ s.

(4) Given a function f in L2(R+) (i.e., in H) we may pick an element in
the equivalence class X(f 1[0,t]) and define the integral with respect to b, i.e.,
X(f 1[0,t]).

(5) The hard part in to show that we may choose the random variables b(t) in
the equivalence class X([0, t]) in a way that the path t 7→ b(t, ω) is continuous
(or at least cad-lag) almost surely. A similar question arises when we try to show
that F 7→ X(1F ) is a measure almost surely. Because b(t) − b(s) is Gaussian,
a direct calculation show that E{|b(t)− b(s)|4} = 3|t− s|2. Thus, Kolmogorov’s
continuity criterium (i.e., E{|b(t) − b(s)|α} ≤ C|t − s|1+β for some positive
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constants α, β and C) is satisfied. This show the existence of a continuous
stochastic process B as above, which is called standard Brownian motion or
standard Wiener process. The same principle can be used with the integral
〈f, b〉(t) = X(f 1[0,t]), as long as f belongs to L∞(R+). This continuity holds
true also for any f in L2(R+), by means of theory of stochastic integral as seen
later.

It is clear that we may have several independent copies of a real-valued
standard Brownian motion and then define a Rd-valued standard Brownian
motion. Moreover, if for instance, the space L2(R,X ), for some Hilbert X
(or even co-nuclear) space, is used instead of L2(R) then we obtain the so
called cylindrical Brownian motions or space-time Wiener processes, which is
not considered here. We may look at B as a random variable with values in
the canonical sample space C = C([0,∞),Rd), of continuous functions with
the locally uniform convergence (a separable metric space), and its Borel σ-
algebra B = B(C). The law of B in the canonical sample space C define a
unique probability measure W such that the coordinate process X(t) := ω(t)
is a standard Brownian motion, which is called the Wiener measure. Thus
(C,B,W ) is referred to as a Wiener space.

Generally, a standard Wiener process is defined as a real-valued continuous
stochastic process w = (w(t) : t ≥ 0) such that (1) it has independent incre-
ments and (2) its increments w(t)−w(s), t > s ≥ 0, k+ 1, 2, . . . , d are normally
distributed with zero-mean and variance t − s. This definition is extended to
a d-dimensional process by coordinates, i.e., Rd-valued where each coordinate
wk is a real-valued standard Wiener process and {w1, w2, . . . , wn} is a family
of independent processes. For any f in L∞(R+), the integral with respect to
the standard Wiener process w = (w1, . . . , wd) is defined as a Rd-valued contin-
uous centered Gaussian process with independent increments and independent
coordinates such that for any k = 1, 2, . . . , d∫ t

0

f(s) dwk(s) := Xk(f 1[0,t]),

E
{(∫ t

0

f(s) dwk(s)
)2}

=

∫ t

0

f2(s)ds,

for any t ≥ 0. Notice that the second equality specifies the covariance of the
process.

Similarly, we can define the Gaussian-measure process w(t, ·), by using the
Hilbert space L2(R+×Rd) with the product measure dt×m(dx), where m(dx) is
a Radon measure on Rd (i.e., finite on compact subsets). In this case w(t,K) is a
Wiener process with diffusion m(K) (and mean zero) and w(t,K1), . . . , w(t,Kn)
are independent if K1, . . . ,Kn are disjoint. Clearly, this is related with the so-
called white noise measure (e.g., see Bichteler [25, Section 3.10, pp. 171–186])
and Brownian sheet or space-time Brownian motion. The reader is referred
to Kallianpur and Xiong [123, Chapters 3 and 4, pp. 85–148] for the infinite
dimensional case driven by a space-time Wiener process and a Poisson random
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measure. This requires the study of martingales with values in Hilbert, Banach
and co-nuclear spaces, see also Métivier [178].

The following Lévy’s characterization of a Wiener process is a fundamental
results, for instance see Revuz and Yor [212, Theorem IV.3.6, pp. 150].

Theorem 4.3 (Lévy). Let X be an adapted Rd-valued continuous stochastic
process in a filtered space (Ω,F , P,F(t) : t ≥ 0). Then X is a Wiener if and only
if X is a (continuous) local martingale and one of the two following conditions
is satisfied:

(1) XiXj and X2
i − t are local martingales for any i, j = 1, . . . , d, i 6= j,

(2) for any f1, f2, . . . , fd functions in L∞(R+) the (exponential) process

Yf (t) := exp
{
i
∑
k

∫ t

0

fk(s) dXk(s) +
1

2

∑
k

∫ t

0

f2
k (s)ds

}
,

defined for every t ≥ 0, is a (bounded) complex-valued martingale.

Clearly, condition (1) means that the (matrix-valued) predictable quadratic
variation process 〈X〉 associated with X is such that 〈Xi, Xi〉(t) = t and
〈Xi, Xj〉(t) = 0 for any i, j = 1, . . . , d, i 6= j. In condition (2) we may also
take fk in L2(R+) and even adapted processes. The assumption on continuity
is essential to the above Lévy’s theorem.

It can be proved that a Gaussian semi-martingale X is continuous if and
only if it is stochastically continuous, i.e., P (|X(t) − X(s)| > ε) goes to zero
as t → s, for any ε > 0. Moreover, a centered Gaussian local martingale X
with X(0) = 0 and independent increments, is actually a locally square in-
tegrable and its predictable quadratic variation (non-necessarily continuous)
satisfies 〈X〉(t)∧ 〈X〉(s) = E{X(t)X(s)}, for any t ≥ s ≥ 0. It is also clear that
for a centered Gaussian martingale X with X(0) = 0, the covariance matrix
c(t) := (E{Xi(t)Xj(t)} : t ≥ 0, i, j = 1, 2, . . . , d) satisfies

E{exp[iλ · (X(t)−X(s))]} = exp[−λ · (c(t)− c(s))λ/2],

for every λ in Rd and t ≥ s ≥ 0. This property completely characterizes the finite
distributions of X, see Liptser and Shiryayev [158, Section 4.9, pp. 270–306].

The Ornstein-Uhlenbeck process is another typical example of Gaussian pro-
cess that is given by

X(t) := exp(−αt)X0 +

∫ t

0

exp[−α(t− s)]σdw(s), ∀t ≥ 0,

where α and σ are matrices, α has positive eigenvalues, X0 is an initial random
variable normally distributed and w is an standard Wiener process. Even more
general, if Φ(t, s) denotes the fundamental (matrix) solution of a linear ordinary
differential equation with matrix α(t), i.e.,

Φ̇(t, s) = −α(t)Φ(t, s), ∀t 6= s,

Φ(s, s) = 1, ∀s,
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then

X(t) := Φ(t, 0)X0 +

∫ t

0

Φ(t, s)σ(s)dw(s), ∀t ≥ 0,

is a Gaussian process with mean mi(t) := E{Xi(t)} and covariance matrix
vij(s, t) := E{[Xi(s)−mi(s)][Xj(t)−mj(t)]}, which can be explicitly calculated.
For instance, in the one-dimensional case with constant α and σ we have

m(t) := E{X(t)} = e−αtm(0),

v(s, t) := E{[X(s)−m(s)][X(t)−m(t)]} =

=
{σ2

2α

[
e2α(s∧t) − 1

]
+ v(0)

}
e−α(s+t).

Therefore, if the initial random variable has mean zero and the variance is
equal to v0 = σ2/(2α), then X is a stationary, zero-mean Gaussian process with
covariance function ρ(s, t) = v0 exp(−α|t− s|).

4.1.2 Compensated Poisson Processes

A Rd-valued random variable ξ has a compensated Poisson distributed (also
called centered Poisson distributed) with parameter π if its (complex-valued)
characteristic function has the following form

E{exp(iλ · ξ)} = exp
(∫

Rd∗

[
eiλ·x − 1− iλ · x

]
π(dx)

)
, ∀λ ∈ Rd,

where π is a Radon measure on Rd∗ = Rd r {0} satisfying∫
Rd∗
|x|2π(dx) <∞.

Usually, the arguments begin with a compound Poisson variable p in Rd (mainly,
d=1) with a finite measure π as parameter, i.e.,

E{exp(iλ · p)} = exp
(∫

Rd∗

[
eiλ·x − 1

]
π(dx)

)
. ∀λ ∈ Rd,

Then define ξ = p−E{p(t)} as a centered Poisson distribution random variable.
Next, the construction and properties of the compensated Poisson (or centered
Poisson) random variable ξ are extended for characteristic measures π as above.

It is called symmetric if π satisfies∫
Rd∗

[
eiλ·x − 1− iλ · x

]
π(dx) =

∫
Rd∗

[
e−iλ·x − 1 + iλ · x

]
π(dx),

for every λ in Rd. It is clear that a Rd-valued compensated Poisson variable ξ
has finite first and second moments, i.e.,

E{|ξ|2} =

∫
Rd∗
|x|2π(dx),
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and if we add the condition∫
Rd∗
|x|pπ(dx) <∞, ∀p ≥ 2.

then all moments are finite.
An infinite sequence (ξ1, ξ2, . . .) of real-valued (or Rd-valued) random vari-

ables is called compensated Poisson process if any (finite) sum ξ1 + · · · + ξn
is a compensated Poisson variable (the sequence is necessarily independent).
Next, given a (nuclear) countably Hilbertian space Φ =

⋂
n≥0 Φn, its dual space

Φ′ =
⋃
n≥0 Φ−n (see Section 2.1.3 in Chapter 2), a probability measure µ on

the Borel σ-algebra B(Φ′) is called a compensated Poisson measure if 〈·, ϕ〉 is a
compensated Poisson real-valued random variable, for any ϕ in Φ, when consid-
ered on the probability space (Φ′,B(Φ′), µ), i.e., there exists a σ-finite measure
π on Φ′∗ = Φ′ r {0} such that

Eµ
{

ei〈·,ϕ〉
}

= exp
(∫

Φ′∗

[
ei〈·,ϕ〉 − 1− i〈·, ϕ〉

]
dπ
)
, ∀ϕ ∈ Φ.

Similarly to the finite-dimensional case, besides the condition∫
Φ′∗

|〈·, ϕ〉|2dπ <∞, ∀ϕ ∈ Φ,

we assume that∫
Φ′∗

|〈·, ϕ〉|2dπ ≤ C0‖ϕ‖2n, ∀ϕ ∈ Φ, (4.3)

for some n ≥ 0 and some constant C0 > 0.

• Remark 4.4. Minlos’ Theorem 1.42 ensures the existence of a probability
measure µ for any given σ-finite measure such that

ϕ 7→
∫

Φ′∗

[
ei〈·,ϕ〉 − 1− i〈·, ϕ〉

]
dπ

is continuous, in particular if (4.3) holds. Note that (4.3) is equivalent to the
condition that

ϕ 7→
∫

Φ′∗

|〈·, ϕ〉|2dπ

is continuous. However, if we wish to replace the space Φ by a Banach space B
some difficulties appears and we cannot guarantee the existence of a probability
measure µ, e.g., see Rudiger [219].

Under the assumption (4.3), there is a separable Hilbert space Φ ⊂ H ⊂ Φ0,
with continuous and dense inclusion, and a nonnegative symmetric trace-class
operator R in L1(H) (i.e., R1/2 is a Hilbert-Schmidt operator), such that the
support of π is included in R(H) ⊂ H ⊂ Φ0, i.e.,

π
(
{χ ∈ Φ′ : 〈χ, ϕ〉 ≤ r}

)
= π

(
{h ∈ R(H) : 〈h, ϕ〉 ≤ r}

)
, ∀ϕ ∈ Φ, r ∈ R,
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and defining

π0(B) = π({h ∈ H∗ : R−1h ∈ B}), ∀B ∈ B(H∗)

or equivalently π0 = Rπ, with H∗ = H r {0}, we have∫
Φ′

ei〈·,ϕ〉dµ = exp
(∫

H∗

[
ei〈R·,ϕ〉 − 1− i〈R·, ϕ〉

]
dπ0

)
, ∀ϕ ∈ Φ.

The integrability condition becomes∫
H∗

|(R·, ϕ)|2dπ0 ≤ C0‖ϕ‖2H , ∀ϕ ∈ H,

for some constant C0 > 0, which yields∫
H∗

(Rh, h)π0(dh) ≤ C0 Tr(R) <∞.

Hence, Sazonov’s Theorem 1.41 shows that µ is actually supported in H, i.e., µ
is a compensated Poisson measure with parameter π = R−1π0 satisfying∫

H

ei(h,k)µ(dk) = exp
(∫

H∗

[
ei(Rh,k) − 1− i(Rh, k)

]
π0(dk)

)
, ∀h ∈ H.

Thus, by working on a nuclear countably Hilbertian space we are reduced to
the case of a Hilbert space. Now, we can justify

Eµ
{
〈·, ϕ〉

}
= 0 and Eµ

{
|〈·, ϕ〉|2

}
=

∫
H∗

|〈Rh,ϕ〉|2π0(dh), ∀ϕ ∈ Φ,

actually, we may take ϕ in H, replace the duality 〈·, ·〉 by (·, ·), and assume
H = Φ0.

Hence, the map ϕ 7→ 〈·, ϕ〉 allows us to identify the space H with a subspace
of L2(Φ′,B(Φ′), µ) = L2(H,B(H), µ) and then to call H̄ the Hilbert space ob-
tained as the closure of this subspace. Recalling that any ϕ in H the random
variable 〈·, ϕ〉 is a compensated Poisson variable with with parameter π, we
define the mapping J by setting

J : L2(H,B(H), µ)→ H,

J(ϕ) :=

∫
H

hϕ(h)µ(dh), ∀ϕ ∈ L2(H,B(H), µ),

but we consider J only as being from H̄ ⊂ L2(H,B(H), µ) into H. Since the
linearity and continuity of ϕ and Hölder inequality yield

ϕ(J(ϕ)) =

∫
H

|ϕ(x)|2 µ(dx),

‖J(ϕ)‖2
H
≤
(∫

H

|ϕ(x)|2 µ(dx)
)(∫

H

‖h‖2
H
µ(dh)

)
,
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the mapping J is one-to-one, continuous and linear. The image Hµ = J(H̄) is
continuously embedded in H as a Hilbert space with the inner product

(f, g)µ =

∫
H

J−1(f)(h) J−1(g)(h)µ(dh), ∀f, g ∈ Hµ.

Now, set H0
µ = J(H), which is dense in Hµ ⊂ H ⊂ H̄. Clearly, if f and g belong

to H0
µ then (f, g)

µ
= (J−1f, J−1g) = 〈J−1f, J−1g〉.

Let {e1, e2, . . .} be an orthonormal basis in Hµ with elements in H0
µ, and

for every h in H, consider the expression X =
∑
j〈h, J−1ej〉, which is a sum of

independent real-valued random variables ξj(ω) = 〈ω, J−1ej〉, with joint com-
pensated Poisson distribution

Eµ
{
ei

∑n
j=1 cjξj

}
=

∫
Rn∗

[
ei

∑n
j=1 cjsj − 1− i

n∑
j=1

cjsj
]
π̄n(ds), ∀c ∈ Rn,

where π̄n is the projection on Rn∗ of π, i.e., with hj = (h, J−1ej),

π̄n(B) = π
(
{h ∈ H∗ : (h1, · · · , hn) ∈ B, hj = 0, ∀j > n}

)
, ∀B ∈ B(Rn∗ ).

Thus

Eµ{
n∑
j=1

|ξj |2} =

∫
Rn∗

( n∑
j=1

s2
j

)
π̄n(ds) =

∫
H∗

〈Rhn, hn〉π0(dh),

where hn =
∑n
j=1〈h, J−1ej〉ej . Hence, the series X =

∑∞
j=1 ξj(ω)ej converges in

H̄ ⊂ L2(H,B(H), µ), i.e., it can be considered as a H̄-valued random variable
on the probability space (Ω,F , P ) = (H,B(H), µ). Because {e1, e2, . . .} is an
orthonormal basis in Hµ, the mapping

X(h) = 〈X,h〉 =

n∑
j=1

ξj 〈J−1ej , h〉 =

n∑
j=1

ξj (ej , Jh)µ

is a Hµ-valued random variable (almost surely) well defined for any h = J−1Jh
in Hµ, and called Poisson white noise.

Let {ξ1, ξ2, . . .} be a sequence of independent real-valued compensated Pois-
son random variables with parameters {π1, π2, . . .} in (complete) probability
space (Ω,F , P ), i.e.,

E
{
eirξj

}
= exp

(∫
R∗

[
eirs − 1− irs

]
πj(ds)

)
, ∀r ∈ R, j ≥ 1,

with πj satisfying∫
R∗
s2πj(ds) ≤ C0, ∀j ≥ 1, (4.4)

for some constant C0 > 0. Now, for any given sequence of nonnegative real
numbers r = {r1, r2, . . .}, define the measures π̄r,n and πj,rj on Rn as∫

Rn
f(s)π̄r,n(ds) =

n∑
j=1

∫
R
fj(
√
rjsj)πj(dsj) =

n∑
j=1

∫
Rn
f(s)πj,rj (ds),
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for any n ≥ 1 and for every positive Borel function f in Rn satisfying f(0) = 0,
where s = (s1, . . . , sn) and f1(s1) = f(s1, 0, . . . , 0), f2(s2) = f(0, s2, . . . , 0), . . . ,
fn(sn) = f(0, 0, . . . , sn), i.e.,

πj,rj (ds) = δ0(ds1) . . . δ0(dsj−1)πj(r
−1/2
j dsj)δ0(dsj+1) . . . δ0(dsn),

where δ0 is the Dirac measure at 0 and πj(r
−1/2
j dsj) = 0 if rj = 0. We can

check that ξ̄r,n = (
√
r1ξ1, . . . ,

√
rnξn) has a compensated Poisson distribution

with parameter π̄r,n, i.e.,

E
{
eic·ξ̄r,n

}
=

∫
Rn∗

[
eic·s − 1− ic · s

]
π̄r,n(ds), ∀c ∈ Rn,

where the dot “·” denotes the scalar product in Rn. Clearly, (4.4) implies

n∑
j=1

∫
Rn∗
|sj |2π̄r,n(ds) ≤ C0

n∑
j=1

rj , ∀n ≥ 1,

with the same constant C0 > 0.
Moreover, we may regard the measures π̄r,n and πj,rj as being defined either

on Rn or directly on the infinite product R∞ (the space of all sequences), namely,∫
R∞

f(s)π̄r,n(ds) =

∫
Rn
f(s1, . . . , sn, 0, 0, . . .)π̄r,n(ds)

or equivalently,

πj,rj (ds) = δ0(ds1) . . . δ0(dsj−1)πj(r
−1/2
j dsj)δ0(dsj+1)δ0(dsj+2) . . . ,

and π̄r,n =
∑n
j=1 πj,rj . Note the projection type property

π̄r,n(B) = π̄r,n+k

(
{s ∈ R∞ : (s1, . . . , sn) ∈ B, sj = 0, j > n}

)
,

for any B in B(Rn). Therefore, the series π̄r =
∑∞
j=1 πj,rj defines a measure on

R∞. Hence, if the series
∑∞
j=1 rj is convergent then∫

R∞
|s|2π̄r(ds) =

∞∑
j=1

∫
Rn∗
|sj |2π̄r,n(ds) ≤ C0

∞∑
j=1

rj <∞, (4.5)

i.e., π̄r becomes a σ-finite measure on `2∗ = `2 r {0}, where `2 is the Hilbert
space of square-convergent sequences. Also, we have∫

`2∗

f(s)π̄r(ds) = lim
n

∫
`2∗

f(s)π̄r,n(ds) =

∞∑
j=1

∫
`2∗

f(s)πj,rj (ds),

for any continuous function f such that |f(s)| ≤ |s|2, for any s in `2∗. Moreover,
since rj = 0 implies πj,rj = 0 on `2∗, we also have πj,rj (R

−1{0}) = 0 for any j,
where R is the nonnegative symmetric trace-class operator s 7→ (r1s1, r2s2, . . .).
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Hence π̄r(R
−1{0}) = 0. This means that support of π̄r is contained in R(`2∗)

and we could define a new pre-image measure by setting π̄0(B) = π̄r(RB), for
any B in B(`2∗) with the property∫

`2∗

f(s)π̄(ds) =

∫
`2∗

f(Rs)π̄0(ds), ∀f ≥ 0 and measurable.

It is clear that estimate (4.5) identifies the measures only on `2∗ and so, we may
(re)define all measures at {0} by setting

π̄r({0}) = π̄r,n({0}) = πj,rj ({0}) = π̄0({0}) = 0.

Then we can consider the measures as σ-finite defined either on `2 or on `2∗.
Now, let H be a separable Hilbert space, R be a nonnegative symmetric

(trace-class) operator in L1(H), and {e1, e2, . . .} be an orthonormal basis of
eigenvectors of R, i.e., Rej = rjej , (ej , ek) = 0 if j 6= k, |ej | = 1, for every j,
and Tr(R) =

∑∞
j=1 rj <∞, rj ≥ 0. Note that the kernel of R may be of infinite

dimension, i.e., there infinite many rj = 0. Consider the product measure π on
H∗ = H r {0}, with support in R(H), defined as

π
(
{h ∈ H∗ : (h, ej) ∈ Bej , ∀j}

)
= π̄r(B), ∀B ∈ B(H∗)

or equivalently∫
H∗

f(h)π(dh) =

∫
`∗

f(s1e1 + · · ·+ snen + · · · )π̄r(ds),

nonnegative Borel function f in H∗. In particular,∫
H

|h|2π(dh) =

∫
H∗

∣∣∣ ∞∑
j=1

sjej

∣∣∣2π̄r(ds) =

∞∑
j=1

∫
`∗

s2
jrjπj(ds) ≤ C0 Tr(R)

and if π0 = Rπ, i.e., π0(B) = π(RB), for every B in B(H∗), then∫
H∗

f(h)π(dh) =

∫
H∗

f(Rh)π0(dh),

for any nonnegative Borel measurable function f on H∗.

• Remark 4.5. Recall the following result, e.g., see Federer [79, Section 2.2.13,
pp. 69]. Let X be a complete separable metric space, Y be a Hausdorff space,
f : X → Y be a continuous function, and µ be a measure Y such that every
closed subset of Y is µ measurable. Then the f image of every Borel subset of X
is µ measurable. This result is classic in the general study of Borel σ-algebras,
analytic sets and universally measurable sets, i.e., the fact that a projection of
a Borel measurable set is analytic and so, it is universally measurable, e.g., see
Dellacherie and Meyer [58, Section III.75–85, pp. 243–254], Dudley [62, Section
13.2, pp 493–499] or Parthasarathy [195, Section I.3]. It is now clear that the
above measure π0 can be defined in term of π, provided that π has support
contained in R(H∗). Note that for any orthonormal basis {ej} in H and any
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measure m on H with m({0}) = 0 we have m(B) =
∑
jm(ejB), for any B in

B(H), where ejB is the (orthogonal) projection of B in the ej direction, i.e.,
ejB = {(b, ej)ej : b ∈ B}. Thus, for any integrable function f with f(0) = 0 we
have ∫

H

f(h)m(dh) =
∑
j

∫
H

f(h)m(ejdh) =
∑
j

∫
H

f(ejh)m(dh),

where f(ejh) = f
(
(h, ej)ej

)
and m(ejdh) is the measure B 7→ m(ejB).

Therefore, the H-valued random variable

X =

∞∑
j=1

√
rj ξj ej

satisfies

E{|X|2} =

∞∑
j=1

rj E{|ξj |2} =

∞∑
j=1

rj

∫
R∗
s2πj(ds),

and

E
{
ei(h,X)

}
=

∞∏
j=1

E
{
ei
√
rj(h,ej)ξj

}
=

= exp
( ∞∑
j=1

∫
R∗

[
ei
√
rj(h,ej)sj − 1− i

√
rj(h, ej)sj

]
πj(dsj)

)
=

= exp
( ∞∑
j=1

∫
`2∗

[
ei(h,ej)s − 1− i(h, ej)s

]
π̄r(ds)

)
,

i.e.,

E
{
ei(h,X)

}
= exp

(∫
H∗

[
ei(h,k) − 1− i(h, k)

]
π(dk)

)
=

= exp
(∫

H∗

[
ei(Rh,k) − 1− i(Rh, k)

]
π0(dk)

)
,

for every h in H. Thus, X is a compensated Poisson random variable with values
in H and Lévy measure π in H∗. Next, the mapping

h 7→ X(h) =

∞∑
j=1

√
rj ξj (h, ej)

from H into L2(Ω,F , P ) is linear, X(h) is a (real-valued) compensated Poisson
random variable with covariance E{[X(h)]2} = |h|2, for any h in H. Thus the
space {X(h) : h ∈ H} is a Poisson subspace of L2(Ω,F , P ), which is isomorphic
to H. In particular E{X(f)X(g)} = (f, g), for any f and g in H, and X(f) is
a compensated Poisson variable independent of X(g) if (f, g) = 0, i.e., if f and
g are orthogonal. The family {X(h) : h ∈ H} is called an compensated Poisson
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stochastic process. If H = L2(A,A, µ), where (A,A, µ) is a σ-finite measure
space, the mapping X is called a Poisson measure or Poisson white noise with
intensity µ on (A,A). When F belongs to A we write X(F ) := X(1F ). Thus,
if F and G are sets with µ(F ) < ∞ and µ(G) < ∞ then E{X(F )X(G)} =
µ(F ∩ G), and so that X(F ) and X(G) are independent when F and G are
disjoint. Notice that if {Fk : k = 1, 2, . . .} is a pairwise disjoint sequence of
subset in A, F = ∪kFk with µ(F ) < ∞ then X(F ) =

∑
kX(Fk) almost surely

so that some regularity (as in the case of regular conditional probability) is
need to ensure the existence of a good selection, in order that F 7→ X(F, ω) is
a measure for ω outside of a set of probability zero.

Sometimes, the initial point is a family of compensated Poisson random
variables X = {X(h) : h ∈ H} in a complete probability space (Ω,F , P ),
where the index H is a separable Hilbert space, the σ-algebra F is the small-
est complete σ-algebra such that X(h) is measurable for any h in H and
E{X(f)X(g)} = (f, g)

H
, for any f and g in H. This is called a compen-

sated Poisson process on H. For the particular case of a standard Poisson
process (and some similar one, like symmetric jumps) we have the so-called
Charlier polynomials cn,λ(x), an orthogonal basis in L2(R+) with the weight
α(x) =

∑∞
n=1 1{x≥n}e

−λλn/n!, λ 6= 0, which are the equivalent of Hermit poly-
nomials in the case of a Wiener process. Charlier polynomials are defined by
the generating function

t 7→ e−λt(1 + t)x =

∞∑
n=0

cn,λ(x)
tn

n!
,

or explicitly by the expression

cn,λ(x) =

n∑
k=0

(
n

k

)(
x

k

)
k! (−λ)n−k

and they satisfy the orthogonal relations∫ ∞
0

cm,λ(x) cn,λ(x) dα(x) =

∞∑
k=1

cm,λ(k) cn,λ(k) e−λ
λk

k!
= 0, if m 6= n

and ∫ ∞
0

cn,λ(x) cn,λ(x) dα(x) =

∞∑
k=1

cn,λ(k) cn,λ(k) e−λ
λk

k!
= λnn!.

Also the three-terms recurrence formula

cλ,n+1(x) = (x− n− λ)cλ,n(x)− nλcλ,n−1(x),

and several other properties, e.g., see Chihara [41] or Szegö[242].
The previous analysis applied to the particular case when a Lévy measure

π is given on a separable Hilbert space H. The measure π is constructed from a
nonnegative symmetric (trace-class) operator R in L1(H) with eigenvalues and
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eigenvectors {rj , ej , j = 1, 2, . . .}, where {ej} is a orthonormal basis in H and∑
j rj <∞, and a sequence {πj} of Lévy measures on R∗ satisfying (4.4). Thus,

we define the Lévy measures π̄r,n on Rn satisfying (4.5), which induces the Lévy
measures π̄r and π̄ on `2∗ and π and π0 on H∗, satisfying∫

H∗

|h|2
H
π(dh) =

∫
H∗

|R1/2h|2
H
π0(dh) <∞. (4.6)

By means of Sazonov’s Theorem 1.41, there is a probability measure P on
(Ω,F), with Ω = L2(R, H∗) and F = B(Ω), such that for any φ in L2(R, H∗)
we have

E
{
ei〈·,φ〉

}
= exp

(∫
R

dt

∫
H∗

[
ei(φ(t),h) − 1− i(φ(t), h)

]
π(dh)

)
=

= exp
(∫

R
dt

∫
H∗

[
ei(Rφ(t),h) − 1− i(Rφ(t), h)

]
π0(dh)

)
,

where 〈·, ·〉 denotes the inner product in L2(R, H∗) and (·, ·) is the inner product
in H. Hence, we can pick a H∗-valued random variable p̄(t) in ω 7→ (ω, ·1(0,t))
such that t 7→ p̄(t) is a cad-lag stochastic process, called a (H∗-valued) compen-
sated Poisson point process with Lévy measure π.

On the other hand, consider the space Ω = L2
π(R×H∗) with the σ-finite prod-

uct measure dt×π(dh) on R×H∗. Again, by means of Sazonov’s Theorem 1.41
(remark that the condition (4.6) is not being used), there is a probability mea-
sure P on (Ω,F), with F = B(Ω), such that

E
{
ei〈·,ϕ〉

}
= exp

(∫
R

dt

∫
H∗

[
eiϕ(t,h) − 1− iϕ(t, h)

]
π(dh)

)
,

for any ϕ in L2
π(R×H∗), where now 〈·, ·〉 denotes the inner product in L2

π(R×
H∗). Note that if {(t, y) : ϕ1(t, y) 6= 0} and {(t, y) : ϕ2(t) 6= 0} are disjoint in
R×H∗ (except for a set of dt×π(dy) measure zero), then the random variables
(ω, ϕ1) and (ω, ϕ2) are independent. Now, in particular, if ϕ = 1(0,t)1B , t > 0
and B in B(H∗), with π(B) < ∞, we can pick a real-valued random variable
p(t, B) in

ω 7→
∫
R

(∫
B

ω(t, h)π(dh) + π(B)
)
ϕ(t)dt,

such that t 7→ p(t, B) is a cad-lag stochastic process and B 7→ p(t, B) is a
(random) measure, called a Poisson (integer) measure. Actually, p is a measure
in both variables. These stochastic process has the following properties:

(1) For any B in B(H∗), with π(B) <∞, the real-valued process p(·, B) or the
H-valued process p̄ has independent increments.

(2) For any sequence of disjoint sets B1, . . . , Bn in B(H∗) the stochastic pro-
cesses p(t, B1), . . . , p(t, Bn) are independent.

(3) The process p(t, B) is a Poisson process with parameter π(B) and p̄(t) is
a compensated Poisson point process, i.e., for any sequences of disjoint sets
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B1, . . . , Bn in B(H∗) with π(Bi) < ∞, and 0 = t0 < t1 < · · · < tn−1 < tn we
have

E
{
ei

∑n
j=1 rj(p(tj ,Bj)−p(tj−1,Bj))

}
= exp

( n∑
j=1

(tj − tj−1)π(Bj)
[
eirj − 1

])
,

for any sequence r1, . . . , rn in R, whilst for the H-valued process p̄(t) we obtain

E
{
ei

∑n
j=1(p̄(tj)−p̄(tj−1),hj)

}
=

= exp
( n∑
j=1

(tj − tj−1)

∫
H∗

[
ei(hj ,h) − 1− i(hj , h)

]
π(dh)

)
=

= exp
( n∑
j=1

(tj − tj−1)

∫
H∗

[
ei(Rhj ,h) − 1− i(Rhj , h)

]
π0(dh)

)
,

for any sequence h1, . . . , hn in H.

(4) For each s > t ≥ 0, we have E{p̄(t)} = 0,

E
{
|p̄(s)− p̄(t)|2

}
= (s− t)

∫
H∗

|h|2π(dh) = (s− t)
∫
H∗

|R1/2h|2π0(dh),

and p(0, B) = 0 almost surely. Moreover, using the independence of increments
we find that

E
{
|p̄(r)− p̄(s)|2|p̄(s)− p̄(t)|2

}
= (s− t)(r − s)

(∫
H∗

|h|2π(dh)
)2

,

for any r > s > t ≥ 0.

(5) For any deterministic function ϕ in L2
π(R×H) and φ in L2(R, H), we can

define the (stochastic) integrals∫
R×H∗

ϕ(t, h)p̃(dt,dh) = 〈·, ϕ〉
L2
π(R×H)

=

∫
R

dt

∫
H∗

ω(t, h)ϕ(t, h)π(dh),∫
R

(
φ(t), p̄(dt)

)
H

= 〈·, φ〉
L2(R,H)

=

∫
R

(
ω(t), φ(t)

)
H

dt,

where p̃(t, B) = p(t, B) − tπ(B). In particular, if we assume (4.6) then π inte-
grates h 7→ |h|2, and we can define the stochastic integral

ω 7→
∫
H∗

hp(t, dh) =

∫
(0,t]

dt

∫
H∗

ω(t, h)hπ(dh),

which has the same distribution as the compensated Poisson point process p̄(t)
obtained before.

The law of the process p̄ on the canonical space either D([0,∞), H) or
D([0,∞), H∗) is called a (H-valued) compensated Poisson measure with Lévy
measure π.
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4.1.3 Integer Random Measures

In the same way that a measure (or distribution) extends the idea of a function,
random measures generalize the notion of stochastic processes. In terms of
random noise, the model represents a noise distribution in time and some other
auxiliary space variable, generalizing the model of noise distribution only in the
time variable. Loosely speaking, we allow the index to be a measure. The
particular class where the values of the measure are only positive integers is of
particular interest to study the jumps of a random process.

Returning to the sample space, we know that an element ω in D([0,∞),Rd)
has at most a countable number of jumps, with only a finite number of jumps
of size greater than a positive quantity. For any Borel set B in B(Rd∗) with
Rd∗ := Rd r {0} (so-called punctured d-space) the number of jumps before a
time t and with values in B are finite if B is compact. Thus, for any (cad-lag)
stochastic process with values in Rd or equivalently for any random variable X
with values in D([0,∞),Rd) we can define a measure νX with integer values, as
the number of jumps in B within a bounded time interval, i.e.,

νX(B×]a, b], ω) := #{t : a < t ≤ b, X(t, ω)−X(t−, ω) ∈ B}, (4.7)

for any b > a ≥ 0, B in B(Rd∗), and where # denotes the number of elements
(which may be infinite) of a set. Sometime we use the notation νX(B, ]a, b], ω)
and we may look at this operation as a functional on D([0,∞),Rd), i.e., for
every b > a ≥ 0 and B in B(Rd∗),

ν(B, ]a, b], ω) :=
∑
a<t≤b

1B

(
ω(t)− ω(t−)

)
,

so that νX(B×]a, b], ω) = ν(B, ]a, b], X(·, ω)). For each ω, this is Radon measure
on Rd∗×(0,∞) with integer values. By setting ν(Rd∗×{0}) := 0 we may consider
ν as a measure on Rd∗ × [0,∞).

This measure ν is used as a characterization of the jumps δX := (δX(t) =
X(t) − X(t−) : t > 0), in the sense that ν vanishes if and only if the process
X is continuous. Note that for any continuous function f(t, x) which vanishes
near x = 0 we have∫

Rd∗×(a,b]

f(x, t)ν(dζ,dt) =
∑

δX(t)6=0

1{a<t≤b}f
(
δX(t), t

)
,

where the sum is finite. In this sense, the random measure ν contains all infor-
mation about the jumps of the process X. Moreover, remark that ν is a sum
of Dirac measures at (δX(t), t), for δX(t) 6= 0. This sum is finite on any set
separated from the origin, i.e., on any sets of the form{

(x, t) ∈ Rd∗ × [0,∞) : t ∈]a, b], |x| ≥ ε
}
,

for every b > a ≥ 0 and ε > 0.
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Recall that the Skorokhod’s topology, given by the family of functions defined
for ω in D([0,∞),Rd) by the expression

w(ω, δ, ]a, b]) := inf
{ti}

sup
i

sup{|ω(t)− ω(s)| : ti−1 ≤ s < t < ti}

where {ti} ranges over all partitions of the form a = t0 < t1 < · · · < tn−1 <
b ≤ tn, with ti − ti−1 ≥ δ and n ≥ 1, makes D([0,∞),Rd) a complete separable
metric space. Again, note that

ν({z ∈ Rd : |z| ≥ w(ω, δ, ]a, b])}, ]a, b], ω) ≤ b− a
δ

,

for every δ > 0, and b > a ≥ 0.
Another point is the following fact that for any set B in Rd∗ with a positive

distance to the origin, we can define the sequence of jump-times and jump-size
as

τ0(B, ]a, b], ω) := a, ζ0(B, ]a, b], ω) := 0,

τk(B, ]a, b], ω) := inf{t ∈]τk−1, b] : ω(t)− ω(t−) ∈ B}, k ≥ 1,

ζk(B, ]a, b], ω) := ω(τk)− ω(τk−), k ≥ 1,

for any b ≥ a ≥ 0 and 1 ≤ k ≤ ν(B, ]a, b], ω). Thus, if ωn is a sequence
converging to ω in D([0,∞),Rd), and B is also an open set with boundary ∂B
satisfying ν(∂B, ]a, b], ω) = 0, and such that the first jump ω(a) − ω(a−) and
the last jump ω(b)− ω(b−) have a positive distance to B, then

ν(B, ]a, b], ωn)→ ν(B, ]a, b], ω),

τk(B, ]a, b], ωn)→ τk(B, ]a, b], ω),

ζk(B, ]a, b], ωn)→ ζk(B, ]a, b], ω),

for any k = 0, 1, . . . , ν(B, ]a, b], ω).

Definition 4.6 (integer measure). Let (Ω,F , P,F(t) : t ≥ 0) be a filtered space.
A random measure on a Polish space E is a random variable ν with values in the
space of σ-finite measures on the Borel σ-algebra B(E). In most of the cases, the
Polish space E is locally compact and the random variable ν take values in the
space of Radon (nonnegative) measures (finite on every compact sets) on B(E).
If the time-variable is singled-out, e.g., E = Rm∗ × [0,∞) then it is required
that ν(Rm∗ × {0}) = 0. In this case a random measure on Rm∗ × [0,∞) is called
a optional or predictable (respectively, locally integrable) if for any stopping
time τ < ∞ and any compact subset K of Rm∗ the stochastic process t 7→
ν(K × [0, t ∧ τ ]) is optional or t 7→ ν(K × [0, t ∧ τ [) is predictable (respectively,
E{ν(K × [0, t ∧ τ ])} < ∞ for every t > 0). Moreover, an optional locally
integrable random measure ν is called integer measure or integer-valued random
measure if it takes values in {0, 1, . . . ,∞}, ν(Rm∗ ×{0}) = 0 and ν(Rm∗ ×{t}) = 0
or = 1 for any t > 0.
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When referring to an integer-valued random measure, the above defini-
tion implies that we mean an optional locally integrable integer-valued random
measure. Moreover, the local integrability ensures that the product measure
ν(dx× dt, ω)P (dω) is σ-finite. It is clear that we may replace Rm∗ by a locally
compact Polish E. An essential point is the use of the following two properties:
(1) the σ-algebra E is generated by a countable algebra and (2) any (E, E)-
valued random variable x on a probability space (Ω,F , P ) admits a regular
conditional distribution relative to a sub-σ-algebra G of F . This disintegration
property (2) can be restated as: for any positive and finite measure m on the
product space (E×B, E ×B) there exist a measurable kernel k(dx, b) such that
m(dx, db) = k(dx, b)mB(db), where mB(db) := m(E,db) is the B-marginal dis-
tribution of m. Clearly, this is related to the conditional property, and this is
used to define the compensator, a key instrument for the stochastic integral.
These properties are satisfied by the so-called Blackwell spaces, see Dellacherie
and Meyer [58]. Only the case of locally compact Polish spaces will be used
here.

A typical example of optional (respectively, predictable) integer measure on
Rm∗ is the one constructed by (4.7) for an adapted (i.e., optional) (respectively,
predictable) locally integrable stochastic process with values in Rm. Notice that
integrability at infinity is not an issue in the above definition of integer-valued
measure, the key part is the integrability away of the origin, i.e., we may use
E{ν(B × [0, t])} < ∞, for any Borel subset B of Rm∗ with a positive distance
to the origin. Certainly, this can be viewed as a localization (via a sequence of
stopping times) of the integral condition

E
{∫

Rm∗ ×[0,t]

(|ζ|2 ∧ 1)ν(dζ,dt)
}
<∞,

for every t ≥ 0, which is used later for Lévy measures.
Given an integer-valued random measure ν on Rm∗ , the set {t : ν(Rm∗ ×{t}) =

1} is countable for any ω and can be written as a sequence (τn(ω) : n = 1, 2, . . .).
Moreover, because ν assumes only integers values, there is a sequence (an(ω) :
n = 1, 2, . . .) such that ν({(an, τn)}) = 1 and ν(Rm∗ × [0,∞) r {(an, τn)}) = 0.
Because ν is finite on compact subsets of Rd∗, for each ε, t > 0 there exists only
a finite number of (an, τn) such that ε ≤ |an| ≤ 1/ε and τn ≤ t. Hence we may
always rewrite ν as

ν(B,ω) =
∑
n

1(an(ω),τn(ω))∈B , ∀B ∈ B(Rm∗ × [0,∞)),

Aεν(t, ω) :=
∑
n

an(ω)1ε≤|an|≤1/ε 1τn(ω)≤t, ∀t ≥ 0,
(4.8)

this determines an optional locally integrable jump process Aεν on Rm∗ , and so
the following expression for every F in F(s) and t ≥ s ≥ 0,

µε(]s, t]× F ) := E
{

[Aεν(t)−Aεν(s)]1F
}
, (4.9)

defines a bounded (Rd-valued) measure on [0,∞)× Ω.
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If the jump processes {Aεν : ε > 0} have a uniformly locally integrable
bounded variation, i.e., E{

∑
n |an|} <∞,, then Aν = (

∑
n an 1τn≤t : t ≥ 0) has

a locally integrable bounded variation (when d = 1 we have a signed measure
µε) and a measure µ (limit as ε → 0, which is called Doléans measure), can
be defined. To come back from this (Rd-valued) measure µε to the process
Aε (or to the integer-valued random measure ν), we need µε to vanish for
any evanescent set, i.e., µε(N) = 0 for any subset N of [0,∞) × Ω such that
P (∪t{ω : (t, ω) ∈ N)}) = 0. The point is that the integer measure ν captures all
the features of the family of processes Aε, even when A can not be defined. In
other words, if Aε is a semi-martingale we will see that µε may define a measure
as ε vanishes.

Returning to the compensator, as in Definitions 3.5 (in Chapter 3) and 4.6,
we have a unique dual predictable projection νp of any optional locally integrable
random measure ν, characterized (almost surely) as being a predictable random
measure such that E{ν(K × [0, t ∧ τ ]) − νp(K × [0, t ∧ τ ])} = 0 for any for
any stopping time τ < ∞, any compact subset K of Rm∗ and any t > 0, or
equivalently the process t 7→ ν(K×]0, t])− νp(K×]0, t]) is a martingale. Hence,
by a monotone class argument, we have

E
{∫

Rm∗ ×[0,∞)

X(z, t) ν(dz,dt)
}

= E
{∫

Rm∗ ×[0,∞)

X(z, t) νp(dz,dt)
}
,

for any nonnegative function (z, t, ω) 7→ X(z, t, ω) measurable with respect
to the product σ-algebra B(Rm∗ ) × O (with O being the optional σ-algebra)
where the product measure ν(dz,dt, ω)P (dω) is defined. Recall that we assume
ν(Rm∗ × {0}) = 0, so that ν(K × {0}) = νp(K × {0}) = 0. Moreover, based
on the disintegration property, the predictable compensator can be written as
νp(dz,dt, ω) = k(dz, t, ω)dA(t, ω), where A is a integrable predictable increasing
process and k(dz, t, ω) is a measurable kernel. We refer to Bichteler [25, Sec-
tions 3.10, 4.3, pp. 171–186, 221–232], He et al. [105], Jacod and Shiryaev [117,
Section II.1, pp. 64–74], and Kallenberg [120] for a full discussion on random
measures, only some results are reported here.

Theorem 4.7. Let νp be compensator of an integer-valued random measure ν.
Then the predictable random measure νp (which is not necessarily an integer-
valued random measure) has the following properties. First (a) its predictable
support, namely the set {(t, ω) : 0 < νp(Rm∗ × {t}, ω) ≤ 1}, can be written as a
sequence of predictable stopping times, i.e., {(τpn(ω), ω) : n = 1, 2, . . .} with τpn a
predictable stopping time for any n, and P ({ω : 0 < νp(Rm∗ ×{t}, ω) ≤ 1}) = 1,
for any t ≥ 0. Next (b) we have

νp(K × {τ}) = E
{∑

n

1an∈K | F(τ−)
}
,

on the predictable support, for any predictable stopping time τ < ∞ and any
compact subset K of Rm∗ . Moreover, if ν is defined as the number of jumps (4.7)
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of a (special) semi-martingale X then the predictable processes in t > 0,√ ∑
0<s≤t

νp(Rm∗ × {s}) and

√∫
Rm∗ ×]0,t]

(|z|2 ∧ |z|) νp(dz,dt),

are locally integrable. They also are integrable or (locally) square integrable if
the semi-martingale X has the same property. Furthermore, X is quasi-left
continuous if and only if its predictable support is an empty set, i.e., νp(Rm∗ ×
{t}) = 0, for any t ≥ 0.

Note if ν(dz,dt, ω) is a quasi-left continuous integer random measure then its
predictable compensator can be written as νp(dz,dt, ω) = k(dz, t, ω)dA(t, ω),
where k is a measurable (predictable) kernel and A is a continuous increasing
process.

To check the point regarding the quasi-left continuity for a square integrable
martingale X, let τ < θ < ∞ be given two stopping times. Since, for any
compact subset K of Rd∗ the quantity

E
{ ∑
τ<t≤θ

1δX(t)∈K |δX(t)|2
}

= E
{∫

K×]τ,θ]

|z|2 ν(dz,dt)
}

is a finite, the number of jumps is finite for each ω and ν can be replaced by νp

in the above equality, we deduce

ε2 E{ν(K×]τ, θ]) | F(τ)} ≤ E
{∫

K×]τ,θ]

|z|2 ν(dz,dt) | F(τ)
}
≤

≤ E{|X(θ)|2 − |X(τ)|2 | F(τ)},

where {|z| < ε} ∩ K = ∅, ε > 0. Hence, ν(K × [0, t]) and νp(K × [0, t]) are
quasi-left continuous if and only if X is quasi-left continuous.

Note that the previous theorem selects a particular representation (or real-
ization) of the compensator of an integer-valued random measure suitable for
the stochastic integration theory. Thus, we always refer to the compensator
satisfying the properties in Theorem 4.7. Moreover, given an integer-valued
random measure ν the process νqc(]0, t ∧ τ ]×K) given by the expression

νqc(K×]0, t ∧ τ ]) = ν(K×]0, t ∧ τ ])−
∑

0<s≤t∧τ

νp(K × {s}),

is quasi-left continuous, and its compensator is the continuous part of the com-
pensator νp, denoted by νpc . Hence, for any stopping time τ < ∞ and any
compact subset K of Rm∗ the stochastic process t 7→ ν̃qc(K×]0, t ∧ τ ]), with
ν̃qc := νqc − νpc is a local (purely discontinuous) martingale, whose predictable
quadratic variation process obtained via Doob-Meyer decomposition is actually
the process νpc (K×]0, t ∧ τ ]), i.e.,

〈ν̃qc(K × [0, · ∧ τ ])〉(t) = νpc (K×]0, t ∧ τ ]), ∀ t ≥ 0.
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Thus, the optional locally integrable random measure ν̃ := ν−νp = ν̃qc is called
the (local) martingale random measure associated with ν or with the cad-lag
process X.

• Remark 4.8. It is clear that two (or more) random measures ν1 and ν2 are
called independent if for any stopping time τ < ∞ and any compact subset K
of Rm∗ the stochastic process t 7→ ν1(K× [0, t∧ τ ]) and t 7→ ν2(K× [0, t∧ τ ]) are
independent. Therefore, if ν1 and ν2 are defined as the number of jumps (4.7)
of two (or more) (special) semi-martingale X1 and X2 then the (purely) jumps
processes δX1 and δX2 are independent if and only the random measures ν1 and
ν2 (and therefore νp1 and νp1 ) are so. However, the random measure associated
via (4.7) with the jumps (δX1, δX2) considered in R2m

∗ , and the almost product
measure ν in R2m

∗ defined by ν(K1 × K2×]0, t]) = ν1(K1×]0, t]) ν1(K2×]0, t]),
for every K1,K2 compact subset of Rm∗ and t > 0 may not agree. Certainly,
they are the same if the process X1 and X2 do not jump simultaneously. In
particular, if X1 and X2 are Poisson processes with respect to the same filtration
then they are independent if and only if they never jump simultaneously.

A fundamental example of jump process is the simple point process (N(t) :
t ≥ 0) which is defined as a increasing adapted cad-lag process with nonnegative
integer values and jumps equal to 1, i.e., δN(t) = 0 or δN(t) = 1 for every t ≥ 0,
and N(t) represents the number of events occurring in the interval (0, t] (and so
more then one event cannot occur exactly a the same time). Given (N(t) : t ≥ 0)
we can define a sequence {Tn : n ≥ 0} of stopping times Tn := {t ≥ 0 : N(t) =
n}. Notice that T0 = 0, Tn < Tn+1 on the set {Tn+1 <∞}, and Tn →∞. Since

N(t) =

∞∑
n=0

1Tn≤t, ∀t ≥ 0,

the sequence of stopping times completely characterizes the process, and because
N(Tn) ≤ n, any point process is locally bounded. An extended Poisson process
N is an adapted point process on the filtered space (Ω,F , P,F(t) : t ≥ 0)
satisfying:

(1) E{N(t)} <∞, for every t ≥ 0,

(2) N(t)−N(s) is independent of F(s), for every t ≥ 0,

The function a(t) := E{N(t)} is called intensity (of N). It can be proved that if
the function a is continuous then N is a Poisson process and if a(t) = t for every
t ≥ 0 then N is a standard Poisson process. In this example, the compensator
can be calculated, it can be proved (e.g., Jacod and Shiryaev [117, Proposition
I.3.27, pp. 34–35]) that the compensator of an extended Poisson process is equal
to its intensity, i.e., Np(t) = E{N(t)} and that N is quasi-left continuous if and
only if it is a Poisson process (i.e., its intensity is continuous). In general, even
though the jumps are always countable they can not be ordered as in a point
process. This yields the notion of integer-valued random measures.

Our main interest is on integer-valued random measure νX associated with
a quasi-left continuous semi-martingale X, so that t 7→ νpX(K×]0, t ∧ τ ]) is
continuous and for ν̃X := νX − νpX we have the following expressions for the
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optional and predictable quadratic variation processes

[ν̃X(K×]0, · ∧ τ ])](t) = 〈ν̃X(K×]0, · ∧ τ ])〉(t) = νpX(K×]0, t ∧ τ ]), (4.10)

for any t > 0, any stopping time τ < ∞ and any compact subset K of Rm∗ . Ig-
noring the local character of the semi-martingale X, this yields the compensated
jumps equality

E
{∣∣∣ ∫

K×]0,t∧τ ]

ϕ(z, s) ν̃X(dz,ds)
∣∣∣2} =

= E
{∫

K×]0,t∧τ ]

|ϕ(z, s)|2 νpX(dz,ds)
}

and estimate

E
{

sup
0≤t≤T

∣∣∣ ∫
K×]0,t∧τ ]

ϕ(z, s) ν̃X(dz,ds)
∣∣∣2} ≤

≤ 4E
{∫

K×]0,T∧τ ]

|ϕ(z, s)|2 νpX(dz,ds)
}
,

for any Borel measurable function ϕ(z, s) such that the right-hand side is finite.
Thus, we can define the integral of ϕ with respect to ν̃X

ν̃X(ϕ1]0,t∧τ ]) := lim
ε→0

∫
{|x|≥ε}×]0,t∧τ ]

ϕ(z, s)[νX(dz,ds)− νpX(dz,ds)], (4.11)

where ϕ vanishes for |z| large and for |z| small. All this is developed with the
stochastic integral, valid for any predictable process instead of ϕ1]0,t∧τ ]. The
point here is that the integral∫

{|x|<1}×]0,t∧τ ]

z ν̃X(dz,ds)

is meaningful as a limit in L2 for every ϕ square integrable with respect to νpX ,
and the compensated jumps estimate holds.

In this way, the stochastic process X and the filtered space (Ω,F , P,F(t) :
t ≥ 0) determine the predictable compensator νpX . Starting from a given integer-
valued random measure ν and by means of the previous Theorem 4.7, we can
define its compensated martingale random measure ν̃ := ν − νp, where νp is
the compensator. The Doléans measure on Rm∗ × [0,∞) × Ω relative to the
integer measure ν is defined as the product measure µ := ν(dz,ds, ω)P (dω),
i.e., associated with the jumps process ZK induced by ν, namely, for every
compact subset K of Rm∗

ZK(t, ω) :=

∫
K×]0,t]

z ν(dz,ds), ∀t ≥ 0.

Therefore whenever ν integrate the function z 7→ |z| we can consider the process
ZRm∗ as in (4.9). Conversely, if a given (m-valued) Doléans measure µ vanishes
on any evanescent set, i.e., µ(K ×N) = 0 for every compact K of Rm∗ and for
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any subset N of [0,∞) × Ω such that P (∪t{ω : (t, ω) ∈ N)}) = 0, then there
is an optional (Rm-valued) jump process A with integrable bounded variation
associated with µ. This argument can be localized as long as we assume νp(]0, t∧
τ)×K) <∞, for any compact K in Rm (not only in Rm∗ ) to get a jump process
A with locally integrable bounded variation path associated to ν. Now, for this
jump process A we can defined an integer-valued measure ν with the same initial
predictable compensator νp.

The following canonical representation of (special) semi-martingale holds.
Let νX be the (random) integer measure associated with the semi-martingale
X, namely, νX(B×]a, b]) is the number of jumps on the time interval (a, b] of
the process X with a value δX belonging to the set B, i.e. for every b > a ≥ 0
and B in B(Rd∗),

νX(B×]a, b]) := #{t : a < t ≤ b, X(t)−X(t−) ∈ B},

and let νpX be its (dual predictable) compensator (satisfying the properties given
in Theorem 4.7), so that ν̃X := νX − νpX is a local martingale measure, then

X(t) = X(0) +A(t) +Xc(t) +

∫
Rd∗×]0,t]

zν̃X(dz,ds), ∀t ≥ 0, (4.12)

where A is a predictable process with locally integrable variation and Xc is
a continuous local martingale, both satisfying A(0) = Xc(0) = 0 and Xc is
uniquely determined. Clearly, the integer measure ν depends only on the jump
process δX, i.e., only the discontinuous part of X determines νX . If the semi-
martingale X is quasi-left continuous (i.e., either F(τ−) = F(τ) for every pre-
dictable stopping time τ or equivalently the predictable compensator νpX satisfies
νpX(Rd∗×{t}) = 0 almost surely), then the process A in (4.12) is continuous and
uniquely determined.

Note the characteristic elements of a semi-martingale X, which are (1) the
predictable process A with locally integrable variation (which is uniquely de-
termined only when the semi-martingale is quasi-left continuous), (2) the pre-
dictable quadratic variation 〈Xc〉 and (3) the (dual predictable) compensator
measure νpX . If X = M is a quasi-left continuous local martingale then A = 0
and there are only two characteristic elements to consider: (a) the predictable
quadratic variation 〈M c〉 (or the optional quadratic variation [M ]) and (b) the
predictable compensator νp (or the integer-valued measure ν). If the special
character of the semi-martingale is removed, then the jumps may be not locally
integrable and then the predictable compensator νp may be not integrable at in-
finity, i.e., only the function z 7→ |z|2∧1 in νp-integrable, so that the predictable
process

t 7→
∫
Rd∗

∫
]0,t]

(|z|2 ∧ 1) νp(dz,ds)

is locally integrable. Thus the representation (4.12) becomes

X(t) = X(0) +A(t) +Xc(t) +

∫
{|z|<1}×]0,t]

z ν̃X(dz,ds), ∀t ≥ 0, (4.13)
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where A contains a term of the form∫
|z|≥1

∫
]0,t]

z νX(dz,dt),

and h(z) := z1|z|<1 is used as the truncation function. However, our main
interest is on processes with finite moments of all order, so that νp should
integrate z 7→ |z|n for all n ≥ 2. The reader may consult He et al. [105, Section
XI.2, pp. 305–311], after the stochastic integral is covered.

A fundamental example is the Poisson measures. We have

Definition 4.9 (Poisson-measure). Let (Ω,F , P,F(t) : t ≥ 0) be a filtered
space. An integer-valued random measure ν on Rm∗ × [0,∞) is called Poisson
measure if

(a) the (nonnegative) measure Π(B) := E{ν(B)} is a Radon measure on Rm∗ ×
[0,∞), i.e., E{ν(K × [0, t])} <∞ for any compact subset K of Rm∗ and for any
t ≥ 0,

(b) for any Borel measurable subset B of Rm∗ × (t,∞) with Π(B) < ∞ the
random variable ν(B) is independent of the σ-algebra F(t),

(c) Π satisfies Π(Rm∗ × {t}) = 0 for every t ≥ 0.

The measure Π is called intensity measure relative to the Poisson measure ν. If
Π has the form Π(dz,dt) = π(dz) × dt for a (nonnegative) Radon measure π
on Rm∗ then ν is called a homogeneous (or standard) Poisson measure. If the
condition (c) is not satisfied then ν is called extended Poisson measure.

A standard Poisson measure ν on a Polish space O×[0,∞) (e.g., Rm∗ ×[0,∞)
or even a non-locally compact separable metric space) relative to a σ-finite
measure π×dt on B

(
O×[0,∞)

)
(called intensity) can be also defined as a random

measure satisfying (a) for any Borel subset B of O with π(B) <∞ and t ≥ 0 the
random variable ν(B×]0, t]) = ν(B, t) has a Poisson distribution with parameter
tπ(B) and (b) for any n ≥ 1 and any disjoint Borel sets B1, B2, . . . , Bn and
0 ≤ t0 < t1 < · · · tn the random variables ν(B1, t1) − ν(B1, t0), ν(B2, t2) −
ν(B2, t1), . . . , ν(Bn, tn)−ν(Bn, tn−1) are independent. Given a σ-finite measure
π on B(O), a standard Poisson measure ν can be constructed as follows. First,
if π is a finite measure then we can find a sequence {τ1, τ2, . . .} of independent
exponentially distributed random variables, with parameter c = π(O) and a
sequence (ξ1, ξ2, . . .) of O-valued independent identically distributed random
variables, with distribution π/π(O) and independent of {τ1, τ2, . . .}, in some
(complete) probability space (Ω,F , P ). Thus the random integer measure on O
defined by

ν(B, t) :=

∞∑
i=1

1ξi∈B1τi≤t, ∀B ∈ B(O), ∀t > 0

is the desired standard Poisson measure satisfying E{ν(B, t)} = tπ(B). Next,
if ν is merely σ-finite then there exists a Borel partition of the whole space,
O =

⋃
nOn, with π(On) < ∞ and On ∩ Ok = ∅ for n 6= k. For each On we
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can find a Poisson measure νn as above, and make the sequence of integer-
valued random measure (ν1, ν2, . . .) independent. Hence ν :=

∑
n νn provides a

standard Poisson measure with intensity π. Remark that νn is a finite standard
Poisson measure onOn×[0,∞) considered on the wholeO×[0,∞) with intensity
πn, πn(B) = π(B ∩ On).

Moreover, if O = Rd∗ then the jump random process corresponds to the
measure π restricted to On

jn(t, ω) :=

∞∑
i=1

ξni 1τni ≤t, ∀t > 0

is properly defined, and if π integrates the function z 7→ |z| the jumps j =
∑
n jn

(associated with νn) are defined almost surely. However, if π integrates only
the function z 7→ |z|2 ∧ 1 then the stochastic integral is used to define the
compensated jumps, formally j− E{j}.

The same arguments apply to Poisson measures, if we start with an intensity
measure defined on O× [0,∞). In this case, the (compensated) jumps is defined
as a stochastic process, by integrating on O × [0, t].

If the variable t is not explicitly differentiated, the construction of a Poisson
(random is implicitly understood) measures ν on a Polish space Z, relative to
a σ-finite measure Π can be simplified as follows: First, if Π is a finite measure
then we can find a Poisson random variable η with parameter c = Π(Z) and
a sequence (ζ1, ζ2, . . .) of Z-valued independent identically distributed random
variables, with distribution Π/c and independent of η in some (complete) prob-
ability space (Ω,F , P ). Then ν(B) =

∑η
k=1 1ζk∈B , for any B in B(Z), satisfies

E{ν(B)} =
∑
n

E
{ n∑
k=1

1ζk∈B | η = n
}

=
∑
n

nΠ(B)

c
P (η = n) = Π(B).

In particular, if Z = O × [0,∞) and Π = π × dt then E{ν(B×]0, t])} = tπ(B),
for every B in B(O) and t ≥ 0.

Thus, if Π is only σ-finite then partition the space Z =
∑
n Zn into sets

with finite measure Π(Zn) < ∞, and redo the construction with independent
sequences {ηn} and {ζni } to define ν(B) =

∑
n

∑
k 1k≤ηn1ζnk∈B .

As in Çınlar [46, Theorems 3.2 and 3.19, Chapter 6, pp. 264-270], we can
now consider

Proposition 4.10. Let Z =
∑
n Zn and X =

∑
nXn be partitions of the Pol-

ish spaces Z and X, and let mn(z,dy) be a transition kernel from Zn into Xn,
i.e., (a) for every B in B(X) the mapping z 7→ mn(z,B) is B(Zn)-measurable
and (b) for every z in Zn the set function B 7→ mn(z,B) is a probability on
Xn. Suppose that {ξn1 , ξn2 , . . .} are Xn-valued random variables conditionally
independent given {ηn, ζni : i ≥ 1}, for each n ≥ 1, such that ξni has dis-
tribution m(ζni , ·). Then µ(B) =

∑
n

∑ηn
k=1 1ξ

n
k∈B, for any B in B(X), is

a Poisson measure with (marginal) intensity
∑
n

∫
Zn

mn(z, ·)Π(dz) in X, and

λ(B) =
∑
n

∑ηn
k=1 1(ζnk ,ξ

n
k )∈B, for any B in B(Z × X), is a Poisson measure

with (product) intensity
∑
n Πn × mn =

∑
n mn(z,dx)1ZnΠ(dz) in Z ×X.
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Proof. Since the random variable {(ζni , ξni ) : i ≥ 1} is a sequence of independent
identically distributed random variables with (product) distribution

P
{

(ζni , ξ
n
i ) ∈ B

}
=

∫
Zn

Π(dz)

∫
Xn

1Bmn(z,dx),

based on the above construction, we deduce that λ is a Poisson measure with
(product) intensity

∑
n Πn × mn. Moreover, conditioning with respect to B(Z),

we obtain the first assertion. Note that the marginal distribution is indeed

B 7→ mn(·, B)Πn =

∫
Zn

mn(z,B ∩Xn)Π(dz),

for every B in B(X).

If ϕ is a random transformation from Z into X, i.e., (ω, z) 7→ ϕ(ω, z) is a F×
B(Z)-measurable function from Ω×Z into X. Then the marginal distributions

m(z,B) = P{ϕ(ω, z) ∈ B}, ∀z ∈ Z, ∀B ∈ B(X)

defined a transition kernel as in Proposition 4.10. If ν is a Poisson measure with
intensity Π on Z then

µ(B) =

∫
Z

1{ϕ(·,z)∈B} ν(dz) =
∑
n

ηn∑
k=1

1ϕ(ζnk ,·)∈B , ∀B ∈ B(X)

and

λ(B) =

∫
Z

1{(z,ϕ(·,z))∈B} ν(dz) =
∑
n

ηn∑
k=1

1(ζnk ,ϕ(ξnk ,·))∈B ,

for every B ∈ B(Z ×X), are Poisson measures with intensities
∫
Z
m(z, ·)Π(dz)

on X and Π× m = m(z,dx)Π(dz) on Z ×X.
It is clear that Z = Rm∗ and X = Rd∗×[0,∞) are special cases. The (nonnega-

tive) intensity measure can be written as sum of its continuous and discontinuous
parts, i.e.,

Π = Πc + Πd, Πd(dz,dt) := 1{t : Π(Rm∗ ×{t})>0}Π(dz,dt).

There is a characterization of Poisson measures as follows

Theorem 4.11. An integer-valued random measure ν is a Poisson measure if
an only if its compensator νp is deterministic and continuous, i.e., νp = Π and
Π(Rm∗ × {t}) = 0 for every t ≥ 0. Moreover, for any Poisson measure ν and
any pairwise disjoint measurable sets (B1, B2, . . . , Bn) with finite Π-measure,
the set {ν(B1), ν(B2), . . . , ν(B1)} is a family of independent random variables
and ν(Bi) has a Poisson distribution with mean Π(Bi), for any i.
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In view of the above characterization, νp = Π for a Poisson measure and
because of the previous Theorem 4.7 we deduce that ν should integrate the
function |z|2∧1 when the jumps process A associated with the Poisson measure
ν is a general semi-martingale. For an (special) semi-martingale the intensity
Π should integrate |z|2 ∧ |z|. Thus, we are only interested in Lévy measures ν
which necessarily integrate the function |z|2 ∧ 1.

It is clear that homogeneous (or standard) Poisson measures are associated
with the jumps of Lévy processes via (4.7), and with Remark 4.8 in mind,
the integer measures νi associated with each component of Xi in R∗ may not
reconstruct the measure ν associated with the X in Rm∗ , even if each component
is independent of the others.

For a proof (including extended Poisson measure) we refer to Jacod and
Shiryaev [117, Theorem II.4.8, pp. 104–106]. The reader may consult, for
instance, Bremaud [32], where jump processes are discussed as point processes
in the framework of the queue theory.

4.2 Stochastic Integrals

Let us fix a filtered space (Ω,F , P,Ft : t ≥ 0). A simple predictable process
(or piecewise constant over stochastic intervals) is a stochastic process of the
form Y (t) = Y (τi−1) if τi−1 < t ≤ τi with some i = 1, . . . , n, where 0 = τ0 ≤
τ1 ≤ · · · ≤ τn are stopping times and Y (τi−1) is a F(τi−1) measurable random
variable for any i, and Y (t) = 0 otherwise. It is called bounded if all Y (τi−1)
are bounded random variables. Note that any simple predictable process Y is
left continuous with right-hand limits, so that t 7→ Y (t+) is a cad-lag process.

If X is an optional cad-lag process then we define the expression

Z(t) =

∫
(0,t]

Y (s)dX(s) =

n∑
i=1

Y (τi−1)[X(t ∧ τi)−X(t ∧ τi−1)], (4.14)

as the integral of the simple predictable process (integrand) Y with respect
to the optional cad-lag process (integrator) X. This integral process Z is cad-
lag and optional, which is also continuous if X is so. On the other hand, the
integration-by-part formula

X(b)Y (b)−X(a)Y (a) =

∫
(a,b]

X(t−)dY (t) +

∫
(a,b]

Y (t−)dX(t) +

+
∑
a<t≤b

[X(t)−X(t−)] [Y (t+)− Y (t)],
(4.15)

yields the expression
Z(t) =

∫
(0,t]

Y (s)dX(s) =

= X(t)Y (t)−
n∑
i=1

X(τi)[Y (t ∧ τi)− Y (t ∧ τi−1)],
(4.16)
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which can be used to define the same integral process.
If t 7→ X(t, ω) has also locally bounded variation for almost every ω then the

measure theory can be used on (4.14) to extend the definition of the integral
to a class of predictable processes, including all continuous adapted processes.
On the other hand, we can use (4.16) to extend the definition of the integral
to a class of predictable processes, including all continuous adapted processes
with locally bounded variation. In either case, with this pathwise analysis,
we are unable to see how two continuous processes of unbounded variation
can be integrated, which is the case of a Wiener process as integrand and as
integrator. In contrast with what follows, the fact that we use adapted processes
is irrelevant in pathwise analysis. The reader may want to consult the classic
reference McKean [167] for a comprehensive treatment.

4.2.1 Gaussian and Poisson Noises

The idea of a noise is the extension of a sequence of independent identically
distributed random variables to the continuous context, where the two typical
cases are Gaussian and Poisson noises. First, let us recall that we can build
a (complete) probability space (Ω,F , P ), e.g., P is the Lebesgue measure on
(0, 1), with the property that for any countable family of distributions {Fi} on
Rd there exists a family of independent random variables {ξi} such that ξi is
distributed accordingly to Fi, e.g., see Kallenberg [121, Theorem 3.19, pp. 55–
57]. In particular, there exist two independent countable families of normally
and exponentially distributed random variables, with parameters prescribed a
priori, in some probability space (Ω,F , P ).

For instance, a simple Poisson noise with parameter λ > 0 can be regarded as
a sequence ṗ = {τn : n ≥ 1} of independent exponentially (with parameter 1/λ)
distributed random variables. Since P (limn

∑n
i=1 τi = ∞) = 1, the counting

process pt =
∑∞
n=1 1τ1+···+τn≤t, i.e.

pt =

0 if t < τ1,

n if
∑n
i=1 τi ≤ t <

∑n+1
i=1 τi,

is defined almost surely and called a Poisson process, i.e., p0 = 0, pt − ps is
Poisson distributed with mean λ(t−s) and independent of ps, for any t > s ≥ 0.
The paths are piecewise constant with jumps equal to 1. Moreover, if δn denotes
the Dirac measure concentrated at n then

P{pt ∈ dx} = e−λt
∞∑
n=0

δn(dx)
(λt)n

n!
and E{eiξpt} = exp

[
tλ(eiξ − 1)

]
are the transition density and the characteristic function. It is also clear that
for qt = pt − tλ,

P{qt ∈ dx} = e−λt
[
δ0(dx) +

∞∑
n=1

(
δn(dx)− 1)

(λt)n

n!

]
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is the transition function.
As seen below, the situation is much more complicate in the case of a white

noise ẇ = {ξn : n ≥ 1}, where the independent random variables ξn are standard
normally distributed.

The White Noise

The simplest construction of a Wiener process with the L2 orthogonal theory
begins with an orthogonal basis {ϕn : n ≥ 0} in L2(]0, T [), and a sequence
{ξn : n ≥ 0} of independent standard normally distributed random variables,
which forms also an orthonormal system in L2 = L2(Ω,F , P ). Each function ϕ
in L2(]0, T [) can be written as a converging orthogonal series

ϕ(s) =
∑
n

(ϕ,ϕn)ϕn(s), a.e. s ∈]0, T [,

where (·, ·) denotes the scalar product in L2(]0, T [), and (ϕ,ϕ) =
∑
n |(ϕ,ϕn)|2.

Thus the mapping ϕ 7→ w(ϕ) =
∑
n(ϕ,ϕn)ξn is an isometry from L2(]0, T [)

into L2 such that w(ϕ) is a Gaussian random variable with E{w(ϕ)} = 0
and E{w(ϕ)w(ϕ′)} = (ϕ,ϕ′), for every ϕ and ϕ′ in L2(]0, T [). Hence, 1]a,b] 7→
w(1]a, b]) could be regarded as a L2-valued measure and w(ϕ) is the integral.
In particular, the orthogonal series

w(t) = w(1]0,t[) =
∑
n

ξn

∫ t

0

ϕn(s)dt, ∀t ≥ 0

is converging in L2, and

E{|w(t)|2} =
∑
n

∣∣∣ ∫ t

0

ϕn(s)ds
∣∣∣2 =

∫ T

0

1]0,t[(s)ds = t, ∀t ≥ 0,

i.e., the above series yields a Gaussian process t 7→ w(t), which is continuous
in L2 and satisfies E{w(t)} = 0 and E{w(t)w(s)} = t ∧ s, for every t, s in
[0, T ]. Conversely, if a Wiener process {w(t) : t ≥ 0} is given then we can
reconstruct the sequence {ξn : n ≥ 0} by means of the square-wave orthogonal
basis {ϕn : n ≥ 0}, where the integral w(ϕn) reduces to a finite sum, namely,

ξn = w(ϕn) =

2n∑
i=1

(−1)i−1T−1/2
[
w(ti,n)− w(ti−1,n)

]
,

with ti,n = i2−nT, i = 0, . . . , 2n, n ≥ 0. Finally, the almost surely continuity
of the path requires either taking a particular version or using some martingale
inequality. It is clear that in this construction there is not a precise to handle
which random variables are involves in w(s) when s belongs to [0, t]. However,
a small change along this previous argument makes the trick, as we see in what
follows.

The closed linear subspace H of L2(Ω,F , P ) generated by the orthonormal
sequence {ξn : n ≥ 0} is called a white noise (or Gaussian) space. If Fξ is the
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σ-algebra generated by the random variables {ξn : n ≥ 0} and the null sets in
F , then any random variable x in L2(Ω,Fξ, P ) which is independent of H is
actually a constant, i.e., x = E{x}. It is also clear that the Hilbert space H
can be identified with the L2(]0, T [) via the above isometry. As discussed in the
previous Section 4.1.1, based on the Hermit polynomials hn(x) we can construct
an orthonormal basis

Ξn =
∏
i

hni(ξi)
√
ni!, n = (ni), only a finite number nonzero, (4.17)

for the space L2(Ω,Fξ, P ), which can be written as an infinite orthogonal sum
of subspaces. It is clear that Fξ is equal to Fw, the σ-algebra generated by
the random variables {wt : t > 0}, it seems not obvious how to use the above
construction to get an orthonormal basis corresponding to the σ-algebra F(t)
generated by the random variables {ws : 0 < s ≤ t}.

Sometimes, another Hilbert space H is preferred instead of L2(]0, T [), i.e.,
we may begin with an orthogonal basis {en : n ≥ 1} in H and a sequence
{ξn : n ≥ 1} of independent standard normally distributed random variables
(after some adaptation, perhaps, with values in Rd or in some infinite dimension
Banach space), which forms also an orthonormal system in L2 = L2(Ω,F , P ).
Each function h in H can be written as a converging orthogonal series h =∑
n(h, en)

H
en, and (h, h)

H
=
∑
n |(h, en)

H
|2. Thus the mapping h 7→ w(h) =∑

n(h, en)
H
ξn is an isometry from H into L2 such that w(h) is a Gaussian

random variable with E{w(h)} = 0 and E{w(h)w(h′)} = (h, h′)
H
, for every h

and h′ in H. Of particular interest in the case where H = L2(X,X , µ) for a σ-
finite measure space (X,X , µ). Choose a semi-ring K of X with finite measure,
i.e., µ(K) < ∞, for every K in K to consider the map 1K 7→ w(1K) as a L2-
valued measure and w(h) is the integral. Moreover, we may single-out a time
variable, i.e., replace X and µ with X×]0, T [ and µ×dt, and get an orthonormal
system of the form eiϕn. Hence, by relabeling the sequence {ξi,n : i, n ≥ 1} the
orthogonal series

wi(t) = w(ei1]0,t[) =
∑
n

ξi,n

∫ t

0

ϕn(s)dt, ∀t ≥ 0, i = 1, 2, . . . ,

is converging in L2, and

E{|wi(t)|2} =
∑
n

∣∣∣ ∫ t

0

ϕn(s)ds
∣∣∣2 =

∫ T

0

1]0,t[(s)ds = t, ∀t ≥ 0,

i.e., the above series yields Gaussian processes t 7→ wi(t), which are continuous
in L2 and satisfy E{wi(t)} = 0, E{wi(t)wi(s)} = t∧s, for every t, s in [0, T ], and
the process (wi(t) : t ≥ 0) is independent of (wj(t) : t ≥ 0) for every i 6= j. This
construction is referred to as a general Wiener noise or white noise (random)
measure.
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The White Noise (details)

Formally, assume that the Hilbert space L2 = L2(Ω,F , P ) contains a sequence
{ei,n : i = 1, 2, . . . , 4n, n ≥ 1} of independent standard normally distributed
random variables, and set {enr = ei,n : r ∈ Rn}, indexed in r belonging to the
diadic numbers R =

⋃
nRn, with Rn = {r = i2−n : i = 1, 2, . . . , 4n}. Because

each ei,n has zero mean and are independent of each other, the sequence is
orthogonal in L2, actually, it is an orthonormal system since all variances are
equal to 1. To simplify notation, assume that F is the sub σ-algebra generated
by the sequence of random variables ẇ = {enr : r ∈ Rn, n ≥ 1} (and all null
sets). The closed linear subspace H of L2(Ω,F , P ) generated by the elements
in ẇ is a which is called a white noise (or Gaussian) space. The system ẇ is the
ideal expression of the white noise, which is the formal derivative of the Wiener
process w.

To given details of a simple construction a Wiener process {wt : t > 0} as the
integral of (the function s 7→ 1s≤t with respect to) the system ẇ, we make use

of the diadic property t =
∑
n 4−n

∑4n

i=1 1i2−n≤t
1 to define the random variable

wt =
∑
n

2−n
4n∑
i=1

ei,n1i2−n≤t, (4.18)

as a convergence series in L2(Ω,F , P ), for every t > 0. Indeed, regard the
expression as an orthogonal series expansion, and set w0 = 0, for any t ≥ s ≥ 0,
to have

E{|wt − ws|2} =
∑
n

4−n
4n∑
i=1

E{|ei,n|2}1s<i2−n≤t =

=
∑
n

4−n
4n∑
i=1

1s<i2−n≤t = (t− s).

Thus, t 7→ wt provides a L2-norm continuous random process satisfying (a) wt
is a Gaussian random variable with E{wt} = 0 and E{|wt|2} = t, and (b) ws is
independent of wt−ws for every t > s. If a parameter (variance) a > 0 is included
then the Gaussian random variables {ξn : n ≥ 0} and {enr : r ∈ Rn, n ≥ 1} have
variance a and E{|wt|2} = ta. Moreover

P{wt ∈ dx} = e−|x|
2/(2ta)dx and E{eiξwt} = e−ta|ξ|

2/2

are the transition density and the characteristic function.
Next, to check that the process {wt : t ≥ 0} has a continuous version, we

recall that wt − ws is a Gaussian variable with zero mean and variance |t− s|,
so that we deduce E{|wt − ws|4} = 3|t − s|2, and therefore, we are allowed to
select a continuous version.

1 if t = k2−m = (k2n−m)2−n, 1 ≤ k ≤ 4m then k2n−m ≤ 4n, 1i2−n≤t = 1 if and only if

i = 1, . . . , k2n−m, which yields
∑4n

i=1 1i2−n≤t = k2n−m = t2n if k2n−m = t2n ≥ 1.
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The concept of stopping time relative to a white noise ẇ can be expressed
as preserving orthogonality, i.e., a [0,∞]-valued random variable τ is called ẇ-
stopping time if {ei,n1i2−n≤τ} (or equivalently {enr1r≤τ}) remains an orthogonal
system, for every t > 0. For instance, if τ is a ẇ-stopping time then the formula
(4.18) shows that E{|w(t ∧ τ)|2} = E{t ∧ τ} as expected.

Note that if x belongs to H then

E{xwt} =
∑
n

2−n
4n∑
i=1

E{xei,n}1i2−n≤t,

and by taking r = k2−m with k some odd integer number between 1 and 4m,
we deduce E{x(wr − wr′)} → 2−mE{xek,m} as r′ ↑ r. This proves that any x
in H which is orthogonal to any element in {wt : t ≥ 0} is also orthogonal to
any element in {ei,n : i = 1, . . . , 4n, n ≥ 1}, i.e, the white noise subspace H is
indeed the closed linear span of {wt : t ≥ 0}. Therefore the projection operator

E{x | ws, s ≤ t} =
∑
n

4n∑
i=1

E{x ei,n} ei,n1i2−n≤t, (4.19)

is valid for every x in H. By means of the Hermit polynomials and {ei,n : i2−n =
r ∈ R, r ≤ t} we can construct an orthonormal basis for L2(Ω,F(t), P ) as in
(4.17), which yields an explicit expression for the conditional expectation with
respect to F(t), for any square-integrable random variable x. In this context,
remark that we have decomposed the Hilbert space H into an orthogonal series
(n ≥ 1) of finite dimensional subspaces generated by the orthonormal systems
ẇn = {enr : r ∈ Rn}.

The White Noise (converse)

Conversely, if a Wiener process {wt : t ≥ 0} is given then the random variables
ēi,n = 2n/2

[
wi2−n − w(i−1)2−n

]
, are identically standard normally distributed,

and the system {ēi,n : i = 1, . . . , 4n} is independent, but {ēi,n : i ≥ 1, n ≥ 1}
is not fully independent, i.e., r = i2−n = 2i2−n−1 yields

√
2ēi,n = ē2i,n+1 +

ē2i−1,n+1, which produces correlations. In this case, the representation (4.18)
takes the form

wt = lim
n

[
2−n/2

4n∑
i=1

ēi,n1i2−n≤t

]
,

or equivalently wt = limn wkn(t)2−n , where kn(t)2−n ≤ t < (kn(t) + 1)2−n,
1 ≤ kn(t) ≤ 4n. Moreover, the projection operator becomes

E{x | ws, s ≤ t} = lim
n

4n∑
i=1

E{x ēi,n} ēi,n1i2−n≤t,

which can be proved to be convergent (as a particular case of a stochastic integral
considered later on) in L2.
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To recover a white noise ẇ = {enr : r ∈ Rn, n ≥ 1} as a diadic sequence
of independent standard normally distributed random variables from a given
Wiener process w = {wt : t ≥ 0}; we may use the square wave procedure,
namely, for i = 1, 2, . . . consider the Haar-type functions fi(s) = 12i−1<2s≤2i −
12(i−1)<2s≤2i−1 and fi,n(s) = 2−n/2fi(s2

n), for n ≥ 0. By construction, if
n ≥ m then fi,nfj,m = 0 except for i within (j − 1)2n−m + 1 and j2n−m, and
moreover, {fi,n} is an orthonormal system in L2(]0,∞[). Therefore

eni2−n = w(fi,n) = 2−n/2
[
w(i−1)2−n − 2w(2i−1)2−n−1 + wi2−n

]
, (4.20)

for i = 1, . . . , 4n, n ≥ 1, define a white noise which produces another Wiener
process via (4.18), also given by the stochastic integral

w̄t =

∞∑
n=1

2−n
4n∑
i=1

w(fi,n)1i2−n≤t =

∫ t

0

fT (s)dws ∀T ≥ t > 0,

where the real-valued function

ft =

∞∑
n=1

2−n
4n∑
i=1

fi,n1i2−n≤t,

∫ ∞
0

|ft(s)|2ds = t, ∀t > 0,

is defined as an orthogonal series expansion in L2(]0,∞[). Remark that ft(s) =
fT (s) a.e. s in (0, t) for every t ≤ T , and ft(s) = 0 a.e. for s in (t,∞). Actually,
for the probability measure dt/T defined on Borel σ-algebra on ]0, T [, the family
of random variables {

√
Tft : t ∈ [0, T ]} is a Wiener process.

Furthermore, if a factor 2k−1 is added to the orthogonal series (4.18) then
we may begin the sum with n = k instead of n = 1. Comparing with the
initial isometry given via orthonormal sequences, we note that the orthonormal
system {fi,n} can be completed to be a basis by adding the functions f̃i(s) =

f̃i,0(s) = 1(i−1)<s≤i, for i = 1, 2 . . . . Indeed, it suffices to check that 1/2{f̃i,0}±
1/2{fi,0} yields {f̃i,1(s) = 1i−1<2s≤i}, and 1/2{f̃i,1}±1/2{fi,1} yields {f̃i,2(s) =

1i−1<4s≤i−1} and so on. Thus, the isometry w(fi,n) = ei,n and w(f̃i) = ẽi
mapping the basis {fi,n : i = 1, . . . , 4n, n ≥ 0} ∪ {f̃i : i ≥ 1} in L2(]0,∞[)
into an orthornormal system {ei,n : i = 1, . . . , 4n, n ≥ 0} ∪ {ẽi : i ≥ 1} in L2

produces an expression very similar to (4.18), namely,
w̃t =

∞∑
i=1

c̃i(t)ẽi +

∞∑
n=0

4n∑
i=1

ci,n(t)ei,n,

c̃i(t) =

∫ t

0

f̃i(s)ds, ci,n(t) =

∫ t

0

fi,n(s)ds,

(4.21)

where the first series in i is a finite sum for each fixed t > 0, and the series in n
reduces to a finite sum if t = j2−m for some m ≥ 0 and j ≥ 1. Essentially based
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on Borel-Cantelli Lemma and the estimates

qn = max
t≥0

4n∑
i=1

|ci,n(t)ei,n| = 2−n/2 max
i=1,...,4n

|ei,n|,

P
(
|ei,n| > a

)
≤ 2√

π
e−a

2/2, P
(

max
i=1,...,4n

|ei,n| > a
)
≤ 4n

2√
π

e−a
2/2,

P
(
qn > θ(2−n ln 8n)1/2

)
≤ 2√

π
4n(1−θ2), θ > 1,

a more careful analysis shows the uniform convergence on any bounded time
interval, almost surely. Actually, this is almost Ciesielski-Levy’s construction as
described in McKean [167, Section 1.2, pp. 5–8] or Karatzas and Shreve [124,
Section 2.3, pp. 56–59]. Remark that with the expression (4.21), we cannot
easily deduce a neat series expansion like (4.19) for the projection operator,
i.e., since the functions {ci,n} have disjoint support only as i changes, for a
fixed t > 0, the orthogonal systems {c̃i(s)ẽi, ci,n(s)ei,n : s ≤ t, i, n} and
{c̃i(s)ẽi, ci,n(s)ei,n : s > t, i, n} are not orthogonal to each other, as in the
case of the orthogonal series expansion (4.18). In the context of the orthogonal
series expansion (4.21), the series

〈 ˙̃w, φ〉 =

∞∑
i=1

ẽi〈f̃i, φ〉+

∞∑
n=0

4n∑
i=1

ei,n〈fi,n, φ〉, ∀φ ∈ S(]0,∞[),

could be referred to as white noise, the derivative in the sense of Schwartz
distribution of a Wiener process, meaningful only as a generalized process.

On the other hand, note that we cannot take a fractional derivative to recover
a white noise, i.e., the limit (t− r)−1/2

[
wt − wr

]
→ er as t ↓ r for a particular

sequence of {t}. Indeed, if r < t < s then wt−wr and ws−wt are independent,
and hence

E
{∣∣∣ws − wr√

s− r
− wt − wr√

t− r

∣∣∣2} = 2− 2E
{(ws − wr√

s− r

)(wt − wr√
t− r

)}
=

= 2
(

1−
√
t− r√
s− r

)
.

Thus, if αn → 0 then (1−√αn+k/
√
αn) does not converges to 0 as n, k → ∞,

which implies that the sequence (wr+αn−wr)/
√
αn cannot be a Cauchy sequence

in L2. Therefore, we may have a subsequence such that (wr+αn−wr)/
√
αn → er

weakly in L2, but E{|er|2} 6= 1, since otherwise, the sequence would converge
in the L2 norm.

The White Noise (another)

With the previous observation in mind, consider a countable family {enr } of
standard normally distributed random variables, indexed for r in the diadic
numbers R =

⋃
nRn = {r = i2−n : i = 1, . . . , 4n} as early; but, we assume only

that the finite family {enr : r ∈ Rn} is independent, for each fixed n ≥ 1. Based
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on the diadic property 2−n
∑4n

i=1 1i2−n≤t = max{r : r ∈ Rn, r ≤ t} → t, define
the sequence of normally distributed random variables wn0 = 0 and

wnt = 2−n/2
4n∑
i=1

eni2−n1i2−n≤t, ∀t > 0. (4.22)

Note that E{wnt } = 0 and E{|wnr |2} = r, for every r in R. Thus, the classic
Central Theorem shows that {wnr : n ≥ 1} converges in law and limn E{|wnt −
wnr |2} = t − r, for any t > r > 0. Since, for Gaussian variables with zero-mean
we have the equality

E{|wnr − wns |4} = 3
(
E{|wnr − wns |2}

)2
= 3|r − s|2, ∀r, s ∈ R,

this construction yields a Wiener measure W, i.e., a probability measure on
Ω = C([0,∞[) such that the coordinate functions ω : Ω 7→ ω(t) = wt(ω) define
a Wiener process.

Contrary to the previous series (4.18), the convergence in L2 of the whole
sequence {wnt : n ≥ 1} is not automatically insured, we need to assume that the
system {enr : r ∈ Rn} is compatible with the diadic numbers in the sense that
without ambiguity we can remove the super-index n in enr and use the notation
{er : r ∈ Rn}. Indeed, e.g., by compactness, we can extract a subsequence {nk}
such that wnkr → wr in L2, for every r in R (i.e., only the random variables
{enkr : r ∈ Rnk , k ≥ 1} were used), but another convergent subsequence may
have another limit (which uses another subset of random variables {enr }). This
previous argument can not used if we impose the condition enr = emr , for every
n, m and r, i.e., compatibility with the diadic numbers. Moreover, under this
assumption, we can single out all terms in the sum defining wnr using {er : r ∈
Rn} r {er : r ∈ Rn−1} to obtain the relation

√
2wnr = wn−1

r + vnr , for r in
Rn−1, with vnr being a normally distributed random variable independent of wnr
satisfying E{vnr } = 0 and E{|vnr |2} = r. By induction, we deduce

wnr = 2(n(r)−n−1)/2wn(r)−1
r +

n∑
k=n(r)

2(k−n−1)/2vkr , (4.23)

where n(r) = inf
{
n ≥ 1 : r ∈ Rn

}
, w0

r = 0 and {wn(r)−1
r , v

n(r)
r , . . . , vnr } is an

orthogonal system. This implies that the whole sequence {wnr : n ≥ 1} converges
in L2, i.e., the limit

wt = lim
n

[
2−n/2

4n∑
i=1

ei2−n1i2−n≤t

]
, ∀t > 0 (4.24)

exits in L2, almost as an orthogonal series expansion if r belongs to R. Anyway,
only the random variables {enr : r ∈ Rn, n ≥ 1, r ≤ t} intervene in getting
{ws : s ≤ t}, and the projector operator has the form

E{x | ws, s ≤ t} = lim
n

4n∑
i=1

E{x ei2−n} ei2−n1i2−n≤t, (4.25)
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as a limit in L2 of almost an orthogonal series expansion, valid for any x in the
closed linear span of {wt : t ≥ 0}. Hermit polynomials are needed to get a series
expansion for any x in L2(Ω,F , P ).

Let us summarize the main points proved above:

Proposition 4.12. Let {ei,n : i = 1, . . . , 4n, n ≥ 1} be a countable family of
identically distributed random variables with E{ei,n} = 0 and E{|ei,n|2} = 1,
and such that each ẇn = {ei,n : i = 1, . . . , 4n} is a sub-family of independent
random variables. For convenience we may take all ei,n normally distributed,
but this is not necessary.

(a) If ẇ1, . . . , ẇn, . . . are independent then the orthogonal series expansion (4.18)
yields a Wiener process, and the conditional expectation operator (4.19).

(b) If enr = ei,n, with r = i2−n, i = 1, . . . , 4n, then the limit of the expression
(4.22) exists in law and defines a Wiener measure.

(c) If, besides the conditions of (b), also we suppose the diadic compatibility
assumption, i.e., {enr = er : r = i2−n, i = 1, . . . , 4n, n ≥ 1} is an indepen-
dent family, then the limit (4.24) exits in L2, almost as an orthogonal series
expansion, and the conditional expectation operator takes the form (4.25).

• Remark 4.13. If ẇ = {enr : r ∈ Rn, n ≥ 1} is a diadic family of identically
distributed random variables with E{enr } = 0 and E{|enr |2} = 1 then the diadic
compatibility assumption as in (c) of Proposition 4.12 is satisfied for the diadic

family ẇ′ = {er : r ∈ Rn, n ≥ 1} defined by er =
∑∞
k=1 2k/2e

k+n(r)−1
r , with

n(r) = min{n ≥ 1 : r ∈ Rn}. In this case, note that the orthogonal series
expansion (4.18) for the white noise ẇ is very similar to the expression (4.24)
for the white noise ẇ′. It is clear that there are infinite many choices to obtain a
white noise ẇ′ from the initial ẇ, e.g., any sequence {kn : n ≥ 1} with kn ≥ n(r)

will produce a suitable ẇ′, where er = e
k(n)
r , for r in RnrRn−1, with R0 = ∅.

• Remark 4.14. Under the compatibility assumption as in (c) of Proposition 4.12,
we may use the equality (4.23) to obtain

∞∑
n=n(r)

2−n/2wnr = 2(n(r)−1)/2wn(r)−1
r +

∞∑
n=n(r)

2−n
n∑

k=n(r)

2(k−1)/2vkr ,

and exchanging the double sum

∞∑
n=n(r)

2−n
n∑

k=n(r)

2(k−1)/2vkr =

∞∑
k=n(r)

2(k−1)/2vkr

∞∑
n=k

2−n =

=
∞∑

k=n(r)

2−(k−1)/2vkr .

This shows that the series (4.18), with ei,n = ei2−n , converges in L2, as an

orthogonal series expansion relative to {wn(r)−1
r , v

n(r)
r , . . . , vnr , . . .}, with t = r

in R. For a non-diadic t, we have an almost orthogonal series expansion.
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• Remark 4.15. The above arguments can be used to construct the integral of
a function ϕ belonging to L2(]0,∞[). For instant, if ϕn(s) = ϕ(i2−n) for s in
](i− 1)2−n, i2−n], i = 1, . . . , 4n, then

2−n
4n∑
i=1

|ϕ(i2−n)|2 =

∫ 4n

0

|ϕn(s)|2ds.

Therefore, e.g., we may replace (4.18) and (4.24) with

w(ϕ) =
∑
n

2−n
4n∑
i=1

ϕ(i2−n)ei,n and 2−n/2
4n∑
i=1

ϕ(i2−n)ei2−n → w(ϕ),

to obtain the integral of ϕ with respect to the Wiener noise ẇ. Essentially,
this is like using the diadic system of functions φi,n = (−1)i−1

1](i−1)2−n,i2−n],
i = 1, . . . , 4n, and {(−1)i−1ei,n} to establish a mapping similar (after a proper
scaling) to the initial isometry in the beginning of this subsection. Note that

{φi,n} is not a fully orthogonal system, but φn =
∑4n

i=1 φi,n is a finite sum of
functions with disjoint supports and φn is orthogonal to φm if n 6= m. It is clear
that behind is the orthonormal system obtained from (4.20).

The Poisson Measure

The construction of Poisson (random) measure and some of its properties are
necessary to discuss general Poisson noises. One way is to follow the construction
of the general Wiener noise or white noise (random) measure, but using Poisson
(random) variables instead of Gaussian (random) variables.

If {τi,n : i ≥ 1} is a sequence of independent exponentially (with parameter
1) distributed random variables then random variables ζn(λ) =

∑
k 1θk,n≤λ,

with θk,n = τ1,n + · · · + τn,n, is a sequence of independent identically dis-
tributed random variables having a Poisson distribution with parameter λ.
Hence, ζ̃n(λ) = ζn(λ) − λ has mean zero and variance E{|ζ̃n(λ)|2} = λ. If
{hn : n ≥ 1} is a complete orthogonal system in a Hilbert space H with
(hn, hn)

H
= 1/kn, then any function h in H can be written as a converg-

ing orthogonal series h =
∑
n(h, hn)

H
knhn, and (h, h)

H
=
∑
n |(h, hn)

H
|2kn.

Thus the mapping h 7→ q(h) =
∑
n(h, hn)

H
ξ̃n(kn) is a linear isometry from

H into L2 = L2(Ω,F , P ), and if (h, hn)
H

= 1 for any n in a finite subset
of indexes Nh and (h, hn)

H
= 0 otherwise then p(h) =

∑
n(h, hn)

H
ξn(kn) is

Poisson random variable with parameter
∑
n∈Nh kn. In any case, if the series

m(|h|) =
∑
n |(h, hn)

H
|kn < ∞ then p(h) =

∑
n(h, hn)

H
ξn(kn) is convergent,

and p(h) = q(h) +m(h), with
∑
n(h, hn)

H
kn.

Another construction is developed for a more specific Hilbert space, namely,
H = L2(Y,Y, µ) with a σ-finite measure space (Y,Y, µ), where the Poisson
character is imposed on the image of 1K for any K in Y with µ(K) <∞.

Two steps are needed, first assume µ(Y ) < ∞ and choose a sequence {ζn :
n ≥ 1} of independent identically distributed following the probability law given
by µ/µ(Y ) and also choose an independent Poisson distributed variable η with
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parameter λ = µ(Y ). Define p(A) = 0 when η = 0 and p(A) =
∑η
n=1 1ζn∈A

otherwise, for every A in Y. The random variable p(A) takes only nonnegative
integer values, p(Y ) = η, and if A1, . . . , Ak is a finite partition of Y , i.e., Y =∑
iAi, and n1 + · · ·+ nk = n then

P
(
p(A1) = n1, . . . , p(Ak) = nk

)
=

= P
(
p(A1) = n1, . . . , p(Ak) = nk : p(Y ) = n

)
P
(
p(Y ) = n

)
,

which are multinomial and Poisson distribution, and so

P
(
p(A1) = n1, . . . , p(Ak) = nk

)
=

= n!

(
µ(A1)

)n1(
µ(Y )

)n1
n1!
· · ·

(
µ(Ak)

)nk(
µ(Y )

)nknk!
e−µ(Y )

(
µ(Y )

)n
n!

,

and summing over n1, . . . , nk except in ni , we obtain

P
(
p(Ai) = ni

)
= e−m(Ai)

(
µ(Ai)

)ni
ni!

.

Thus the mapping A 7→ p(A) satisfies:

(1) for every ω, A 7→ p(A,ω) is measure on Y ;

(2) for every measurable set A, the random variable p(A) has a Poisson distri-
bution with parameter (or mean) µ(A);

(3) if A1, . . . , Ak are disjoint then p(A1), . . . , p(Ak) are independent.

In the previous statements, note that if µ(A) = 0 then the random variable
p(A) = 0, which is (by convention) also referred to as having a Poisson distri-
bution with parameter (or intensity) zero.

For the second step, because µ is σ-finite, there exists a countable partition
{Yk : k ≥ 1} of Y with finite measure, i.e., Y =

∑
k Yk and µ(Yk) < ∞. Now,

for each k with construct pk (as above) corresponding to the finite measure µk,
with µk(A) = µ(A ∩ Yk), in a way that the random variable involved ζk,n and
ηk are all independent in k. Hence the mapping A 7→ pk(A) satisfies (1), (2)
and (3) above, and also:

(4) for every choice of k1, . . . , kn and A1, . . . , An in A, the random variables
pk1(A1), . . . , pkn(An) are independent.

Since a sum of independent Poisson (random) variables is again a Poisson
variable, the series p(A) =

∑
k pk(A) defines a Poisson (random) variable with

parameter (or mean) µ(A) whenever µ(A) <∞. If µ(A) =∞ then∑
k

P
(
pk(A) ≥ 1

)
=
∑
n

(
1− e−µ(A∩Yk)

)
=∞,

since limn(1− e−µ(A∩Yk)
)

= 1, i.e., if µ(A) =∞ then p(A) =∞ almost surely.
Hence, the mapping A 7→ p(A) satisfies (1), (2) and (3), as long as a random
variable which is equal to infinite (or to zero) is considered a Poisson variable
with parameter λ =∞ (or λ = 0). In this case, a Poisson variable with λ =∞
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(or λ = 0) means a (degenerate) random variable which is equal to +∞ (or
to 0) almost surely. Remark that contrary to the Wiener process, to define
the Poisson measure, the previous construction uses independence instead of
orthogonality.

Recall that for convenience, if µ is a measure and f a function then µ(f)
denotes the integral of f with respect to µ. In particular, µ(A) = µ(1A) and
p(A) = p(1A).

Proposition 4.16. If (Y,Y, µ) is a σ-finite measure space then the previous
construction yields a Poisson random measure p with intensity measure µ, i.e.,
(1), (2), (3) above are satisfied. Moreover, if µ(Y ) < ∞ and ϕ : Y → Rm is a
measurable function then

p(ϕ) =

∫
Y

ϕ(y) p(dy)

defines a random variable on Rm with compound Poisson distribution, namely,

E
{

eir·p(ϕ)
}

= exp
[ ∫

Y

(
eir·ϕ(y) − 1

)
µ(dy)

]
, ∀r ∈ Rm.

Moreover, if µ(|ϕ|2) < ∞ then E{p(ϕ)} = µ(ϕ) and E{|q(ϕ)|2} = µ(|ϕ|2),
where q = p − µ. Furthermore, if A1, . . . , An are disjoint measurable sets then
the random variables p(ϕ1A1), . . . , p(ϕ1An) are independent.

Proof. From the construction we check that for every ω, the measure A 7→
p(A,ω)is supported in a finite number of points, namely, ζi(ω) for i = 1, . . . , η(ω).
Thus, the expression of the random variable p(A) is finite. Using a diadic ap-
proximation of ϕ, i.e., we partition Rm into diadic cubes of the form Cj,n =
](j1 − 1)2−n, j12−n] × · · ·×](jm − 1)2−n, jm2−n], with j = (j1, . . . , jm) and set
ϕn(x) = j2−n for every x in Cj,n, we have |ϕ(x)− ϕn| ≤ 2−n

√
m. Since

p(ϕn, ω) =
∑
j

(j2−n)p(ϕ−1(Cj,n, ω),

from the definition of the Poisson measure p we deduce

E
{

eir·p(ϕn)
}

=
∏
j

E
{

eir·j2
−np(ϕ−1(Cj,n))

}
=

=
∏
j

exp
[
(eir·j2

−n
− 1)µ(ϕ−1(Cj,n))

]
= exp

[ ∫
Y

(eir·ϕn(y) − 1)µ(dy)
]

and the first part follows as n→∞.
Once the expression of the characteristic function have been proved, the

mean and the variance are calculated by taking derivative with respect to the
parameter r, and the last part, regarding the independence, is deduced by the
convergence of p(ϕn) to p(ϕ) and the property (3) of Poisson measure discussed
above.
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Remark that as it was defined, for each ω fixed, the Poisson random measure
p(·, ω) is a finite sum of Dirac measures. Hence, p is also called Poisson point
measure. The companion measure q = p − µ is referred to as a centered (or
martingale) Poisson (random or point) measure.

Sometimes, we may single-out a time variable, i.e., replace Y and µ with
Y×]0,∞[ and µ×dt. In this case, the variable η can be specifically constructed
as a Poisson process with parameter λ = µ(Y ) <∞, i.e.,

η(t) =
∑
n

1t≥θn , ∀t > 0,

where θn = τ1 + · · · + τn and {τn : n ≥ 1} is a sequence of independent expo-
nentially distributed (with parameter λ) random variable. In this case

p(A×]a, b]) =

η(b)∑
n=1

1ζn∈A −
η(a)∑
n=1

1ζn∈A =
∑
n

1ζn∈A1a<θn≤b, ∀a ≤ b.

If µ(Y ) =∞ then express the space Y as countable number of disjoint sets with
finite measure (i.e., Y =

∑
k Yk with µ(Yk) < ∞), and find sequences of inde-

pendent variables ζn,k with distribution µ(· ∩ Yk)/µ(Yk) and τn,k exponentially
distributed with parameter µ(Yk), for any n, k ≥ 1. The Poisson measure is
given by

p(A×]a, b]) =
∑
n,k

1ζn,k∈A1a<θn,k≤b, ∀a ≤ b,

where θk,n = τ1,k + · · · + τn,k. Our interest is the case where Y = Rd∗ and ζn,k
is interpreted as the jumps of a Lévy process.

The Poisson Noise I

Another type of complications appear in the case of the compound Poisson noise,
i.e., like a Poisson process with jumps following some prescribed distribution,
so that the paths remain piecewise constant.

Consider Rd∗ = Rd r {0} and B∗ = B(Rd∗), the Borel σ-algebra, which is
generated by a countable semi-ring K. (e.g., the family of d-intervals ]a, b] with
closure in Rd∗ and with rational end points). Now, beginning with a given (non-
zero) finite measure m in (Rd∗,B∗), we construct a sequence q̇ = {(zn, τn : n ≥ 1}
of independent random variables such that each τn is exponentially distributed
with parameter m(Rd∗) and zn has the distribution law A 7→ m(A)/m(Rd∗), thus,
the random variables θn = τ1+· · ·+τn have Γ(m(Rd∗), n) distribution. The series
ηt =

∑
n 1t≥θn is almost surely a finite sum and defines a Poisson process with

parameter m(Rd∗), satisfying E{ηt} = tm(Rd∗) and E{|ηt− tm(Rd∗)|2} = tm(Rd∗).
Moreover, we may just suppose given a Rd-valued compound Poisson process
{Nt : t ≥ 0} with parameter (λ,m/λ) or m, i.e., with the following characteristic
function

E{eiζ·Nt(z)} = exp
{
t

∫
Rd∗

[
eiζ·z − 1

]
m(dz)

}
, ∀ξ ∈ Rd,
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as a Lévy process, with Nt =
∑
n zn1t≥θn .

In any case, the counting measure either

pt(K) =
∑
n

1zn∈K1t≥θn , ∀K ∈ K, t ≥ 0,

or equivalently

pt(K) =

η(t)∑
n=1

1zn∈K , η(t) =
∑
n

1t≥θn , ∀K ∈ K, t ≥ 0,

is a Poisson process with parameter m(K), η(t) is also a Poisson process with
parameter tm(Rd∗). Moreover, if K1, . . . ,Kk are any disjoint sets in K then
pt(K1), . . . , pt(Kk) are independent processes. Indeed, if n = n1 + · · ·+ nk and
Rd∗ = K1 ∪ · · · ∪Kk then

P
(
pt(K1) = n1, . . . pt(Kk) = nk

)
=

= P
(
pt(K1) = n1, . . . pt(Kk) = nk | pt(K) = n

)
P
(
pt(K) = n

)
=

= P
( n∑
i=1

1zi∈K1
= n1, . . .

n∑
i=1

1zi∈Kk = nk | pt(Rd∗) = n
)
P
(
η(t) = n

)
,

which are multinomial and Poisson distribution, and so

P
(
pt(K1) = n1, . . . pt(Kk) = nk

)
=

=

(
m(K1)

)n1(
m(Rd∗)

)n1
n1!
· · ·

(
m(Kk)

)nk(
m(Rd∗)

)nknk!
e−m(Rd∗)

(
m(Rd∗)

)n
n!

,

and summing over n1, . . . , nk except in nj , we obtain

P
(
pt(Kj) = nj

)
= e−m(Kj)

(
m(Kj)

)nj
nj !

,

which proves that pt(Kj) are independent Poisson processes. This implies that

E{pt(K)} = tm(K), E
{
|pt(K)− tm(K)|2

}
= tm(K),

for every K in K and t ≥ 0. Hence, the (martingale or centered) measure

qt(K) =
∑
n

1zn∈K1t≥θn − tm(K), E{qt(K)} = 0, ∀K ∈ K

satisfies E{q2
t (K)} = tm(K), and if K ∩ K ′ = ∅ then qt(K) and qt(K

′) are
orthogonal and, in general, E{qt(K)qt(K

′)} = tm(K ∩K ′).
• Remark 4.17. Sometime it is more convenient not to distinguish the time
t in the Poisson measure, i.e., to consider p as a random integer measure on
Rd∗ × (0,∞). In this case, either two steps are necessary or only a construction
on Rd∗ × (0, b] (b < ∞) is achieved. For instance, given a bounded measure Π
on Rd∗ × (0, b] proceed as follows: (1) find a sequence {zn : n ≥} of independent
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random variables with identical distribution Π/c, c = Π(Rd∗ × (0, b]), and (2)
find an independent Poisson distributed (with parameter c) random variable η,
and then define p(B) =

∑
n=1η 1zn∈B . By using independent copies of p, we

can patch the definition of p from Rd∗ × (0, b] into Rd∗ × (b, 2b] and so on, to
get p defined on the whole Rd∗ × (0,∞), and clearly Π(dz,dt) = m(dz)dt. In
this construction, the origin {0} plays not particular role, so that the intensity
Π needs only to be a σ-finite Borel measure on some Polish space. Later, to
integrate the function z to reproduce the jumps, the Lévy measure condition
appears.

Now, a (real-valued) simple function relative to the semi-ring K is a finite
sum of terms (with disjoint K’s) of the form α1K(z) (which is equal to α when
z belongs to K and 0 otherwise). Each term integrates with respect to pt(dz)
and qt(dz) as follows∫

Rd∗
α1K(z) qt(dz) = α qt(K), E

{∣∣∣ ∫
Rd∗
α1K(z) qt(dz)

∣∣∣2} = α2tm(K).

This definition is extended by linearity (uniquely) to any simple function, ψ and
because each {qt(K)} are independent when the K’s are disjoint, we preserve
the relation

E{|qt(ψ)|2} = E
{∣∣∣ ∫

Rd∗
ψ(z) qt(dz)

∣∣∣2} = t

∫
Rd∗
|ψ(z)|2m(dz) = tm(|ψ|2).

Remark that to simplify the notation, we write qt(ψ) and m(ψ) to symbolize the
integral of a function ψ, e.g., m(K) = m(1K) = m(|1K |2). Moreover, because
m is a finite measure, if m(|ψ|2) <∞ then m(|ψ|) <∞.

Again, this integral ψ 7→ qt(ψ) is extended as a linear isometry between
Hilbert spaces, from L2(m) = L2(Rd∗,B∗, tm) into L2(Ω,F , P ), and

qt(ψ) =
∑
n

ψ(zn)1t≥θn − tm(ψ), with E{qt(ψ)} = 0, (4.26)

reduces to a finite sum almost surely. This is the same argument as the case of
random orthogonal measures, but in this case, this is also a pathwise argument.
Indeed, we could use the almost surely finite sum (4.26) as definition.

A priori, the above expression of qt(ψ) seems to depend on the pointwise
definition of ψ, however, if ψ = ψ′ m-almost everywhere then qt(ψ) = qt(ψ

′)
almost surely. Moreover, E{qt(ψ)qs(ψ

′)} = (t ∧ s)m(ψψ′) and the process t 7→
qt(ψ) is continuous in the L2-norm.

As mentioned early, Nt =
∑
n zn1t≥θn is a Rd-valued compound Poisson

process, and therefore, the expression

t 7→ pt(ψ) =
∑
n

ψ(zn)1t≥θn , ∀ψ ∈ L2(Rd∗,B∗,m)

defines a real-valued compound Poisson process with characteristic function

E{eipt(ψ)} = exp
{
t

∫
Rd∗

[
eiψ(z) − 1

]
m(dz)

}
.
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This yields

E{eiqt(ψ)} = exp
{
t

∫
Rd∗

[
eiψ(z) − 1− iψ(z)

]
m(dz)

}
, (4.27)

for every ψ in L2(Rd∗,B∗,m).
If m(|z|) < ∞ then E{|zn|} < ∞ and E{|Nt|} = tm(|z|). Moreover, we

can define the Rd-valued Lévy process qt(z) = Nt − tm(z) with characteristic
(0, 0,m), i.e.,

E{eiζ·qt(z)} = exp
{
t

∫
Rd∗

[
eiζ·z − 1− iζ · z

]
m(dz)

}
(4.28)

and transition density
P (qt(z) ∈ dx) = e−m(Rd∗)t

[
δ0(dx) +

∞∑
n=1

(
m?n(dx)−m?n(Rd∗)

) tn
n!

]
,

m?(n+1)(B) = (m?n ? m)(B) =

∫
Rd∗×Rd∗

1B(x+ y)m?n(dx)m(dy),

(4.29)

where m?1 = m and m?n(Rd∗) = (m(Rd∗))n = λn. Next, remarking that t 7→ qt(z)
is continuous except for t = θn that qt(z) − qt−(z) = Nt − Nt− = zn, the
expression

qt(K) =
∑
s≤t

1qt(z)−qt−(z)∈K − tm(K) (4.30)

is a finite sum almost surely, and can be used to reconstruct the counting mea-
sure {qt(K) : K ∈ K} from the {qt(z) : t ≥ 0}. Indeed, just the knowledge that
the paths t 7→ qt(z) are cad-lag, implies that the series (4.30) reduces to a finite
sum almost surely.

The terms ψ(zn)1t≥θn in the series (4.26) are not independent, but setting
λ = m(Rd∗) and m′ = m/λ we compute

E
{
|ψ(zn)1t≥θn |2

}
= m′(|ψ|2) rn(t),

E
{
ψ(zn)1t≥θnψ(zk)1t≥θk

}
= |m′(ψ)|2rn(t), ∀k > n ≥ 1,

where

E{1t≥θn} =

∫ t

0

λnsn−1

(n− 1)!
e−λsds = rn(t)

with
∑
n rn(t) = tm(Rd∗). Thus, the Gram-Schmidt orthogonalization procedure

can be used to define e0(ψ, t) = −tm(ψ), e1(ψ, t) = ψ(z1)1t≥θ1 − m′(ψ)r1(t),
E{|e1(ψ, t)|2} =

(
m′(|ψ|2)− |m′(ψ)|2r1(t)

)
r1(t), and

e2(ψ, t) = ψ(z2)1t≥θ2 −m′(ψ)r2(t)− |m′(ψ)|2

m′(|ψ|2)− |m′(ψ)|2r1(t)
e1(ψ, t),
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and a more complicate expression for n ≥ 2. Actually, this is equivalent to

en(ψ, t) = ψ(zn)1t≥θn − E{ψ(zn)1t≥θn |ψ(zi)1t≥θi , i = 1, . . . , n− 1}

the conditional expectation, and qt(ψ) =
∑
n≥1 en(ψ, t).

Alternatively, if e′n(ψ, t) =
(
ψ(zn) − m′(ψ)

)
1t≥θn then E{e′n(ψ, t)} = 0,

E{|e′n(ψ, t)|2} =
(
m′(|ψ|2)− |m′(ψ)|2

)
rn(t), and for k > n ≥ 1,

E{e′n(ψ, t)e′k(ψ, t)} = E{(ψ(zn)−m′(ψ))(ψ(zk)−m′(ψ))1t≥θn} = 0.

Also, define e′′n(ψ, t) = m′(ψ)
(
1t≥θn − rn(t)

)
, which satisfies E{e′′n(ψ, t)} = 0,

E{|e′′n(ψ, t)|2} = |m′(ψ)|2rn(t)
(
1 − rn(t)

)
, E{e′′n(ψ, t)e′′k(ψ, t)} = 0 if n 6= k,

and E{e′′n(ψ, t)e′k(ψ, t)} = 0 for any n, k. Therefore {e′n(ψ, t), e′′k(ψ, t) : n, k ≥
1} is an orthogonal system such that qt(ψ) =

∑
n e
′
n(ψ, t) +

∑
k e
′′
n(ψ, t) or

qt(ψ) =
∑
n e
′
n(ψ, t)+m′(ψ)Nt, where Nt =

∑
n 1t≥θn is a Poisson process with

parameter m(Rd∗). Comparing with the white noise, the orthogonality is not
necessary since the series defining (4.26) is finite almost surely.

If Fψ is σ-algebra generated by {qs(ψ) : s ≤ t} (or equivalently by the
countable family {er(ψ) : r ≤ t, r ∈ R}), then the closure linear subspace Hψ

of L2(Ω,Fψ, P ) spanned by {qt(ψ) : t ≥ 0} could be called the Poisson noise
relative to any nonzero ψ in L2(Rd∗,B,m). If we normalize the orthogonal system
then the projection operator

E{x | qs(ψ), s ≤ t} =
∑
n

E{x en(ψ, t)}
E{|en(ψ, t)|2}

en(ψ, t), (4.31)

valid only for x in Hψ. Contrary to the white noise, there is not an equivalent to
the Hermit polynomials (in general), and we do not have an easy construction
of an orthonormal basis for L2(Ω,Fψ, P ).

• Remark 4.18. The above argument used to construct qt(ψ) for every ψ in
L2(m) can be adapted to define qt(Ψ) = q(Ψ1]0,t]) as the double integral of

functions Ψ = Ψ(t, z) belonging to L2(]0,∞[×Rd∗,dt× dm), where

E{|q(Ψ)|2} =

∫ ∞
0

dt

∫
Rd∗
|Ψ(t, z)|2m(dz),

and E{q(Ψ)} = 0. Even Rn-valued functions Ψ can be handled with the same
argument.

The Poisson Noise II

Even more complicate is the case of the general Poisson noise, which is regarded
as Poisson point process or Poisson measure, i.e., the paths are cad-lag functions,
non necessary piecewise constant.

Let m be a σ-finite measure in (Rd∗,B∗), with the Borel σ-algebra being
generated by a countable semi-ring K. We partition the space Rd∗ is a disjoint
union Rd∗ =

∑
k Rk with 0 < m(Rk) < ∞ to apply the previous construction

Section 4.2 Menaldi January 7, 2014



CHAPTER 4. STOCHASTIC CALCULUS 350

for the finite measures mk = m(· ∩ Rk) in such a way that the sequences q̇k =
{(zn,k, τn,k) : n ≥ 1} are independent for k ≥ 1. Therefore, the sequence
of counting measures {qt,k(K) : k ≥ 1} is orthogonal, with E{|qt,k(K)|2} =
tm(K ∩ Rk), and the series qt(K) =

∑
k qt,k(K) is now defined as a limit in

L2(Ω,F , P ) satisfying E{qt(K)} = 0 and E{|qt(K)|2} = tm(K). Remark that
we could assume given a sequence {Nt,k : k ≥ 1} of independent Rd-valued
compound Poisson processes with parameter mk, but the series

∑
kNt,k may

not be convergent.
Next, the same argument applies for the integrals, i.e., qt(ψ) =

∑
k qt(ψ)

makes sense (as a limit in the L2-norm) for every ψ in L2(Rd∗,B∗,m), and
E{qt(ψ)} = 0, E{|qt(ψ)|2} = tm(|ψ|2). However the (double) series

qt(ψ) =
∑
k

[∑
n

ψ(zn,k)1t≥θn,k − tmk(ψ)
]
, ∀ψ ∈ L2(Rd∗,B∗,m), (4.32)

does not necessarily reduces to a finite sum almost surely, m(|ψ|) may not be
finite and the pathwise analysis can not be used anymore.

Nevertheless, if we add the condition that any K in K is contained in a
finite union of Rk, then qt(K) =

∑
k qt,k(K) does reduce to a finite sum almost

surely, and we can construct the integral almost as in the case of the composed
Poisson noise. This is to say that, for any K in K, the path t 7→ qt(K) is a
piecewise constant function almost surely. Similarly, if ψ vanishes outside of a
finite number of Rk then the series (4.32) reduces to a finite sum almost surely.

The martingale estimate2

E{sup
t≤T
|qt(ψ)|2} ≤ 3m(|ψ|2)T, ∀T > 0,

shows that the limit defining qt(ψ) converges uniformly on any bounded time
interval [0, T ], and so, it is a cad-lag process. Another way is to make use of the
estimate E{|qt(ψ) − qs(ψ)|2} = m(ψ)|t − s| (and the property of independent
increments) to select a cad-lag version.

Therefore, the (double) integral qt(ψ) is defined above as a L2-continuous
random process by means of a L2 converging limit as in (4.32).

Actually, the random measure {qt(dz) : t ≥ 0, z ∈ Rd∗} is a centered Poisson
measure Lévy measure m, namely, for every ψ in L2(Rd∗,B∗,m), the integral
{qt(ψ) : t ≥ 0} is a Lévy process with characteristic (0, 0,mψ), where mψ is
pre-image measure of m, i.e., mψ(B) = m(ψ−1(B)), for every Borel set B in R,
and the expression (4.27) of the characteristic function of qt(ψ) is valid.

Since the measure m is not necessarily finite, only if m(ψ) <∞ we can add
the counting process to define the integral pt(ψ) as in the case of a compound
Poisson process, i.e., the (double) series

pt(ψ) =
∑
n,k

ϕ(zn,k)1t≤θn,k

2Note that {qt(ψ) : t ≥ 0} is a separable martingale, so that Doob’s inequality or regular-
ization suffices to get a cad-lag version
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converges in L1(Ω,F , P ), but does not necessarily reduces to a finite sum almost
surely. Any way, we have the equality E{qt(ψ)qs(ψ

′)} = (t∧s)m(ψψ′), for every
ψ and ψ′ in L2(Rd∗,B∗,m) and any t, s > 0.

Thus, if m(|z|) < ∞ then the series
∑
k

∑
n |zn|1t≥θn,k =

∑
kmk(|z|) =

m(|z|) converges, and therefore, the Rd-valued Lévy process

Nt =
∑
k

∑
n

zn,k1t≥θn,k

is meaningful and Nt = qt(z) + tm(z). In general, if only m(|z|2 ∧ |z|) < ∞
then the Rd-valued Lévy process {qt(z) : t ≥ 0} with characteristic function
(4.28) remains meaningful, and the expression (4.30) allows us to reconstruct
the counting measure {qt(K) : K ∈ K} from the {qt(z) : t ≥ 0}. However,
the expression of the transition density is not so immediately, for each finite
measure mk = m(· ∩ Rk) we have an explicit series but the limit in k is not so
clear. Any way, for a bounded set B with m(B) <∞, the transition density of
{qt(z1B) : t ≥ 0} is given by a series similar to (4.29).

Observe that if the measure m integrates the function z 7→ |z|2 then

qt(z) =
∑
k

[∑
n

zn,k1t≥θn,k − tmk(z)
]

converges in L2, and because P (limn,k θn,k =∞) = 1 and m(1|z|≥ε) <∞, ε > 0,
the series

∑
k

∑
n 1|zn,k|≥ε1t≥θn,k is a finite sum almost surely, for every ε > 0.

Therefore, a convenient semi-ring K is the countable class of d-intervals ]a, b]
with closure in Rd∗ and with rational end points, in this way, if m(|z|2 ∧ 1) <∞
then qt(K), given by either (4.32) or (4.30), reduces to a finite sum almost
surely, for every K in K. Usually, an intensity measure m (not necessarily in
Rd∗) is associated with {qt(dz)} (regarded as a Poisson martingale measure),
whist a Lévy measure m (on Rd∗), which necessary satisfies m(|z|2 ∧ 1) < ∞,
is associated with {qt(z)} (regarded as a Rd-valued centered Poisson process).
However, we prefer to assume m(|z|2) <∞ to obtain a Rd-valued Lévy process
{qt(z) : t ≥ 0} with finite second-order moments.

If K is a countable semi-ring (with each K separated from {0}) generating
the Borel σ-algebra in Rd∗ then, perhaps, the system q̇t = {en,k(K, t) : n, k ≥
1, K ∈ K}, with

en,k(K, t) =
[
1zn,k∈K1θn,k≤t − E{1zn,k∈K}E{1θn,k≤t}

]
,

is the ideal expression of a Poisson noise with Lévy measure m. Similarly, if ψ
in L2(Rd∗,B∗,m) then for every n ≥ 1, {en,k(ψ, t) : k ≥ 1}, with

en,k(ψ, t) =
[
ψ(zn,k)1θn,k≤t − E{ψ(zn,k)}E{1θn,k≤t}

]
,

is an orthogonal system in L2(Ω,F , P ), with E{en,k(ψ, t)} = 0 and repeating
the orthogonalization of the case with finite measure m, an orthogonal system
{ẽn,k(ψ, t) : n, k ≥ 1} can be constructed. Hence, the projection operator has a
form similar to (4.31). It is also clear that we can extend Remark 4.18 to this
general Poisson noise.
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To conclude this long introduction (of Wiener and Poisson noises or pro-
cesses), let us mention that the previous arguments could be used to define
a Wiener process {wt : t ≥ 0} and a Rd-valued (centered) Poisson process
{qt(z) : t ≥ 0} or martingale Poisson measure {qt(dz) : t ≥ 0} with Lévy mea-
sure m on Rd∗, independent one of each other. Essentially, the arguments go
as follows: a convergent orthogonal (better, independent identically distributed
random variables with zero mean) series is used for the Wiener process, and a
two procedure is needed for the Poisson measure, namely, an almost surely finite
series (when the Lévy measure is finite) and next a convergent orthogonal series.
As mentioned early, the above constructions can handle real-valued functions in
L2(]0,∞[) or L2(m(dz) × dt) instead of just integrating functions constant in
time (1 and ψ), and eventually random functions which are appropriate limits
of a linear combination of terms like 1]0,τ ], with a bounded stopping time τ.

Summing-up, these constructions, specially the extension to random func-
tions, are called stochastic integrals. The class of random functions that are
integrable with respect to either a Rd-valued Wiener process w or a Poisson mar-
tingale measure q with Lévy measure m in Rd∗ are processes either (f(t) : t ≥ 0)
or {g(z, t) : z ∈ Rd∗, t ≥ 0} satisfying almost surely the integrability condition

either

∫ T

0

|f(t)|2dt <∞ or

∫ T

0

dt

∫
Rd∗
|g(z, t)|2π(dz) <∞,

and the non-anticipative assumption, i.e., for every t ≥ 0, either f(t) or g(z, t)
is independent of the increments, either {w(s) − w(t) : s > t} or {qs(K) −
qt(K) : s > t, K ∈ K}, with K a countable semi-ring (each K separated from
{0}) generating the Borel σ-algebra in Rd∗. This non-anticipating property with
respect to the previous constructions translates into an independent condition
of either f(t) or g(z, t) with respect to the sequence od random variables

either {ei,n : i = 1, . . . , 4n, n ≥ 1, i2−n > t}

or {1zn,k∈K1s≥θn,k>t : n, k ≥ 1, K ∈ K, s > t},

with the notation (4.18) and (4.32). The main point of these constructions is to
note that the stochastic integrals are intrinsically connected with the construc-
tion of Lévy processes. However, in what follows, the focus is on the integrands
(i.e., processes that are integrable) with respect to a Lévy process.

4.2.2 Relative to Wiener processes

Let (w(t) : t ≥ 0) be a real-valued standard Wiener process in a given filtered
space (Ω,F , P,Ft : t ≥ 0), i.e., w(t) and w2(t) − t are continuous martingales
relative to the filtration (Ft : t ≥ 0), with w(0) = 0. Denote by E the vector
space of all processes of the form f(t, ω) = fi−1(ω) if ti−1 < t ≤ ti with
some i = 1, . . . , n, where 0 = t0 < t1 < · · · < tn are real numbers and fi−1

is a F(ti−1) measurable bounded random variable for any i, and f(t, ω) = 0
otherwise. Elements in E are called elementary predictable processes. it is clear
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what the integral should be for any integrand in E , namely∫
f(s)dw(s) :=

n∑
i=1

fi−1[w(ti)− w(ti−1)], (4.33)

and ∫
(0,t]

f(s)dw(s) :=

n∑
i=1

fi−1[w(t ∧ ti)− w(t ∧ ti−1)], ∀t ≥ 0,∫
(a,b]

f(s)dw(s) :=

∫
(0,b]

f(s)dw(s)−
∫

(0,a]

f(s)dw(s),

for every b > a ≥ 0. Notice that∫
(a,b]

f(s)dw(s) =

∫
f(s)1(a,b](s)dw(s),

for every b > a ≥ 0. This definition (4.33) is independent of the particular
representation used and because fi−1 is a F(ti−1) measurable we obtain

E
{∣∣ ∫ f(s)dw(s)

∣∣2} =

n∑
i=1

E{|fi−1|2(ti − ti−1)} = E{
∫
|f(s)|2ds}, (4.34)

for every f in E . Moreover the processes∫
(0,t]

f(s)dw(s) and
∣∣∣ ∫

(0,t]

f(s)dw(s)
∣∣∣2 − ∫ t

0

|f(s)|2ds, (4.35)

for every ∀t ≥ 0, are continuous martingales, and

E
{[ ∫

f(s)dw(s)
] [ ∫

g(s)dw(s)
]}

= E
{∫

f(s) g(s)ds
}
, (4.36)

for any two stochastic processes f and g in E . Denote by Ē the L2-closure of
E , i.e., the Hilbert space of all processes f for which there exists a sequence
(f1, f2, . . .) of processes in E such that

lim
n→∞

E
{∫
|fn(s)− f(s)|2ds

}
= 0.

Based on the martingale inequality

E
{

sup
0≤t≤T

∣∣ ∫
(0,t]

f(s)dw(s)
∣∣2} ≤ 4E

{∫ T

0

|f(s)|2ds
}
, (4.37)

for every T ≥ 0, and the isometry identity (4.34), this linear operation can
be extended to the closure Ē , preserving linearity and the properties (4.34),
(4.35), (4.36). This is called Itô integral or generally stochastic integral. Besides
a density argument, the estimate (4.37) is used to show that the stochastic
integral on (0, t] is a continuous process as a function of t ≥ 0, for any f in Ē .
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If τ and θ are stopping times with θ ≤ τ ≤ T (with T a constant) then the
process

1]]θ,τ ]] : (ω, t) 7→ 1θ(ω)<t≤τ(ω)

is elementary predictable process, indeed, for any partition 0 = t0 < t1 < · · · <
tn, with tn ≥ T we have

1]]θ,τ ]] =

n∑
i=1

1[θ≤ti−1]r[τ≤ti] 1]ti−1,ti],

so that∫
1]]θ,τ ]](s)dw(s) =

n∑
i=1

1[θ≤ti−1] 1[τ≤ti] [w(ti)− w(ti−1] =

=
∑

0≤i<j≤n

1[θ=ti] 1[τ=tj ] [w(τ)− w(θ)] = w(τ)− w(θ),

Even more general, we have the equality∫
(θ,τ ]

c f(s)dw(s) = c

∫
(θ,τ ]

f(s)dw(s), (4.38)

for every bounded random variable c which is Fθ-measurable and any f in Ē .
A way of proving (4.38) is to approximate the stopping times by finite-valued
stopping times, which also show that in (4.33) we may replace the deterministic
times ti by stopping times τi, i.e.,∫

(0,t]

f(s)dw(s) =

n∑
i=1

fi−1[w(t ∧ τi)− w(t ∧ τi−1)], (4.39)

for every t ≥ 0 and any processes of the form f(t, ω) = fi−1(ω) if τi−1 < t ≤ τi
with some i = 1, . . . , n, where 0 = τ0 < τ1 < · · · < τn ≤ T, with T a real
number, and fi are F(τi) measurable bounded random variable for any i, and
f(t, ω) = 0 otherwise.

Now, we may extend this stochastic integral by localizing the integrand,
i.e., denote by Ēloc the space of all processes f for which there is a sequence
(τ1 ≤ τ2 ≤ · · · ) of stopping times such that P (τn < ∞) converges to zero and
the processes fk(t, ω) := f(t, ω) for t ≤ τk (with fk(t, ω) := 0 otherwise) belong
to Ē . Since, almost surely we have∫

(0,t]

fk(s)dw(s) =

∫
(0,t]

fn(s) dw(s), ∀t ≤ τk, k ≤ n,

and both processes are continuous, we can define∫
(0,t]

f(s)dw(s) = lim
n

∫
(0,t]

fn(s) dw(s), ∀t ≥ 0,

in a unique way and independent of the localizing sequence (τ1 ≤ τ2 ≤ · · · ) used.
For processes in Ēloc the equalities (4.34) and (4.36) are no longer meaningful,
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but the processes (4.35) become continuous local martingales. A very useful
estimate, similar to the martingale inequality (4.37) but adapted to the local
case is the following inequality

P
{

sup
0≤t≤T

∣∣ ∫
(0,t]

f(s)dw(s)
∣∣ ≥ ε} ≤ δ

ε2
+ P

{∫ T

0

|f(s)|2ds ≥ δ
}
, (4.40)

for any positive numbers T, ε and δ.
It is important to remark that the stochastic integral is initially defined in a

L2 space, where an element is an equivalence class relative to the product mea-
sure P ×d`, with d` the Lebesgue measure on the semi-line [0,∞). For the sake
of simplicity, we write Ω× [0,∞) or [0,∞)×Ω indistinctly as long as no confu-
sion may arrive, i.e., processes are written f(t, ω) or f(ω, t). Next, by means of
martingale properties we can select a good version to make the processes (4.35)
continuous (local) martingales. By a simple argument of monotone classes, we
deduce that Ē contains the Hilbert space L2(Ω× [0,∞),P, P ×d`). On the other
hand, it is also clear that any stochastic process in Ēloc is measurable relative
to the σ-algebra P̄, generated by P and all P × d`-null subsets of Ω × [0,∞).
As mentioned above, all concepts (in particular the stochastic integral) are up
to or except to an evanescent set. However, the stochastic integral is defined up
to a P × d`-null subset of Ω× [0,∞), and then a good version is chosen. Thus,
the next question is what processes are in Ē or Ēloc besides those that are pre-
dictable, i.e., what can be said about completion σ-algebra P̄ of the predictable
σ-algebra P.

Adapted, Predictable and Other Properties

Following Doob [59] we can prove that any adapted square integrable process
f(t, ω) is in Ē . First assume f is bounded and vanishes for t outside of a bounded
interval, then we partition the real line R into intervals (kε, (k + 1)ε] with k =
0,±1,±2, . . . , ε > 0, and we define fε,s(t, ω) := f(αε(t − s) + s, ω), where
αε(r) := kε for any r in the subinterval (kε, (k+1)ε], where f has been extended
for t ≤ 0. The restriction to [0,∞) of the process fε,s belongs to E for any ε > 0
and s in R. We claim that there exist a sequence (ε1 > ε2 > · · · ) and some s
such that

lim
n→∞

E
{∫
|fεn,s(t, ω)− f(t, ω)|2dt

}
= 0.

Indeed, the continuity of the translation in R with respect to the Lebesgue
measure and the fact that αε(r)− r → 0 as ε→ 0 show that

lim
ε→0

∫
|f(αε(t) + s, ω)− f(t+ s, ω)|2ds = 0, ∀t, ω.

Since all processes considered are bounded and vanish outside of a fixed finite
interval, we have

lim
ε→0

∫
E
{∫ ∣∣f(αε(t) + s, ω)− f(t+ s, ω)

∣∣2ds
}

dt = 0.
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Fubini’s Theorem allows us to exchange the integration order of the variables
s and t, proving the claim. Finally, for the general case, we define fn(t, ω) :=
f(t, ω) if 0 ≤ t ≤ n and |f(t, ω)| ≤ n, and fn(t, ω) := 0 otherwise. Applying
the previous approximation to fn we complete the proof. Thus any measurable
adapted process is P̄ measurable.

It is easy to check that any progressively measurable process such that

P{
∫ t

0

|f(s, ω)|2ds <∞} = 1, ∀t ≥ 0 (4.41)

belongs to Ēloc. Indeed, the expression

τn := inf{t ≥ 0 :

∫ t

0

|f(t, ω)|2ds ≥ n}

define a localizing sequence of stopping times for the process f, which proves
the claim. However, when f is only a measurable adapted process, τn may not
be a stopping time. In this case, we can always approximate f by truncation,
i.e, fn(t, ω) := f(t, ω) if |f(t, ω)| ≤ n and fn(t, ω) := 0 otherwise, so that

lim
n
P{
∫ T

0

|fn(t, ω)− f(t, ω)|2ds ≥ δ} = 0, ∀T, δ ≥ 0.

Since fn belongs to Ē , for every n ≥ 1, the estimate (4.40) proves also that Ēloc

contains all measurable adapted processes satisfying (4.41). If f is a cad-lag
adapted process then t 7→ f(t−) and f are progressively measurable, condition
(4.41) is satisfied and∫

(0,t]

f(s)dw(s) =

∫
(0,t]

f(s−)dw(s), ∀t > 0.

Moreover, let 0 = τn0 ≤ τn1 < · · · < τnk < · · · be a sequence of stopping times
such that P{supk τ

n
k <∞} → 0 and P{supk(τnk −τnk−1 > δ} → 0, for any δ > 0,

as n→∞. Then, for any given adapted stochastically left continuous process f,
we define the sequence of simple predictable processes fn,m(t, ω) := f(τnk , ω) if
|f(τnk , ω)| ≤ m and τnk < t ≤ τnk+1, k = 0, 1, 2, . . . , and fn,m(t, ω) := 0 otherwise.
It is clear that

lim
n
P{|fn,m(t, ω)− fm(t, ω)| ≥ δ} = 0, ∀t, δ,m > 0,

where fm(t, ω) := f(t, ω) if |f(t, ω)| ≤ m and fm(t, ω) := 0 otherwise. Because
|fm,n| is bounded by m, this yields

lim
n
P
{∫ T

0

|fn,m(t, ω)− fm(t, ω)|2dt ≥ δ
}

= 0, ∀T, δ,m > 0.

Hence, by means of (4.40)

lim
n
P
{

sup
0≤t≤T

∣∣ ∫
]0,t]

[fn,m(t)− fm(t)]dw(t)
∣∣ ≥ ε} = 0,

Section 4.2 Menaldi January 7, 2014



CHAPTER 4. STOCHASTIC CALCULUS 357

for every T, ε,m > 0. Thus, for each t,m > 0, the expression∫
]0,t]

fn,m(s)dw(s) =

∞∑
k=0

fm(τnk , ω) [w(t ∧ τnk+1, ω)− w(t ∧ τnk , ω)],

for every t > 0, is an approximation of the stochastic integral provided f satisfies
(4.41). Recall that fm(t, ω) = f(t, ω) if |f(t, ω)| ≤ m, so that fm converges
to f almost surely in L2. It is clear that condition (4.41) is satisfied when
f is cad-lag. A typical case is when τnk := k2−n. Thus, if the equivalence
class, containing an element f in Ēloc, contains a predictable element (in the
previous case f(t−) for any t > 0) then we write the stochastic integral with
the predictable representative of its equivalence class.

It can be proved, see Dellacherie and Meyer [58, Theorem VIII.1.23, pp.
346-346] that for any f in Ēloc we have if f(s, ω) = 0, ∀(s, ω) ∈]a, b]× F, F ∈ F

then

∫
(a,b]

f(s)dw(s) = 0 a.s. on F.
(4.42)

This expresses the fact that even if the construction of the stochastic integral is
not pathwise, it retains some local character in Ω.

From the definition it follows that if f is a cad-lag adapted process with
locally bounded variation then∫

(0,t]

f(s)dw(s) =

∫
(0,t]

f(s−)dw(s) = f(t)w(t)−
∫

(0,t]

w(s)df(s),

where the last integral is in the Riemann-Stieltjes or Lebesgue-Stieltjes sense.
However, the Wiener process w has unbounded local variation. Let $ := (0 =
t0 < t1 < · · · < tn = t) be a partition of [0, t], with ‖$‖ := maxi(ti − ti−1) and
consider the Riemann sums

S$ :=

n∑
i=1

w(t∗i )[w(ti)− w(ti−1)], with ti−1 ≤ t∗i ≤ ti,

which can be rewritten as

S$ =
w2(t)

2
− 1

2

n∑
i=1

[w(ti)− w(ti−1)]2 +

n∑
i=1

[w(t∗i )− w(ti−1)]2 +

+

n∑
i=1

[w(ti)− w(t∗i )][w(t∗i )− w(ti−1)].

Since

E
{ n∑
i=1

[w(ti)− w(ti−1)]2
}

=

n∑
i=1

[ti − ti−1] = t,
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E
{[ n∑

i=1

[w(t∗i )− w(ti−1)]2 −
n∑
i=1

(t∗i − ti−1)
]2}

=

= E
{ n∑
i=1

[w(t∗i )− w(ti−1)]4
}
−

n∑
i=1

(t∗i − ti−1)2 ≤ 2t‖$‖,

and

E
{[ n∑

i=1

[w(ti)− w(t∗i )][w(t∗i )− w(ti−1)]
]2}

=

=

n∑
i=1

(ti − t∗i )(t∗i − ti−1) ≤ t‖$‖,

we deduce that

lim
‖π‖→0

[
S$ −

n∑
i=1

(t∗i − ti−1)
]

=
w2(t)

2
− t

2
,

in the L2-sense. In the Itô integral, t∗i = ti−1 so that∫
(0,t]

w(s)dw(s) =
w2(t)

2
− t

2
, ∀t ≥ 0.

However, any choice t∗i = (1− r)ti−1 + rti, with 0 ≤ r ≤ 1, could be possible. In
particular Fisk-Stratonovich integral, where r = 1/2, t∗i = (ti−1 + ti)/2, yields a
symmetric calculus, very useful in some physical and mechanical models. How-
ever, Itô integral, i.e., the choice r = 1, t∗i = ti−1, is more oriented to control
models, where the adapted (or predictable) character (i.e., non-interaction with
the future) is an essential property. Moreover, the martingale property is pre-
served.

Working by coordinates, this stochastic integral can be extended to a Rd-
valued Wiener process and n× d matrix-valued predictable processes.

4.2.3 Relative to Poisson measures

Let {p(t) : t ≥ 0} be a real-valued compound Poisson process with parameters
(c, ν), where c > 0 and γ is a distribution in Rd∗ := Rd r {0}, in a given filtered
space (Ω,F , P,Ft : t ≥ 0). This means that

p(t, ω) =

0 if t < θ1(ω),

Zn(ω) if θn(ω) ≤ t < θn+1(ω),

where θn := τ1 + τ2 + · · · + τn, {τn : n = 1, 2, . . .} is a sequence of inde-
pendent exponentially distributed (with parameter c) random variables, Zn :=
ζ1 + ζ2 + · · · + ζn, {ζn : n = 1, 2, . . . } is a sequence of independent identically
distributed (with distribution law γ) random variables, independent of the se-
quence τ1, τ2 . . . . In particular, if γ is δ1, the Dirac measure at z = 1 then
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Zn = n, the case of a standard Poisson process. Notice that p(t) − ct and
p2(t) − ct are martingales relative to the filtration (Ft : t ≥ 0), with p(0) = 0.
Since the function t 7→ p(t, ω) is cad-lag, piecewise constant and with bounded
variation for any ω, the integral with respect to p(t) is covered by the mea-
sure theory, i.e., a pathwise integration. For a bounded left-continuous process
f(t, ω) we can define

∫
(0,t]

f(s, ω)dp(s, ω) :=

∞∑
n=1

f(θn(ω), ω)1θn(ω)≤t =

=

N(t,ω)∑
n=1

f(θn(ω), ω),

(4.43)

for each ω, where N(t, ω) := n if θn(ω) ≤ t < θn+1(ω), i.e., a standard Poisson
process. Because t 7→ E{p(t)} is continuous, we have∫

(0,t]

f(s, ω)dE{p(s, ·)} =

∫
(0,t]

f(s+, ω)dE{p(s, ·)},

but ∫
(0,t]

p(s−, ω)dp(s, ω) =

∞∑
n=1

p(θn(ω)−, ω)1θn(ω)≤t =

=

N(t,ω)∑
k=1

Zk−1(ω) ζk(ω),

and ∫
(0,t]

p(s, ω)dp(s, ω) =

∞∑
n=1

p(θn(ω), ω)1θn(ω)≤t =

N(t,ω)∑
k=1

Zk(ω) ζk(ω).

Thus, for a given compound Poisson process p(t) as above and a left-continuous
(or only predictable) process f(t) (without begin locally integrable), we can use
(4.43) to define the stochastic integral, which is just a pathwise sum (integral)
in this case, with is a jump process similar to the compound Poisson process.
Similar arguments apply to the centered compound Poisson process t 7→

(
p(t)−

E{p(t)}
)
, and the integral is the difference of random pathwise integral and a

deterministic integral.
Next step is to consider a standard Poisson measure {p(·, t) : t ≥ 0} with

Lévy (intensity) measure π(·) in a given filtered space (Ω,F , P,Ft : t ≥ 0), i.e.,
(a) π(·) is a Radon measure on Rm∗ := Rmr{0}, i.e., π(K) <∞ for any compact
subset K of Rm∗ ; (b) {p(B, t) : t ≥ 0} is a Poisson process with parameter π(B),
for any Borel subset B in Rd∗ with π(B) < ∞ (here p(B, t) := 0 if π(B) =
0); (c) the Poisson processes p(·, B1), p(·, B2), . . . , p(·, Bn) are independent if
B1, B2, . . . , Bn are disjoint Borel set in Rm∗ with π(Bi) <∞, i = 1, . . . , n.

Given a Radon measure π in Rm∗ (which integrates the function |z|2 ∧ 1, so
that it can be called a Lévy measure), we write π =

∑
k πk, where πk(B) :=
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π(B ∩ Rk), Rm∗ =
⋃
k Rk, π(Rk) < ∞ and Rk ∩ R` = ∅ if k 6= `. To each

πk we may associate a compound Poisson process and a point process by the
expressions

Yk(t) :=

∞∑
n=1

ζn,k1t≥θn,k ,

δYk(t) := Yk(t)− Yk(t−) = ζn,k1t=θn,k , ∀t ≥ 0,

where θn,k := τ1,k + τ2,k + · · · + τn,k, {τn,k : n = 1, 2, . . . } is a sequence of
independent exponentially distributed (with parameter π(Rk) = ck) random
variables, and {ζn,k : n = 1, 2, . . . } is another sequence of independent identi-
cally distributed (with distribution law πk/ck) random variables, and the two
sequences {τn,h : n, k ≥ 1}, {ζn,k : n, k ≥ 1} are independent. The jump process
δY =

∑
k δYk is indeed a Poisson point process with characteristic measure π,

i.e., with Zn,k := ζ1,k + ζ2,k + · · ·+ ζn,k,

p(B×]s, t]) :=

∞∑
n,k=1

1s<θn,k≤t 1Zn,k∈B , ∀t > s ≥ 0, B ∈ B(Rm∗ ),

is a standard Poisson random measure with intensity measure

E{p(B×]s, t])} = (t− s)π(B).

In general, we cannot arrange the jumps in the increasing order like the case of
a compound Poisson process, because there may occur accumulation of small
jumps. With any of the notation p(B, t) or p(B×]0, t]) or p(B, ]0, t]) the integer-
valued random measure p (see Section 4.1.3) is also called a standard Poisson
random measure. From the process viewpoint, p(B, ]s, t]) is defined as the (fi-
nite) number of jumps (of a cad-lag process Y ) belonging to B within the interval
]s, t]. Note that the predictable compensator of the optional random measure
p(·, t) is the deterministic process πt. Thus, for a predictable process of the form
F (z, t, ω) = f(t, ω)1z∈B the expression∫

Rk×]0,t]

F (z, s, ω) p(dz,ds) =

∞∑
n=1

f(θn,k(ω), ω)10<θn,k(ω)≤t 1Zn,k(ω)∈B

is indeed a finite stochastic pathwise sum (as previously). However, the passage
to the limit in k is far more delicate and requires more details.

With the above introduction, let ν be an integer-valued random measure,
which is a Poisson measure as in Definition 4.9, with Lévy measure Π(B×]s, t]) =
E{ν(B×]s, t])}, Π(Rm∗ × {t}) = 0 for every t ≥ 0, and local martingale measure
ν̃ := ν − Π, in a given filtered space (Ω,F , P,Ft : t ≥ 0). In particular, a
standard Poisson measure {p(·, t) : t ≥ 0} with Lévy (characteristic or intensity)
measure π(·), and Π(dz,dt) = π(dz) × dt. Note that we reserve the notation p
for a standard Poisson measure. Denote by E the vector space of all processes
of the form f(z, t, ω) = fi−1,j(ω) if ti−1 < t ≤ ti and z belongs to Kj with
some i = 1, . . . , n, and j = 1, . . . ,m, where 0 = t0 < t1 < · · · < tn are real
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numbers, Kj are disjoint sets with compact closure in Rm∗ and fi−1,j is a F(ti−1)
measurable bounded random variable for any i, and f(t, ω) = 0 otherwise.
Elements in E are called elementary predictable processes. It is clear what the
integral should be for any integrand in E , namely

∫
Rm∗ ×(0,∞)

f(z, s) ν̃(dz,ds) :=

n∑
i=1

m∑
j=1

fi−1,j ν̃(Kj×]ti−1, ti]),∫
Rm∗ ×(a,b]

f(z, s) ν̃(dz,ds) :=

∫
f(z, s)1(a,b](s) ν̃(dz,ds),

(4.44)

for every b > a ≥ 0. Notice that∫
Rm∗ ×(0,∞)

f(z, s)1(0,t](s) ν̃(dz,ds) =

n∑
i=1

m∑
j=1

fi−1,j ν̃(Kj×]t ∧ ti−1, t ∧ ti])

and ∫
f(z, s)1(a,b](s) ν̃(dz,ds) =

=

∫
Rm∗ ×(0,b]

f(z, s) ν̃(dz,ds)−
∫
Rm∗ ×(0,a]

f(z, s) ν̃(ds,dz),

for every t > 0.
If ν is a standard (or homogeneous) Poisson measure, i.e., E{ν(B×(]s, t])} =

(t − s)π(B), then p(K, t) := ν(K×]0, t]) is a Poisson process with parameter
π(K), then for any left-continuous adapted process of the form f(z, t, ω) =
fj(t, ω) when z belongs to Kj , we can calculate the stochastic integral, namely,∫

Rm∗ ×(0,t]

m∑
j=1

fi(s)1Kj (z) ν(dz,ds) :=

m∑
j=1

p(t,Kj ,ω)∑
k=1

fj(θk(ω,Kj), ω),

for every t ≥ 0, where θk(ω,Kj) is the time of the k jumps of the Poisson
process t 7→ p(Kj , t). In the case of a compound-Poisson process as above, we
may forget about the K dependency, and make the previous pathwise definition,
both concepts agree. In general, from ν = ν̃+Π, with Π = π×dt, we can define
the stochastic integral relative to an integer-valued random measure ν.

This definition is independent of the particular representation used. Since
for any K1 disjoint of K2 and any t ≥ 0 the random variables p(K1, t) and
p(K2, t) are orthogonal, and because fi−1 is a F(ti−1) measurable we obtain

E
{∣∣ ∫

Rm∗ ×(0,t]

f(z, s) ν̃(dz,ds)
∣∣2} = E{

∫
Rm∗ ×(0,t]

|f(z, s)|2 Π(dz,ds)}, (4.45)

for every f in E . Moreover the processes
∫
Rm∗ ×(0,t]

f(z, s) ν̃(dz,ds) and∣∣∣ ∫
Rd∗×(0,t]

f(z, s) ν̃(dz,ds)
∣∣∣2 − ∫

Rm∗ ×(0,t]

|f(z, s)|2 Π(dz,ds),

(4.46)
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with t ≥ 0 are cad-lag (quasi-left continuous) martingales, and

E
{[ ∫

Rm∗ ×(0,∞)

f(z, s) ν̃(dz,ds)
]
×

×
[ ∫

Rm∗ ×(0,∞)

g(z, s) ν̃(dz,ds)
]}

=

= E
{∫

Rm∗ ×(0,∞)

f(z, s) g(z, s) Π(dz,ds)
}
,

(4.47)

for any two stochastic processes f and g in E . Denote by ĒΠ the L2-closure of
E , i.e., the Hilbert space of all processes f for which there exists a sequence
(f1, f2, . . .) of processes in E such that

lim
n→∞

E
{∫

(0,∞)×Rm∗
|fn(z, s)− f(z, s)|2 Π(dz,ds)

}
= 0.

As in the previous section, the martingale inequality
E
{

sup
0≤t≤T

∣∣ ∫
Rd∗×(0,t]

f(z, s) ν̃(dz,ds)
∣∣2} ≤

≤ 4E
{∫

Rd∗×(0,T ]

|f(z, s)|2 Π(dz,ds)
}
,

(4.48)

holds for every T ≥ 0, and also the isometry identity (4.45). Hence, this linear
operation can be extended to the closure ĒΠ, preserving linearity and the prop-
erties (4.45), (4.46), (4.47). This is called Itô integral or generally stochastic
integral, with respect to a Poisson measure. Next, by localizing the integrand,
this definition is extended to ĒΠ,loc, the space of all processes f for which there
is a sequence (τ1 ≤ τ2 ≤ · · · ) of stopping times such that P (τn <∞) converges
to zero and the processes fk(t, ω) := f(t, ω) for t ≤ τk (with fk(t, ω) := 0 oth-
erwise) belong to ĒΠ. As in the case of the Wiener process, a key role is played
by the following inequality

P
{

sup
0≤t≤T

∣∣ ∫
Rm∗ ×(0,t]

f(z, s) ν̃(dz,ds)
∣∣ ≥ ε} ≤ δ

ε2
+

+P
{∫

Rm∗ ×(0,T ]

|f(z, s)|2 Π(dz,ds) ≥ δ
}
,

(4.49)

for any positive numbers T, ε and δ.
The class of processes that we can integrate are those in ĒΠ or more general

in ĒΠ,loc, but the stochastic integral is initially defined in a L2 space, where
an element is an equivalence class relative to the product measure P ×Π, with
Π = Π(dz,ds) the Lévy measure on Rm∗ ×[0,∞). Again, for the sake of simplicity,
we write Ω×Rm∗ ×[0,∞) or Rm∗ ×]0,∞)×Ω or ]0,∞)×Rm∗ ×Ω indistinctly as long
as no confusion may arrive, i.e., processes are written f(ω, t, z) or f(z, ω, t) or
f(t, z, ω). Next, by means of martingale properties we can select a good version
to make the process (4.46) a cad-lag (local) martingale. By a simple argument
of monotone classes, we deduce that (as in the case of the Wiener process) the
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closure ĒΠ (of all elementary processes in Rd∗× [0,∞)) contains the Hilbert space
L2(Rd∗ × [0,∞)× Ω,B × P,Π× P ), Π = Π(dz,ds).

On the other hand, it is also clear that any stochastic process in ĒΠ,loc is
measurable relative to the σ-algebra B × P, generated by B×P and all Π×P -
null subsets of Rd∗ × [0,∞) × Ω. Again, we notice that the value at time 0 is
irrelevant.

Lévy and Point Processes Comments

If the Lévy measure is absolutely continuous with respect to the Lebesgue mea-
sure d` on [0,∞), i.e., Π(dz,ds) = π(dz) × d`, then (as in the case of the
Wiener process) any measurable adapted process f(z, s, ω) is equivalent to a
B × P-measurable process, so it belongs to ĒΠ,loc whenever

P
{∫

Rd∗×(0,T ]

|f(z, s)|2 Π(dz,ds) <∞
}

= 1, ∀T > 0 (4.50)

is satisfied. This holds for standard Poisson measures.
Because the Lévy measure does not charge on Rd∗ × {t}, for every t ≥ 0, see

Theorem 4.11, the stochastic integral is a cad-lag quasi-left continuous and the
argument developed for Wiener processes applies proving that any progressively
measurable process satisfying (4.50) belongs to ĒΠ,loc.

The above stochastic integral can be constructed also for an extended Poisson
measure (see Jacod and Shirayaev [117, Definition 1.20, Chapter 2, p. 70]),
where Π(Rd∗ × {t}) may not vanish for some t > 0. Actually, the stochastic
integral can be constructed for any orthogonal measures, see Definition 3.33 in
Chapter 3.

On the other hand, a (homogeneous) Poisson measure p(dz,ds) with Lévy
measure π always satisfies p(Rm∗ , {0}) = 0 and can be approximated by another
Poisson measure pε(dz,ds) with Lévy measure πε = 1Kεπ, where the support
Kε = {0 < ε ≤ |z| ≤ 1/ε} of πε is a compact on Rm∗ , i.e., all jumps smaller
than ε or larger than 1/ε have been eliminated. The integer measure pε is
associated with a compound Poisson process and has a finite (random) number
of jumps, i.e., for any t > 0 there is an integer N = N(t, ω), points zi = zi(t, ω)
in Kε for i = 1, . . . , N and positive reals θi = θi(t, ω), i = 1, . . . , N such that

p(B, ]a, b], ω) =
∑N
n=1 1zi∈B1a<θi≤b, for every B ∈ B(Rm∗ ), 0 ≤ a < b ≤ t. In

this case, the forward stochastic integral can be written as∫
Rm∗ ×(0,t]

f(z, s) p̃(dz,ds) =

N∑
i=1

f(zi, θi−)−
∫ t

0

ds

∫
K

f(z, s)π(dz), (4.51)

for any adapted cad-lag process f(z, s), continuous in z.
Alternatively, we may regard the integer measure ν as a point process, i.e.,

ν(B, ]a, b]) =

∞∑
i=1

1{pi∈B}1{a<τi≤b}
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to consider the pathwise integrals∫
Rm×]0,t]

f(z, s) ν(dz,ds) =

∞∑
i=1

f(pi, τi)10<τi≤t

and

∫
Rm×]0,t]

f(z, s) Π(dz,ds),

defined for integrable (with respect to ν and Π) processes f . Later, a martingale
argument allows the extension to square-integrable with respect Π, e.g., see
Ikeda and Watanabe [110, Chapter 2]. Both approaches are equivalent and the
expression (4.51) remains valid for f integrable with respect to ν and square-
integrable with respect to Π.

It should be clear that the starting point is an integer-valued random mea-
sure ν (see Definition 4.6) which yields a compensated local martingale measure
ν̃ := ν − νp, where νp is the (unique dual) predictable projection of ν (see
Theorem 4.7 and Definition 3.3.5 of the previous chapter). Recall that a lo-
cal martingale M is called purely discontinuous if M(0) = 0 and the product
M N is a local martingale for any continuous local martingale N. Stochastic
integrals with respect to a compensated local martingale measure ν̃ are purely
discontinuous local martingales. Also, given an optional locally integrable pro-
cess X with X(0) = 0 there exists a unique predictable projection pX, i.e. a
predictable locally integrable process such that E{pX1τ<∞} = E{X1τ<∞} for
any predictable stopping time τ, such that t 7→ 1τ≤t is a predictable process.
In particular (e.g., Jacod and Shirayaev [117, Theorem 2.28, Corallary 2.31,
Chapter 1, p. 23–24]) for a local martingale M we have pM(t) = M(t−) and
δM(t) = 0 for every t > 0.

• Remark 4.19. Let p(dz,ds) be a Poisson measure with Lévy measure given
by Π(dz,ds) = π(dz, s)ds in Rm∗ × [0,∞) with Π(Rm∗ , {0}) = 0 and let γ be a
Borel function from Rm∗ × [0,∞) into Rd square-integrable with respect to Π on
any set of the form Rm∗ × (0, T ], for any constant T > 0, and cad-lag in [0,∞).
The Poisson measure p can be viewed as a Poisson point process in Rm∗ , i.e.,

p(B, ]a, b]) =

∞∑
i=1

1{pi∈B}1{a<τi≤b},

where the masses {pi} are in Rm∗ and {τi} are stopping times (non necessary
non-decreasing in i). Then we may define the stochastic integral

I(t, p̃) =

∫
Rm∗ ×(0,t]

γ(z, s) p̃(dz,ds),

which has a jump only at t = τi if γ(pi, τi−) 6= 0 for some i. If z 7→ γ(z, ·) is
integrable with respect to p and Π (e.g., bounded, continuous in z and vanishing
near z = 0) then

I(t, γ, p̃) =

∞∑
i=1

γ(pi, τi−)1{0<τi≤t} −
∫ t

0

ds

∫
Rm∗

γ(z, s)π(dz, s)ds,
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which is a pathwise integral. The integer measure pγ associate with the mar-
tingale t 7→ I(t, γ, p̃) satisfies

pγ(B, ]a, b]) =

∞∑
i=1

1{γ(pi,τi−)∈B}1{a<τi≤b},

which is a Poisson measure with

πγ(B, s) = π
(
{(z, s) ∈ Rm∗ × [0,∞) : γ(z, s) ∈ B}, s

)
and Πγ(dz,ds) = πγ(dz, s)ds as its Lévy measure on Rd0 × [0,∞).

Recall that δ denotes the jumps operator δX(t) = X(t)−X(t−), the jumps
of a local martingale have the following structure,

Theorem 4.20 (jump structure). Let X be an optional locally integrable pro-
cess with X(0) = 0. Then there exists a (unique purely discontinuous) local
martingale M such that δM and X are indistinguishable (i.e., except on a set
of measure zero we have δM(t) = X(t), for every t ≥ 0) if and only if the

predictable projection pX = 0 and the increasing process t 7→
√∑

s≤t |X(s)|2 is

(locally) integrable. Moreover, M is a (locally) square integrable martingale if
and only if t 7→

∑
s≤t |X(s)|2 is (locally) integrable and M is a local martingale

with (locally) bounded variation paths if and only if t 7→
∑
s≤t |X(s)| is (locally)

integrable.

Proof. One part of the argument goes as follows. (1) First, if X is locally square
integrable predictable process with pX = 0 then a local martingale M satisfying
δM(t) = X(t), for every t ≥ 0, can be constructed, essentially the case of the
stochastic integral. (2) Second, if X is locally integrable predictable process with
pX = 0 then A(t) :=

∑
s≤tX(s) and A − Ap have locally integrable bounded

variation paths, where Ap is its compensator. Since δ(Ap) = p(δA) = pX = 0, we
can set M := A−Ap to obtain δM = X, which is a local martingale with locally
integral bounded variation paths. Finally, the general case is a superposition of
the above two arguments. Indeed, let X be an optional process with pX = 0
and
√
A locally integrable, where A :=

∑
s≤t |X(s)|2. Set Y := X1|X|>1, X

′′ :=

Y − pY and X ′ := X −X ′′, so pX ′ = pX ′′ = 0. The increasing process B(t) :=∑
s≤t |Y (s)| satisfies |δB| ≤

√
|δA| so that B is locally integrable. Because

p(δB) = δ(Bp) we have
∑
s≤t |pY (s)| ≤ Bp(t), so that α(t) :=

∑
s≤t |X ′′(s)|

is also locally integrable. In view of the previous argument (2), there is a
local martingale M ′′ with locally integrable bounded paths such that δM ′′ =
X ′′. Next, because |X ′|2 ≤ 2|X|2 + 2|X ′′|2 the process β(t) :=

∑
s≤t |X ′(s)|2

takes finite values. Since pX = 0 we have pY = −p(X1|X|≤1), |pY | ≤ 1 and
|X ′| ≤ 2, which yields δβ(t) ≤ 4, proving that the increasing process β is
locally integrable. Again, in view of the previous argument (1), there is a
local martingale M ′ such that δM ′ = X ′. The proof is ended by setting M =
M ′ +M ′′.

Since any local martingaleM can (uniquely) expressed as the sumM = M c+
Md, where M c is a continuous local martingale and Md is a purely discontinuous
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local martingale (withMd(0) = 0), the purely discontinuous partMd is uniquely
determined by the jumps δM. So adding the property purely discontinuous to
the above martingale, we have the uniqueness. Full details can be found in
Jacod and Shirayaev [117, Theorem 4.56, Chapter 1, p. 56–57].

Let ν be a quasi-left continuous integer-valued random measure (in particu-
lar, a Poisson measure), i.e,

ν(B×]a, b], ω) :=

∞∑
n=1

1an(ω)∈B1τn(ω)∈]a,b],

E{ν(Rm∗ × {t})} = E
{ ∞∑
n=1

1τn(ω)=t

}
= 0,

for every B in B(Rm∗ ), b > a ≥ 0 and t ≥ 0, where {an : n ≥ 1} is a se-
quence of points in Rm∗ such that an is F(n)-measurable, and {τn : n ≥ 1}
is a (unordered) sequence of predictable stopping times. Then, the stochas-
tic integral with respect to ν is (uniquely) defined for any predictable process
f(z, s, ω) such that F : t 7→

√∑
n |f(an, τn)|2 is locally integrable, in particular

if E{|f(an, τn)|2} <∞ for every n ≥ 1. If ν is not quasi-left continuous (e.g., an
extended Poisson measure) then the predictable projection of F may not van-
ish, i.e., pF (t) =

∑
n f(an, t)1τn=t, when every the (pathwise) series converges

absolutely. Thus f is integrable with respect to ν if the (optional) process
F (t)− pF (t) is locally integrable, see Jacod and Shirayaev [117, Definition 1.27,
Chapter 2, p. 72].

For future reference, we conclude this subsection with the following summery
of key properties and relations.

Let us go back to the case of a Poisson measure ν with Lévy measure
(properly saying, intensity or characteristic measure) Π, i.e., Π(B×]s, t]) =
E{ν(B×]s, t])}, Π(B × {t}) = 0, for every t > s > 0 and Borel subset B of
Rm∗ , and Π integrates the function z 7→ |z|2 ∧ |z| on Rm∗ ×]0, T ], for every T > 0.

Next, we construct a local martingale measure ν̃ = ν−Π, and its associated
purely jumps (which is quasi-continuous from the left, i.e., with no deterministic
jumps) local martingale process L = (Li) with values in Rm,

Li(t) =

∫
Rm∗ ×]0,t]

ziν̃(dz,ds), ∀ t ≥ 0, i = 1, . . . ,m,

with predictable compensator

Lpi (t) =

∫
Rm∗ ×]0,t]

ziΠ(dz,ds), ∀ t ≥ 0, i = 1, . . . ,m.

Usually, L is referred to as the canonical compensated Poisson (jump) process
associated with the Poisson measure ν, and reciprocally, ν is referred to as the
canonical Poisson measure associated with the compensated Poisson (jump)
process L.
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For a predictable process f(x, s, ω) satisfying the integrability condition
(4.50) we can define the stochastic integral (a real-valued local martingale)

I(t) =

∫
Rm∗ ×]0,t]

f(z, s)ν̃(dz,ds) ∀ t ≥ 0,

and I(0) = 0, as a cad-lag process (and quasi-continuous from the left). If the
integrand takes the form f(z, s, ω) =

∑m
i=1 gi(t, ω)zi then we can write

I(t) =

m∑
i=1

∫
]0,t]

gi(s)dLi(s) t ≥ 0.

Always, we have the following properties on their jumps:

I(t)− I(t−) := δI(t) = f(δL(t), t)1{|δL(t)|>0}, ∀ t > 0.

The stochastic integral process I(t) is a locally integrable bounded variation
process if and only if

P
{∫

Rd∗×(0,t]

|f(z, s)|Π(dz,ds) <∞
}

= 1, ∀ t > 0

or equivalently

P
{ ∑

0<s≤t

|δI(s)| <∞
}

= 1, ∀ t > 0,

and in this case we have

I(t) =
∑

0<s≤t

f(δL(s), s)1{|δL(s)|>0} −
∫ t

0

f(z, s)Π(dz,ds), ∀ t > 0,

where the series converges absolutely almost surely. It is clear that the separa-
tion of the stochastic integral into a series of jumps and Lebesgue-type integral
is not possible in general. However, the definition allows a suitable limit I(t) =
limε→0 Iε(t), where Iε(t) is the stochastic integral (of finite jumps almost surely)
associated with the Lévy measure Πε(B×]s, t]) = Π

(
(B∪{|z| ≥ ε}×]s, t]

)
, which

can be written as previously (actually the series of jumps becomes a stochastic
finite sum). In any case, the series of the jumps squared is absolutely convergent
almost surely, and the process

t 7→
∑

0<s≤t

[I(s)− I(s−)]2 −
∫ t

0

|f(z, s)|2Π(dz,ds)

is a local martingale.
Note that the integer measure νI on R∗ induced by the jumps of I(t), namely,

νI(K×]0, t]) =
∑

0<s≤t

1{f(δL(s),s)∈K}, ∀t > 0, K ⊂ R∗, compact,
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with predictable compensator

νpI (K×]0, t]) =

∫ t

0

Π
(
{z ∈ Rm∗ : f(z, s) ∈ K},ds

)
,

yield the martingale measure ν̃I = ν − νp.
If we take an integrand f(z, t, ω) with values in Rn then the stochastic in-

tegral I will take values in Rn and its associated integer measure νI would be
defined in Rn∗ .

Certainly, if we begin with a Lévy measure Π that integrates only |z|2∧1 then
we need to split the jumps into two classes (small and large) to express the above
properties. Also, recall that if we begin with Lévy processes `i(t), i = 1, . . . ,m
we may construct the integer measure ν (which is actually a standard Poisson
measure) associated with the jumps of the Rm-valued process ` = (`1, . . . , `m).
The Lévy measure associated with (standard) Poisson measure ν or the Lévy
m-dimensional process ` is the same (of the form π(dz)ds), and the canonical
compensated Poisson process L has exactly the same jumps as `, i.e., δ`(t) =
δL(t), for every t > 0. Note that the Lévy measure π(dz) in Rm∗ is not necessarily
the product measure of the individual Lévy measures πi(dzi) in R∗ of each `i,
even if the `i are independent, one needs also to assume no simultaneous jumps.
Actually, if `i are independent then π(dz) =

∑
i πi(dzi), after identifying the

measure πi(dzi) in R1
∗ with the measure πi(dzi) × 0i in Rm∗ where 0i is the

zero-measure in (dz1, . . . ,dzi−1,dzi+1, . . . ,dzm).

4.2.4 Extension to Semi-martingales

Remark that the initial intension is to integrate a process f(s) or f(z, t) which
is adapted (predictable) with respect to a Wiener process w(s) or centered
Poisson measure ν̃(dz,ds). This is to say that in most of the cases, the filtration
{F(t) : t ≥ 0} is generated by the Wiener process or the Poisson measure, which
is completed for convenience. However, what is mainly used in the construction
of the stochastic integral are the following conditions:

(1) the filtration F = {F(t) : t ≥ 0} is complete and right-continuous,

(2) the integrand f is predictable with respect to filtration F,

(3) the integrator w (or ν̃) is a (semi-)martingale with respect to filtration F.

Thus we are interested in choosing the filtration F as large as possible, but
preserving the (semi-)martingale character. e.g., the non-anticipative filtration
A, whereA(t) is defined as the σ-algebra of all sets in F which are independent of
either w(t1)−w(t0), . . . , w(tn)−w(tn−1) or ν̃(Kj×]ti−1, ti]), for any j = 1, . . . ,m
and t ≤ t0 < t1 < · · · < tn. Note that A(t) contains all null sets in F and
the cad-lag property of w (or ν̃) shows that A(t) =

⋂
s>tA(s). Because w(t)

(or ν̃(K×]s, t])) is independent of any future increment, the σ-algebra F(t)
generated by {w(s) : s ≤ t} (or by {ν̃(K×]0, s]) : s ≤ t}) is included in A(t).
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Moreover, since

E{w(t) | A(s)} = E{w(t)− w(s) | A(s)}+ E{w(s) | A(s)} =

= E{w(t)− w(s)}+ w(s) = w(s),

the martingale character is preserved.
Actually, the cancelation is produced when the integrator is independent and

has increment of zero-mean, even least, when the increments of the integrator
are orthogonal to the integrand, e.g., E{f(s)[w(t)− w(s)]} = E{f(s)}E{w(t)−
w(s)} = 0 for t > s. Thus, define the class E∗ of processes of the form f(z, t, ω) =
fi−1,j(ω) if ti−1 < t ≤ ti and z belongs to Kj with some i = 1, . . . , n, and
j = 1, . . . ,m, where 0 = t0 < t1 < · · · < tn are real numbers, Kj are disjoint
sets with compact closure in Rm∗ and fi−1,j is a bounded random variable which
is orthogonal to ν̃(Kj×]ti−1, ti]) (in particular F(ti−1)-measurable) for any i,
and f(t, ω) = 0 otherwise, and an analogous definition for the Wiener process
case. The stochastic integral is then initially defined on the class E∗ and the
extension procedure can be carried out successfully, we refer to Section 3.13 of
the the previous chapter on Random Orthogonal Measures. In any case, remark
that if f is a deterministic function then to define the stochastic integral we
need the local L2-integrability in time, e.g., an expression of the form s 7→ sα

or (z, s) 7→ (z ∧ 1)sα is integrable as long as α > −1/2.

Space of Semi-martingales

Let us now consider the space Sp(Ω,F , P,Ft, t ≥ 0), 1 ≤ p ≤ ∞ of p-integrable
semi-martingale on [0,∞] is defined as the cad-lag processes X with a decom-
position of the form X = M + A+ − A− where M is a local martingale and
A+, A− are adapted monotone increasing processes with A+(0) = A−(0) = 0,
both relative to (Ft : t ≥ 0) and such that the quantity

‖X‖Sp := inf
X=M+A+−A−

‖M,A+, A−‖Sp ,

where

‖M,A+, A−‖Sp := E
{[√

[M ](∞) + |A+(∞)|+ |A−(∞)|
]p}1/p

,

is finite. This is a semi-norm and by means a of equivalence classes we define
the non-separable Banach space Sp(Ω,F , P,Ft, t ≥ 0).

Going back to the above definition of the semi-norm ‖X‖Sp , if the square
bracket process

√
[M ](∞, ω) is replaced with maximal process M∗(∞, ω) =

supt≥0 |M(t, ω)| then we obtain an equivalent semi-norm.
This procedure can be localized, i.e., define Sploc(Ω,F , P,Ft, t ≥ 0) and

the space of equivalence classes Sploc(Ω,F , P,Ft, t ≥ 0) as the spaces of semi-
martingales X such that there is a sequence of stopping times τk →∞ as k →∞
satisfying Xk(·) := X(· ∧ τk) belongs to Sp(Ω,F , P,Ft, t ≥ 0), for any k ≥ 1.
Thus S1

loc(Ω,F , P,Ft, t ≥ 0) is the space of special semi-martingales.
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A further step is to consider S0(Ω,F , P,Ft, t ≥ 0) the space of all semi-
martingales (including non-special) X on the closed real semi-line [0,∞], i.e.,
X = M + A+ − A− where M is a local martingale in [0,∞] and A+, A−

are adapted monotone increasing processes with A+(0) = A−(0) = 0 and
A+(∞), A−(∞) are almost surely finite. With the topology induced by the
semi-distance

[|X|]S0 := inf
X=M+A+−A−

[|M,A+, A−|]S0 ,

[|M,A+, A−|]S0 := E{1 ∧
(√

[M ](∞) + |A+(∞)|+
+|A−(∞)|

)
}+ sup

τ
E{|M(τ)−M(τ−)|},

for any stopping time τ. Thus S0(Ω,F , P,Ft, t ≥ 0), after passing to equiva-
lence classes, is a non-separable complete vector space. A closed non-separable
subspace is the set Spc(Ω,F , P,Ft, t ≥ 0) of all continuous p-integrable semi-
martingales, which admits a localized space denoted by Spc,loc(Ω,F , P,Ft, t ≥ 0).
The reader may take a look at Protter [206, Section V.2, pp. 138–193] for others
similar spaces of semi-martingales.

A companion (dual) space is the set Pp(Ω,F , P,Ft, t ≥ 0) of p-integrable
predictable processes X, i.e., besides being predictable we have

||X||Pp :=
{∫ ∞

0

dt

∫
Ω

|X(t, ω)|p P (dω)
}1/p

,

which yields the non-separable Banach space Pp(Ω,F , P,Ft, t ≥ 0). Its localized
spaces Pploc(Ω,F , P,Ft, t ≥ 0) and Pploc(Ω,F , P,Ft, t ≥ 0), p ≥ 1, are defined
by the conditions (1) X is a predictable process and (2) such that there is an
increasing sequence of stopping times τk →∞ as k →∞ such that the processes
Xk := 1]0,τk]X belong to Pp(Ω,F , P,Ft, t ≥ 0), for any k ≥ 1.

Notice that the uncountable set of bounded and adapted left-continuous
(having right-hand limit) processes is a dense subspace of Pp(Ω,F , P,Ft, t ≥ 0).
However, the set Ppc(Ω,F , P,Ft, t ≥ 0) of bounded and continuous (adapted,
p-integrable) processes is neither dense nor closed. We refer to Dellacherie and
Meyer [58, Sections VII.3.96–105, pp. 308–324].

It is clear by now that semi-martingales are desirable integrators while pre-
dictable processes are desirable integrands. Semi-martingales contain two type
of (localized) processes, (1) a bounded variation process which is integrated fol-
lowing the classic measure theory and (2) a local martingale which is the main
study of stochastic integrals. To focus in the stochastic integral itself, the natu-
ral integrators (without localizing) are the so-called quasi-martingales, defined
as an adapted cad-lag process X satisfying Var(X) := sup{Var(X,π) : π} <∞,
where π = {t0, t1, . . . , tn}, 0 = t0 < ti < ti+1,

Var(X,π) :=

n∑
i=1

∣∣E{X(ti)−X(ti−1) | F(ti−1)}
∣∣+ |X(tn)|. (4.52)

It can be proved, e.g. see Rogers and Williams [214, Section VI.41, pp. 396–
398]), that any quasi-martingale admits a representation X = Y − Z, where Y
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and Z are two nonnegative super-martingales such that Var(X) = Var(Y ) +
Var(Z) and that if X = Ȳ − Z̄ are two other nonnegative super-martingales
then Ȳ − Y = Z̄ − Z is also a nonnegative super-martingale.

Given a filtered probability space (Ω, P,F ,Ft : t ≥ 0), let M, O and P be
the measurable, optional and predictable σ-algebras on [0,∞)×Ω. Now, a subset
N of [0,∞) × Ω is called evanescent if P{ω ∈ Ω : (t, ω) ∈ N} = 0 for every
t ≥ 0. We suppose that M, O and P have been augmented with all evanescent
sets.

For a given integrable monotone increasing (bounded variation) cad-lag pro-
cess A, with its associated continuous and jump parts A(t) = Ac(t) + [A(t+)−
A(t−)], we may define a (signed) measure µ by the expression

µ(X) := E
{∫

[0,∞)

X(t)dA(t)
}

=

= E
{∫ ∞

0

X(t)dAc(t) +
∑
t≥0

X(t) [A(t+)−A(t−)]
}

for any nonnegativeM measurable process X. This measure vanishes on evanes-
cent sets. Conversely, it can be proved (Doléans’ Theorem, e.g., Rogers and
Williams [214, Section VI.20, pp. 249–351]) that any bounded measure µ on
M, which vanishes on evanescent sets, can be represented (or disintegrated) as
above for some process A as above. Furthermore, if µ satisfies

µ(X) = µ(oX) or µ(X) = µ(pX)

then A is optional or predictable.
Denote by D0 the vector space either (1) of all adapted cad-lag and bounded

processes or (2) of all processes X of the form

X =

n∑
i=0

Xi 1[τi,τi+1[, 0 = τ0 ≤ τ1 ≤ · · · ≤ τn ≤ τn+1 =∞,

for any n and stopping times τi. Now, if A[·] is a linear and positive functional
on D0 satisfying the condition

P{lim
n

sup
0≤s≤t

|Xn(s)|} = 0, ∀t ≥ 0 implies lim
n
A(Xn) = 0, (4.53)

then there should exist two integrable monotone increasing cad-lag processes
Ao, Ap, with Ao(−0) = 0, Ao optional and purely jumps, and with Ap pre-
dictable, such that

A[X] = E
{∫

(0,∞]

X(t−) dAp(t) +
∑
t≥0

X(t) [Ao(t)−Ao(t−)]
}
,

for any X in D0, and the above representation is unique up to an evanescent
set. Indeed, by means of condition (4.53) the functional A[·] can be extended
to a bounded positive measure which vanishes on evanescent sets and the result
follows from the previous representation.
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Similarly, an adapted process A, which is right-continuous in probability
(not necessarily cad-lag), is a suitable integrator if and only if the set of random
variables∫

XdA :=

n∑
i=0

Xi [A(τi+1)−A(τi)]

remains bounded (e.g., in probability or in L2) for every elementary predictable
process X satisfying

X =

n∑
i=0

Xi 1[τi,τi+1[, |X| ≤ 1.

For instance, the reader is referred to the book Bichteler [25, Chapter 2, pp.
43–86] for a carefully analysis on this direction.

Then, a desirable property for a linear positive function M [·] defined on D0

to be called stochastic integral is the following condition
if P{lim

n
sup

0≤s≤t
|Xn(s)| ≥ δ} = 0, ∀ t ≥ 0, δ > 0

then P{lim
n

sup
0≤t≤T

|M [Xn 1]0,t]]| ≥ ε} = 0,
(4.54)

for every T ≥ 0 and ε > 0, or even a weaker version of it.
For a given adapted cad-lag integrable real-valued process {Z(t) : t ≥ 0} we

can define a functional Z[·] on D0 as follows:

Z[

n∑
i=0

Xi 1[τi,τi+1[] :=

n∑
i=0

Xi

(
Z(τi+1)− Z(τi)

)
, (4.55)

which can be initially defined on predictable rectangles F×]a, b], F in F(a) by
means of{

λZ(]a, b]× F ) := E{1F [Z(b)− Z(a)]},
λZ({0} × F0) := 0, ∀F0 ∈ F(0),

(4.56)

and then extended by additivity. If the process Z is only locally integrable, we
may suppress the last term with τn+1 = +∞ or consider only (deterministic)
times ti instead of stopping times τi. If the functional Z[·] or equivalent the
additive set function λZ is nonnegative, then λZ is called a content.

It is clear that λZ ≥ 0 if Z is monotone increasing. However, λZ = 0 if Z
is a martingale and λZ ≥ 0 if Z is a sub-martingale. If {M(t) : t ≥ 0} is a
square integrable then {M2(t) : t ≥ 0} is a sub-martingale and hence λM2 ≥ 0,
moreover{

λM2(]a, b]× F ) := E{1F [M2(b)−M2(a)]} =

= E{1F [M(b)−M(a)]2}, ∀ b > a ≥ 0, F ∈ F(a).
(4.57)

The extension of λM2 to a measure on (R+×Ω,P) is called Doléans measure.
It can be proved (e.g. Chung and R.J. Williams [45, Theorem 2.16, Chapter 2,
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pp. 52–53]) that if the process Z is a positive sub-martingale then the content
λZ can be uniquely extended to a σ-finite measure on P. In particular this
applies to λM2 .

Extension Argument

Denote by E the vector space of all processes of the form X(t, ω) = Xi−1(ω)
if ti−1 < t ≤ ti with i = 1, . . . , n, where 0 = t0 < t1 < · · · < tn are real
numbers and Xi−1 is a F(ti−1) measurable bounded random variable for any
i, and X(t, ω) = 0 otherwise. Elements in E are called elementary predictable
processes. Given a square integrable {M(t) : t ≥ 0} we denote by µM its
Doléans measure and define the stochastic integral as follows:

∫
X(s)dM(s) :=

n∑
i=1

Xi−1[M(ti)−M(ti−1)],∫
(0,t]

X(s)dM(s) :=

n∑
i=1

Xi−1[M(t ∧ ti)−M(t ∧ ti−1)],∫
(a,b]

X(s)dM(s) :=

∫
(0,b]

f(s)dM(s)−
∫

(0,a]

X(s)dM(s),

(4.58)

for every t ≥ 0 and b > a ≥ 0. Notice that∫
(a,b]

X(s)dM(s) =

∫
X(s)1(a,b](s)dM(s),

for every b > a ≥ 0. This definition (4.58) (defined up to an evanescent set) is
independent of the particular representation used and because Xi−1 is a F(ti−1)
measurable we obtain

E
{∣∣ ∫ X(s)dM(s)

∣∣2} =

n∑
i=1

E{|Xi−1|2[M2(ti)−M2(ti−1)]} =

=

∫
R+×Ω

|X|2dµM ,

(4.59)

for every X in E , and

E
{[ ∫

X(s)dM(s)
] [ ∫

Y (s)dM(s)
]}

=

∫
R+×Ω

XY dµM , (4.60)

for any two stochastic processes X and Y in E .
Moreover the process Z(t) = (X �M)(t),

(X �M)(t) :=

∫
(0,t]

X(s)dM(s), ∀t ≥ 0, (4.61)

is (cad-lag) square integrable martingale, which is continuous if M is so. Since,

µZ(]a, b]× F ) = 1F [Z(b)− Z(a)]2) =

= E
{
1F

[ ∫
(a,b]

X(s)dM(s)
]2}

=

∫
(a,b]×F

|X|2dµM ,
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we deduce that

µX�M (B) =

∫
B

|X|2dµM , ∀B ∈ P. (4.62)

If X belongs to E , F is a F(a)-measurable set and τ a stopping time which
takes only finitely many values then 1FX and 1]0,τ ]X belong to E and

∫
]a,b]

1FX(s)dM(s) = 1F

∫
]a,b]

X(s)dM(s),

[X �M ](τ) =

∫
1]0,τ ](s)X(s)dM(s).

(4.63)

It is also clear from the expression (4.58) that the jumps of (X�M) are produced
only by jumps of the integrator M, i.e.,

(X �M)(t)− (X �M)(t−) = X(t)[M(t)−M(t−)], ∀ t > 0, (4.64)

except for a set of measure zero.
Denote by ĒM the L2-closure of E , i.e., the Hilbert space of all processes X

for which there exists a sequence (X1, X2, . . .) of processes in E such that

lim
n→∞

∫
R+×Ω

|Xn −X|2dµM = 0.

Based on the isometry identity (4.59), and the maximal martingale inequality,
for every T ≥ 0,

E
{

sup
0≤t≤T

∣∣ ∫
(0,t]

X(s)dM(s)
∣∣2} ≤ 4E

{∣∣ ∫ T

0

X(s)dM(s)
∣∣2}, (4.65)

this linear operation (called stochastic integral) can be extended to the closure
ĒM , preserving linearity and the properties (4.59), . . . , (4.64). Moreover, (4.63)
holds for any bounded F(a)-measurable function f replacing 1F (even if a is a
bounded stopping times) and any bounded stopping time τ.

In general, it is proved in Doob [59, Section IX.5, pp. 436–451] that any
martingale M with orthogonal increments (i.e., a square-integrable martingale),
the Hilbert space ĒM contains all adapted process X and square-integrable
respect to the product measure P (dω) times the Lebesgue-Stieltjes measure
dE{|M(t)−M(0)|2}.

It is convenient to localize the above processes, i.e., we say that a measurable
process X belongs to ĒM,loc if and only if there exists a sequence of stopping
times {τk : k ≥ 1} such that τk →∞ almost sure and 1]0,t∧τk]X belongs to ĒMk

,
for every t > 0, where Mk := {M(s ∧ τk) : s ≥ 0}. Therefore, the stochastic
integral X �M is defined as the almost sure limit of the sequence {Xk �Mk :
k ≥ 1}, with Xk := 1]0,τk]X. This should be validated by a suitable condition
to make this definition independent of the choice of a localizing sequence, see
Chung and Williams [45, Theorem 2.16, Chapter 2, pp. 23–48].

The use of the quadratic variation process is simple when dealing with a
continuous square integrable martingale. The general case is rather technical.
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Anyway, a key point is the following: If M = {M(t) : t ≥ 0} is a locally square
integrable martingale then there exists an increasing predictable process 〈M〉
such that M2 − 〈M〉 is a local martingale, which is continuous if and only if M
is quasi-left continuous (e.g., Jacod and Shiryaev [117, Theorem 4.2, Chapter 1,
pp. 38–39]). It is clear that we have, first for X in E and then for every X in
EM , the relation

〈X �M〉(t) =

∫ t

0

|X(s)|2d〈M〉(s), ∀t ≥ 0, (4.66)

so that the process[ ∫
(0,t]

X(s)dM(s)
]2
−
∫ t

0

|X(s)|2d〈M〉(s), ∀t ≥ 0, (4.67)

is a (cad-lag) local martingale.
Lenglart’s domination property (see inequality (3.32) in Chapter 3 or more

details in Jacod and Shiryaev [117, Section 1.3c, pp. 35–36]) yields the useful
estimate

P
{

sup
0≤t≤T

∣∣ ∫
(0,t]

X(s)dM(s)
∣∣ ≥ ε} ≤ δ

ε2
+

+P
{∫ T

0

|X(s)|2d〈M〉(s) ≥ δ
}
,

(4.68)

for any positive numbers T, ε and δ. By means of this estimate, all properties
(4.59), . . . , (4.64), (4.67), (4.68) hold, except that the process (4.61) is now a
(cad-lag, continuous whenever M is such) local square martingale. Moreover,
the continuity property (4.54) is now verified.

Since any continuous local martingale is a local square integral martingale,
the stochastic integral is well defined. To go one step further and define the
stochastic integral for any (cad-lag, not necessarily continuous and not necessar-
ily local square integrable) local martingale M, we need to define the (optional)
quadratic variation, see (3.28) in Chapter 3 or for more detail see for instance
Dellacherie and Meyer [58, Chapters V–VIII] or Liptser and Shiryayev [158],

[M ](t) := 〈M c〉(t) +AM (t), with

AM (t) :=
∑
s≤t

[M(s)−M(s−)]2, ∀t ≥ 0, (4.69)

where M c is the continuous part of the (local) martingale M and the second
term in the right-hand side AM is an optional monotone increasing process null
at time zero, not necessarily locally integrable, but such that

√
AM is locally

integrable. It can be proved (see Rogers and Williams [214, Theorem 37.8,
Section VI.7, pp. 389–391]) that the process [M ] given by (4.69) is the unique
optional monotone increasing process null at time zero such that M2− [M ] is a
local martingale and [M ](t)− [M ](t−) = [M(t)−M(t−)]2 for every t > 0.
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On the other hand, a local martingale admits a unique decomposition M =
M0 +M c +Md, where M0 is a F(0)-measurable random variable, M c is a con-
tinuous local martingale (null at t = 0) and Md is a purely discontinuous local
martingale, i.e., Md(0) = 0 and for every continuous local martingale N the
product MdN is a local martingale. Let us show that for a given ε > 0, any
local martingale M admits a (non unique) decomposition M = M0 +M

′

ε +M
′′

ε ,
where M0 is a F(0)-measurable random variable, M

′

ε is a (cad-lag, only the small
jumps) local martingale (null at t = 0) satisfying |M ′

ε(t)−M
′

ε(t−)| ≤ ε for every
t > 0, andM

′′

ε is a (cad-lag, only the large jumps) local martingale (null at t = 0)
which have local bounded variation. Indeed, set δM(t) := M(t) −M(t−) and
because M is a cad-lag process we can define A(t) :=

∑
s≤t δM(s)1|δM(s)|>ε/2,

whose variation process var(A, t) :=
∑
s≤t |δM(s)|1|δM(s)|>ε/2 is finite for al-

most every path. Setting τk := inf{t > 0 : var(A, t) > k or |M(t)| > k} we
obtain var(A, τk) ≤ k + |δM(τk)|, i.e, var(A, τk) ≤ 2k + |M(τk)| so that the
sequence of stopping times {τk : k ≥ 1} is a reducing sequence for var(A, ·),
proving that the process var(A, ·) is local integrable. Therefore A admits a dual
predictable compensator Ap, see Definition 3.5 in Chapter 3. It is clear that
M
′′

ε := A − Ap is a local martingale with local bounded variation. A simple
calculation show that M

′

ε := M −A+Ap satisfies |δM(t)| ≤ ε, for every t > 0.
Moreover, since M

′′

ε is also a purely discontinuous martingale, i.e., M
′′

ε is orthog-
onal to any continuous local martingale N , namely M

′′

ε N is a local martingale,
see Jacod and Shiryaev [117, Section 1.4b, pp. 40–43]).

Thus, an essential fact needed to complete the definition of stochastic integral
is that either a local martingale or semi-martingale M admits a (non-unique)
decomposition M = M0 + M1 + M2, where M0 is a F(0)-measurable random
variable, M1 is a cad-lag process with locally bounded variation paths and M2

is a local square integrable martingale, both null at time zero. Therefore, inte-
gration with respect to M1 is pathwise (as in the classic measure theory) and
integration with respect to M2 is as above, via the martingale argument.

The only continuous local martingale which has bounded variation paths
is the constant process. However, there are (e.g., the Poisson process, after
subtracting its compensator) (cad-lag, non-continuous) local martingale with
bounded variation paths. Therefore there are two possible interpretations when
taking those processes as integrators. This is resolved by using the predictable
version representing the equivalence class of the integrand process. For instance,
if X is a cad-lag process and M is a local martingale with bounded variation
paths, e.g., for a sequence {ai, τi : i ≥ 1} of stopping times τ1 ≤ τ2 ≤ · · · , with
τi →∞, and F(τi)-measurable random variables ai we have

A(t) :=

∞∑
i=1

ai1τi≤t, ∀ t ≥ 0, M := A−Ap,

where Ap is the dual compensator of A. The expression∫
]0,t]

X(t)dA(t) =

∞∑
i=1

X(τi)ai1τi≤t, ∀ t ≥ 0,
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is pathwise interpreted (and well defined) in the Riemann-Stieltjes sense if and
only if the process X is left-continuous at each jump time, i.e., X(τi) = X(τi−),
for every i ≥ 1. On the other hand, the measure induced by A or by A− : t 7→
A(t−) (its left-continuous version) is the same sum of Dirac measures so that
the expression∫

]0,t]

X(t)dA−(t) =

∞∑
i=1

X(τi)ai1τi≤t, ∀ t ≥ 0,

is pathwise interpreted (and well defined) in the Riemann-Stieltjes sense if and
only if the processX is right-continuous at each jump time, i.e., X(τi) = X(τi+),
for every i ≥ 1. In the Lebesgue-Stieltjes sense, it does not matter which version
A or A− is used to derived the measure, proving that a bounded process X is
integrable if it is right (or left) continuous at τi for every i ≥ 0.

The dual compensator Ap of a (cad-lag) process A with locally integrable
bounded variation satisfied, see Definition 3.5 in Chapter 3,

E{
∫

[0,Tk)

X(t, ω)dAp(t, ω) = E{
∫

[0,Tk)

pX(t, ω)dA(t, ω),

for every k ≥ 1 and for any bounded measurable process X, where the pre-
dictable projection pX, is such that for any predictable stopping time τ we have
E{pX1τ<∞} = E{X1τ<∞}. The sequence of stopping times {Tk : k ≥ 1} local-
izes A, i.e., the process t 7→ A(t∧Tk) has integrable bounded variation (meaning
in this case E{A(Tk)} < ∞) and Tk → ∞ almost surely. We deduce that the
stochastic integral with respect to an integrator A − Ap is always zero for any
predictable process X. Recall that the stochastic integral is meaningful only for
the predictable member representing a given equivalence class of processes used
as integrand.

Therefore, we conclude that as long as the predictable (in particular any
adapted left-hand continuous) version of the integrand (equivalence class) pro-
cess is used, the pathwise and stochastic integral coincide.

Back to Integer Random Measures

Let ν be an integer-valued (random) measure, see Definition 4.6, and let νp be a
good version of its compensator, see Theorem 4.7. For instance, if ν is a extended
Poisson measure then νp is a deterministic Radon measure on Rm∗ × [0,∞) with
νp(Rm∗ × {0}) = 0. Denote by νqc the quasi-continuous part of ν, i.e.,

νqc(B×]a, b]) := ν(B×]a, b])− νpd(B×]a, b]),

νpd(B×]a, b]) :=
∑
a<s≤b

νp({s} ×B),

with νpc = (νqc)
p, where

νpc := νp(B×]a, b])− νpd(B×]a, b]),
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is a good version of the compensator of νqc. The measure νpd contains all non-
predictable discontinuities, which are not handled with the stochastic integral,
they must be treated pathwise, by means of the classic measure theory. For
instance, if ν = νX defined as the number of jumps associated to a (cad-lag) local
martingale (or semi-martingale) X, see (4.7) then νpd is locally integrable. The
integral with respect to the predictable discontinuous part νd := ν − νqc is part
of the stochastic integral. Thus, using the (cad-lag and quasi-left continuous,
purely discontinuous) local martingale measure ν̃qc := νqc − νpc = ν − νp, we
proceed as in Section 4.2.3 to define the stochastic integral, essentially replacing
the Lévy measure m(ds,dz) by (continuous part of) the compensator νpc . Thus,
for a elementary predictable process f of the form f(t, z, ω) = fi−1,j(ω) if ti−1 <
t ≤ ti and z belongs to Kj with i = 1, . . . , n, and j = 1, . . . ,m, where 0 = t0 <
t1 < · · · < tn are real numbers, Kj are disjoint compact subsets of Rm∗ and fi−1,j

is a F(ti−1) measurable bounded random variable for any i, and f(t, ω) = 0
otherwise, we set∫

Rm∗ ×(0,∞)

f(z, s) ν̃qc(dz,ds) :=

n∑
i=1

m∑
j=1

fi−1,j ν̃qc(Kj×]ti−1, ti]),

and ∫
Rm∗ ×(a,b]

f(z, s) ν̃qc(dz,ds) :=

∫
Rm∗ ×(0,∞)

f(z, s)1(a,b](s) ν̃qc(dz,ds),

for every b > a ≥ 0. The L2-closure of all elementary predictable processes E
is denoted by Ēν , i.e., processes f such that there is a sequence (f1, f2, . . .) of
processes in E such that

lim
k→∞

E
{∫

Rm∗ ×(0,∞)

|fk(z, s)− f(z, s)|2 νpc (dz,ds)
}

= 0.

Notice that we may use (indistinctly), νpc or νqc in the above condition, both
are random measure. Based on the isometry and estimate

E
{∣∣ ∫

Rm∗ ×(0,T ]

f(z, s) ν̃qc(dz,ds)
∣∣2} = E

{∫
Rm∗ ×(0,T ]

|f(z, s)|2 νpc (dz,ds)
}
,

E
{

sup
0≤t≤T

∣∣ ∫
Rm∗ ×(0,t]

f(z, s) ν̃qc(dz,ds)
∣∣2} ≤

≤ 4E
{∫

Rm∗ ×(0,T ]

|f(z, s)|2 νpc (dz,ds)
}
,

for every T ≥ 0, the stochastic integral is defined in the Hilbert space Ēν , which
can be also extended to the localized space Ēν,loc. Therefore, the integral with
respect to ν̃ when it is not quasi-left continuous is defined by

∫
Rm∗ ×]a.b]

f(z, s) ν̃(dz,ds) =

∫
Rm∗ ×]a,b]

f(z, s) ν̃qc(dz,ds) +

+

∫
Rm∗ ×]a.b]

f(z, s) νpd(dz,ds),
(4.70)
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where the second term is a pathwise Lebesgue-Stieltjes integral.
Taking the quasi-left continuous part ν̃qc, the process

f � ν̃qc : t 7→
∫
Rm∗ ×(0,t]

f(z, s) ν̃qc(dz,ds),

is a (local) martingale with predictable quadratic variation process

〈f � ν̃qc〉 =

∫
Rm∗ ×(0,t]

|f(z, s)|2 νpc (dz,ds),

so that denoting by νqc(f) its associate integer-valued measure with (good pre-
dictable) compensator νpqc(f) and local martingale measure ν̃qc(f) := νqc(f) −
νpqc(f) we have the substitution formula∫

Rm∗ ×(0,t]

g(z, s) ν̃fqc(dz,ds) =

∫
Rm∗ ×(0,t]

g(z, s) f(z, s) ν̃qc(dz,ds), (4.71)

first for elementary predictable processes g, which is extended by continuity to
any integrable processes f and g.

When the stochastic integral is defined for random measures associated to a
semi-martingale, i.e., the integer-valued measure νM associated with a (cad-lag)
local martingale (or semi-martingale) M is the same as the one associated with
its jumps part, Md := M −M c, i.e., νM = νMc , a general form of the stochastic
integral takes the form∫

]a,b]

X(s) dM c(s) +

∫
Rm∗ ×]a,b]

f(z, s) ν̃qc(dz,ds) +

∫
Rm∗ ×]a,b]

f(z, s) νpd(dz,ds),

where the first (stochastic) integral is a continuous local martingale, the second
(stochastic) integral is a purely discontinuous local martingale and the last term
makes sense as a Lebesgue-Stieltjes pathwise integral. Notice that integral with
respect to νpc or νp is part of the stochastic integral with respect to ν̃qc or µ,
respectively, i.e., if

P{
∫
Rm∗ ×]a.b]

|f(z, s)| ν(dz,ds) <∞} = 1

then we have∫
Rm∗ ×]a.b]

f(z, s) ν(dz,ds) =

=

∫
Rm∗ ×]a,b]

f(z, s) ν̃(dz,ds) +

∫
Rm∗ ×]a.b]

f(z, s) νp(dz,ds) =

=

∫
]a,b]×Rm∗

f(z, s) ν̃qc(dz,ds) +

∫
Rm∗ ×]a.b]

f(z, s) νpc (dz,ds),

almost surely. Moreover, any integer-valued measure ν has the form

ν(B×]a, b]) =

∞∑
i=1

1a<τi≤b 1ζi∈B , ∀ b > a ≥ 0, B ∈ B(Rm∗ ),
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for some sequence {τi, ζi : i ≥ 1}, where the stopping times τi cannot be ordered,
i.e., it is not necessarily true that τi ≤ τi+1, and the Rm∗ -valued random variables
ζi are F(τi)-measurable, but ν(Rm∗ × {0}) = 0 and ν(K×]a, b]) < ∞ for any
b > a ≥ 0 and any compact subset K of Rm∗ . Thus, we expect∫

Rm∗ ×]a.b]

f(z, s)ν(dz,ds) =

∞∑
i=1

1a<τi≤b f(ζi, τi),

whenever the above series converges absolutely and f is a continuous process.
To integrate a general predictable process f = f(s, z, ω), we may proceed

as follows: first we separate the integrable jumps (jumps of order 1) from the
square integrable jumps (jumps of order 2), namely, first we define

f1(s) :=

∞∑
i=1

1τi=s f(ζi, τi),

whenever sum is absolutely convergent, i.e.,

∞∑
i=1

1τi=s |f(ζi, τi)| <∞,

and f1(s) = 0 otherwise. The particular case where f(z, t, ω) = 0 for any z such
that |z| < ε, for some ε = ε(ω) > 0 is the leading example, since the above series
becomes a finite sum. Recalling that the jump process t 7→

∑∞
i=1 1τi≤t f1(τi) is

a cad-lag process, so it has only a finite number of jumps greater than ε > 0 on
any bounded time interval [0, T ], T > 0, we can set, for any b > a ≥ 0∫

Rm∗ ×]a.b]

f(z, s) νp(dz,ds) =

∞∑
i=1

1a<τi≤b f1(τi),

as a pathwise integral (defined as a finite sum or a convergent series, for each
ω almost surely) with respect to measure νp (all locally integrable jumps), and
we give a L2-sense (it cannot be pathwise!) to∫

Rm∗ ×]a.b]

f(z, s) (ν − νp)(dz,ds) =

∞∑
i=1

1a<τi≤b [f(ζi, τi)− f1(τi)],

whenever the process

t 7→

√√√√ ∞∑
i=1

1τi≤t [f(ζi, τi)− f1(τi)]2

is (locally) integrable. The compensator argument is used to define a measure
νp, which agrees with ν on predictable processes and such that ν̃ := ν − νp is
a local martingale measure. Briefly, for each ω, we make use of a series with
indices i such that either

∑
i |ζi| ∧ 1 converges or such that the quadratic series∑

i |ζi|2 ∧ 1 converges to define νp. All other indices are ignored.
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Here, the martingale theory is used to define the stochastic integral with
respect to ν̃ for any predictable process (class of equivalence) f(z, s) such that
the monotone increasing process

t 7→
[ ∫

Rm∗ ×]0.t]

|f(z, s)|2 νp(dz,ds)
]1/2

is (locally) integrable. Moreover, we can require only that the following process

t 7→

√√√√ ∞∑
i=1

1τi≤t [f(ζi, τi)− f1(τi)]2

be (locally) integrable.
For a neat and deep study, the reader may consult Chung and Williams [45],

while a comprehensive treatment can be found in Dellacherie and Meyer [58,
Chapters V–VIII], Jacod and Shiryaev [117, Chapters 1 and 2]), Rogers and
Williams [214, Volume 2]). Also, a more direct approach to stochastic integrals
can be found in the book Protter [206], covering even discontinuous martingales.

4.2.5 Vector Valued Integrals

Firstly, recall that any local martingale M can be written in a unique form as
the sum M0 +M c+Md, where M0 = M(0) is a F-measurable random variable,
M c is a continuous local martingale (and therefore locally square integrable) and
Md is a purely discontinuous local martingale, both M c(0) = Md(0) = 0. Also,
any local martingale M with M(0) = 0 (in particular a purely discontinuous
local martingale) can be written in a (non unique) form as the sum M ′ +M ′′,
where both M ′ and M ′′ are local martingale, the jumps of M ′′ are bounded by
a constant a (i.e., |δM ′′| ≤ a so that M ′′ is locally square integrable) and M ′

has locally integrable bounded variation paths. The predictable projection of a
local martingale M is (M(t−) : t > 0) so that a predictable local martingale is
actually continuous. Finally, a continuous or predictable local martingale with
locally bounded variation paths is necessarily a constant.

Secondly, recall the definitions of the predictable and the optional quadratic
variation processes. Given real-valued local square integrable martingale M the
predictable (increasing) quadratic variation process t 7→ 〈M〉(t) obtained via
the Doob-Meyer decomposition Theorem 3.10 applied to t 7→ M2(t) as a lo-
cal sub-martingale of class (D). This is the only increasing predictable locally
integrable process 〈M〉 such that M2 − 〈M〉 is a martingale. However, the pre-
dictable quadratic variation process is generally used for continuous local mar-
tingales. For a real-valued (non necessarily continuous) local (non necessarily
square integrable) martingale M, the optional (increasing) quadratic variation
process t 7→ [M ](t) is defined as 〈M〉(t) +

∑
s≤t |M(s) −M(s−)|2. This is the

only increasing optional process (not necessarily locally integrable) [M ] such
that M2− [M ] is a local martingale and δ[M ] = (δM)2. The increasing optional
process

√
[M ] is locally integrable, and if [M ] is locally integrable then it is a lo-

cal sub-martingale of class (D) and again via the Doob-Meyer decomposition we
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obtain a predictable increasing locally integrable 〈M〉 (called the compensator
of [M ]), which agrees with the predictable quadratic variation process previ-
ously defined for local square integrable martingales. Therefore, the predictable
quadratic variation process 〈M〉 may not be defined for a discontinuous local
martingale, but the optional quadratic variation [M ] is always defined. The
concept of integer-valued random measures is useful to interpret [M ] as the in-
creasing process associated with the integer-valued measure νM derived from
M. Thus 〈M〉 is the increasing predictable process (not necessarily integrable)
associated with the predictable compensator νpM of νM . If M is quasi-left contin-
uous then 〈M〉 is continuous, and therefore locally integrable. Next, for any two
real-valued local martingale M and N the predictable and optional quadratic
co-variation processes are defined by the formula 4〈M,N〉 = 〈M+N〉−〈M−N〉
and 4[M,N ] = [M +N ]− [M −N ]. Notice that

E
{∫

]a,b]

f(t)d〈M,N〉(t)
}

= E
{∫

]a,b]

f(t)d[M,N ](t)
}
,

for every predictable process such that the above integrals are defined.
An important role is played by the Kunita-Watanabe inequality , namely for

any two real-valued local martingales M and N and any two (extended) real-
valued measurable processes α and β we have the inequality

∫ t

0

|α(s)| |β(s)| |d[M,N ](s)| ≤

√∫ t

0

|α(s)|d[M ](s)×

×

√∫ t

0

|β(s)|d[N ](s),

(4.72)

almost surely for every t > 0, where |d[M,N ]| denotes the total variation
of the signed measure d[M,N ]. Certainly, the same estimate is valid for the
predictable quadratic co-variation process 〈M,M〉 instead of optional process
[M,N ]. The argument to prove estimate (4.72) is as follow. Since [M+rN,M+
rN ] = [M ] − 2r[M,N ] + r2[N ] is an increasing process for every r, we deduce
(d[M,N ])2 ≤ d[M ] d[N ]. Next, Cauchy-Schwarz inequality yields (4.72) with
d[M,N ](s) instead of |d[M,N ](s)|. Finally, by means of the Radon-Nikodym
derivative, i.e., replacing α by α = (d[M,N ]/|d[M,N ](s)|)α, we conclude. For
instance, a full proof can be found in Durrett[67, Section 2.5, pp. 59–63] or
Revuz and Yor [212, Proposition 1.15, Chapter, pp. 126–127].

Let M = (M1, . . . ,Md) a d-dimensional continuous local martingale in a
filtered space (Ω,F , P,F(t) : t ≥ 0), i.e., each component (Mi(t) : t ≥ 0),
i = 1, . . . , d, is a local continuous martingale in (Ω,F , P,F(t) : t ≥ 0). Recall
that the predictable quadratic co-variation 〈M〉 = (〈Mi,Mj〉 : i, j = 1, . . . , d) is
a symmetric nonnegative matrix valued process. The stochastic integral with
respect to M is defined for a d-dimensional progressively measurable process
f = (f1, . . . , fd) if for some increasing sequence of stopping times {τn : n ≥ 1}
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with τn →∞ we have

E
{∫ τn

0

d∑
i,j=1

fi(s)fj(s)d〈Mi,Mj〉(s)
}
<∞. (4.73)

Based on (4.72), it is clear that, if each component fi is locally square integrable
with respect to 〈Mi〉, i.e.,

E
{∫ τn

0

|fi(s)|2d〈Mi〉(s)
}
<∞,

then the above condition (4.73) is satisfied. However, the converse may be false,
e.g., if w = (w1, w2) is a two-dimensional standard Wiener process then set
M1 := w1, M2 := kw1 +(1−k)w2, where k is a (0, 1)-valued predictable process.
Choosing f = (f1, f2) = (− k

1−k ,
1

1−k ), we have
∑
i,j fifjd〈Mi,Mj〉 = d`, the

Lebesgue measure, so we certainly have (4.73), but∫ t

0

|f1(s)|2d〈M1〉(s) =

∫ t

0

∣∣∣ k(s)

1− k(s)

∣∣∣2ds <∞ a.s. ∀t > 0,

may not be satisfied.
For a n-dimensional continuous local martingale M = (M1, . . . ,Mn) and an

adapted Rn-valued (measurable) process f = (f1, . . . , fn) we have the following
estimate: for every p > 0 there exists a positive constant C = Cp depending
only on p, such that

E
{

sup
0≤t≤T

[ n∑
i=1

∣∣∣ ∫ t

0

fi(s)dMi(s)
∣∣∣2]p/2} ≤

≤ C E
{[ n∑

i,j=1

∫ T

0

fi(s) fj(s)d〈Mi(s),Mj(s)〉
]p/2}

.

(4.74)

for any stopping time T. In particular, for a standard n-dimensional Wiener
process (w(t) : t ≥ 0), we can write

E
{

sup
0≤t≤T

∣∣∣ ∫ t

0

f(s)dw(s)
∣∣∣p} ≤ C E

{[∫ T

0

|f(s)|2ds
]p/2}

. (4.75)

This estimate follows from Burkhölder-Davis-Gundy inequality (as in (3.31) of
Chapter 3), e.g., see Karatzas and Shreve [124, Section 3.3.D, pp. 163–167].
Notice that we make take C1 = 3 and C2 = 4.

Regarding the stochastic integral with respect to a Poisson measure in the
Polish space Rm∗ (or more general in a Blackwell space), we should mention
that the key elements are the compensated local martingale measure ν̃ and the
compensator νp, which is a predictable random measure. Both are constructed
from an integer-valued random measure, which is naturally obtained from a
optional locally integrable jump process or better a (purely discontinuous) local
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(sub-)martingale. A posteriori, we may use a predictable real-valued process
γ(z, t) on Rm∗ × (0,∞) such that

P
{∫

]0,t]

ds

∫
Rm∗

γ2(z, s)π(dz) <∞
}

= 1, ∀t > 0,

and use the stochastic integral to define a local martingale measure

ν̃γ(B×]a, b]) :=

∫
Rm∗ ×]a,b]

1B γ(z, s) ν̃(dz,ds),

for every B in B(Rm∗ ) and b > a ≥ 0, with a predictable quadratic variation (or
compensator) given by

νpγ(B×]a, b]) :=

∫
Rm∗ ×]a,b]

1B γ
2(z, s) νp(dz,ds),

for every B in B(Rm∗ ), b > a ≥ 0, and for the case of the Poisson measure
νp(dz,ds) = π(dz) ds. Thus νpγ has a density δ := γ2 with respect to νp.

The estimate (4.74) is also valid for a Poisson integral, with a small cor-
rection, namely, for any p in (0, 2] there exists a positive constant C = Cp
(actually Cp := (4 − p)/(2 − p) if 0 < p < 2 and C2 = 4) such that for any
adapted (measurable) process f(ζ, s) (actually, the predictable version is used)
we have

E
{

sup
0≤t≤T

∣∣∣ ∫
Rm∗ ×]0,t]

f(ζ, s)ν̃(dζ,ds)
∣∣∣p} ≤

≤ C E
{[∫ T

0

ds

∫
Rm∗
|f(ζ, s)|2π(dζ)

]p/2}
,

(4.76)

for every stopping time T. This follows immediately from estimate (3.30) of
Chapter 3. The case p > 2 is a little more complicate and involves Itô formula
as discussed in the next section.

For the sake of simplicity and to recall the fact that stochastic integral are
defined in an L2-sense, instead of using the natural notation ĒM,loc, ĒM , Ēπ,loc,
Ēπ, Ēloc, Ē of this Section 4.2 we adopt the following

Definition 4.21 (L2-Integrand Space). (a) Given a d-dimensional continu-
ous square integrable martingale M with predictable quadratic variation pro-
cess 〈M〉 in a filtered space (Ω,F , P,F(t) : t ≥ 0), we denote by L2(M) or
L2(Ω,F , P,F(t) : t ≥ 0,M, 〈M〉) the equivalence class with respect to the com-
pletion of product measure P × 〈M〉 of Rd-valued square integrable predictable
processes X, i.e. (4.73) with τn = ∞. This is regarded as a closed subspace of
the Hilbert space L2([0,∞)×Ω, P̄, 〈M〉×P ), where P̄ is the 〈M〉×P -completion
of the predictable σ-algebra P as discussed at the beginning of this chapter.
(b) Given a Rm-valued quasi-left continuous square integrable martingale M
with integer-valued measure νM and compensated martingale random mea-
sure ν̃M in the filtered space (Ω,F , P,F(t) : t ≥ 0), we denote by L2(ν̃M )
or L2(Ω,F , P,F(t) : t ≥ 0,M, ν̃M ) the equivalence class with respect to the
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completion of product measure ν̃M × P of real-valued square integrable pre-
dictable processes X, i.e., as a closed subspace of the Hilbert space L2(Rm∗ ×
[0,∞) × Ω,B(Rm∗ )× P, ν̃M × P ), where B(Rm∗ ) is the Borel σ-algebra in Rm∗
and the bar means completion with respect to the product measure ν̃M × P. If
an integer-valued random measure ν is initially given with compensated mar-
tingale random measure ν̃ = ν − νp, where νp is the predictable compensator
satisfying νp(Rm∗ × {t}) = 0 for every t ≥ 0, then we use the notation L2(ν̃) or
L2(Ω,F , P,F(t) : t ≥ 0, ν̃M ). Moreover, the same applies if a predictable νp-
locally integrable density δ is used, i.e., if ν̃ and νp are replaced by ν̃δ :=

√
δ ν̃

and νpδ := δ ν̃.
(c) Similarly, localized Hilbert spaces L2

loc(Ω,F , P,F(t) : t ≥ 0,M, 〈M〉) or
L2

loc(M) and L2
loc(Ω,F , P,F(t) : t ≥ 0,M, ν̃M ) or L2

loc(ν̃M ) are defined. If M is
only a local continuous martingale then X in L2

loc(M) means that for some local-
izing sequence {τn : n ≥ 1} the process Mn : t 7→M(t∧τn) is a square integrable
martingale and 1]0,τn]X belongs to L2(Mn), i.e, (4.73) holds for every n ≥ 1.
Similarly, if M is only a local quasi-left continuous square integrable martingale
then X in L2

loc(ν̃M ) means that for some localizing sequence {τn : n ≥ 1} the
process Mn : t 7→M(t∧τn) is a square integrable martingale, with compensated
martingale random measure denoted by ν̃Mn , and 1]0,τn]X belongs to L2(ν̃Mn),
i.e., the M and X share the same localizing sequence of stopping times.

Notice that we do not include the general case where M is a semi-martingale
(in particular, local martingales which are neither quasi-left continuous nor local
square integrable), since the passage to include these situation is essentially a
pathwise argument covered by the measure theory. If the predictable quadratic
variation process 〈M〉 gives a measure equivalent to the Lebesgue measure d`
then the spaces L2(M) and L2

loc(M) are equals to Pp(Ω,F , P,Ft, t ≥ 0) and
Pploc(Ω,F , P,Ft, t ≥ 0), for p = 2, as defined at the beginning of this Section 4.2
in the one-dimensional case. If M is a (local) quasi-left continuous square in-
tegrable martingale then we can write (uniquely) M = M c + Md, where M c

is the continuous part and Md the purely discontinuous part with Md(0) = 0.
Then, we may write L2

loc(Md) := L2
loc(ν̃Md), L2

loc(M) := L2
loc(M c) + L2

loc(Md),
and similarly without the localization. Furthermore, if predictable quadratic
co-variation (matrix) process 〈M〉 or the predictable compensator νp is de-
terministic then the (local) space L2

loc(M) or L2
loc(ν̃) is characterized by the

condition

P
{∫

]0,t]

d∑
i,j=1

fi(s)fj(s)d〈Mi,Mj〉(s) <∞
}

= 1

or

P
{∫

Rm∗ ×]0,t]

f2(z, s)νp(dz,ds) <∞
}

= 1,

for every t > 0. This applies even if the local martingale M or the integer-valued
random measure ν is not quasi-left continuous, in which case the predictable
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quadratic co-variation process 〈Mi,Mj〉(s) may be discontinuous or the pre-
dictable compensator measure νp may not vanish on Rm∗ × {t} for some t > 0,
we must have νp(Rm∗ × {0}) = 0.

The Case of Semi-martingales

Another point to stress is the following fact. If M is a n-dimensional continuous
local martingale and f is a d × n matrix-valued process in L2

loc(M), i.e., each
columns vector fi· := (fik : k = 1, . . . , n) belongs to L2

loc(M), then we can define
d-dimensional continuous local martingale

(f ? M)i(t) :=

n∑
k=1

∫ t

0

fik(s)dMk(s), ∀t ≥ 0,

and i = 1, . . . , d. The predictable quadratic co-variation process becomes

〈(f ? M)i, (f ? M)j〉 =

n∑
k,`=1

fik〈Mk,M`〉fj` .

On the other hand, if ν̃ is a local martingale measure with a predictable compen-
sator νp in Rm∗ and g is a d vector-valued process in L2

loc(ν̃), i.e., each component
gi belongs to L2

loc(ν̃), then we can define d-dimensional purely discontinuous lo-
cal martingale

(g ? ν̃)i(t) :=

∫
]0,t]

gi(ζ, s)ν̃(dζ,ds) ∀t ≥ 0,

and i = 1, . . . , d. The local martingale measure ν̃(g?ν̃) associated with g ? ν̃ in

B(Rd∗) can be expressed as

ν̃(g?ν̃)(B×]a, b]) =

∫
Rm∗ ×]a,b]

1{g(ζ,s)∈B}ν̃(dζ,ds)

with its predictable compensator νp(g?ν̃)

ν̃p(g?ν̃)(B×]a, b]) =

∫
Rm∗ ×]a,b]

1{g(ζ,s)∈B}ν
p(dζ,ds),

for every b > a ≥ 0 and B in B(Rd∗). In short we write ν̃(g?ν̃) = gν̃ and ν̃p(g?ν̃) =

gν̃p. Note that the optional quadratic variation process is given by

[(g ? ν̃)i, (g ? ν̃)j ](t) =

∫
Rm∗ ×]0,t]

gi(ζ, s)gj(ζ, s)ν
p(dζ,ds),

for every t ≥ 0.
Let g(z, s) be a d-dimensional predictable process which is integrable in Rm∗

with respect to the measure νp(dz,ds) almost surely, i.e.,

P
{∫

Rm∗ ×]0,t]

|g(z, s)|νp(dz,ds) <∞
}

= 1, ∀t > 0,
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which is a classic pointwise integral in the Lebesgue-Stieltjes. Moreover, if
{(ζn, τn) : n = 1, 2, . . .} are the atoms of ν (i.e., its associated point process)
then ∫

Rm∗ ×]0,t]

|g(z, s)|νp(dz,ds) =

∫
Rm∗ ×]0,t]

|g(z, s)|ν(dz,ds) =

=
∑

0<τn≤t

|g(ζn, τn)|.

Since ∑
0<τn≤t

|g(ζn, τn)|2 ≤ max
0<τn≤t

|g(ζn, τn)|
∑

0<τn≤t

|g(ζn, τn)|,

the process g(z, s) also belongs to L2
loc(ν̃) and we have∫

Rm∗ ×]0,t]

g(z, s)ν(dz,ds) =

∫
Rm∗ ×]0,t]

g(z, s)ν̃(dz,ds) +

+

∫
Rm∗ ×]0,t]

g(z, s)νp(dz,ds),

for every t > 0.
When comparing both stochastic integrals, with respect to (1) a continuous

local martingale (typically a Wiener process) and (2) a quasi-left continuous
(cad-lag) purely jump local martingale (typically a Poisson compensated-jump
or martingale measure) we have two notations, which are different only in form.
If w = (wk(t) : t ≥ 0, k ≥ 1) is a (standard) Wiener process and σ = (σk(s) :
s ≥ 0, k ≥ 1) is a adapted process then

(σ ? w)t :=
∑
k

∫ t

0

σk(s)dwk(s)

makes sense as long as∑
k

∫ t

0

|σk(s)|2ds <∞, ∀t ≥ 0,

almost surely. On the other hand, if ν̃(dζ,ds) is a (standard) Poisson martingale
measure with Lévy measure and γ = (γ(ζ, s) : s ≥ 0, ζ ∈ Rm∗ ) is a adapted
process then

(γ ? ν̃)t :=

∫
Rm∗ ×]0,t]

γ(ζ, s)ν̃(dζ,ds)

makes sense as long as∫ t

0

ds

∫
Rm∗
|γ(ζ, s)|2π(dζ) <∞, ∀t ≥ 0,

almost surely. At this point it is clear the role of the parameters k and ζ in the
integrands σk(·) and γ(ζ, ·), i.e., the sum in k and the integral in ζ with respect
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to the Lévy measure m(·). Moreover, the integrands σ and γ can be considered
as `2-valued processes, i.e.,∑

k

|σk|2 <∞ and

∫
Rm∗
|γ(ζ)|2π(dζ) <∞,

so that the parameters k and ζ play similar roles. The summation in k can be
converted to an integral and the separable locally compact and locally convex
space Rm∗ can be replaced by any Polish (or Backwell) space.

In general, if the (local) martingale measure ν̃ is known then the Lévy mea-
sure π(·) is found as its predictable quadratic variation, and therefore ν is con-
structed as the integer measure associated with the compensated-jump process

p̃(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds), ∀t ≥ 0.

Hence, the integer measure ν, the (local) martingale measure ν̃ and the Rm-
valued compensated-jump process p̃ can be regarded as different viewpoints of
the same concept. Each one of them completely identifies the others.

To conclude this section we mention that any quasi-left continuous (cad-
lag) semi-martingale X can be expressed in a unique way as X(t) = X(0) +
A(t)+M(t)+z ? ν̃X , where X(0) is a F(0)-measurable random variable, A(0) =
M(0) = 0, A is a continuous process with locally integrable bounded variation
paths, M is a continuous local martingale, and z ? ν̃X is the stochastic integral
of the process (z, t, ω) 7→ z with respect to the local martingale measure ν̃X
associated with X.

4.2.6 Representation of Martingales

Given a one-dimensional standard Brownian motion (w(t) : t ≥ 0) we define
as in Section 4.2.2 the stochastic integral for processes in the class L2

loc(w) (or
Ēloc), i.e., d`× P (dω)-equivalence class of adapted processes with

P
{∫ t

0

f2(s)ds <∞
}

= 1, ∀t ≥ 0,

and d` the Lebesgue measure. The stochastic integral process I(t, f),

t 7→
∫ t

0

f(s)dw(s), ∀t ≥ 0

is a continuous local martingale with quadratic variation process

[I(·, f)](t) = 〈I(·, f)〉(t) =

∫ t

0

f2(s)ds,

which is an absolutely continuous function of t for almost every ω. Our first
interest is in the converse of this statement as introduced by Doob [59].

It is clear that a Rd-valued stochastic process M = (M1(t), . . . ,Md(t)) is
called a d-dimensional continuous local martingale if each component (Mi(t) :
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t ≥ 0), i = 1, . . . , d is a (real-valued) continuous local martingale relative to
(complete and right-continuous) filtered space (Ω,F , P,F(t) : t ≥ 0). Assume
that 〈Mi,Mj〉 is (almost surely) absolutely continuous yielding a symmetric
square matrix of constant rank, i.e., 〈Mi,Mj〉(t) =

∫ t

0

zij(s)ds,

z := (zij : i, j = 1, . . . , d), rank(z) = r,

(4.77)

where 1 ≤ r ≤ d is a constant. The matrix z is symmetric, semi-positive
and progressively measurable, and so it can be diagonalized by an orthogonal
matrix q = (qij : i, j = 1, . . . , d), q−1 = q∗, q∗zq = λ, where λ = (λij), λii > 0
for i = 1, . . . , r and λij = 0 otherwise.

The stochastic integral process

Ni(t) :=

d∑
k=1

∫ t

0

qki(s)dMk(s)

satisfies

〈Ni, Nj〉(t) = δij

∫ t

0

λiids,

where δij = 1 if i = j and δij = 0 otherwise, so that Ni = 0 for r < i ≤ d.
Defining

Xij := qij
√
λjj , i = 1, . . . , d, j = 1, . . . , r,

wi(t) :=

∫ t

0

1√
λii(s)

dNi(s), i = 1, . . . , r,
(4.78)

we deduce that w = (w1, . . . , wr) is a r-dimensional standard Wiener process
such that

Mi(t) =

r∑
j=1

∫ t

0

Xijdwi(s), ∀t ≥ 0, i = 1, . . . , d.

The condition on the constant rank r can be removed and the Wiener process
is constructed in an extension of the filtered space (Ω,F , P,F(t) : t ≥ 0).

Another interesting point is the time-change. Let M = (M1(t), . . . ,Md(t))
be a d-dimensional continuous local martingale and assume that{

lim
t→∞
〈Mi〉(t) =∞, a.s.,

〈Mi,Mj〉 = 0, ∀i 6= j.
(4.79)

Certainly, this is not enough to ensure that Mi is independent of Mj for i 6= j.
However, the time-change{

τi(s) := inf
{
t ≥ 0 : 〈Mi〉(t) > s

}
,

Bi(s) := Mi(τi(s)), s ≥ 0, i = 1, . . . , d,
(4.80)
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are independent, standard, one-dimensional Brownian motions.
Detail on the above statements and a proof of the following result can be

found in Karatzas and Shreve [124, Section 3.4, pp. 170–190]. A representation
result for continuous martingales is as follows:

Theorem 4.22. Let w = (w1(t), . . . , wd(t)) be a d-dimensional standard Wiener
process in a filtered space (Ω,F , P,F(t) : t ≥ 0) where the filtration (F(t) : t ≥ 0)
is the increasing right-continuous and completed family of σ-algebras generated
by w. Then any square-integrable (cad-lag) martingale X = (X(t) : t ≥ 0) in
the filtered space (Ω,F , P,F(t) : t ≥ 0) is a stochastic integral with respect to w
and therefore continuous, i.e., there exist a unique element f = (f1, . . . , fd) in
Hilbert space L2(w) or L2(Ω× [0,∞), P̄, P × d`), where P̄ is the completion of
the predictable (or progressively) measurable processes with respect to the product
measure P × d`, such that

X(t) =

d∑
i=1

∫ t

0

fi(s)dwi(s),

for every t ≥ 0.

As proved in Jacod and Shiryaev [117, Section II.4c, pp. 172–179] the above
representation can be extended to some local martingales, other than the Wiener
process. In particular, if M = (M1, . . . ,Md) is a d-dimensional continuous local
martingale and ν is a quasi-left continuous integer-valued random measure in
Rm∗ , both defined in a filtered space (Ω,F , P,F(t) : t ≥ 0) where the filtration
(F(t) : t ≥ 0) is the augmented σ-algebras generate by M and ν (i.e., completed,
right-continuous and quasi-left continuous). Then any (local) square-integrable
(cad-lag) martingale X with X(0) = 0 is quasi-left continuous and can be rep-
resented as the following stochastic integral

X(t) =

d∑
i=1

∫
]0,t]

fi(s)dMi(s) +

∫
Rm∗ ×]0,t]

g(z, s) ν̃(dz,ds), (4.81)

for every t ≥ 0, where f = (fi, . . . , fd) and g belong to L2(M) and L2(ν̃) (or
L2

loc(M) and L2
loc(ν̃)), respectively, see Definition 4.21.

It is clear that for any Rd-valued (local) martingale M with M(0) = 0 we
can define the optional quadratic co-variation

[Mi,Mj ] := 〈M c
i ,M

c
j 〉+

+
∑

0<s≤·

(
Mi(s)−Mi(s−)

)(
Mj(s)−Mj(s−)

)
,

where the predictable quadratic variation 〈M c
i ,M

c
j 〉 (of the continuous part

(local) martingale M c of M) is the unique adapted continuous process with
local bounded variation paths such that M c

i M
c
j − 〈M c

i ,M
c
j 〉 is a continuous

martingale. Also, an (adapted) integer random measure ν = νM (sometime
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denoted by Mν) is associated with the jumps of M as the numbers of jumps
with values in a Borel subset of Rd∗ := Rd r {0}, i.e.,

ν(B, ]a, b]) :=
∑
a<t≤b

1M(t)−M(t−)∈B , ∀B ∈ B(Rd∗), b > a ≥ 0,

with its predictable compensator νpM = νp (sometime denoted by Mp
ν ), de-

fined as the unique predictable random measure such that E{ν(K×]0, τ ]) −
νp(K×]0, τ ])} = 0 for every compact subset K of Rd∗ and any bounded stopping
time τ or equivalently the process t 7→ ν(K×]0, t]) − νp(K×]0, t]) is a martin-
gale. Thus, defining ν̃ := ν− νp as its associated (local) martingale measure we
can write

M(t) = M c(t) +

∫
Rd∗×]0,t]

zν̃(dz,ds) +
∑

0<s≤t

νp(Rd∗, {s}),

for every t ≥ 0. If the martingale M is locally square-integrable then the pro-
cesses

(t, ω) 7→
∫
Rd∗×]0,t]

|z| ∧ |z|2νp(dz,ds),

(t, ω) 7→
∑

0<s≤t

νp(Rd∗, {s})

are locally integrable. Clearly, we have∑
0<s≤t

ϕ
(
M(s)−M(s−)

)
=

∫
Rd∗×]0,t]

ϕ(z)ν(dz,ds),

and the adapted stochastic process

(t, ω) 7→
[ ∫

Rd∗×]0,t]

ϕ(z)ν̃(dz,ds)
]2
−
∫
Rd∗×]0,t]

ϕ(z)νp(dz,ds)

is a local martingale for any measurable function ϕ such that

E
{∫

Rd∗×]0,t]

|ϕ(z)|2νp(dz,ds)
}
<∞, ∀t > 0.

The (local) martingale M is quasi-left continuous if and only if νp(Rd∗, {s}) = 0
for every s > 0. Therefore, the optional quadratic variation can be written in
term of the integer measure νM as

[Mi,Mj ] = 〈M c
i ,M

c
j 〉+

∫
Rd∗×]0,·]

zi zjνM (dz,ds),

and the predictable quadratic variation 〈M c
i ,M

c
j 〉 and the compensator νpM are

uniquely determined by the local martingale M, so-called the characteristic of
the martingale M.

The reader may find suitable representation theorems in the book Ikeda and
Watanabe [110, Section II.7, pp. 84–96]. We will quote some of them. To this
end, we first recall the meaning of standard extension of a filtered probability
space.
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Definition 4.23. A filtered probability space (Ω̃, F̃ , P̃ , F̃(t) : t ≥ 0) is called
an extension of another filtered probability space (Ω,F , P,F(t) : t ≥ 0) if there
exists a measurable mapping Υ : Ω̃→ Ω such that:

(1) P (A) = P̃ (Υ−1(A)) for every A in F ,
(2) Υ−1(F(t)) ⊂ F̃(t), for every t ≥ 0,

(3) E{X | F(t)} ◦Υ = Ẽ{X ◦Υ : | F̃(t)}, P̃ -almost surely in Ω̃, for every t ≥ 0
and any bounded random variable X in Ω, where (X ◦Υ)(ω̃) = X(Υ(ω̃)).

This extension is called standard if Ω̃ = Ω × Ω′, F̃ = F × F ′, P̃ = P × P ′,
and Υ(ω̃) = ω for every ω̃ = (ω, ω′) in Ω̃. All product σ–algebras are completed
if necessary and any random variable X in Ω are identified with X ◦ Υ as a
random variable in Ω̃.

The following is Theorem 7.1’ and a re-phasing of Theorem 7.4’ in the above
cited reference.

Theorem 4.24. Let M be a d-dimensional continuous local martingale in a
filtered probability space (Ω,F , P,F(t) : t ≥ 0) such that there exist predictable
processes σk = (σik(t) : i = 1, . . . , d), k = 1, . . . , n satisfying

〈Mi,Mj〉 =
∑
k

∫ ·
0

σik(s)σjk(s)ds,

P
{∑

ik

∫ t

0

|σik(s)|2ds <∞
}

= 1.

Then there exists a standard extension (Ω̃, F̃ , P̃ , F̃(t) : t ≥ 0) of the filtered
probability space (Ω,F , P,F(t) : t ≥ 0) and a n-dimensional Wiener process
w = (w1, . . . , n) such that

dM(t) =
∑
k

σk(t)dwk(t)

or equivalently

Mi(t) = Mi(0) +
∑
k

∫ t

0

σik(s)dwk(s),

for every t ≥ 0.

Recall that for any d-dimensional local martingale M we can associate an
integer random measure

Mν(K, ]0, t]) :=
∑

0<s≤t

1M(s)−M(s−)∈K

and there exists a unique random measure Mp
ν , which is called jump compensator

and characterized by the following property:

(a) For every compact subset K of Rd∗ the process

t 7→Mν(K, ]0, t])−Mp
ν (K, ]0, t])
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is a local martingale

A quasi-left continuous local martingale M is called purely jumps if

M(t) = M(0) +

∫
Rd∗×]0,t]

zM̃ν(dz,ds),

for every t > 0, where M̃ν = Mν −Mp
ν is its martingale measure.

Theorem 4.25. Let M be a quasi-left continuous purely jumps local martingale
in a filtered probability space (Ω,F , P,F(t) : t ≥ 0) such that there exist a Radon
(i.e., finite on every compact) measure π(·) in Rm∗ and a predictable process
γ = (γi(ζ, t) : i = 1, . . . , d), ζ in Rm∗ satisfying

Mp
ν (B, ]0, t]) =

∫ t

0

π
(
{ζ ∈ Rm∗ : γ(ζ, s) ∈ B}

)
ds,

P
{∫

Rm∗
|γ(ζ, t)|2π(dζ) <∞

}
= 1,

for every B in B(Rm∗ ) and t > 0, where Mp
ν is the jump compensator of M. Then

there exists a standard extension (Ω̃, F̃ , P̃ , F̃(t) : t ≥ 0) of the filtered probability
space (Ω,F , P,F(t) : t ≥ 0) and a m-dimensional Poisson measure ν on Rm∗
with Lévy measure π(·) such that

dM(t) =

∫
Rm∗

γ(ζ, t)ν̃(dζ,dt)

or equivalently

Mi(t) = Mi(0) +

∫
Rm∗ ×]0,t]

γi(ζ, s)ν̃(dζ,ds)

for every t ≥ 0, where ν̃(dζ,ds) := ν(dζ,ds)−π(dζ)ds is the martingale measure
associated with ν.

The proof of the above results is rather technical and we refer to the previous
book and its references. For instance, the reader may consult the papers Cinlar
and Jacod [47] or Yin and SiTu [260], for a more detailed discussion.

4.3 Stochastic Differential

One of the most important tools used with stochastic integrals is the change-
of-variable rule or better known as Itô’s formula. This provides an integral-
differential calculus for the sample paths.

To motivate our discussion, let us recall that at the end of Subsection 4.2.2
we established the identity∫

(0,t]

w(s)dw(s) =
w2(t)

2
− t

2
, ∀t ≥ 0,
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for a real-valued standard Wiener process (w(t) : t ≥ 0), where the presence of
new term, t/2, is noticed, with respect to the classic calculus.

In general, Fubini’s theorem proves that given two processes X and Y of
locally bounded variation (cad-lag) we have the integration-by-part formula

X(b)Y (b)−X(a)Y (a) =

∫
(a,b]

X(t−)dY (t) +

+

∫
(a,b]

Y (t−)dX(t) +
∑
a<t≤b

δX(t) δY (t),
(4.82)

where X(t−) and Y (t−) are the left-limits at t and δ is the jump-operator,
e.g., δX(t) := X(t) −X(t−). Since the integrand Y (t−) is left-continuous and
the integrator X(t) is right-continuous as above, the pathwise integral can be
interpreted in the Riemann-Stieltjes sense or the Lebesgue-Stieltjes sense, in-
distinctly. Consider, for example, a Poisson process with parameter c > 0, i.e.,
X = Y = (p(t) : t ≥ 0), we have∫

(0,t]

p(s−)dp(s) =
p2(t)

2
− p(t)

2
, ∀t ≥ 0,

because all jumps are equals to 1. However, strictly in the Lebesgue-Stieltjes
sense we write∫

(0,t]

p(s)dp(s) =
p2(t)

2
+
p(t)

2
, ∀t ≥ 0.

Recall that the stochastic integral is initially defined as the L2-limit of Riemann-
Stieltjes sums, where the integrand is a predictable (essentially, left-continuous
having right-limits) process and the integrator is a (local) square integrable
martingale. The (local) bounded variation integral can be defined by either way
with a unique value, as long as the integrand is the predictable member of its
equivalence class of processes. Thus, as mentioned at the end of Subsection 4.2.4,
the stochastic integral with respect to the compensated Poisson process (or
martingale) p̄(t) := p(t)− ct satisfies∫

(0,t]

p̄(s)dp̄(s) =

∫
(0,t]

p̄(s−)dp̄(s), ∀t ≥ 0,

the expression in left-hand side is strictly understood only as a stochastic in-
tegral, because it makes non sense as a pathwise Riemann-Stieltjes integral
and does not agree with one in the pathwise Lebesgue-Stieltjes sense. How-
ever, the expression in right-hand side can be interpreted either as a pathwise
Riemann-Stieltjes integral or as a stochastic integral. Notice that the processes
(p(t) : t ≥ 0) and (p(t−) : t ≥ 0) belong to the same equivalence class for the
dt× P (dω) measure, under which the stochastic integral is defined.

We may calculate the stochastic integral as follows. For a given partition
π := (0 = t0 < t1 < · · · < tn = t) of [0, t], with ‖π‖ := maxi(ti − ti−1), consider
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the Riemann-Stieltjes sums

Sπ :=

n∑
i=1

p̄(ti−1)[p̄(ti)− p̄(ti−1)] =

∫
]0,t]

p̄π(s)dp̄(s) =

=

∫
]0,t]

p̄π(s)dp(s)− c
∫ t

0

p̄π(s)ds,

for the predictable process p̄π(s) = p̄(ti−1) for any s in ]ti−1, ti]. Since p̄π(s)→
p̄(s−) as ‖π‖ → 0, we obtain∫

(0,t]

p̄(s−)dp̄(s) =

∫
(0,t]

p̄(s−)dp(s)− c
∫ t

0

p̄(s−)ds,

which is a martingale null at time zero. For instance, because E{p(t)} = ct and
E{[p(t)− ct]2} = ct we have E{p2(t)} = c2t2 + ct, and therefore

E
{∫

(0,t]

p(s−)dp(s)− c
∫ t

0

p(s−)ds
}

= 0,

as expected.
Given a smooth real-valued function ϕ = ϕ(t, x) defined on [0, T ]× Rd and

a Rd-valued semi-martingale {M(t) : t ≥ 0} we want to discuss the stochastic
chain-rule for the real-valued process {ϕ(t,M(t)) : t ≥ 0}. If ϕ is complex-valued
then we can tread independently the real and the imaginary parts.

For a real-valued Wiener process (w(t) : t ≥ 0), we have deduced that

w2(t) = 2

∫
(0,t]

w(s)dw(s) + t, ∀t ≥ 0,

so that the standard chain-rule does not apply. This is also seen when Taylor
formula is used, say taking mathematical expectation in

ϕ(w(t)) = ϕ(0) + ϕ′(0)w(t) + ϕ′′(0)
w2(t)

2
+

∫ 1

0

ϕ′′′(sw(t))
w3(t)

6
ds,

we obtain

Eϕ(w(t)) = ϕ(0) + ϕ′′(0)
t

2
+

∫ 1

0

E{ϕ′′′(sw(t))
w3(t)

6
}ds,

where the error-term integral can be bounded by 2t3/2 sup |ϕ|. The second order
derivative produces a term of order 1 in t.

Given a (cad-lag) locally integrable bounded variation process A = (A(t) :
t ≥ 0) and a locally integrable process X = (X(t) : t ≥ 0) with respect to A, we
can define the pathwise Lebesgue-Stieltjes integral

(X ? A)(t) :=

∫
]0,t]

X(s)dA(s), ∀ t ≥ 0,

which produces a new (cad-lag) locally integrable bounded variation process
X ? A = ((X ? A)(t) : t ≥ 0). The substitution formula establishes that for any
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locally integrable process Y = (Y (t) : t ≥ 0) with respect to X ? A, the process
Y X = (Y (t)X(t) : t ≥ 0) is locally integrable process with respect to A and∫

]0,t]

Y (s)d(X ? A)(s) =

∫
]0,t]

Y (s)X(s)dA(s), (4.83)

for every t ≥ 0. Certainly, if the processes X and Y are left-continuous then
the above integral can be interpreted in the (pathwise) Riemann-Stieltjes sense.
Moreover, if both processes X and Y are predictable and A is adapted then the
? symbol, representing the pathwise Lebesgue-Stieltjes, can be replaced by the
� symbol, representing the stochastic integral relative to an adapted (cad-lag)
process with locally integrable bounded variation.

Similarly, given a (cad-lag) local martingale M = (M(t) : t ≥ 0) and a locally
integrable predictable process X = (X(t) : t ≥ 0) relative to M (i.e., there is
a reducing sequence of stopping times (τn : n ≥ 0) for both processes X and
M, simultaneously), we can define the stochastic integral which produces a new
(cad-lag) local martingale X �M = ((X �M)(t) : t ≥ 0). Let Y = (Y (t) : t ≥ 0)
be a locally integrable predictable process relative to X�M (i.e., there is another
reducing sequence of stopping times (τ̄n : n ≥ 0) for both processes Y and
X �M). The stochastic substitution formula says that the predictable process
Y X = (Y (t)X(t) : t ≥ 0) is locally integrable with respect to M admitting the
(minimum) reducing sequence (τn ∧ τ̄n : n ≥ 0) and∫

]0,t]

Y (s)d(X �M)(s) =

∫
]0,t]

Y (s)X(s)dM(s), (4.84)

for every t ≥ 0.
The first step in the proof of the above stochastic substitution formula is

to observe that by taking the minimum localizing sequence (τn ∧ τ̄n : n ≥ 0)
it suffices to show the result for an L2-martingales M. Secondly, it is clear
that equality (4.84) holds for any elementary predictable processes Y and that
because of the isometry∫

]0,t]

Y 2(s)d[X �M ](s) =

∫
]0,t]

Y 2(s)X2(s)d[M ](s), ∀ t ≥ 0,

for every t ≥ 0, where [·] denotes the (optimal) quadratic variation of a mar-
tingale (as in Section 4.2.4), the process Y X is integrable with respect to M.
Finally, by passing to the limit we deduce that (4.84) remains valid almost surely
for every t ≥ 0. Since both sides of the equal sign are cad-lag processes, we con-
clude. A detailed proof can be found in Chung and Williams [45, Theorem 2.12,
Section 2.7, pp. 48–49].

Let M be a (real-valued) square integrable martingale with its associated op-
tional and predictable integrable monotone increasing processes [M ] and 〈M〉.
Recall that M2 − [M ] and M2 − 〈M〉 are uniformly integrable martingale,
[M ](t) := 〈Mc〉(t) +

∑
s≤t[M(s)−M(s−)]2, where Mc is the continuous part of

M. Moreover, if 〈M〉 is continuous (i.e., the martingale is quasi-left continuous)
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and pvar2(M,π) denotes the predictable quadratic variation operator defined
by

pvar2(M,πt) :=

m∑
i=1

E{|M(ti)−M(ti−1)|2 | F(ti−1)}, (4.85)

for πt = (0 = t0 < t1 < · · · < tm = t), then pvar2(M,π) converges in L1 to 〈M〉
as the mesh (or norm) of the partition ‖πt‖ := maxk(ti− ti−1) goes to zero, see
Theorem 3.11 in Chapter 3. Another key point is the study of the variation of
M, as defined by the operator

var`(M,πt) :=

m∑
i=1

|M(ti)−M(ti−1)|`, (4.86)

as the mesh ‖π‖ vanishes, the cases ` = 2 (quadratic variation) and ` = 4 are of
particular interest. As we have seen, the quadratic variation plays an important
role in the stochastic integral.

Proposition 4.26 (Quadratic Variation Convergence). If M is a (real-valued)
continuous square integrable martingale then for every ε, t > 0 there exists δ >
0 such that for any partition πt of the interval [0, t] with ‖πt‖ < δ we have
P{|var2(M,πt)− 〈M〉(t)| > ε} < ε.

Proof. We only give some details for the case whenM is continuous and bounded
in L4. Indeed, the martingale property yields

m∑
i=k+1

E{[M(ti)−M(ti−1)]2 | F(ti−1)} =

=

m∑
i=k+1

E{M2(ti)−M2(ti−1) | F(ti−1)} ≤ E{M2(tm)| F(tk)},

so that

m−1∑
k=1

m∑
i=k+1

E{[M(ti)−M(ti−1)]2 [M(tk)−M(tk−1)]2} =

=

m−1∑
k=1

E
{

[M(tk)−M(tk−1)]2 ×

×
m∑

i=k+1

E{[M(ti)−M(ti−1)]2 | F(ti−1)}
}
≤

≤
m−1∑
k=1

E{[M(tk)−M(tk−1)]2
m∑

i=k+1

E{M2(tm)| F(tk)}} =

= E{M2(tm)}
m−1∑
k=1

E{[M(tk)−M(tk−1)]2}.
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Since
m∑
k=1

E{[M(tk)−M(tk−1)]4} ≤

≤ E
{(

max
i

[M(ti)−M(ti−1)]2
) m∑
k=1

[M(tk)−M(tk−1)]2
}
≤

≤
(
E{max

i
[M(ti)−M(ti−1)]4}

)1/2 ×
×
(
E
{[ m∑

k=1

[M(tk)−M(tk−1)]2
]2})1/2

,

we deduce

E{[var2(M,πt)]
2} =

m∑
k=1

E{[M(tk)−M(tk−1)]4}+

+2

m−1∑
k=1

m∑
i=k+1

E{[M(ti)−M(ti−1)]2 [M(tk)−M(tk−1)]2} ≤

≤ 2E{M2(t)}E{[var2(M,πt)]}+ E{max
i

[M(ti)−M(ti−1)]4},

after using Hölder inequality. This shows that

sup
0<s≤t

E{|M(s)|4} <∞ ⇒ E{[var2(M,πt)]
2} <∞, (4.87)

and if M is continuous then E{var4(M,πt)} → 0 as ‖πt‖ → 0.
Therefore, because M2 − 〈M〉 is a martingale we also have

E{[var2(M,πt)− 〈M〉(t)]2} =

=

m∑
k=1

E{[(M(tk)−M(tk−1))2 − (〈M〉(tk)− 〈M〉(tk−1))]2} ≤

≤ 2

m∑
k=1

E{[M(tk)−M(tk−1)]4 − [〈M〉(tk)− 〈M〉(tk−1)]2} ≤

≤ 2E{var4(M,πt)}+ 2E{〈M〉(t) max
i

[〈M〉(ti)− 〈M〉(ti−1)]},

which proves that var2(M,π) converges in L2 to 〈M〉, whenever M is continuous
and belongs to L4.

For instance, a complete proof of this result can be found in Chung and
Williams [45, Theorem 4.1, Section 4.3, pp. 76–79] or Karatzas and Shreve [124,
Theorem 5.8, Chapter 1, pp. 32–34].
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4.3.1 Itô’s processes

Let (w(t) : t ≥ 0) be a n-dimensional standard Wiener process in a given
filtered space (Ω,F , P,Ft : t ≥ 0), i.e., with w(t) = (w1(t), . . . , wn(t)) we have
wk(t) and wk(t)w`(t)− 1k=`t are continuous martingales null at time zero (i.e.,
wi(0) = 0) relative to the filtration (Ft : t ≥ 0), for any k, ` = 1, . . . , n. Thus
(Ω,F , P,Ft, w(t) : t ≥ 0) is called a n-dimensional (standard) Wiener space.

A Rd-valued stochastic process (X(t) : t ≥ 0) is called a d-dimensional Itô’s
process if there exist real-valued adapted processes (ai(t) : t ≥ 0, i = 1, . . . , d)
and (bik(t) : t ≥ 0, i = 1, . . . , d, k = 1, . . . , n) such that for every i = 1, . . . , d
we have

E
{∫ τr

0

[
|ai(t)|+

n∑
k=1

|bik(t)|2
]
dt
}
<∞, ∀ r = 1, 2, . . . ,

Xi(t) = Xi(0) +

∫ t

0

ai(s)ds+

n∑
k=1

∫ t

0

bik(s)dwk(s), ∀ t ≥ 0,

(4.88)

in some n-dimensional Wiener space (Ω,F , P,Ft, w(t) : t ≥ 0), where {τr : r ≥
1} is a non-decreasing sequence of stopping times satisfying τr → ∞ almost
surely. In short we write dX(t) = a(t)dt+ b(t)dw(t), for every t ≥ 0, with a in
L1

loc and b in L2
loc. Notice that for a Wiener process or in general for a continuous

local martingale M, we write the stochastic integral∫
]0,t]

f(s)dM(s) =

∫
(0,t]

f(s)dM(s) =

∫ t

0

f(s)dM(s),

indistinctly. Notice that any Itô process is a (special) semi-martingale, and a
quasi-martingale whenever a and b belong to L1([0, T ]×Ω) and L2([0, T ]×Ω),
for any T > 0, respectively.

Theorem 4.27 (Itô formula). Let (X(t) : t ≥ 0) be a d-dimensional Itô’s
process in a given Wiener space (Ω,F , P,Ft, w(t) : t ≥ 0), i.e, (4.88), and
ϕ = ϕ(t, x) be a real-valued smooth function on [0,∞)×Rd, i.e., C1 in the first
variable t on [0,∞) and C2 in the second variable x on Rd. Then (ϕ(t,X(t)) :
t ≥ 0) is a (real-valued) Itô’s process and

ϕ(t,X(t)) = ϕ(0, X(0)) +

∫ t

0

A(s,X)ϕ(s,X(s))ds+

+

n∑
k=1

∫ t

0

Bk(s,X)ϕ(s,X(s))dwk(s), ∀ t ≥ 0,
(4.89)

where the linear differential operators A(s,X) and B(s,X) = (Bk(s,X) : k =
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1, . . . , n) are given by

A(s,X)ϕ(t, x) := ∂tϕ(t, x) +

d∑
i=1

ai(s) ∂iϕ(t, x) +

+
1

2

d∑
i,j=1

( n∑
k=1

bik(s)bjk(s)
)
∂2
ijϕ(t, x),

Bk(s,X)ϕ(t, x) :=

d∑
i=1

bik(s)∂iϕ(t, x),

for any s, t ≥ 0 and x in Rd, with ∂t, ∂i and ∂2
i,j denoting the partial derivatives

with respect to the variable t, xi and xj .

Proof. The first step is to localize, i.e., setting

Tr := τr ∧ inf
{
t ≥ 0 : |X(t)| ≥ r

}
we have a non-decreasing sequence of stopping times satisfying Tr →∞ almost
surely. Moreover, if Xn(t) := X(t∧Tn) then Xn is a processes with values in the
compact ball of radius r and therefore the processes A(s) := A(s,X)ϕ(s,Xn(s))
and Bk(s) := Bk(s,X)ϕ(s,Xn(s)) are in L1 and L2, respectively, i.e.,

E
{∫ Tr

0

[
|A(t)|+

n∑
k=1

|Bk(t)|2
]
dt
}
<∞, ∀ r = 1, 2, . . . ,

so that the right-hand side of the so-called Itô formula or rule (4.89) is an real-
valued Itô’s process. This shows that without loss of generality, we may assume
that the function ϕ has a compact support. Furthermore, details on the proof
are only provided for the one-dimensional case, i.e., d = 1 and n = 1, with
X(t) = X(0) +A(t) +B(t) and

A(t) :=

∫ t

0

a(s)ds, B(t) :=

∫ t

0

b(s)dw(s), (4.90)

a(s) and b(s) are predictable (actually, adapted is sufficient) processes such that

|B(t)|+
∫ t

0

[|a(s)|+ |b(s)|2]ds ≤ C,

for any t ≥ 0 and some deterministic constant C > 0.
The second step is to apply Taylor formula for a smooth real-valued function

ϕ = ϕ(x) on R, with a partition π := (0 = t0 < t1 < · · · < tm = t) of [0, t],
ϕ(X(t))− ϕ(X(0)) =

m∑
k=1

[ϕ(X(tk))− ϕ(X(tk−1)] =

=

m∑
k=1

[X(tk)−X(tk−1)]ϕ′k +
1

2

m∑
k=1

[X(tk)−X(tk−1)]2ϕ′′k ,

(4.91)
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where X(t) = X(0) +A(t) +B(t) satisfying (4.90),

ϕ′k := ϕ′(X(tk−1)),

ϕ′′k :=

∫ 1

0

ϕ′′((1− s)X(tk−1) + sX(tk))ds,

and the mesh (or norm) ‖π‖ := maxi(ti − ti−1) is destined to vanish.
Considering the predictable process ϕ′π(s) = ϕ′(X(tk−1)) for s belonging to

]tk−1, tk], we check that

m∑
k=1

[X(tk)−X(tk−1)]ϕ′k =

∫
]0,t]

ϕ′π(s)dA(s) +

∫
]0,t]

ϕ′π(s)dB(s),

which converges in L1 +L2 (or pathwise for the first term and L2 for the second
term) to∫

]0,t]

ϕ′(X(s))dA(s) +

∫
]0,t]

ϕ′(X(s))dB(s)

where the first integral is in the Riemann-Stieltjes (or Lebesgue-Stieltjes) sense
and the second term is a stochastic integral. By means of the substitution
formula (4.83) and (4.84), the above limit can be rewritten as∫

]0,t]

ϕ′(X(s))a(s)ds+

∫
]0,t]

ϕ′(X(s))b(s)dw(s),

where the first integral is now in the Lebesgue sense, which agrees with the
stochastic sense if a predictable version of the integrand is used.

To handle the quadratic variation in (4.91), we notice that

[X(tk)−X(tk−1)]2 = −2[A(tk)−A(tk−1)] [B(tk)−B(tk−1)] +

+[A(tk)−A(tk−1)]2 + [B(tk)−B(tk−1)]2,

and for any k ≥ 1,

|ϕ′′(X(tk−1))− ϕ′′k | ≤ max
k

ρ(ϕ′′, |X(tk)−X(tk−1)|),

where ρ(ϕ′′, r) is the modulus of continuity of ϕ′′, i.e.,

ρ(ϕ′′, r) := sup
|x−y|≤r

|ϕ′′(x)− ϕ′′(y)|.

Therefore
m∑
k=1

[X(tk)−X(tk−1)]2ϕ′′k =

=

m∑
k=1

ϕ′′(X(tk−1))[B(tk)−B(tk−1)]2 + o(‖π‖)
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where

|o(‖π‖)| ≤ max
k

{
ρ(ϕ′′, |X(tk)−X(tk−1)|)

}
×

×
{ m∑
k=1

[B(tk)−B(tk−1)]2
}

+

+ max
k

{
[2|B(tk)−B(tk−1)|+ |A(tk)−A(tk−1)|] |ϕ′′k |

}
×

×
{ m∑
k=1

|A(tk)−A(tk−1)|
}
.,

i.e., o(‖π‖) is bounded by a deterministic constant and o(‖π‖)→ 0 as ‖π‖ → 0,
almost surely.

Since ϕ̄′′k := ϕ′′(X(tk−1)) is F(tk)-measurable and

B2(t)−
∫ t

0

|b(s)|2ds,

is a martingale, we have

E
{
{
m∑
k=1

[(B(tk)−B(tk−1))2 −
∫ tk

tk−1

|b(s)|2ds] ϕ̄′′k}2
}

=

= E
{ m∑
k=1

[
(B(tk)−B(tk−1))2 −

∫ tk

tk−1

|b(s)|2ds
]2 |ϕ̄′′k |2},

which is bounded by the expression(
max
i

E{|ϕ̄′′k |2}
)
E
{ m∑
k=1

[
(B(tk)−B(tk−1))2 −

∫ tk

tk−1

|b(s)|2ds
]2}

.

In view of Proposition 4.26, we deduce that

E
{∣∣∣ m∑

k=1

[B(tk)−B(tk−1)]2ϕ′′k −
∫

]0,t]

|b(s)|2ϕ̄′′π(s)ds
∣∣∣2}→ 0,

as ‖π‖ → 0, where ϕ′′π(s) = ϕ′′(X(tk−1)) = ϕ̄′′k for any s in ]tk−1, tk].
Thus, we have establish the one-dimensional Itô formula for a (real-valued)

smooth function with compact support ϕ(x), which conclude the proof.

Notice the short vector notation for Itô formula when ϕ = ϕ(x), namely,

dϕ(X(t)) = ∇ϕ(X(t))dX(t) +
1

2
Tr[b(t)b∗(t)∇2ϕ(x)]dt (4.92)

for every t ≥ 0, where ∇ is the gradient operator and ∇2ϕ is the matrix of
second derivatives.

From the above proof, it is clear also that several generalizations of Itô
formula are possible. Notice that it is not necessary to separate the t variable,
since we may add one more dimension with a(s) := 1 and b(s) := 0 to pass from
ϕ(x) to ϕ(t, x). By reviewing the previous steps and remarking the use of the
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continuity and the quadratic variation of the martingale M, we can show the
following rule.

Theorem 4.28. Let (Xi(t) : t ≥ 0) be a continuous semi-martingale in a given
filtered space (Ω,F , P,Ft : t ≥ 0), for each i = 1, . . . , d, and ϕ = ϕ(x) be a real-
valued C2 function on Rd. Then (ϕ(X(t)) : t ≥ 0), X(t) := (X1(t), . . . , Xd(t))
is a continuous semi-martingale and

ϕ(X(t)) = ϕ(X(0)) +

d∑
i=1

∫
]0,t]

∂iϕ(X(s))dXi(t) +

+

d∑
i,j=1

∫
]0,t]

∂2
ijϕ(X(s))d〈Xi, Xj〉(s), ∀ t ≥ 0,

(4.93)

where ∂i and ∂2
ij denote partial derivatives, and 〈Xi, Xj〉(s) is the only pre-

dictable process with locally integrable bounded variation such that the expression
XiXj − 〈Xi, Xj〉 is a martingale.

We can also extend the integration-by-part formula (4.82) for two (cad-lag)
real-valued semi-martingales X = VX + MX and Y = VY + MY where VX , VY
have locally bounded variation and MX , MY are continuous local martingales
as follows

X(t)Y (t)−X(0)Y (0) = 〈MX ,MY 〉(t) +

∫
(0,t]

X(s−)dY (s) +

+

∫
(0,t]

Y (s−)dX(s) +
∑

0<s≤t

δVX (s) δVY (s),
(4.94)

for every t ≥ 0, where X(t−) and Y (t−) are the left limits at t, and δ is the
jump-operator, e.g., δX(t) := X(t) − X(t−). Notice that the correction term
satisfies

〈MX ,MY 〉(t) +
∑

0<s≤t

δVX (s) δVY (s) = [X,Y ](t),

i.e., it is equal to the optional quadratic covariation process [X,Y ] associated
with the semi-martingale X and Y.

As seen in (4.75) of the previous section, for a standard n-dimensional Wiener
process (w(t) : t ≥ 0), for any adapted (measurable) process f(s) and for any
stopping time T, we can write

E
{

sup
0≤t≤T

∣∣∣ ∫ t

0

f(s)dw(s)
∣∣∣p} ≤ Cp E{[∫ T

0

|f(s)|2ds
]p/2}

. (4.95)

for some constant positive Cp. Actually, for p in (0, 2] the proof is very simple
(see (3.30) of Chapter 3) and Cp = (4 − p)/(2 − p) if 0 < p < 2 and C2 = 4.
However, the proof for p > 2 involves Burkhölder-Davis-Gundy inequality. An
alternative is to use Itô formula for the function x 7→ |x|p and the process

X(t) :=

∫ t

0

f(s)dw(s), ∀t ≥ 0
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to get

E{|X(t)|p} =
p(p− 1)

2
E
{∫ t

0

|X(s)|p−2|f(s)|2ds
}
.

By means of the Doob’s maximal inequality, for some constant C̃p depending
only on p we have

E{ sup
0≤t≤T

|X(t)|p} ≤ C̃p E
{(

sup
0≤t≤T

|X(t)|p−2
)(∫ T

0

|f(s)|2ds
)}

and in view of Hölder inequality with exponents p/2 and p/(p− 2), we deduce
the desired estimate (4.95). Similarly, we can treat the multidimensional case.

4.3.2 Discontinuous Local Martingales

Let (Ω,F , P,Ft, w(t) : t ≥ 0) be a n-dimensional (standard) Wiener space and
(p(B, ]0, t]) : B ∈ Rm0 , t ≥ 0) be an independent (standard) Poisson measure
with (intensity) Lévy measure π(B) := E{p(B, ]0, t])}/t, which satisfies 3∫

Rm∗

|ζ|2

1 + |ζ|
π(dζ) <∞,

and martingale measure p̃(B, ]0, t]) := p(B, ]0, t]) − tπ(B), as discussed in Sec-
tions 4.1.3 and 4.2.3. This is referred to as a (standard) Wiener-Poisson space.
Clearly, a non-standard Wiener-Poisson space corresponds to a Poisson measure
with (deterministic) intensity Π(dζ,ds), which is not necessarily absolutely con-
tinuous (in the second variable ds) with respect to the Lebesgue measure ds, but
Π(Rm∗ , {t}) = 0 for every t ≥ 0. Also, an extended Wiener-Poisson space corre-
sponds to an extended Poisson measure with (deterministic) intensity Π(dζ,ds),
which may have atoms of the form Rm∗ ×{t}. In any case, the deterministic inten-
sity Π(dζ,ds) := E{p(dζ,ds)} is the (predictable) compensator of the optional
random measure p.

So, a (standard) Wiener-Poisson space with Lévy measure π(·) is denoted by
(Ω,F , P,Ft, w(t), p̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0), and the (local) martingale measure
p̃ is identified with the Rm-valued compensated-jump (Poisson) process

p̃(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds), t ≥ 0,

which induces, on the canonical space D := D([0,∞[,Rm) of cad-lag functions,
a probability measure Pν̃ , namely,

Pν̃(B) := P
{
p̃(·) ∈ B

}
, ∀B ∈ B(D).

3the Polish space Rm0 := Rm r {0} may be replaced by a general Backwell space.
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with the characteristic function (or Fourier transform) given by

E
{

exp
[
i

∫
Rm∗ ×]0,t]

(z · ζ)p̃(dζ,ds)
]}

=

= exp
[
− t
∫
Rm∗

(
1− ei z·ζ + i z · ζ

)
π(dζ)

]
,

for every t ≥ 0 and z in Rm. Also note that the Wiener process w induces a
probability measure Pw on the canonical space C := C([0,∞[,Rn) of continuous
functions, namely,

Pw(B) := P
{
w(·) ∈ B

}
, ∀B ∈ B(C).

and its the characteristic function (or Fourier transform) is given by

E
{

exp
[
i ξ · w(t)

]}
= exp

(
− t |ξ|

2

2

)
,

for every t ≥ 0 and ξ in Rn. Therefore, a canonical (standard) Wiener-Poisson
space with Lévy measure π(·) is a probability measure P = Pw×Pp̃ on the Polish
space C([0,∞[,Rn)×D([0,∞[,Rm). In this case, the projection map (ω1, ω2) 7→(
ω1(t), ω2(t)

)
on Rn × Rm, for every t ≥ 0, is denoted by

(
Xw(t, ω), Xp̃(t, ω)

)
,

and under the probability P the canonical process (Xw(t) : t ≥ 0) is a n-
dimensional (standard) Wiener process and the canonical process Xp̃(t) is a
Rm-valued compensated-jump Poisson process with Lévy measure π(·) on Rm∗ .
The filtration (Ft : t ≥ 0) is generated by the canonical process Xw and Xp̃

and completed with null sets with respect to the probability measure P. Note
that since the Wiener process is continuous and the compensated-jump Poisson
process is purely discontinuous, they are orthogonal (with zero-mean) so that
they are independent, i.e., the product form of P = Pw × Pp̃ is a consequences
of the statistics imposed on the processes w and p̃.

Definition 4.29 (Itô process with jumps). A Rd-valued stochastic process
(X(t) : t ≥ 0) is called a d-dimensional Itô’s process with jumps if there ex-
ist real-valued adapted processes (ai(t) : t ≥ 0, i = 1, . . . , d), (bik(t) : t ≥
0, i = 1, . . . , d, k = 1, . . . , n) and (γi(ζ, t) : t ≥ 0, ζ ∈ Rm∗ ), such that for every
i = 1, . . . , d and any r = 1, 2, . . . , we have

E
{∫ τr

0

[
|ai(t)|+

n∑
k=1

|bik(t)|2 +

∫
Rm∗
|γi(ζ, t)|2π(dζ)

]
dt
}
<∞,

Xi(t) = Xi(0) +

∫ t

0

ai(s)ds+

n∑
k=1

∫ t

0

bik(s)dwk(s) +

+

∫
Rm∗ ×]0,t]

γi(ζ, s)p̃(dζ,ds), ∀ t ≥ 0,

(4.96)

in some (standard) Wiener-Poisson space

(Ω,F , P,Ft, w(t), p̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0),
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with Lévy measure π, where {τr : r ≥ 1} is a non-decreasing sequence of stop-
ping times satisfying τr →∞ almost surely. In short we write

dX(t) = a(t)dt+ b(t)dw(t) +

∫
Rm∗

γ(ζ, t)p̃(dζ,dt),

for every t ≥ 0, with a in L1
loc, b in L2

loc and γ in L2
loc,π. The local martin-

gale measure p̃(dζ,dt) := p(dζ,dt) − E{p(dζ,dt)} is also referred to as the
compensated jumps (martingale) measure. If the compensator has the form
Π(dζ,ds) = E{p(dζ,dt)} then the local integrability assumption on the coeffi-
cients γi should be changed accordingly, and γi should be progressively measur-
able. Moreover, if Π(Rm∗ ×{t}) 6= 0 for some t, then γi must be predictable.

Notice that any Itô process with jumps is a quasi-left continuous (cad-lag)
semi-martingale, and a quasi-martingale whenever a, b and γ belong to the
spaces L1(]0, T [×Ω), L2(]0, T [×Ω) and L2

π(Rm∗ ×]0, T [×Ω), for any T > 0, re-
spectively. Condition (4.96) is equivalent to

P
{∫ t

0

[
|a(s)|+ Tr[b(s)b∗(s)] +

∫
Rm∗
|γ(ζ, s)|2π(dζ)

]
ds <∞

}
= 1, (4.97)

for every t ≥ 0, where Tr[·] denotes the trace of a matrix and | · | is the Euclidean
norm of a vector in Rm. Again, for non-standard case, we modify all conditions
accordingly to the the use of Π(dζ,ds) in lieu of π(dζ)ds.

Theorem 4.30 (Itô formula with jumps). Let (X(t) : t ≥ 0) be a d-dimensional
Itô’s process with jumps in a Wiener-Poisson space (Ω,F , P,Ft, w(t), p̃(dζ,dt) :
ζ ∈ Rm∗ , t ≥ 0) with Lévy measure π(dζ), i.e., (4.96), and let ϕ = ϕ(x) be a
real-valued twice continuously differentiable function on Rd, satisfying

E
{∫ Tr

0

dt

∫
Rm∗

[
|ϕ(X(t) + γ(ζ, t))− ϕ(X(t))|2 +

+ϕ(X(t) + γ(ζ, t))− ϕ(X(t))−

−γ(ζ, t) · ∇ϕ(X(t))
]
π(dζ)

}
<∞

(4.98)

for some increasing sequence {Tr : r ≥ 1} of stopping times such that Tr → ∞
almost surely. Then (ϕ(X(t)) : t ≥ 0) is a (real-valued) Itô’s process with jumps
and 

ϕ(X(t)) = ϕ(X(0)) +

∫ t

0

A(s,X)ϕ(X(s))ds+

+

n∑
k=1

∫ t

0

Bk(s,X)ϕ(X(s))dwk(s) +

+

∫
Rm∗ ×]0,t]

C(ζ, s,X)ϕ(X(s))p̃(dζ,ds), ∀ t ≥ 0,

(4.99)
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where the linear integro-differential operators A(s,X), B(s,X) = (Bk(s,X) :
k = 1, . . . , n) and C(ζ, s,X) are given by

A(s,X)ϕ(x) :=

d∑
i=1

ai(s) ∂iϕ(x) +
1

2

d∑
i,j=1

( n∑
k=1

bik(s)bjk(s)
)
∂2
ijϕ(x) +

+

∫
Rm∗

[ϕ(x+ γ(ζ, s))− ϕ(x)−
d∑
i=1

γi(ζ, s) ∂iϕ(x)]π(dζ),

Bk(s,X)ϕ(x) :=

d∑
i=1

bik(s) ∂iϕ(x),

C(ζ, s,X)ϕ(x) := ϕ(x+ γ(ζ, s))− ϕ(x),

for any s ≥ 0 and x in Rd, with ∂i, ∂ij , denoting the first and second partial
derivatives with respect to the i and j, and ∇ being the gradient operator.

Proof. First, we replace the coefficients a(s), b(s) and γ(ζ, s) by

a(s)1s≤τ , b(s)1s≤τ , γ(ζ, s)1s≤τ1ε<|ζ|≤1/ε,

where τ = τr and ε > 0. We could use elementary predictable processes a, b and
γ to force concrete a calculation. Thus we can pass to the limit in r →∞ and
ε→ 0 to revalidate (4.99), as long as the smooth function ϕ satisfies (4.98).

The continuity of the semi-martingale was needed in the proof of Theo-
rem 4.27. Nevertheless, when γ(ζ, s) = 0 for any |ζ| ≤ ε, the integer-valued
measure of the Poisson measure used to integrate has bounded variation and the
stochastic integral relative to the local martingale measure becomes a pathwise
Lebesgue-Stieltjes integral. Then we can use the integration by parts formula
(4.94) to get

X(t)Y (t)−X(0)Y (0) =

∫
(0,t]

X(s−)dY (s) +

+

∫
(0,t]

Y (s−)dX(s) + [X,Y ](t), ∀ t ≥ 0,
(4.100)

where [X,Y ] is the optional quadratic co-variation process. Actually, we may
apply (4.94) for jumps with bounded variation and as ε vanishes, we deduce the
validity of (4.100) for any two (real-valued) Itô’s processes with jumps X and
Y.

Notice that

[X,Y ](t) := 〈Xc, Y c〉(t) +
∑

0<s≤t

(
X(s)−X(s−)

)(
Y (s)− Y (s−)

)
= 〈Xc, Y c〉(t) +

∫
Rm∗ ×]0,t]

γX (ζ, s) γY (ζ, s) p(dζ,ds),

where 〈·, ·〉 is the optional quadratic co-variation process, Xc and Y c are the
continuous parts of X and Y, e.g.,

Xc(t) :=

∫ t

0

aX (s)ds+

∫ t

0

bX (s)dw(s),
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and ν is the integer-valued measure, i.e., ν̃(·, ]0, t]) := ν(·, ]0, t])− t π(·). We can
rewrite (4.94) explicitly as

X(t)Y (t)−X(0)Y (0) =

∫
(0,t]

X(s−)dY c(s) +

+

∫
(0,t]

Y (s−)dXc(s) + 〈Xc, Y c〉(t) +

+

∫
Rm∗ ×]0,t]

[X(t)γY (ζ, s) + Y (t)γX (ζ, s)] p̃(dζ,ds) +

+

∫
Rm∗ ×]0,t]

γX (ζ, s) γY (ζ, s) p(dζ,ds), ∀ t ≥ 0.

In particular, if X = Y we get

X2(t)−X2(0) = 2

∫
(0,t]

X(s−)dY c(s) + 〈Xc〉(t) +

+ 2

∫
Rm∗ ×]0,t]

X(t)γ(ζ, s) p̃(dζ,ds) +

∫
Rm∗ ×]0,t]

γ2(ζ, s) p(dζ,ds),

for every t ≥ 0, which exactly reproduces Itô formula (4.99) for ϕ(x) = x2.
Iterating this argument, we check the validity of (4.99) for any multi-dimen-

sional polynomial function ϕ(x1, . . . , xd), and by density, for any smooth func-
tion ϕ(x).

Finally, for any smooth function satisfying (4.98) we may let r → ∞ and
ε→ 0 to conclude.

Notice that we also have
X(t)Y (t)−X(0)Y (0) =

∫
(0,t]

X(s−)dY (s) +

+

∫
(0,t]

Y (s−)dX(s) + 〈X,Y 〉(t), ∀ t ≥ 0,
(4.101)

i.e., in the integration by parts the optional quadratic variation [X,Y ] may
be replaced by the predictable quadratic variation 〈X,Y 〉 associated with the
whole quasi-left continuous square integrable semi-martingales X and Y. Also
for a function ϕ = ϕ(t, x), we do not need to require C2 in the variable t. Also,
when ϕ = ϕ(x), we could use a short vector notation dϕ(X(t)) = ∇ϕ(X(t))dXc(t) + [ϕ �γ p̃](·,dt)(t,X(t)) +

+
[1
2

Tr[b(t)b∗(t)∇2ϕ(x)] + [ϕ •γ π](t,X(t))
]
dt,

(4.102)

for every t ≥ 0, where

[ϕ �γ p̃(·,dt)](t, x) :=

∫
Rm∗

[ϕ(x+ γ(ζ, t))− ϕ(x)] p̃(dζ,dt),

[ϕ •γ π](t, x) :=

∫
Rm∗

[ϕ(x+ γ(ζ, t))− ϕ(x)− γ(ζ, t) · ∇ϕ(x)]π(dζ),
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and ∇ and Tr[·] are the gradient and trace operator, respectively. The above
calculation remains valid for a Poisson measure not necessarily standard, i.e., the
intensity or Lévy measure has the form Π(dζ,dt) := E{p(dζ,dt)} and Π(Rm∗ ×
{t}) = 0 for every t ≥ 0. For an extended Poisson measure, the process is no
longer quasi-left continuous and the rule (4.99) needs a jump correction term,
i.e., the expression X(s) is replaced by X(s−) inside the stochastic integrals.
For instance, the reader may consult Bensoussan and Lions [17, Section 3.5, pp.
224–244] or Gikhman and Skorokhod [99, Chapter II.2, pp. 215–272] for more
details on this approach.

Semi-martingale Viewpoint

In general, the integration by parts formula (4.100) is valid for any two semi-
martingales X and Y, and we have the following general Itô formula for semi-
martingales, e.g., Chung and Williams [45, Theorems 38.3 and 39.1, Chapter
VI, pp. 392–394], Dellacherie and Meyer [58, Sections VIII.15–27, pp. 343–352],
Jacod and Shiryaev [117, Theorem 4.57, Chapter 1, pp. 57–58].

Theorem 4.31. Let X = (X1, . . . , Xd) be a d-dimensional semi-martingale and
ϕ be a complex-valued twice-continuously differentiable function on Rd. Then
ϕ(X) is a semi-martingale and we have

ϕ(X(t)) = ϕ(X(0)) +

d∑
i=1

∫
]0,t]

∂iϕ(X(s−))dXi(s) +

+
1

2

d∑
i,j=1

∫
]0,t]

∂2
ijϕ(X(s−))d〈Xc

i , X
c
j 〉(s) +

+
∑

0<s≤t

{
ϕ(X(s))− ϕ(X(s−))−

d∑
i=1

∂iϕ(X(s−))δX(s)
}
,

where ∂i and ∂2
ij denotes partial derivatives, δX(s) := [Xi(s) − Xi(s−)] and

X(s−) is the left limit at s and Xc
i is the continuous part.

First remark that∫
]0,t]

∂2
ijϕ(X(s−))d〈Xi, Xj〉(s) =

∑
0<s≤t

∂2
ijϕ(X(s−))

[
δX(s)

]2
+

+

∫
]0,t]

∂2
ijϕ(X(s−))d〈Xc

i , X
c
j 〉(s),

where the integrals and series are absolutely convergent. Hence, the above
formula can be rewritten using the predictable quadratic variation 〈Xi, Xj〉, i.e.,
the predictable processes obtained via the Doob-Meyer decomposition when X is
locally square integrable or in general the predictable projection of the optional
quadratic variation [Xi, Xj ].

Let X be a (special) quasi-left continuous semi-martingale written in the
canonical form

X(t) = X(0) +Xc(t) +A(t) +

∫
Rd∗×]0,t]

zν̃(dz,ds),∀t ≥ 0,
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where Xc is the continuous (local martingale) part, A is the predictable locally
bounded variation (and continuous) part, and ν̃ is the compensated (local mar-
tingale) random measure associated with the integer-valued measure ν = νX of
the process X with compensator νp. Then

dXi(s) = dXc
i (s) +

∫
Rd∗
ziν̃(dz,ds),

so that
d∑
i=1

∫
]0,t]

∂iϕ(X(s−))dXi(s) =

d∑
i=1

∫
]0,t]

∂iϕ(X(s−))dXc
i (s) +

+

d∑
i=1

∫
Rd∗×]0,t]

zi∂iϕ(X(s−))ν̃(dz,ds),

and the jump part can be written as∑
0<s≤t

[
ϕ(X(s))− ϕ(X(s−))−

d∑
i=1

∂iϕ(X(s−))δX(s)
]

=

=

∫
Rd∗×]0,t]

[
ϕ(X(s−) + z)− ϕ(X(s−))−

−
d∑
i=1

zi∂iϕ(X(s−))
]
ν(dz,ds),

for every t ≥ 0. Moreover, because νp(Rm∗ × {t}) = 0 for any t ≥ 0, we can
substitute X(s−) for X(s) in the above stochastic integral. Thus, combining
the above jump parts we see that the expression (4.99) of Theorem 4.30 re-
mains valid for any quasi-left continuous integer measure ν(dz,ds) with a local
martingale measure ν̃(dz,ds) and compensator νp(dz,ds), which replaces the
deterministic product measure π(dz) × ds. The case of interest for us is when
the predictable compensator measure νp(dz,ds) has a density with respect to
the Lebesgue measure, i.e.,

νp(B, ]0, t]) =

∫ t

0

M(B, s)ds, ∀B ∈ B(Rd∗), t ≥ 0,

where the intensity kernel M is such that for every fixed B, the function s 7→
M(B, s) defines a predictable process, while B 7→ M(B, s) is a (random) measure
for every fixed s. It is clear that Itô formula is suitable modified.

• Remark 4.32. In particular, Theorem 4.31 can be formulated as follows. Let
X = (X1, . . . , Xd) be a semi-martingale, M be local martingale and g, a and M

be local integrable predictable processes such that

X(t)−X(0)−M(t) =

∫ t

0

g(s)ds, ∀t ≥ 0,

〈M c
i ,M

c
j 〉(t) =

∫ t

0

aij(s)ds, ∀t ≥ 0,

νpM (B, ]0, t]) =

∫ t

0

M(B, s)ds, ∀B ∈ B(Rd∗), t ≥ 0,
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where M c is the continuous part of M and νpM is the compensator of the integer
measure νM associated with M. Then

ϕ(X(t), t) = ϕ(X(0), 0) +

∫ t

0

[
(∂s +AX)ϕ(X(s−), s)

]
ds+

+
d∑
i=1

∫ t

0

∂iϕ(X(s−), s)dM c(s) +

+

∫
Rd∗×]0,t]

[
ϕ(X(s−) + z, s)− ϕ(X(s−), s)

]
ν̃M (dz,ds),

where

(∂s +AX)ϕ(·, s) = ∂sϕ(·, s) +

d∑
i=1

gi(s)∂iϕ(·, s) +
1

2

d∑
i,j=1

aij(s)∂
2
ijϕ(·, s) +

+

∫
Rd∗

[
ϕ(·+ z, s)− ϕ(·, s)−

d∑
i=1

zi∂iϕ(·, s)
]
M(dz, s),

for every bounded function ϕ(x, t) in Rd × [0,∞), which is twice continuously
differentiable in x, once continuously differentiable in t with all derivatives
bounded. In general, if the semi-martingale X = V + M, where V is a con-
tinuous process with local bounded variation and M a locally square-integrable
martingale then φ(X(t)) = φ(X(0)) + Vφ(t) +Mφ(t) is a semi-martingale with

Vφ(t) =

∫ t

0

∇φ(X(s−)) · dV (s) +
1

2

∫ t

0

Tr
(
D2φ(X(s−))d〈M c〉(s)] +

+

∫
Rd∗×]0,t]

[
φ(X(s−) + z)− φ(X(s−))− z ·∇φ(X(s−))

]
νpM (dz,ds)

and

Mφ(t) =

∫ t

0

∇φ(X(s−)) · dM c(s) +

+

∫
Rd∗×]0,t]

[
φ(X(s−) + z)− φ(X(s−))

]
ν̃M (dz,ds),

for any bounded twice continuously differentiable φ with all derivative bounded.
This is usually referred to as the Itô formula for semi-martingales, which can
be written as above, by means of the associated integer measure, or as in The-
orem 4.31.

• Remark 4.33. In general, if {x(t) : t ≥ 0} is a real-valued predictable process
with local bounded variation (so x(t+) and x(t−) exist for every t) and {y(t) :
t ≥ 0} is a (cad-lag) semi-martingale then we have

d
(
x(t)y(t)

)
= x(t)dy(t) + y(t−)dx(t),

d[x, y](t) =
(
x(t+)− x(t−)

)
dy(t),

d|y(t)|2 = 2y(t−)dy(t) + [y, y](t),

with the above notation. By the way, note that dx(t) = dx(t+) and x(t)dy(t) =
x(t−)dy(t).
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Approximations and Comments

A double sequence {τm(n) : n,m ≥ 0} of stopping times is called a Rie-
mann sequence if τm(0, ω) = 0, τm(n, ω) < τm(n + 1, ω) < ∞, for every
n = 0, 1, . . . , Nm(ω) and as m→ 0 we have

sup
n
{τm(n+ 1, ω) ∧ t− τm(n, ω) ∧ t} → 0, ∀ t > 0,

for every ω, i.e., the mesh or norm of the partitions or subdivisions restricted
to each interval [0, t] goes to zero. A typical example is the dyadic partition
τm(n) := n2−m, m = 1, 2, . . . , and n = 0, 1, . . . , 2m, which is deterministic. We
have the following general results:

Theorem 4.34 (Riemann sequence). Let X be a semi-martingale, Y be a cad-
lag adapted process and {τm(n) : n,m ≥ 0} be a Riemann sequence. Then the
sequence of Riemann-Stieltjes sums, m ≥ 0,∑

n

Y (τm(n)−)
(
X(τm(n+ 1) ∧ t)−X(τm(n) ∧ t)

)
converges in probability, uniformly on each compact interval, to the stochastic
integral∫

]0,t]

Y (s−)dX(s).

Moreover, if Y is also a semi-martingale then the optional process

t 7→
∑
n

(
X(τm(n+ 1) ∧ t)−X(τm(n) ∧ t)

)
×

×
(
Y (τm(n+ 1) ∧ t)− Y (τm(n) ∧ t)

)
converges in probability, uniformly on each compact interval, to the optional
quadratic covariation process [X,Y ].

Proof. For instance to prove the first convergence, it suffices to see that the
above Riemann-Stieltjes sums are equal to the stochastic integral∫

]0,t]

Ym(s)dX(s),

where Ym(s) := Y (τm(n)) for any s in the stochastic interval ]]τm(n), τm(n+1)]],
is clearly a predictable left continuous process for each m ≥ 0.

The proof of the second convergence is essentially based on the integration by
part formula (4.100), which actually can be used to define the optional quadratic
covariation process.

For instance, a full proof can be found in Jacod and Shiryaev [117, Propo-
sition 4.44 and Theorem 4.47, Chapter 1, pp. 51–52].
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The estimate (4.76) of the previous section for for Poisson integral, namely,
for any p in (0, 2] there exists a positive constant C = Cp (actually Cp :=
(4−p)/(2−p) if 0 < p < 2 and C2 = 4) such that for any adapted (measurable)
process f(ζ, s) (actually, the predictable version is used) we have

E
{

sup
0≤t≤T

∣∣∣ ∫
Rm∗ ×]0,t]

f(ζ, s)p̃(dζ,ds)
∣∣∣p} ≤

≤ C E
{[∫ T

0

ds

∫
Rm∗
|f(ζ, s)|2π(dζ)

]p/2}
,

(4.103)

for every stopping time T. The case p > 2 is a little more complicate and involves
Itô formula. Indeed, for the sake of simplicity let us consider the one-dimensional
case, use Itô formula with the function x 7→ |x|p and the process

X(t) :=

∫
Rm∗ ×]0,t]

f(ζ, s)ν̃(dζ,ds), ∀t ≥ 0

to get

E{|X(t)|p} = E
{∫ t

0

ds

∫
Rm∗

[
|X(s) + f(ζ, s)|p − |X(s)|p −

−p |X(s)|p−2X(s)f(ζ, s)
]
π(dζ)

}
= p(p− 1)×

×E
{∫ t

0

ds

∫ 1

0

(1− θ)dθ
∫
Rm∗
|X(s) + θf(ζ, s)|p−2|f(ζ, s)|2π(dζ)

}
.

The integrand is bounded as follows

|X(s) + θf(ζ, s)|p−2|f(ζ, s)|2 ≤ 2p−2
[
|X(s)|p−2|f(ζ, s)|2 + |f(ζ, s)|p

]
,

and by means of the Doob’s maximal inequality, we deduce

E{ sup
0≤t≤T

|X(t)|p} ≤ C̃p
[
E
{∫ T

0

ds

∫
Rm∗
|f(ζ, s)|pπ(dζ)

}
+

+E
{(

sup
0≤t≤T

|X(t)|p−2
)(∫ T

0

ds

∫
Rm∗
|f(ζ, s)|2π(dζ)

)}]
,

for some constant C̃p depending only on p. Hence, the simple inequality for any
a, b, ε ≥ 0,

ab ≤ p− 2

p
(εa)p/(p−2) +

2

p
(
a

ε
)p/2

and the Hölder inequality yield the following variation of (4.103): for any p > 2
there exists a constant C = Cp depending only on p such that

E
{

sup
0≤t≤T

∣∣∣ ∫
Rm∗ ×]0,t]

f(ζ, s)p̃(dζ,ds)
∣∣∣p} ≤

≤ C E
{∫ T

0

ds

∫
Rm∗
|f(ζ, s)|pπ(dζ)

}
+

+E
{[∫ T

0

ds

∫
Rm∗
|f(ζ, s)|2π(dζ)

]p/2}
,

(4.104)
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for any adapted (measurable) process f(ζ, s) and any stopping time T.

• Remark 4.35. These estimates for the moments of a stochastic integral can
be partially generalized to some other type of integral, e.g., let M be a d-
dimensional continuous square integrable martingale with predictable quadratic
covariation process 〈Mi,Mj〉 = d` if i = j and 〈Mi,Mj〉 = 0 if i 6= j, where ` is
a continuous nondecreasing adapted process satisfying

E{`(t)− `(s) | F(s)} ≤ h(t− s),

for every t ≥ s ≥ 0 and for some monotone function h form [0,∞) into itself.
Using the integration by part formula

[`(t)− `(s)]k = k

∫ t

s

[`(t)− `(r)]k−1 d`(r)

and by induction on k, we can show that

E
{

[`(t)− `(s)]k | F(s)
}
≤ k! [h(t− s)]k,

for every t ≥ s ≥ 0 and any k ≥ 1. Similarly, by means of Itô formula, the sup-
martingale inequality and by induction, we can prove that for every positive
integer k there exists a constant C = C(k, d), depending only on k and the
dimension d, such that

E
{

sup
s≤r≤t

|M(r)−M(s)|k | F(s)
}
≤ C(k, d) [h(t− s)]k/2,

for every t ≥ s ≥ 0 and any k ≥ 1.

It is clear that the above Itô calculus can be extended to non deterministic
smooth functions, i.e., predictable processes ϕ(t, x, ω) which are continuously
differentiable in t and twice-continuously differentiable in x. The rule given
in this section is unchanged. As we may expect, if for each x the process
t 7→ ϕ(t, x, ω) is a local martingale (which has not bounded variation paths)
then Itô calculus applies and another bracket [·, ·] with respect to this process
should appear.

• Remark 4.36. In a given complete filtered space, an adapted increasing (lo-
cally integrable) cad-lag process A is called natural if for every bounded (not
necessarily continuous) martingale M we have∫

[0,t]

M(s)dA(s) =

∫
[0,t]

M(s−)dA(s), ∀ t ≥ 0.

This is equivalent to the concept of predictable process. On the other hand,
a quasi left continuous (increasing or martingale) cad-lag process is also called
regular. It turns out that an adapted increasing cad-lag process is continuous
if and only if it is natural and regular. The reader is referred to the books
Kallenberg [121] and Yeh [258] for a comprehensive treatment.
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• Remark 4.37. The operational Itô formula is better understood in its simplest
product form, i.e., let X and Y be two d-dimensional Itô processes with jumps
(see Definition 4.29), namely

dX(t) = aX (t)dt+ bX (t)dw(t) +

∫
Rm∗

γX (ζ, t)p̃(dζ,dt), ∀t ≥ 0,

dY (t) = aY (t)dt+ bY (t)dw(t) +

∫
Rm∗

γY (ζ, t)p̃(dζ,dt), ∀t ≥ 0,

then

d
(
Xi(t)Yj(t)

)
= Xi(t−)dYj(t) +

(
dXi(t)

)
Yj(t−)+

+
∑
k

bXik(t)bYjk(t)dt+

∫
Rm∗

γXi (ζ, t)γYj (ζ, t)p(dζ,dt),

for any t ≥ 0. Note the independent role of the diffusion and jumps coefficients.
Moreover, the last (jump) integral is not a pure stochastic integral, it is with
respect to p(dζ,dt) which can be written as p̃(dζ,dt) + π(dζ)dt. We can go
further and make explicit each term, i.e.,

Xi(t)dYj(t) = Xi(t−)dYj(t) = Xi(t)aYj (t)dt+Xi(t)bYj (t)dw(t)+

+

∫
Rm∗

Xi(t)γYj (ζ, t)p̃(dζ,dt),

where Xi(t) goes inside the stochastic integral indistinctly as either Xi(t) or it
predictable projection Xi(t−).

Similarly to above Remark 4.37, a operational (generalized) Itô formula can
be written for processes driven by local martingales. Let M = M c + Md be
a quasi-left continuous local square-integrable martingale in Rn written as the
sum of a continuous local martingale {M c

i : i = 1, . . . , n} with predictable
variation process {〈M c

i 〉 : i = 1, . . . , n}, satisfying 〈M c
i ,M

c
j 〉 = 0 if i 6= j,

and a purely discontinuous local martingale {Md
i : i = 1, . . . , n} which yields

an integer measure ν
M

with compensator νp
M

and (local) martingale measure
ν̃
M

= ν
M
− νp

M
. Note that∫

]0,t]

α(s)dMd
i (s) =

∫
Rd×]0,t]

α(s)ζiν̃M (dζ,ds).

Also let {V ci : i = 1, . . . , d} be a local bounded variation continuous process,
non-anticipating with respect to M. Now, if X and Y are two d-dimensional
processes of the form

dX(t) = aX (t)dV c(t) + bX (t)dM c(t) +

∫
Rm∗

γX (ζ, t)ν̃
M

(dζ,dt), ∀t ≥ 0,

dY (t) = aY (t)dV c(t) + bY (t)dM c(t) +

∫
Rm∗

γY (ζ, t)ν̃
M

(dζ,dt), ∀t ≥ 0,
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then

d
(
Xi(t)Yj(t)

)
= Xi(t−)dYj(t) +

(
dXi(t)

)
Yj(t−)+

+
∑
k

bXik(t)bYjk(t)d〈M c
k〉(t) +

∫
Rm∗

γXi (ζ, t)γYj (ζ, t)ν
M

(dζ,dt),

for any t ≥ 0. In particular, in term of the purely jumps (local) martingale Md
k ,

i.e., γi(ζ, t) =
∑
k cik(t)ζk for both processes, we have∫

Rm∗
γXi (ζ, t)γYj (ζ, t)ν

M
(dζ,dt) =

=
1

2

∑
k,`

∫
]0,t]

(
cXik(s)cYj`(s) + cXi`(s)c

Y

jk(s)
)
d[Md

k ,M
d
` ](s),

where [Md
k ,M

d
` ] is the optional quadratic (matrix) variation, i.e.,

[Md
k ,M

d
` ](t) =

∑
s≤t

(
Md
k (s)−Md

k (s−)
)(
Md
` (s)−Md

` (s−)
)
,

Hence, if cXik and cYj` are cad-lag then∫
Rm∗

γXi (ζ, t)γYj (ζ, t)ν
M

(dζ,dt) =
1

2

∑
k,`

∑
0<s≤t

(
cXik(s−)cYj`(s−)+

+cXi`(s−)cYjk(s−)
)(
Md
k (s)−Md

k (s−)
)(
Md
` (s)−Md

` (s−)
)
.

Moreover, if each coordinate is orthogonal to each other (i.e., [Md
i ,M

d
j ] = 0, for

i 6= j), equivalent to the condition that there are no simultaneous jumps of Md
i

and Md
j , then only the terms k = ` and the 1/2 is simplified. Clearly, there is

only a countable number of jumps and

E
{ ∑

0<s≤t∧τn

[(
cXik(s−)

)2
+
(
cYjk(s−)

)2](
Md
k (s)−Md

k (s−)
)2}

<∞,

for every t > 0, where {τn} is some sequence the stopping times increases to ∞
almost surely, i.e., the above series is absolutely convergence (localized) in the
L2-sense. If cXik or cYjk is not cad-lag, then a predictable version should be used
in the series. Furthermore, if the initial continuous martingale M c do not have
orthogonal components then we may modify the drift and reduce to the above
case, after using Gram-Schmidt orthogonalization procedure, or alternatively,
we have a double (symmetric) sum,

1

2

∑
k,`

[bXik(t)bYj`(t) + bXi`(t)b
Y

jk(t)]d〈M c
k ,M

c
` 〉(t)

instead of the single sum in k. On the other hand, to include discontinuous
process V or a non-necessarily quasi-left continuous local martingale, we need
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to carefully consider possible deterministic jumps. Indeed, denoting by δ the
jump operator, i.e., δX(t) =

(
X(t)−X(t−)

)
for a cad-lag processX, the relation

δ
(
Xi(t)Yj(t)

)
=
(
δXi(t)

)
Yj(t−) +Xi(t−)

(
δYj(t)

))
+
(
δXi(t)

)(
δYj(t)

)
shows the general expression

d
(
Xi(t)Yj(t)

)
= Xi(t−)dYj(t) +

(
dXi(t)

)
Yj(t−)+

+
∑
k

bXik(t)bYjk(t)d〈M c
k〉(t) + d

( ∑
s∈]0,t]

(
δXi(s)

)(
δYj(s)

))
,

which makes sense as a stochastic integral after compensating the jumps. Since
the jumps of Xi(t) or Xi(t) are due only to V d(t) =

∑
0<s≤t δV (s) and Md(t),

we have(
δXi(t)

)(
δYj(t)

)
=

=
∑
k,`

(
aXik(s)δVk(s) + cXik(s)δMd

k (s)
)(
aYj`(s)δV`(s) + cXj`(s)δM

d
` (s)

)
.

Hence, without loss of generality, it seems better to take V = V c continuous
and put all jumps into the integer measure ν, which may not be quasi-left
continuous. This is the case of a special semi-martingale S(t), S(0) = 0, written
in its canonical form as V +M c+Md, where V = V c if S is quasi-left continuous.
Essentially, this discontinuity (of V ) imposes (implicitly) the condition that the
drift must be continuous at each predictable jump (jumps non switchable to Md,
e.g., deterministic jumps), otherwise, the integrability of the drift with respect
to a discontinuous V may be an issue, i.e., in the Stieltjes-Riemann sense may
be not integrable and in the Stieltjes-Lebesgue sense may yield distinct values,
depending on whether a(s), a(s+) or a(s−) is used. This never arrive in the
stochastic integral.

• Remark 4.38. Let X be a 1-dimensional Itô processes with jumps (see Defi-
nition 4.29), namely

dX(t) = a(t)dt+ b(t)dw(t) +

∫
Rm∗

γ(ζ, t)p̃(dζ,dt), ∀t ≥ 0,

with X(0) = 0, and such that almost surely we have γ(ζ, t) > −1 or equivalently
inf
{
δX(t) : t > 0

}
> −1, where δX(t) = X(t)−X(t−) is the jump at time t.

Based on the inequalities r− ln(1 + r) ≥ 0 if r > −1 and r− ln(1 + r) ≤ r2/2 if
r ≥ 0, we deduce that the infinite product

∏
0≤s≤t

[
1 + δX(s)

]
e−δX(s) is almost

surely finite and positive. Moreover, for every t ≥ 0, either the exponential
expression

EX(t) = exp
{
X(t)− 1

2

∫ t

0

n∑
k=1

|bk(s)|2ds
} ∏

0≤s≤t

[
1 + δX(s)

]
e−δX(s),
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or the log-differential expression

d ln
(
EX(t)

)
=
[
a(t)− 1

2
|b(t)|2

]
dt+

∫
Rm∗

ln
(
1 + γ(ζ, t)

)
p̃(dζ,dt) +

+

∫
Rm∗

[
ln
(
1 + γ(ζ, t)

)
− γ(ζ, t)

]
π(dζ)

defines a 1-dimensional Itô processes with jumps satisfying

dEX(t) = EX(t−) dX(t),

which is called exponential martingale. Recall that p̃ = −π so that if γ has a
finite π-integral (i.e., the jumps are of bounded variation) then∫

Rm∗
ln
(
1 + γ(ζ, t)

)
p̃(dζ,dt) +

∫
Rm∗

[
ln
(
1 + γ(ζ, t)

)
− γ(ζ, t)

]
π(dζ) =

=

∫
Rm∗

ln
(
1 + γ(ζ, t)

)
p(dζ,dt)−

∫
Rm∗

γ(ζ, t)π(dζ),

as formally expected. For instance, see Applebaum [6, Chapter 5, pp 246-291]
or Jacod and Shiryaev [117, Section III.3, pp. 152–166].

4.3.3 Other Stochastic Integrals

First we recall some key facts about possibly discontinuous martingales and
then we discuss Stratonovich (and other) stochastic integrals.

Refresh on Quasi-Martingales

Let (Ω,F , P ) be a probability space with a complete (relative to F), right-
continuous (not necessarily quasi-left continuous) filtration F = {F(t) : t ≥
0}. Recall that an adapted cad-lag process X is called a quasi-martingale if
E{|X(t)|} < ∞ and pVar(X)(t) < ∞, for every t ≥ 0, where the conditional
variation is defined by

pvar$(X)(t, ·) =
∑
i

∣∣E{X(ti+1 ∧ t)−X(ti ∧ t) | F(ti ∧ t)}
∣∣,

pVar(X) = sup
{

pVar$(X) : $
}
, pVar$(X) = E{pvar$(X)},

where the supremum is taken over all (deterministic) partitions $ = {0 = t0 <
t1 < · · · < tn−1 < tn < · · · } of [0,∞) with norm |$| = sup{ti − ti−1 : i ≥ 1}.
An adapted processes X is a quasi-martingale if and only it can be decomposed
as the difference X = Y −Z of two positive (cad-lag) super-martingales Y and Z,
or equivalently, it is a special semi-martingale, which yields the decomposition
X = M + A with M a local martingale and A a predictable local integrable
finite variation process, i.e., A = A+ − A−, both predictable, local integrable
and monotone increasing. In particular if X is an adapted local integrable
monotone increasing (or finite variation) process then X = M +A, where M is
a local martingale and A is a predictable local integrable monotone increasing
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(or finite variation) process. The process A is called the predictable (jumps)
compensator of X. Note that the essential different between quasi-martingales
and semi-martingales is the integrability of the large jumps.

If X is a semimartingale then the optional quadratic variation of X is defined
as

[X](t) = X2(t)−X2(0)− 2

∫
]0,t]

X(s−)dX(s), t ≥ 0,

or equivalently, as

[X]$(t) =

n∑
i=1

∣∣X(ti+1 ∧ t)−X(ti ∧ t)
∣∣2, [X](t) = lim

|$|→0
[X]$(t).

However, the predictable quadratic variation 〈X〉 is the predictable (jumps)
compensator of [X], i.e., 〈X〉 is the unique predictable process with local inte-
grable finite variation (increasing) vanishing at 0 such that [X]− 〈X〉 is a local
martingale or equivalently X2 − 〈X〉 is a local martingale. Because [X] is an
adapted increasing process we may define its continuous part

[X]c(t) = [X](t)−
∑
s≤t

δ[X](s),

where δ is the jump operator, δY (0) = 0,

δY (t) = Y (t+)− Y (t−), t > 0,

defined for any process Y having no discontinuities of second kind.
For any quasi-martingale X we have:

(1) if X is continuous then [X] and 〈X〉 are (the same) continuous processes,

(2) if X has local integrable finite variation then [X]c = 0,

(3) if [X] = 0 then X = X(0),

(4) if X is a local martingale satisfying 〈X〉 = 0 then X = X(0),

(5) X is quasi-left continuous if and only if 〈X〉 is continuous.

Moreover, any quasi-martingale X has a unique decomposition X(0) + Vp(t) +
Mc(t) + Md(t), where Vp(0) = Mc(0) = Md(0) = 0, Vp is a predictable process
with local integrable finite variation, Mc is a continuous local martingale and
Md is a local martingale satisfying [Md]

c = 0, also (1) [X]c = 〈Mc〉, (2) Vp is
continuous if Md = 0, and (3) if X has also local integrable finite variation then
Mc = 0.

Note that [X](t) =
∑
s≤t(X(t)−X(t−))2 for any process X of local bounded

variation, and we have 〈X〉 = 0 if X2 is a local martingale. In particular if
X = N is a Poisson process then X = Vp + Md, where Vp(t) = E{X(t)} is
continuous, and

∑
s≤tMd(s) = X(t), [X] = [Md] =

∑
s≤t(X(t)−X(t−))2 and

〈X〉 = 〈Md〉 = E{X(t)}. In general, the sum of jumps
∑
s≤tX(s) of a local
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martingale satisfying [X]c = 0 may not be defined (i.e., the series of jumps
may not be pathwise convergent) or it may converge not necessarily to X. The
local martingale Md contains predictable and unpredictable jumps, and 〈Md〉
contains only the predictable jumps, but if 〈Md〉 = 0 then Md = 0. Note that
the square-bracket [·] is defined for any semi-martingale (and so for any quasi-
martingale), while the angle-bracket 〈·〉 is only define for local martingale.

Refresh on Stieltjes integrals

Let us consider the pathwise Riemann-Stieltjes integral for bounded variation
integrator and integrand, which is defined as a limit on partitions of a compact
interval [a, b]. Typically, the integral exists for a continuous integrand f and a
bounded variation integrator g (or conversely), but if fails to exists if both f
and g are discontinuous on the same side (either right or left). The integration
by part formula is granted if one of the integral exists, namely,

f(b)g(b)− f(a)g(a) =

∫ b

a

f(t)dg(t) +

∫ b

a

g(t)df(t).

However, we have

f(b)g(b)− f(a)g(a) =

∫
]a,b]

f(t)dg(t) +

∫
]a,b]

g(t−)df(t).

in the Lebesgue-Stieltjes sense, if both f and g are only right-continuous with
finite variation. Indeed, if V is a cad-lag process with locally bounded variation
and X is a cad-lag process then, for any b > a ≥ 0 we have∫ b

a

X−(t)dV (t) =

∫ b

a

X−(t)dV c(t) +
∑
a≤t<b

X−(t)δV (t),∫ b

a

X(t)dV−(t) =

∫ b

a

X(t)dV c(t) +
∑
a<t≤b

X(t)δV (t),

where X−(t) = X(t−), V−(t) = V (t−), for every t > 0, and V c is the continuous
part of V, i.e.,

V (t) = V c(t) +
∑

0<s≤t

δV (s).

Note that X = X−+δX and that we may replace X with X− as the integrand of
dV c. Nevertheless, if X = U is a cad-lag process with locally bounded variation
then we can rewrite the integration by part formula as

U(b)V (b)− U(a)V (a) =

∫
]a,b]

U−(t)dV (t)+

+

∫
]a,b]

V−(t)dU(t) +
∑
a<t≤b

δU(t)δV (t),
(4.105)
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where all series are absolutely convergent and all integrals are considered path-
wise, in either Riemann-Stieltjes (without including any possible jump at a, but
including any possible jump at b) or Lebesgue-Stieltjes sense, i.e., if µ

V
denotes

the Lebesgue-Stieltjes measure generated by the cad-lag path function t 7→ V (t)
then ∫

]a,b]

X−(t)dV (t) = lim
α→a+, β→b+

∫ β

α

X−(t)dV (t) =

∫
]a,b]

X−(t)µ
V

(dt),

actually, this is the definition of the integral in Riemann-Stieltjes sense over the
semi-open interval ]a, b] for cag-lad (left continuous with right limits) integrands
and cad-lag integrators.

A cad-lag process is integrable for the (signed) Lebesgue-Stieltjes measure
µ
V

(which can be expressed as the difference of two measures, the positive and
negative variations) and for any b > a ≥ 0, we have∫

]a,b]

X(t)µ
V

(dt) =

∫
]a,b]

X−(t)µ
V

(t) +

∫
]a,b]

δX(t)µ
V

(dt) =

=

∫
]a,b]

X−(t)dV (t) +
∑
a<t≤b

δX(t)δV (t),

Note that µ
V

= µc
V

+ µd
V
, where µc

V
is the continuous part of µ

V
, i.e., when

all atoms have been removed (or equivalently, the measure associated with the
continuous part V c of V ). Moreover, µc

V
= µa

V
+ µs

V
, where µa

V
is absolutely

continuous with respect to the Lebesgue measure and µs
V

is singular (i.e., there
exists a Borel measurable set S of Lebesgue measure zero such that for any
measurable set N with Lebesgue measure zero we have µc

V
(N r S) = 0, and

then we define µs
V

(A) = µc
V

(A∩S), for any measurable set A). Thus, any set of
one point {t} is µc

V
-negligible and so is any countable set, i.e., δX = 0 µc

V
-almost

surely and the integral of X and X− relative to µc
V

coincide. It is cleat that,
both X− and X (and any bounded Borel measurable process) are integrable
with respect to µ

V
, but to recall that the integration by part formula (4.105)

should be written with X−, we use the Riemann-Stieltjes sense over the semi-
open interval ]a, b]. Certainly, the notation dV actually means dµ

V
, when the

integrands are not cag-lad processes.
On the other hand, if F : R → R is a locally Lipschitz function and V is a

cad-lag process with locally bounded variation then t 7→ F
(
V (t)

)
is also a cad-

lag process with locally bounded variation. Moreover, if f is also continuously
differentiable then we have the change of variable formula

F
(
V (b)

)
− F

(
V (a)

)
=

∫
]a,b]

F ′
(
V−(t)

)
dV (t)+

+
∑
a<t≤b

{
F
(
V (t)

)
− F

(
V (t−)

)
− F ′

(
V (t−)

)
δV (t)

}
,
(4.106)

where F ′ denotes the derivative of F. Since F ′ is locally bounded and V has
locally bounded variation, the above series can be written as∑

a<t≤b

δF
(
V (t)

)
+
∑
a<t≤b

F ′
(
V−(t)

)
δV (t)
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and both series are absolutely convergent. Clearly, the change of variable (4.106)
is usually written as

F
(
V (b)

)
− F

(
V (a)

)
=

∫
]a,b]

F ′
(
V−(t)

)
dV c(t) +

∑
a<t≤b

δF
(
V (t)

)
,

and we note that δF
(
V (t)

)
> 0 if and only if δV (t) > 0.

At this point, it is important to recognize that to capture the jumps of a
Rm-valued cad-lag process X we need to study its associate integer measure ν

X
,

which is defined as the extension of

ν
X

(K×]a, b]) =
∑
a<s≤b

1δX(s)∈K , (a finite sum),

for any compact set K in Rm∗ = Rm r {0} and any b ≥ a ≥ 0. If X is cad-lag
with bounded variation then X and ν

X
are equivalent in the sense that from

X(t) = X(0) +

∫
Rm∗

zν
X

(]0, t],dx)

we can reconstruct X from ν
X
. However, if the process X is not necessarily of

bounded variation then we need to make sense to the limits

X(t) = X(0) + lim
ε→0

∫
Rm∗

z1{|z|≥ε}νX (]0, t],dz)

to be able to reconstruct X. Clearly, this limit makes sense as a stochastic
integral if X is a local martingale.

Square-Brackets and Angle-Brackets

If X and Y are two semi-martingales then we define the square-bracket by

[X,Y ] = XY −
∫

]0,·]
X(s−)dY (s)−

∫
]0,·]

Y (s−)dX(s),

when X(0) = Y (0) = 0, or by polarization as

[X,Y ] =
(
[X + Y ]− [X]− [Y ]

)
/2 =

(
[X + Y ]− [X − Y ]

)
/4.

Similarly with the angle-bracket 〈X,Y 〉, which is defined only for local mar-
tingales. If X and Y are local square-integrable martingales then [X,Y ] is the
unique cad-lag adapted process with integrable finite variation and vanishing
at 0 such that (1) XY − [X,Y ] is a local martingale and (2) δ[X,Y ] = δX δY,
while 〈X,Y 〉 is the unique cad-lag predictable process with integrable finite
variation and vanishing at 0 such that XY − 〈X,Y 〉 is a local martingale. For
any quadratic pure jump semi-martingale X, i.e., satisfying [X]c = 0, and any
semi-martingale Y we have

[X,Y ](t) =
∑
s≤t

δX(s) δY (s), ∀t > 0.
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A local martingale X is called purely discontinuous if X(0) = 0 and 〈X,Y 〉 = 0
for any continuous local martingale Y. Then (1) a local martingale X vanishing
at 0 is purely discontinuous if and only if [X]c = 0, (2) a local martingale with
local finite variation and X(0) = 0 is purely discontinuous, (3) a continuous local
martingale which is purely discontinuous is indeed null, and (4) a predictable
local martingale is a continuous martingale.

Let X be a quasi-martingale and V be an adapted process with local inte-
grable finite variation and V (0) = 0 : we have (a)

[X,V ] =

∫
]0,·]

δX(s)dV (s), XV =

∫
]0,·]

V−(s)dX(s) +

∫
]0,·]

X(s)dV (s),

and (b) if V is predictable then

[X,V ] =

∫
]0,·]

δV (s)dX(s), XV =

∫
]0,·]

V (s)dX(s) +

∫
]0,·]

X−(s)dV (s).

Hence, we also have (c) if X is a local martingale and V is predictable then the
optional covariance or square-bracket [X,V ] is a local martingale, and (d) we
have [X,V ](t) =

∑
s≤t δX(t)δV (t) and so [X,V ] = 0, if at least one (either X or

V ) is continuous. There are several useful estimates involving local martingales,
e.g., Davis-Burkhölder-Gundy inequality for local martingales vanishing at the
initial time, namely, for any p ≥ 1 there exist constants Cp > cp > 0 (recall that
C1 = 3 and C2 = 4) such that for any stopping time T and any local martingale
M with M(0) = 0, we have

cp E{
(
[M ](T )

)p/2} ≤ E{sup
t≤T
|M(t)|p} ≤ Cp E{

(
[M ](T )

)p/2},
and Lenglart domination estimate, namely, for any cad-lag adapted process X
dominated by an increasing cad-lag process A with A(0) = 0 (i.e., E{|X(τ)|} ≤
E{A(τ)} for any bounded stopping time τ) we have

P
{

sup
t≤T
|X(t)| ≥ ε

}
≤ 1

ε

[
η + E

{
sup
t≤T
|A(t)−A(t−)|

}]
+ P

{
A(T ) ≥ η

}
,

for any positive constants ε, η and any stopping time T, and if A is predictable,
we may drop the term with the jumps. However, for any p in (0, 2] there exist
a constant Cp > 0 (with C1 = 3 and C2 = 4) such that

E{sup
t≤T
|M(t)|p} ≤ Cp E{

(
〈M〉(T )

)p/2},
for any stopping time T and any local martingale M with M(0) = 0.

Let X and Y be two semi-martingales, and a and b be two adapted cag-lad
(left continuous with right limits) then[ ∫

]0,·]
a(s)dX(s),

∫
]0,·]

b(s)dY (s)
]

=

∫
]0,·]

a(s)b(s)d[X,Y ](s),

Section 4.3 Menaldi January 7, 2014



CHAPTER 4. STOCHASTIC CALCULUS 424

and similarly with the angle-bracket 〈·, ·〉, where the last integral is in either the
Riemann-Stieltjes or Lebesgue-Stieltjes sense. Suppose that Xi, i = 1, . . . , n
and Yj , j = 1, . . . ,m are semi-martingales, and that ϕ(x) and ψ(y) are smooth
real-valued functions then Itô formula shows that ϕ(X) and ψ(Y ) are also semi-
martingales and

〈ϕ(X), ψ(Y )〉(t) =
∑
ij

∫ t

0

∂iϕ(X(s))∂jψ(Y )(s)d〈Xi, Yj〉(s),

[ϕ(X), ψ(Y )]c(t) =
∑
ij

∫ t

0

∂iϕ(X(s))∂jψ(Y )(s)d[Xi, Yj ]
c(s),

[ϕ(X), ψ(Y )](t)− [ϕ(X), ψ(Y )]c(t) =
∑
s≤t

δϕ(X)(s)δψ(Y )(s),

for any t > 0. Hence, let ν
XY

denote the integer measure associated with the
(joint) jumps of the Rn+m-valued process (X,Y ), namely,

ν
XY

(B, ]a, b]) is the number of jumps
(
δX(s), δY (s)

)
in B within the

interval ]a, b], for any B in B(Rn+m
∗ ) with B̄∩{0} = ∅ and 0 ≤ a < b,

with a predictable jumps compensator νp
XY

(dx, dy,dt). Thus, the jumps part of
the optional quadratic covariation, i.e., [X,Y ]− [X,Y ]c, can be expressed as∑

s≤t

δϕ(X)(s)δψ(Y )(s) =

∫
Rn+m×]0,t]

[
ϕ(X(s−) + x)− ϕ(X(s−))

]
×

×
[
ψ(Y (s−) + y)− ψ(Y (s−)

]
ν
XY

(dx, dy,dt).

The continuous part of a semi-martingale X is defined as the unique continu-
ous semi-martingale Xc satisfying [X − Xc, Z] = 0, for any continuous semi-
martingale Z. Then we have [Xc, Y ] = [X,Y ]c. On the other hand, the processes
X and Y are quasi-left continuous if only if there are no predictable jumps, i.e.,
νp
XY

(Rn+m
∗ × {t}) = 0, for any t ≥ 0, or equivalently the predictable covariation

〈X,Y 〉 is continuous. Note that if the jumps of X and Y have the form

X(t) = Xc(t) +

∫
Z×]0,t]

γX (z, s)ν̃(dz,ds), ∀t ≥ 0,

and similarly for Y, with the same martingale measure ν̃ and continuous pro-
cesses Xc and Y c, then∫

Rn+m
∗ ×]0,t]

h(x, y, s)ν
XY

(dx, dy,ds) =

=

∫
Z×]0,t]

h(γX (z, s), γY (z, s), s)ν(dz,ds),

for any positive Borel measurable function h, and similarly for the predictable
jump compensator measure.

In particular, let M = Mc + Md be a quasi-left continuous local square-
integrable martingale in Rn written as the sum of a continuous local martingale
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{Mc,i : i = 1, . . . , n} with predictable variation process {〈Mc,i〉 : i = 1, . . . , n},
and a purely discontinuous local martingale {Md,i : i = 1, . . . , n} which yields an
integer measure ν

M
with compensator νp

M
and martingale measure ν̃

M
= ν

M
−νp

M
.

Note that∫
]0,t]

α(s)dMd,i(s) =

∫
Rd×]0,t]

α(s)ζiν̃M (dζ,ds), i = 1, . . . , d,

and ∑
s≤t

h
(
s, δMd(s)

)
=

∫
Rd×]0,t]

h(s, ζ)ν
M

(dζ,ds),

for any predictable integrable processes α and h. Thus, if X is a d-dimensional
processes of the form

dX(t) = aX (t)dV c(t) + bX (t)dMc(t) +

∫
Rm∗

γX (ζ, t)ν̃
M

(dζ,dt), ∀t ≥ 0, ,

where V c is an adapted continuous process with local integrable finite varia-
tion, and ϕ is real-valued smooth functions then Itó formula shows that the
semi-martingales ϕ(t) = ϕ(t,X(t)) can be expressed in term of continuous part
Mc, the compensated integer (or martingale) measure ν̃

M
and some continuous

locally bounded variation processes Vϕ, i.e.,

dϕ(t) = dVϕ(t) + bϕ(t)dMc(t) +

∫
Rm∗

γϕ(ζ, t)ν̃
M

(dζ,dt), ∀t ≥ 0,

where

dVϕ(t) = ∂tϕ(t, ·)dt+ ∂xϕ(t, ·)dV c(t)+
∑
i,j,k

bXik(t)bXjk(t)∂ijϕ(t, ·)d〈Mc,k〉(t)+

+

∫
Rm∗×]0,t]

[
ϕ(t, ·+ γX (ζ, t))− ϕ(t, ·)− γX (ζ, t)∂xϕ(t, ·)

]
νp
M

(dζ,dt),

bϕk (t) =
∑
i

∂iϕ(t, ·)bXik(t), γϕ(ζ, t) = ϕ(t, ·+ γX (ζ, t))− ϕ(t, ·),

the dot · is replaced by M(t−). Thus

〈ϕc,Mc,k〉 =
∑
i,j

∫ ·
0

∂iϕ(t,M(t−))bXij(t)d〈Mc,j ,Mc,k〉(t),

δϕ(t) =

∫
Rm∗

(
ϕ(t,M(t−) + γX (ζ, t))− ϕ(t,M(t−))

)
ν
M

(dζ, {t}),

[ϕ,Md,k] =

∫
Rm∗ ×]0,·]

(
ϕ(t,M(t−) + γX (ζ, t))− ϕ(t,M(t−))

)
ζkνM (dζ,dt),

which give full information on the covariance of ϕ and M. These calculations
are neat for the particular case where M c is a standard Wiener process and
ν̃
M

is a compensated Poisson integer measure with predictable compensator
νp
M

(dζ,dt) = π(dζ)dt.
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For instance, the reader is referred to Dellacherie and Meyer [58, Sections
VI.37–42, pp. 105–112], He et al. [105, Chapter VIII, pp. 209–223], Jacod and
Shiryaev [117, Chapter 1, pp. 1–63], Kallenberg [121, Chapter 26, pp. 515–536],
Protter [206, Chapter III, pp. 43–86], or Sections 3.4–3.5 and 3.13 in Chapter 3,
for more detail on the above statements.

Martingales Integrals

After refreshing the above martingales concepts, we may reframe the stochastic
integral defined previously for a quasi-martingale X. Recall that a sequence
of general processes {uk} is said to converge to u uniformly on compacts in
probability abbreviated “ucp”, if for any ε > 0 there exists K > 0 such that
P{sup0≤t≤1/ε |uk(t) − u(t)| ≥ ε} ≤ ε for any k ≥ K. Given a filtration F =
{F(t) : t ≥ 0}, denote by S = S(F), L = L(F) and D = D(F) the vector space of
simple predictable processes (i.e., H(t) = hi−1 for t on the stochastic interval
Kτi−1, τiK, for i = 1, 2, . . . , n, where τ0 = 0, τi−1 ≤ τi are finite stopping times
and hi is a Rd-valued F(τi)-measurable random variable), adapted cag-lad (left
continuous with right limits) processes, and cad-lag (right continuous with left
limits). If we add the ucp-convergence and version of processes are considered
equals, then we use Sucp, Lucp and Ducp. Actually, any process X in L (or in S) are
technically defined on (0,∞), but we assume X(0) = X(0+) and so X is defined
on [0,∞); otherwise, we may decide to work on the whole space (−∞,+∞) or to
explicitly introduce a value at time t = 0. Moreover a better notation would be
Sucp(F), Lucp(F) and Ducp(F) to recall the dependency on the filtration F, however
this is implicitly assumed.

Remark that a modification (also called a version) of an element in S, L or D
does not necessarily belongs to S, L or D, it belongs to Sucp, Lucp or Ducp. We may
have an element u in Lucp and an element v in Ducp such that u is a version of
v, i.e., not any version of a given element in Lucp (or Ducp) can be considered an
element in L (or D). On the other hand, we are allowed to modified an element
(in any of the three topological vector spaces S, L or D) on a evanescent set and
still remain in the same space.

Note that Lucp and Ducp are complete metric spaces, and let us prove that Sucp

is dense in Lucp. Indeed, given a positive number η and a u in Lucp we define an
increasing sequence of stopping times 0 = T η0 < T η1 < T η2 < · · · by recurrence

T ηk+1 = inf{s > T ηk : |u(s+)− u(T ηk+)| > η},

where T ηk+1 =∞ if |u(s+)− u(T ηk+)| ≤ η, for every s ≥ T ηk . Because t 7→ u(t+)
is cad-lag, the sequence T ηk is almost surely increasing to infinite, i.e., P{T ηk ≤
r} → 0 as k →∞, for every positive constants r. Clearly, |u(s+)−u(T ηk+)| ≤ η,
for any s such that T ηk ≤ s < T ηk+1, and by continuity, we have |u(s)−u(T ηk+)| ≤
η, if T ηk < s ≤ T ηk+1. Hence, define uηk(t) = u(n ∧ T ηi +) if k ∧ T ηi < t ≤ k ∧ T ηi+1

with i = 0, 1, . . . , k to have

P
{

sup
0≤t≤r

|uηk(t)− u(t)| > η
}
≤ P

{
k ∧ T ηk ≤ r

}
.
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Therefore, uηk belongs to Sucp, and for suitable η and k we construct a sequence
convergent to u.

For any H in Sucp and X in Ducp we define the simple integral

Σ(H,dX)(t) =

∫
]0,t]

H(s)dX(s) =

n∑
i=1

hiX(τi ∧ t)−X(τi−1 ∧ t),

if H =
∑n
i=1 hi−11Kτi−1,τiK. Now if X is a quasi-martingale then this linear oper-

ator Σ(·,dX) is continuous from Sucp into Ducp and therefore it can be uniquely
extended to Lucp, i.e., for any H in Lucp there exists a sequence Hk in Sucp such
that Hk → H in Lucp and Σ(Hk,dX)→ Σ(H,dX) in Ducp. Actually, the continu-
ity property can be proved directly or by means of Lenglart dominate estimate,
namely, for any positive constants ε, η, any stopping time T, and any H in Lucp,
we have (recall δ is the jump operator)

P
{

sup
t≤T

∣∣Σ(H,dA)(t)
∣∣ ≥ ε} ≤ P{A(T ) ≥ η

}
+

+
1

ε

[
η + E

{
sup
t≤T
|H(t)| |δA(t)|

}]
,

if A is an adapted increasing integrable process, and

P
{

sup
t≤T

∣∣Σ(H,dM)(t)
∣∣2 ≥ ε} ≤ η

ε
+ P

{
Σ(|H|2,d〈M〉)(T ) ≥ η

}
,

if M is a local martingale with predictable variance 〈M〉.
Moreover, if $ = {ti} is a partition of [0,∞), t0 = 0, ti−1 < ti, ti → ∞,

and |$| = supi(ti − ti−1) (possible of stopping times) and H is an element of
Lucp, then we may define H$,n(t) = H(ti−1) for t in (ti−1, ti], i = 1, . . . , n. It is
clear that H$,n belongs to Sucp, and sup0≤t≤T |H$,n(t)| ≤ C(T ), almost surely
for a constant C(T ) independent of $,n, and H$,n(t) → H(t), almost surely,
for every t > 0. Hence, after using Lenglart dominate estimate, we deduce that
Σ(H$,n,dM)→ Σ(H,dM) in Lucp, as n→∞ and |$| → 0.

Note that if X is a process with locally bounded variation belonging to
Ducp and H is any process in Lucp then Σ(H,dM) coincides with the (pathwise)
Riemann-Stieltjes (or Lebesgue-Stieltjes) integral.

Clearly, this technique can be extended simple integral relative to martingale
measures ν̃, e.g.,

Σ(H,dν̃)(t) =

∫
Rm∗ ×]0,t]

H(ζ, s)ν̃(dζ,ds) =

=
n∑
i=1

k∑
j=1

Hij ν̃(Bj×]τi−1 ∧ t, τi ∧ t]),

where H =
∑n
i=1

∑k
j=1Hij1Kτi−1,τiK1Bj , and Bj is a Borel set separated from

the origin, i.e., the closure B̄j ∩ {0} = ∅. As discussed early in this chapter, the
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cad-lag processes Σ(H,dX) and Σ(H,dν̃) are local martingales with

[Σ(H,dX)](t) =

∫
]0,t]

|H(s)|2d[X](s),

[Σ(H,dν̃)](t) =

∫
Rm∗ ×]0,t]

|H(ζ, s)|2ν(dζ,ds),

and

〈Σ(H,dX)〉(t) =

∫
]0,t]

|H(s)|2d〈X〉(s),

〈Σ(H,dν̃)〉(t) =

∫
Rm∗ ×]0,t]

|H(ζ, s)|2νp(dζ,ds),

where νp is the predictable compensator of martingale measure ν̃, i.e., for any
fixed Borel set B separated from the origin, the process t 7→ νp(B, ]0, t]) is the
compensator of the local martingale t 7→ ν̃(B, ]0, t]), or ν̃ is the martingale mea-
sure corresponding to an integer measure ν with predictable jumps compensator
νp. Note that∫

Rm∗
|H(ζ, t)|ν(dζ, {t}) replaces |H(t)| |δA(t)| and∫

Rm∗ ×]0,T ]

|H(ζ, t)|2νp(dζ,dt) replaces Σ(|H|2,d〈M〉)(T )

in Lenglart dominate estimate.
It should be clear that besides the probability measure P, the initial filtration

F = {F(t) : t ≥ 0} plays a fundamental role in the above construction. Perhaps,
a full notation for spaces Sucp, Lucp and Ducp should includes the filtration and
the probability, e.g., Ducp(P,F). However, if another filtration G = {G(t) : t ≥ 0}
is given and

H ∈ Lucp(P,F) ∩ Lucp(P,G), X ∈ Ducp(P,F) ∩ Ducp(P,G)

then H can be approximate in Sucp with respect to both filtrations, which im-
plies that the limit Σ(H,dX) is independent of the particular filtration used.
Certainly, if the limit exists for a probability P then also it exits for any other
probability Q which is absolutely continuous with respect to P.

Non-Martingales Integrals

Consider a partition $ of [0,∞) and for any two cad-lag processes X and Y
define the symmetric square-bracket along $,

[X,Y ]$(t) =
∑
i

(
X(ti ∧ t)−X(ti−1 ∧ t)

)(
Y (ti ∧ t)− Y (ti−1 ∧ t)

)
,
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as well as the bilinear expressions (integrals along $)

Σ−$(X,dY )(t) =
∑
i

X(ti−1 ∧ t)
(
Y (ti ∧ t)− Y (ti−1 ∧ t)

)
,

Σ+
$(X,dY )(t) =

∑
i

X(ti ∧ t)
(
Y (ti ∧ t)− Y (ti−1 ∧ t)

)
,

Σ◦$(X,dY )(t) =
∑
i

(
X(ti ∧ t) +X(ti−1 ∧ t)

)(
Y (ti ∧ t)− Y (ti−1 ∧ t)

)
/2,

which are finite sums of non-zero terms. Note the relations

Σ◦$(X,dY )(t) = 1
2

(
Σ−$(X,dY )(t) + Σ+

$(X,dY )(t)
)
,

Σ+
$(X,dY )(t)− Σ−$(X,dY )(t) = [X,Y ]$(t) = [Y,X]$(t),

and

Σ+
$(X,dY )(t) + Σ−$(Y,dX)(t) = Y (t)X(t)−X(0)Y (0),

Σ∓$(X,dY )(t) + Σ∓$(Y,dX)(t)± [X,Y ]$(t) = Y (t)X(t)−X(0)Y (0),

where we use the telescopy sum

n∑
i=1

ai(bi − bi−1) +

n∑
i=1

bi−1(ai − ai−1) = anbn − a0b0,

valid for any numbers ai and bi.
For any cad-lag process X, we can consider the cag-lad process X− defined

as the left-hand limits, i.e., X−(t) = X(t−). If δ is the jump operator then
we have δX = δX−, X− = X − δX, and X = X− + δX. Hence we have
Σ−$(X−,dY ) → Σ(X−,dY ) in Ducp as |$| → 0, for any X in Ducp and for any
quasi-martingale Y.

If X and Y are quasi-left continuous then for any t there exist a null set Nt
such that δX(t, ω) = 0 and δY (t, ω) = 0, for any ω in Ω rNt. Thus, [X,Y ]$(t) + Σ−$(X−,dY )(t) + Σ−$(Y−,dX)(t) =

= Y (t)X(t)−X(0)Y (0),
(4.107)

almost surely, for each t. In particular, this proves that [X,Y ]$ → [X,Y ] in Ducp

and that Σ±$(X−,dY ) and Σ±$(X,dY ) have a common limit Ducp, as |$| → 0,
for any quasi-left continuous quasi-martingales X and Y.

Our interest is on processes where the jumps are only due to a local martin-
gale, i.e., the finite variation part of X can be chosen continuous. Now, let π
be a Lévy measure in Rd∗, γ(z) be a (deterministic) function in L2(Rm∗ , π) and
X be a real-valued Itô process with jumps,

X(t) =

∫ t

0

aX (s)dv(s) +

∫ t

0

bX (s)dw(s) +

∫
Rm∗ ×]0,t]

cX (ζ, s)p̃(dζ,ds),(4.108)
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for any t ≥ 0, where v is a d-dimensional adapted continuous process with local
integral finite variation, w is a d-dimensional standard Wiener process indepen-
dent of the compensated Poisson point process p̃ with Levy measure π in Rm∗ ,
and the coefficients suitable predictable processes, i.e., aX is locally integrable
with respect to the variation process |dv|, bX is locally square integrable, and
cX is jointly locally square integrable relative to π(dζ)× dt. Choose Y = wk or
Y = p̃γ , where

p̃γ(b)− p̃γ(a) = p̃(γ, ]a, b]) =

∫
Rm∗ ×]a,b]

γ(z)p̃(dz,dt), ∀b > a ≥ 0. (4.109)

Thus, the expressions [X,wk]$, [X, p̃γ ]$, Σ
±
$(X,dwk), Σ◦$(X,dwk), Σ±$(X,dp̃γ)

and Σ◦$(X,dp̃γ) are adapted quasi-left continuous and cad-lag processes, and
we may replace X by X− without any modifications. By means of Itô formula
we can calculate the predictable and optional covariances

[X, vk](t) = 〈X, vk〉(t) = 0, [X,wk](t) = 〈X,wk〉(t) =

∫ t

0

bXk (t)dt,

〈X, p̃γ〉(t) =

∫ t

0

ds

∫
Rd∗
cX (z, s)γ(z)π(dz),

[X, p̃γ ](t) =

∫
Rd∗×]0,t]

cX (z, s)γ(z)p(dz,ds),

and, for instance, Theorem 4.34 shows that

lim
|$|→0

[X,wk]$ = [X,wk], lim
|$|→0

[X, p̃γ ]$ = [X, p̃γ ],

lim
|$|→0

Σ−$(X,dwk) =

∫ ·
0

X(t)dwk(t),

lim
|$|→0

Σ−$(X−,dp̃γ) =

∫
Rd∗×]0,·]

X(t−)γ(z)p̃(dz,dt),

where the limits are uniformly on compacts in probability (i.e., in the ucp sense).
Moreover, because the limits of the two last term of the left-hand side of the
equality (4.107) converges to the stochastic integrals, we re-establish the conver-
gence of the square-bracket to the optional covariation. Clearly, for the adapted
continuous process having local bounded variation v we have

lim
|$|→0

[X, vk]$ = 0,

lim
|$|→0

Σ−$(X,dvk) =

∫ ·
0

X(t−)dvk(t),

where the integral is pathwise, in either Riemann-Stieltjes or Lebesgue-Stieltjes
sense.

If {γj : j ≥ 1} is an orthonormal basis in L2(Rm∗ , π) then the jumps of X
given by (4.108) can be expressed as∫

Rm∗ ×]0,t]

cX (ζ, s)p̃(dζ,ds) =
∑
j

∫
]0,t]

cXj (s)dp̃j(s),
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where

cXj (s) =

∫
Rm∗

cX (ζ, s)γj(ζ)π(dζ), p̃j(t) =

∫
Rm∗ ×]0,t]

γj(ζ)p̃(dζ,ds),

cXj (s) are predictable processes and p̃i(s) are purely discontinuous martingales,
and

d〈p̃i, p̃j〉(t) =
(∫

Rm∗
γi(ζ)γj(ζ)π(dζ)

)
dt,

i.e., 〈p̃i, p̃j〉(t) = t if i = j and 〈p̃i, p̃j〉 = 0 otherwise. Thus, we may rewrite X
as

X(t) =

∫ t

0

aX (s)dv(s) +

∫ t

0

bX (s)dw(s) +
∑
j

∫
]0,t]

cXj (s)dp̃j(s),

for any t ≥ 0. Formally, we have p̃ =
∑
j γj p̃j , but

E
{
|
∑
j

γj p̃j(t)|2π
}

= E
{∑

j

|p̃j(t)|2
}

= E
{
t
∑
j

|γj |2π
}

=∞, ∀t > 0,

i.e., the series cannot be considered as L2(Rm∗ , π)-valued martingale. However,
for as given convergent sequence of strictly positive numbers {κi} we may con-
sider the Hilbert subspace

H = Hκ,γ,π =
{
h ∈ L2(Rm∗ , π) :

∑
i

κi

∣∣∣ ∫
Rm∗

h(ζ)γi(ζ)π(dζ)
∣∣∣2 <∞}.

Hence, we may regard the series p̃(s) =
∑
j γj p̃j(s) and cX (s) =

∑
j γjc

X
j (s) as

processes with values in H,

‖p̃(s)‖2H =
∑
j

κj |p̃j(s)|2 ≤
(∑

j

κj

)
s,

‖cX (s)‖2H =
∑
j

κj |cXj (s)|2 ≤
(∑

j

κj

)∫
Rm∗
|cX (ζ, s)|2π(dζ),

and p̃ is a local martingale, while cX (s) is predictable with values in the dual
space H ′, via the functional Riesz representation, and the duality inclusion H ⊂
L2(Rm∗ , π) ⊂ H ′. Therefore, the stochastic integral with respect to the (local)
martingale measure p̃ can be regarded as an stochastic integral with respect to a
(local) martingale with values in the Hilbert space H and a predictable process
with values in its dual space H ′. Nevertheless, we may define

〈〈X, p̃〉〉 :=
∑
j

〈X, p̃j〉 =
∑
j

∫ ·
0

cXj (s)ds =

=
∑
j

∫ ·
0

ds

∫
Rm∗

cX (ζ, s)γj(ζ)π(dζ),

[[X, p̃]] :=
∑
j

[X, p̃j ] =
∑
j

∑
s≤·

δX(s)δp̃j(s) =

=
∑
j

∫
Rm∗ ×]0,·]

cX (ζ, t)γj(ζ)p(dz,dt),
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if the coefficients are sufficiently smooth (in time) to make the above series
convergent. Since the integrand is predictable,

E
{∫

Rm∗ ×]0,T ]

cX (ζ, t)γj(ζ)p(dζ,dt)
}

=

= E
{∫ T

0

dt

∫
Rm∗

cX (ζ, t)γj(ζ)π(dz)
}

= E
{∫ T

0

cXj (t)dt
}
,

for any T > 0.
Now, recall that a Poisson measure p is a sum of (random) Dirac measures,

i.e., p(K, ]a, b]) =
∑
a<s≤t 1δp(s)∈K where δp(s) denotes the jumps at time s

(i.e., the Poisson point process originating the Poisson measure p), and assume
that γj is π-integrable so that∫

Rm∗ ×]0,T ]

γj(ζ)p(dζ,dt) =

=

∫
Rm∗ ×]0,T ]

γj(ζ)p̃(dζ,dt) + TE
{∫

Rd∗
γj(ζ)π(dζ)

}
can be defined. Therefore, the integer measure νj induced by the pathwise
integral of γj over p, i.e.,

p(γj , t) =

∫
Rd∗×]0,t]

γj(ζ)p(dζ,ds), νj(K, ]a, b]) =
∑
a<s≤b

1{δp(γj ,t)∈K}

are defined, and the jump satisfy δνj(t) = δp(γj , t) = γj(δp(t)). Hence the
integer measure νj is indeed a Poisson measure with Lévy measure πj(dζ) =
γj(ζ)π(dζ). Moreover, t 7→ νj(Rd∗, ]0, t]) is a composed (real valued) Poisson
process with the finite measure πj on Rd∗ as parameter.

Thus, the stochastic integral with respect to either the initial Poisson mea-
sure {p(K, ]a, b])} or its associate Poisson point process {δp(t)} can be written
as an orthogonal series either {νj} or {δp(γj , t)}, i.e., with ν̃j = νj − πj(dζ)dt,∫

Rm∗ ×]0,t]

cX (ζ, s)p̃(dζ,ds) =
∑
j

∫
Rd∗×]0,t]

cX (ζ, s)ν̃j(dζ,ds).

and ∫
Rd∗×]0,t]

cX (ζ, s)νj(dζ,ds) =

∫
Rd∗×]0,t]

cX (ζ, s)γj(ζ)p̃(dζ,ds).

Note that we may write p̃j(t) = p̃(γj , ]0, t]) and in the proper meaning for the
jumps operator δ we have δp̃j(t) = δp(γj , t).

Sometimes, it is convenient to use the following

Definition 4.39. Let X be Itô processes with jumps as above, satisfying
(4.108). We define the backward, forward and symmetric (or Stratonovich)
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stochastic integrals in term of the Itô stochastic integral as follows∫
]0,T ]

X(t−)d−wk(t) =

∫
]0,T ]

X(t−)dwk(t),∫
]0,T ]

X(t−)d+wk(t) =

∫
]0,T ]

X(t−)dwk(t) +

∫ T

0

bk(t)dt,∫
]0,T ]

X(t−)d◦wk(t) =

∫
]0,T ]

X(t−)dwk(t) +
1

2

∫ T

0

bk(t)dt

and in general, for any two given semimartingales M and N we define the
backward, forward and symmetric (or Stratonovich) stochastic integrals in term
of the Itô stochastic integral as follows∫

]0,T ]

M(t−)d−N(t) =

∫
]0,T ]

M(t−)dN(t),∫
]0,T ]

M(t−)d+N(t) =

∫
]0,T ]

M(t−)dN(t) +
[
M,N

]
(T ),∫

]0,T ]

M(t−)d◦N(t) =

∫
]0,T ]

M(t−)dN(t) +
1

2

[
M,N

]
(T ).

Clearly, this take place in a probability space (Ω,F , P ), with a completed (rel-
ative to F), right-continuous and quasi-left continuous filtration F.

Remark that because the martingales are quasi-continuous and the local
finite variation part is continuous, we are allow to use the square bracket [·, ·]
instead of the angular bracket 〈·, ·〉 as usually, without to much complication in
the calculations, since jumps are deduced from the martingale measure ν̃.

Thus, if M and N are two local martingales with values in Rd and R (not
necessarily continuous, but quasi-continuous and relative to the same filtered
space) and associated martingale measures ν̃

M
(dz,dt) = cM (z, t)ν̃(dz,dt) and

ν̃
N

(dz,dt) = cN (z, t)ν̃(dz,dt), for some integer measure ν in Rm∗ , then∫
]0,T ]

ϕ
(
M(t−)

)
d◦N(t) =

∫
]0,T ]

ϕ
(
M(t−)

)
dN(t) +

1

2

[
ϕ(M), N

]
(T ),

for any smooth function ϕ(x), and

[
ϕ(M), N

]
(T ) =

d∑
i=1

∫ T

0

∂iϕ
(
M(t−)

)
d
[
Mi, N

]c
(t) +

+

∫
Rm∗ ×]0,T ]

[
ϕ
(
M(t−) + cM (z, t)

)
− ϕ

(
M(t−)

)]
cN (z, t)ν(dz,dt),

where ∂iϕ denotes the derivative in x, and ν is the common integer measure.
Clearly, the predictable covariance 〈ϕ(M), N〉 has an expression similar to the
above with νp replacing the ν. In general, we may use the integer measure
ν
XY

in Rd+1
∗ associated with the (purely discontinuous part of the) Rd+1-valued

local martingale (M,N), where we replace the integer measure ν(dz,dt) with
ν
XY

(dx, dy,dt) and the coefficients cM (z, t) and cN (z, t) with the variables x and
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y. In this case, the variable (x, y) belongs to Rd+1
∗ and the integral should be in

Rd+1
∗ . However, because ν

XY
is an integer measure and the integrand function

[ϕ(·+ x)− ϕ(x)]y vanishes if x = 0 or y = 0, the integral is only on the region
{(x, y) ∈ Rm+1

∗ : x 6= 0, y 6= 0}×]0, T ] as expected, i.e., when both martingales
have jumps simultaneously.

It is clear that the vector-form is deduced from the above definition and the
operational Itô rule becomes

X(b)Y (b)−X(a)Y (a) =

∫
]a,b]

X(t−)d◦Y (t) +

∫
]a,b]

Y (t−)d◦X(t),

i.e., as the deterministic case, with all the jumps incorporated into the integral.
Note that the processes X and Y are cad-lag and quasi-left continuous, and
that the bounded variation part v is a continuous process. In general,

ϕ(X(T ))− ϕ(X(0))=

∫
]0,T ]

∂xϕ(X(t−))dX(t)+

∫
]0,T ]

∂xϕ(X(t−))d[X]c(t)+

+
∑

0<t≤T

(
ϕ(X(t))− ϕ(X(t−))−∇ϕ(X(t−)) · δX(t)

)
,

for any a smooth function ϕ. Clearly, we have∑
0<t≤T

(
ϕ(X(t))− ϕ(X(t−))− ∂xϕ(X(t−))δX(t)

)
=

=

∫
Rd∗×]0,T ]

[
ϕ(X(t−) + z)− ϕ(X(t−))− z · ∇ϕ(X(t−))

]
ν
X

(dz,dt),

where ν
X

is the integer measure associated with X in Rd∗. Clearly, ν
X

= ν̃
X

+νp
X
,

where ν̃
X

is the martingale measure (yielding the martingale stochastic integral)
and νp

X
is its predictable jump compensator.

The square-bracket [·, ·] and the integer measures can be defined for any cad-
lag processes, non necessarily semimartingales. The previous relations between
the backward, forward and symmetric integrals with the quadratic variation are
essential for this analysis. The interested reader may consult for instance, Chao
and Chou [38], Errami et al. [75], Fisk [82], Föllmer [86], Meyer [180], among
others.

4.3.4 Non-Anticipative Processes

The concept of non-anticipative or non-anticipating is rather delicate, and usu-
ally it means adapted or strictly speaking, if a process is adapted then it should
be non-anticipative. For instance, a random process x is called non-anticipative
with respect to a Markov process y if the past of x is independent of the future
of y given the present of y, this means that given a realization y of a Markov
process in some probability space (Ω,F , P ) with values in a topological space
Y then any process x with values in some topological space X is called non-
anticipative with respect to y if for any bounded Borel measurable functions f,

Section 4.3 Menaldi January 7, 2014



CHAPTER 4. STOCHASTIC CALCULUS 435

g and h and times s1 < · · · < sn ≤ t ≤ t1 < t2 < · · · < tn, we have

E
{
f(xs1 , . . . , xsn) g(yt)h(yt1 , . . . , ytn)

}
=

= E
{
E{f(xs1 , . . . , xsn) | yt} g(yt)E{h(yt1 , . . . , ytn) | yt}

}
,

where n is arbitrary. Note that the three functions f, g and h may be taken
only bounded continuous, as long as the Baire σ-algebra (the one generated
by continuous functions on X and Y ) and the Borel σ-algebra coincide, e.g., if
(X, d) is a metric space then F = {x ∈ X : d(x,X) = infu∈F d(x, u) = 0} for
any closed subset F of X, so x 7→ d(x, F ) is continuous, and so both σ-algebras
coincide. Since Jakubowski topology is weaker that a metrizable topology, the
Baire and the Borel σ-algebras coincide in this case too. Usually, X and Y are
some Rn and the processes x and y are at least stochastically right continuous.
It is convenient to take a cad-lag version of x and y if possible.

On the other hand, if y is a random process with independent increments
and y0 = 0, then a non-anticipative process x is a process such that the past
of x is independent of the increments of y given the present of y, i.e, for any
bounded Borel measurable functions f, g and h and times s1 < · · · < sn ≤ t ≤
t1 < t2 < · · · < tn, we have

E
{
f(xs1 , . . . , xsn) g(yt)h(yt2 − yt1 , . . . , ytn − ytn−1

)
}

=

= E
{
E{f(xs1 , . . . , xsn) | yt} g(yt)E{h(yt2 − yt1 , . . . , ytn − ytn−1

) | yt}
}
,

where n is arbitrary. In any case, note that (contrary to the adapted case) if x1

and x2 are non-anticipative then the cartesian product (x1, x2) is not necessarily
non-anticipative. Recall that y is a process of independent increments (i.e.,
y(t1), . . . , y(tn) are independent of y(s2) − y(s1), for any t1 < · · · < tn < s1 <
s2), if and only if y = m + a, where m is a semi-martingale (and a process
of independent increments) and a is a deterministic cad-lag process (e.g., see
Jacod and Shiryaev [117, Theorem II.5.1, p. 114]).

Perhaps a better concept is the following:

Definition 4.40. For a given a process y in a probability space (Ω,F , P ) we
define the non-anticipative filtration A = {A(t) : t ≥ 0}, where A(t) is the
σ-algebra composed by all sets in F which are independent of yt1−yt0 , . . . ytn−
ytn−1 , for any t ≤ t0 < t1 < · · · < tn, and n ≥ 1. So a measurable process x is
non-anticipative with respect to y if it is adapted to A, i.e., if for any bounded
Borel measurable functions f and g we have

E{f(xs1 , . . . , xsn) g(yt1 − yt0 , . . . , ytn − ytn−1
)} =

= E{f(xs1 , . . . , xsn)}E{g(yt1 − yt0 , . . . , ytn − ytn−1)},

for any times s1 < · · · < sn ≤ t0 < t1 < · · · < tn.

Clearly, once the non-anticipative filtration A has been defined, the concept
of a non-anticipative process reduces to being adapted to the non-anticipative
filtration A. However, a good part for this concept is the fact of being a finite-
dimensional property, i.e., if x′ and y′ two processes in another probability space
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(Ω′,F ′, P ′) with the same (joint) finite-dimensional distributions as x and y then
x′ is also non-anticipative with respect to y′.

Alternatively, if y is a random process with orthogonal (or uncorrelated)
increments and y0 = 0, then any random process x which is orthogonal (or
uncorrelated) to the increments of y could be called weakly non-anticipative,
i.e., if

E
{
xs · (yt2 − yt1)

}
= E{xs} · E{(yt2 − yt1)},

for any 0 ≤ s ≤ t1 < t2, where the · denotes the scalar product. Certainly, an
orthogonal process x is weakly non-anticipative if xt belongs to the closed linear
span of the variables ys1 , . . . , ysn , with 0 ≤ s1 < . . . < sn ≤ t. All this means
that any information on x does not help to gain some extra information on the
characteristics of y. However, the following concept seems better for martingales.

Recall that for a Rd-valued stochastic process y, the martingale property
reads as follows:

E
{(
y(t)− y(s)

)
f
(
y(s1), . . . , y(sn)

)}
= 0,

for any bounded continuous functions f and any times s1 < · · · < sn ≤ s ≤
t. This is a property finite-dimensional (i.e., any other stochastic process y′

satisfies the above martingale properties provided E
{
f
(
y(s1), . . . , y(sn)

)}
=

E′
{
f
(
y′(s1), . . . , y′(sn)

)}
, for any bounded continuous functions f and any times

s1 < · · · < sn), which makes sense for processes satisfying E{|y(t)|} < ∞ for
every t ≥ 0 (or for a time-localization, as in the case of local martingales).
However, most of the useful results for martingale processes requires a separable
martingale, and separability is not finite-dimensional property.

Thus, of particular interest for us is the case when y is a (local) martingale.

Definition 4.41. Let y be a Rd-valued (separable) martingale (with zero mean)
in some probability space (Ω,F , P ). A process x is called weakly non-anticipative
with respect to y if for any bounded continuous functions f and g and any times
s1 < · · · < sn ≤ s ≤ t and s′1 < · · · < s′n ≤ s, we have

E
{(
y(t)− y(s)

)
f
(
x(s1), . . . , x(sn)

)
g
(
y(s′1), . . . , y(s′n)

)}
= 0.

If y is a martingale relative to a filtration F = (Ft : t ≥ 0) then we say that x is
weakly non-anticipative with respect to y (and F) if for any bounded continuous
functions f and any times s1 < · · · < sn ≤ s ≤ t, we have

E
{(
y(t)− y(s)

)
f
(
x(s1), . . . , x(sn)

)
zs
}

= 0.

where zs is any bounded Fs-measurable function. Clearly, this notion extends
to local martingales or semi-martingales. This means that the stochastic process
x does not change the martingale property of y.

It is clear that weakly non-anticipative is a finite-dimensional distribution
property when the filtration is not mentioned, i.e., if x′ and y′ two processes in
another probability space (Ω′,F ′, P ′) with the same finite-dimensional distribu-
tions and y′ being integrable, then y is a martingale and x is non-anticipative
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with respect to y if and only if then x′ is non-anticipative with respect to y′.
Also, if F(x, t) denotes the σ-algebra generated by the random variables x(s),
0 ≤ s ≤ t, then x is non-anticipative with respect to y if F(x, t) ∨ F(y, t) is or-
thogonal to the increments y(b)−y(a), for any b > a ≥ t, where F(x, t)∨F(y, t)
is the minimal σ-algebra containing both F(x, t) and F(y, t).

Recall that a general (local) martingale is a (local) integrable process y
satisfying the martingale property, namely,

E{y(t) | F(y, s)} = y(s), ∀t ≥ s ≥ 0,

or equivalently

E
{(
y(t)− y(s)

)
f
(
y(s1), . . . , y(sn)

)}
= 0, ∀0 ≤ s1 < · · · < sn ≤ s < t,

and any arbitrary bounded continuous function f. Note that when the prefix
general (or separable) is used, we mean that no particular version (or that a
separable version) has been chosen.

Thus, if x is an adapted process to a martingale y relative to the filtration
F then Ft contains F(x, t) ∨F(y, t) and x results non-anticipative with respect
to y and F. Note that if x1 and x2 are two weakly non-anticipative processes
then the cartesian product (x1, x2) is not necessarily weakly non-anticipative,
clearly, this is not the case for adapted processes. Conversely, if x is weakly
non-anticipative with respect to a general (local) martingale y we deduce that
x is certainly adapted to F(t) = F(x, t) ∨ F(y, t) and also that y satisfies the
martingale property relative to F(t), instead of just F(y, t). Moreover, if y is
cad-lag then the martingale property holds for F+(t) = ∩ε>0F(t+ ε).

Now, if we assume that y is a general martingale (non necessarily cad-lag)
with t 7→ E{y(t)} cad-lag (which is a finite-dimensional distribution property)
then there is a cad-lag version of y, still denoted by y, where the above argu-
ment applies. Therefore, starting with a process x weakly non-anticipative with
respect to y (satisfying the above conditions) we obtain a filtration {F+(t) :
t ≥ 0} such that x is adapted and y is a (local) martingale. If the function
t 7→ E{y(t)} is continuous then the process y has also a cag-lad version (left
continuous having right-hand limit) which is denoted by y−, with y−(0) = y(0)
and y−(t) = limε→0 y(t−ε), t > 0. In this case, x is also weakly non-anticipative
with respect to y−, since any version of y can be used.

Recall that with the above notation, a process x is progressively measurable
if (t, ω) 7→ x(t, ω), considered as defined on [0, T ]×Ω is measurable with respect
to the product σ-algebra B([0, T ]) × F(x, T ) or B([0, T ]) × F(T ), if the family
of increasing σ-algebra {F(t) : t ≥ 0} is a priori given. Progressively mea-
surability and predictability are not a finite-dimensional distribution property,
but for a given filtration and assuming that x is adapted and stochastically left
continuous, we can obtain a predictable version of x. Similarly, if x is adapted
and stochastically right continuous then there exists a progressively measurable
version.

Suppose that x and y are two weakly non-anticipative processes with respect
to M, which is a cad-lag square-integrable martingale. Let Mc and νM be their
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associated continuous part and integer measure, with predictable covariance
`M = 〈Mc〉, martingale measure ν̃M and predictable jump compensator νM,p =
πMd%M, where πM is a Levy measure and %M is a predictable continuous increasing
process. If

P
{∫ t

0

|x(s)|2d`M(s) <∞
}

= 1

and

P
{∫ t

0

d%M(s)

∫
Rm∗
|y(ζ, s)|2πM(dζ) <∞

}
= 1

then the stochastic integrals∫ t

0

x(s)dMc(s) and

∫
Rm∗ ×(0,t]

y(ζ, s)ν̃M(dζ,ds)

can be defined. Now, assume that in some other probability space there are pro-
cesses (x′, y′,M ′, `′M, %

′
M) having the same finite-dimensional distribution, where

M ′ is cad-lag, `′M and %′M continuous (and increasing), and x and y are almost
surely integrable with respect to d`′M and dπMd%′M, respectively. Thus, M ′ is
a cad-lag martingale and (x, y, `′M, %

′
M) is weakly non-anticipative with respect

to M ′, hence, for a suitable filtration F the process M ′ remains a martingale
and x and y adapted processes, `′M and %′M are predictable processes. Then the
associate continuous martingale M ′c and integer measure ν′M have predictable
covariance 〈Mc〉 = `′M and predictable jump compensator ν′M’,p = πMd%′M, where
`′M and d%′M are continuous. Hence, the stochastic integrals∫ t

0

x′(s)dM ′c(s) and

∫
Rm∗ ×(0,t]

y′(ζ, s)ν̃M′(dζ,ds)

are defined and have the same finite-dimensional distributions. In this sense,
the stochastic integral are preserved if the characteristics of the integrand and
integrator are preserved.

4.3.5 Functional Representation

First we recall a basic result (due to Doob) about functional representation, e.g.,
see Kallenberg [121, Lemma 1.13, pp. 7-8]. Given a probability space, let b and
m be two random variables with values in B and M, respectively, where (B,B)
is a Borel space (i.e., a measurable space isomorphic to a Borel subset of [0, 1],
e.g., a Polish space) and (M,M) is a measurable space. Then b is m-measurable
(i.e., measurable with respect to the σ-algebra generated by m) if and only if
there exists a measurable function h from M into B such that b = h(m).

In general, a Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥
0), with Lévy measure π(·) is composed by a complete filtered probability
space (Ω,F , P,Ft : t ≥ 0), the stochastic process (w(t) : t ≥ 0) is a n-
dimensional (standard) Wiener space and (ν(B, ]0, t]) : B ∈ Rm∗ , t ≥ 0) is an
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independent (standard) Poisson measure with (intensity) Lévy measure π(B) :=
E{ν(B, ]0, t])}/t, which satisfies∫

Rm∗

|ζ|2

1 + |ζ|
π(dζ) <∞,

with martingale measure ν̃(B, ]0, t]) := ν(B, ]0, t]) − tπ(B). This martingale
measure ν̃ is identified with the Rm-valued (Poisson) compensated-jump process

p̃(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds), t ≥ 0,

in the sense that given the Poisson integer measure ν we obtain the Poisson
martingale measure ν̃, which yields the Poisson compensated-jump process p̃,
and conversely, starting from a Poisson compensated-jump process p̃ we may
define a Poisson integer measure

ν(B, ]0, t]) =
∑

0<s≤t

1{p̃(s)−p̃(s−)∈B},

which yields the Poisson martingale measure ν̃. Thus, only the p and p̃ is used
instead of ν and ν̃, i.e., the Poisson jump-compensated process p̃ and the Poisson
martingale measure p̃ are used indistinctive, and differentiated from the context.

• Remark 4.42. Using p̃ instead of ν̃ in the setting of the stochastic integral
results in an integrand of the form

γi(ζ, t) =
∑
j

γ̃i(t)ζj ,

i.e., particular cases, but sufficiently general for all considerations.

It should be clear that a Wiener-Poisson space could be called a Gauss-
Poisson space or a Lévy space since ` = w + p̃ is a (centered) Lévy process,
where w is its continuous or Gaussian part and p̃ is its purely jumps or Poisson
part. We prefer to emphasize the fact that a Wiener process and a Poisson
measure are the driven objects. Recalling that any continuous martingale is
orthogonal to any purely discontinuous martingale (with respect to a common
filtration), we deduce that the processes φ(w) − φ(0) and ψ(p̃) − E{ψ(p̃)} are
orthogonal martingales for any smooth functions φ and ψ, i.e., w and p̃ (or ν)
are independent. Then, as long as the filtration F = (Ft : t ≥ 0) is given and
w, p̃ (or ν) are martingales, the independence of the Wiener process and the
Poisson measure is granted.

As mentioned early, the canonical Wiener-Poisson measure P is defined on
canonical sample space

Cn × Dm = C([0,∞),Rn)×D([0,∞),Rm)

as having characteristic measure

E
{

exp
[
i ξ · x(t)

]}
= exp

{
− t
[ |ξ1|2

2
+

∫
Rm∗

(
1− ei ξ2·ζ + i ξ2 · ζ

)
π(dζ)

]}
,
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for every t ≥ 0 and ξ = (ξ1, ξ2) in Rn × Rm, where x(t) is the projection (or
evaluation) map from Cn × Dm into Rn × Rm.

The canonical sample space Cn × Dm is a Polish space (with the locally
uniform convergence in the first variable and the Skorokhod topology in the
second variable) and a probability measure is then defined on the Borel σ-algebra
B(Cn × Dm) which coincides with the σ-algebra generated by the projections,
i.e., F0

∞ = σ(xt : t ≥ 0). Also, we have the (uncompleted) filtration F0 = {F 0
t :

t ≥ 0} generated by the projection maps x, i.e., F0
t = σ(xs : 0 ≤ s ≤ t). This

filtration induces a predictable σ-algebra P0 on R+ × Cn × Dm, i.e., P0 is the
σ algebra generated by the sets of the form {0} × F0 or (s, t] × Fs, for any
Fs in F0

s , t > s ≥ 0. Because we are working on the sample space of cad-lag
processes, the predictable σ-algebra P0 is not the same as the optional σ-algebra
O0 (also called well-measurable), generated by sets of the form {0} × F0 and
[s, t) × Fs for any Fs in F0

s , any t > s ≥ 0. Similarly, the σ-algebra M0 of
progressively measurable sets is composed by all subsets A of Ω × [0,∞) such
that A ∩ (Ω × [0, t]) belongs to F0(t) × B([0, t]) for every t ≥ 0. Clearly, on
the sample space on Ck we have P0 = O0 = M0, while on Dk we have only
O0 =M0 as expected. Sometimes, this predictable σ-algebra P0 is universally
completed, i.e., one universally complete F0

t to Fut and then Pu is constructed.
We proceed similarly with O0 andM0 to get Ou andMu. The interested reader
is referred to the book Bichteler [25], where various measurability questions are
treated in great details.

• Remark 4.43. Let (Ω,F , P ) be a probability space with F not necessarily
completed with respect to P. If y is a cad-lag process (i.e., a random variable
with values in some Dk) and F0

t (y) denotes the σ-algebra generated by the
random variables {y(s) : 0 ≤ s ≤ t} then the filtration F0(y) = {F0

t (y) : t ≥ 0}
is not necessarily neither right-continuous nor complete. However, if y is a
Lévy process and we add all null sets then we obtain a complete (relative to
F) right-continuous filtration, i.e, if N denotes the σ-algebra of all the P -null
sets in F then Ft(y) = F0

t (y) ∨ N satisfies Ft(y) = ∩s>tFs(y), for any t ≥ 0,
see Proposition 3.22 in Chapter 3. In particular, if y is a Lévy process and z
is a Rk-valued stochastic process which is predictable, optional or progressively
measurable relative to F(y) = {Ft(y) : t ≥ 0} then there exists a version of z
which is predictable, optional or progressively measurable relative to F0(y), and
so P{z(t) = h(t, y|[0,t])} = 1, for every t ≥ 0, for some measurable function h

from R+ ×Dk endowed with the σ-algebra P0, O0 or M0 into Rk, where y|[0,t]
means the random variable ω 7→ y(· ∧ t, ω).

Now we are ready to discuss the following

Definition 4.44. A non-anticipating functional is any Borel measurable func-
tion f from Cn×Dm into Ck×D` such that the mapping x 7→ f(x)(t) with values
in Rk+` is F0

t -measurable, for every t ≥ 0. Similarly, a measurable function from
(R+ × Cn × Dm,P0) into Rk+` is called a predictable functional. Moreover, if
the universally completed σ-algebra Fut or Pu is used instead of F0

t or P0, then
the prefix universally is added, e.g., an universally predictable functional.
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Because non-anticipating functionals take values in some Ck×D`, the notions
of optional, progressively measurable and adapted functional coincide. Actually,
another name for non-anticipating functionals could be progressively measurable
or optional functionals. Furthermore, we may consider predictable functionals
defined on E × R × Cn × Dm or R × Cn × Dm × E, for any Polish space E, in
particular E = Rm∗ or E = Rd. Clearly the identity map is a non-anticipating
functional and the following function

(t, x) 7→ x−(t), where x−(0) = 0, x−(t) = lim
s→t−

x(t), t > 0,

is a predictable functional. Perhaps another typical example is the (stochastic)
integral of a simple integrand, i.e., if 0 = t0 < t1 < t2 < · · · < tn are given real
numbers and gi is a (real-valued) measurable function in (Cn × Dm,F0

ti−1
), for

every i = 1, . . . , n, then

x 7→ z, z(t) =

n∑
i=1

gi(x)[x(t ∧ ti)− x(t ∧ ti−1)], t ≥ 0, (4.110)

defines a non-anticipating functional, and z(t) = z(tn) if t ≥ tn. Moreover, if
ti are stopping times relative to the uncompleted filtration F0 then gi should
be (real-valued) F0(ti−1)-measurable functions. Furthermore, if f is a non-
anticipating functional then the mapping (t, x) 7→ f−(t, x) defined as f−(t, x) =
f(x−(t)) is a predictable functional.

• Remark 4.45. Once a probability P is given in Cn × Dm we complete the
predictable σ-algebra, i.e., we may complete first the filtration and then we
generate the predictable σ-algebra. Thus, an integrand of stochastic integrals
is a predictable process y, which is identified with its equivalence class, rela-
tive to the measure dt × P (dω), for the Wiener process, and to the measure
π(dζ) × dt × P (dω), for the Poisson measure. In this case, any adapted (and
measurable) process has a predictable process belonging to the same equivalence
class, moreover, once a predictable (respect to the completed filtration) repre-
sentative of the equivalence class has been chosen, there is a version which is
predictable with respect to uncompleted filtration, i.e., a predictable functional.
Hence, in the case of the canonical Wiener-Poisson integrals, any integrands
may be assumed to be a predictable functionals.

On the canonical Wiener-Poisson space, the filtration F = {Ft : t ≥ 0}
is the minimal completed filtration (and right-continuous) such that canonical
process x is adapted. However, given a Wiener-Poisson space, the filtration is
also assumed given and it may not be the one generated by the Wiener process
w and the Poisson measure ν. Therefore, if in a given Wiener-Poisson space
the filtration results to be the one generated by the Wiener process w and the
Poisson measure ν, then we can consider the image measure and reduce to the
canonical Wiener-Poisson space.

Suppose that on the canonical Wiener-Poisson space with Lévy measure π,
we are given some real-valued adapted processes (ai(t) : t ≥ 0, i = 1, . . . , d),
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(bik(t) : t ≥ 0, i = 1, . . . , d, k = 1, . . . , n) and (γi(ζ, t) : t ≥ 0, ζ ∈ Rm0 ), such
that for every i = 1, . . . , d and any r = 1, 2, . . . , we have∫ T

0

[
|ai(t)|+

n∑
k=1

|bik(t)|2 +

∫
Rm∗
|γi(ζ, t)|2π(dζ)

]
dt <∞, (4.111)

P -almost surely for any T > 0. This means that ai, bik and γj are real-valued
predictable functionals ai(t, w, p̃), bik(t, w, p̃) and γi(ζ, t, w, p̃). Hence, an Itô
process with jumps takes the form

Xi(t) =

∫ t

0

ai(s, w, p̃)ds+

n∑
k=1

∫ t

0

bik(s, w, p̃)dwk(s) +

+

∫
Rm∗ ×]0,t]

γi(ζ, s, w, p̃)p̃(dζ,ds), ∀ t ≥ 0,

(4.112)

for any i = 1, . . . , d. We may use the notation X(t) = X(t, ω, w, p̃), with ω in
Ω = Cn×Dm, or just X = X(w, p̃) to emphasize the dependency on the Wiener
process and the Poisson measure p̃.

Proposition 4.46. Any Itô process with jumps of the form (4.112) is a non-
anticipating functional on the canonical Wiener-Poisson space, namely, X =
F (w, p̃), for some non-anticipating functional. Moreover, if (Ω′, P ′,F′, w′, p′) is
another Wiener-Poisson space then

P ′
{
X ′(w′, p̃′) = F (w′, p̃′)

}
= 1,

i.e., the stochastic integral is a non-anticipating functional on the Wiener-
Poisson space.

Proof. This means that we should prove that any process of the form (4.112) is
indistinguishable from a non-anticipating functional. As usual, by a localization
argument, we may assume that the predictable functional coefficients satisfy∫ T

0

E
{
|ai(t)|+

n∑
k=1

|bik(t)|2 +

∫
Rm∗
|γi(ζ, t)|2π(dζ)

}
dt <∞.

Now, if the coefficients are piecewise constant (i.e., simple or elementary func-
tions) then (as noted early) the stochastic integral is a non-anticipating func-
tional.

In general, by a monotone class argument (or merely, by the proper definition
of the stochastic integral) we may find a sequence of elementary predictable
functionals ak, bk and γk such that

E
{∫ T

0

[
|ak(t)− a(t)|+ |bk(t)− b(t)|2+

+

∫
Rm∗
|γk(ζ, t)− γ(ζ, t)|2π(dζ)

]
dt
}
→ 0,
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for any T > 0. Then, by passing to a subsequence if necessary, we have

sup
0≤t≤T

|Xk(t, w, p̃)−X(t, w, p̃)| → 0,

outside of a set N with P (N) = 0, for any T > 0, where Xk(t, w, p̃) denotes the
stochastic integral with elementary integrands ak, bk and γk.

Hence, if Fk is a non-anticipating functional satisfying Xk(w, p̃) = Fk(w, p̃)
then define

F (w, p̃) =

{
limk Fk(w, p̃) in Ω rN,

0 in N,

where the limit is uniformly on [0, T ], any T > 0. Actually, we can use the
convergence in L2-sup-norm to define the non-anticipating functional F. Thus
X = F (w, p̃).

This procedure gives an approximation independent of the particular Wiener
process and Poisson measure used, so that the same approximation yields the
equality X ′(w′, p̃′) = F (w′, p̃′), P ′-almost surely.

Now, let η and ξ be two cad-lag non-anticipative processes relative to (w, p̃),
see Definition 4.41, and assume that each component ηi of η is non-decreasing.
The non-anticipative property imply that if Fη,ξ = F(w, p̃, η, ξ) is the min-
imum completed filtration such that (w, p̃, η, ξ) is adapted to, then (w, p̃) is
a martingale, i.e., (Ω, P,Fη,ξ, w, p̃) is a Wiener-Poisson space. Moreover, any
Fη,ξ-adapted process y can be represented by a predictable functional, i.e.,
y(t) = y(t, w, p̃, η, ξ), P -almost surely, for almost every t, where (t, w, p̃, η, ξ) 7→ y
is a measurable function from R× Cn × Dm+r+d into Rk+`.

Proposition 4.47. Let us assume that aik, bik and γi are real-valued predictable
functional on Cn × Dm+r+d as above. Then the stochastic integral

Xi(t) = ξi(t) +

r∑
j=1

∫ t

0

aij(s)dηk(s) +

n∑
k=1

∫ t

0

bik(s)dwk(s) +

+

∫
Rm∗ ×]0,t]

γi(ζ, s)p̃(dζ,ds), ∀ t ≥ 0,

(4.113)

defines a non-anticipating functional, i.e., X = F (w, p̃, η, ξ). Moreover, if the
process η is also a non-anticipating functional η(w, p̃, ξ) then X = G(w, p̃, ξ).
Furthermore, if H(w, p̃, ξ) denotes a non-anticipating functional corresponding
to a deterministic process ξ, then for any Wiener-Poisson space (Ω′, P ′,F′, w′, p′)
with a cad-lag process ξ′ independent of (w′, p̃′) the stochastic integral pro-
cess like (4.113) is clearly defined and denoted by X ′(t), and we have X ′(t) =
H(w′, p̃′, ξ′), P ′-almost surely.

Proof. The arguments are essentially the same as in previous Proposition 4.46.
Note that the functional G(w′, p̃′, ξ′) depends on the distribution Pξ on Dd.
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Perhaps we should make some comments on the functional H. Indeed, if
the coefficients are simple (or elementary) functions then the stochastic integral
takes the form

X(t) = ξ(t) +

n∑
i=1

ai−1[η(t ∧ ti−)− η(t ∧ ti−1)] +

+

n∑
i=1

bi−1[w(t ∧ ti)− w(t ∧ ti−1)] +

n∑
i=1

m∑
j=1

γi−1,j p̃(Kj×]ti−1, t ∧ ti]),

where ai, bi and γi are themselves predictable functionals depending on some
parameter integer k. This defines a approximating functional Hk(w, p̃, ξ), having
the desired properties, which are preserved (P - or P ′-) almost surely as k goes
to infinite.

Certainly, an important particular case is when the process ξ(·) is actually
equal to a Rd-valued random variable ξ, which is independent of the Wiener
process and the Poisson measure p.

4.4 Convergence of Integral Processes

A crucial point is to find a convergent (in various topologies) subsequence from
a given sequence of stochastic processes. In the following we collect various
sufficient (and necessary in some cases) conditions to this end.

4.4.1 Standard Convergences

An important result related with stochastically (left or right) continuous pro-
cesses can be found in Skorokhod [229, Section 1.6, pp. 9–14]

Theorem 4.48 (Skorokhod). Let Xn = (Xn(t) : t ≥ 0), n = 1, 2, . . . be a se-
quence of stochastically continuous processes with values in Rd in the probability
spaces (Ωn,Fn, Pn). Assume that for every ε > 0 there is a δ > 0 such that for
every n, t, s satisfying 0 ≤ t ≤ 1/ε, 0 ≤ s ≤ 1/ε, |t− s| < δ we have

Pn{|Xn(t)| ≥ 1/δ}+ Pn{|Xn(t)−Xn(s)| ≥ ε} ≤ ε. (4.114)

Then there exist a stochastically continuous process X̃ = (X̃(t) : t ≥ 0) and a
subsequence, indexed by N, of stochastic processes X̃n = (X̃n(t) : t ≥ 0), n in
N, all with values in Rd and defined in another probability space (Ω̃, F̃ , P̃ ), such
that Xn and X̃n have the same finite-dimensional distributions for every n in
N and

lim
n∈N

sup
0≤t≤1/ε

P̃{|X̃n(t)− X̃(t)| ≥ ε} = 0, (4.115)

for every ε > 0.
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Certainly, the construction uses the canonical probability space (Ω̃, F̃ , P̃ ),
where Ω̃ = [0, 1] with the Lebesgue measure P̃ on the Borel σ-algebra F̃ =
B([0, 1]). It is clear that each process Xn or X̃n may be only left (or right)
stochastically continuous and the result remain valid. Moreover, if the processes
{Xn : n ∈ N} are continuous or cad-lag then there are continuous or cad-lag
version of the processes {X̃n : n ∈ N}. Indeed, denote by P̃ ∗n the outer measure
on the product space (Rd)[0,∞) associated with the process X̃n, or equivalently
to Xn. Since Xn is cad-lag, P̃ ∗n{D([0,∞),Rd)} = 1, and therefore the set

{ω̃ : X̃n(·, ω̃) 6∈ D([0,∞),Rd)}

has P̃ ∗n -measure zero. However, the limit process X̃ may not be continuous nor
cad-lag, since in (4.114) the sup is outside of the probability.

The Skorokhod Representation Theorem can be generalized to a metric space
(X, ρ) we have the following result, where on [0, 1] is considered with the usual
Borel σ-algebra and the standard Lebesgue measure (sometimes referred to as
the universal probability space).

Theorem 4.49. Given a weak convergent sequence of probability measures on
metric space X, µn → µ0, assume that either X0 is separable or each µn, n =
0, 1, . . .} is tight. Then there exist a sequence of random variables Xn : [0, 1]→
X0, n = 0, 1, . . .}, such that (1) the image measures of Xn are the µn and (2)
Xn(θ)→ X(θ), for any θ in [0, 1].

Lévy processes are characterized by being stochastically continuous processes
with a specific Lévy characteristic function (or Fourier transform), with drift
vector b, covariance matrix a and Lévy measure (or jump intensity) π. Hence,
if Xn are Lévy processes then so are the processes X̃n, X̃, after choosing ap-
propriate versions. In particular this applies to Wiener processes and Poisson
measures.

Another point of view in this direction is to consider a Rd-valued stochastic
process as a probability measure in a canonical space such as C([0,∞),Rd) or
the space D([0,∞),Rd), of continuous or cad-lag functions from [0,∞) into Rd,
which are Polish (i.e., separable, complete and metric) spaces. Thus, a con-
tinuous or cad-lag stochastic process is a random variable with values in either
C([0,∞),Rd) or D([0,∞),Rd). The modulus of continuity and its equivalent for
cad-lag process can be estimated as follows:

(1) if X is a separable process on [0, T ] such that there exist positive constants
p, q, C such that

E
{
|X(t)−X(s)|p

}
≤ C|t− s|1+q, ∀t, s ∈ [0, T ],

then for every 0 < α < q/p we have

lim
ε→0

ε−α ρ
C

(ε,X, T ) = 0,

ρ
C

(ε,X, T ) := sup
0≤t≤s≤t+ε≤T

{
|X(t)−X(s)|

}
,
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almost surely.

(2) if X is a separable process on [0, T ] such that there exist positive constants
p, q, C such that

E
{[
|X(t+ δ)−X(s)| ∧ |X(s)−X(t)|

]p} ≤ Cδ1+q, ∀δ > 0,

for every 0 ≤ t ≤ s ≤ t+ δ ≤ T then for every 0 < α < q/p we have

lim
ε→0

ε−α ρ
D

(ε,X, T ) = 0,

ρ
D

(ε,X, T ) := sup
0≤t≤s≤t+ε≤T

{
|X(t+ ε)−X(s)| ∧ |X(s)−X(t)|

}
,

almost surely.

To check these statements, we consider the diadic numbers D = {k2−n : k =
0, 1, . . . , 2n, n ≥ 0} on the time interval [0, T ] = [0, 1], for simplicity. For each
path, define

Zn :=

2n−1∑
k=0

Zn(k), Zn(k) := |X((k + 1)2−n)−X(k2−n)|,

to get

|X(t)−X(s)| ≤ Zn, ∀t, s ∈ D, |t− s| = 2−n.

Since D is a separant subset of X, this shows that

ρ
C

(2−n, X, T ) ≤ sup
m≥n

Zm ≤
∑
m≥n

Zm.

The assumption on the process X in (1) yields

P
{
|X(t)−X(s)| ≥ |t− s|α

}
≤ C|t− s|1+β ,

for every t, s in [0, 1] and with β := p− qα. Therefore

P
{
Zm ≥ 2−mα

}
≤

2m−1∑
k=0

P
{
Zm(k) ≥ 2−mα

}
≤ 2−mβ ,

and

P
{ ∑
m≥n

Zm ≥
∑
m≥n

2−mα
}
≤
∑
m≥n

2−mβ =
2−nβ

1− 2−β
.

Hence

P
{

2nα ρ
C

(2−n, X, T ) ≥ 1

1− 2−α
}
≤ 2−nβ

1− 2−β
,
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and by means of the Borel-Cantelli lemma, we deduce that

lim sup
ε→0

ε−α ρ
C

(ε,X, T ) ≤ 1

1− 2−α
,

almost surely, i.e, statement (1) for any 0 < α′ < α. To show assertion (2), we
may redefine

Zn(k, `) := |X((k + 1)2−n)−X(k2−n)| ∧

∧|X(`2−n)−X((`− 1)2−n)|,

Zn :=
∑

0<`≤k<2m

Zn(k, `)

to get

ρ
D

(2−n, X, T ) ≤
∑
m≥n

Zm,

and then to conclude similarly as above.
Going back to previous Theorem 4.48, if the processes Xn are cad-lag and

the condition (4.114) is replaced by the following assumption: for every ε > 0
there is a δ > 0 such that for every n

Pn{w(Xn, δ, 1/δ) ≥ ε}+ Pn{ sup
0≤t≤1/ε

|Xn(t)| ≥ 1/δ} ≤ ε,

w(Xn, r, T ) = inf
ti

max
i

sup
ti−1≤s,t<ti

|Xn(t)−Xn(s)|
(4.116)

where 0 = t0 < t1 < · · · < tn−1 < T ≤ tn, ti − ti−1 ≥ r, i = 1, . . . , n,
then the limit X̃ is a cad-lag process and the sequence of laws P̃n (of Xn or
equivalently of X̃n) on the canonical space D([0,∞),Rd) converge weakly to
the law of X̃. Similarly, if the processes Xn are continuous and the condition
(4.114) is replaced by: for every ε > 0 there is a δ > 0 such that for every n

Pn{ sup
0≤t≤1/ε

|Xn(t)| ≥ 1/δ}+ Pn{ sup
T (ε,δ)

|Xn(t)−Xn(s)| ≥ ε} ≤ ε, (4.117)

where now T (ε, δ) is the subset of t, s satisfying 0 ≤ t ≤ 1/ε − δ, 0 ≤ s ≤ 1/ε,
|t− s| ≤ δ, then the limit X̃ is a continuous process and the sequence of law P̃n
on the canonical space C([0,∞),Rd) converges weakly to the law of X̃.

Sometime the above criteria (of tightness) of a sequence Xn could be not
usable or hard to meet, specially the condition relative the uniform sup-bound
on the increments in either (4.116) or (4.117). The so-called Aldous’ criterion
for tightness is a suitable tool. This reads as follows

Theorem 4.50. Let Xn = (Xn(t) : t ≥ 0), n = 1, 2, . . . be a sequence of
adapted cad-lag processes with values in Rd in the filtered probability spaces
(Ωn,Fn, Pn,Fn(t) : t ≥ 0). Assume that for every ε > 0 there is a δ > 0 such
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that for every n and stopping times τ, θ satisfying θ ≤ τ ≤ 1/ε, τ − θ ≤ δ, we
have

Pn{ sup
0≤t≤1/ε

|Xn(t)| ≥ 1/δ}+ Pn{|Xn(τ)−Xn(θ)| ≥ ε} ≤ ε. (4.118)

Denote by P̃n the probability law of the process Xn in the canonical space
D([0,∞),Rd) of cad-lag functions. Then there exist a probability measure P̃
in D([0,∞),Rd) and a subsequence, indexed by N, of {P̃n : n ≥ 1} such that

lim
n∈N

P̃n(F ) ≤ P̃ (F ), ∀ closed F ∈ D([0,∞),Rd), (4.119)

and we also have P̃n(h)→ P̃ (h), for every bounded h which is P̃ -almost surely
continuous, i.e., P̃n converge weakly to P̃ . Moreover, in some probability space
(Ω,F , P ) there are random variables X̃n and X̃ with values in D([0,∞),Rd)
and distributions P̃n and P̃ , respectively, such that X̃n converges in probability
X̃. Furthermore, if we assume that for every ε > 0 there exists an index nε such
that

Pn{ sup
0≤t≤1/ε

|Xn(t)−Xn(t−)| ≥ ε} ≤ ε ∀n ≥ nε (4.120)

then the limiting probability measure P̃ satisfies P̃
(
C([0,∞),Rd)

)
= 1, i.e., P̃

defines a probability measure on the canonical space C([0,∞),Rd) of continuous
functions.

It is clear that the statement regarding the D([0,∞),Rd)-valued random
variables comes from Skorokhod theorem. Recall that, if ρD(·, ·) denotes the
metric in the Polish space D([0,∞),Rd), then X̃n converges in probability X̃ if
and only if for every ε > 0 we have

lim
n∈N

P̃{ρD(X̃n, X̃) ≥ ε} = 0,

in particular

lim
n∈N

P̃{sup
T (ε)

|X̃n(t+ ε)− X̃n(s)| ∧ |X̃n(s)− X̃n(t)| ≥ ε} = 0,

where T (ε) is the subset of t, s satisfying 0 ≤ s, t ≤ 1/ε, 0 ≤ t ≤ s ≤ t+ ε.
Note that the filtration {Fn(t) : t ≥ 0} is always right-continuous (in this

case, not necessarily completed). It is customary to identify a cad-lag process
Xn defined on the probability spaces (Ωn,Fn, Pn) with its probability law P̃n on
D([0,∞),Rd). Elements in the canonical space D([0,∞),Rd) are denoted by ω
and the canonical process ω 7→ ω(t), which is interpreted as the projection from
D([0,∞),Rd) into Rd or as the identity mapping from D([0,∞),Rd) into itself
is denoted by x : (t, ω) 7→ ω(t) or xt = xt(ω) = ω(t) or x(t) = x(t, ω) = ω(t)
as long as no confusion may arrive. Recalling that ωn → ω in the Skorokhod
topology if and only if there exists a sequence λn of continuous and strictly
increasing functions with λn(0) = 0 and λn(∞) =∞ such that

sup
s
|λn(s)− s| → 0 sup

s≤T
|ωn(λn(s))− ω(s)| → 0,
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for every T > 0, we can prove that, besides the projection function x, the
functions

ω 7→ sup
t≤T
|ω(t)|, ω 7→ sup

t≤T
|ω(t)− ω(t−)|

are continuous from D([0,∞),Rd) into R for any ω such that ω(T ) = ω(T−).
Moreover,

ω 7→
∑
t≤T

h
(
ω(t)− ω(t−)

)
,

with h a continuous function vanishing near zero, is also continuous. It is clear
that if P̃ is quasi-left continuous then P̃{ω(T ) = ω(T−)} = 0 for every T > 0,
and the above functionals are P̃ -almost surely continuous.

Also on D([0,∞),Rd) there is another canonical (integer random measure)
process ω 7→ ν(dz,dt, ω), defined as

ν(B, ]a, b], ω) :=
∑
a<t≤b

1{ω(t)−ω(t−)∈B}, ∀B ∈ B(Rd∗), b > a ≥ 0,

which is interpreted as the counting jumps measure. Once a probability P is
given so that the canonical process x is a local martingale, then its continuous
martingale part xc, the predictable jump compensator measure νp and the local
martingale measure ν̃ := ν − νp are defined.

Let h(t, x, v) be a real valued Borel measurable function which is bounded
and locally uniform continuous in x. For every T > 0 consider the expression

ω 7→
∫ T

0

h(t, x(t, ω))dt,

which is a continuous and bounded function from D([0,∞),Rd) into R. Then,
with the notation of the previous Theorem 4.50 we have

En
{∫ T

0

h(t,Xn(t))dt
}

= Ẽn
{∫ T

0

h(t, x(t))dt
}

= E
{∫ T

0

h(t, X̃n(t))dt
}
,

Hence, either if P̃n is weakly convergent to P̃ or if X̃n converge in probability
to X̃ we deduce that the above expression converges to

Ẽ
{∫ T

0

h(t, x(t))dt
}

= E
{∫ T

0

h(t, X̃(t))dt
}
,

where En and E are the mathematical expectation in the probability spaces
(Ωn,Fn, Pn) and (Ω,F , P ), respectively, and Ẽn and Ẽ are the integral with re-
spect to the probability laws P̃n and P̃ , respectively. Moreover, the convergence
holds true if we have a sequence {hn(t, x)} of measurable functions, which are
equi-bounded in (t, x) and equi-locally uniform continuous in x, and pointwise
convergent to some function h(t, x).
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There is a key class of discontinuous functions in D([0,∞),Rd), namely, the
so-called counting functions of the form∑

ti≤t

1ti≤s, ∀t ≥ 0,

for some strictly increasing sequence 0 < ti < ti+1, ti → ∞. Recall that a
point process is a cad-lag process with counting functions as sample paths. The
following result is sometime useful

Theorem 4.51. Let Xn = (Xn(t) : t ≥ 0), n = 1, 2, . . . be a sequence of increas-
ing cad-lag processes with values in Rd in the probability spaces (Ωn,Fn, Pn).
Suppose that the distributions of

(
Xn(t1), . . . , Xn(tm)

)
in (Rd)m converges to(

X(t1), . . . , X(tm)
)

for every t1, . . . , tm in some dense set of [0,∞), where X =
(X(t) : t ≥ 0) is an increasing cad-lag process with values in Rd. If either X is
continuous or all Xn and X are point processes then the law of Xn converges
weakly to the probability law of X in the canonical space D([0,∞),Rd).

The reader is referred to Proposition VI.3.26 and Theorems VI.3.37, VI.4.5
in the book Jacod and Shiryaev [117, Chapter VI, pp. 312–322].

Again, with the notation of Theorem 4.50, if the canonical process x is a local
martingale relative to P̃n then its continuous part xcn and its local martingale
measure ν̃n are defined and the expressions

ω 7→
∫ T

0

h(t, x(t))dxcn(t) and ω 7→
∫

]0,T ]×Rd∗
h̃(t, x(t), z)ν̃n(dz,dt)

are P̃n-almost surely continuous, as long as h̃(t, x, z) is locally uniform contin-
uous in x and uniformly integrable in z with respect to νpn, the compensator
of ν under P̃n. However, to pass to the limit we will need the P̃ -almost surely
continuity. If Xn is a specific Lévy process then its characteristic function (or
Fourier transform) is determined by the drift vector b, the covariance matrix
a and the Lévy measure (or jump intensity) π (all independent of n or conve-
niently convergent as n tends to infinite). Hence, xcn = Xc

n is its continuous
local martingale part with predictable quadratic variation at and ν̃n its local
martingale measure with predictable jump compensator (Lévy measure) π. The
limiting probability law P̃ has the same properties, so that the mathematical
expectations

Ẽn
{∫ T

0

h(t, x(t))dxcn(t)
}

and Ẽn
{∫

]0,T ]×Rd∗
h̃(t, x(t), z)ν̃n(dz,dt)

}
converge to

Ẽ
{∫ T

0

h(t, x(t))dxc(t)
}

and Ẽ
{∫

]0,T ]×Rd∗
h̃(t, x(t), z)ν̃(dz,dt)

}
.

Moreover, the processes X̃n and X̃ on the probability space (Ω,F , P ) are Lévy
processes with the same characteristic function. Since the distributions of X̃n
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and X̃ coincide with those of the canonical process x under P̃n and P̃ , respec-
tively, and the stochastic integrals are limits (in L2) of finite sums, we deduce
that the previous stochastic integrals can be considered in the probability space
(Ω,F , P ). Thus

E
{∫ T

0

h(t, X̃n(t))dX̃c
n(t)

}
and E

{∫
]0,T ]×Rd∗

h̃(t, X̃n(t), z)ν̃X̃n(dz,dt)
}

converge to

E
{∫ T

0

h(t, X̃(t))dX̃c(t)
}

and E
{∫

]0,T ]×Rd∗
h̃(t, X̃(t), z)ν̃X̃(dz,dt)

}
,

under the previous conditions, i.e., X̃n is a Lévy process with P̃n (its probability
law) that converges weakly to P̃ , the probability law of X̃. More delicate argu-
ments apply if Xn are local martingale with characteristics determined as con-
tinuous predictable functionals on the paths of Xn, see Jacod and Shiryaev [117,
Chapter VII, pp. 348–387].

However, because the processes X̃n converge in probability to X̃, we can es-
tablish the above convergence independently. We rephrase the result as follows:

Theorem 4.52. Let fn, gn and wn, νn, n = 1, 2, . . . be sequences of real-
valued predictable processes in [0,∞) and [0,∞) × Rm∗ , d-dimensional Wiener
processes and Poisson measures with Lévy measure π on Rm∗ , all defined in a
filtered probability space (Ω,F , P,F(t) : t ≥ 0). Suppose that for some processes
f, g, w and ν we have∫ T

0

|fn(t)− f(t)|2dt→ 0 and

∫ T

0

dt

∫
Rm∗
|gn(z, t)− g(z, t)|2π(dz)→ 0

and

wn(t)→ w(t), νn(K×]0, t])→ ν(K×]0, t]),

in probability, for every t in [0, T ] and any compact subset K of Rm∗ , where it is
implicitly assumed that∫ T

0

[
|fn(t)|2 + |f(t)|2

]
dt <∞,∫ T

0

dt

∫
Rm∗

[
|gn(z, t)|2 + |g(z, t)|2

]
π(dz) <∞,

almost surely. Then the stochastic integrals∫ T

0

fn(t)dwn(t)→
∫ T

0

f(t)dw(t),∫
Rm∗ ×]0,T ]

gn(z, t)ν̃n(dz,dt)→
∫
Rm∗ ×]0,T ]

g(z, t)ν̃(dz,dt)

in probability, where ν̃n := νn − πdt and ν̃ := ν − πdt are the Poisson (local)
martingale measures associated with Poisson measures νn and ν.
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Proof. We follows the arguments in Skorokhod [229, Section 2.3, pp. 29–34].
First, recall that elementary predictable processes have the form h(t, ω) =
hi−1(ω) if ti−1 < t ≤ ti with some i = 1, . . . , n, where 0 = t0 < t1 < · · · < tn
are real numbers and hi−1 is a F(ti−1) measurable bounded random variable
for any i, and h(t, ω) = 0 otherwise, or h(z, t, ω) = hi−1,j(ω) if ti−1 < t ≤ ti and
z belongs to Kj with some i = 1, . . . , n, and j = 1, . . . ,m, where 0 = t0 < t1 <
· · · < tn are real numbers, Kj are disjoint compact subsets of Rm∗ and hi−1,j

is a F(ti−1) measurable bounded random variable for any i, and h(t, ω) = 0
otherwise. Then, we find sequences of elementary predictable processes fn,k,
gn,k, fk and gk, such that∫ T

0

|fn,k(t)− fn(t)|2dt→ 0,

∫ T

0

dt

∫
Rm∗
|gn,k(z, t)− gn(z, t)|2π(dz)→ 0∫ T

0

|fk(t)− f(t)|2dt→ 0 and

∫ T

0

dt

∫
Rm∗
|gk(z, t)− g(z, t)|2π(dz)→ 0

in probability as k →∞, for every n. It is clear that∫ T

0

fn,k(t)dwn(t)→
∫ T

0

fk(t)dw(t),∫
Rm∗ ×]0,T ]

gn,k(z, t)ν̃n(dz,dt)→
∫
Rm∗ ×]0,T ]

gk(z, t)ν̃(dz,dt)

in probability for each k. Now, based on the inequalities

P
{

sup
0≤t≤T

∣∣ ∫ t

0

h(s)dw(s)
∣∣ ≥ ε} ≤ δ

ε2
+ P

{∫ T

0

|h(s)|2ds ≥ δ
}
,

and

P
{

sup
0≤t≤T

∣∣ ∫
Rm∗ ×(0,t]

h(z, s) ν̃(dz,ds)
∣∣ ≥ ε} ≤ δ

ε2
+

+P
{∫ T

0

ds

∫
Rm∗
|h(z, s)|2π(dz) ≥ δ

}
,

valid for every positive constant T, δ and ε, we deduce that∫ T

0

fn,k(t)dwn(t)→
∫ T

0

fn(t)dwn(t),∫
Rm∗ ×]0,T ]

gn,k(z, t)ν̃n(dz,dt)→
∫
Rm∗ ×]0,T ]

gn(z, t)ν̃n(dz,dt)

in probability as k →∞, uniformly in n, which complete the proof.

Notice that in the context of the previous Theorem 4.52 the conditions νn →
ν and ν̃n → ν̃ are equivalents. On the other hand, if wn(t) and νn(K×]0, t])
converge in probability uniformly for t in [0, T ] then the same is true for the
stochastic integrals.

Let wn and νn, n = 1, 2, . . . be sequences of d-dimensional (standard) Wiener
processes and Poisson measures with Lévy measure π on Rm∗ , all defined in a
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filtered probability space (Ω,F , P,Fn(t) : t ≥ 0), where Fn(t) is the σ-algebra
generated by {xn(s) : s ≤ t}, where xn is a cad-lag process for each n. It is clear
that wn and ν̃n(dz,dt) := ν(dz,dt) − π(dz) dt are martingale and martingale
measures relative to (Fn(t) : t ≥ 0) and (Fn(t+) : t ≥ 0). If wn(t), νn(K, ]0, t])
and xn(t) converge in probability to w(t), ν(K, ]0, t]) and x(t), for every t ≥ 0
and any compact subset K of Rm∗ , then w and ν are too, a d-dimensional
(standard) Wiener process and a Poisson measure with Lévy measure π on Rm∗ ,
but with respect to the limiting filtration either (F(t) : t ≥ 0) or (F(t+) : t ≥ 0),
where F(t) is the σ-algebra generated by {x(s) : s ≤ t}. The above remark
can be generalized with a random change of time, i.e., if `(t) is a continuous
nondecreasing (adapted) process and such that `(0) = 0 and `(t) is a stopping
time relative to each filtration (Fn(t) : t ≥ 0) the we can change t into `(t)
for each process wn, νn and xn. This means that if wn a square integrable
martingale with ` as its predictable quadratic covariation (just one dimension
to simplify notation) and νn has a jump compensator νpn given by

νpn(B, ]a, b]) = π(B) [`(b)− `(a)], ∀B ∈ B(Rm∗ ), b > a ≥ 0,

relative to (Fn(t) : t ≥ 0), then the same is valid for the limiting process w,
ν and x. Therefore, the previous Theorem 4.52 can be modified for this case,
replacing dt with `(t). However, if d`n changes with n then the situation requires
more details.

Recall the locally uniform and the Skorokhod’s topologies given by the family
of functions ρ(ω, δ, ]a, b]) and w(ω, δ, ]a, b]), which are defined for ω in the space
of cad-lag functions D([0,∞),Rd), by the expressions

ρ(ω, δ, ]a, b]) := sup{|ω(t)− ω(s)| : a < s, t ≤ b, |t− s| ≤ δ},

w(ω, δ, ]a, b]) := inf
{ti}

sup
i

sup{|ω(t)− ω(s)| : ti−1 ≤ s < t < ti},

where {ti} ranges over all partitions of the form a = t0 < t1 < · · · < tn−1 <
b ≤ tn, with ti − ti−1 ≥ δ and n ≥ 1. Both family of functions ρ(ω, δ, ]a, b])
and w(ω, δ, ]a, b]), define the same topology on the space of continuous functions
C([0,∞),Rd). It is clear ρ and w is the oscillation (or variation) for continuous
and cad-lag functions.

If `(t) is a nondecreasing element in C([0,∞),Rd) and f(t) is another element
in D([0,∞),Rd), then the Riemann-Stieltjes integral∫ T

0

f(t)d`(t), ∀T ≥ 0,

is defined as the limit of the Riemann sums

R(f, `, π, [0, T [) :=

n∑
i=1

f(t∗i )[`(ti)− `(ti−1)],

$ = {ti, t∗i }, 0 = t0 < t1 < · · · < tn = T, ti−1 ≤ t∗i < ti,
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when the mesh of the partition |$| := maxi{ti − ti−1} vanishes. Moreover, if
we define

f$(t) := f(t∗i ) if ti−1 < t ≤ ti,

then

lim
|$|→0

∫ T

0

|f(t)− f$(t)|d`(t) = 0,

for every T > 0. Indeed, since f(t)− f$(t) = f(t)− f(t∗i ) for some t in ]ti−1, ti]
and t∗i in [ti−1, ti[, we see that for every ε > 0, i ≥ 1 and any t in ]ti−1, ti],

|f(t)− f$(t)| ≤ w(f, |$|, ]0, T ]) + ε+

+ max
ti+1<s≤ti

1{|f(s)−f(s−)|>ε} |f(s)− f(s−)|,

i.e., the variation (or oscillation) is bounded by its continuous variation, plus ε,
plus the maximum jumps bigger than ε. Hence∫ T

0

|f(t)− f$(t)|d`(t) =

n∑
i=1

∫ ti

ti−1

|f(t)− f$(t)|d`(t) ≤

≤
n∑
i=1

(
sup

ti−1<t≤ti
|f(t)− f$(t)|

)
[`(ti)− `(ti−1)]

which yields∫ T

0

|f(t)− f$(t)|d`(t) ≤
[
w(f, |$|, ]0, T ]) + ε

][
`(T )− `(0)

]
+

+ρ(`, |$|, ]0, T ])
∑

0<s≤T

1{|f(s)−f(s−)|>ε} |f(s)− f(s−)|.

From the definition of the cad-lag modulus of continuity w we have∑
a<t≤b

1{|ω(t)−ω(t−)|≥w(ω,δ,]a,b])} ≤
b− a
δ

,

for every ω, δ > 0, and b > a ≥ 0. Therefore, for ε = w(f, δ, ]0, T ]) we obtain
∫ T

0

|f(t)− f$(t)|d`(t) ≤ T

δ
ρ(`, |$|, ]0, T ]) +

+
[
w(f, |$|, ]0, T ]) + w(f, δ, ]0, T ])

][
`(T )− `(0)

]
.

(4.121)

Actually, this estimate implies the following result.

Lemma 4.53. Let {fn} be a family of cad-lag processes and {`n} be another
family of continuous and nondecreasing processes, defined in a probability space
(Ωn,Fn, Pn). Assume that for every ε > 0 there is a δ > 0 such that for every n

Pn{w(fn, δ, ]0, 1/ε]) ≥ ε}+ Pn{ sup
0≤t≤1/ε

|fn(t)| ≥ 1/δ} ≤ ε
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and

Pn{|`n(1/ε)− `n(0)| > 1/δ}+ Pn{ρ(`n, δ, ]0, 1/ε]) ≥ ε} ≤ ε.

Now, for any partition $ = {ti, t∗i }, 0 = t0 < t1 < · · · < tn = T, ti−1 ≤ t∗i < ti,
define f$n (t) := fn(t∗i ) if ti−1 < t ≤ ti as above. Then for every ε > 0 there is
δ > 0 such that for every n

Pn

{∫ T

0

|fn(t)− f$n (t)|d`n(t) ≥ ε
}
≤ ε,

for every $ with |$| ≤ δ.

Proof. Notice that the assumptions means that {fn} is tight (or pre-compact)
in the space D([0,∞),Rd) and {`n} is tight in C([0,∞),Rd). The conclusion
is the uniform convergence in probability of the integral processes, which is a
direct consequence of the a priori estimate (4.121).

If we are looking at processes gn(z, t) instead of just fn(t), with t ≥ 0 and z
in Rd∗, we may consider gn as having values in the function space L2

πn(Rm∗ ), i.e.,
we use the following definition of the cad-lag modulo

wπn(x, δ, ]a, b]) :=

:= inf
{ti}

sup
i

sup
ti−1≤s<t<ti

{(∫
Rm∗
|x(z, t)− x(z, s)|2πn(dz)

)1/2}
,

where {ti} ranges over all partitions of the form a = t0 < t1 < · · · < tn−1 < b ≤
tn, with ti − ti−1 ≥ δ and n ≥ 1. Estimate (4.121) becomes

∫ T

0

(∫
Rd∗

|g(z, t)− g$(z, t)|2 πn(dz)
)1/2

d`(t) ≤

≤ T

δ
ρ(`, |$|, ]0, T ]) +

[
wπn(g, |$|, ]0, T ])+

+wπn(g, δ, ]0, T ])
][
`(T )− `(0)

]
,

(4.122)

and the previous Lemma 4.53 remain valid under the assumption that for every
ε > 0 there is a δ > 0 such that for every n

Pn{wπn(gn, δ, ]0, 1/ε]) ≥ ε}+ Pn{ sup
0≤t≤1/ε

|gn(·, t)|πn ≥ 1/δ} ≤ ε,

where

|gn(·, t)|πn :=
(∫

Rm∗
|gn(z, t)|2πn(dz)

)1/2

.

The a priori estimate obtained is written as for every ε > 0 there is δ > 0 such
that for every n

Pn

{∫ T

0

d`n(t)

∫
Rm∗
|gn(z, t)− g$n (z, t)|2 πn(dz) ≥ ε

}
≤ ε, (4.123)
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for every $ with |$| ≤ δ.
Now based on above Lemma 4.53 we are able to generalize Theorem 4.52 as

follows

Theorem 4.54. Let `n, wn, νn, and xn, n = 1, 2, . . . be sequences of processes
defined in a probability space (Ω,F , P ) and let (Fn(t) : t ≥ 0) be the filtration
generated by xn. Assume that (1) `n are continuous nondecreasing adapted pro-
cesses, (2) wn are a d-dimensional square integrable martingales with predictable
quadratic covariation 〈wn,i, wn,j〉 = `n if i = j and 〈wn,i, wn,j〉 = 0 if i 6= j.
(3) νn are integer measures with jump compensator νpn(dz,dt) = π(dz) d`n(t),
where π is a given Lévy measure in Rm∗ . Suppose that `n converges to `, i.e., for
every ε > 0 there exists N = N(ε) such that

P{ sup
0≤t≤1/ε

|`n(t)− `(t)| ≥ ε} ≤ ε, ∀n ≥ N(ε),

`n(0) = 0 and that xn(t)→ x(t), wn(t)→ w(t) and νn(K×]0, t])→ ν(K×]0, t])
in probability, for every t ≥ 0 and any compact subset K of Rm∗ . Then (a)
w is also a square integrable martingale with predictable quadratic covariation
〈wi, wj〉 = ` if i = j and 〈wi, wj〉 = 0 if i 6= j, (b) ν is also an integer measure
with jump compensator νp(dz,dt) = π(dz) d`(t), both relative to the limiting
filtration (F(t) : t ≥ 0) generated by x. Furthermore, if fn and gn are cad-lag
adapted processes pointwise (on a dense set of time) convergent to f and g in
probability and for every ε > 0 there exists δ = δ(ε) > 0 satisfying

P{w(fn, δ, ]0, 1/ε]) + wπ(gn, δ, ]0, 1/ε]) ≥ ε} ≤ ε, ∀n ≥ 1,

the limiting processes f and g are certainly cad-lag, and there exist sequences of
partitions {$k = $f

k : k ≥ 1} and {$k = $g
k : k ≥ 1} with mesh |$f

k | → 0 and
|$g

k| → 0 such that in probability we have∫ T

0

f$kn (t) d`n(t)→
∫ T

0

f$k(t) d`(t),∫ T

0

d`n(t)

∫
Rd∗
g$kn (z, t)π(dz)→

∫ T

0

d`(t)

∫
Rd∗
g$k(z, t)π(dz),

for every k and T, then the Riemann-Stieltjes integrals converge in probability,
i.e.,

lim
n
P
{∣∣∣ ∫ t

0

fn(s) d`n(s)−
∫ t

0

f(s) d`(s)
∣∣∣ ≥ ε} = 0,

and

lim
n
P
{∣∣∣ ∫ t

0

d`n(s)

∫
Rd∗
gn(z, s)π(dz)−

∫ t

0

d`(s)

∫
Rd∗
g(z, s)π(dz)

∣∣∣ ≥ ε} = 0,

for every t, ε > 0. Also the stochastic integrals

Mn(t) :=

∫
]0,t]

fn(s) dwn(s),

Jn(t) :=

∫
Rm∗ ×]0,t]

gn(z, s) ν̃n(dz,ds),
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converge also in probability to

M(t) :=

∫
]0,t]

f(s) dw(s),

J(t) :=

∫
Rm∗ ×]0,t]

g(z, s) ν̃(dz,ds),

for every t > 0, where ν̃n := νn−πd`n and ν̃ := ν−πd` are the (local) martingale
measures associated with integer measures νn and ν.

It is also clear that under the conditions of the above Theorem and the
assumption that fn and gn converge to f and g in probability as random vari-
able with values in the Polish space D([0,∞),Rd) and D([0,∞), L2

π(Rm∗ )), the
stochastic integrals Mn and Jn converge to M and J in probability as random
variable with values in the Polish space D([0,∞),Rd) and D([0,∞),R). More-
over, if Mn are continuous then we can replace the cad-lag space D([0,∞),Rd)
with C([0,∞),Rd). In any case, the Riemann-Stieltjes integral processes con-
verge as random variables with values in the Polish space C([0,∞),R),, i.e., for
every ε > 0 there exists N = N(ε) such that

P
{

sup
0≤t≤1/ε

∣∣∣ ∫ t

0

fn(s) d`n(s)−
∫ t

0

f(s) d`(s)
∣∣∣ ≥ ε} ≤ ε,

for every n ≥ N(ε), see estimate (4.121).
It is possible to consider the Lévy measure π in Theorem 4.54 depending on

n, i.e. πn, provided some uniform integrability at the origin is imposed, e.g.,

lim
ε→0

sup
n

∫
|z|≥ε

|z|2 πn(dz) = 0,

or replacing the function |z|2 with either |z|2 ∧ |z| or |z|2 ∧ 1, depending on the
integrability condition imposed on each πn.

4.4.2 Other Convergence of Probabilities

Mainly, we discuss here Jakubowski convergence of probability measures. The
canonical spaces C([0,∞),Rd) and D = D([0,∞),Rd), of continuous and cad-
lag functions, are Polish (complete separable metric) spaces, with the local
uniformly convergence and the Skorokhod topology (usually referred to as the
J1-topology. Clearly, the addition and multiplication are continuous operation
on C([0,∞),Rd), but not on D, i.e., C([0,∞),Rd) is a topological vector space
but D is not. Moreover, the topology in D([0,∞),Rd) is strictly stronger that
the product topology in D([0,∞),Rd1)×D([0,∞),Rd2), d = d1 + d2.

Now, the spaces of probability measures on C([0,∞),Rd) and D, denoted
respectively ℘(C([0,∞),Rd)) and ℘(D), are Polish spaces, with the weak con-
vergence topology, i.e. µn → ν if µn(f) → µ(f) for every bounded continuous
function f from C([0,∞),Rd) (or D) into R; moreover any probability measure
is tight. The reader is referred to the book Jacod and Shiryaev [117, Chapter
VI, pp. 288–347] for a comprehensive discussion.
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The operation stochastic integral can be regarded as a functional on either
C([0,∞),Rd) or D, i.e., given a probability measure in D with a certain num-
ber of properties (relative to some integrands and integrators), the law of the
stochastic integral process defines another probability measure. Loosely speak-
ing, if we have a sequence of integrands and integrators then we actually have
a sequence of probability measures on C([0,∞),Rd) or D. Specifically, we are
interested in the functional defined by an stochastic differential equation. When
dealing with cad-lag processes of (local) bounded variation, the Skorokhod topol-
ogy seems too strong for some cases of reflected stochastic differential equation,
and a weak topology is necessary. One of the key difficulties is that we exit the
framework of Polish spaces and we need to recall or review certain points of
general topology.

Sequential Convergence

First, it is a necessary some basic terminology on sequential convergence. In a
given topological space (X, τ) the closure of any subset of X could be defined as
a map A → Ā : 2X → 2X with the following properties: (a) ∅̄ = ∅, (b) A ⊂ Ā,

(c)A ∪B = Ā ∪ B̄ and (d) ¯̄A = Ā. This previous four properties are called the
Kuratowski axioms.

Suppose now to have defined on a set X (without a topology) a map on the
subsets of X, say κ : 2X → 2X, such that: (1) κ(∅) = ∅, (2) A ⊂ κ(A) and (3)
κ(A∪B) = κ(A)∪κ(B). Then, we can endow X with a topology τκ by defining
as “closed sets” those subsets F such that F = κ(F ). We can easily check that
the properties (1), (2) and (3) imply that the family of the complements of
“closed sets”, just defined, is a topology. The closure operator with respect to
this topology has the property A ⊂ κ(A) ⊂ Ā. Thus, if for any subset A we have
that κ(A) = Ā, then we have also the property (4) κ(κ(A)) = κ(A). Hence,
we can shows that if the map κ verifies (1), (2), (3) and (4) as above, then the
above topology τκ is the unique topology such that Ā = κ(A), for any subset
A ⊂ X.

Convergent Sequences in a Given Topology

Now given a topological space (X, τ), the family of converging sequences xn → x
is determined. We can define the map κ(A) = [A]seq as the set of all limits points
of τ -converging sequences of points of A. It is easy to check that κ satisfies (1)

[∅]seq = ∅, (2) A ⊂ [A]seq ⊂ Ā
τ

and (3) [A∪B]seq = [A]seq∪ [B]seq, but in general
the point (4) is not true, i.e., we may have [A]seq ( [[A]seq]seq.

Thus we can introduce, as before, a topology τseq(= τκ), by defining the
new closed sets as F = [F ]seq and we have that τ ⊂ τseq. Obviously that the
two topologies have the same converging sequences, moreover, there is also the
weakest topology τ ′ with the same converging sequences of τ, and

A ⊂ [A]seq ⊂ Ā
τseq ⊂ Ā

τ
⊂ Ā

τ ′

.
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Hence, a topological space (X, τ) is called sequential space if τ = τseq, with
κ(A) = [A]seq. Since it could happen that [[A]seq]seq 6= [A]seq, a topological
space (X, τ) is called Fréchet-Urysohn space if it a sequential space such that

[[A]seq]seq = [A]seq or equivalently Ā
τseq

= Ā
τ
. Note that any metric space X is a

Fréchet-Urysohn space.

Topology After Convergent Sequences

We can define the convergence of a sequence without introducing necessarily
a topology, in other words we can define a convergence of a sequence not in
terms of a given topology, as, for example, in the usual weak convergence of
probability measures on topological spaces. Now, if we assume that a notion of
convergence of sequences on a set (arbitrary) X is given, then to find a topology
τ on the space X such that all the converging sequences converge also in this
topology, we need to impose the the following properties to the family of con-
verging sequences:

(i) The uniqueness of the limit holds.

(ii) For every x ∈ X, the constant sequence {x, x, x, . . .} is convergent to x.

(iii) Given a convergent sequence {x1, x2, x3, . . .} (xn → x), then every subse-
quence is convergent to the same limit x.

These hypotheses imply that the sequential closure map κ(A) = [A]seq (as the
set of all limits points of converging sequences of points of A) verifies the prop-
erties (1), (2) and (3) above. Hence we can introduce the topology τseq, and all
converging sequences are also convergent in this topology. But in general, there
are more τseq-converging sequences than converging sequences (in the initial
sense).

Since a sequence {xn} is τseq-converging to x0 if and only if from any sub-
sequence it is possible to extract a further subsequence convergent to the same
x0 (in the initial sense). This motivates the following further property, after the
properties (i), (ii) and (iii),

(iv) a sequence {xn} is converge to x0 if from any subsequence of {xn} it is
possible to extract a further subsequence convergent to the same x0.

Therefore, if (iv) holds then all converging sequences in the topology τseq are
just the given converging sequences.

If in a set X we have defined (initially) the meaning of converging sequences
satisfying (i), (ii) and (iii), then we say that we have space of type L or sequential
convergence of type L. Moreover, if also the property (iv) is satisfied then we
called it a space of type L∗ or sequential convergence of type L∗.

Now, starting from a space X with sequential convergence of type L, we can
endow X of the corresponding τseq topology. Next, if we take all the convergent
sequences in this τseq topology, which is called the ∗-convergence (relative to the
initial convergence), then we have a sequential convergence of type L∗. Clearly,
if a sequence converges in the initial convergence then it also converges in the
∗-convergence, but not necessarily the converse. On the other hand, if we start
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from a space X of type L∗ and we endow X with the corresponding τseq topology,
then this time all the convergent sequences in this τseq topology are exactly the
same convergent sequences given initially, i.e., the initial convergence and the
∗-convergence are the same.

The simplest example is perhaps the space of real-valued Borel measurable
functions B([0,∞),R) with the pointwise convergence (which yields a sequential
topology), where all four properties are satisfied, i.e., a sequential convergence
of type L∗. However, it is clear that B([0,∞),R) is not a Fréchet-Urysohn
space. Indeed, if continuous functions are called Baire function of class 0 or
of at most class 0, then pointwise limit of Baire functions of at most class n
are called Baire function of at most class (n + 1), and Baire functions of class
(n + 1) those that are of at most class (n + 1) without being of at most class
n. Clearly, all Baire functions are Borel measurable functions. Thus denoting
by [·]seq the sequential closure, the Baire functions of at most class 1 is the
closure [C([0,∞),R)]seq while the Baire functions of at most class 2 is the double
closure [[C([0,∞),R)]seq]seq. Their difference is the Baire functions of class 2,
e.g., the Dirichlet function (= 1 for all rational and = 0 for all irrational)
limn→∞

(
limk→∞(cosn!πx)2k

)
is a Baire function of class 2. It is clear that

similar remarks apply to the pointwise and bounded convergence. Actually, if
T is an interval and X is a L∗ space, so is B(T,X) and C(T,X). Clearly, the
pointwise convergence makes B(T,X) a Hausdorff topological spaces, which is
neither a countable separated space nor a separable space.

Another interesting example is the space L0(Ω,F , P ) of the equivalence
classes of real-valued random variables with the almost surely pointwise conver-
gence. This space is of type L, but is not of type L∗. Moreover, the convergence
(iv), i.e., the τseq convergence or ∗-convergence (due to the topology induced by
the almost surely pointwise convergence) is actually the convergence in proba-
bility, i.e., in this case, L0(Ω,F , P ) with the ∗-convergence becomes a complete
metric space.

Sequence of Probability Measures

The notions of tightness (or boundedness in probability), regularity, and of weak
convergence (or convergence in law) of measures need that the underlying mea-
sure space be a topological space X with the corresponding Borel σ-algebra
B(X).

Definition 4.55. Given a topological space X and its Borel σ-algebra B(X), a
family of probability measures Pi, i ∈ I is uniformly tight if for any ε > 0 there
exists a compact Kε such that, for every i ∈ I, Pi(Kε) > 1− ε.

Let us mention two key results on Borel (measures defined on the Borel
σ-algebra) and Radon measures (measures finite on any compact set):

(a) Any probability measure P on a metric space X is regular, i.e., for any
Borel set A and every ε > 0 there exist a closed set F and a open set G such
that F ⊂ A ⊂ G and P (Gr F ) < ε.
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(b) Any probability measure P on a Polish space (i.e., complete separable met-
ric space) X is tight, i.e., for any ε > 0 there exists a compact Kε such that
P (Kε) > 1− ε.

In particular, any probability measure on a Polish space is regular and tight.

Weak convergence

Given a topological space (X, τ0) and its Borel σ-algebra B(X), we can consider
the space of probability measures on X, which is denoted by ℘(X) and endowed
with the weakest topology such that every linear functional of the form µ →
µ(f) is continuous, when f is any bounded and continuous function on X. This
topological space is denoted by W(℘(X)) or simply W. Note that if X is a
metric (or Polish) space then ℘(X) results also a metric (or Polish) space with
the Prohorov’s distance.

Note that µn
W−→ µ implies that µn(f) → µ(f) for every f bounded and

continuous. But the converse may be false, i.e. we can have that µn(f)→ µ(f)
for every f bounded and continuous, but not converging in the W topology.

Recall that usually we have the weak convergence defined by µn(f)→ µ(f)
for every f bounded and continuous. This convergent yields a space of type L,
which is not necessarily W. Thus, it makes sense to introduce the sequential
weak topology (the previous τseq topology) Wseq, the weakest topology with
respect to which we have µn(f) → µ(f) for every f bounded and continuous.
Certainly, W ⊂Wseq. We have

Theorem 4.56. The space of probability measures on a Polish space with the
weak convergence is a space of type L∗ with Wseq = W.

On the other hand, starting with (X, τ0), let us suppose that there is another
(weaker) topology τ1 on X, such that τ1 ⊂ τ0 and that the Borel σ-algebra
generated by τ1 is the same as that generated by τ0. In such a case the space
℘(X) is uniquely defined, with either τ0 or τ1. We have that W(τ1) ⊂ W(τ0)
and Wseq(τ1) ⊂Wseq(τ0). If (X, τ0) is a Polish space then

W(τ1) ⊂Wseq(τ1) ⊂W(τ0) = Wseq(τ0).

In fact, µn → µ in Wseq(τ0) means that µn(f) → µ(f) for every bounded and
τ0-continuous function. Since a τ1-continuous function is also τ0-continuous, we
deduce also that µn → µ in Wseq(τ1), i.e., Wseq(τ1) ⊂Wseq(τ0).

Prohorov Theorem

There are two implication, the direct and the converse:

(1) Given a metric space X, a family of probability measures {Pi, i ∈ I} on X,
is uniformly tight if it is relatively compact with respect to weak convergence.

(2) Given a separable, complete metric space X (i.e. a Polish space), a family
of probability measures {Pi, i ∈ I} on X, is relatively compact with respect to
weak convergence if it is uniformly tight.
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For instance, see for example Dudley [62, Section 11.5, pp. 402–405].

Non Metric Case

Now, let (X, τ) be a topological space countably separated, i.e., such that the
following hypothesis holds:

there exists a countable family {fi : X → [−1, 1], i = 1, 2, . . .} of τ -
continuous functions which separates the points of X, that is for any
two distinct points x1, x2 ∈ X there exists a function fκ such that
fκ(x1) 6= fκ(x2).

Consider [0, 1] is considered with the usual Borel σ-algebra and the standard
Lebesgue measure (sometimes referred to as the universal probability space), see
Theorem 4.49 to compare assumptions.

Theorem 4.57. Let {µn} be a sequence of tight probability measures on a
topological space X, with also the previous hypothesis. Then there exist a subse-
quence {µnk} and a sequence of random variables Xk : [0, 1]→ X and a further
random variable X : [0, 1]→ X, such that (1) the image measures of Xk are the
µnk and (2) Xn(θ)→ X(θ), for any θ in [0, 1].

Note that given any compact K ⊂ X the set

CK = {θ ∈ [0, 1] : Xk(θ)→ X(θ)} ∩
∞⋂
k=1

{θ ∈ [0, 1] : Xk(θ) ∈ K}

is Borel measurable in [0, 1]. Moreover, for any ε there exists a compact Kε such
that the Lebesgue measure of CKε is greater or equal to 1− ε.

Star-convergence of Tight Probability on X

Definition 4.58. Given a sequence of tight probability measures {µn} on X,

we say that µn
∗

=⇒ µ if from every subsequence {µnk} there exist a further
subsequence {µnki} and a sequence of “random” variables Xi : [0, 1]→ X, whose
image measures are just the µnki ’s and a further “random” variable X : [0, 1]→
X, whose image measure is µ such that, for each θ ∈ [0, 1], Xi(θ) → X(θ) and
for each ε > 0 there exists a compact Kε ⊂ X such that Leb

(⋂∞
i=1{θ : Xi(θ) ∈

Kε}
)
> 1− ε.

This definition gives to the space of tight probability measures (denoted by
℘o(X) ⊂ ℘(X)) the structure of space of type L∗. Hence we have the corre-
sponding WJak sequential topology. Moreover, referring to ℘o(X) instead of the
whole ℘(X), this topology WJak is stronger than the sequential topology Wseq,
i.e. Wseq ⊂WJak.

Theorem 4.59. This WJak topology has the property that the family of relatively
compact sets coincides with the family of relatively uniformly tight sets.

If X is a metric space then the weak topology and the WJak topology coincide.
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4.4.3 Back to the Canonical Space

Consider the dual space of C([0, T ]), T > 0, which is the space of functions v(·)
with bounded variation with the duality pairing

〈ϕ, v〉T =

∫
[0,T ]

ϕ(t)dv(t).

Since each function v(·) with bounded variation can be modified (without chang-
ing the dual pairing) so that v(·) is also cad-lag, we denote by DBV([0, T ]), the set
of cad-lag functions with bounded variation, which is considered as a subspace
of the canonical space D([0, T ]). Because DBV([0, T ]) is the dual of the Banach
space C([0, T ]), we can use the weak* topology on DBV([0, T ]), where balls are
weakly* compact. Thus, we are interested in a topology on the space D([0, T ])
such that relatively to the subspace DBV([0, T ]) the convergence is similar to the
weak* convergence and any set of equi-bounded variation functions is compact.
The topology introduced by Jakubowski [118] has this property. Clearly, what
is done for D([0, T ]) can be extended to D([0,∞),Rd).

Again, let DBV([0,∞),Rd) denote the space of functions x in D([0,∞),Rd)
that locally are of bounded variation, with the sup-norm

‖x‖T,∞ = sup
{
|x(t)| : 0 ≤ t ≤ T

}
and the variation-norm

‖x‖T,BV = sup
{ n∑
i=0

|x(ti+1)− x(ti)| : ti < ti+1

}
.

where the supremum is taken with respect to all partitions with t0 = 0, tn = T
and ti belonging only to a dense subset of (0, T ). We consider the following
convergence in D([0,∞),Rd), as introduced by Jakubowski [118].

Definition 4.60. We say that the sequence {xn} in D([0,∞),Rd) is convergent

in the sense of Jakubowski, denoting by xn
Jak−→ x, if and only if, for any ε > 0

there exist a sequence {vεn} and vε in DBV([0,∞),Rd) such that

‖vεn − xn‖1/ε,∞ ≤ ε, ∀n ≥ 1, ‖vε − x‖1/ε,∞ ≤ ε

and ∫ 1/ε

0

ϕ(t) dvεn →
∫ 1/ε

0

ϕ(t) dvε,

for any ϕ ∈ C([0, 1/ε]).

Star-convergence of Probability on DS

Now we look at DS , the canonical space D = D([0,∞),Rd) space of cad-lag
functions with the S-topology defined below (i.e., the ∗-convergence, denoted

by “
Jak
∗

−→”, and derived from Definition 4.60).
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It can be proved that the S-topology on D generates the same Borel sets
that we have with the metric (J1) topology, thus the probability measures are
the same. Since the compact sets in the metric topology are also compact in
the S-topology, we have that every probability measure is also tight in the S-
topology. Hence, the sequential convergence is defined on the entire space of
probability measures ℘(DS) = ℘o(DS), because all probability measures are
tight in DS .This new topology WJak(DS) is stronger than the topology of weak
convergence Wseq(DS) (where we consider the S-topology on D), in other words
if we have the WJak convergence then we have also the weak S-convergence.
On the other hand the Wseq(DS)-topology is weaker than the classical (metric)
topology of weak convergence (that is with J1 as topology on D). However, in
general, we cannot say anything (from only this information) on the classical
weak convergence, hence every case needs a specific study: for example, the
 Laukajtys-S lomiński paper [151] shows that we don’t have the classical con-
vergence, nevertheless they prove the weak S-convergence (proving namely the
stronger WJak convergence).

In other words, rephrasing Definition 4.60), xn
Jak−→ x if and only if there

exists a double sequence {vn,k} in DBV([0,∞),Rd) such that (1) for every n,
vn,k → xn locally uniform as k → ∞, (2) for every k and any continuous
function ϕ, 〈ϕ, vn,k〉 → 〈ϕ, vk〉 as n → ∞, and (3) vk → x locally uniform as
k →∞.

Actually we can endow D([0,∞),Rn) of the topology τJak defined by the
following family of open sets

G is open if and only if for any sequence {xn}, converging to a
element x ∈ G in the previous sense of Jakubowski, a tail of the
sequence belongs to G, i.e. there exists an integer N such that
xn ∈ G for any n ≥ N.

We now remark that the converging sequences in the sense of Jakubowski are
not the only sequences that converge in the above topology! There are sequences
that are convergent in the sense of τJak topology without being convergent in the
sense of Jakubowski. Thus, we will indicate this weaker convergence in the

topology τJak as xn
Jak
∗

−→ x.
We can also endow D([0,∞),Rn) of the usual Skorokhod topology (the so

called J1 topology), under which D([0,∞),Rn) is a separable, complete metric
space (Polish space).

Actually the topology τJak is weaker of the usual Skorokhod topology, but
the Borel sets with respect to τJak are just the same Borel sets with respect
to Skorokhod topology, both coinciding with the σ-algebra generated by the
cylindrical sets.

Note the contrast, DBV([0,∞),Rd) is dense in DS , but C([0,∞),Rd) is closed
in D([0,∞),Rd), and C([0,∞),Rd) is dense in DS . To check this, first recall that
for any x in D([0,∞),Rd) and any ε > 0 there exist 0 = t0 < t1 < · · · < tr = 1/ε
such that for any i = 1, . . . , r and for any s, t in [ti−1, ti) we have |x(t)−x(s)| < ε.
Indeed, by means of the right continuity property, we can define inductively t0 =
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inf{t > 0 : |x(t) − x(0)| ≥ ε/2} and ti = inf{t > ti−1 : |x(t) − x(ti−1)| ≥ ε/2}
for i ≥ 1. This sequence {tk} is divergent, namely if tk → t̃ we would have
also ε/2 ≤ |x(tk) − x(tk−1| → |x(t̃−) − x(t̃−)| = 0, in view of the existence of
left-hand limits, which is a contradiction. Thus we can define

vε(t) = x(ti−1) if t ∈ [ti−1, ti), i = 1, . . . , r,

which is a piecewise constant function (so cad-lag with bounded variation) sat-
isfying ‖vε − x‖1/ε,∞ < ε. Now defined

xn(t) = n

∫ (t+1/n)

t

x(s)ds and vεn(t) = n

∫ (t+1/n)

t

vε(s)ds,

which are absolutely continuous (and so continuous with bounded variation),
‖vεn−xn‖1/ε,∞ < ε, and as n→∞, converge pointwise (i.e., for each t fixed) to
x and vε. This proves that the space of absolutely continuous functions is dense
D([0,∞,Rd) with the Jakubowski topology.

4.4.4 Uniform Tightness or UT Condition

The following statements described this topology:

(1) The space D([0,∞),Rn) equipped with the sequential topology τJak is a
Hausdorff topological space which is not a metric space. Recall that with the
Skorokhod topology, it is a complete separable metrizable space.

(2) There exists a countable family of τJak-continuous functions which separate
points in D([0,∞),Rn).

(3) The addition is sequentially continuous with respect to convergence in the

sense of Jakubowski. In particular, xn
Jak−→ x if and only if xn−x

Jak−→ 0. Recall,
this holds with the Skorokhod topology only if x is continuous.

(4) Compact subsets K ⊂ D([0,∞),Rn) are metrizable spaces.

(5) A subset K ⊂ D([0,∞),Rn) is relatively τJak-compact if for any each ε >
0 there exists a constant Cε such that for each x ∈ K there exists vx,ε in
DBV([0,∞),Rn) such that

‖x− vx,ε‖1/ε,∞ ≤ ε and ‖vx,ε‖1/ε,BV ≤ Cε (4.124)

is satisfied.

(6) The evaluation or projection operators x 7→ x(t) from D([0,∞),Rn) into
Rd are nowhere continuous with the τJak topology. However, the functionals

x 7→ 1

ε

∫ t+ε

t

x(s)ds and x 7→ 1

ε

∫ t

t−ε
x(s)ds

are continuous and converges to x(t) and x(t−) as ε → 0. Thus, τJak-Borel
subsets BJak coincide with the standard σ-algebra generated by evaluations (pro-
jections). This fact implies that any probability measure on (D([0,∞),Rn),BJak)
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is tight. Recall that with the Skorokhod topology, the evaluation operators are
continuous at any continuity time of the limit point.

(7) τJak is coarser (weaker) than the usual Skorokhod topology. Thus the cad-
lag space D([0,∞),Rn) endowed with the τJak Jakubowski topology is a Lusin
space, i.e., it is a one-to-one continuous image of a Polish space. However, it
is unknown if the space is completely regular (i.e., the topology is given by a
family of pseudo-metric which is Hausdorff separated.)

(8) The subspace DBV([0,∞),Rn) is dense, indeed, if x is any point in in the
space D([0,∞),Rn) the singleton {x} is compact, hence we can find a sequence
of functions in DBV([0,∞),Rd) converging to x in the sense of Jakubowski, in
view of (4.124). Actually, we proved above that the space of absolutely contin-
uous is dense. We may consider DBV([0,∞),Rn) with the relative τJak topology
on D([0,∞),Rn), but it is weaker than the weak* topology.

(9) Let Na,b
T (x) be the number of up-crossing (of x) of the interval [a, b] in the

time interval [0, T ], i.e., Na,b
T (x) ≥ k if there exist 0 ≤ t1 < t2 < . . . < t2k−1 <

t2k such that x(t2i−1) < a < b < x(t2i) for any i = 1, 2, . . . k. On the other
hand, let NT,η(x) be the number of oscillations (of x) greater than η in the time
interval [0, T ], i.e., NT,η(x) ≥ k if there exist 0 ≤ t1 < t2 < . . . < t2k−1 < t2k
such that |x(t2i) − x(t2i−1)| > η for any i = 1, 2, . . . k. Then, it can be proved
that any uniformly equi-bounded subset K of D([0,∞),Rn) (i.e., for any T > 0
there exists a constant C > 0 such that ‖x‖T,∞ ≤ C for every x in K) is compact
(i.e., condition (4.124) holds) if and only if one of the following two conditions,
for every T > 0,

sup
x∈K

Na,b
T (x) < +∞ or sup

x∈K
NT,η(x) < +∞,

for each a < b, or for each η > 0, is satisfied.

The following result is useful to check the τJak convergence. Let {xn} is

relatively τJak-compact. Then xn
Jak
∗

−→ x if there exists a (countable) dense set Q
in [0,∞) such that xn(q)→ x(q), as n→ +∞, for every q in Q.

On the other hand, if ϕ(t, x) is a locally bounded Charathéodory function
(measurable in t and continuous in x) defined on [0,∞)×Rd, and ` is a contin-
uous bounded variation function, then the integral functionals

x 7→
∫

]0,T ]

ϕ(t, x(t−))d`(t) and x 7→
∫

]0,T ]

ϕ(t, x(t))d`(t)

are continuous the Jakubowski topology.
However, if we consider the sequence kn(t) = 1[1/2−1/n,1](t), the function

k(t) = 1[1/2,1](t) and the sequence xn(t) = k(t), constant for any n, then kn → k
and xn → k in the Skorokhod space D([0, 1],R) but

k(t) =

∫
]0,t]

kn(s−)dxn(s) 6→
∫

]0,t]

k(s−)dk(s) = 0.
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Another way to get a convergence of integrals is to consider convergence in
D([0, 1],R2). There is a general result from Jakubowski-Mémin-Pagès [119]: we
have (note that in the following theorem the topology in D([0, T ],Rn) is the
Skorokhod topology J1)

Now we take a look at

Definition 4.61 (UT Condition). Given a sequence of stochastic processes
(semi-martingales) Xn with respect to the stochastic basis (Ωn,Fn, {Fnt }, Pn)},
the UT condition means that the family of all random variables of the form

N∑
i=1

Hn
ti−1

(Xn
ti −X

n
ti−1

)

is uniformly tight, where N is any integer, 0 = t0 < t1 < · · · < tN = T and
|Hn

ti | ≤ 1 with Hn
ti is Fnti-measurable for any i.

Theorem 4.62. Given a sequence of semi-martingales Mn with respect to the
stochastic basis (Ωn,Fn, {Fnt }, Pn)} satisfying the UT condition and a sequence
of stochastic processes Kn adapted to {Fnt }, with trajectories in D([0,∞),Rd),
let us suppose that

(Kn,Mn)→ (K,M)

weakly in D([0,∞),R2d). Then M is a semi-martingale with respect to the
natural filtration generated by (K,M) and∫

]0,·]
Kn(t−)dMn(t)→

∫
]0,·]

K(t−)dM(t)

weakly in D([0,∞),Rd), and(
Kn, Xn,

∫
]0,·]

Kn(t−)dMn(t)
)
→
(
K,M,

∫
]0,·]

K(t−)dM(t)
)

weakly in D([0,∞),R3d).

Note that the convergence (Kn,Mn)→ (K,M) in D([0,∞),R2d) is strictly
stronger than the convergence (Kn,Mn) → (K,M) in the product topology of
D([0,∞),Rd)×D([0,∞),Rd). We have from Jakubowski [118]

Theorem 4.63. The UT condition implies the tightness in the space of proba-
bility measures on D([0,∞),Rn) with respect to ∗-convergence.

The above statements are valid sometimes also in some not Polish space. If Ω
is topological space having a countable family of continuous functions separating
points then Skorokhod representation and Prohorov’s theorem hold, i.e., for any
uniformly tight sequence {Pn : n ≥ 1} of probability measures on Ω there exist
a subsequence of indexes {nk} and random variables {Xk : k ∈ N} and X on the
universal (Lebesgue) probability space ([0, 1],B([0, 1]), `) with values in Ω such
that Pnk is the distribution of Xk for any k ∈ N and Xk(t) converges to X(t)
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for every t in [0, 1]. In particular this applies when Ω is the canonical space
D([0,∞),Rd) with the τJak Jakubowski topology (which is then only a Lusin
space).

Because this is based on Prohorov’s theorem, the above result holds for the
D([0,∞),Rd) with τJak Jakubowski topology (see Definition 4.60) if the criterium
of compactness (a’) and (b’) are modified accordingly.

Theorem 4.64 (tight). Let X1, X2, . . . be a sequence of random variables
with values in D([0,∞),Rd), and P1, P2, . . . be its associated probability law
on D([0,∞),Rd) = DS , endowed with the Jakubowski topology. Then the se-
quence P1, P2, . . . is tight (hence relatively compact) in DS if and only if the
following two conditions hold:

(a) almost equi-bounded, i.e., for any ε > 0 there exists C > 0 such that for any
index n we have

Pn{ sup
0≤t≤1/ε

|Xn(t)| ≤ C} ≥ 1− ε,

(b) equi-UT-condition, i.e., for any ε > 0 and for each T, η > 0, there exists
K > 0 such that for any index n we have

Pn{NT,η(Xn) ≤ K} ≥ 1− ε.

Moreover, if the sequence is tight, then it is weakly convergent if and only its
finite-dimensional distributions converge.

Certainly we can replace (b) with

(b’) for any ε > 0 and for each T > 0, b > a, there exists K > 0 such that for
any index n we have

Pn{Na,b
T (Xn) ≤ K} ≥ 1− ε,

where Na,b
T and NT,η(Xn) are as in (9) above.

For instance, if the processes (Pn, Xn) has local bounded variation, i.e., Xn =
X+
n − X−n , with X+

n and X−n being increasing monotone, then the condition:
for any ε > 0 there exists C > 0 such that for any index n we have

sup
0≤t≤1/ε

Pn{|X+
n (t)|+ |X−n (t)| > C} ≤ ε,

implies both (a) and (b) above, since NT,η is controlled by the variation |X+
n |+

|X−n | process.
Similarly, if the processes (Pn, Xn) is a local continuous martingale with

predictable variation process 〈Xn〉, then the condition: for any ε > 0 there
exists C > 0 such that for any index n we have

sup
0≤t≤1/ε

Pn
{∣∣〈Xn〉(t)

∣∣ > C
}
≤ ε,
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implies both (a) and (b), since Na,b
T is controlled by the predictable variation

process. Similarly, if the processes (Pn, Xn) is a local purely discontinuous
(square-integrable) martingale with integer measure νn and predictable jumps
compensator νpn, then the condition: for any ε > 0 there exists C > 0 such that
for any index n we have

sup
0≤t≤1/ε

Pn

{∫
Rd∗×]0,t]

(
|z|2 ∧ 1

)
νpn(dz,ds) > C

}
≤ ε,

implies both (a) and (b), since Na,b
T is controlled by the predictable jumps

compensator process. Note that∫
Rd∗×]0,t]

(
|z|2 ∧ 1

)
νpn(dz,ds) =

=
∑

0<s≤t

[
1|Xn(s)−Xn(s−)|≥1 + |Xn(s)−Xn(s−)|21|Xn(s)−Xn(s−)|<1

]
,

i.e., adding the number of jumps greater than 1 and the square of the small
jumps. Actually, these martingale cases can be treated directly with the classic
Skorokhod topology, since

Pn{ sup
a≤t,s≤b

|Xn(t)−Xn(s)| ≥ ε} ≤ δ

ε2
+ Pn{

∣∣〈Xn〉(b)− 〈Xn〉(a)
∣∣ ≥ δ},

Pn{ sup
a≤t,s≤b

|Xn(t)−Xn(s)| ≥ ε} ≤ δ

ε2
+

+Pn

{∫
Rd∗×]a,b]

(
|z|2 ∧ 1

)
νpn(dz,ds) ≥ δ

}
,

for every ε, δ > 0, in view of Lenglart dominate property, e.g., see Jacod and
Shiryaev [117, Section I.3c, pp. 35–36]. Essentially, the local bounded variation
processes are of main interest for the Jakubowski topology.

Another situation is the following, see Section 4.3.4. Let `n, υn, wn and νn,
n = 1, 2, . . . be sequences of processes defined in a probability space (Ωn,Fn, Pn).
Assume that:

(1) `n and υn are cad-lag processes with values in Rd and non-anticipative
relative to (wn, νn), and `n are nondecreasing,

(2) wn are a d-dimensional continuous square integrable martingales with pre-
dictable quadratic covariation 〈wn,i, wn,j〉 = ςn,j if i = j, and 〈wn,i, wn,j〉 = 0 if
i 6= j,

(3) νn are integer measures with jump compensator νpn(dz,dt) = πn(dz) d%n(t),
where πn is a given Lévy measure in Rm∗ , and qn denotes the corresponding
purely discontinuous square-integrable martingale, i.e.,

qn(t) =

∫
Rm∗ ×]0,t]

|z|2ν̃n(dz,ds), ∀t ≥ 0,
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with ν̃(dz,dt) = ν(dz,dt) − πn(dz)%n(dt). Suppose that `n, υ, ςn and %n are
equi-bounded in probability, i.e., for every ε > 0 there exists C = C(ε) such
that

sup
0≤t≤1/ε

Pn
{[
|`n(t)|+ |υn(t)|+ |ςn(t)|+ |%n(t)|

]
≥ C

}
≤ ε, ∀n,

and `n, ςn and %n vanish at time t = 0.

(4) Also assume that υn satisfies the UT-condition, in term of the number of

up-crossing Na,b
T or the number of oscillations NT,η, e.g., for any ε > 0 and for

each T, η > 0, there exists K > 0 such that for any index n we have

Pn{NT,η(υn) ≥ K} ≤ ε;

also that ςn and %n are equi-continuous in probability, i.e., for every ε > 0 there
exists δ > 0 such that

Pn
{

sup
0≤s,t≤1/ε, |t−s|<δ

[
|ςn(t)− ςn(s)|+ |%n(t)− %n(s)|

]
≥ ε
}
≤ ε, ∀n;

and that {πn} is a uniformly integrable Lévy sequence, i.e., there is a constant
C > such that∫

Rm∗
|z|2πn(dz) ≤ C, ∀n,

and for every ε > 0 there exists δ > 0 such that∫
{z:|z|<δ}∪{z:|z|>1/δ}

|z|2πn(dz) < ε, ∀n.

Now, consider (a) the probability law Qn defined by (Pn, `n, υn, wn, ςn, qn, %n)
in the canonical space D([0,∞),Rd0), with d0 = 4d+m+ 1, (b) the canonical
processes `, υ, w, ς, q, %, and (c) endowed with the Jakubowski topology in
the first 2d variables (relative to ` and υ) and with the Skorokhod topology in
the remaining variables. Actually, for the variables w, ς and %, we could use
the sample space C([0,∞),Rd1), d1 = 2d + 1, with the usual locally uniform
convergence. Then we can extract a subsequence, still denoted by {Qn, πn},
which is weak convergent to Q, π.

Clearly, all limiting processes are cad-lag. Moreover w, ς and % are also
continuous. Then, relative to Q on D([0,∞),Rd0), we have:

(a) ` and υ are non-anticipating processes relative to (w, ν), and ` is a nonde-
creasing,

(b) w is also a continuous square integrable martingale with predictable quadra-
tic covariation 〈wi, wj〉 = ςi if i = j and 〈wi, wj〉 = 0 if i 6= j,
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(c) the integer measure ν associated with q has νp(dz,dt) = π(dz)d%(t) as it
predictable jump compensator,

(d) on the universal probability space ([0, 1],B([0, 1]), l), where l is the Lebesgue
measure, there exist random variables x, xn with values in the canonical space
D([0,∞),Rd0) such that first (i) x and xn have the same finite distributions as
(`, υ, w, ς, q, %) and (`n, υn, wn, ςn, qn, %n), respectively, and secondly (ii) xn(θ)→
x(θ), for every θ in [0, 1].

At this point, we can take limit on any continuous functional defined on the
space D([0,∞),Rd0), e.g.,∫

]0,T ]

f(t, xn)d`n(t),

∫ T

0

f(t, xn)dwn(t),

∫
Rm∗ ×(0,T ]

g(z, t, xn)ν̃n(dz,dt),

preserved almost surely through finite-dimensional distributions. It is also clear
that if the processes υn are equi-continuous in probability, we may use the
Skorokhod topology in the variable υ instead of the weaker Jakubowski topology.
Moreover, the cad-lag modulus of continuity can also be used. Note that f(t, x)
and g(z, t, x) are regarded as deterministic (real or vector-valued) random fields
with t ≥ 0 and x in D = D([0,∞),Rd0), i.e., the mappings (t, x) 7→ f(t, x)
and (z, t, x) 7→ g(z, t, x) are measurable with respect to the product Borel σ-
algebras B([0,∞)))×B(D) and B(Rm0 )×B([0,∞)))×B(D), plus some appropriate
regularity conditions, e.g., continuity in x and causality, i.e., if x(s) = y(s) for
any 0 ≤ s < t then f(t, x) = f(t, y). Typical f(t, x) has the form f(t, x(t)) or
f(t, x(t−)). It is perhaps important to recall that under the Skorokhod topology,
the evaluation or projection functional x 7→ x(t) are continuous only at any point
of continuity of x, however, under the Jakubowski topology, they are nowhere
continuous. Thus, when the measures d`n have atoms (i.e., the processes `n are
discontinuous) some extra special care should be taken to ensure the passage
to the limit in the Lebesgue-Stieltjes integral. Certainly all this applies to our
case of interest, i.e., for a Wiener process or a Poisson measure.

4.5 Density Estimates

A very important point is to obtain a priori estimates of the distributions of
non-degenerate stochastic integrals. Consider an Itô process in Rd,

X(t) = x+

∫ t

0

b(s)ds+
∑
k

∫ t

0

σk(s)dwk(s), ∀t ≥ 0,

in some filtered probability space (Ω, F, P,F(t) : t ≥ 0), and recall the Lebesgue
spaces Lp(D) or Lp(DT ) of p-integrable functions f(x), g(t, x) defined on an
open subset D of Rd, or DT :=]0, T [×D with the norm

‖f‖p,D :=
[ ∫

D

|f(x)|pdx
]1/p

,

‖g‖p,DT :=
[ ∫ T

0

dt

∫
D

|g(t, x)|pdx
]1/p
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where 1 ≤ p <∞.
We quote Theorem 2.2.4 in the book Krylov [139, Sections 2.2 and 2.3, pages

51–67],

Theorem 4.65. Let D be a bounded open subset of Rd and τD be the first exit
time of the process (X(t) : t ≥ 0) from the open set D,

τD(ω) := inf
{
t ≥ 0 : X(t, ω) ∈ D

}
.

If there exists δ > 0 such that

|b(t, ω)| ≤ 1

δ
,

∑
ik

|`iσik(t, ω)|2 ≥ δ|`|2,

for every ` in Rd and 0 ≤ t ≤ τD(ω), then there exists a constant K = K(d,D, δ)
depending only on δ, the dimension d and the diameter of the region D, such
that for any Borel measurable nonnegative functions g(x) and h(t, x) we have

E
{∫ s∨τD

s

g(X(t))dt | F(s)
}
≤ K

[ ∫
D

|g(x)|ddx
]1/d

and

E
{∫ (s∨τD)∧T

s

h(t,X(t))dt | F(s)
}
≤ K

[ ∫ T

s

dt

∫
D

|h(t, x)|d+1dx
]1/(d+1)

,

for every T > 0.

The proof of this Theorem (and some variations using the concept of regular
functions) is based on the following result proved in Krylov [138] (see also the
book Krylov [140]) and related to the weak maximum principle.

Let ρ = ρ(t, x) be a nonnegative smooth function with support inside the
compact set {(t, x) : 0 ≤ t ≤ 1, |x| ≤ 1} of (0,∞)× Rd such that∫ ∞

0

dt

∫
Rd
ρ(t, x)dx = 1.

For any locally integrable function h, denote by h ∗ ρε the smooth mollification
of h with respect to ρ, i.e.,

h ∗ ρε(t, x) := ε−(d+1)

∫ ∞
0

ds

∫
Rd
h(t− s, x− y)ρ(s/ε, y/ε)dy =

=

∫ ∞
0

ds

∫
Rd
h(t− εs, x− εy)ρ(s, y)dy,

where

ρε(t, x) := ε−(d+1)ρ(t/ε, x/ε),∫ ∞
0

ds

∫
Rd
ρε(s, y)dy =

∫ ∞
0

ds

∫
Rd
ρ(s, y)dy = 1,

for every (t, x) in (0,∞)× Rd.
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Theorem 4.66. For each positive constants λ, ε, and any nonnegative con-
tinuous function h = h(t, x) on [0,∞) × Rd, where hε := h ∗ ρε denote its
mollification, there exists a smooth function u satisfying the following proper-
ties:

(a) |∇u(t, x)| ≤
√
λu(t, x), ∀x ∈ Rd, t ≥ 0,

where ∇ is the gradient in the variable x,

(b)

d∑
ij=1

aij∂iju(t, x)− λTr(a)u(t, x) ≤ 0,

(c) ∂tu(t, x) +

d∑
ij=1

aij∂iju(t, x)− λ(Tr(a) + 1)u(t, x) ≤

≤ − d+1
√

det(a)hε(t, x),

for any t ≥ 0, x in Rd and for every symmetric nonnegative definite d × d
matrix a = (aij), where Tr(·) and det(·) denote the trace and the determinant
of a matrix, and

(d) u(t, x) ≤ C(p, d, λ)
[ ∫ ∞

t

e−λ(d+1)(s−t)ds

∫
Rd
|h(s, y)|p+1dy

]1/(p+1)

,

where the constant C(p, d, λ) is equal to

(p+ 1)d/(p+1)[d!ωd]
−1/(p+1)λ(d−2p)/(2p+2)(d+ 1)−p/(p+1),

for every p ≥ d, x in Rd and t ≥ 0, where ωd is the volume of the unit sphere in
Rd, i.e., ωd = πd/2/Γ(d/2 + 1), with Γ being the gamma function. Furthermore,
if f is independent of the variable t so is u.

In the previous theorem, u is the mollification of a bounded function (ob-
tained after some geometric arguments) with respect to the same smooth func-
tion ρε. Also note that ωd =, is the volume of the unit sphere in Rd. Notice that
the property (b) yields

(e)

d∑
ij=1

zizj∂iju(t, x) ≤ λ|z|2u(t, x), ∀z = (z1, . . . , zd),

for every x in Rd and t ≥ 0. Actually, if we express the matrix a = σσ∗ then we
see that (b) and (e) are equivalent.

4.5.1 In the Whole Space

Consider an Itô process with jumps in Rd,

ξ(t) = x+

∫ t

0

b(s)ds+
∑
k

∫ t

0

σk(s)dwk(s) +

∫
Rd∗×]0,t]

zν̃ξ(dz,ds), (4.125)
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for every t ≥ 0, in some filtered probability space (Ω, F, P,F(t) : t ≥ 0), where
ν̃ξ is the local martingale measure associated with the integer valued measure νξ
(with predictable compensator νpξ ), corresponding to the quasi-left continuous

process ξ. The compensator νpξ is assumed absolutely continuous with respect
to the Lebesgue measure, i.e.,

νpξ (B, (0, t]) :=

∫ t

0

Mξ(B, s)ds, ∀B ∈ B(Rd∗),

where the intensity kernel M satisfies: (1) s 7→ Mξ(B, s) is predictable for every
B and (2) B 7→ Mξ(B, s) is a measure in Rd∗ for every s. The coefficients b(s)
and σ(s) are predictable processes. Also, for a given predictable nonnegative
process τ̇(s) define the following (integral) process

τ(s) :=

∫ s

0

τ̇(r)dr,

and also the processes

a(s) :=
(1

2

∑
k

σik(s)σjk(s)
)
, ρ(s) :=

∫ s

0

Tr(a(r))dr,

where ρ(·) has nonnegative real values and a(·) has symmetric nonnegative d×d
matrix values. Note that

Tr(a(s)) =
1

2

∑
ik

|σik(s)|2, dρ

ds
(s) = ρ̇(s) = Tr(a(s))

and usually τ̇ = 1. Now we have

Theorem 4.67. Let ξ(·) = ξx(·) be an Itô process with jumps as in (4.125) in
Rd and τ̇ be a predictable nonnegative processes. Define the processes τ(·), ρ(·)
and a(·) as above and suppose that for some positive constants K = Kξ, and
λ > 0, and any s, ω we have

2
√
λ |b(s, ω)|+ λ

∫
Rd∗
|z|2Mξ(dz, s, ω) ≤ 2K λ Tr

(
a(s, ω)

)
.

Then for every p ≥ d there exists a constant C depending only on p, d, λ and
K such that the a priori parabolic estimate

E
{∫ T

0

e−λ[ρ(s)+τ(s)] d+1
√

det(a(s)) τ̇(s) |h(τ(s), ξx(s))|ds
}
≤

≤ C
[ ∫ ∞

0

e−λ(d+1)sds

∫
Rd
|h(s, y)|p+1dy

]1/(p+1)

,

and elliptic estimate

E
{∫ T

0

e−λρ(s) d
√

det(a(s))
∣∣g(ξx(s))

∣∣ds} ≤ C [ ∫
Rd
|g(y)|pdy

]1/p
,

hold, for any x in Rd, any stopping time T and any Borel functions g(y) and
h(s, y).
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Proof. For the sake of simplicity, we set %(s) := ρ(s) + τ(s), we assume T
deterministic, and we choose h(s, y) = 0 for s > T, and u as in the previous
Theorem 4.66. All other cases are deduced from this particular choise. For
a fixed x, apply Itô formula to the process (%(s), τ(s), ξ(s)) and the function
exp(−λ%)u(τ, ξ), between 0 and T to get

E{e−λ%(T ) u(τ(T ), ξ(T ))} − u(0, x) = E{
∫ T

0

e−λ%(s) L(s, τ(s), ξ(s), u)ds},

where

L(s, τ(s), ξ(s), u) := I(s, τ(s), ξ(s), u) +
∑
i

bi(s)∂iu(τ(s), ξ(s)) +

+
∑
ij

aij(s)∂iju(τ(s), ξ(s)) +

+τ̇(s)∂tu(τ(s), ξ(s))− λ[Tr(a(s)) + τ̇(s)]u(s, ξ(s)),

I(s, τ(s), ξ(s), u) :=

∫
Rd∗

[
u(τ(s), ξ(s) + z)− u(τ(s), ξ(s))−

−z · ∇u(τ(s), ξ(s))
]
Mξ(dz, s).

In view of the properties (a) and (b) (or (e) later) in Theorem 4.66 we have

I(s, τ(s), ξ(s), u) =

∫ 1

0

(1− r)dr
∫
Rd∗
zizj∂iju(τ(s), ξ(s) + rz)Mξ(dz, s) ≤

≤ λ

2
sup
x∈Rd

u(τ(s), x)

∫
Rd∗
|z|2Mξ(dz, s),

and ∣∣∣∑
i

bi(s)∂iu(τ(s), ξ(s))
∣∣∣ ≤ √λ |b(s)| sup

x∈Rd
u(τ(s), x),

while the estimate (d) yields∫ T

0

e−λ%(s) sup
x∈Rd

u(τ(s), x) Tr(a(s))ds ≤

≤
∫ T

0

e−λ%(s) Tr(a(s)) q(τ(s), h) eτ(s)λ(d+1)/(p+1)ds,

q(s, h) := C(p, d, λ)
[ ∫ T

s

e−λ(d+1)rdr

∫
Rd
|h(r, y)|p+1dy

]1/(p+1)

,

where C(p, d, λ) is an in Theorem 4.66. Since p ≥ d, we integrate by parts to
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get ∫ T

0

e−λ%(s) sup
x∈Rd

u(τ(s), x) Tr(a(s))ds ≤

≤
∫ T

0

exp
(
− λ

∫ s

0

Tr(a(t))dt
)

Tr(a(s)) q(τ(s), h)ds =

= − 1

λ

∫ T

0

q(τ(s), h) d exp
(
− λ

∫ s

0

Tr(a(t))dt
)
≤

≤ 1

λ

[
q(0, h) +

∫ T

0

exp
(
− λ

∫ s

0

Tr(a(t))dt
)

dq(τ(s), h)
]
≤

≤ 1

λ
q(0, h).

Hence, the assumption on the coefficients b and M implies∫ T

0

e−λ%(s)
[
I(s, τ(s), ξ(s), u) +

∣∣b(s) · ∇u(τ(s), ξ(s))
∣∣]ds ≤

≤ K C(p, d, λ)
[ ∫ T

0

e−λ(d+1)sds

∫
Rd
|h(s, y)|p+1dy

]1/(p+1)

.

By means of the property (c) of the function u in Theorem 4.66, we also have∑
ij

aij(s)∂iju(τ(s), ξ(s)) + τ̇(s) ∂tu(τ(s), ξ(s))−

−λ[Tr(a(s)) + τ̇(s)]u(τ(s), ξ(s)) ≤

≤ − d+1
√

det(a(s)) τ̇(s)hε(τ(s), ξ(s)),

so that Itô formula yields

E
{∫ T

0

e−λ%(s) d+1
√

det(a(s)) τ̇(s)hε(τ(s), ξ(s))ds
}
≤

≤ (1 +K)C(p, d, λ)
[ ∫ T

0

e−λ(d+1)sds

∫
Rd
|h(s, y)|p+1dy

]1/(p+1)

,

after using again the estimate (d) on u(0, x). Then, as ε vanishes we obtain the
parabolic estimate with C := (1 +K)C(p, d, λ),

C(p, d, λ) := (p+ 1)d/(p+1)[d!ωd]
−1/(p+1)λ(d−2p)/(2p+2)(d+ 1)−p/(p+1),

where ωd is the volume of the unit sphere in Rd. Moreover, if we set

ρ(t, s) :=

∫ s

t

Tr
(
a(r)

)
dr, τ(t, s) :=

∫ s

t

τ̇(r)dr,
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for every s ≥ t, then we also have
E
{∫ T

t

e−λ[ρ(t,s)+τ(t,s)] d+1
√

det(a(s)) τ̇(s) ×

×h(τ(t, s), ξ(s))ds
}
≤ (1 +K)C(p, d, λ)×

×
[ ∫ ∞

t

e−λ(d+1)(s−t)ds

∫
Rd
|h(s, y)|p+1dy

]1/(p+1)

.

(4.126)

for every stopping time T ≥ t ≥ 0.
To prove the a priori elliptic estimate we take a particular process τ̇(s) as

follows. Since d
√

det(a(s)) ≤ Tr(a(s)) we have

sup
(t,ω)

E
{∫ T

t

e−λρ(t,s) d
√

det(a(s))
∣∣g(ξ(s))

∣∣ds | F(t)
}
≤ supx |g(x)|

λ
.

so that, as long as g is bounded, we may set

c := sup
(t,ω)

E
{∫ T

t

e−λρ(t,s) d
√

det(a(s))
∣∣g(ξ(s))

∣∣ds | F(t)
}
,

τ̇(s) := h(s)/c, and h(s) := d
√

det(a(s))
∣∣g(ξ(s))

∣∣,
to show that an integration by parts yields∫ T

t

h(s) e−λρ(t,s)ds =

∫ T

t

h(s) e−λ[ρ(t,s)+2τ(t,s)]ds+

+2λ

∫ T

t

(∫ T

t

e−λρ(t,s) h(s)ds
)

e−2λτ(t,r) τ̇(r)dr.

After taking the conditional mathematical expectation, the last term is equal
to

E
{∫ T

t

(∫ T

t

e−λρ(t,s) h(s)ds | F(t)
)

e−λ[ρ(t,r)+2τ(t,r)] τ̇(r)dr
}
≤

≤ E
{∫ T

t

e−λ[ρ(t,r)+2τ(t,r)] h(r)dr
}
,

where we have used the definition of the constant c and the process τ̇(s) to
obtain the inequality. Hence

E
{∫ T

t

e−λρ(t,s) d
√

det(a(s))
∣∣g(ξ(s))

∣∣ds | F(t)
}

=

= E
{∫ T

t

h(s) e−λρ(t,s)ds | F(t)
}
≤

≤ (1 + 2λ)E
{∫ T

t

h(s) e−λ[ρ(t,s)+2τ(t,s)]ds | F(t)
}
,

and this last term is equal to

d+1
√
cE
{∫ T

t

e−λ[ρ(t,s)+τ(t,s)] d+1
√

det(a(s)) τ̇(s) f(τ(t, s), ξ(s))ds | F(t)
}
,
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with

f(t, x) := (1 + 2λ) e−λt
∣∣g(x)

∣∣d/(d+1)
.

Now, by means of the parabolic estimate we obtain

E
{∫ T

t

e−λρ(t,s) d
√

det(a(s))
∣∣g(ξ(s))

∣∣ds | F(t)
}
≤

≤ (1 +K)C ′ c1/(d+1)
[ ∫

Rd
|g(x)|(p+1)d/(d+1)dx

]1/(p+1)

,

for every p ≥ d and some constant C ′ depending only on p, d and λ). After
taking the supremum in (t, ω), we deduce the elliptic estimate with

C =
[
(1 +K)C(p, d, λ)

1 + 2λ

λ(d+ 1− p)

]1+1/d

,

and C(p, d, λ) as above. This completes the proof.

The above prove is a modification of Anulova and Pragarauskas [5]. Note
that if the non-local integral I is written as (to simplify we are taking τ̇ = 1)

I(s, ξ(s), u) =

∫ 1

0

(1− r)dr
∫
|z|<ε

zizj∂iju(s, ξ(s) + rz)Mξ(dz, s) +

+

∫
|z|≥ε

[
u(s, ξ(s) + z)− u(s, ξ(s))− z · ∇u(s, ξ(s))

]
Mξ(dz, s) ≤

≤
[λ

2

∫
|z|<ε

|z|2Mξ(dz, s) +

∫
|z|≥ε

Mξ(dz, s)
]

sup
x∈Rd

u(s, x),

which allows us to replace the condition on the coefficients b and M with the
assumption∫

|z|≥ε
Mξ(dz, s, ω) + 2

√
λ |b(s, ω)|+ λ

∫
|z|<ε

|z|2Mξ(dz, s, ω) ≤

≤ 2K λ Tr
(
a(s)

)
,

for some positive constants ε, λ and K, to get the same a priori estimate of
Theorem 4.67.

An important consequence is the following estimates

Corollary 4.68. Let ξ = ξx be an Itô process with jumps in Rd as in Theo-
rem 4.67 with bounded coefficients and non-degenerate diffusion, i.e,

|b(s, ω)|2 +
∑
k

|σk(s, ω)|2 +

∫
Rd∗
|z|2Mξ(dz, s, ω) ≤ 1

δ
,∑

ik

|ζi σik(s, ω)|2 ≥ δ|ζ|2,

for some δ > 0 and for every ζ in Rd, and s, ω. Then for every p ≥ d, x in Rd,
T ≥ t ≥ 0, and any Borel function h(s, y)

E
{∫ T

t

|h(s, ξx(s))|ds
∣∣∣ F(t)

}
≤ KT

[ ∫
(t,T )×Rd

|h(s, y)|p+1 dsdy
]1/(p+1)

,
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for some constant KT = KT (d, p, δ) depending only on δ, p, the dimension d and
T. Moreover, for any stopping time θ ≥ t and any Borel measurable function
g(y) we have

E
{∫ θ

t

exp
(
− λ

∫ s

t

[
Tr(a(r)) + 1

]
dr
)
|h(s, ξx(s))|ds

∣∣∣ F(t)
}
≤

≤ Kλ

[ ∫
(t,∞)×Rd

e−λ(d+1)(s−t) |h(s, y)|p+1 dsdy
]1/(p+1)

,

and

E
{∫ θ

t

e−λ(s−t) |g(ξx(s))|ds
∣∣∣ F(t)

}
≤ Kλ

[ ∫
Rd
|g(y)|p dy

]1/p
,

where Kλ = Kλ(d, p, δ) depending only on δ, p, the dimension d and λ.

Note that if the stopping time θ = θD is taken to be the first exit time of
the process ξ(t) from a bounded domain D then we can take g(y) = 0 outside
of D to get

E
{∫ θD

0

e−λs |g(ξ(s))|ds
}
≤ Kλ

[ ∫
D

|g(y)|p dy
]1/p

.

To be able to take λ = 0 we need to use barrier functions of the type β −
cosh(α|x|) for some α > 0, β > cosh(αR) and D ⊂ {x ∈ Rd : |x| ≤ R}. The
arguments in Krylov [139, Sections 2.2, pages 51–61] can be extended to show
the validity of the estimates in the above Corollary for θ = θD and λ = 0, as
long as D is bounded and we suppose

lim
ε→0

∫
|z|<ε

|z|2Mξ(dz, s, ω) = 0,

uniformly in (s, ω), besides the assumptions of Corollary 4.68 on the drift coeffi-
cients b, the diffusion σ and Lévy kernel M, i.e., Theorem 4.65 for the Itô process
with jumps ξ(·).

The relevance of the above a priori estimates is clear, because of the density
of smooth functions into the Lebesgue spaces Lp, each time we have to deal with
a limit involving an expectation with respect to an Itô process with jumps, e.g.,
an expression of the type

E
{∫ T

0

|h(s, ξ(s))|ds
}
,

we replace the Borel measurable function h(s, y) with a smooth function hε(s, y)
(e.g., a mollification of h), we pass to the limit with hε(s, y), and as long
as hε → h in Lp for some p ≥ d, we obtain the limit with h. In particular,
Itô formula remains valid for C1 functions with second derivatives (locally) in
Ld+1(]0,∞[×Rd).
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Theorem 4.69. Let (ξnx (t) : t ≥ 0, n ≥ 1) be a sequence of Itô processes with
jumps of the form (4.125), i.e.,

ξnx (t) = x+

∫ t

0

bn(s)ds+
∑
k

∫ t

0

σnk (s)dwk(s) +

∫
Rd∗×]0,t]

zν̃nξ (dz,ds),

with intensity kernel Mnξ (B, s). Assume that the probability law Pnx on the canon-

ical space D([0,∞),Rd), induced by the processes ξnx (·), converges weakly to
a probability measure Px, and that the first exit time τnr from the closed ball
{y ∈ Rd : |y| ≤ r} of the process ξnx (·) satisfies the condition: there exist
constants Cr and cr such that except in a set of probability zero and for any r
sufficiently large, we have

|bn(s)|2 +
∑
k

|σnk (s)|2 +

∫
Rd∗
|z|2Mnξ (dz, s) ≤ Cr,

det
(∑

k

σnk (s)(σnk (s))∗
)
≥ cr > 0,

for every n ≥ 1 and for every 0 ≤ s ≤ τnr . Suppose there is a equi-bounded
sequence {ϕn : n ≥ 1} of real-valued measurable functions in Rd converging to
some function ϕ in Ldloc(Rd), i.e.,

lim
n

∫
{y : |y|≤r}

|ϕn(y)− ϕ(y)|d dy = 0,

for every r > 0. Then

lim
n

E
{∫ T

t

ϕn
(
ξnx (s)

)
ds
∣∣∣ F(t)

}
= Ex

{∫ T

0

ϕ
(
ω(s)

)
ds
∣∣∣ F(t)

}
,

for every x in Rd and T > t ≥ 0, where Ex denotes the mathematical expectation
with respect to the probability measure Px. Similarly, if {ψn(s, y) : n ≥ 1} is an
equi-bounded sequence of measurable functions which converges to ψ(s, y) in
Ld+1

loc (]0,∞[×Rd), then

lim
n

E
{∫ T

t

ψn
(
s, ξnx (s)

)
ds
∣∣∣ F(t)

}
= Ex

{∫ T

t

ψ
(
s, ω(s)

)
ds
∣∣∣ F(t)

}
,

for every x in Rd and T > t ≥ 0.

Proof. Only the case with ϕ(y) is considered, since the same arguments are
applicable for the case ψ(s, y). Moreover, we may take t = 0 without loss of
generality.

If Enx denotes the mathematical expectation with respect to the probability
measure Pnx , then we have

E
{∫ T

0

ϕn
(
ξnx (s)

)
ds
}

= Enx
{∫ T

0

ϕn
(
ω(s)

)
ds
}
.
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Since Pnx converges weakly to Px, we deduce

lim
r→∞

P{inf
n
τnr ≥ T} = 0,

for every T ≥ 0. Hence, because there exists a constant C > 0 such that
|ϕn(y)| ≤ C, for every y in Rd and n ≥ 1, it suffices to show

lim
n

E
{∫ τnr ∧T

0

ϕn
(
ξnx (s)

)
ds
}

= Ex
{∫ τr∧T

0

ϕ
(
ω(s)

)
ds
}
,

for every r > 0, to establish the result. Note that τr is the first exit time from
the closed ball {y ∈ Rd : |y| ≤ r} of the canonical process x(t) := ω(t).

In view of the previous Corollary 4.68 and because we may take ϕn(y) = 0
if |y| > r, for each T > 0 and r > 0 there exists a constant K = K(T, r, d) such
that 

Enx
{∫ τr∧T

0

∣∣ϕn(ω(s)
)
− ϕ̃m

(
ω(s)

)∣∣ds} ≤
≤ K

[ ∫
{y : |y|≤r}

|ϕn(y)− ϕ̃m(y)|d dy
]1/d

,
(4.127)

for every m ≥ 1 and any sequence of functions ϕ̃m. In particular, we may choose
continuous and equi-bounded functions ϕ̃m such that

lim
m
ε(m, r) = 0,

ε(m, r) := sup
n≥m

[ ∫
{y : |y|≤r}

|ϕn(y)− ϕ̃m(y)|d dy
]1/d

,

for every r > 0. Since ϕ̃n also converges to ϕ in Ldloc(Rd), we have

Enx
{∫ τr∧T

0

∣∣ϕ̃m(ω(s)
)
− ϕ

(
ω(s)

)∣∣ds} ≤ Kε(m, r),
for every n,m ≥ 1, T > 0 and r > 0.

On the other hand, for every continuous and bounded function g we have

lim
n

Enx
{∫ τr∧T

0

g
(
ω(s)

)
ds
}

= Ex
{∫ τr∧T

0

g
(
ω(s)

)
ds
}
,

which proves that estimate (4.127) holds for the limiting Ex{·} in lieu of Enx{·}
and g instead of ϕn− ϕ̃m. A posteriori, this extends to any measurable function
g in Ld(Rd) and we have

Ex
{∫ τr∧T

0

∣∣ϕ(ω(s)
)
− ϕ̃m

(
ω(s)

)∣∣ds} ≤ Kε(m, r),
for every m ≥ 1, T > 0, r > 0, and the same constant K = K(T, r, d) as in
(4.127).

Since ϕ̃m is continuous and bounded, we have

lim
n

Enx
{∫ τr∧T

0

ϕ̃m
(
ω(s)

)
ds
}

= Ex
{∫ τr∧T

0

ϕ̃m
(
ω(s)

)
ds
}
,
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for every m ≥ 1. Collecting all, we get

lim
n

∣∣∣E{∫ T

0

ϕn
(
ξnx (s)

)
ds
}
− Ex

{∫ T

0

ϕ
(
ω(s)

)
ds
}∣∣∣ ≤

≤ 2K(T, r, d) ε(m, r) + 2
(

sup
y∈Rd

|ϕ(y)|
)
P{inf

n
τnr ≥ T},

and, as m→∞ and then r →∞, we conclude.

It is clear that we can replace the equi-bounded condition on the sequence
of functions with a uniform bounded assumption on the coefficients bn, σnk and
Mnξ . In this case, the stopping time functional τr is not needed.

Note that all conditions are actually given in term of the diffusion matrix

a :=
1

2

∑
k

σk σ
∗
k,

and not directly on the diffusion coefficients σk.

4.5.2 With Bounded Variation Processes

Now, consider an stochastic integral process (with jumps) in Rd of the form
ξ(t) = x+

∑
k

∫ t

0

βk(s)dvk(s) +
∑
k

∫ t

0

σk(s)dwk(s) +

+
∑
k

∫ t

0

ςk(s)dwϑk (s) +

∫
Rd∗×]0,t]

zν̃ξ(dz,ds),

(4.128)

for every t ≥ 0, in some filtered probability space (Ω, F, P,F(t) : t ≥ 0), where
(vk) is a continuous nondecreasing adapted process with vk(0) = 0, (wk) is a
(standard) Wiener process, (wϑk ) is a continuous square integrable martingale
with predictable quadratic covariation 〈wϑh , wϑk 〉 = ϑk if h = k, 〈wϑh , wϑk 〉 = 0 if
h 6= k, and 〈wh, wϑk 〉 = 0 for every h, k (so that ϑk is a continuous nondecreas-
ing adapted process with ϑk(0) = 0), and ν̃ξ is the local martingale measure
associated with the integer valued measure νξ (with predictable compensator
νpξ ), corresponding to the quasi-left continuous process ξ. The compensator νpξ
is assumed to have the form

νpξ (B, (0, t]) :=

∫ t

0

Mξ(B, s)dκ(s),

where the intensity kernel M satisfies: (1) s 7→ Mξ(B, s) is predictable for every B,
(2) B 7→ Mξ(B, s) is a measure in Rd∗ for every s, and (3) s 7→ κ(s) is a continuous
nondecreasing adapted process with κ(0) = 0. The coefficients βk(s), σk(s) and
ςk(s) are predictable processes. Also, for a given predictable nonnegative process
τ̇(s) define the following (integral) process

τ(s) :=

∫ s

0

τ̇(r)dr,
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and also the processes

a(s) :=
(1

2

∑
k

σik(s)σjk(s)
)
, ρ(s) :=

∫ s

0

Tr(a(r))dr,

where ρ(·) has nonnegative real values and a(·) has symmetric nonnegative d×d
matrix values. Note that

Tr(a(s)) =
1

2

∑
ik

|σik(s)|2, dρ

ds
(s) = ρ̇(s) = Tr(a(s))

and usually τ̇ = 1. Now we have

Theorem 4.70. Let ξ(·) = ξx(·) be a stochastic integral process with jumps as in
(4.128) in Rd and τ̇ be a predictable nonnegative processes. Define the processes
τ(·), ρ(·) and a(·) as above and suppose that for some positive constants K = Kξ,
and λ > 0, and any s, ω we have

2
√
λ
∑
k

|βk(s, ω)|+ λ

∫
Rd∗
|z|2Mξ(dz, s, ω) + λ

∑
ik

|ςik(s, ω|2 ≤

≤ K λ
∑
ik

|σik(s, ω)|2,

Then for every p ≥ d there exists a constant C depending only on p, d, λ and
K such that, with

Cκ,ϑ,v := C E
{
λ

∫ T

0

e−λρ(s) Tr
(
a(s)

)
d
[
κ(s) +

∑
k

ϑk(s) +
∑
k

vk(s)
]}
,

the a priori parabolic estimate

E
{∫ T

0

e−λ[ρ(s)+τ(s)] d+1
√

det(a(s)) τ̇(s) |h(τ(s), ξx(s))|ds
}
≤

≤ Cκ,ϑ,v
[ ∫ ∞

0

e−λ(d+1)sds

∫
Rd
|h(s, y)|p+1dy

]1/(p+1)

,

and elliptic estimate

E
{∫ T

0

e−λρ(s) d
√

det(a(s))
∣∣g(ξx(s))

∣∣ds} ≤ Cκ,ϑ,v [ ∫
Rd
|g(y)|pdy

]1/p
,

hold, for any x in Rd, any stopping time T and any Borel functions g(y) and
h(s, y).

Proof. First notice that we need to consider only the case when the constant
Cκ,ϑ,v is finite. Reviewing the proof in Theorem 4.67, we see that the first point
is to realize that by means of Itô formula new terms appear, where ds is replaced
by dκ(s), dϑk(s) and dvk(s). Thus, the key point to discuss is how to estimate
an expression of the form

Ru :=

∫ T

0

e−λ%(s)
[

sup
x∈Rd

u(τ(s), x)
]

Tr(a(s))dα(s),
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where α(s) is a continuous nondecreasing adapted process. To this purpose, we
have

Ru ≤
∫ T

0

e−λ%(s) Tr(a(s)) q(τ(s), h) eτ(s)λ(d+1)/(p+1)dϑ(s),

q(s, h) := C(p, d, λ)
[ ∫ T

s

e−λ(d+1)rdr

∫
Rd
|h(r, y)|p+1dy

]1/(p+1)

,

where C(p, d, λ) is an in Theorem 4.66. Since p ≥ d, define

p(t) :=

∫ T

t

exp
(
− λ

∫ s

0

Tr(a(t))dt
)

Tr(a(s))dα(s),

to integrate by parts and to get

Ru ≤
∫ T

0

exp
(
− λ

∫ s

0

Tr(a(t))dt
)

Tr(a(s)) q(τ(s), h)ds =

= −
∫ T

0

q(τ(s), h) dp(s) ≤ p(0) q(0, h).

Thus

E
{∫ T

0

e−λ%(s)
[

sup
x∈Rd

u(τ(s), x)
]

Tr
(
a(s)

)
dα(s)

}
≤

≤ Cα(p, d, λ)
[ ∫ T

s

e−λ(d+1)rdr

∫
Rd
|h(r, y)|p+1dy

]1/(p+1)

,

where

Cα(p, d, λ) := C(p, d, λ)E
{∫ T

0

e−λρ(s) Tr
(
a(s)

)
dα(s)

}
.

Notice that if α(s) = s then λCα(p, d, λ) ≤ C(p, d, λ). This estimate and the
property (b) of Theorem 4.66, namely∑

ijk

ςik(s) ςjk(s) ∂iju(t, x) ≤ λ
∑
ik

|ςik(s)|2 u(t, x),

allows us to bounds the extra terms due to the new form (with respect to
Theorem 4.67) of the stochastic integral process. Hence, the parabolic estimate
is established, which yields the elliptic estimate.

The interest of the above parabolic and elliptic estimates is limited without
more conditions on the processes κ, ϑ and v. Typically, the process ξ belongs to
some domain O with a boundary ∂O where an instantaneous reflection is made,
i.e., the nondecreasing processes satisfy

Mξ(dz, s) = 1Ō(ξ(s−) + z) Mξ(dz, s),

d`(s) = 1∂O(ξ(s))d`(s),∑
k

βk(s)dvk = 1O(ξ(s)) b(s) ds+ 1∂O(ξ(s)) c(s) d`(s),

Section 4.5 Menaldi January 7, 2014



CHAPTER 4. STOCHASTIC CALCULUS 485

for every s ≥ 0, where the process ` is the local time on the boundary, i.e.,
κ(s) = t and ϑk(s) = 0. A natural assumption is to suppose that there is a
smooth (positive on O) function ϕ = ϕO(x) with bounded second derivatives
such that

1O(ξ(s−))
[
Aξ(s)ϕ(ξ(s−))

]
≤ λϕ(ξ(s−))

∑
ik

|σik(s)|2,

1∂O(ξ(s−))
[
Bξ(s)ϕ(ξ(s−))

]
≥ c0 > 0,

for every s > 0, where

Aξ(s)ϕ(x) :=
∑
i

bi(s)∂iϕ(x) +
1

2

∑
ijk

σik(s)σjk(s)∂ijϕ(x) +

+

∫
Rd∗

[
ϕ(x+ z)− ϕ(x)− z

∑
i

∂iϕ(x)
]
Mξ(dz, s),

Bξ(s)ϕ(x) :=
∑
i

ci(s)∂iϕ(x),

are defined for any s ≥ 0 and x in Rd. Thus, by applying Itô formula to the
function (s, x) 7→ exp(−λρ(s))ϕ(x) we get

E
{
λ

∫ T

t

e−λρ(s) Tr
(
a(s)

)
d`(s)

}
≤ 1

c0
E
{
ϕ(ξt)

}
, (4.129)

for every T > t ≥ 0, which complement the estimates in Theorem 4.70. The
technique of Remark 4.35 helps us to establish estimates on higher moments of
the local time `. Usually, c(s) points in the normal direction at ξ(s−) and the
function ϕ is a smooth extension of the function x 7→ d(x), where d(x) is the
distance to the boundary ∂O.

The above Theorem 4.70 includes an stochastic integral process (with jumps)
in Rd of the form

ξ(t) = x+

∫ t

0

b(s)ds+
∑
k

∫ t

0

σk(s)dwk(s) +

∫ t

0

c(s)d`(s) +

+
∑
k

∫ t

0

ςk(s)dw`k(s) +

∫
Rd∗×]0,t]

zν̃ξ(dz,ds),

(4.130)

for every t ≥ 0, in some filtered probability space (Ω, F, P,F(t) : t ≥ 0), where
` is a continuous nondecreasing adapted process with `(0) = 0, (wk) is a (stan-
dard) Wiener process, (w`k) is a continuous square integrable martingale with
predictable quadratic covariation 〈w`h, w`k〉 = ` if h = k, 〈w`h, w`k〉 = 0 if h 6= k
and 〈wh, w`k〉 = 0 for every h, k, and ν̃ξ is the local martingale measure asso-
ciated with the integer valued measure νξ (with predictable compensator νpξ ),

corresponding to the quasi-left continuous process ξ. The compensator νpξ is
assumed to have the form

νpξ (B, (0, t]) :=

∫ t

0

Mξ(B, s)ds+

∫ t

0

Nξ(B, s)d`(s),
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for every B ∈ B(Rd∗), where the intensity kernels M and N satisfies: (1) s 7→
Mξ(B, s) and s 7→ Nξ(B, s) are predictable for every B and (2) B 7→ Mξ(B, s) and
B 7→ Nξ(B, s) are measures in Rd∗ for every s. The coefficients b(s), c(s), σ(s)
and ς(s) are predictable processes. In this case we replace Cκ,`,v with

C` := C + C E
{
λ

∫ T

0

e−λρ(s) Tr
(
a(s)

)
d`(s)

}
,

in the a priori parabolic and elliptic estimates. When O = Rd+ := {x ∈ Rd :
xd > 0} and under the some suitable assumptions, including

bd(s) ≥ c0 > 0, ∀s ≥ 0,

we can use ϕ(y) := y or ϕ(y) := y/(1 + y2) and y = xd to get an estimate on
the local time `, which is more general than the instantaneous reflection at the
boundary, i.e., diffusions, jumps and sojourn are also allowed on the boundary
∂Rd∗. This type of bounds are useful when dealing with boundary conditions,
e.g., see the papers Anulova [3, 4].

It is clear that after getting an estimate on Cκ,ϑ,v we deduce a bound as in
Corollary 4.68 for the above stochastic integral process (4.128).

Also, it is clear that a convergence result similar to Theorem 4.69 holds for
a stochastic integral process of the form (4.128) or (4.130) as in Theorem 4.70.
The interest reader may take a look at the arguments in the paper Anulova [3]
for the passage to the limit in stochastic integrals.
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Chapter 5

Stochastic Differential
Equations

In the physical and engineering sciences stochastic differential equations arise
in a quite naturally way in the description of systems with disturbances, e.g.,
see Schuss [223], Wong [255]. On the other hand, the theory of stochastic dif-
ferential equations was originally developed as a tool for explicit construction of
the trajectories of diffusion processes with given drift and diffusion coefficients.
This approach was extended to diffusion processes with jumps, where jumps
coefficients are also given.

Sometimes the equation takes the form of an ordinary differential equation
with random coefficients, i.e.,

ẋ(t) = g(t, x(t), η(t)), x(t0) = x0,

where the vector field g is a deterministic function, but η = η(t, ω) is a ran-
dom process (disturbances) and x0 is the initial condition (possible random).
Depending on the assumptions on the data g, η and x0, solutions are found as
stochastic processes x(t) which paths are at least locally absolutely continuous.
Most of the results here are obtained with classic methods from the theory of
ordinary differential equations, e.g., see Ladde and Lakshmikantham [146]. The
situation is quite different if the random disturbances are modelled as white-
noise, e.g., see Wong and Hajek [256]. The simplest case is when g is linear in
η, so that the equation becomes

ẋ(t) = g(t, x(t)) + σ(t, x(t))ẇ(t), x(t0) = x0,

where ẇ(t) is the white-noise, which is conceived as a stationary Gaussian
stochastic process with mean value zero and a constant spectral density on the
entire space. Such a process does not exist in the conventional sense, since the
Dirac delta function would be its covariance function, independent values at all
points with an infinite variance. However, the white-noise is a very useful math-
ematical idealization for describing random influences that fluctuate rapidly and
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hence are virtually uncorrelated for different instants of time. The white-noise
can be realized as a generalized stochastic process, but to keep working with
stochastic processes, the white-noise is thought as the formal time-derivative of
a standard Wiener process (w(t) : t ≥ 0), namely (ẇ(t) : t ≥ 0), e.g., see Itô
and McKean [113]. For a stochastic dynamical system without after-effects or
without memory, the law of the motion of the state can be described by a more
general equation, namely

dx(t) = G(t, x(t),dt),

and if the fluctuations or disturbances η influence the system additively then

G(t, x(t),dt) := g(t, x(t))dt+ σ(t, x(t))η(dt),

where (η(t) : t ≥ 0) is a process with independent increments. Typically, η
is expressed as the sum of a standard Wiener process and a standard Poisson
measure, which produces a stochastic process (x(t) : t ≥ 0), so-called, diffusion
with jumps. Moreover, in stochastic control theory we have an equation of the
form

dx(t) = G(t, x(t), v(t),dt),

where v(t) is the control process and

G(t, x(t), v(t),dt) := g(t, x(t), v(t))dt+ σ(t, x(t), v(t))η(dt).

The paths of the noise t 7→ η(t) are usually continuous or cad-lag, but always
we expect the continuity in probability (or stochastic continuity) of both, the
disturbance process and the state process (x(t) : t ≥ 0), however, no path
regularity is expected for the control process (v(t) : t ≥ 0). On the other hand,
to impose causality, the state and the control processes must be adapted to the
disturbances.

Usually, the state variable x belongs to an Euclidean space, say Rd, or to a
region in O of Rd. If O is a manifold with boundary, then some conditions on
the boundary ∂O are necessary. The most studied boundary actions are either
to stop or to reflect the process, which yields either Dirichlet or Neumann (or
oblique) boundary conditions. Sometimes, the state variable x belongs to some
(infinite dimensional) Hilbert or Banach space, and so, the above stochastic
ordinary differential equation becomes a stochastic partial differential equation.

For a self contained course on stochastic differential equations (and more)
we refer to the books Arnold [7], Chung and Williams [45], Da Prato and
Zabczyk [51], Freidlin[87], Friedman [90], Gihman and Skorohod [99], Ikeda and
Watanabe [110], Kunita [143], Mao [165], Oksendal [190], Protter [206], among
others. On the other hand, some books in stochastic control contain a short
introduction to stochastic differential equations, e.g., Fleming and Rishel [83],
Morimoto [184], Yong and Zhou [261], among many others.

Stochastic ordinary differential equation are associated with three coeffi-
cients (drift, diffusion and jump terms) or directly with the integro-differential
operator (first-order and second-order terms, and the jump kernel). There are
three distinguished setups of essentially the same problem:
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(1) the strong formulation, where the probability space with a Wiener and
a Poisson measure, and the coefficients are given, and we look for a process
satisfying the equation;

(2) the weak formulation, where only the coefficients are given, and we look
for the probability space with a Wiener and a Poisson measure, and a process
satisfying the equation;

(3) the martingale problem, where the integro-differential operator is given, and
we look for a probability measure on the canonical space such that a process
(depending on the operator applied to smooth functions) is a martingale for any
choices of smooth functions.

Clearly, we can always go from (1) to (2) to (3), and under certain conditions, we
may move backward, from (3) to (2) to (1). As discussed later, the weak charac-
ter of the solution is directly related to functional representation of the solution.
The martingale setting (3) can be viewed as looking for a semi-martingale with
prescribed characteristics (drift, diffusion and integer measure). Extracting the
coefficients (with the appropriated degree of regularity in the space and time
variables) of a given second-order integro-differential operator is not always
simple, the diffusion term involves a square-root of a matrix and jumps term
is harder, a representation of the jump kernel (o Lévy kernel or measure) is
necessary. These points should become clear with the specific details of what
follows.

It is clear that we have in mind to model the disturbance with an underlaying
Lévy process, but we need to distinguish the continuous part from the jump part.
The jump part is certainly described by the Lévy measure (or jumps kernel).
Two quick difficulties appear, one situation is when the Lévy measure is locally
integrable (it may be no integrable at infinite). In this case, we have to deal
with process with possible infinite first moment, but the construction is simple
(like a Poisson process). We are more interested in the second case, when the
Lévy measure at least integrates the function 1 ∧ |x|2.

The continuous part is well modeled by a n-dimensional Wiener process,
which can be seen a n independent one-dimensional Wiener processes. The
jump part is modeled as a m-dimensional Poisson measure, which corresponds
to the jump of a m-dimensional Lévy process, and in general cannot be thought
as coming from m (independent) Lévy processes (this would represent the case
of no simultaneous jumps). Moreover, if we are willing to use martingales in
a general Hilbert space, we can including even the case of (local) martingale
measures as a particular case. Therefore, instead of refer to as noise with Lévy
processes, we use the terminology Wiener-Poisson space with Lévy measure.

Modeling dynamical systems by a SDE includes only one time-scale, in our
case, the continuous and the jump parts are measured with the same time-
scale. However, more practical models include continuous (e.g., mechanical) and
discrete (e.g., digital) variables (e.g., measurements), which are usually referred
to as hybrid systems (e.g., see Bensoussan and Menaldi [18], Menaldi [172]
and references). A typical model is an automaton, where the system (running
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in a continuous time-scale) makes jumps or adjust it evolution according to
a prescribed rule, in short, switching between differential equations. In more
details, this is a switchings system between diffusions accordingly to a Markov
chain. Essentially this can be viewed as a diffusion with jumps, with a bounded
Lévy measure, assuming some details in the description are ignored.

The reader will find that there are a lot of details missing in this summary on
stochastic integrals and martingales. Many excellent books (classic and recent)
cover all the subjects mentioned above and much more, e.g., the reader may
check Applebaum [6], Chung and Williams [45], Bichteler [25], Kallenberg[121],
Medvegyev [168], Peszat and Zabczyk [197], Protter [206], among others, for
various presentations on stochastic analysis.

5.1 Existence and Uniqueness of Solutions

Let (Ω,F , P,Ft, w(t), ν̃(dζ,dt), ζ ∈ Rm∗ , t ≥ 0) be a (standard) n×m Wiener-
Poisson space with Lévy measure π(·), i.e., in a (complete) filtered probabil-
ity space (Ω,F , P,Ft, t ≥ 0), the stochastic process (w(t), t ≥ 0) is a n-
dimensional (standard) Wiener space and (ν(B, ]0, t]), B ∈ Rm∗ , t ≥ 0) is an
independent (standard) Poisson measure with (intensity) Lévy measure π(B) :=
E{ν(B, ]0, t])}/t, which satisfies∫

Rm∗

|ζ|2

1 + |ζ|
π(dζ) <∞,

with martingale measure ν̃(B, ]0, t]) := ν(B, ]0, t]) − tπ(B), as discussed in the
previous chapter. This martingale measure ν̃ is identified with the Rm-valued
compensated-jump (Poisson) process

p̃(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds), t ≥ 0,

which induces a probability measure Pν̃ (also denoted by Pπ) on the canonical
space D := D([0,∞[,Rm) of cad-lag functions, namely,

Pν̃(A) := P
{
p̃(·) ∈ A

}
, ∀A ∈ B(D). (5.1)

with its characteristic function (or Fourier transform) given by

E
{

exp
[
i

∫
Rm∗ ×]0,t]

(z · ζ)ν̃(dζ,ds)
]}

=

= exp
[
− t
∫
Rm∗

(
1− ei z·ζ + i z · ζ

)
π(dζ)

]
,

for every t ≥ 0 and z in Rm. Also note that the Wiener process w induces a
probability measure Pw on the canonical space C := C([0,∞[,Rm) of continuous
functions, namely,

Pw(A) := P
{
w(·) ∈ A

}
, ∀A ∈ B(C). (5.2)
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and its characteristic function (or Fourier transform) is given by

E
{

exp
[
i ξ · w(t)

]}
= exp

(
− t |ξ|

2

2

)
,

for every t ≥ 0 and ξ in Rn.
In other words, ` = w+ p̃ is a (centered) Lévy process, where w is its contin-

uous or Gaussian part and p̃ is its purely jumps or Poisson part. Recalling that
any continuous martingale is orthogonal to any purely discontinuous martingale
(with respect to a common filtration), we deduce that the processes φ(w)−φ(0)
and ψ(p̃) − E{ψ(p̃)} are orthogonal martingales for any smooth functions φ
and ψ, i.e., w and p̃ (or ν) are independent. Hence, as long as the filtration
F = (Ft : t ≥ 0) is given and w, p̃ (or ν̃) are F-martingales, the independence of
the Wiener process and the Poisson measure is granted. This Wiener-Poisson
space is fixed throughout this section (unless otherwise mentioned).

Alternatively, we may begin with a Lévy process ` with characteristic (0, I, π),
i.e., with the continuous part being a standard Wiener process and with Levy
measure π. Then, from the jumps of ` we obtain its associated integer measure
ν and martingale measure ν̃(dζ,dt) = ν(dζ,dt) − tπ(dζ), so that we are back
to in our initial setting. Here, we could use Lévy measures that integrate only
|ζ|2 ∧ 1 instead of |ζ|2 ∧ |ζ|, but our real interest is on Lévy processes having
moment of all order, i.e., Lévy measures capable of integrating 1+ |ζ|p for every
p ≥ 0. Other cases can be treated with a direct (or interlacing) construction of
the jumps similarly to the case of piecewise deterministic processes, for instance,
see also Applebaum [6, Chapter 6, pp. 292-357].

It should be clear that the setting of the stochastic differential equation is
materialized in a Wiener-Poisson space as described early, which is constructed
from its characteristics, namely, the identity matrix used as co-variance matrix
of the Wiener process and the Lévy measure determining the Poisson measure.
The coefficients (drift g, diffusion σ and jumps γ) are the key data, but not
the only data. The underlying noise is represented by the Wiener process w
and the centered Poisson measure ν̃, and contrary to deterministic models, the
characteristics elements of the noise also play. When jumps are not involved, the
co-variance matrix (taken to be the identity) determine the Wiener process, but
when dealing with jumps, there are much larger choices since the Lévy measure
π carries all the intrinsic properties of the jumps. At this time, it may useful
to recall that a linear combination of independent Wiener (or Lévy) processes
produces another Wiener (or Lévy) process, but only a sum of independent
Poisson measures yields another Poisson measure.

Note the role of the filtration F = (Ft : t ≥ 0) in the Wiener-Poisson
space. This is to say that given the dimension n and the Lévy measure π on
Rm∗ , the canonical construction mentioned early on the canonical space Ω =
C([0,∞[,Rn)×D([0,∞[,Rm) of the probability measure Pw×Pπ (on the Borel
σ-algebra F of Ω, considered as a Polish space) provides a basic Wiener-Poisson
space, where F is the canonical filtration, i.e. first F0

t is generated by the
projection maps ω 7→ ω(s) for 0 ≤ s ≤ t and then Ft = F0 ∪

⋂
s>t F0

s , where
F0 is the σ-algebra generated by all Borel sets with Pw × Pπ-zero measure.
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However, this leaves the possibility of enlarging the filtration F and the σ-
algebra F , for instance, completing F with all Pw × Pπ-negligible sets or using
the universally completed σ-algebra Fu (i.e., adding all sets which are negligible
for any probability measure on Ω), and modifying the filtration F in a way that
the martingale properties of the Wiener process and the Poisson measure are
preserved. As seen later, these changes are necessary when discussing the so-
called either weak formulation or martingale formulation. As usual, recall that
the notations either xt and x(t) for stochastic processes, or Ft and F(t) for
σ-algebras, are considered interchangeable everywhere in the text.

5.1.1 Lipschitz Coefficients

Suppose we are given the data, i.e., an initial condition x0 = (x0
i , i = 1, . . . , d),

an adapted (predictable) process (v(t) : t ≥ 0), and functions g(t, x, v) :=
(gi(t, x, v), i = 1, . . . , d), σ(t, x, v) := (σik(t, x, v), i = 1, . . . , d, k = 1, . . . , n)
and γ(ζ, t, x, v) := (γi(ζ, t, x, v), i = 1, . . . , d). The stochastic ordinary differen-
tial equation takes the form

x(t) = x0 +

∫ t

t0

g(s, x(s), v(s))ds+

∫ t

t0

σ(s, x(s), v(s))dw(s) +

+

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀ t ≥ t0,
(5.3)

which is written by components, i = 1, . . . , d, as

xi(t) = x0
i +

∫ t

t0

gi(s, x(s), v(s))ds+

+

n∑
k=1

∫ t

t0

σik(s, x(s), v(s))dwk(s) +

+

∫
Rm∗ ×]t0,t]

γi(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀ t ≥ t0,

(5.4)

or in differential form as
dx(t) = g(t, x(t), v(t))dt+ σ(t, x(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, x(t), v(t))ν̃(dζ,dt),
(5.5)

plus the initial condition x(t0) = x0. Note the use of the stochastic integral with
respect to a martingale.

Perhaps of key importance is to recall the martingale-type (or sup-type)
inequalities for the stochastic integrals, namely, the Wiener integral,

E
{

sup
t0≤t≤t1

∣∣∣ ∫ t

t0

σ(s)dw(s)
∣∣∣p} ≤ CpE{[∫ t1

t0

|σ(s)|2ds
]p/2}

,
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for any p ≥ 1, and the Poisson integral

E
{

sup
t0≤t≤t1

∣∣∣ ∫
Rm∗ ×]t0,t]

γ(ζ, s)ν̃(dζ,ds)
∣∣∣p} ≤

≤ CpE
{[∫ t1

t0

ds

∫
Rm∗
|γ(ζ, s)|2π(dζ)

]p/2}
,

if 1 ≤ p ≤ 2, while a term of the form

CpE
{[∫ t1

t0

ds

∫
Rm∗
|γ(ζ, s)|pπ(dζ)

]p}
, only if p ≥ 2,

should be also added. In any case, the constant Cp depends only on p and in
particular, C1 = 3 and C2 = 4.

Thus the expression (5.3) makes sense as long as following conditions hold:

(a) the process (x(t) : t ≥ 0) is measurable, adapted, and locally bounded, i.e.,

sup
t0≤s≤t

|x(s)| <∞,

with probability one for any t ≥ t0.

(b) the (Lebesgue and stochastic) integrals∫ t

t0

|g(s)|ds,
∫ t

t0

|σ(s)|2ds,

∫ t

t0

ds

∫
Rm∗
|γ(ζ, s)|2π(dζ),

are finite with probability one for any t ≥ t0, where the integrand processes
(Rd-, Rd × Rn- and Rd-valued) are defined by g(t) := g(t, x(t), v(t)), σ(t) :=
σ(t, x(t), v(t)) and γ(ζ, t) := γ(ζ, t, x(t), v(t)).

Hence, when we say that equation (5.3) is satisfied we means that (a) and (b)
above are true, and the equality (5.3) holds for every t ≥ t0 with probability one.
Since the initial condition x0 is a F(t0)-measurable random variable and v(t)
is adapted, the processes g(t), σ(t) and γ(t, ζ) are necessarily measurable and
adapted (if the solution x(t) is so). A posteriori (once a locally bounded solution
is found), by taking the right-hand-term of equality (5.3), another solution can
be defined, which is a cad-lag (and stochastically continuous) version of the
previous one. Therefore, uniqueness means uniqueness up to a version and
and solution means a cad-lag version (with is also stochastically continuous, if
needed). If the predictable version of the integrand in the Poisson stochastic
integral is used, then γ(ζ, t, x(t), v(t)) should be replaced by γ(ζ, t, x(t−), v(t)).

• Remark 5.1. From the modeling or control viewpoint it is perhaps impor-
tant to emphasis the various type between data, namely, (a) the deterministic
coefficients g(t, x, v) (drift), σ(t, x, v) (diffusion), γ(t, x, v) (jumps), and π(δζ)
(jump-measure); (b) the random elements t0, x(t0) (initial condition) and v(·)
(control process); (c) the Wiener-Poisson space composed by a filtered proba-
bility space (Ω,F, P ) with a standard Wiener process w and a Poisson measure
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ν with compensated (or martingale) measure ν̃, all relative to the filtration
F = (Ft : t ≥ 0). Therefore, the stochastic setting includes all the pieces
mentioned in (c), which are constructed a priori, based on the jump-measure
(Lévy measure) π. The random elements in (b) could be taken deterministic
initially, e.g., our current model uses a deterministic initial time t0, a possible
random initial state x(t0) (which is mainly regarded as deterministic to all ef-
fects), and a adapted control process v(·) (which is only a predictable process)
with not a priori regularity on its paths. If v(·) is assumed deterministic then
there is not need to explicitly mention this variable v. Our model is based on
the deterministic coefficients in (a), the drift g is the mean-evolution and (σ, γ)
describes the noise-evolution, the continuous (or Gaussian) and the jumps (or
Poisson) components. However, if the variable v is not explicitly mentioned
then (to be able to accommodate the control process) the coefficients should in-
clude the variable ω, i.e.,g(t, x, ω) = g(t, x, v(t, ω)), σ(t, x, ω) = σ(t, x, v(t, ω)),
γ(t, x, ω) = γ(t, x, v(t, ω)). Thus, the intrinsic characteristic of data (a) are lost,
in relation to the data (b) and (c).

Definition 5.2 (solution). An adapted cad-lag process (x(t) : t ≥ t0) is a
solution of the d-dimensional stochastic ordinary differential equation if (5.3)
is satisfied for every t ≥ t0. Actually, a solution means an equivalence class of
processes represented by a cad-lag element. Thus, we say that the uniqueness
holds whenever two solutions are each one version of each other, i.e., if x and y
are two solutions then P{x(t) = y(t)} = 1 for every t ≥ t0.

Note that if an adapted process (x(t) : t ≥ t0) satisfying (5.3) is found, then
a cad-lag version exists and any cad-lag version is a solution. Thus, uniqueness
of solution means a unique equivalence class of solutions. It is clear that we
may consider solution defined on a bounded interval [t0, t1] or [t0, t1) instead of
[t0,∞).

Regarding this model, it may be important to remark that deterministic
jumps are not allowed, namely, the solution is also quasi-continuous from the
left, i.e., for any sequence {τk : k ≥ 1} stopping times converging to τ (which
is then a predictable time) and satisfying τk < τ < ∞ almost surely, we have
x(τk) → x(τ) in probability. Moreover, if p̃ is the purely jumps part of the
underlying Lévy process (i.e., p̃ is the compensated Poisson process associated
with the Poisson measure ν with martingale measure ν̃ and Lévy measure π) as
above, then the jumps δx(t) := x(t)− x(t−) = γ

(
δp̃(t), t, x(t−), v(t)

)
1{|p̃(t)|>0},

i.e., jumps are only generated by the jumps of the underlying Lévy process and
they are modified by the coefficient γ. Moreover, if π integrates |γ(ζ, t, x(t), v(t))|
almost surely on Rm∗ ×]0, T ], for every T > 0, then we have∑

0<s≤t

(
x(s)− x(s−)

)
=

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s), v(s))ν̃(dζ,ds) +

+

∫ t

0

ds

∫
Rm∗

γ(ζ, t, x(t), v(t))π(dζ).

Deterministic jumps could be added, by means of other deterministic tools.
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Certainly, the mean vector process µx(t) = E{x(t)} is given by

µx(t) = x0 +

∫ t

t0

E{g(s, x(s), v(s))}ds, ∀t ≥ t0,

and from Itô formula we deduce that the covariance matrix process Qx(t), with
entries qxij(t) = E{[xi(t)− µxi (t)][xj(t)− µxj (t)]}, satisfies

qxij(t) =
1

2

n∑
k=1

∫ t

t0

E{σik(s, x(s), v(s))σjk(s, x(s), v(s))}ds+

+

∫ t

t0

ds

∫
Rm∗

E{γi(ζ, s, x(s), v(s))γj(ζ, s, x(s), v(s))}π(dζ),

for every t ≥ t0. Actually, Itô formula can be used to obtain the expression of the
characteristic function y 7→ E{ei y·x(t)}. It is clear that, unless the coefficients
g, σ, γ have a particular form (e.g., when g is linear in x and, σ and γ are constant
in x), we cannot solve for µx(t) or Qx(t) from a close ordinary differential
equation and avoid dealing with the stochastic differential expression.

There are various sets of assumptions used to study the above d-dimensional
stochastic ordinary differential equation. The coefficients g(t, x, v), σ(t, x, v) and
γ(ζ, t, x, v) are always supposed Borel measurable, and because we are interested
in global solutions defined on a prescribed bounded interval, say [t0, t1], we
impose a linear growth condition, namely, there exists a constant C > 0 such
that  |g(t, x, v)|2 + |σ(t, x, v)|2 +

∫
Rm∗
|γ(ζ, t, x, v)|2π(dζ) ≤

≤ C(1 + |x|2),

(5.6)

for every (t, x, v) in [t0,∞) × Rd × Rq. Thus, the initial condition x0 must be
an F(t0)-measurable random variable (most of the time, a deterministic value),
and except for adaptability or predictability, no other conditions are assumed
on the (stochastic) parameter or control process (v(t) : t ≥ 0).

Main Results

A clean existence and uniqueness theory is developed adding a uniform locally
Lipschitz condition in the variable x, namely, for any r > 0 there exists a positive
constant M = M(r) such that

|g(t, x, v)− g(t, x′, v)|2 + |σ(t, x, v)− σ(t, x′, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)− γ(ζ, t, x′, v)|2π(dζ) ≤M |x− x′|2,

(5.7)

for every (t, x, v), (t, x′, v) in [t0,∞) × Rd × Rq with t ≤ t0 + r, |x| ≤ r and
|x′| ≤ r.
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Theorem 5.3 (existence and uniqueness). Let t0 be an initial time, x0 be a
F(t0)-measurable random variable with values in Rd and (v(t) : t ≥ t0) be a
Rq-valued predictable1 process. Assume that the coefficients2 satisfy (5.6) and
(5.7). Then, there exists one and only one solution (t, ω) 7→ x(t, ω) of the d-
dimensional stochastic ordinary differential equation (5.3) on the time interval
[t0,∞), which is defined as a d-dimensional process (equivalence class of pro-
cesses) on the standard n×m Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ,dt) :
ζ ∈ Rm∗ , t ≥ 0).

Proof. The arguments of the proof are essentially the same as in the determin-
istic case (i.e., σ = 0 and γ = 0). The solution is found as a unique fixed point
of some contraction map on a Banach space.

We proceed as follows: First we assume that the initial condition x0 has
a finite second order moment, i.e., E{|x0|2} < ∞, and that the constant M
in assumption (5.7) is independent of r (as far as the restrictions |x| ≤ r and
|x′| ≤ r are concerned), i.e., the coefficients satisfy a uniform (global) Lipschitz
condition in the variable x and the region [t0, t0 + r]× Rd × Rq.

It i clear that existence and uniqueness should be proved only within any
arbitrary time interval [t0, t1]. Thus, for a fixed time t1 > t0, denote by Y the
vector space of measurable functions y from [t0, t1]× Ω into Rd satisfying:

(a) the maps ω 7→ y(t, ω) is F(t)-measurable for every t in [t0, t1],

(b) the process x is stochastically (actually, either right- or left- is sufficient)
continuous, i.e., for every t in [t0, t1] and ε > 0 there exists a positive δ = δ(t, ε)
(actually, δ may take independent of t in any compact interval [t0, t1]) such that
P{|x(t)− x(s)| > ε} < ε for every s satisfying |t− s| < δ,

(c) for a (positive) constant α (to be selected later on) the following quantity

‖y‖Y :=
(
E{ sup

t0≤t≤t1
e−2α(t−t0)|y(t)|2}

)1/2
is finite and therefore defines a semi-norm on Y, which is denoted by ‖ · ‖ when
possible.

By taking equivalence classes, we obtain the (in general, non-separable) Banach
space Y with the sup-norm ‖ ·‖ = ‖ ·‖Y , and because t1− t0 is a finite value, the
space Y is independent of the constant α. Condition (b) is not really necessary,
but it is very convenient to have the concept of version the same as the concept
of undistinguishable (e.g., another good choice could be to replace continuity in
probability with almost surely cad-lag processes). Certainly, this is the space of
adapted processes with finite sup-norm second moment. Moreover, condition (a)
may be replaced by the predictability condition (since there is not deterministic
jumps, i.e., the continuity in probability holds). As seen below, an essential tool
is the martingale-type estimates previously mentioned for the stochastic Wiener
and Poisson integrals. In any way, a fixed point can be found first in the closed
subspace of optional processes of the Hilbert L2(]t0, t1 × Ω) with the product

1i.e., a predictable version of an adapted process
2which are implicitly supposed to be Borel measurable
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measure dt×P (δω), and then the equality (5.3) shows that this fixed point has
a version belonging to the space Y.

Consider the non-linear mapping

T (x)(t) := x0 +

∫ t

t0

g(s, x(s), v(s))ds+

∫ t

t0

σ(s, x(s), v(s))dw(s) +

+

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀ t ∈ [t0, t1].

Since each integral preserves the sup-norm, i.e., for the first integral the Hölder
inequality implies∥∥∥∫ ·

t0

g(s, x(s), v(s))ds
∥∥∥2

=

= E
{

sup
t0≤t≤t1

e−2α(t−t0)
∣∣∣ ∫ t

t0

g(s, x(s), v(s))ds
∣∣∣2} ≤

≤ 1

2α
E
{∫ t1

t0

e−2α(s−t0)
∣∣∣g(s, x(s), v(s))

∣∣∣2ds
}
≤

≤ t1 − t0
2α

E
{

sup
t0≤t≤t1

e−2α(t−t0)|g(t, x(t), v(t))|2
}
,

while for the other integrals using the martingale inequality (for stochastic in-
tegrals) we get∥∥∥∫ ·

t0

σ(s, x(s), v(s))dw(s)
∥∥∥2

=

= E
{

sup
t0≤t≤t1

∣∣∣ ∫ t

t0

e−α(t−t0)σ(s, x(s), v(s))dw(s)
∣∣∣2} ≤

≤ 4

2α
E
{

sup
t0≤t≤t1

e−2α(t−t0)|σ(t, x(t), v(t))|2
}

and ∥∥∥∫
Rm∗ ×]t0,·]

γ(ζ, s, x(s), v(s))ν̃(dζ,ds)
∥∥∥2

=

= E
{

sup
t0≤t≤t1

∣∣∣ ∫
Rm∗ ×]t0,t]

e−α(t−t0)γ(ζ, s, x(s), v(s))ν̃(dζ,ds)
∣∣∣2} ≤

≤ 4

2α
E
{

sup
t0≤t≤t1

e−2α(t−t0)

∫
Rd∗
|γ(ζ, t, x(t), v(t))|2π(dζ)

}
.

Thus, assumption (5.6) implies that T maps the Banach space Y into itself.
Moreover, computations similar to the above yield

‖T (x)− T (y)‖ ≤ K√
α
‖x− y‖, ∀x, y ∈ Y,

for some constant K depending only on t1−t0 and the constant M of hypothesis
(5.7).
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Therefore, if we take α sufficiently large then T becomes a contraction on
Y, and the result follows. Note that for any y in Y, the image T (y) is a cad-lag
adapted process.

To extend these the arguments to the general case, we begin with the unique-
ness. Let x and y be two solutions (cf. Definition 5.2) of (5.3). Because the
second moments of x and y may not be finite, we use a truncation technique.
For any r > 0, define the adapted process

χr(t) :=

0 if |x(s)| > r or |y(s)| > r for some s > t,

1 otherwise,

i.e., if τr(x(·)) denotes the first exit time from the closed ball of radius r for the
process x(·), namely,

τr(x(·)) = inf{s ≥ 0 : |x(s)| > r},

which implies |x(s)| ≤ r for every s < τr(x(·)), and then

χr(t) = 1τr(x(·))>t 1τr(y(·))>t, ∀t ≥ 0.

Since χr(t) = χr(t)χr(s) for every s ≤ t, we have

[x(t)− y(t)]χr(t) = χr(t)
{∫ t

t0

χr(s)
[
g(s, x(s), v(s))− g(s, y(s), v(s))

]
ds

+

∫ t

t0

χr(s)
[
σ(s, x(s), v(s))− σ(s, y(s), v(s))

]
dw(s)+

+

∫
Rm∗ ×]t0,t]

χr(s)
[
γ(ζ, s, x(s), v(s))− γ(ζ, s, y(s), v(s))

]
ν̃(dζ,ds)

}
.

By means of Hölder inequality and the martingale inequality for stochastic in-
tegrals, we deduce that

E{|x(t)− y(t)|2χr(t)} ≤ K
∫ t

t0

E{|x(s)− y(s)|2χr(s)}ds,

for every t in [t0, t1], and for some constant K depending only on t1 − t0, r and
the constant M = M(r) of hypothesis (5.7). Using Gronwall inequality, i.e., in
this case notice that the derivative of

t 7→ e−K(t−t0)

∫ t

t0

E{|x(s)− y(s)|2χr(s)}ds

is nonnegative, we deduce that for any t in [t0, t1] and any r > 0 we have
|x(t)− y(t)|χr(t) = 0 with probability one. Since x and y are cad-lag, and

P
{
χr(t) = 0 in [t0, t1]

}
≤ P

{
sup

t0≤t≤t1
|x(t)| > r

}
+

+ P
{

sup
t0≤t≤t1

|y(t)| > r
}
,
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there exists a set with probability one where x(t) = y(t) for every t in [t0, t1].
Note that uniqueness holds under the sole assumption (5.7), i.e., (measurability
and) a uniform locally Lipschitz condition in the variable x.

Finally, we need to extend the existence result to any initial condition and
local Lipschitz coefficients. Given r > 0, consider the orthogonal projection πr
in Rd on the ball with center 0 and radius r, i.e., πr(x) := x if |x| ≤ r and
πr(x) = r x/|x| otherwise. Define x0,r := πr(x

0),

gr(t, x, v) := g(t, πr(x), v)

σr(t, x, v) := σ(t, πr(x), v),

γr(ζ, t, x, v) := γ(ζ, t, πr(x), v),

for every r > 0. Because now the initial condition x0,r has finite second mo-
ment and the coefficients gr(t, x, v), σr(t, x, v) and γr(ζ, t, x, v) satisfy a uniform
(global) Lipschitz condition in the variable x, there is a unique solution, denoted
by (xr(t) : t ∈ [t0, t1]), of the stochastic ordinary differential equation with above
truncated data.

For any t in [t0, t1], we have

|xr(t)|2 ≤ 4|x0,r|2 + 4(t1 − t0)

∫ t

t0

|gr(s, x(s), v(s))|2ds+

+ 4
∣∣∣ ∫ t

t0

σr(s, x(s), v(s))dw(s)
∣∣∣2+

+ 4
∣∣∣ ∫

Rm∗ ×]t0,t]

γr(ζ, s, x(s), v(s))ν̃(dζ,ds)
∣∣∣2.

Since the truncated coefficients satisfy the growth condition (5.6) uniformly in
r > 0, we can make use of the sup-estimate for stochastic integrals to estimate
the product ψ supt |xr(t)|2 with ψ := 1/(1 + |x0|2), i.e.,

E{ψ sup
t0≤s≤t

|xr(s)|2} ≤ K1 +K1

∫ t

t0

E{ψ |xr(s)|2}ds, ∀t,

for some constant K1 independent of r, actually, depending only on t1 − t0 and
the bound C of assumption (5.6). Hence, Gronwall inequality yields

E{ψ sup
t0≤t≤t1

|xr(t)|2} ≤ K,

for another constant K independent of r. Therefore

P{ sup
t0≤t≤t1

|xr(t)| > r} ≤ P{ψ sup
t0≤t≤t1

|xr(t)|2 > ψ r2} ≤

≤
E{ψ supt0≤t≤t1 |x

r(t)|2}
ε r2

+ P{ψ ≤ ε} ≤

≤ K

ε r2
+ P{ψ ≤ ε},
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for any ε > 0. This proves that

P{ sup
t0≤t≤t1

|xr(t)| > r}

vanishes as r →∞.
On the other hand, the same arguments used for the uniqueness prove that

for any r′ ≥ r > 0 we have

P{ sup
t0≤t≤t1

|xr(t)− xr
′
(t)| > 0} ≤ P{ sup

t0≤t≤t1
|xr(t)| > r},

and we conclude that xr converges to a solution of (5.3). Finally, because t1 is
arbitrary the proof is completed.

General Comments

There is a little room for improvement in the above result regarding the as-
sumption on the drift coefficient g. To see this point, we apply Itô formula to
the function (x, t) 7→ |x|2 and the solution process x(t) to obtain

d|x(t)|2 =
{

2
∑
i

xi(t) gi(t, x(t), v(t)) +
∑
i,k

[
σik(t, x(t), v(t))

]2
+

+
∑
i

∫
Rm∗

[
γi(ζ, t, x(t), v(t))

]2
π(dζ)

}
dt+

+2
∑
k

[∑
i

xi(t)σik(t, x(t), v(t))
]
dwk(t) +

+

∫
Rm∗

[
|x(t) + γ(ζ, t, x(t), v(t))|2 − |x(t)|2

]
ν̃(dζ,dt).

We can revise the previous existence proof to see that condition (5.6) can be
replaced by the following growth assumption: there exists a constant C > 0
such that

2x g(t, x, v) + |σ(t, x, v)|2 +

∫
Rm∗
|γ(ζ, t, x, v)|2π(dζ) ≤ C(1 + |x|2), (5.8)

for every (t, x, v) in [t0,∞× Rd × Rq. In particular, from Gronwall inequality
we deduce the estimate

E{|x(t)|2} ≤ eC (t−t0)E{1 + |x(t0)|2}, ∀t ≥ t0, (5.9)

where the constant C is the same as in (5.8). The stochastic integral with
respect to the Wiener process, which is temporarily denoted by∫ t

t0

a(s) b(s)dw(s),

Section 5.1 Menaldi January 7, 2014



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 501

can be bounded as follows

E
{

sup
t0≤r≤t

∣∣∣ ∫ r

t0

a(s) b(s)dw(s)
∣∣∣} ≤

≤ 3
{
E
[

sup
t0≤s≤t

|a(s)|2
]}1/2{

E
[ ∫ t

t0

|b(s)|2ds
]}1/2

≤

≤ 1

3
E
{

sup
t0≤s≤t

|a(s)|2
}

+
27

4
E
{∫ t

t0

|b(s)|2ds
}
,

and similarly for the stochastic integral with respect to the Poisson measure.
After using Hölder and Gronwall inequalities, this yields the bound

E{ sup
t0≤s≤t

|x(s)|2} ≤ KeK (t−t0)E{1 + |x(t0)|2}, ∀t ≥ t0, (5.10)

for another constant K depending only on the constant C appearing in condition
(5.8).

Similarly, using the process y(t)− x(t) with two solutions x(t) and y(t), we
conclude that the uniqueness proof in Theorem 5.3 holds true if the uniform
locally Lipschitz condition in x, i.e., (5.6), is replaced by the following weaker
assumption: for any r > 0 there exists a positive constant M = M(r) such that

(x− x′) [g(t, x, v)− g(t, x′, v)] + |σ(t, x, v)− σ(t, x′, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)− γ(ζ, t, x′, v)|2π(dζ) ≤M |x− x|2,

(5.11)

for every (t, x, v), (t, x′, v) in [t0,∞) × Rd × Rq with t ≤ t0 + r, |x| ≤ r and
|x′| ≤ r.

On the other hand, under assumption (5.6) we also have

|x(t)− x0|2 ≤ C
∫ t

t0

[(
1 + |x(t)|2

)
+
(
1 + |x(t)− x0|2

)]
dt+

+2

∫ t

t0

∑
k

[∑
i

(xi(s)− x0
i )σik(s, x(s), v(s))

]
dwk(s) +

+2

∫
Rm∗ ×]t0,t]

[∑
i

(xi(s)− x0
i ) γi(ζ, s, x(s), v(s))

]
ν̃(dζ,ds),

which yields

E
{

sup
t0≤s≤t

|x(s)− x0|2
}
≤ KeK (t−t0)E{1 + |x0|2}(t− t0), (5.12)

for some constant K and for every t ≥ t0, after using (5.10). This shows some
type of time Hölder continuity with exponent 1/2 as expected.

• Remark 5.4. Based on the a priori estimates we can obtain existence and
uniqueness of the d-dimensional stochastic differential equation (5.5) under more
general conditions. For instance, the coefficients g, σ and γ may be measurable
and such that the bounds α(p, λ) and β(p) given by (5.44) and (5.49) for p =
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2 are finite, without satisfying neither the linear growth condition (5.6) nor
the Lipschitz continuity condition (5.7). This is the case when the first order
coefficient (or drift) g is expressed as two terms g − h, where g (and σ, γ)
satisfy the linear growth and Lipschitz conditions (5.6), (5.7), but h satisfies the
following monotonicity condition

(x− x′) ·
(
h(t, x, v)− h(t, x′, v)

)
≥ 0, ∀t, x, x′ v, (5.13)

and some polynomial growth condition in x uniformly in t, v. Even a multi-
valued monotone h is allowed. The method is essentially as follows. First the
argument begins by using a modified version of Caratheodory method on the
ordinary differential equation (for each given ω or in some Lp(Ω,F , P ) Lebesgue
space)

z(t) +

∫ t

t0

h(s, z(s) +M(s), v(s))ds = x0, ∀t ≥ t0 (5.14)

where (M(t) : t ≥ 0) is a stochastic plus Lebesgue integral of the form

M(t) =

∫ t

t0

g(s)ds+

∫ t

t0

σ(s)dw(s) +

∫
Rm∗ ×]t0,t]

γ(ζ, s)ν̃(dζ,ds),

so that the stochastic process y(t) := z(t)+M(t) solve the stochastic differential
equation

y(t) = x0 +

∫ t

t0

[g − h](s, y(s), v(s))ds+

+

∫ t

t0

σ(s)dw(s) +

∫
Rm∗ ×]t0,t]

γ(ζ, s)ν̃(dζ,ds),

for every t ≥ t0, where the stochastic processes σ(t) and γ(ζ, t) are given.
By means of the a priori estimates and the monotonicity argument (to iden-
tify the limit) we may establish the existence and uniqueness of the previ-
ous ordinary differential equation (5.14), including the fact that the solution
(z(t) : t ≥ 0) is adapted. Next, replacing σ(s) and γ(ζ, s) by σ(s, ξ(s), v(t)) and
γ(ζ, s, ξ(s), v(s)) we define the mapping ξ 7→ y. Clearly, the a priori estimate
(5.54) implies the uniqueness, and with arguments similar to those of Theo-
rem 5.3, the monotonicity property yields also the existence of a fixed point,
which is the solution. For instance, see Bensoussan and Lions [16, Section 2.3.4,
pp. 51–68] for the case γ = 0 In particular, this allows us to solve an equation
of the type

dx(t) ∈ sgn(x(t))dt+ dw(t) +

∫
Rd∗
zν̃(dz,dt),

where the sgn function is treated as a monotone multi-valued operator, with
sgn(x) = ±1 if x is positive or negative, and sgn(0) = [0, 1]. The above example
has indeed one and only one solution.
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• Remark 5.5. For measurable and locally bounded coefficients satisfying a
uniform locally Lipschitz condition in x, i.e., (5.6), the previous proof will apply
if an a priori estimate on the xr(t), corresponding to the truncated coefficients
gr, σr and γr, can be established, i.e., if it can be proved that

P{ sup
t0≤t≤t1

|xr(t)| > r}

vanishes as r → ∞. Usually, this is obtained from the Liapunov function, i.e,
under the assumption that there exists a nonnegative function v(t, x) such that
v(t, x) goes to ∞ locally uniform in t as x goes to ∞ and satisfies

∂tv(t, x) +A0(t, x)v(t, x) ≤ cv(t, x),

for some constant c ≥ 0, where A0(t, x)v(t, x) represents the integro-differential
term obtained from the application of Itô formula, see Remark 5.49. The inter-
ested reader may consult the books Khasminskii [130] and Skorokhod [230].

• Remark 5.6. It may useful to consider coefficients that are unbounded in the
control variable and later to take suitable controls process (v(t) : t ≥ t0). For
instance, instead of the conditions (5.6) and (5.7) we may assume there exists
a constant C > 0 and a nonnegative measurable function c(t, v), increasing in
t, such that 2x g(t, x, v) + |σ(t, x, v)|2 +

∫
Rm∗
|γ(ζ, t, x, v)|2π(dζ) ≤

≤ c(t, v) + C(1 + |x|2),

(5.15)

for every (t, x, v) in [t0,∞) × Rd × Rq, and (5.7) on bounded set in v, namely,
for any r > 0 there exists a positive constant M = M(r) such that

|g(t, x, v)− g(t, x′, v)|2 + |σ(t, x, v)− σ(t, x′, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)− γ(ζ, t, x′, v)|2π(dζ) ≤M |x− x|2,

(5.16)

for every (t, x, v), (t, x′, v) in [t0,∞)×Rd ×Rq with t ≤ t0 + r, |x| ≤ r, |x′| ≤ r,
and |v| ≤ r. The function c(t, v) handle the growth of the control processes, e.g.,
we can allow only controls satisfying∫ t1

t0

c(t, v(t))dt <∞,

for any t1 > t0. For instance, we replace the control process (v(t) : t ≥ t0) with
(vn(t) : t ≥ t0), vn(t) = v(t) if c(n, v(t)) ≤ n and vn(t) = 0 otherwise, use
Theorem 5.3 with vn and take limit in n.

• Remark 5.7. Sometimes, we need to consider stochastic differential equations
with delay, i.e., the drift (perhaps the diffusion and jumps coefficients too) has
the form

g(s) := g(s, x(s), x(s− δ), v(s)), ∀t ≥ 0,
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where δ is a given positive constant, or even a more complicate expression. In
this case, the initial condition is given on the interval [−δ, 0] instead of just at
time t = 0. In general, the coefficients are regarded as adapted functional, where
the dependency on the control v becomes irrelevant. This is g := g(t, x(·), ω),
σ := σ(t, x(·), ω) and γ := γ(ζ, t, x(·), ω), where x(·) denotes a cad-lag function
s 7→ x(s). Clearly, g(t, x(·), ω), σ(t, x(·), ω) and γ(ζ, t, x(·), ω) are adapted and
depend only on the path up to t, i.e., x(s) with 0 ≤ s ≤ t. Assume a linear
growth condition and a uniform locally Lipschitz condition in the variable x,
i.e. there exists a constant C > 0 such that

E
{
|g(t, x(·))|2 + |σ(t, x(·))|2 +

∫
Rm∗
|γ(ζ, t, x(·))|2π(dζ)

}
≤

≤ C E
{

sup
0≤s≤t

(1 + |x(s)|2)
} (5.17)

for every t ≥ 0 and any continuous function s 7→ x(s), and for any r > 0 there
exists a positive constant M = M(r) such that

E
{
|g(t, x(·))− g(t, x′(·))|2 + |σ(t, x(·))− σ(t, x′(·))|2 +

+

∫
Rm∗
|γ(ζ, t, x(·))− γ(ζ, t, x′(·))|2π(dζ)

}
≤

≤M E
{

sup
0≤s≤t

|x(s)− x′(s)|2
}
,

(5.18)

for every t ≥ 0 and any pair of continuous functions s 7→ x(s) and s 7→ x′(s),
satisfying

sup
0≤s≤t

|x(s)| ≤ r, sup
0≤s≤t

|x′(s)| ≤ r.

Under these conditions, we can revise the proof of Theorem 5.3 to obtain an ex-
istence and uniqueness result. This includes the so-called functional differential
equations, for instance, the reader is referred to the book Mao [165, Chapters
5 and 6, pp. 147–232], where the case γ = 0 (i.e., without jumps) is consid-
ered.

• Remark 5.8. If the initial condition is given at a stopping time t0 instead of
a deterministic time t0, then we can solve the d-dimensional stochastic differen-
tial equation (5.5) and Theorems 5.3 and 5.11 remain valid. Actually, we can
reformulate (5.3) as

x(t) = x0 +

∫ t

0

g(s, x(s), v(s))1s≥t0ds+

+

∫ t

0

σ(s, x(s), v(s))1s≥t0dw(s) +

+

∫
Rm∗ ×]0,t]

γ(ζ, s, x(s), v(s))1s≥t0 ν̃(dζ,ds),

(5.19)

for any t ≥ 0. This means that x(t) is set to x0 for any t < t0. Moreover, the
initial condition x0 can be replaced by ξ(t), where ξ(t) is an adapted Rd-valued
process satisfying E{|ξ(t)|2} < C, for every t.
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Adding a Density

As mentioned early, a Poisson measure ν is a generalization of a compound
Poisson process, where the ‘distribution of jumps’ is clearly defined. However,
the coefficient γ in the above stochastic differential equations does not directly
affect this distribution of jumps, e.g., to introduce a density with respect to
the initial distribution of jumps (generated by ν) is not a simple problem as
discussed below.

Let π be a bounded measure on Rm∗ and ϑ a measurable function from Rm∗
into Rd such that the pre-image preserves bounded-away sets (i.e., for every
b > a > 0 there exist β > α > 0 such that ϑ−1({x ∈ Rd∗ : a ≤ |x| < b}) ⊂ {z ∈
Rm∗ : α ≤ |z| < β}) and let consider the image measure πϑ(B) = π(ϑ−1(B)), for
any B in B(Rd∗).

If {τn : n = 1, 2, . . . } is a sequence of independent exponentially distributed
(with parameter π(Rm∗ ) = c) random variables, and {ζn : n = 1, 2, . . . } is
another sequence of independent identically distributed with distribution law
γ = π/c random variables, with {ζn : n = 1, 2, . . . } independent of {τn : n =
1, 2, . . . }, then for θn := τ1 + τ2 + · · · + τn (which has a Gamma distribution
with parameters c and n), the expressions

Z(t) :=

∞∑
n=1

ϑ(ζn)1t≥θn , with δZ(t) := Z(t)− Z(t−)

δZ(θn) = ϑ(ζ(n)), and δZ(t) = 0 if t 6= θn, ∀n, or equivalently

Z(t) := ζ1 + ζ2 + · · ·+ ζn if

n∑
i=1

τi = θn ≤ t < θn+1 =

n+1∑
i=1

τi,

are realizations of a compound Poisson process {Z(t) : t ≥ 0} with Lévy measure
πϑ(dz). Its associate point (or jump) process can be written as {δZ(t) : t ≥ 0}
and its associate integer measure ν yields the integer-valued random variables

ν(Bi×]si, ti]) :=

∞∑
n=1

1si<θn≤ti 1ϑ(ζn)∈Bi , ∀i = 1, 2, . . . , k,

which are independent identically Poisson distributed, with (ti − si)πϑ(Bi) pa-
rameter (or mean), as long as {Bi×]si, ti] : i} is a family of disjoint Borel sets.
More general, if p is a Poisson measure on Rm∗ with Lévy measure π that inte-
grates the function z 7→ |z|2, p̃ is its associated compensated Poisson measure
and {δp̃(s) : s ≥ 0} is its associated point (or jump) process then the Rm-valued
compensated purely jump process

Z(t) =

∫
Rm∗ ×]0,t]

ϑ(z) p̃(dz,ds)

has

pϑ(B×]a, b]) =

∞∑
n=1

1a<s≤b 1ϑ(δZ(s))∈B ,
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as its associate integer measure, which satisfies

E
{∫

Rm∗ ×]0,∞[

f(z, s)pϑ(dz,ds)
}

= E
{∫ ∞

0

ds

∫
Rm∗

f(z, s−)πϑ(dz)
}
,

for any nonnegative cad-lag optional process f .
In other words, if {δp(s) : s ≥ 0} denotes the Poisson point (or jump) process

of the Poisson integer measure p(B×]a, b]) =
∑
s≥0 1δp(s)∈B1a<s≤b with Lévy

measure π on Rm∗ then pϑ(B×]a, b]) =
∑
s≥0 1ϑ(δp(s))∈B1a<s≤b is a Poisson

integer measure with Lévy measure πϑ(dζ). Actually, ϑ = {ϑ(ζ, s) : ζ ∈ Rm∗ , s ≥
0} could be taken to be a Rd∗-valued predictable process and so

νϑ(B×]a, b]) =
∑
s≥0

1ϑ(δp(s),s)∈B1a<s≤b, ∀0 ≤ a < b, B ∈ B(Rd∗),

is an integer measure with predictable compensator measure

νpϑ(B×]a, b]) =

∫ b

a

π
(
{z ∈ Rm∗ : ϑ(z, s) ∈ B}

)
ds,

for every 0 ≤ a < b, B in B(Rd∗); and if m = d and a predictable density process
0 ≤ ρ(z, s) ≤ 1 exists, i.e.,∫ b

a

π
(
{z ∈ Rm∗ : ϑ(z, s) ∈ B}

)
ds =

∫ b

a

ds

∫
Rm∗

ρ(z, s)π(dz), (5.20)

then the predictable compensator measure νpϑ(dz,ds) = ρ(z, s)π(dz)ds. Hence,
provided the predictable process ϑ can be constructed from a predictable density
ρ, the above argument yields a density on the compensator measure.

Therefore, assuming the relation (5.20) between ϑ and ρ, a density can be
taken as part of the jump coefficients, i.e., besides γ(ζ, s, x, v) another function
ρ(ζ, s, x, v) with values in [0, 1] could be given. This means that the existence
and uniqueness Theorem 5.3 holds true under a linear growth condition, namely,
there is a constant C > 0 such that∫

Rm∗
|γ(ζ, s, x, v)|2ρ(ζ, s, x, v)π(dζ) ≤ C(1 + |x|2), (5.21)

for every (ζ, s, x, v) in Rm∗ × [t0,∞)× Rd × Rq, and a uniform locally Lipschitz
condition, namely, for every r > 0 there exists a positive constant M = M(r)
such that

∫
Rm∗
|γ(ζ, s, x, v)ρ(ζ, s, x, v)− γ(ζ, s, x′, v)ρ(ζ, s, x′, v)|2π(dζ) ≤

≤M |x− x′|2,
(5.22)

for every (s, x, v) and (s, x′, v) in [t0,∞)×Rd ×Rq with t ≤ t0 + r, |x| ≤ r and
|x′| ≤ r. Indeed, the compensated integer measure

ν̃ρ(dζ,ds) = νρ(dζ,ds)− ρ(ζ, s, x, v)π(dζ)ds
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is used instead of the compensated (or martingale) Poisson measure ν̃. Then
remark that the predictable quadratic variation corresponding to the stochastic
integral∫

Rm×]0,t]

γ(ζ, s, x(s), v(s))ρ(ζ, s, x(s), v(s))ν̃ρ(dζ,ds) =

=

∫
Rm×]0,t]

γ(ζ, s, x(s−), v(s))ρ(ζ, s, x(s−), v(s))ν̃ρ(dζ,ds)

is given by∫ t

0

∫
Rm∗
|γ(ζ, s, x(s−), v(s))|2ρ(ζ, s, x(s−), v(s))π(dζ),

which makes the calculations in Theorem 5.3 valid again.

5.1.2 Mainly Jumps

In this section we consider the case without diffusion, i.e., the stochastic ordinary
differential equation (5.3) with the diffusion coefficient σ = 0, no Wiener process
is involved,

x(t) = x0 +

∫ t

t0

g(s, x(s), v(s))ds+

+

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀ t ≥ t0,
(5.23)

or in differential form as

dx(t) = g(t, x(t), v(t))dt+

∫
Rm∗

γ(ζ, t, x(t), v(t))ν̃(dζ,dt), (5.24)

plus the initial condition x(t0) = x0.
Depending on the integrability of the Levy measure π we can distinguish

the case of a finite measure π(Rm∗ ) < ∞, the case of integrable jumps where π
integrates the function ζ 7→ |ζ| and the general case. Note that no attention
is payed to the “large” jumps, in this analysis, only the “small” jumps are of
interest for us (i.e., the Levy measure integrates infinite at our convenience, e.g.,
π has a compact support in Rm∗ ).

Finite Levy Measure

Beside assuming that π(Rm∗ ) < ∞, we need a companion hypothesis on the
coefficient γ, namely, there exists a constant C > 0 such that

|γ(ζ, t, x, v)| ≤ C|ζ|(1 + |x|2)1/2 and

∫
Rm∗
|ζ|pπ(ζ) <∞, (5.25)
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for every ζ, t, x, t, and p ≥ 1. This last condition ensures that the large jumps
have finite moments, i.e., the underlying process associated with the Poisson
measure ν(dζ,dt),

`(t) =

∫
Rm∗ ×]0,t]

ζν(dζ,ds) and ˜̀(t) =

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds) (5.26)

is a compound Poisson process with parameter c = π(Rm∗ ) and distribution
γ = π/c, so that the characteristic function E{eiy·`(t)} = exp

(
− t(π̂(y) − c)

)
.

As mentioned in early chapters, there is a canonical construction of the process
`, namely, take a sequence {ζk : k ≥ 1} of independent identically distributed
(with law π/c) of random variables, and take another sequence {τ ′i : i ≥ 1}
(independent from the first one) of independent identically exponentially (with
parameter 1) distributed of random variables (so that τi = cτ ′i is exponentially
distributed with parameter 1/c), to construct θk =

∑
i≤k τi (which has a Gamma

distribution with parameters 1/c and k), and

`(t) =
∑
k

ζk1t≥θk and `(θk)− `(θk−) = ζk, ∀k

N(t) =
∑
k 1t≥θk is the counting (of jumps) process, E{`(t)} = tπ(Rm∗ ) and

˜̀(t) = `(t)− tπ(Rm∗ ), where t0 = 0 have been chosen, for simplicity.
By observing either ` or ˜̀ only at the points of discontinuity, and by means

of the coefficient γ(ζ, t, x, v), construct the process{
y(θn) = y(θn−1) + γ

(
ζn, θn−1, y(θn−1), v(θn−1)

)
, ∀n ≥ 1,

y(t) = y(θn−1), θn−1 ≤ t < θn,
(5.27)

for a given initial y(θ0) with θ0 = 0. This is a jump process satisfying

y(t) = y(0) +

∫
Rm∗ ×]0,t]

γ
(
ζ, s, y(s−), v(s)

)
ν(dζ,ds), ∀t ≥ 0,

or equivalently

y(t) = y(0) +

∫
Rm∗ ×]0,t]

γ
(
ζ, s, y(s−), v(s)

)
ν̃(dζ,ds) +

+

∫
]0,t]

ds

∫
Rm∗

γ
(
ζ, s, y(s−), v(s)

)
π(dζ), ∀t ≥ 0.

Note that the integral in ν could be pathwise interpreted (and in the Riemann-
Stieltjes sense if s 7→ γ(ζ, s, x, v(s)) is left-hand continuous for any ζ and x),
the integral in ds is in the Lebesgue sense, and the integral in π(dζ) is in
the measure sense, but the integral in ν̃ is a stochastic integral. Thus, the
expression (5.27) makes sense when the function s 7→ γ(ζ, s, x, v(s)) has been
taken left-hand continuous. Naturally, this is a piecewise deterministic process
as in Section 3.9.
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An interesting case is when the jump coefficient is proportional to ζ, i.e.,
γi(ζ, t, x, v) =

∑m
k=1 γ̄ik(t, x, v)ζk. The integrals with respect to ν and ν̃ become

integrals with respect to d` and d˜̀, e.g.,

y(t) = y(0) +

∫
]0,t]

γ̄
(
s, y(s−), v(s)

)
d`(s), ∀t ≥ 0,

which is a pathwise integral with respect to a compound Poisson process.
This procedure yields an algorithm to solve stochastic ordinary differential

equation with only drift g and jump γ coefficients. Indeed, define

g̃(t, x, v) = g(t, x, v)−
∫
Rm∗

γ(ζ, t, x, v)π(dζ)

and consider the evolution operator ϕ(t; s, x) given by the solution of the ordi-
nary differential equation with drift g̃, i.e., ϕ(s; s, x) = x and

ϕ̇(t; s, x) = g̃
(
t, ϕ(t; s, x), v(t)

)
, ∀t > s.

Now, set

y(θn) = y(θn−1) + γ
(
ζn, θn−1, y(θn−1), v(θn−1)

)
, ∀n ≥ 1,

y(t) = ϕ
(
t; θn−1, y(θn−1)

)
, ∀θn−1 ≤ t < θn

or equivalently
y(θn) = y(θn−1) + γ

(
ζn, θn−1, y(θn−1), v(θn−1)

)
, ∀n ≥ 1,

ẏ(t) = g
(
t, y(t), v(t)

)
+

+

∫
Rm∗
γ
(
ζ, t, y(t), v(t)

)
π(dζ), ∀θn−1 ≤ t < θn.

(5.28)

with the initial y(θ0) with θ0 = 0. This process (y(t) : t ≥ 0) is the solution of
the stochastic ordinary differential equation (5.23) with t0 = 0.

It is clear that we can adjust (5.28) when the diffusion coefficient σ does
not vanish, but in between two consecutive jumps we have to solve a stochastic
differential equation with a drift and a diffusion coefficients.

Integrable Jumps

This is the case where we keep the condition (5.25), but we do not assume a
finite measure, i.e., we may have π(Rm∗ ) =∞. The integral with respect to the
random measure ν in Rm∗ × (0,∞) is well defined, i.e.,∫

Rm∗ ×]0,t]

|γ(ζ, s, x, v)|ν(dζ,ds) <∞, a.s.,
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and if the processes (x(t) : t ≥ 0) and (v(t) : t ≥ 0) are predictable with respect
to ν (or equivalently to the Levy process `) then

E
{∫

Rm∗ ×]0,t]

|γ(ζ, s, x(s), v(s))|ν(dζ,ds)
}

=

=

∫ t

0

ds

∫
Rm∗

E
{
|γ(ζ, s, x(s), v(s))|

}
π(dζ).

As early, if ` is defined by (5.26) then γi(ζ, t, x, v) =
∑m
k=1 γ̄ik(t, x, v)ζk then∫

Rm∗ ×]0,t]

γ(ζ, s, x(s), v(s))ν(dζ,ds) =

∫
]0,t]

γ̄(s, x(s), v(s))d`(s), and

E
{∫

Rm∗ ×]0,t]

γ(ζ, s, x(s), v(s))ν(dζ,ds)
}

=

m∑
k=1

∫ t

0

E
{
γ̄·k(s, x(s), v(s))

}
ds.

However, the pathwise solution to an ordinary differential equation of the form

y(t) = y(0) +

∫ t

0

g
(
s, y(s), v(s)

)
ds+

∫
Rm∗ ×]0,t]

γ(ζ, s, y(s), v(s))ν(dζ,ds)

could present other difficulties, e.g. see papers Barron et al. [11], Dal Maso and
Rampazzo [54], and Schmaedke [222], which do not apply here. For instance,
assuming that γ(ζ, t, x, v) is uniformly Lipschitz continuous in x, i.e.,

|γ(ζ, t, x, v)− γ(ζ, t, x′, v)| ≤M |ζ| |x− x′|, ∀x, x′, ζ, t, v,

and for some constant M > 0, the arguments of Theorem 5.3 can be applied to
the operator

T (y)(t) = y(0) +

∫ t

0

g
(
s, y(s), v(s)

)
ds+

∫
Rm∗ ×]0,t]

γ(ζ, s, y(s), v(s))ν(dζ,ds),

on the Banach space Y, but with a L1-type (instead of a L2-type) norm

‖y‖Y := E{ sup
0≤t≤t1

e−αt|y(t)|},

as in the case of an ordinary differential equation, i.e., essentially by means of
the estimate

E
{
|T (y)(t)− T (y′)(t)|

}
≤M

∫ t

0

E
{
|y(s)− y′(s)|

}
ds

the theory of existence and uniqueness (for integrable jumps) follows.
It is clear that the above argument get lost if we add a diffusion coefficient,

however, the real gain is the fact that for integrable jumps we can consider
stochastic ordinary differential equation like (5.3) with the initial Poisson mea-
sure ν instead of the martingale Poisson measure ν̃.
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General Jumps

In this case, the expression of ` given by (5.26) is useless, only the Levy pro-
cess ˜̀ is meaningful, and the stochastic ordinary differential equation has to be
considered with the martingale Poisson measure ν̃ as in (5.3).

However, if γi(ζ, t, x, v) =
∑m
k=1 γ̄ik(t, x, v)ζk and we assume given the Levy

process ˜̀ with characteristic (0, 0, π), i.e., a ‘purely’ jump process in Rm∗ , then
the stochastic ordinary differential equation (5.3) becomes

x(t) = x0 +

∫ t

t0

g(s, x(s), v(s))ds+

∫ t

t0

σ(s, x(s), v(s))dw(s) +

+

∫
]t0,t]

γ̄(s, x(s), v(s))d˜̀(s), ∀ t ≥ t0,
(5.29)

or in differential form as{
dx(t) = g(t, x(t), v(t))dt+ σ(t, x(t), v(t))dw(t) +

+ γ̄(t, x(t), v(t))d˜̀(t),
(5.30)

plus the initial condition x(t0) = x0. The assumptions (5.6) and (5.7) becomes

|g(t, x, v)|+ |σ(t, x, v)|+ |γ̄(t, x, v)| ≤ C(1 + |x|), (5.31){
|g(t, x, v)− g(t, x′, v)|+ |σ(t, x, v)− σ(t, x′, v)|+

+ |γ̄(t, x, v)− γ(t, x′, v)| ≤M |x− x′|,
(5.32)

which are more natural in some way, but yet, particular cases.
In any case, approximate the measure ν with νε corresponding to the finite

Lévy measure πε(dζ) = 1|ζ|≥επ(dζ) to be able to use the construction iterat-
ing the jumps (or interlacing) derived from piecewise deterministic processes.
Moreover, as ε→ 0 good estimates can be obtained, see later Remark 5.14 and
compare with the analysis in the book by Applebaum [6].

Discrete Jumps

Keeping σ = 0 and g = π(γ) and going back to the case of finite measure, we
consider the particular case when the support of the Lévy measure π is Zm∗ ,
with Z is the integer numbers. In this case, we are dealing with a continuous
time Markov chain with states in Zm.

Use the notation of the subsection on finite measure to construct the jump
process `

`(t) =

∫
Zm∗ ×]0,t]

ζν(dζ,ds) =
∑
k

ζk1t≥θk ,

and then the evolution{
y(t) = y(θn−1), ∀θn−1 ≤ t < θn,

y(θn) = y(θn−1) + γ
(
ζn, θn−1, y(θn−1), v(θn−1)

)
, ∀n ≥ 1,

(5.33)
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following the proper jumps of ` instead of the centered jumps of ˜̀. To make this
recurrent equation equivalent to the differential equation (5.23) we should take

g(t, x, v) =

∫
Zm∗

γ(ζ, t, x, v)π(dζ),

θ0 = t0 and y(θ0) = x0.
Certainly, if the initial condition y(0) belongs to Z then the whole evolution

is in Z, and the differential equation is not quite meaningful. The solution
(y(t) : t ≥ 0) is a controlled Markov chain in continuous time with states in Zm.

The Poisson measure ν corresponding to a finite Levy measure π with sup-
port in Zm∗ is indeed a Markov chain in continuous time with states in Zm, sat-
isfying E{ν(A,ds)} = π(A)ds, for any subset A of (the denumerable space) Zm∗ .
Perhaps, we should remark that the cad-lag jump process ` = (`i : i = 1, . . . ,m)
satisfies (a) {`i(t) : i = 1, . . . ,m} are independent Poisson random variables
with parameters

t

∫
Zm∗

ζiπ(dζ), i = 1, . . . ,m,

and (b) `(s) is independent of `(t)− `(s) for every 0 ≤ s < t.
It should be clear that the emphasis is on the jumps of a process when

interpreting a Markov chain as a Poisson measure, and this requires the addition
operation to be defined on the state space Zm. Sometimes, it is usually better to
interpret the Markov chain in term of the transition probability infinite matrix
(pij : i, j ∈ Zm}, where pij is the probability of jumping from the state i to the
state j, in this case, the “addition” of jumps is not necessary.

5.1.3 Modeling with Jumps

In this section we take a quick look at some alternative way of presenting the
jumps. Particularly, first we discuss the “problem” with the exponential func-
tion when jumping and then we present other possible settings for modeling the
jumps.

Exponential Expressions

In the same way that for a given constant a in R, the exponential function
t 7→ eat is the solution x(·) of the ODE ẋ(t) = ax(t) with initial condition
x(0) = 1, i.e.,

eat = 1 +

∫ t

0

aeasds, ∀t ∈ R,

the function t 7→ eaα(t) is the solution of the ODE ẋ(t) = ax(t)α̇(t) with initial
condition x(0) = 1, i.e.,

eaα(t) = 1 +

∫ t

0

aeaα(s)dα(s), ∀t ∈ R,
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for a given differentiable function t 7→ α(t) with α(0) = 0. However, the expo-
nential expression exp[aα(t)] = eaα(t) is meaningful when α is not necessarily
continuous, and in particular, whenever α is a cad-lag (or cag-lad) function.
Thus one may ask in which sense the ODE should be understood. To make
sense of the ODE as a Riemann-Stieltjes integral, the first correction has to do
with the jumps, i.e., the proposed ODE is as follows

y(t) = 1 +

∫
]0,t]

ay(s−)dα(s), ∀t > 0. (5.34)

However, there are other ways of fixing this problem, e.g., see papers Barron et
al. [11], Dal Maso and Rampazzo [54], and Schmaedke [222].

Therefore, if α is a continuous function of bounded variation on any bounded
time-interval then the exponential function t 7→ exp[aα(t)] is the solution of the
ODE (5.34), where the integral is understood in the Riemann-Stieltjes sense.

For the jumps themselves, take a function ` with a sequence of successive
jumps ζ0, ζ1, . . . , ζk, . . . , at the times 0 = θ0 < θ1 < · · · < θk < · · · , i.e.,

`(t) =
∑
k

ζk1t≥θk and `(θk)− `(θk−) = ζk, ∀k ≥ 0,

and consider the recursive formula

y(θ0) = 1, and y(θn) = y(θn−1) + aζny(θn−1), ∀n ≥ 1,

where the jump at t = 0 does not intervene. This yields the close formula
y(t) =

∏
k≥1[1+aζk]1t≥θk . Note that (1) if aζn = −1 for some n then y(θk) = 0

for any k ≥ n and (2) if aζn < −1 for some n then y(θn) < 0. Hence, assuming
aζk > −1 for any k, the expression

y(t) =
∏
k

[1 + aζk]1t≥θk = exp
[∑
k≥1

ln(1 + aζk)1t≥θk
]

provides the solution of the ODE (5.34) when α = `. Moreover,

y(t) =
∏

0<s≤t

[1 + aδ`(t)] = exp
[ ∑

0<s≤t

ln
(
1 + aδ`(s)

)]
,

where δ is the jump-operator, i.e., δ`(t) = `(t) − `(t−). Furthermore, if ` is
a jump-function with bounded variation over any bounded time interval, with
jump ζk at time θk such that aζk > −1 and∑

k

ln(1 + aζk)1t≥θk <∞, ∀t > 0,

then the previous formula holds true.
Thus, if α is a cad-lag function with bounded variation over any bounded

time interval, and αc denotes its continuous part, i.e., δα(t) = α(t)−α(t−) and
αc(t) = α(t)−

∑
s≤t δα(s), then the exponential expression

y(t) = eaαc(t)
∏

0<s≤t

[1 + aδα(t)]
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or equivalently

y(t) = exp
[
aαc(t) +

∑
0<s≤t

ln
(
1 + aδα(s)

)]
, (5.35)

is the solution of the ODE (5.34), provided the jumps satisfy

aδα(t) > −1 and
∑

0<s≤t

ln
(
1 + aδα(s)

)
<∞, ∀t > 0.

Note that since α has bounded variation and ln(1+aδα(s)) ≤ aδα(s), the above
convergence is satisfied under the condition: for every t > 0 there exists ε > 0
such that aδα(s) > −1 + ε for every 0 < s ≤ t. Moreover, if 0 = t0 < t1 < · · · <
tk < · · · < tn−1 < tn = t is a partition of the time-interval [0, t] and α(t) = α(ti)
for any t in ]ti−1, ti] so that δα(ti) = α(ti)− α(ti−1), then[

1 +

n∑
k=1

n∏
i=k

(
α(ti)− α(0)

)]
=

n∏
k=1

[
1 + δα(tk)

]
=

= exp
[ n∑
k=1

δα(tk)
]

exp
[ n∑
k=1

ln
(
1 + δα(tk)

)
− δα(tk)

]
,

which proves that the limit

lim
maxi{ti−ti−1}→0

[
1 +

n∑
k=1

n∏
i=k

(
α(ti)− α(0)

)]
,

is equal to the exponential expression y(t) given by (5.35), since

n∑
k=1

|δαc(tk)|2 ≤
(

max
k
{|α(tk)− α(tk−1)|}

) n∑
k=1

|δαc(tk)|,

vanishes as the mesh of the partition goes to zero.
Therefore, if the integer measure ν(dζ,ds) in R × (0,∞) is only integrable

(jumps with bounded variation), the processes

`(t) =

∫
R∗×]0,t]

ζν(dζ,ds) and ˜̀(t) =

∫
R∗×]0,t]

ζν̃(dζ,ds),

are well defined, and the mean process t 7→ α(t) = E{`(t)} is a continuous
function of bounded variation on any bounded time-interval (actually α(t) =
t for an integrable or bounded variation Poisson random measure), and the
previous argument can be used. However, besides ν(] −∞,−1/a]×]0, t]) = 0,
for every t > 0, the condition∫

R∗×]0,t]

[
|ζ|+ ln

(
1 + a|ζ|

)]
ν(dζ,ds) <∞, ∀t > 0, (5.36)

is necessary to deduce that the exponential expression
y(t) = exp

[ ∫
R∗×]0,t]

ln(1 + aζ)ν(dζ,ds)
]
, ∀t > 0, or

y(t) = exp
[
− aE{`(t)}+

∫
R∗×]0,t]

ln(1 + aζ)ν(dζ,ds)
]
, ∀t > 0,

(5.37)
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is the pathwise-solution of the differential equation (5.34) for either α = ` or
α = ˜̀, where the integral is considered in the Riemann-Stieltjes sense and agrees
with the stochastic integral when the jumps are integrable.

Now, recall Itô formula with jumps (see Theorem 4.30) for a one-dimension
standard Wiener process w, a Poisson measure p(dζ,ds) in R×(0,∞) with Lévy
measure π, and a drift g, diffusion σ and jumps γ, i.e., if

x(t) = x(0) +

∫ t

0

g(s)ds+

∫ t

0

σ(s)dw(s) +

∫
R∗×]0,t]

γ(ζ, s)ν(dζ,ds)

then the process y(t) = eax(t) has the stochastic differential

dy(t) = y(t)
[
ag(t) +

aσ2

2
+

∫
R∗

[eaγ(ζ,t) − 1− aγ(ζ, t)]π(dζ)
]
dt+

+ y(t−)
[
aσdw(t) +

∫
R∗

[eaγ(ζ,t) − 1]p̃(dζ,dt)
]
, t > 0.

Assuming that g, σ and γ are constant functions in t and that eaγ is integrable
as γ →∞ with respect to the Lévy measure π, the exponential expression

y(t) = exp
[
aσw(t) + a

∫
R∗×]0,t]

γ(ζ)p̃(dζ,ds) +

+
(
ag − aσ2

2
−
∫
R∗

[
eaγ(ζ) − 1− aγ(ζ)]π(dζ)

)
t
]

is the solution of the stochastic differential equation

dy(t) = y(t−)
[
agdt+ aσdw +

∫
R∗

[eaγ(ζ) − 1]p̃(dζ,dt)
]
,

with the initial condition y(0) = 1.
Hence, making the change of jumps eaγ − 1 = aγ̄ or equivalently aγ =

ln(1 + aγ̄) the solution of the stochastic differential equation

dy(t) = y(t−)
[
agdt+ aσdw + a

∫
R∗
γ̄(ζ)p̃(dζ,dt)

]
, (5.38)

with the initial condition y(0) = 1 is given by the exponential expression
y(t) = exp

[
aσw(t) + a

∫
R∗×]0,t]

ln
(
1 + aγ̄(ζ)

)
p̃(dζ,ds) +

+ a
(
g − σ2

2
−
∫
R∗

[
γ̄(ζ)− ln

(
1 + aγ̄(ζ)

)]
π(dζ)

)
t
]
,

(5.39)

as long as the integrals are meaningful, i.e.,

aγ̄(ζ) > −1 and

∫
R∗

∣∣γ̄(ζ)− ln
(
1 + aγ̄(ζ)

)∣∣π(dζ) <∞

for some suitable constant a. Note that as γ̄ → 0 the integrand is bounded by
|γ̄|2, but the problem with the integral is as γ̄ → −1/a.
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Usually, (5.39) is called the stochastic (or martingale when g = 0) exponen-
tial of the Lévy process ` (which has drift g, diffusion σ and jumps γ̄ with Lévy
measure π), while the pathwise exponential (5.37) or (5.35) is referred to as
the “Riemann-Stieltjes exponential” of the cad-lag bounded variation process `
(with integer measure ν) or α.

Centered Lévy Models

In most models, the continuous-type noise is represented by a standard Wiener
process w in Rn, which can be regarded as n-independent one-dimensional stan-
dard Wiener processes w1, . . . , wn. Similarly, the jump-type noise is represented
by Poisson martingale ν̃(dζ,dt) in Rm (constructed from a Poisson measure
ν(dζ,dt) with Lévy measure π in Rm∗ ), of which a particular situation is the case
of m-independent one-dimensional Poisson martingales ν̃i(dζi,dt) (constructed
from a Poisson measure νi(dζi,dt) with Lévy measure πi on R∗).

Alternatively, the purely jump (Poisson) martingales obtained by the stochas-
tic integral

p̃i(t) =

∫
R∗×]0,t]

ζiν̃i(dζi,dt), i = 1, 2, . . . ,m,

could be used as the model of the Poisson noise. This means that on a probabil-
ity space (Ω,F , P ), with a filtration F = (Ft, t ≥ 0) (satisfying the usual condi-
tions) we assume that there are n-independent one-dimensional standard Wiener
processes w1, . . . , wn, which are independent of m-independent one-dimensional
purely jump (Poisson) martingales p̃1, . . . , p̃m, with predictable quadratic vari-
ation given in term of the Lévy measures πi by the integral

d〈p̃i〉 =
(∫

R∗
|ζi|2πi(dζi)

)
dt.

These processes w1, . . . , wn and p̃1, . . . , p̃m could model the Wiener-Poisson
noise, and the coefficients for the jumps-part become a matrix γ(t, x, v) :=
(γik(t, x, v), i = 1, . . . , d, k = 1, . . . ,m) and the stochastic ordinary differential
equation (5.5) takes the integral form

xi(t) = x0
i +

∫ t

t0

gi(s, x(s), v(s))ds+

+

n∑
k=1

∫ t

t0

σik(s, x(s), v(s))dwk(s) +

+

m∑
k=1

∫
]t0,t]

γik(s, x(s), v(s))dp̃k(s), ∀ t ≥ t0,

(5.40)

for i = 1, . . . , d, or a differential form as{
dx(t) = g(t, x(t), v(t))dt+ σ(t, x(t), v(t))dw(t) +

+ γ(t, x(t), v(t))dp̃(t),
(5.41)
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plus the initial condition x(t0) = x0.
In this setting, the assumptions (5.6) and (5.6) used in Theorem 5.3 on the

matrices σ and γ are exactly the same, i.e., a linear growth condition, namely,
there exists a constant C > 0 such that

|g(t, x, v)|+ |σ(t, x, v)|+ |γ(t, x, v)| ≤ C(1 + |x|), (5.42)

for every (t, x, v) in [t0,∞)×Rd×Rq, and a uniform locally Lipschitz condition in
the variable x, namely, for any r > 0 there exists a positive constant M = M(r)
such that{

|g(t, x, v)− g(t, x′, v)|+ |σ(t, x, v)− σ(t, x′, v)|+

+|γ(t, x, v)− γ(t, x′, v)| ≤M |x− x′|,
(5.43)

for every (t, x, v), (t, x′, v) in [t0,∞) × Rd × Rq with t ≤ t0 + r, |x| ≤ r and
|x′| ≤ r. However, the interpretation of the jumps takes a different form. Indeed,
the source jumps for the noise are the jumps of the Poisson measure, i.e., the
Poisson point-process δp(t), which yields the Poisson measure

p(K×]0, t]) =
∑

0<s≤t

1δp(s)∈K

for any compact subset K of Rm∗ , and then, the purely jump (Poisson) martin-
gale p̃ = (p̃1, . . . , p̃m) via the stochastic integral. Therefore, a coefficient of the
vector-form γ(z, t, x, v) transforms the Poisson point-process {δp(t), t ≥ 0} into
the point process {γ(δp(t), t, x, v), t ≥ 0}, while a coefficient of the matrix-form
γ(z, t, x, v) transforms the purely jump (Poisson) martingales p̃i with predictable
quadratic (scalar) variation d〈p̃k〉(t) into the purely jump (Poisson) martingale
with predictable quadratic matrix-variation( m∑

k=1

γik(t, x, v)γik(t, x, v)〈p̃k〉
)

dt,

i.e., it is clear the relation γ(z, t, x, v) = γ(t, x, v)z between the two expressions
of the jump-coefficients.

Similarly, the noise could be represented directly as a Lévy process with
characteristic (0, Q, π), having a continuous-part w and a jump-part p̃, i.e., a
cad-lag process, where w = (w1, . . . , wn) is an n-dimensional Wiener process
with drift zero and covariance matrix Q, namely,

E
{

eiy·w(t)
}

= exp
[
− tQy · y

2

]
, ∀t > 0, y ∈ Rn,

and p̃ = (p̃1, . . . , p̃m) is a compensated purely jump Poisson process with Lévy
measure π (which the stochastic integral of the jumps of a Poisson measure ν
in Rm∗ ), namely,

E
{

eiz·p̃(t)
}

= exp
[
− t
∫
Rm∗

(1− eiz·ζ + iz · ζ)π(dζ)
]
, ∀t > 0, z ∈ Rm.
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Note that as mentioned early, the Lévy measure π is assumed to integrate the
function ζ 7→ |ζ| ∧ |ζ|2 on Rm∗ , and moreover, n = m can be imposed without
any loss of generality.

In this context, there is not problem in considering n = m =∞ and replac-
ing the Euclidean norm | · | with the Hilbert norm in `2 (the space of sequences
{ai} with

∑
i |ai|2 <∞). Essentially, the same existence and uniqueness result

can be shown for coefficients σ and γ regarded as continuous linear operator
from `2 into itself, for each fixed t, x, v (and z with some adaptation). This
effectively includes stochastic differential equation in Hilbert spaces, but, to in-
clude stochastic partial differential equation the coefficient becomes unbounded
linear operator, and thus, the SPDE theory has substantial changes with re-
spect to SODE. There is a vast bibliography on SPDE, for instance, the reader
may check the books by Chow [42], Da Prato and Zabczyk [53], Kallianpur and
Xiong [123], Peszat and Zabczyk [197], among many others.

Types of Jumps

First note that the initial measure π on Rm∗ (or any other more general space)
used in the definition (or construction) of Poisson measure relative could be
supposed only to be σ-finite. We required that π be a Lévy measure to clarify
(simplify or complicate) the setting, i.e., the condition that π integrate the
function |x|2 or more general |x|2 ∧ 1. This condition is not necessary for the
stochastic ODE, this is incorporated with the condition on the coefficient γ
when requiring square-integrability with respect to π. The Lévy measure of
the “controlled” diffusion process generated by the stochastic ODE is actually
given by the image kernel M(t, x, v, B) = π({ζ : γ(ζ, t, x, v) ∈ B}), for any
Borel subset B of Rd∗. The condition that π is a Lévy measure help to tract
the dependency on the parameters t, x, v, in the sense that two types of jumps
can be distinguished, i.e., when a positive and arbitrary constant ε > 0 is fixed,
the condition |ζ| ≥ ε > 0 or |γ| ≥ ε > 0 yields “large” jumps, while the
opposite inequality defines the so-called “small” jumps. It is perhaps important
to recall that the stochastic integral for jumps processes is designed only with
the small jumps, and for the large jumps, the Riemann-Stieltjes sense is used (or
Lebesgue-Stieltjes sense when the integrand is kept left-continuous), as discussed
in previous sections.

Therefore, it could make sense to decompose the jump-coefficient γ into two
pieces, the small jumps (still denoted by) γ(ζ, t, x, v) and the large jumps, which
are further divided into two categories, the really large jumps α(ζ, t, x, v) and
the relative small jumps β(ζ, t, x, v) which are integrable. In other words, this
means that for some ε > 0, (a) the new coefficient γ(ζ, t, x, v) is attached to a
Lévy measure π2 (also called jumps with unbounded variation) with support in
{ζ : |ζ| < ε} and such that π2 integrates the function |ζ|2, (b) the new coefficient
β(ζ, t, x, v) is attached to a Lévy measure π1 (also called jumps with bounded
variation) with support in {ζ : |ζ| < ε} and such that integrate π1 integrates
the function |ζ|, (c) the new coefficient α(ζ, t, x, v) is attached to a finite Lévy
measure π0 (also called bounded jumps) with support in {ζ : |ζ| ≥ ε}.
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The Poisson measure ν has three independent pieces νi, i = 0, 1, 2, the
first part ν0 yields a compound Poisson process

∑
k ζk1θk≤t, the second part

ν1 yields a purely jump Lévy process with bounded variation on every compact
time interval, and the last part ν2 yields a “general” martingale measure ν̃2. To
simplify a little, assume t0 = 0 so that the stochastic ODE takes the form

dx(t) = g(t, x(t), v(t))dt+ σ(t, x(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, x(t), v(t))ν̃2(dζ,dt) +

∫
Rm∗

β(ζ, t, x(t), v(t))ν1(dζ,dt),

between jumps, i.e., for t in [θk−1, θk[, k = 1, 2, . . . and θ0 = 0, with the jump-
condition

x(θk) = x(θk−1 + α(ζk, θk−1, x(θk−1), v(θk−1)),

plus the initial condition x(0) = x0.
To preserve the type of jumps, it seems natural to impose extra conditions

such that for every T > 0 there exists K = K(T ) > 0 satisfying

|γ(ζ, t, x, v)|+ |β(ζ, t, x, v)|+ |α(ζ, t, x, v)| ≤ K(1 + |x|), ∀ζ, x, v,

and t in [0, T ], and even to suppose that |γ(ζ, t, x, v)| + |β(ζ, t, x, v)| ≤ 2ε and
|α(ζ, t, x, v)| ≥ ε, for every ζ, t, x, v and some positive constant ε > 0, which is
initially chosen arbitrary. In this case, note that

E{dx(t)}
dt

= E{g(t, x(t), v(t))}+

∫
Rm∗

E{β(ζ, t, x(t), v(t))}π1(dζ) +

+
∑
k

E
{
α(ζk, θk−1, x(θk−1), v(θk−1)

)
1θk≤t

}
,

i.e., the drift (average) term is changed. It should be clear that the assump-
tions on each jump-coefficient can be modified for a particular purpose, e.g.,
to combine discrete and continuous component of the description of the state
of a stochastic system as in the case of the so-called hybrid processes, e.g., see
Bensoussan and Menaldi [18], Menaldi[172] and references therein.

5.1.4 A Priori Estimates

A priori estimates are very important for stochastic differential equations, and
usually, they are obtained by applying Itô formula to some appropriate (poly-
nomial-type) function as shown in the next result. Most of the a priori estimates
obtained in this section have some importance in stochastic optimal control and
they are not directly used in this book.

Polynomial and Lipschitz Bounds

To estimate the p-moment of either the solution x(t) in term of its initial value
x(t0) or the different x(t)−y(t) in term of x(t0)−y(t0), we use Itô formula with
smooth functions of the type x 7→ (1 + |x|2)p/2 with p > 0.
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For fixed positive constants p, λ we define

α(p, λ) := pαg(λ) + pασ(p, λ) + αγ(p, λ), (5.44)

where

αg(λ) := sup
{∑

i

xi gi(t, x, v)

λ+ |x|2
}
,

ασ(p, λ) := sup
{∑

i,k

σ2
ik(t, x, v)

λ+ |x|2
+

+(p− 2)
∑
i,j,k

xi σik(t, x, v)σjk(t, x, v)xj
(λ+ |x|2)2

}
,

and

αγ(p, λ) := sup
{∫

Rm∗

[
(λ+ |x+ γ(ζ, t, x, v)|2)p/2 − (λ+ |x|2)p/2 −

−
∑
i

p xi γi(ζ, t, x, v) (λ+ |x|2)p/2−1
]

(λ+ |x|2)−p/2π(dζ)
}
,

and the suprema are taken for every (t, x, v) in [t0,∞)× Rd × Rq.

Lemma 5.9. Assume that (5.8) holds and, only for p > 2, that there exists a
positive constant C = Cp such that∫

Rm∗
|γ(ζ, t, x, v)|pπ(dζ) ≤ C(1 + |x|2)p/2, p ≥ 2, (5.45)

for every (t, x, v) in [t0,∞)× Rd × Rq. Then the constant (5.44) is finite.

Proof. Clearly, under assumption (5.8) we can verify that the quantity αg(λ) is
finite. However, some details are necessary to check that ασ(p, λ) and αγ(p, λ)
are also finite.

First recall the moment inequalities for stochastic integrals, see (4.75), (4.95),
(4.103) and (4.104) of Chapter 4, namely, for any p > 0 there is a constant
Cp > 0 (in particular, C1 = 3 and C2 = 4) such that

E
{

sup
t0≤r≤t

∣∣∣ ∫ r

t0

a(s)dw(s)
∣∣∣p} ≤ Cp E{[∫ t

t0

|a(s)|2ds
]p/2}

, (5.46)

and for the stochastic Poisson integral, if 0 < p ≤ 2 then
E
{

sup
t0≤r≤t

∣∣∣ ∫
Rm∗ ×]t0,r]

b(ζ, s)ν̃(dζ,ds)
∣∣∣p} ≤

≤ Cp E
{[∫ t

t0

ds

∫
Rm∗
|b(ζ, s)|2π(dζ)

]p/2}
,

(5.47)
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and if p > 2 then

E
{

sup
t0≤r≤t

∣∣∣ ∫
Rm∗ ×]t0,r]

b(ζ, s)ν̃(dζ,ds)
∣∣∣p} ≤

≤ Cp E
{∫ t

t0

ds

∫
Rm∗
|b(ζ, s)|pπ(dζ)

}
+

+ E
{[∫ t

t0

ds

∫
Rm∗
|b(ζ, s)|2π(dζ)

]p/2}
,

(5.48)

for every t ≥ t0 ≥ 0, any adapted processes (and measurable) (a(t) : t ≥ 0) and
(b(ζ, t) : t ≥ 0, ζ ∈ Rm∗ ).

Now, the integrand inside the expression of αγ(p, λ) can be rewritten as

p

∫ 1

0

(1− r)
(λ+ |x+ rγ|2

λ+ |x|2
)p/2−1

αp,λ,x,γ(r)dr,

where

αp,λ,x,γ(r) =
∑
ij

[
(p− 2)

(xi + rγi)(xj + rγj)

λ+ |x+ rγ|2
+ δij

] [ γi γj
λ+ |x|2

]
,

with γi = γi(ζ, t, x, v), γ = γ(ζ, t, x, v) and δij = 1 only if i = j and vanishes
otherwise. Thus, taking note of assumption (5.45), the suprema ασ(p, λ) and
αγ(p, λ) are finite.

Similarly, we define

β(p) := sup
λ>0

{
p βg(λ) + (p/2)βσ(p, λ) + βγ(p, λ)

}
, (5.49)

where

βg(λ) := sup
{∑

i

(xi − x′i) [gi(t, x, v)− gi(t, x′, v)]

λ+ |x− x′|2
}
,

βσ(p, λ) := sup
{∑

i,k

[
σik(t, x, v)− σik(t, x′, v)

]2
λ+ |x− x′|2

+

+(p− 2)
∑
i,j,k

[ (xi − x′i)
[
σik(t, x, v)− σik(t, x′, v)

]
λ+ |x− x′|2

×

×
[
σjk(t, x, v)− σjk(t, x′, v)

]
(xj − x′j)

λ+ |x− x′|2
]}
,

and

βγ(p, λ) := sup
{∫

Rm∗

[
(λ+ |x− x′ + γ(ζ, t, x, v)− γ(ζ, t, x′, v)|2)p/2 −

−(λ+ |x− x′|2)p/2 −
∑
i

p (xi − x′i)[γi(ζ, t, x, v)− γi(ζ, t, x′, v)]×

×(λ+ |x− x′|2)p/2−1
]

(λ+ |x− x′|2)−p/2π(dζ)
}
,

and the suprema are taken for any t in [t0,∞), x, x′ in Rd and v in Rq.
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Lemma 5.10. Assume a global version of assumption (5.11), namely, there
exists a positive constant M such that

(x− x′) [g(t, x, v)− g(x′, t, v)] + |σ(t, x, v)− σ(x′, t, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)− γ(x′, t, ζ, v)|2π(dζ) ≤M |x− x′|2,

(5.50)

for every (t, x, v), (t, x′, v) in [t0,∞)× Rd × Rq, and, only for p > 2, that there
exists a positive constant M = Mp such that∫

Rm∗
|γ(ζ, t, x, v)− γ(ζ, t, x′, v)|pπ(dζ) ≤M |x− x′|p, (5.51)

for every (t, x, v), (t, x′, v) in [t0,∞) × Rd × Rq. Then the supremum βγ(p) is
finite.

Proof. Again, by means of estimates (5.46) and under (5.50), we can verify that
the quantities βg are finite. However, some details are necessary to check that
βσ(p) and βγ(p) are actually finite.

The part concerning βσ(p) is simple, and bounded in term of the constant
appearing in assumption (5.50). On the other hand, the integrand inside the
expression of βγ(p, λ) can be rewritten as

p

∫ 1

0

(1− r)
(λ+ |x− x′ + r(γ − γ′)|2

λ+ |x− x′|2
)p/2−1

βp,λ,x−x′,γ−γ′(r)dr,

where

βp,λ,x−x′,γ−γ′(r) =
∑
ij

[
(p− 2)

(γi − γ′i) (γj − γ′j)
λ+ |x− x′|2

]
×

×
[(xi − x′i + r(γi − γ′i)

)(
xj − x′j + r(γj − γ′j)

)
λ+ |x− x′ + r(γ − γ′)|2

+ δij

]
,

with γi = γi(ζ, t, x, v), γ = γ(ζ, t, x, v), γ′i = γi(ζ, t, x
′, v), γ′ = γ(ζ, t, x′, v) and

δij = 1 only if i = j and vanishes otherwise. Thus, by means of estimate (5.47),
(5.50) and only for p > 2, also (5.51), we may proceed as follows. If p ≥ 2 then

λ+ |x− x′ + γ − γ′|2

λ+ |x− x′|2
≤ 2 + 2

|γ − γ′|2

|x− x′|2
, ∀λ > 0,

and estimate (5.51) plays a key role. Alternatively, if 0 < p < 2 then split
the integral over Rd∗ in two parts, first over the region |γ − γ′| ≤ (1/2)|x − x′|,
which is denoted by βγ(p, λ)a and second over its complementary region |γ −
γ′| > (1/2)|x − x′|, which is denoted by βγ(p, λ)b, where γ := γ(ζ, t, x, v) and
γ′ := γ(ζ, t, x′, v).

To estimate βγ(p, λ)a, we use the fact that

|γ − γ′| ≤ (1/2)|x− x′| ⇒ |x− x′ + γ − γ′| ≥ (1/2)|x− x′|,
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to get the inequality

λ+ |x− x′ + γ − γ′|2

λ+ |x− x′|2
≥ 1

4
, ∀λ > 0,

which control the integrand of βγ(p, λ)a. However, to estimate βγ(p, λ)b, we do
not need to use the second derivatives, directly from the definition of βγ(p, λ)
and by means of the inequality

|ar − br| ≤ |a− b|r, ∀a, b ≥ 0, ∀r ∈ (0, 1],

we can bound the integrand by

|γ − γ′|p (λ+ |x− x′|2)−p/2 +
|γ − γ′|
|x− x′|

≤ 6
|γ − γ′|2

|x− x′|2

over the region where |γ − γ′| > (1/2)|x − x′|, for every λ > 0, 0 < p < 2 and
x 6= x′ in Rd. Hence, the extra condition (5.51) is only needed when p > 2.

Note that α(p, λ) [respectively β(p)], defined by (5.44) [respectively (5.49)],
depends only the constant C [respectively M ] of conditions (5.6) and (5.8)
[respectively (5.11) and (5.50)]. In particular the length of the time interval
t1 − t0 does not appear explicitly.

Theorem 5.11 (estimates). Let (x(t) : t ≥ t0) be a solution of the d-dimensional
stochastic ordinary differential equation (5.5). If α ≥ α(p, λ), p > 0, λ > 0, as
defined by (5.44), then under assumptions (5.8) and (5.45) we have E

{
[α− α(p, λ)]

∫ t

t0

(λ+ |x(s)|2)p/2 e−α(s−t0)ds+

+(λ+ |x(t)|2)p/2 e−α(t−t0)
}
≤ E

{
(λ+ |x(t0)|2)p/2

}
,

(5.52)

for every t ≥ t0. Moreover, there is a constant C, depending only on p and the
bounds of σ and γ through conditions (5.8) and (5.45) (with 2p instead of p),
such that for every t ≥ t0 we have

E
{

sup
t0≤s≤t

(λ+ |x(s)|2)p/2 e−α(s−t0)
}
≤

≤ C
[
1 +

1

α− α(p, λ)

]
E
{

(λ+ |x(t0)|2)p/2
}
.

(5.53)

Now, denote by (y(t) : t ≥ t0) another solution. If α ≥ β(p), p > 0, as defined
by (5.49), then under assumptions (5.50) and (5.51) we have E

{
[α− β(p)]

∫ t

t0

|x(s)− y(s)|p e−α(s−t0)ds+

+|x(t)− y(t)|p e−α(t−t0)
}
≤ E

{
|x(t0)− y(t0)|p

}
,

(5.54)
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for every t ≥ t0. Furthermore, we have
E
{

sup
t0≤s≤t

|x(s)− y(s)|p e−α(s−t0)
}
≤

≤M
[
1 +

1

α− β(p)

]
E
{

(|x(t0)− y(t0)|p
}
,

(5.55)

for every t ≥ t0 and for some constant M depending only on p and the bounds
of σ and γ through conditions (5.50) and (5.51) (with 2p instead of p).

Proof. First, for positive constants α, λ and p, let us apply Itô formula (see
previous chapter) to the function ϕ : (x, t) 7→ e−α(t−t0)(λ + |x|2)p/2 and the
solution process x(t) of (5.3), to obtain

dϕ(x(t), t) = a(t)dt+

n∑
k=1

bk(t)dwk(t) +

∫
Rm∗

c(ζ, t)ν̃(dζ,dt), (5.56)

where

a(t) := ∂tϕ(x(t), t) +

d∑
i=1

gi(t, x(t), v(t)) ∂iϕ(x(t), t) +

+
1

2

d∑
i,j=1

( n∑
k=1

σik(t, x(t), v(t))σjk(t, x(t), v(t))
)
∂2
ijϕ(x(t), t) +

+

∫
Rm∗

[
ϕ(x(t) + γ(ζ, t, x(t), v(t)), t)− ϕ(x(t), t)−

−
d∑
i=1

γi(ζ, t, x(t), v(t)) ∂iϕ(x(t), t)
]
π(dζ),

bk(t) :=

d∑
i=1

σik(t, x(t), v(t)) ∂iϕ(x(t), t),

c(ζ, t) := ϕ(x(t) + γ(ζ, t, x(t), v(t)), t)− ϕ(x(t), t).

Since

∂tϕ(x, t) = −αϕ(x, t),

∂iϕ(x, t) = pxi(λ+ |x|2)−1ϕ(x, t),

∂i,jϕ(x, t) = p
{

(p− 2)xixj(λ+ |x|2)−1 +

+δij
}

(λ+ |x|2)−1ϕ(x, t),

where δij = 1 only if i = j and vanishes otherwise, we verify that a(t) ≤
α(p, λ)ϕ(x(t), t), given by (5.44). By taking the mathematical expectation we
deduce estimate (5.52).

Now, we come back to the Itô equality (5.56) to take first the supremum
and then the mathematical expectation, we deduce, after using the stochastic
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integral inequalities (5.46) and (5.47), with p = 1, that

E
{

sup
t0≤t≤t1

(λ+ |x(t)|2)p/2 e−α(t−t0)
}
≤ E

{
(λ+ |x(t0)|2)p/2

}
+

+3E
{[∑

k

∫ t1

t0

|bk(s)|2ds
]1/2

+
[ ∫ t1

t0

ds

∫
Rm∗
|c(ζ, s)|2π(dζ)

]1/2}
,

To estimate the last two integrals, first find a constant C, depending on the
bounds of σ through (5.8) and (5.45) (regarding only σ and γ and with 2p
instead of p),∑

k

|bk(s)|2 +

∫
Rm∗
|c(ζ, t)|2π(dζ) ≤ C |ϕ(s, x(s))|2,

which is obvious for bk(t) but not so for c(ζ, t) (see below), and proceed as
follows. The part corresponding to Wiener process, with bk, can be bounded by

E
{

sup
t0≤s≤t1

|ϕ(s, x(s))|1/2
[ ∫ t1

t0

|ϕ(s, x(s))|ds
]1/2}

.

Thus, by means of the inequality 2ab ≤ εa2 + b2/ε and the Hölder inequality
we deduce that

3E
{[∑

k

∫ t1

t0

|bk(s)|2ds
]1/2}

≤

≤ 1

3
E
{

sup
t0≤s≤t1

|ϕ(s, x(s))|
}

+ C1 E
{∫ t1

t0

|ϕ(s, x(s))|ds
}
.

The part corresponding to γ can be handled with the same technique, i.e., first
the Poisson integral part is bounded by

E
{

sup
t0≤s≤t1

[ ∫
Rd∗
|c(ζ, s)|2π(dζ)

]1/2[ ∫ t1

t0

ds

∫
Rm∗
|c(ζ, s)|2π(dζ)

]1/2}
,

and

|c(ζ, s)|2 ≤ e−2α(s−t0)|γ(ζ, s, x(s), v(s))|2 ×

×
∫ 1

0

|∇ϕ
(
x(s) + θγ(ζ, s, x(s), v(s)), s

)
|2dθ.

To estimate the gradient ∇ϕ consider two cases. If p ≥ 1 then use the inequality
|a+ b|q ≤ 2q(|a|q + |b|q)) with q = p− 1 > 1 to get

|∇ϕ(x+ θγ, s)|2 ≤ p22(p−1)
[
(λ+ |x|2)p−1 + |γ|2p−2

]
e−2α(s−t0).

However, if 0 < p < 1 then the inequality |a+ b|r ≤ |a|r + |b|r with r = p yields

|∇ϕ(x+ θγ, t)|2 ≤ p2
[
(λ+ |x|2)p−1 + |γ|2p−2

]
e−2α(s−t0),
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which is fine when |γ| ≥ (1/2)(λ + |x|2)1/2, but on its complement we use the
fact that for every θ in [0, 1] we have

|γ| ≤ (1/2)(λ+ |x|2)1/2 ⇒

⇒ (λ+ |x+ θγ|2)1/2 ≥ (1/2)(λ+ |x|2)1/2,

which implies

|∇ϕ(x+ θγ, t)|2 ≤ 2p2(λ+ |x|2)p−1e−2α(s−t0),

i.e.,

|∇ϕ(x+ θγ, t)|2 ≤ 3p2(λ+ |x|2)p−1e−2α(s−t0), if 0 < p < 1.

Hence, use assumptions (5.8) (now, only the part regarding γ) and (5.45) (with
2p instead of p) to deduce∫

Rd∗
|c(ζ, s)|2π(dζ) ≤ C|ϕ(x(s), s)|2,

and to continue as in the case of the Wiener process part. Thus, we obtain the
same estimates for the stochastic integrals which yield

E
{

sup
t0≤t≤t1

(λ+ |x(t)|2)p/2 e−α(t−t0)
}
≤ 3E

{
(λ+ |x(t0)|2)p/2

}
+

+ C E
{∫ t1

t0

e−α(t−t0) (λ+ |x(t)|2)p/2dt
}
,

for some constant C depending only on p and the bounds of σ and γ through
the conditions (5.8) and (5.45) (with 2p instead of p). Hence, (5.53) follows
from the estimate (5.52).

Similarly, using the process x(t) − y(t) instead of x(t), we can establish
estimates (5.54) and (5.55), i.e., Itô formula is used for the function ϕ : (z, t) 7→
e−α(t−t0)(λ+ |z|2)p/2 and the difference z(t) = x(t)− y(t), where x(t) and y(t)

are two solutions of (5.3) with initial conditions x(t0) and y(t0).

It is clear that Itô formula plays a fundamental role to establish a priori esti-
mates, particularly the quadratic norm for the solution x(t) of the d-dimensional
stochastic ordinary differential equation (5.3), namely d|x(t)− a|2 = dM(t) +

{
2[x(t)− a] · g(t, x(t), v(t)) +

+ Tr[σ2(t, x(t), v(t))] +

∫
Rd∗
|γ(ζ, t, x(t), v(t))|2π(dζ)

}
dt,

(5.57)

where the stochastic integral is given by

dM(t) := 2
∑
k

[x(t)− a] · σk(t, x(t), v(t))dwk(t) +

+

∫
Rm∗

[
|γ(ζ, t, x(t), v(t))|2 − 2[x(t)− a] · γ(ζ, t, x(t), v(t))

]
ν̃(dζ,dt),
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Tr[·] is the trace operator, the dot · denotes the scalar product in Rd and a is
a constant (which could be random, but measurable with respect to the initial
time).

The case p = 1 and α = 0 in estimate (5.54) is of a particular interest, since
a more accurate bound can be established under weaker assumptions, this is the
so-called Tanaka’s formula, namely d|x(t)− y(t)| = dM(t) +

[
Σ(t) +

∫
Rm∗

Γ(t, ζ)π(dζ)
]
dt+

+ sgn[x(t)− y(t)] ·
[
g(t, x(t), v(t))− g(t, y(t), v(t))

]
dt,

(5.58)

where the stochastic integral M is given by

dM(t) = sgn[x(t)− y(t)] ·
[[
σ(t, x(t), v(t))− σ(t, y(t), v(t))

]
dw(t) +

+

∫
Rm∗

[
γ(ζ, t, x(t), v(t))− γ(ζ, t, y(t), v(t))

]
)ν̃(dζ,dt)

]
,

and the drift term is

Σ(t) =
1

2

∑
ijk

1x(t)6=y(t)
|x(t)− y(t)|2δij − [xi(t)− yi(t)][xj(t)− yj(t)]

|x(t)− y(t)|3
×

×[σik(t, x(t), v(t))− σik(t, y(t), v(t))][σjk(t, x(t), v(t))− σjk(t, y(t), v(t))],

and

Γ(t, ζ) =
∣∣x(t)− y(t) + γ(ζ, t, x(t), v(t))− γ(ζ, t, y(t), v(t))

∣∣−
−|x(t)− y(t)| − sgn[x(t)− y(t)] · [γ(ζ, t, x(t), v(t))− γ(ζ, t, y(t), v(t))],

where sgn denotes the sign function by coordinates. Note that a revision (by
taken λ → 0) of the arguments used to show estimate (5.54) provides a way
to establish Tanaka’s formula (5.58), similarly to Rong [215, Section 1.10, pp.
38–44].

• Remark 5.12. Using the fact that

|x(t)− x(t0)|p ≤ 3p∨1
{∣∣∣ ∫

Rm∗ ×]t0,t]

γ(ζ, t, x(t), v(t))ν̃(dζ,dt)
∣∣∣p +

+
∣∣∣∑
k

∫ t

t0

σk(t, x(t), v(t))dwk(t)
∣∣∣p +

[ ∫ t

t0

|g(s, x(s), v(s))|ds
]p}

and the stochastic integral inequalities (5.46), (5.47) and (5.48), for any p in
(0, 2] and t ≥ t0, we obtain

E
{

sup
t0≤s≤t

|x(s)− x(t0)|p
}
≤ C̃p (t− t0)p/2 ×

× E
{

sup
t0≤s≤t

[
(t− t0)p/2

∣∣g(s, x(s), v(s))
∣∣p +

+
∣∣Tr[σ2(s, x(s), v(s))]

∣∣p/2 +

+
(∫

Rm∗

∣∣γ(ζ, s, x(s), v(s))
∣∣2π(dζ)

)p/2]}
,
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while for p > 2 we get

E
{

sup
t0≤s≤t

|x(s)− x(t0)|p
}
≤ C̃p (t− t0)×

× E
{

sup
t0≤s≤t

[
(t− t0)p−1

∣∣g(s, x(s), v(s))
∣∣p +

+ (t− t0)p/2−1
(∣∣Tr[σ2(s, x(s), v(s))]

∣∣p/2 +

+
[ ∫

Rm∗

∣∣γ(ζ, s, x(s), v(s))
∣∣2π(dζ)

]p/2)
+

+

∫
Rm∗

∣∣γ(ζ, s, x(s), v(s))
∣∣pπ(dζ)

]}
,

which combined with (5.53) yield E
{

sup
t0≤s≤t

|x(s)− x(t0)|p
}
≤

≤ Cp,T (t− t0)(p/2)∧1 E
{

(1 + |x(t0)|2)p/2
}
,

(5.59)

for any t in [t0, T ] and some constant Cp,T depending only on T and on the
bounds of conditions (5.6) and (5.45). Reviewing the above arguments, it is
clear that assuming γ = 0, i.e., that there is only the stochastic integral with
respect to the Wiener process, we can improve (5.59) as follows:

E
{

sup
t0≤s≤t

|x(s)− x(t0)|p
}
≤ Cp,T (t− t0)p/2 E

{
(1 + |x(t0)|2)p/2

}
, (5.60)

even for p > 2. Note that T is arbitrary.

Coefficients Bounds

As in (5.55) of Theorem 5.11, we may study how the solution changes when the
coefficients are changed. There are two possible norms to measure the change
of the coefficients, namely,

‖h− h′‖0 = sup
t,x,v

{
|h(t, x, v)− h′(t, x, v)|

}
,

‖h− h′‖0,p = sup
t,x,v

{(∫
Rm∗
|h(ζ, t, x, v)− h′(ζ, t, x, v)|pν(dζ)

)1/p} (5.61)

and 

‖h− h′‖1 = sup
t,x,v

{
|h(t, x, v)− h′(t, x, v)|(1 + |x|2)−1/2

}
,

‖h− h′‖1,p = sup
t,x,v

{
(1 + |x|2)−1/2 ×

×
(∫

Rm∗
|h(ζ, t, x, v)− h′(ζ, t, x, v)|pν(dζ)

)1/p}
,

(5.62)

for p ≥ 2. Define, for i = 0, 1,

Λi,p(g − g′, σ − σ′, γ − γ′) =

= ‖g − g′‖i + ‖σ − σ′‖i + ‖γ − γ′‖i,p + ‖γ − γ′‖i,2
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to have

Proposition 5.13. Under assumptions (5.8), (5.45), (5.50) and (5.51), if (y(t) :
t ≥ t0) and (y′(t) : t ≥ t0) denote the solution corresponding to coefficients g, σ, γ
and g′, σ′, γ′, respectively, satisfying y(t0) = y′(t0), then we have E

{
sup

t0≤s≤t
|y(s)− y′(s)|p e−α(s−t0)

}
≤

≤MΛp1,2p(g − g′, σ − σ′, γ − γ′)E
{

(1 + |y(t0)|2)p/2
}
,

(5.63)

and

E
{

sup
t0≤s≤t

|y(s)− y′(s)|p e−α(s−t0)
}
≤MΛp0,2p(g − g′, σ − σ′, γ − γ′),(5.64)

for every t ≥ t0 and for some constant M depending only on p ≥ 2, α > β(p)
(as defined by (5.49)), and the bounds of g, σ and γ through conditions (5.50)
and (5.51) (with 2p instead of p).

Proof. First, note that the process x(t) = y(t) − y′(t) has drift, diffusion and
jump coefficients g − g′, σ − σ′ and γ − γ′, respectively. Thus, for positive
constants α, λ and p, let us apply Itô formula (see previous chapter) to the
function ϕ : (x, t) 7→ e−α(t−t0)(λ + |x|2)p/2 and the process x(t) = y(t) − y′(t),
where y(t) and y′(t) are the solution (with obvious change of notation!) of (5.3),
to obtain

dϕ(x(t), t) = a(t)dt+

n∑
k=1

bk(t)dwk(t) +

∫
Rm∗

c(ζ, t)ν̃(dζ,dt), (5.65)

where

a(t) := ∂tϕ(x, t) +
∑
i

g̃i(t) ∂iϕ(x, t) +
1

2

∑
i,j,k

σ̃ik(t)σ̃jk(t) ∂2
ijϕ(x, t) +

+

∫
Rm∗

[
ϕ(x+ γ̃(ζ, t), t)− ϕ(x, t)−

∑
i

γ̃i(ζ, t) ∂iϕ(x, t)
]
π(dζ),

bk(t) :=
∑
i

σ̃ik(t) ∂iϕ(x, t),

c(ζ, t) := ϕ(x+ γ̃(ζ, t), t)− ϕ(x, t),

and x = x(t) = y(t)− y′(t),

g̃i(t) = gi(t, y(t), v(t))− g′i(t, y′(t), v(t)),

σ̃ik(t) = σik(t, y(t), v(t))− σ′ik(t, y′(t), v(t)),

γ̃i(ζ, t) = γi(ζ, t, y(t), v(t))− γ′i(ζ, t, y′(t), v(t)),

and certainly, γ̃(ζ, t) = γ(ζ, t, y(t), v(t))− γ′(ζ, t, y′(t), v(t)). Also we have

∂tϕ(x, t) = −αϕ(x, t),

∂iϕ(x, t) = pxi(λ+ |x|2)−1ϕ(x, t),

∂ijϕ(x, t) = p
{

(p− 2)xixj(λ+ |x|2)−1 + δij
}

(λ+ |x|2)−1ϕ(x, t),
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where δij = 1 only if i = j and vanishes otherwise. Essentially, the whole
argument is to show that for every ε > 0 p ≥ 2, λ = 0 and i = 0, 1 there exists a
constant Cε,p > 0, which also depends only on the dimension d, and the various
bounds in the assumptions (5.8), (5.45), (5.50) and (5.51), such that

a(t) ≤
(
β(p) + ε− α

)
ϕ
(
y(t)− y′(t), t

)
+

+ Cε,pΛ
p
i,p(g − g

′, σ − σ′, γ − γ′)(1 + |y′(t)|2)p/2e−α(t−t0).

Moreover, we also have∑
k

|bk(t)|2 +

∫
Rd∗
|c(ζ, t)|2π(dζ) ≤ C

[
|ϕ
(
y(t)− y′(t), t

)
|2 +

+ Λ2p
i,2p(g − g

′, σ − σ′, γ − γ′)(1 + |y′(t)|2)pe−2α(t−t0)
]
,

for some other constant C > 0, depending on (5.50) (regarding only σ and γ)
and (5.51) (with 2p instead of p).

Let us consider the simplest case when σ = σ′ and γ = γ′. In this case, the
g̃i(t) is bounded as follows:

(x− x′) · [g(t, x, v)− g′(t, x′, v)] ≤ (x− x′) · [g(t, x, v)− g(t, x′, v)] +

+ (x− x′) · [g(t, x′, v)− g′(t, x′, v)] ≤

≤ βg(λ)(λ+ |x− x′|2) + Λ2(λ, g − g′)(λ+ |x− x′|2)1/2(1 + |x′|2)1/2,

with βg(λ) as in (5.49) and

Λ2(λ, g − g′) = sup
x,x′∈Rd

{∑
i

(xi − x′i) [gi(t, x
′, v)− g′i(t, x′, v)]

(λ+ |x− x′|2)1/2(1 + |x′|2)1/2

}
≤

≤ sup
x′∈Rd

{
|g(t, x′, v)− g′(t, x′, v)| (1 + |x′|2)−1/2

}
≤ ‖g − g′‖1.

Hence, we bound

a(t) ≤ pβg(λ)ϕ(x(t), t) +

+ p‖g − g′‖1(1 + |y′(t)|2)1/2e−α(t−t0)(λ+ |x(t)|2)(p−1)/2

to deduce an expression similar to (5.54), but with an extra term with p‖g−g′‖1
multiplying the integral

E
{∫ t

t0

(1 + |y′(s)|2)1/2e−α(t−t0)(λ+ |x(s)|2)(p−1)/2ds
}
.

This term can be bounded by (using Hölder inequality and the fact that, for
each ε > 0 there exists a constant Cε > 0 such that AB ≤ εAp + CεB

p′ , with
1/p+ 1/p′ = 1)

εE
{∫ t

t0

(λ+ |x(s)|2)p/2e−α(t−t0)ds
}

+

+ Cεp‖g − g′‖p1E
{∫ t

t0

(1 + |y′(s)|2)p/2e−α(t−t0)ds
}
,
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proving (after letting λ→ 0)

E
{

[α− β(p)− ε]
∫ t

t0

|y(s)− y′(s)|p e−α(s−t0)ds+

+ |y(s)− y′(s)|p e−α(t−t0)
}
≤

≤ Cεp‖g − g′‖p1E
{

(1 + |y′(t0)|2)p/2
}
,

with the implicit assumption that α > α(p, 1), the constant used in the estimate
(5.52) with λ = 1. Similarly, we can define

Λ̄2(λ, g − g′) = sup
x,x′∈Rd

{∑
i

(xi − x′i) [gi(t, x
′, v)− g′i(t, x′, v)]

(λ+ |x− x′|2)1/2

}
≤

≤ sup
x′∈Rd

{
|g(t, x′, v)− g′(t, x′, v)|

}
≤ ‖g − g′‖0

to have

E
{

[α− β(p)− ε]
∫ t

t0

|y(s)− y′(s)|p e−α(s−t0)ds+

+ |y(t)− y′(t)|p e−α(t−t0)
}
≤ Cεp‖g − g′‖p0.

with the norms (5.61) and (5.62).
Next, let us consider the case g = g′ and γ = γ′. In this case, using the

inequality (a+ b)2 ≤ (1 + ε)a2 + (1 +Cε)b
2 the term

∑
k σ̃ik(t)σ̃jk(t) is bounded

by Aij +Bij , with

Aij = (1 + ε)
∑
k

[σik(t, x, v)− σik(t, x′, v)][σjk(t, x, v)− σjk(t, x′, v)]

Bij = (1 + Cε)
∑
k

[σik(t, x′, v)− σ′ik(t, x′, v)][σjk(t, x′, v)− σ′jk(t, x′, v)].

Now,
∑
ij Aij∂ijϕ(x, t) is bounded by (1 + ε)β(p)ϕ(t, x − x′), where β(p) =

supλ>0{(p/2)βσ(λ, p)} as in (5.49). The term Bij can be bounded by either
‖σ − σ′‖20 or ‖σ − σ′‖21(1 + |x′|2). Hence

a(t) ≤ (β(p) + ε)ϕ(x(t), t) + C‖σ − σ′‖20(λ+ |x(t)|2)(p−2)/2e−α(t−t0)

and

a(t) ≤ (β(p) + ε)ϕ(x(t), t) + C‖σ − σ′‖21(1 + |y′(t)|2)1/2e−α(t−t0) ×
× (λ+ |x(t)|2)(p−2)/2.

If p > 2 then use Hölder inequality with q′ = p/2, so that 1/q′ = 2/p =
1− (p− 2)/p and q = p/(p− 2) > 1, to bound the integral

E
{∫ t

t0

(1 + |y′(s)|2)e−α(t−t0)(λ+ |x(s)|2)(p−2)/2ds
}
.
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with (
E
{∫ t

t0

(1 + |y′(s)|2)p/2e−α(t−t0)ds
})1/q′(

E
{∫ t

t0

(λ+ |x(s)|2)p/2ds
})1/q

,

Hence, the last term in the previous inequality for a(t) (including the constant
C) can be bounded by

εE
{∫ t

t0

(λ+ |x(s)|2)p/2e−α(t−t0)ds
}

+

+ Cε‖σ − σ′‖p1E
{∫ t

t0

(1 + |y′(s)|2)p/2e−α(t−t0)ds
}
,

proving (after letting λ→ 0)

E
{

[α− β(p)− 2ε]

∫ t

t0

|y(s)− y′(s)|p e−α(s−t0)ds+

+ |y(t)− y′(t)|p e−α(t−t0)
}
≤

≤ Cε‖σ − σ′‖p1E
{

(1 + |y′(t0)|2)p/2
}
,

with the implicit assumption that α > α(p, 1), the constant used in the estimate
(5.52) with λ = 1. Similarly, we have

E
{

[α− β(p)− 2ε]

∫ t

t0

|y(s)− y′(s)|p e−α(s−t0)ds+

+ |y(t)− y′(t)|p e−α(t−t0)
}
≤ Cε‖σ − σ′‖p0,

with the norms (5.61) and (5.62).
Finally, let us consider the case g = g′ and σ = σ′. In this case, we have

to deal with the jump terms. Begin with p = 2 and λ = 0 to have ∂iϕ(x, t) =
2xie

−α(t−t0) and[
ϕ(x+ γ̃(t), t)− ϕ(x, t)−

∑
i

γ̃i(t) ∂iϕ(x, t)
]

= |γ̃i(t)|2e−α(t−t0),

and essentially the same argument used before for the diffusion term yields
E
{

[α− β(2)− 2ε]

∫ t

t0

|y(s)− y′(s)|2 e−α(s−t0)ds+

+ |y(t)− y′(t)|2 e−α(t−t0)
}
≤

≤ Cε‖γ − γ′‖21,2E
{

1 + |y′(t0)|2
}
,

(5.66)

and  E
{

[α− β(2)− 2ε]

∫ t

t0

|y(s)− y′(s)|2 e−α(s−t0)ds+

+ |y(t)− y′(t)|2 e−α(t−t0)
}
≤ Cε‖γ − γ′‖20,2,

(5.67)

with the norms (5.61) and (5.62).
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For the general case with p > 2, we can also take λ = 0, but the calculations
are longer anyway, and perhaps tedious. First, define

γ̄(ζ, t) = γ(ζ, t, y(t), v(t))− γ(ζ, t, y′(t), v(t)),

¯̄γ(ζ, t) = γ(ζ, t, y′(t), v(t))− γ′(ζ, t, y′(t), v(t)),

so that γ̃(ζ, t) = γ̄(ζ, t) + ¯̄γ(ζ, t), without writing the variables ζ, y(t) and v(t),
and recall[

ϕ(x+ γ̃(t), t)− ϕ(x, t)−
∑
i

γ̃i(t) ∂iϕ(x, t)
]

=

=

∫ 1

0

∑
ij

γ̃i(t)
[
∂iϕ
(
x+ θγ̃(t), t

)
− ∂iϕ

(
x, t
)]

dθ =

=
[
ϕ(x+ γ̄(t), t)− ϕ(x, t)−

∑
i

γ̄i(t) ∂iϕ(x, t)
]

+A.

Hence, use the inequalities∣∣∂iϕ(x+ θγ̃(t), t
)
− ∂iϕ

(
x+ θγ̄(t), t

)∣∣ ≤ 4p−2|¯̄γ(t)|
[
|¯̄γ(t)|p−2 +

+ |γ̄(t)|p−2 + (λ+ |x|2)(p−2)/2
]
e−α(t−t0),

to see that A ≤ 4p−2Be−α(t−t0), where B is dominated by a sum of homogeneous
terms of the form |¯̄γ(t)|p, |¯̄γ(t)|2|γ̄(t)|p−2, |¯̄γ(t)|2(λ+ |x|2)(p−2)/2, |¯̄γ(t)|p−1|γ̄(t)|,
|¯̄γ(t)| |γ̄(t)|p−1, and |γ̄(t)| |¯̄γ(t)| (λ+ |x|2)(p−2)/2. After integration and by means
of assumption (5.51), each term is suitable bounded. For instance, the integral
of |¯̄γ(t)|p is bounded by either ‖γ − γ′‖p0,p or ‖γ − γ′‖p1,pE

{
(1 + |y′(t0)|2)p/2

}
.

For the other terms, use the inequality ab ≤ εaq + Cεb
q′ with 1/q + 1/q′ = 1,

where either q′ = p/2 or q′ = p, to obtain a bound (for each term) of the form

ε

∫ t

t0

|y(s)− y′(s)|p e−α(s−t0)ds+ CεB

where B is either ‖γ− γ′‖p0,p or ‖γ− γ′‖p1,pE
{

(1 + |y′(t0)|2)p/2
}
. However, when

dealing with the term involving the factor (1 + |x|2)(p−2)/2, we use the norms
norms (5.61) and (5.62) with index 2 instead of index p. This yields (5.66) and
(5.67) for p > 2, with α − β(p) − 5ε instead of α − β(2) − 2ε, and the norms
‖γ − γ′‖i,p and ‖γ − γ′‖i,2 instead of just ‖γ − γ′‖i,2.

Collecting all the inequalities we obtain
E
{

[α− β(p)]

∫ t

t0

|y(s)− y′(s)|p e−α(s−t0)ds+

+ |y(t)− y′(t)|p e−α(t−t0)
}
≤

≤ CΛpi,p(g − g
′, σ − σ′, γ − γ′)E

{(
1 + |y(t0))2

)ip/2}
,

(5.68)

with the norms (5.61) and (5.62).
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Recalling that

bk(t) =
∑
i

(
σik(t, y(t), v(t))− σ′ik(t, y′(t), v(t))

)
∂iϕ
(
y(t)− y′(t), t

)
,

we can bound
∑
k |bk(t)|2 with

C
(
|y(t)− y′(t)|2 + ‖σ − σ′‖2i (1 + |y′(t)|2)i/2

)
|∂iϕ

(
y(t)− y′(t), t

)
|2,

for a constant C depending on the bounds of σ on assumption (5.50). Hence,
because |∂iϕ(x, t)| ≤ ϕ(x, t)(1 + |x|2)−1/2 we deduce∑

k

|bk(t)|2 ≤ Ce−2α(t−t0)
[
|y(t)− y′(t)|2p + ‖σ − σ′‖2i (1 + |y′(t)|2)ip

)]
,

for i = 0, 2, with the norms (5.61) and (5.62).
Similarly, write

c(ζ, t) =
∑
i

γ̃i(ζ, t)

∫ 1

0

∂iϕ
(
y(t)− y′(t) + θγ̃(ζ, t)

)
dθ

to obtain |c(ζ, t)| ≤ 2p−1|γ̃(ζ, t)|
(
|y(t)− y′(t)|p−1 + |γ̃(ζ, t)|p−1

)
. This, together

with

|γ̃(ζ, t)| ≤ |γ(ζ, t, y(t))− γ(ζ, t, y′(t))|+ |γ(ζ, t, y′(t))− γ′(ζ, t, y′(t))|,
yields

|c(ζ, t)|2 ≤ K
[
|γ(ζ, t, y(t))− γ(ζ, t, y′(t))|2|y(t)− y′(t)|2p−2 +

+ |γ(ζ, t, y(t))− γ(ζ, t, y′(t))|2p + |γ(ζ, t, y′(t))− γ′(ζ, t, y′(t))|2p+

+ |γ(ζ, t, y′(t))− γ′(ζ, t, y′(t))|2|y(t)− y′(t)|2p−2
]
,

for some constant K and the norm (5.61), and analogously for the norm with
i = 1 (5.62). Hence, integrating in ζ we deduce∫

Rd∗
|c(ζ, t)|2π(dζ) ≤ Ce−2α(t−t0)

[
|y(t)− y′(t)|2p +

+
(
‖γ − γ′‖2pi,2 + ‖γ − γ′‖2pi,2p

)
(1 + |y′(t)|2)ip

]
,

for a constant C depending on the bounds of γ on assumptions (5.50) and (5.51).
Finally, following the last argument (regarding the sup in [t0, t]) in Theo-

rem 5.11, we obtain (5.63) as desired.

• Remark 5.14. Perhaps, an important application of Proposition 5.13 is when
we take g = g′, σ = σ′ and γ′(ζ, t, x, v) = γ(ζ, t, x, v)1|ζ|≥ε, i.e., without the
small jumps. In this case, with p ≥ 2, i = 0, 1,

Λpi,p(g − g
′, σ − σ′, γ − γ′) ≤ C sup

t,x,v

{
(1 + |x|2)−ip/2 ×

×
[ ∫
|ζ|<ε
|γ(ζ, t, x, v)|pπ(dζ) +

(∫
|ζ|<ε
|γ(ζ, t, x, v)|2π(dζ)

)p/2]}
,
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which goes to zero as ε→ 0.

• Remark 5.15. Note that in the definition of the norms (5.61) and (5.62), we
could take the supremum for t = s within the time horizon, i.e., s in [t0, t], with
obvious notation change. Moreover, we could redefine the norms (5.61) and
(5.62), where supremum is taken only on x, keeping t and v constant, so that

Λi,p(g − g′, σ − σ′, γ − γ′, t, v) =

= ‖g(t, ·, v)− g′(t, ·, v)‖i + ‖σ(t, ·, v)− σ′(t, ·, v)‖i +

+ ‖γ(·, t, ·, v)− γ′(·, t, ·, v)‖i,p + ‖γ(·, t, ·, v)− γ′(·, t, ·, v)‖i,2,

i.e.,

Λi,p(g − g′, σ − σ′, γ − γ′) = sup
t0≤s≤t,v

Λi,p(g − g′, σ − σ′, γ − γ′, t, v),

agree with the previous definition. In this case, we obtain the estimate

E
{

sup
t0≤s≤t

|y(s)− y′(s)|p e−α(s−t0)
}
≤ME

{∫ t

t0

(1 + |y(s)|2)ip/2 ×

× e−α(s−t0)Λpi,2p(g − g
′, σ − σ′, γ − γ′, s, v(s)) ds

}
,

for p ≥ 2, i = 0, 1 and some constant M as in Proposition 5.13. Note the
distinct role of the space variable x and the time variable t.

It also clear that we can consider the dependency of the solution with respect
to the control parameter. The norms (5.61) and (5.62) have to be adjusted.
Define the following weighted norms, for f : Rd → Rd we set, for i = 0, 1,

[|f |]i := sup
{
|f(x)| (1 + |x|2)−i/2 : x ∈ Rd

}
(5.69)

and, for p ≥ 2,
[|h|]i,p := sup

{(∫
Rm∗
|h(ζ, x)|pπ(dζ)

)1/p

(1 + |x|2)−i/2 +

+
(∫

Rm∗
|h(ζ, x)|2π(dζ)

)1/2

(1 + |x|2)−i/2 : x ∈ Rd
}
,

(5.70)

for h : Rm∗ × Rd → R, and for coefficients g, σ, γ
Qi,p(g, σ, γ, t, x, v, v

′) =
(
[|g(t, ·, v)− g(t, ·, v′)|]i +

+ [|σ(t, ·, v)− σ(t, ·, v′)|]i + [|γ(·, t, ·, v)− γ(·, t, ·, v′)|]i,2 +

+ [|γ(·, t, ·, v)− γ(·, t, ·, v′)|]i,p
)
(1 + |x|2)i/2,

(5.71)

Recall that the indexes i = 0, 1 and p ≥ 2. Note that Q0,p(g, σ, γ, t, x, v, v
′) is

constant in the variable x.
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Essentially, based on the argument used in Proposition 5.13, we can deduce
that if ϕ(x, t) : (x, t) 7→ e−α(t−t0)(λ + |x|2)p/2 then there exist positive con-
stants β̃g(p, λ), β̃σ(p, λ), β̃γ(p, λ) and Cp depending only through the bounds in
assumptions (5.11) and (5.50) such that∑

i

[
gi(t, x, v)− gi(t, x′, v′)

]
∂iϕ(x− x′, t) ≤ β̃g(p, λ)ϕ(x− x′, t) +

+ Cp [|g(t, ·, v)− g(t, ·, v′)|]pi (1 + |x′|2)ip/2e−α(t−t0),∑
ijk

[
σik(t, x, v)− σik(t, x′, v′)

]
∂ijϕ

2(x− x′, t)×

×
[
σsk(t, x, v)− σjk(t, x′, v′)

]
≤ β̃σ(p, λ)ϕ(x− x′, t)+

+ Cp
∑
k

[|σk(t, ·, v)− σk(t, ·, v′)|]pi (1 + |x′|2)ip/2e−α(t−t0),

and ∫
Rm∗

[
ϕ
(
x− x′ + γ(ζ, t, x, v)− γ(ζ, t, x′, v)

)
− ϕ(x− x′)−

−
∑
i

[γi(ζ, t, x, v)− γi(ζ, t, x′, v)]ϕ(xi − x′i)
]
π(dζ) ≤

≤ β̃γ(p, λ)ϕ(x− x′, t) +

+ Cp [|γ(·, t, ·, v)− γ(·, t, ·, v′)|]pi,p(1 + |x′|2)ip/2e−α(t−t0),

for every t, x, x′, v, v′ and p, α, λ > 0, and

β̃(p) := sup
{
β̃g(p, λ) + β̃σ(p, λ) + β̃γ(p, λ) : λ > 0

}
. (5.72)

Actually, for any β̃(p) > β(p) given by (5.49) we can determine a constant
Cp > 0 matching the above conditions.

Now, let (x(t) : t ≥ t0) and (x′(t) : t ≥ t0) be two solutions of the d-
dimensional stochastic ordinary differential equation (5.3) corresponding to the
control parameters (v(s) : t ≥ t0)) and (v′(s) : t ≥ t0)), respectively. Now, use
the Itô formula with the function ϕ and the process x(t)− x′(t) to get

dϕ(x(t), t) = a(t)dt+

n∑
k=1

bk(t)dwk(t) +

∫
Rm∗

c(ζ, t)ν̃(dζ,dt), (5.73)

where

a(t) ≤
(
β̃(p)− α

)
ϕ
(
x(t)− x′(t), t

)
+

+ CpQ
p
i,p(g, σ, γ, t, x

′(t), v(t), v′(t))e−α(t−t0),

bk(t) :=

d∑
i=1

[σik(t, x(t), v(t))− σik(t, x′(t), v′(t))] ∂iϕ
(
x(t)− x′(t), t

)
,

c(ζ, t) := ϕ
(
x(t) + γ(ζ, t, x(t), v(t))− γ(ζ, t, x′(t), v′(t)), t

)
−

− ϕ
(
x(t)− x′(t), t

)
,

Section 5.1 Menaldi January 7, 2014



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 537

and the constant Cp depends only on the parameter p ≥ 2, the dimension d,

and β̃(p). Hence, for α ≥ β̃(p), we deduce the estimate
E
{

[α− β̃(p)]

∫ t

t0

|x(s)− x′(t)|p e−α(s−t0)ds+

+ |x(t)− x′(t)|p e−α(t−t0)
}
≤

≤ Cp E
{∫ t

t0

Qpi,p
(
g, σ, γ, s, x′(s), v(s), v′(s)

)
e−α(s−t0)ds

}
,

(5.74)

for every t ≥ t0. Similarly, going back to the above Itô equality, taking the
supremum in t before the expectation, and using the inequalities∑

k

|bk(s)|2 +

∫
Rd∗
|c(ζ, s)|2π(dζ) ≤ C

[
|ϕ
(
x(s)− x′(s), s

)
|2 +

+Q2p
i,2p

(
g, σ, γ, s, x′(s), v(s), v′(s)

)
e−2α(s−t0)

]
,

we obtain for α > β̃(p) the following estimate
E
{

sup
t0≤t≤t1

∣∣x(t)− x′(t)
∣∣p e−α(t−t0)

}
≤

≤Mp E
{∫ t

t0

Qpi,2p
(
g, σ, γ, s, x′(s), v(s), v′(s)

)
e−α(s−t0)ds

}
,
(5.75)

for some constant Mp depending only on the parameter p ≥ 2, the dimension

d, the constant β̃(p), and the bounds of σ and γ through conditions (5.50) and
(5.51) (with 2p instead of p). Recall that the expression Qi,p is given by (5.71).

Exponential Bounds

An important case is when the coefficients are bounded, i.e., assume that there
exist constants C, β > 0 such that

|g(t, x, v)|+ |σ(t, x, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)|2 exp

(
2β|γ(ζ, t, x, v)|

)
π(dζ) ≤ C,

(5.76)

for every (t, x, v) in [t0,∞)× Rd × Rq.

Proposition 5.16. Let (x(t) : t ≥ t0) be a solution of the d-dimensional
stochastic ordinary differential equation (5.5) under the assumption (5.76). Then
for every λ > 0 there exists αλ > 0, depending only on the constants C and β
in (5.76), such that for every α > αλ we have

E
{

(α− αλ)

∫ t

t0

exp
(
− α(s− t0) + β

√
λ+ |x(s)|2

)
ds+

+ exp
(
− α(t− t0) + β

√
λ+ |x(t)|2

)}
≤

≤ E
{

exp
(
β
√
λ+ |x(t0)|2

)}
,

(5.77)
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for every t ≥ t0. Moreover,
E
{

sup
t0≤s≤t

exp
(
− α(s− t0) + β

√
λ+ |x(s)|2

)}
≤

≤ K
[
1 +

1

α− αλ
]
E
{

exp
(
β
√
λ+ |x(t0)|2

)}
.

(5.78)

for some constant K, depending only on the bounds of σ and γ through conditions
(5.76).

Proof. As in the previous theorem, we can apply Itô formula to the function

ϕ : (x, t) 7→ exp[−α(t− t0) + β(λ+ |x|2)1/2]

with α, λ > 0 and β > 0, the same constant in hypothesis (5.76), and the
solution process x(t) of (5.5), to obtain

dϕ(x(t), t) = a(t)dt+

n∑
k=1

bk(t)dwk(t) +

∫
Rm∗

c(ζ, t)ν̃(dζ,dt), (5.79)

where

a(t) := ∂tϕ(x(t), t) +

d∑
i=1

gi(t, x(t), v(t)) ∂iϕ(x(t), t) +

+
1

2

d∑
i,j=1

( n∑
k=1

σik(t, x(t), v(t))σjk(t, x(t), v(t))
)
∂2
ijϕ(x(t), t) +

+

∫
Rm∗

[
ϕ(x(t) + γ(ζ, t, x(t), v(t)), t)− ϕ(x(t), t)−

−
d∑
i=1

γi(ζ, t, x(t), v(t)) ∂iϕ(x(t), t)
]
π(dζ),

bk(t) :=

d∑
i=1

σik(t, x(t), v(t)) ∂iϕ(x(t), t),

c(ζ, t) := ϕ(x(t) + γ(ζ, t, x(t), v(t)), t)− ϕ(x(t), t).

Since

∂tϕ(x, t) = −αϕ(x, t),

∂iϕ(x, t) = βxi(λ+ |x|2)−1/2ϕ(x, t),

∂ijϕ(x, t) = β
[
δij(λ+ |x|2)−1/2 − xixj(λ+ |x|2)−3/2 +

+ βxixj(λ+ |x|2)−1
]
ϕ(x, t),

where δij = 1 only if i = j and vanishes otherwise, we obtain∑
i

|gi∂iϕ| ≤ |g|βϕ,
∑
ij

|σikσjk∂ijϕ| ≤ |σk|2β(λ−1/2 + β)ϕ,
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and ∣∣ϕ(x+ γ, t)− ϕ(x, t)− γ · ∇ϕ(x, t)
∣∣ ≤ [β(λ−1/2 + β)|γ|2 eβ|γ|

]
ϕ(x, t).

Hence, for each λ > 0 we can choose αλ > 0 such that a(t) ≤ 0 and (5.77) is
established.

Similarly to Theorem 5.11, by means of the stochastic integral estimates
(5.46) and (5.47), with p = 1, and the inequality

|bk(t)|2 ≤ |σk(t, x(t), v(t))|2β2
(
ϕ(x(t), t)

)2
,

|c(ζ, t)|2 ≤ |γ(ζ, t, x(t), v(t))|2e2β|γ(ζ,t,x(t),v(t))|β2
(
ϕ(x(t), t)

)2
and (5.76), we deduce the bound (5.78).

Note αλ is equal to Cβmax{1, (λ−1/2 + β)}, where C is the constant in
assumption (5.76) with β/2 instead of β. Thus, as λ→ 0 we may have αλ →∞.
However, as β → 0 we do have αλ → 0.

Sometimes, we may need to use a more general setting, e.g., a stochastic
ordinary differential equation of the form

xi(t) = x0
i +

∫ t

t0

gi(s, x(s))ds+

+

n∑
k=1

∫ t

t0

σik(s, x(s))dwk(s) +

+

∫
Rm∗ ×]t0,t]

γi(ζ, s, x(s))ν̃(dζ,ds), ∀ t ≥ t0,

(5.80)

where the coefficients g = g(t, x, ω), σ = σ(t, x, ω) and γ = γ(ζ, t, x, ω) are
predictable processes, continuous in x for every fixed (t, ω), for the functions γ
this means that

lim
y→x

∫
Rm∗
|γ(ζ, t, y, ω)− γ(ζ, t, x, ω)|2π(dζ) = 0,

for every x, t and ω, and also, locally bounded in x, locally (square-, for σ and
γ), integrable in t, for every ω in the following sense

∫ T

t0

sup
|x|≤R

{
|g(t, x, ω)|+ |σ(t, x, ω)|2 +

+

∫
Rm∗
|γ(ζ, t, x, ω)|2π(dζ)

}
dt <∞,

(5.81)

for every T > t0 and R > 0. Certainly x(t) = x0(t) for every t ≤ t0 so that all
integrals in the right-hand side of (5.80) have an implicit coefficient of the form
1t0<s.

Under these conditions, the so-called Euler’s method can be applied as in
Krylov [141, Chapter V, pp. 165–220], where only the diffusion case is fully
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treated. The Euler’s method consists in setting ymi (t0) = x0
i , i = 1, . . . , d, and

then, recursively,

ymi (t) = ymi (t`,m) +

∫ t

t`,m

gi(s, y
m(t`,m))ds+

+

n∑
k=1

∫ t

t`,m

σik(s, ym(t`,m))dwk(s) +

+

∫
Rm∗ ×]t`,m,t]

γi(ζ, s, y
m(t`,m))ν̃(dζ,ds),

(5.82)

for every t`,m < t ≤ t`+1,m, k = 0, 1, . . . , where t`,m := t0 + `/m. Based on the
left-continuous processes

pm(t) :=

{
ym(τm(t))− ym(t) if t0 < t,

0 otherwise,

where τm(t) = t`,m for t`,m < t ≤ t`+1,m, it can be proved that for every ε > 0
there exists a M = M(ε) such that

P
{

sup
t0≤t≤1/ε

|ym(t)− x(t)| > ε
}
≤ ε, ∀m ≥M,

i.e., ym → x locally uniformly in probability, under a local monotonicity condi-
tion, i.e. a local version of the condition (5.50), and a growth condition of the
form (5.8), i.e. for any T > t0 there exists a constant M such that

x g(t, x, ω) + |σ(t, x, ω)|2 +

∫
Rm∗
|γ(ζ, t, x, ω)|2π(dζ) ≤M |x|2,

for every t in [t0, T ], x in Rd and any ω.
An important point here is the fact that the above convergence of the Euler’s

method holds under weaker assumptions, in particular a polynomial growth may
be allowed for the coefficients and still existence and uniqueness results can be
deduced. An interesting case is a system of the form x = (x1, x2), g = (g1, g2),
and so on, with g1 = g1(t, x1) but g2 = g2(t, x1, x2), which may be solved first
in x1 and then in x2, allowing a polynomial growth of all coefficients g2, σ2, γ2

in the variable x1.
We cite the monograph by Cerrai [36, Chapter 1, pp. 21-64] where a self-

contained treatment of the stochastic equations with coefficients with polyno-
mial growth of the Itô type are considered. Actually, the expressions (5.44)
and (5.49) defining the constants α(p, λ) and β(p) can be combined so that the
growth (in the space variable x) of the drift coefficient g compensates the growth
of the diffusion and jump coefficients σ and γ in such a way that both constants,
α(p, λ) and β(p), are finite. These conditions are of the form: for every T > t0,
ε > 0 there exists M(ε, T ) such that

εξ · ∇g(t, x, ω)ξ + |∇σ(t, x, ω)ξ|2 +

+

∫
Rm∗
|∇γ(ζ, t, x, ω)ξ|2π(dζ) ≤M(ε, T )|ξ|2,
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for every t in [t0, T ], x, ξ in Rd and ω. Here ∇ means either the vector or the
matrix of all first order derivatives in x. Clearly, because of the time-dependence,
we need also to add a condition like

|g(t, 0, ω)|+ |σ(t, 0, ω)|+
∫
Rm∗
|γ(ζ, t, 0, ω)|2π(dζ) ≤ CT ,

for every t in [t0, T ] and any ω. Finally, we need also to make some assumption
to handle the large jumps, that is a variation of (5.51) combined with the above
conditions. Essentially, this means that if the larger growth of g is of the form
−cx2m+1, c > 0 then σ and γ may have a growth up to xm.

• Remark 5.17. It is clear that we can consider changing the coefficients and
keeping them bounded, i.e., under assumption (5.76). Following the steps in
Proposition 5.13, we can obtain bounds in term of exponential weighted norms
of the type

sup
x

{
|h(t, x, v)− h′(t, x, v)| exp

(
β
√

1 + |x|2
)}

sup
x

{
|h(t, x, v)− h(t, x, v′)| exp

(
β
√

1 + |x|2
)}

similar to the estimates (5.63), (5.64), (5.74) and (5.75), e.g.,

E
{

sup
t0≤s≤t

|y(s)− y′(s)|p e−α(s−t0)
}
≤

≤MΛpβ,p(g − g
′, σ − σ′, γ − γ′)E

{
exp

(
pβ
√

1 + |y(t0)|2
)}
,

where Λβ,p is suitable defined in term of exponential weighted norms.

Second-Order Bounds

Most of this section can be rewritten using the differentiability property, but we
prefer to use semi-concave arguments. Some preliminaries are necessary.

A function h from Rd into Rn is called semi-concave if for every ball B(0, r),
r > 0 there exists a constant C = Cr > 0 such that the function x 7→ h(x) −
Cr|x|2 is concave on B(0, r), i.e., for every x, y in Rd, |x| < r, |y| < r, we have

θh(x) + (1− θ)h(y)− h
(
θx+ (1− θ)y

)
≤ Crθ(1− θ)|x− y|2, (5.83)

for any θ in [0, 1]. If h is continuous, this is equivalent to the condition

h(x+ z)− 2h(x) + h(x− z) ≤ Cr|z|2

for all z sufficiently small. As expected, it is clear that any concave function is
indeed semi-concave. Based on expression

θh(x) + (1− θ)h(y)− h
(
θx+ (1− θ)y

)
=

= θ(1− θ)(x− y) ·
∫ 1

0

[
∇h
(
y + tθ(y − x)

)
−∇h

(
x+ t(1− θ)(x− y)

)]
dt,
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we see that any continuously differentiable function with a locally Lipschitz
derivative is indeed semi-concave. Perhaps a more relevant class of non-differen-
tiable semi-concave functions with values in [−∞,∞) follows from the fact that
the infimum of uniformly semi-concave functions is indeed semi-concave. Many
more properties on semi-concave function are

well known, for instance see Bardi and Capuzzo-Dolcetta [9, Section II.4.2,
pp. 65–76], Da Prato and Zabczyk [53, Appendix C.1].

Our interest is on functions such that h and −h are semi-concave3, i.e., for
every r > 0 there exists a constant Cr > 0 such that for every x, y in Rd, |x| < r,
|y| < r, we have∣∣θh(x) + (1− θ)h(y)− h

(
θx+ (1− θ)y

)∣∣ ≤ Crθ(1− θ)|x− y|2, (5.84)

for any θ in [0, 1]. It is clear that any continuously differentiable function h with
a locally Lipschitz derivative satisfies (5.84), moreover, the converse is also true.

Let x(t), y(t) and z(t) be three solutions of the d-dimensional stochastic
ordinary differential equation (5.5). We want to estimate{

ψθ(x, y, z) := θ2(1− θ)2|x− y|4 + |θx+ (1− θ)y − z|2,

ψλ,θ,p(x, y, z) :=
(
λ+ ψθ(x, y, z)

)p/2
,

(5.85)

for any θ in [0, 1], p ≥ 2, and let λ > 0 vanish. Thus, if h denotes any of the
coefficients g, σ or γ then the Itô process θx(t)+(1−θ)y(t)−z(t) has coefficients
of the form θh(x(t)) + (1− θ)h(y(t))− h(z(t)), which can be estimated in term
of [

θh(x(t)) + (1− θ)h(y(t))− h
(
θx(t) + (1− θ)y(t)

)]
and [

h
(
θx(t) + (1− θ)y(t)

)
− h(z(t))

]
.

By means of the Lipschitz constant, the second difference is bounded by |θx(t)+
(1− θ)y(t)− z(t)| while the first difference can be controlled by θ(1− θ)|x(t)−
y(t)|2, if the first derivative h′ = (∂ih : i = 1, . . . , d) is Lipschitz continuous.

Hence, assume that the coefficients have linear growth and their first deriva-
tives are bounded and Lipschitz continuous, i.e., for some p ≥ 2 there exists a
positive constant C = Cp such that |g(t, x, v)|p + |σ(t, x, v)|p +

∫
Rm∗
|γ(ζ, t, x, v)|pπ(dζ) ≤

≤ C(1 + |x|p),
(5.86)

and

|g′(t, x, v)|p + |σ′(t, x, v)|p +

∫
Rm∗
|γ′(ζ, t, x, v)|pπ(dζ) ≤ C, (5.87)

3if −h is semi-concave then h is called semi-convex.
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for every (t, x, v) in [0,∞)× Rd × Rq, and a constant M > 0 such that
|g′(t, x, v)− g′(t, x′, v)|p + |σ′(t, x, v)− σ′(t, x′, v)|p +

+

∫
Rm∗
|γ′(ζ, t, x, v)− γ′(ζ, t, x′, v)|pπ(dζ) ≤M |x− x′|p,

(5.88)

for every (t, x, v), (t, x′, v) in [0,∞)× Rd × Rq.
Similarly to (5.49), we define

κ(p) := sup
λ>0

{
p κg(λ) + (p/2)κσ(p, λ) + κγ(p, λ)

}
, (5.89)

where the expressions of κg(λ), κσ(p, λ) and κγ(p, λ) are found by Itô formula,
e.g.,

κg(λ) := sup
{ 2|x− y|3(x− y) [g(t, x, v)− g(t, y, v)]

λ+ θ2(1− θ)2|x− y|4 + |θx+ (1− θ)y − z|2
+

+
(θx+ (1− θ)y − z) [θg(t, x, v) + (1− θ)g(t, y, v)− g(t, z, v)]

λ+ θ2(1− θ)2|x− y|4 + |θx+ (1− θ)y − z|2
}
,

and the suprema are taken for any t in [0,∞), x, y, z in Rd, v in Rq and θ
in [0, 1]. This means that under the assumptions (5.86), (5.87) and (5.88) the
sumpremum κ(p) is finite and satisfies a(t) ≤ κ(p)ψλ,θ,p(x(t), y(t), z(t)), where

dψλ,θ,p(x(t), y(t), z(t)) = a(t)dt+

n∑
k=1

bk(t)dwk(t) +

∫
Rm∗

c(ζ, t)ν̃(dζ,dt),

for every t ≥ 0. Moreover, we also have
n∑
k=1

|bk(t)|2 +

∫
Rm∗
|c(ζ, t)|2π(dζ) ≤ Cp|ψλ,θ,p(x(t), y(t), z(t))|2,

for every t ≥ 0 and some constant Cp. Note that we have κ(p) ≥ β(p).
As in Theorem 5.11 we can prove

Proposition 5.18. Let x(t), y(t) and z(t) be three solutions of the d-dimensional
stochastic ordinary differential equation (5.5) for t ≥ t0. If α ≥ κ(p), p ≥ 2, as
defined by (5.89), then for ψλ,θ,p(x, y, z) given by (5.85) and under assumptions
(5.86), (5.87) and (5.88) we have

E
{

[α− κ(p)]

∫ t

t0

[
ψθ(x(s), y(s), z(s))

]p/2
e−α(s−t0)ds+

+
[
ψθ(x(t), y(t), z(t))

]p/2
e−α(t−t0)

}
≤

≤ E
{[
ψθ(x(t0), y(t0), z(t0))

]p/2}
,

(5.90)

for every t ≥ t0. Moreover, there exists a positive constant C, depending only on
p and the bounds of σ and γ through conditions (5.86), (5.87) and (5.88), such
that 

E
{

sup
t0≤s≤t

[
ψθ(x(s), y(s), z(s))

]p/2
e−α(s−t0)

}
≤

≤ C
[
1 +

1

α− κ(p)

]
E
{[
ψθ(x(t0), y(t0), z(t0))

]p/2}
.

(5.91)
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for every t ≥ t0.

Clearly, we apply the above estimate as follows. Denote by y(t, x) the so-
lution of the d-dimensional stochastic ordinary differential equation (5.5) with
the initial condition y(t0, x) = x. Then we have

E
{

[α− κ(p)]

∫ t

t0

∣∣θy(s, x) + (1− θ)y(s, x′)−

−y(s, θx+ (1− θ)x′)
∣∣p e−α(s−t0)ds+

∣∣θy(t, x) +

+(1− θ)y(t, x′)− y(t, θx+ (1− θ)x′)
∣∣p e−α(t−t0)

}
≤

≤
[
θ(1− θ)|x− x′|2)

]p
,

(5.92)

and 
E
{

sup
t0≤s≤t

∣∣θy(t, x) + (1− θ)y(t, x′)−

−y(t, θx+ (1− θ)x′)
∣∣p e−α(s−t0)

}
≤

≤ C
[
1 +

1

α− κ(p)

] [
θ(1− θ)|x− x′|2)

]p
,

(5.93)

for every t ≥ t0. These estimates are used to show that an expression of the
form

x 7→ inf
v(·)

E
{∫ ∞

0

f(y(t, x), v(t))e−αtdt
}

is semi-concave if the function x 7→ f(x, v) is Lipschitz continuous and semi-
concave (uniformly with respect to v), provided α > κ(2).

5.1.5 Linear Equations

For the sake of notation simplicity, the initial time t0 is taken to be 0 and the
initial valued x0 is assume deterministic. In general, t0 could be a stopping
time and x0 an F(t0)-measurable random variable with as many finite moments
as needed. Moreover, we drop the control parameter process (v(t) : t ≥ 0),
understanding that it can be incorporated if necessary.

The particular case where the coefficients g(t, x, v), σ(t, x, v) and γ(ζ, t, x, v)
are linear (or affine) in the variable x is of special interest. The d-dimensional
stochastic ordinary differential equation (5.5) takes the general form

dx(s) =
[
A(s)x(s) + a(s)

]
ds+

+

n∑
k=1

[
Bk(s)x(s) + bk(s)

]
dwk(s) +

+

∫
Rm∗

[
C(ζ, s)x(s) + c(ζ, s)

]
ν̃(dζ,ds), ∀s ≥ 0,

(5.94)
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where A(s), Bk(s) and C(ζ, s) are d×d-matrix-valued functions, and a(s), bk(s)
and c(ζ, s) are d-valued adapted processes4 such that for each T > 0 and p ≥ 2
there exist K = K(T, p) > 0 satisfying

|A(t)|+ |Bk(t)|+
∫
Rm∗
|C(ζ, t)|pπ(dζ) ≤ K, ∀t ∈ [0, T ], (5.95)

and 
E
{[∫ T

0

|a(s)|ds
]p

+

n∑
k=1

[ ∫ T

0

|bk(s)|2ds
]p/2

+

+
[ ∫ T

0

ds

∫
Rm∗

|c(ζ, s)|2ds
]p/2}

≤ K.
(5.96)

It is clear that we have a unique solution of (5.94) with a given initial condition.
Moreover, the a priori bounds on the moments established in Theorem 5.11 hold
true.

In the homogeneous case, i.e., a = bk = c = 0, the solution x(t; s, ξ) depends
linearly on the initial datum ξ; writing x(t; s, ξ) = U(t, s)ξ we have that

U(t, s) = 1 +

∫ t

s

A(r)U(r, s)dr +

n∑
k=1

∫ t

s

Bk(s)U(r, s)dwk(r)+

+

∫
Rm∗ ×]s,t]

C(ζ, r)U(r, s)ν̃(dζ,dr), ∀t ≥ s,
(5.97)

where 1 is the identity matrix and the solution (U(t, s) : t ≥ s) is a matrix-
valued process, i.e., the column j of the matrix U(t, s) is the solution x(t; s, ξ)
with ξ = ej , where the j-component of ej is 1 and zero all others. Its determi-
nant w(t, s) := det(U(t, s)) is usually referred to as the stochastic Wronskian
determinant. It is the solution of the following stochastic differential equation

dw(t, s) =
{

TrA(t)− 1

2

n∑
k=1

[
TrB2

k(t)− (TrBk(t))2
]

+

+

∫
Rm∗

[
det[1 + C(ζ, t)]− 1− TrC(ζ, t)

]
π(dζ)

}
w(t, s)dt+

+

n∑
k=1

Tr[Bk(t)]w(t, s) dwk(t) +

+

∫
Rm∗

(
det[1 + C(ζ, t)]− 1

)
w(t, s)ν̃(dζ,dt),

which is known as the stochastic Liouville formula. It is easy to check that for
any matrix C we have∣∣det(1 + C)− 1

∣∣ ≤ (1 + |C|)d − 1 ≤ d |C|
(
1 + |C|

)d−1∣∣det(1 + C)− 1− Tr(C)
∣∣ ≤ (1 + |C|)d − 1− d |C| ≤

≤ d(d− 1)

2
|C|2(1 + |C|)d−2,

4just adapted is enough, but the predictable projection have to be used anyway.
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where d is the dimension and |A| denotes the operator norm |A| = sup|x|≤1 |Ax|,
so that the integral in π(dz) is convergent.

For the proof we have only to apply the Itô formula, recalling that for the
determinant function det we have(

D det(X)
)
(Y ) = lim

t→0

det(X + tY )− det(X)

t
=

=

d∑
h=1

(−1)i+h det(Xih) yih = det(X) Tr(X−1Y ),

(
D2 det(X)

)
(Y,Z) = lim

t→0

(
D det(X + tZ)

)
(Y )−

(
D det(X)

)
(Y )

t
=

=
∑
i<j

∑
h<k

(−1)i+j+h+k det(Xih,jk) (yihzjk − yikzjh) =

= det(X) Tr(X−1Y ) Tr(X−1Z)− det(X) Tr(X−2Y Z),

where the d − 1 dimensional matrix Xih is the matrix X without the i-th row
and the h-th column, and the d− 2 dimensional matrix Xih,jk is the matrix X
without the i-th and j-th rows and the h-th and k-th columns. Clearly, the last
equalities holds only when det(X) 6= 0.

The explicit solution is given by

w(t, s) = exp
(∫ t

s

{
Tr
[
A(r)− 1

2

n∑
k=1

B2
k(r)

]
+

+

∫
Rm∗

[
ln det[1 + C(ζ, t)]− TrC(ζ, r)

]
π(dζ)

}
dr +

+

n∑
k=1

∫ t

s

Tr[Bk(r)]dwk(r) +

∫
Rm∗

ln det[1 + C(ζ, t)] ν̃(dζ,dr)
)
,

provided that foe any T > 0 there exist a = aT > such that

det[1 + C(ζ, t)] ≥ aT , ∀(ζ, t) ∈ Rm∗ × [0, T ]. (5.98)

For instance, we refer to Mao [165, Chapter 3, pp. 91–106], for the case without
jumps.

This explicit expression of the stochastic Wronskian process w(t, s) proves
that the matrix-valued solution process U(t, s) is invertible. Moreover

Lemma 5.19. Under the assumptions (5.95), (5.96) and (5.98) the evolution
matrix-operator U(t, s) is invertible and its inverse V (t, s) = U−1(t, s) is the
solution to the following linear stochastic differential equation

V (t, s) = 1−
∫ t

s

V (r, s)Ã(r)dr −
n∑
k=1

∫ t

s

V (r, s)Bk(r)dwk(r) +

−
∫
Rm∗ ×]s,t]

V (r, s)C(ζ, r)
(
1 + C(ζ, r)

)−1
ν̃(dζ,dr),

where

Ã(t) := A(t)−
∑
k

B2
k(t)−

∫
Rm∗

C2(ζ, t)
(
1 + C(ζ, t)

)−1
π(dζ),
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for every t ≥ 0.

Proof. Use following version of Itô formula: if we consider the matrix-valued Itô
processes

dX(t) = α(t)dt+
∑
k

βk(t)dwk(t) +

∫
Rn∗
γ(ζ, t)ν̃(dζ,dt),

dX̄(t) = ᾱ(t)dt+
∑
k

β̄k(t)dwk(t) +

∫
Rn∗
γ̄(ζ, t)ν̃(dζ,dt),

then the Itô formula yields

d
(
X̄(t)X(t)

)
=
(
dX̄(t)

)
X(t) + X̄(t)

(
dX(t)

)
+
(
dX̄(t)

)(
dX(t)

)
,

where(
dX̄(t)

)(
dX(t)

)
= d〈X̄(t)X(t)〉+

∫
Rn∗
γ̄(ζ, t)γ(ζ, t)ν̃(dζ,dt),

and

d〈X̄(t)X(t)〉 =
[∑

k

β̄k(t)βk(t) +

∫
Rn∗
γ̄(ζ, t)γ(ζ, t)π(dζ)

]
dt,

so that

d
(
X̄(t)X(t)

)
=
[
ᾱ(t)X(t) + X̄(t)α(t) +

∑
k

β̄k(t)βk(t) +

+

∫
Rn∗
γ̄(ζ, t)γ(ζ, t)π(dζ)

]
dt+

∑
k

[
β̄k(t)X(t) + X̄(t)βk(t)

]
dwk(t) +

+

∫
Rn∗

[
γ̄(ζ, t)X(t) + X̄(t)γ(ζ, t) + γ̄(ζ, t)γ(ζ, t)

]
ν̃(dζ,dt),

and in particular, if α, ᾱ, β, β̄, γ, γ̄ are replaced by αX, X̄ᾱ, etc, we deduce

d
(
X̄(t)X(t)

)
= X̄(t)P (t)X(t)dt+

∑
k

X̄(t)Qk(t)X(t)dwk(t) +

+

∫
Rn∗
X̄(t)R(ζ, t)X(t)ν̃(dζ,dt).

with

P (t) = α(t) + ᾱ(t) +
∑
k

β̄k(t)βk(t) +

∫
Rn∗
γ̄(ζ, t)γ(ζ, t)π(dζ),

Q(t) =
∑
k

[
β̄k(t) + βk(t)

]
, R(ζ, t) = γ̄(z, t) + γ(ζ, t) + γ̄(ζ, t)γ(ζ, t).

Hence, if we choose

ᾱ(t) = −α(t)−
∑
k

β2
k(t)−

∫
Rm∗

γ(ζ, t)
(
1 + γ(ζ, t)

)−1
π(ζ),

β̄k = −βk, γ̄ = −γ(1 + γ)−1,
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then all coefficients P , Q, R vanish, X̄(t)X(t) is constant. Finally, apply this
argument to X(t) = U(t, s) and X̄(t) = V (t, s) to deduce that

V (t, s)U(t, s) = V (s, s)U(s, s) = 1

as desired.

Now, essentially as in the case of ordinary differential equations, the homo-
geneous equation (5.97) provides the fundamental matrix solution, which yields
also a representation for the solution of the non-homogeneous equation (5.94),
i.e., a stochastic version of the variation-of-constants formula

Theorem 5.20. Under the conditions (5.95), (5.96) and (5.98), the funda-
mental solution matrix (Φ(t) = U(t, 0) : t ≥ 0) satisfies U(t, s) = Φ(t)Φ−1(s),
and

x(t) := Φ(t)ξ + Φ(t)

∫ t

0

Φ−1(s)
[
a(s)−

n∑
k=1

Bk(s)bk(s)−

−
∫
Rm∗

C(ζ, s)
(
1 + C(ζ, s)

)−1
c(ζ, s)π(dζ)

]
ds+

+

n∑
k=1

Φ(t)

∫ t

0

Φ−1(s)bk(s)dwk(s) +

+ Φ(t)

∫
Rm∗ ×]0,t]

Φ−1(s)
(
1 + C(ζ, s)

)−1
c(ζ, s)ν̃(dζ,ds)

is the solution of the linear d-dimensional stochastic ordinary differential equa-
tion (5.94) with the initial condition x(0) = ξ.

Proof. The uniqueness of the stochastic ordinary differential equation (5.94)
implies the semi-group property for the composition evolution matrix-operator,
i.e., the identity U(t, s)U(s, r) = U(t, r), for any t ≥ s ≥ r ≥ 0, and in particular
U(t, 0) = U(t, s)U(s, 0). On the other hand, in view of the previous Lemma 5.19,
U(s, 0) is invertible. Thus define Φ(t) = U(t, 0) to see that Φ(t) = U(t, s)Φ(s),
i.e., U(t, s) = Φ(t)Φ−1(s), which complete the first part of the proof.

Next, define y(t) = Φ−1(t)x(t) and apply Itô formula to get

y(t) := ξ +

∫ t

0

Φ−1(s)
[
a(s)−

n∑
k=1

Bk(s)bk(s)−

−
∫
Rm∗

C(ζ, s)
(
1 + C(ζ, s)

)−1
c(ζ, s)π(dζ)

]
ds+

+

n∑
k=1

∫ t

0

Φ−1(s)bk(s)dwk(s) +

+

∫
Rm∗ ×]0,t]

Φ−1(s)
(
1 + C(ζ, s)

)−1
c(ζ, s)ν̃(dζ,dt)

and from x(t) = Φ(t)y(t) we conclude.
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• Remark 5.21. It should be clear that (5.95) is only used for p = 2 and p = d
to make sense for the stochastic Wronskian. Also, the condition (5.98) is a
simplification of the assumption

det[1 + C(ζ, t)] > 0 and

∫
Rm∗
|C(ζ, t)|2

∣∣[1 + C(ζ, t)]−1
∣∣π(dζ) ≤ CT ,

for every t in [0, T ], any T > 0. Note that the singularity is as det[1+C(ζ, t)]→
0, which is not as C(ζ, t)→ 0.

In some particular case there exist explicit representations of the solution.
The simplest case is when all the matrices commute with each other, i.e.,

A(t)A(s) = A(s)A(t), Bk(t)B`(s) = B`(s)Bk(t),

C(ζ, t)C(ζ, s) = C(ζ, s)C(ζ, t),

A(t)Bk(s) = Bk(s)A(t), A(t)C(ζ, s) = C(ζ, s)A(t),

Bk(t)C(ζ, s) = C(ζ, s)Bk(t), ∀k, `, ζ, t, s,

then the fundamental solution Φ(t) can be expressed as an exponential semi-
martingale, namely,

Φ(t) = exp
[ ∫ t

0

(
A(r)− 1

2

∑
k

B2
k(r) +

+

∫
Rm∗

[ln(1 + C(ζ, r))− C(ζ, r)]π(dζ)
)

dr +

+
∑
k

∫ t

0

Bk(r)dwk(r) +

∫
Rm∗ ×]0,t]

ln(1 + C(ζ, r)) ν̃(dζ,dr)
]
,

for every t ≥ 0. This follows immediately from Itô formula applied to the expo-
nential function.

Some Deterministic Coefficients

In the case where the coefficients a, bk and c are deterministic, the formula of
Theorem 5.20 simplifies to

x(t) := U(t, 0)ξ +

∫ t

0

U(t, s)a(s) ds+

n∑
k=1

∫ t

0

U(t, s)bk(s) d̂wk(s) +

+

∫
Rm∗ ×]0,t]

U(t, s) c(ζ, s) ν̃(dζ, d̂s)

where the stochastic integration is in the backward sense. In fact we have
the following relations between the standard stochastic Itô integrals and the
backward Itô integrals:∫ t

0

U(t, s)bk(s) d̂wk(s) = Φ(t)

∫ t

0

Φ−1(s)bk(s) dwk(s)−

−
∫ t

0

U(t, s)Bk(s) bk(s) ds
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and ∫
Rm∗ ×]0,t]

U(t, s) c(ζ, s) ν̃(dζ, d̂s) =

= Φ(t)

∫
Rm∗ ×]0,t]

Φ−1(s)
(
1 + C(ζ, s)

)−1
c(ζ, s)ν̃(dζ,ds)−

−
∫ t

0

∫
Rm∗

U(t, s)C(ζ, s)
(
1 + C(ζ, s)

)−1
c(ζ, s)π(dζ)ds.

Mean and covariance matrix

On the other hand, if (x(t) : t ≥ 0) is a solution of the linear d-dimensional
stochastic ordinary differential equation (5.94) then its first moment or mean
value m(t) := E{x(t)} satisfies the ordinary differential equation

ṁ(t) = A(t)m(t) + a(t), ∀t ≥ 0. (5.99)

The variance matrix R(t) := E{[x(t) − m(t)][x(t) − m(t)]∗}, i.e., by compo-
nents rij(t) := E{[xi(t)−mi(t)][xj(t)−mj(t)]}, solve the following d(d+ 1)/2-
dimensional (since R(t) is a symmetric non-negative definite matrix) ordinary
differential equation

Ṙ(t) = A(t)R(t) +R(t)A∗(t) +

+
∑
k

[Bk(t)R(t)B∗k(t) + b̃k(t)b̃k(t)∗] +

+

∫
Rm∗

[C(ζ, t)R(t)C∗(ζ, t) + c̃(ζ, t)c̃∗(ζ, t)]π(dζ),

(5.100)

for every t ≥ 0, where

b̃k(t) := [Bk(t)m(t) + bk(t)]

c̃(ζ, t) := [C(ζ, t)m(t) + c(ζ, t)].

Indeed, set y(t) := x(t)−m(t) to have

dy(t) = A(t)y +
∑
k

[Bk(t)y(t) + b̃k(t)]dwk(t) +

+

∫
Rm∗

[C(ζ, t)y(t) + c̃(ζ, t)]ν̃(dζ,dt).

and applying the previous Itô formula for products we easily get (5.100). In this
way, once the mean m(t) have been computed, we can compute the variance
matrix R(t).

Actually, we may want to compute the covariance matrix, namely, R(t, s) :=
E{[x(t)−m(t)][x(s)−m(s)]∗}, which can be expressed in terms of the preceding
variance matrix R(t) and the evolution operator A(t, s) solution to

Ȧ(t, s) = A(t)A(t, s), A(s, s) = 1,

as R(t, s) = A(t, s)R(s) if s < t and R(t, s) = R(t)A∗(s, t) if s > t.
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Gaussian case

If Bk(t) = 0, C(ζ, t) = 0, c(ζ, t) = 0 and the initial condition x0 is normal
distributed then the solution of the linear d-dimensional stochastic ordinary
differential equation (5.94), with the initial condition x(0) = ξ, is a Gaussian
process. Notice that in this case the equation (5.97) simplifies and Φ(t) =
A(t, 0) is the (deterministic) fundamental matrix solution of ordinary differential
equation Φ̇(t) = A(t)Φ(t), Φ(0) = 1, x(t) takes the form

x(t) = Φ(t)
[
x0 +

∫ t

0

Φ−1(s)a(s)ds+

n∑
k=1

∫ t

0

Φ−1(s)bk(s)dwk(s)
]
,

This yields the following expressions for the mean m(t) function

m(t) = Φ(t)
[
E{x0}+

∫ t

0

Φ−1(s)a(s)ds
]
,

and the covariance R(t, s) function

R(t, s) = Φ(t)
[
Var{x0}+

n∑
k=1

∫ t∧s

0

Φ−1(r)bk(r)[Φ−1(r)bk(r)]∗dr
]
Φ∗(s),

which completely determined the Gaussian process.
The particular case of the so-called Ornstein-Uhlenbeck process

dx(t) = −Ax(t) +
∑
k

bkdwk(t)

yields Φ(t) = exp(−tA) and so the above formula for the mean m(t) and co-
variance R(t, s) functions are simple. For instance, the reader is referred to
Arnold [7, Sections 8.2–8.5, pp. 128–144].

All Random Coefficients

Consider the case where the coefficients A(s, ω), Bk(s, ω), C(ζ, s, ω), a(s, ω),
bk(s, ω) and c(ζ, s, ω) are all predictable processes satisfying (almost surely)

sup
0≤s≤t

{
|A(s)|+

n∑
k=1

|Bk(s)|2 +

∫
Rm∗

|C(ζ, s)|2π(dζ)
}
<∞, (5.101)

and ∫ t

0

|a(s)|ds+

n∑
k=1

∫ t

0

|bk(s)|2ds+

∫ t

0

ds

∫
Rm∗

|c(ζ, s)|2π(dζ) <∞, (5.102)
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for every t > 0. Thus, for each r ≥ 0, define the stopping time

τr = inf
{
s ≥ 0 : |A(s)| ≥ r, or

n∑
k=1

|Bk(s)|2 ≥ r2 or∫
Rm∗

|C(ζ, s)|2π(dζ) ≥ r2 or

∫ T

0

|a(s)|ds ≥ r or

n∑
k=1

∫ T

0

|bk(s)|2ds ≥ r2 or

∫ T

0

ds

∫
Rm∗

|c(ζ, s)|2π(dζ) ≥ r2
}

to get τr →∞ as r →∞.
Let us revise the existence and uniqueness proof. Indeed, with the notation

of Theorem 5.3 consider the (now) affine operator T (x)(t) defined as the integral
of the right-hand side in the stochastic differential equation (5.94), for processes
x(·) in the Banach space Yr with the sup-norm

‖y‖r := E
{

sup
t0≤t≤t1∧τr

e−2α(t−t0)|y(t)|2
}
.

Note that in this case g(t, x, ω) = A(t, ω)x + a(t, ω), σk(t, x, ω) = Bk(t, ω)x +
bk(t, ω) and γ(ζ, t, x) = C(ζ, t, ω)x+ c(ζ, t, ω). Thus ‖T (x)−T (y)‖r is bounded
by three pieces, namely, I1 involving g, I2 involving σ and I3 involving γ, i.e.,

‖T (x)− T (y)‖r ≤ I1 + I2 + I3.

Thus

I1 = E
{

sup
t0≤t≤t1∧τr

e−2α(t−t0)
∣∣∣ ∫ t

t0

g(s, x(s))− g(s, y(s))ds
∣∣∣2} ≤

≤ E
{

sup
t0≤t≤t1∧τr

[
e−2α(s−t0)|x(s)− y(s)|2

][ ∫ t

t0

e−α(t−s)|A(s)|ds
]2}
≤

≤ r2

α2
E
{

sup
t0≤t≤t1∧τr

e−2α(s−t0)|x(s)− y(s)|2
}
,

while

I2 ≤ 4E
{

sup
t0≤t≤t1∧τr

∫ t

t0

e−2α(t−t0)|σ(s, x(s))− σ(s, y(s))|2ds
}
≤

≤ 4E
{

sup
t0≤t≤t1∧τr

[
e−2α(s−t0)|x(s)− y(s)|2

] ∫ t

t0

e−2α(t−s)|B(s)|2ds
}

and similarly with I3, so

I2 + I3 ≤
4r2

α
E
{

sup
t0≤t≤t1∧τr

e−2α(s−t0)|x(s)− y(s)|2
}
,

i.e.,

‖T (x)− T (y)‖r ≤ c(r, α)‖x− y‖r,

with c(r, α) vanishes as α goes to ∞, for any fixed r > 0. Hence, the operator T
is a contraction on Yr for some α sufficiently large. Then, under the conditions
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(5.101) and (5.102) the stochastic differential equation (5.94) has one and only
one solution xr, up to the stopping time τr, which is given by the expression
in Theorem 5.20 in term of the fundamental matrix as in (5.97). Finally, since
xr(t) = xp(t) for any t0 ≤ t ≤ t1 ∧ τr if r ≤ p, we conclude as r →∞.

5.1.6 Differentiability

Now we consider the (strong) solution of the d-dimensional stochastic ordinary
differential equation (5.3) as function of the initial data x0 given at t = t0. Recall
that the initial time t0 may be considered as part of the initial state x0, by
doing a translation in time and by adding one more dimension to the equation.
However, the solution x(t) = x(t, x0, t0) of the SDE (5.3) cannot be differentiable
with respect to t0, because this involves the paths of the martingale. Hence, for
simplicity, we take t0 = 0 and the solution is denoted by y(t) = y(t, x), with the
initial condition x0 = x, i.e., we have

yi(t) = xi +

∫ t

0

gi(s, y(s), v(s))ds+

+

n∑
k=1

∫ t

0

σik(s, y(s), v(s))dwk(s) +

+

∫
Rm∗ ×]0,t]

γi(ζ, s, y(s), v(s))ν̃(dζ,ds), ∀ t ≥ 0,

(5.103)

where the parameter x = (x1, . . . , xd) belongs to Rd. Our interest is differentia-
bility of the solution process y(t, x) with respect to the initial data y(0, x) = x.

Assume the linear growth condition: for some p ≥ 2 there exists a positive
constant C = Cp such that |g(t, x, v)|p + |σ(t, x, v)|p +

∫
Rm∗
|γ(ζ, t, x, v)|pπ(dζ) ≤

≤ C(1 + |x|p),
(5.104)

for every (t, x, v) in [0,∞)×Rd ×Rq. This is equivalent to conditions (5.6) and
(5.45). Then, if the strong solution is unique (e.g., adding a locally Lipschitz
condition in x, see Theorem 5.3) then for every fixed t > 0, the mapping x 7→
y(t, x) can be regarded as a function form Rd into the p-integrable random
variables. Thus, differentiability in x is understood in the Lp-sense, i.e., a
vector-valued process y′i(t, x) = (∂jyi(t, x) : j = 1, . . . , d) is the derivative of
real-valued process x 7→ yi(t, x) if

lim
|ξ|→0

E
{∣∣yi(t, x+ ξ)− yi(t, x)− ξ · y′i(t, x)

∣∣p
|ξ|p

}
= 0,

for every t > 0 and i = 1, . . . , d. Note that ξ · y′i(t, x) =
∑
j ξj ∂jyi(t, x).

Assume that the coefficients gi(t, x, v), σik(t, x, v) and γi(ζ, t, x, v) are con-
tinuously differentiable in the variable x, and for some constant C > 0 satisfy
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(recall p ≥ 2)

|g′i(t, x, v)|p + |σ′ik(t, x, v)|p +

∫
Rm∗
|γ′i(ζ, t, x, v)|pπ(dζ) ≤ C, (5.105)

for every (t, x, v) in [0,∞)× Rd × Rq, any i and k, where

g′i(t, x, v) := (∂jgi(t, x, v) : j = 1, . . . , d),

σ′ik(t, x, v) := (∂jσik(t, x, v) : j = 1, . . . , d),

γ′i(ζ, t, x, v) := (∂jγi(ζ, t, x, v) : j = 1, . . . , d),

are the gradient in x. Now, consider the following linear stochastic differential
equation for the d × d-dimensional (matrix) process ∂jyi(t) = ∂jyi(t, x), i, j =
1, . . . , d,

∂jyi(t) = δij +
∑
`

∫ t

0

∂`gi(s) ∂jy`(s)ds+

+
∑
`,k

∫ t

0

∂`σik(s) ∂jy`(s)dwk(s) +

+
∑
`

∫
Rm∗ ×]0,t]

∂`γi(ζ, s) ∂jy`(s)ν̃(dζ,ds),

(5.106)

for every t ≥ 0, where δij := 1 if i = j and δij := 0 otherwise, and

∂`gi(s) := ∂`gi(s, y(s), v(s)),

∂`σik(s) := ∂`σik(s, y(s), v(s)),

∂`γi(ζ, s) := ∂`γi(ζ, s, y(s), v(s)).

It is clear that (5.106) is a d-dimensional system of d-dimensional (linear)
stochastic ordinary differential equation of the form (5.3), where the existence
and uniqueness Theorem 5.3 can be used. Hence, under the differentiability as-
sumption (5.105) on the coefficients, the derivative process ∂jyi(t) = ∂jyi(t, x),
i, j = 1, . . . , d is uniquely defined as the solution of (5.106) with y(t) = y(t, x).

Proposition 5.22. Let conditions (5.104) and (5.105) be satisfied for some p ≥
2. Then the unique solution of the d×d-dimensional linear stochastic differential
equation ∂jyi(t) = ∂jyi(t, x), i, j = 1, . . . , d, is the derivative in the Lp

′
sense,

for any p′ < p, of the solution y(t, x) of the d-dimensional stochastic ordinary
differential equation (5.103).

Proof. First, calculate the Itô differential as follows

d
[
yi(t, x+ ξ)− yi(t, x)− ξ · y′i(t, x)

]
= ai(t)dt+

+
∑
k

bik(t)dwk(t) +

∫
Rm∗

ci(ζ, t)ν̃(dζ,dt),
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where

ai(t) := gi(t, y(t, x+ ξ), v(t))− gi(t, y(t, x), v(t))−
−
∑
`,j

ξj∂`gi(t, y(t, x), v(t))∂jy`(t, x),

bik(t) := bik(t, y(t, x+ ξ), v(t))− bik(t, y(t, x), v(t))−
−
∑
`,j

ξj∂`bik(t, y(t, x), v(t))∂jy`(t, x),

and

ci(ζ, t) := ci(ζ, t, y(t, x+ ξ), v(t))− ci(ζ, t, y(t, x), v(t))−
−
∑
`,j

ξj∂`ci(ζ, t, y(t, x), v(t))∂jy`(t, x).

Define the modulus of differentiability

ρ(r, t, v) := sup
0<|y−x|≤r

{ρg(x, y, t, v) + ρσ(x, y, t, v) + ργ(x, y, t, v)

|y − x|

}
,

where

ρg(x, y, t, v) := |g(t, y, v)− g(t, x, v)−
∑
j

(yj − xj)∂jg(t, x, v)|,

ρσ(x, y, t, v) := |σ(t, y, v)− σ(t, x, v)−
∑
j

(yj − xj)∂jσ(t, x, v)|,

ργ(x, y, t, v) :=
(∫

Rm∗

[
|γ(ζ, t, y, v)− γ(ζ, t, x, v)−

−
∑
j

(yj − xj)∂jγ(ζ, t, x, v)|p
]
π(dζ)

)1/p

.

In view of the assumption (5.105), there is a constant C > 0 such that

|ai(t)|p + |bik(t)|p +

∫
Rm∗
|ci(ζ, t)|pπ(dζ) ≤

≤ C
[
|y(t, x+ ξ)− y(t, x)|p

(
ρ(|y(t, x+ ξ)− y(t, x)|, t, v(t))

)p
+

+|y(t, x+ ξ)− y(t, x)− ξ · y′(t, x)|p
]
.

Hence, an application of Itô formula or Gronwall inequalities yields the estimate

E
{
|y(t, x+ ξ)− y(t, x)− ξ · y′(t, x)|p

}
≤

≤ CTE
{∫ T

0

|y(s, x+ ξ)− y(s, x)|p ×

×
(
ρ(|y(s, x+ ξ)− y(s, x)|, s, v(s))

)p
ds
}
,

for every t in [0, T ]. By means of the a priori estimates in Theorem 5.11 we
conclude.
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Notice that if we assume that the modulus of differentiability ρ(r, t, v) is
uniform in v and locally uniform in t then the differentiability is valid for the
same Lp.

It is clear that we can iterate this result, so that if the coefficients satisfy
the growth condition (5.104) and a uniform global Lipschitz condition in the
variable x, i.e., (5.50) and (5.51), then the solution process y(t, x) is n-times
differentiable in x as long as the coefficients are also n-times differentiable in x
with continuous bounded derivatives.

Now, assume that g′i(t, x, v), σ′ik(t, x, v) and γ′i(ζ, t, x, v) are uniformly (in
t, v) Lipschitz continuous in x, i.e., for some p ≥ 2 and every T > 0 there exists
a constant M > 0 such that

|g′(t, x, v)− g′(t, x′, v)|p + |σ′(t, x, v)− σ′(t, x′, v)|p +

+

∫
Rm∗
|γ′(ζ, t, x, v)− γ′(ζ, t, x′, v)|pπ(dζ) ≤M |x− x′|p,

(5.107)

for every (t, x, v), (t, x′, v) in [t0,∞)× Rd × Rq with t ≤ t0 + T.

Proposition 5.23. Let conditions (5.104), (5.105) and (5.107) be satisfied for
some p ≥ 2 and denote by y(t, x) the solution of the d-dimensional stochastic
ordinary differential equation (5.103). Then for every T > 0 there is a positive
constant C = Cp,T , depending only on bounds in assumptions, such that E

{
sup

t0≤t≤T
|[θy(t, x) + (1− θ)y(t, x′)]− y(t, θx+ (1− θ)x′)|

}
≤

≤ Cp,T θ(1− θ)|x− x′|2p,
(5.108)

for every θ in [0, 1] and x, x′ in Rd.

Proof. Clearly, under the above assumptions, the derivative process y′i(t, x) is
Lipschitz continuous in x, so that the relation

[θyi(t, x) + (1− θ)yi(t, x′)]− yi(t, θx+ (1− θ)x′) = θ(1− θ)×

×(x− x′) ·
∫ 1

0

[
y′i
(
t, x′ + rθ(x− x′)

)
− y′i

(
t, x+ r(1− θ)(x′ − x)

)]
dr,

yields the desired result.

At this point we should notice that the solution y(t, x) of the d-dimensional
stochastic ordinary differential equation (5.103) can be considered as a (con-
trolled) random field, i.e., for each t in [0,∞) we look at the paths x 7→ y(t, x, ω)
with x in Rd and ω in Ω. The previous Proposition 5.22 does ensure that except
for a set of measure zero, the paths are differentiable in x, locally uniformly in
t. This involves a modification, i.e., to choose a suitable version of the random
field y(t, x). Kolmogorov–Chentsov criterium, e.g., see Kunita [143, Section 1.4,
pp. 31–42] or Da Prato and Zabczyk [52, Appendix B, pp. 311–316], affirms
that any random field (Φ(x) : x ∈ Rn), with values in some Banach space with
norm ‖ · ‖, satisfying the following a priori estimate

E{‖Φ(x)− Φ(y)‖α} ≤ C|x− y|n+β , ∀x, y ∈ Rn,
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for some positive constants α, β and C, has obtain a continuous version. This a
priori estimate can be established for the solution and its derivative processes,
under the same assumptions of Proposition 5.22. Hence, there exists a version
of y(t, x, ω) which is continuously differentiable in x for every t in [0,∞) and ω
not in N, with P (N) = 0.

Now, let us assume that the coefficients satisfy (5.104) and they are con-
tinuously differentiable and bounded in the variable x up to the order r ≥ 1,
i.e., for some p > d, for any T > 0 and any multi-index α = (α1, . . . , αd) with
|α| = α1 + · · ·+ αd ≤ r, there exists a constant C = Cα,T,p such that

|Dα
x g(t, x, v)|p + |Dα

xσ(t, x, v)|p +

∫
Rm∗
|Dα

xγ(ζ, t, x, v)|pπ(dζ) ≤ C, (5.109)

for every (t, x, v) in [0, T ]×Rd×Rq. It is not hard to prove the following result

Theorem 5.24. Under the assumptions (5.104) and (5.109) we denote by
y(t, x) the solution of the d-dimensional stochastic ordinary differential equation
(5.103). Then y(t, x) has a modification which is continuously differentiable in
x up to the order r and Taylor development holds in probability, i.e.,

y(t, x) =
∑
|α|≤r

(x− x0)α

α!
Dα
xy(t, x0) +Rr(t, x, x0),

lim
x→x0

sup
0≤t≤T

|Rr(t, x, x0)| |x− x0|−r = 0, ∀t > 0, x, x0 ∈ Rd,

where the limit is in probability.

Similarly, we have a continuity with respect to the small jumps, i.e., for any
ε > 0 we set

πε(B) = π
(
{ζ ∈ B : ε ≤ |ζ| ≤ ε−1}

)
, ∀B ∈ B(Rm∗ ),

and denote by yε(t, x) the solution (5.103) with πε instead of π. We have

Theorem 5.25. Under the assumptions and notation of Theorem 5.24 the solu-
tion yε(t, x) converges in probability to y(t, x) locally uniformly in (t, x) together
with all derivative in x up to the order r, i.e., for any compact subset K of
[0,∞)× Rd and any multi-index α with |α| ≤ r we have

lim
ε→0

sup
(t,x)∈K

|Dα
xy(t, x)−Dα

xyε(t, x)| = 0,

where the limit is in probability.

• Remark 5.26. It is clear that the above result holds true under a much wider
assumptions, namely, if the coefficients g, σ and γ depend on a parameter ε
destined to vanish and satisfy conditions (5.104) and (5.109) uniformly in ε,
then the solution yε(t, x) converges (in probability) to the limiting solution
y(t, x), together with their derivatives in x up to the order r, locally uniformly
in (t, x), provided the same convergence holds for the coefficients.
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5.2 Local and Global Solutions

Let us consider a complete filtered probability space (Ω,F , P,Ft : t ≥ 0), with
a n-dimensional (standard) Wiener process (w(t) : t ≥ 0) and an independent
(standard) Poisson measure (ν(B, ]0, t]) : B ∈ Rm∗ , t ≥ 0) with (intensity) Lévy
measure π(B) := E{ν(B, ]0, t])}/t, satisfying∫

Rm∗

|ζ|2

1 + |ζ|
π(dζ) <∞,

and with martingale measure ν̃(B, ]0, t]) := ν(B, ]0, t])− tπ(B).

5.2.1 Local Existence and Uniqueness

Again we deal with problem (5.3), that we rewrite
x(t) = x0 +

∫ t

t0

g(s, x(s))ds+

∫ t

t0

σ(s, x(s))dw(s) +

+

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s))ν̃(dζ,ds), ∀ t ≥ t0,
(5.110)

but this time the initial time t0 may be a stopping time, the initial value x0

may be a F (t0)-measurable random variable, and the coefficients g, σ and γ are
locally bounded and Lipschitz predictable processes, i.e., for every r > 0 there
exist non-negative predictable processes C(t, r) and M(t, r) such that we have

sup
|x|≤r

[
|g(t, x)|+ |σ(t, x)|2 +

∫
Rm∗
|γ(ζ, t, x)|2π(dζ)

]
≤ C(t, r),

with P
{∫ t0+r

t0

C(t, r)dt <∞
}

= 1,

(5.111)

and such that for every (t, x), (t, x′) in [t0,∞) × Rd with |x| ≤ r and |x′| ≤ r
we have

|g(t, x)− g(t, x′)|2 + |σ(t, x)− σ(t, x′)|2+

+

∫
Rm∗
|γ(ζ, t, x)− γ(ζ, t, x′)|2π(dζ) ≤M(t, r)|x− x′|2,

with P
{

sup
t0≤t≤t0+r

M(t, r) <∞
}

= 1.

(5.112)

In this case we introduce the concept of local solution:

Definition 5.27 (local solution). A process x(·), defined in a right-open stochas-
tic interval Jt0, θJ, is a local solution of the stochastic differential equations if
θ > t0 is a stopping time and the equality (5.110) holds almost surely for any
t in Jt0, θJ. The local solution x(·) is defined in a maximal interval of existence
Jt0, τJ if x(·) cannot be extended further than τ, i.e., for any local solution y(·)
defined on Jt0, θJ, with x(t) = y(t) for any t in Jt0, τ ∧ θJ, we have τ ≥ θ. In this
case, τ = ς is called the lifetime of the solution x(·).
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We may extend the definition of local solution x(·) to a closed stochastic
interval Jt0, θK whenever the equality (5.110) holds almost surely for any t in
the stochastic interval Jt0, θK, or equivalently, if

x(t ∧ θ) = x0 +

∫ t∧θ

t0

g(s, x(s))ds+

∫ t∧θ

t0

σ(s, x(s))dw(s) +

+

∫
Rm∗ ×Kt0,t∧θK

γ(ζ, s, x(s))ν̃(dζ,ds)
(5.113)

holds for any t ≥ t0. Note that if Jt0, τJ is the maximal interval of existence
Jt0, ςJ of x(·) then the left-hand limit x(ς−) is infinite almost surely on the set
where ς <∞, i.e., if x(ς−) is finite then we may re-start the stochastic equation
with initial condition

x(ς) = x(ς−) +

∫
Rm∗

γ(ζ, ς−, x(ς−))ν̃(dζ, ς−),

which contradicts the definition of ς = τ.

Theorem 5.28. Let (5.111) and (5.112) be verified, then the process x is the
unique solution to (5.110) on the stochastic interval Jt0, τJ. Actually Jt0, τJ is
the maximal interval of existence Jt0, ςJ of the solution, in other words τ = ς is
the lifetime of x. Moreover, if

P
{

sup
t∈Jt0,ςJ

|x(t)| =∞
}

= 0 (5.114)

holds then ς =∞, in other words x is the unique global solution to (5.110).

Proof. Let us consider

Ωr,N (s) = {ω ∈ Ω : C(s, r) +M(s, r) ≤ N}
and the auxiliary approximating problems for r = 1, 2, . . . , and N = 1, 2, . . . ,

xr,N (t) = x0 +

∫ t

t0

1Ωr,N (s)gr(s, xr,N (s))ds+

+

∫ t

t0

1Ωr,N (s)σr(s, xr,N (s))dw(s) +

+

∫
Rm∗ ×]t0,t]

1Ωr,N (s)γr(ζ, s, xr,N (s))ν̃(dζ,ds),

(5.115)

for t ≥ t0, where the coefficients are defined by gr(t, x, ω) = g(t, ψr(x), ω),
σr(t, x, ω) = σ(t, ψr(x), ω) and γr(t, x, ω) = γ(t, ψr(x), ω), with

ψr(x) = x for |x| ≤ r and ψr(x) = r
x

|x|
for |x| > r. (5.116)

Let xr,N (t) be the corresponding solution assured by the usual existence and
uniqueness Theorem 5.3 and define

τr = inf{t ≥ t0 such that |xr,N (t)| > r}.
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Clearly, τr,N ≤ τr,N+1 and by the uniqueness we have xr,N (t) = xr,N+1(t) on
Jt0, τr,N K. This allows us to define the process xr(t) on Jt0, τrJ by setting

τr = sup
N
τr,N = lim

N→∞
τr,N and xr(t) = xr,N (t) for t ∈ Jt0, τr,N K.

Hence, as r increases, we have xr(t) = xr+1(t) on Jt0, τrK, and τr ≤ τr+1.
Next, defining the stopping time and the process

τ = sup
r
τr = lim

r→∞
τr and x(t) = xr(t) for t ∈ Jt0, τrK,

we deduce that the process x(t) is a local solution of (5.110) in Jt0, τJ.
Let us show now that the local solution just constructed is defined on a

maximal interval, i.e., if y(t) is any local solution in Jt0, θJ, then we have

θ ≤ τ and y(t) = x(t), t0 ≤ t < θ,

almost surely. Indeed, for every integer r ≥ 1 let us define

θr = inf{t ∈ [t0, θ) such that |y(t)| > r},

which satisfies θ = limr→∞ θr. Now, observe that for any θ′ in Jt0, θrJ and
r′ ≥ r we have

y(θ′) = x0 +

∫ θ′

t0

gr′(s, y(s))ds+

∫ θ′

t0

σr′(s, y(s))dw(s) +

+

∫
Rm∗ ×Kt0,θ′K

γr′(ζ, s, y(s))ν̃(dζ,ds),

i.e., y solves the problem (5.115) in the stochastic interval Jt0, θrJ for any r′ ≥ r.
Hence, the uniqueness property implies that y = xr′ in the interval Jt0, θrJ for
any r′ ≥ r. Moreover θr ≤ τr′ ≤ τ, i.e., τ = ς the lifetime of the local solution
process x.

To show that (5.114) yields τ = ς =∞ we note that

{τr < τ} =
{

sup
t0≤t≤τ

|xr(t)| > r
}
⊂
{

sup
t0≤t≤τ

|x(t)| > r
}

and (5.114) imply

P
(⋂

r

{τr < τ}
)

= 0 i.e. P
(⋂

r

{τr = τ}
)

= 1.

Therefore, we can extend the definition of the process x to Jt0, τK. If x̃ denote
this continuation then x̃ is an adapted process with continuous trajectories.
Hence by continuity we have

x̃(τ) = x0 +

∫ τ

t0

g(t, x̃(t))dt+

∫ τ

t0

σ(t, x̃(t))dw(t) +

+

∫
Kt0,τK×Rm∗

γ(ζ, t, x̃(t))ν̃(dζ,dt),
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so that x̃ is a solution of (5.110) in Jt0, τK. Finally, it must be ς =∞ (or τ = t1,
if the equation was initially set up to the final time t1) almost surely. Indeed, if
P{τ < t1} > 0 then we can extend further x̃ with the solution of the problem

y(t) = x̃(τ) +

∫ t

τ

g(s, y(s))ds+

∫ t

τ

σ(s, y(s))dw(s) +

+

∫
Kτ,tK×Rm∗

γ(ζ, s, y(s))ν̃(dζ,dt),

whose existence is assured by the Theorem 5.28. This contradicts the maximal-
ity of x and concludes the proof.

5.2.2 A Priori Bounds

In analogy with the deterministic case, if (5.114) is verified then we say that
there exists an a priori bound for the solution to (5.110). We have the following
sufficient condition to have an a priori bound. Recall the definition of the
operator L:

LΦ(t, x) =
∂Φ(t, x)

∂t
+ 1

2Tr
[
σ(t, x)σ∗(t, x)D2Φ(t, x)

]
+ (g(t, x), DΦ(t, x)) +

+

∫
Rm∗

[
Φ(t, x+ γ(ζ, t, x))− Φ(t, x)− (γ(ζ, t, x), DΦ(t, x))

]
π(dζ).

Theorem 5.29. Let V be in C1,2([t0, t1]× Rd,R) such that

(i) V (t, x) ≥ 0 and DV (t, x) bounded on bounded sets

(ii) LV (t, x) ≤ K(t)(1 + V (t, x))

(iii) lim|x|→+∞ V (t, x) = +∞ (5), uniformly in t

Then under the assumptions (5.111) and (5.112) there exists an a priori bound
for the problem (5.110).

Proof. Let x : Jt0, τJ→ Rd be the maximal solution of (5.110).
Step 1.- There exists a constant C > 0 such that, maintaining the notation

of the previous proof in Theorem 5.28, for every integer r ≥ 1 it follows

E
(
V ((t ∧ τr) ∨ t0, x((t ∧ τr) ∨ t0))

)
≤ C. (5.117)

In fact the Itô formula gives

V (t, x(t)) = V (t0, x
0) +

∫ t

t0

(LV )(s, x(s)) ds+

+

∫ t

t0

(
σ(s, x(s)), DV (s, x(s))

)
dw(s) +

+

∫
]t0,t]×Rm∗

[
V
(
s, x(s) + γ(ζ, s, x(s))

)
− V (s, x(s))

]
ν̃(dζ,ds)

(5.118)

5It is possible to prove the theorem by assuming lim sup|x|→+∞ V (t, x) =∞.
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for t0 ≤ t < τ . Then, for every t, we have

V ((t ∧ τr) ∨ t0, x((t ∧ τr) ∨ t0))) ≤ V (x0)+

+

∫ (t∧τr)∨t0

t0

K(s) (1 + V (x(s)))ds+

+

∫ (t∧τr)∨t0

t0

(
σ(s, x(s)), DV (s, x(s))

)
dw(s)+

+

∫
Kt0,(t∧τr)∨t0K×Rm∗

[
V (s, x(s) + γ(ζ, s, x(s)))− V (s, x(s))

]
ν̃(dζ,ds),

from which, since
(
g(s, x(s)), DV (s, x(s))

)
is bounded in Jt0, τrJ, we obtain

E
(
V ((t ∧ τr) ∨ t0, x((t ∧ τr) ∨ t0))

)
≤

≤ E(V (x0)) + E
∫ (t∧τr)∨t0

t0

K(s) (1 + V (x(s)))ds

≤ E(V (x0)) +

∫ (t∧τr)∨t0

t0

K(s) [1 + E(V (x((s ∧ τN ) ∨ t0)))]ds.

for any t in [t0, t1]. Therefore the first step is proved by the Gronwall’s lemma.
Step 2.- Mr(t) is a supermartingale, where

Mr(t) = V
(
(t ∧ τr) ∨ t0, x((t ∧ τr) ∨ t0)

)
−

(t∧τr)∨t0∫
t0

K(s) (1 + V (s, x(s)))ds.

In fact we have, from (5.118), that

Mr(t)−Mr(s) ≤
∫ (t∧τr)∨t0

(s∧τr)∨t0

(
σ(s, x(s)), DV (s, x(s))

)
dw(s)+

+

∫
K(s∧τr)∨t0,(t∧τr)∨t0K×Rm∗

[
V (s, x(s) + γ(ζ, s, x(s)))− V (s, x(s))

]
ν̃(dζ,ds).

Hence E(Mr(t)−Mr(s) | Fs) ≤ 0 and (5.117) imply the desired result.
Step 3.- We have that P{supt0≤t<τ V (t, x(t)) = +∞} = 0.

Indeed, the martingale’s inequality implies (6)

P{ sup
t0≤t<≤τr

Mr(t) > λ} ≤ C2

λ
λ > 0,

and the definition of Mr(t) yields, after taking the limit as r →∞,

P{ sup
t0≤t<τ

Mτ (t) > λ} ≤ C2

λ
.

6See Arnold [7] for an analogous utilization of the supermartingale property of the Lya-
punov function V in the chapter of stability.
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Therefore, as λ tends to infinity, almost surely we have

sup
t0≤t<τ

V (t, x(t))−
∫ t

t0

K(s) (1 + sup
t0≤r<s

V (r, x(r))) ds ≤ C3

for t < τ and with C3 depending on ω. Finally the Gronwall’s lemma gives

sup
t0≤t<τ

V (t, x(t)) ≤ C4,

where C4 is depending on ω. Hence the theorem is proved.

Theorem 5.29 easily applies to the following situation: γ = 0,

(g(x), x) ≤ K1(1 + |x|2) and |(σ(x), x)| ≥ K2|σ(x)| |x|, (5.119)

for every x in Rd, with 1/
√

2 < K2 ≤ 1. In fact, let ϕ ∈ C2(R+,R+) be such
that ϕ(r) = rα in [r0,+∞) with 0 < α ≤ 1 − 1/(2K2

2 ), then V (x) = ϕ(|x|2)
verifies the assumption of the theorem as we have, for |x|2 > r0,

LV (x) = 2α|x|2α−2(g(x), x) + 2α(α− 1)|x|2α−4(σ(x), x)2+

+ α|x|2α−2|σ(x)|2 ≤
≤ 2αK1|x|2α−2(1 + |x|2) + α|x|2α−2|σ(x)|2(2K2

2 (α− 1) + 1) ≤
≤ 2αK1 r

α−1
0 + 2αK1V (x).

We observe that (5.119) is verified in the case d = 1 by g = 0 and any σ (see
McKean [167]).

5.2.3 Continuous Dependency on Data

Let us rephrase (5.6) and (5.7) in the following form: there exists a constant
C > 0 such that

|g(t, x)|2 + |σ(t, x)|2 +

∫
Rm∗
|γ(ζ, t, x)|2π(dζ) ≤ C(1 + |x|2), (5.120)

for every (t, x) in [t0,∞)×Rd; and, for any r > 0, there exists a positive constant
M = M(r) such that

|g(t, x)− g(t, x′)|2 + |σ(t, x)− σ(t, x′)|2 +

+

∫
Rm∗
|γ(ζ, t, x)− γ(ζ, t, x′)|2π(dζ) ≤M |x− x′|2,

(5.121)

for every (t, x), (t, x′) in [t0,∞) × Rd with t ≤ t0 + r, |x| ≤ r and |x′| ≤ r.
Here g, σ and γ are adapted (predictable) processes, and the assumptions are
uniformly in ω, for simplicity (see Remark 5.7).
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Theorem 5.30. Let g(n), σ(n) and γ(n) with (5.120) and (5.121) be verified
uniformly with respect to n. Assume that as n → ∞, we have E{|x(n)(t0) −
x(t0)|2} → 0, where x(n)(t0) and x(t0) are the initial data, and for every x in
Rd also g(n)(t, x, ω)→ g(t, x, ω), σ(n)(t, x, ω)→ σ(t, x, ω),∫

Rm∗
|γ(n)(ζ, t, x, ω)− γ(ζ, t, x, ω)|2π(dζ)→ 0,

almost everywhere in (t, ω) with respect to dt× P (dω), then

E
{

sup
t0≤s≤t1

|x(t)− x(n)(t)|
}
→ 0, as n→∞. (5.122)

Proof. This follows from the uniqueness arguments used in Theorem 5.3. Note
that assumptions (5.120) and (5.121), which are satisfied uniformly with respect
to n, can be combined to obtain that for any r > 0, there exists a positive
constant M ′ = M ′(r) such that |g

(n)(t, x)− g(n)(t, x′)|2 + |σ(n)(t, x)− σ(n)(t, x′)|2 +

+

∫
Rm∗
|γ(n)(ζ, t, x)− γ(n)(ζ, t, x′)|2π(dζ) ≤M |x− x′|2, (5.123)

for every (t, x), (t, x′) in [t0,∞)×Rd with t ≤ t0 + r, |x| ≤ r and any x′ in Rd.
Therefore, for each r > 0 use the notation

χr(t) :=

0 if |x(s)| > r for some s > t,

1 otherwise,

to check that χr(t) = χr(t)χr(s) for every s ≤ t, and

[x(t)− x(n)(t)] =

∫ t

t0

χr(s)
[
g(s, x(s))− g(n)(s, x(n)(s))

]
ds+

+

∫ t

t0

χr(s)
[
σ(s, x(s))− σ(n)(s, x(n)(s))

]
dw(s) +

+

∫
Rm∗ ×]t0,t]

χr(s)
[
γ(ζ, s, x(s))− γ(n)(ζ, s, x(n)(s))

]
ν̃(dζ,ds),

for any t (and ω) with χr(t) = 1. Thus, by means of Hölder inequality and the
martingale inequality for stochastic integrals, we deduce that

E
{
|x(t)− x(n)(t)|2χr(t)

}
≤ A+ C

∫ t

t0

E{|x(s)− x(n)(s)|2χr(s)}ds,

A = A(n)
r (x(·)) = 4E

{[∫ t

t0

χr(s)
∣∣g(s, x(s))− g(n)(s, x(s))

∣∣ds]2 +

+

∫ t

t0

χr(s)
∣∣σ(s, x(s))− σ(n)(s, x(s))

∣∣2ds+

+

∫ t

t0

χr(s)ds

∫
Rm∗

∣∣γ(ζ, s, x(s))− γ(n)(ζ, s, x(s))
∣∣2π(dζ)

}
,
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for every t in [t0, t1], and for some constant C. Next, use Gronwall inequality
to deduce that there is a constant K > 0 depending only on t1 − t0, r and the
constants C, M(r) of hypotheses (5.120), (5.121) such that

E
{
|x(t)− x(n)(t)|2χr(t)

}
≤ KA(n)

r (x(·)), ∀n,

for any t in [t0, t1]. Hence, the convergence of g(n), σ(n) and γ(n) implies

E
{
|x(t)− x(n)(t)|2χr(t)

}
→ 0, as n→∞,

for any fixed r > 0. Actually, a variation of the previous argument allows the
introduction of supt0≤s≤t1 insides the expectation, and Hölder inequality yields

E
{

sup
t0≤s≤t1

|x(t)− x(n)(t)|
}
≤
[
E
{

sup
t0≤s≤t1

|x(t)− x(n)(t)|2χr(t)
}]1/2

+

+
[
E
{

[1− χr(t)]
}]1/2[E{ sup

t0≤s≤t1
|x(t)− x(n)(t)|2

}]1/2
.

Now, recall estimate (5.10), namely,

E
{

sup
t0≤s≤t1

|x(n)(s)|2
}
≤ CE{1 + |x(n)(t0)|2},

and an analogous estimate with x replacing x(n), for some constant C indepen-
dent of n, i.e., depending only t1− t0 and the constant appearing in assumption
(5.120), and note that

E
{

[1− χr(t)]
}

= P
(

sup
t0≤s≤t1

|x(s)| > r
)
.

to deduce that

lim
n

E
{

sup
t0≤s≤t1

|x(t)− x(n)(t)|
}
≤ CP

(
sup

t0≤s≤t1
|x(s)| > r

)
, ∀r > 0,

for a suitable constant C independent of r > 0, but depending on E{|x(t0)|2}
and supn E{|x(n)(t0)|2}. This proves that (5.122) as desired.

• Remark 5.31. If we assume all conditions of Theorem 5.30, except that only
x(n)(t0)→ x(t0) in probability then we have

P
(

sup
t0≤t≤t1

|x(n)
r (t)− xr(t)| ≥ ε

)
→ 0, as n→∞, ∀ε > 0.

Indeed, define x
(n)
r (t0) = ψr(x

(n)(t0)) and xr(t0) = ψr(x(t0)), where ψr is given

by (5.116) to check that (because ψr is Lipschitz continuous), E(|x(n)
r (t0) −

xr(t0)|2) → 0 as n → ∞, for every fixed r > 0. Therefore, if x
(n)
r (t) and

xr(t) denote the solutions with initial conditions x
(n)
r (t0) and xr(t0), then The-

orem 5.30 implies that

E
(

sup
t0≤t≤t1

|x(n)
r (t)− xr(t)|2

)
→ 0, as n→∞,

Section 5.2 Menaldi January 7, 2014



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 566

for any fixed r > 0. Since the uniqueness implies

P
(
x(n)
r (·) 6= x(n)(·)

)
≤ P

(
x(n)
r (t0) 6= x(n)(t0)

)
= P

(
|x(n)
r (t0)| > r

)
,

P
(
xr(·) 6= x(·)

)
≤ P

(
xr(t0) 6= x(t0)

)
= P

(
|xr(t0)| > r

)
,

the triangular inequality

|x(n)(t0)| ≤ |x(n)(t0)− x(t0)|+ |x(t0)|

yields

|x(n)(t0)| > r implies |x(n)(t0)− x(t0)| > r/2 or |x(t0)| > r/2,

we deduce

P
(

sup
t0≤t≤t1

|x(n)(t)− x(t)| > ε
)
≤ P

(
sup

t0≤t≤t1
|x(n)
r (t)− xr(t)| > ε

)
+

+ P (|x(n)(t0)− x(t0)| > r/2) + 2P (|x(t0)| > r/2).

Hence, take limit as n→∞ and then as r →∞ to complete the argument.

Consider now the case of local existence: let the sequences g(n), σ(n) and
γ(n) verify (5.111) and (5.112), with the sequence of initial data x(n)(0) of Ft0 -
measurable random variables.

Let x(n) : Jt0, ς(n)J→ Rd be the maximal solutions of the problems
x(n)(t) = x

(n)
0 +

∫ t

t0

g(n)(s, x(n)(s))ds+

∫ t

t0

σ(n)(s, x(n)(s))dw(s) +

+

∫
Rm∗ ×]t0,t]

γ(n)(ζ, s, x(n)(s))ν̃(dζ,ds), ∀ t ≥ t0,
(5.124)

then we have

Theorem 5.32. Let g(n), σ(n) and γ(n) with (5.111) and (5.112) be satisfied
uniformly with respect to n. If as n → ∞, we have x(n)(t0) → x(t0) in prob-
ability, and for every x in Rd also g(n)(t, x, ω) → g(t, x, ω), σ(n)(t, x, ω) →
σ(t, x, ω),∫

Rm∗
|γ(n)(ζ, t, x, ω)− γ(ζ, t, x, ω)|2π(dζ)→ 0

almost everywhere in (t, ω) with respect to dt × P (dω), then, for every θ in
Jt0, ςJ, we have

lim
n→∞

P (ς(n) ≤ θ) = 0,

and

lim
n→∞

P
(
ς(n) > θ, sup

t0≤t≤θ
|x(n)(t)− x(t)| > ε

)
= 0,

where x is the maximal solution corresponding to g, σ and γ, with lifetime ς.
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Proof. Consider for each n the approximating solution x
(n)
r relative to (5.124).

By Theorem 5.30 and Remark 5.31, for every r, we have

P{ sup
t0≤t≤t1

|x(n)
r (t)− xr(t)| > ε} → 0 as n→∞. (5.125)

Define

τ (n)
r = inf

{
t ∈ [t0, ς

(n)] : |x(n)(t)| > r
}

and

τr = inf
{
t ∈ [t0, ς] : |x(t)| > r

}
,

to get

{τ (n)
r < τr−1} ⊂

{
sup

t0≤t≤t1
|x(n)
r (t)− xr(t)| ≥ 1

}
.

From (5.125), we have

lim
n→∞

P{τ (n)
r < τr−1} = 0, ∀r.

Now, for any θ in Jt0, ς(n)J, we have

{τ (n)
r ≤ θ} ⊂ {τ (n)

r ≤ τr−1} ∪ {τr−1 ≤ θ},
so that

lim
r→∞

lim
n→∞

P{τ (n)
r ≤ ς} = 0. (5.126)

Finally, taking in account the following inequalities,

P{ς(n) ≤ θ}) ≤ P{τ (n)
r ≤ θ}

and

P
{
ς(n) > θ , sup

t0≤t≤θ
|x(n)(t)− x(t)| > ε

}
≤

≤ P
{
ς(n) > θ , sup

t0≤t≤θ
|x(n)(t)− x(n)

r (t)| > 0
}

+

+ P
{

sup
t0≤t≤t1

|x(n)
r (t)− xr(t)| > ε

}
)+

+ P
{

sup
t0≤t≤θ

|xr(t)− x(t)| > 0
}
≤

≤ P
{

sup
t0≤t≤t1

|x(n)
r (t)− xr(t)| > ε

}
+ P

{
τ (n)
r ≤ θ}+ P{τr ≤ θ},

the thesis follows from (5.126).
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5.3 Special Semi-Martingale

It is also clear that the fixed-point technique used in the existence and unique-
ness Theorem 5.3 can also be applied if we replace the Wiener process with
a (local) square-integrable martingale and the time with a (continuous and)
increasing predictable process, i.e.,

dx(s) = g(s, x(s−), v(s))dV (s) + σ(s, x(s−), v(s)dM(s),

where V = (V (s) : s ≥ 0) is an adapted process with integrable bounded
variation and M = (M(s) : s ≥ 0) is a (local) square-integrable martingale.

Semi-martingale are the combination of martingales, bounded variation pro-
cesses and localization procedures. Of particular interest for us is the class
where an integrability condition is imposed on the adapted bounded variation
processes to be used. This class, so-called special semi-martingale (that we
refer to as just semi-martingale, for brevity) could be defined in several equiv-
alent forms, we adopt the following: On a complete filtered probability space
(Ω,F , P,Ft : t ≥ 0), a (special) semi-martingale X is a cad-lag adapted Rd-
valued process decomposed as X = X0 +M +V, where (a) X0 is a random vari-
able measurable with respect to F0, (b) M is a local martingale with M0 = 0,
and (c) V is a predictable cad-lag process with finite variation (by coordinates)
on each bounded time interval. The localization procedure used on the martin-
gale part M means that there exists a sequence of stopping times (τ1 ≤ τ2 ≤ · · · )
such that τi → ∞ and τi < τi+1 if τi < ∞, and t 7→ M(t ∧ τi) is a martingale
relative to the filtration (Ft : t ≥ 0), for any i. The fact that V has local
bounded variation yields two predictable increasing processes V + and V − such
that V = V + − V −. It can be proved (see Jacod and Shiryaev [117, Corollary
II.2.28, p. 85]) that the above (canonical) decomposition is unique and that the
martingale part M can be written as

M(t) = Xc(t) +

∫
Rd∗×]0,t]

zν̃X(dz,dt),

where Xc is a continuous local martingale and ν̃X is the local martingale asso-
ciated with the jumps of X, which is a purely jumps local martingale. Thus,
(1) X is continuous if and only if ν̃X = 0 and V +, V − are continuous, (2) X
is quasi-continuous if and only if νpX(Rd∗, {t}) = 0 for every t > 0 and V + and
V − are continuous. The characteristics of X are (a) the predictable increasing
(vector-valued) processes V + and V −, (b) the predictable quadratic variation
(matrix-valued) process 〈M c,M c〉 and (c) the predictable compensator random
measure νpX of the integer measure νX associated with the jumps of X. Certainly
we have ν̃X := νX − νpX . Moreover, there exist a predictable increasing locally
integrable process v0, which is continuous if X is quasi-continuous, such that
dV = vdv0, d〈M c,M c〉 = mcdv0 and νp(dζ,dt) = K(dζ, t) dv0(t), where v is
a Rd-valued predictable process, mc is a symmetric matrix-valued predictable
process and K(dζ, t, ω) is a transition kernel (i.e., K(dζ, ·, ·) is a predictable
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process and K(·, t, ω) is a positive measure in Rm∗ ) such that

[v0(t, ω)− v0(t−, ω)]K(Rm∗ , t, ω) ≤ 1 and

∫
Rm∗

(1 ∧ |ζ|2)K(dζ, t, ω) ≤ 1,

for every t and ω, see Jacod and Shiryaev [117, Proposition II.2.9, p. 77–78].
Thus, given a cad-lag adapted process h(t, ω) and predictable random fields

g(t, x, ω), σ(t, x, ω) and γ(z, t, x, ω), a stochastic ODE in Rd for quasi-continuous
semi-martingales has the following form

x(t) = h(t) +

∫ t

t0

g(s, x(s))dV c(s) +

∫ t

t0

σ(s, x(s))dM c(s) +

+

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s))ν̃(dζ,ds), ∀ t ≥ t0,
(5.127)

which can be written by components, i = 1, . . . , d, as

xi(t) = hi(t) +

d∑
j=1

∫ t

t0

gij(s, x(s))dV cj (s) +

+

n∑
k=1

∫ t

t0

σik(s, x(s))dM c
k(s) +

+

∫
Rm∗ ×]t0,t]

γi(ζ, s, x(s))ν̃(dζ,ds), ∀ t ≥ t0.

(5.128)

The initial condition x(0) = x0 has been replaced by a more general condition
given by the process h, the process (V c(t) : t ≥ 0) is an adapted continuous
process with local bounded variation (so, also predictable), and (M c(t) : t ≥ 0) is
a continuous local martingale and ν̃ := ν−νp is a purely jumps local martingale,
i.e., ν is an integer measure with its compensator νp satisfying νp(Rm∗ , {t}) = 0
for every t ≥ 0. By convenience, all integrals above are implicitly extended
by 0 for t ≤ t0 so that x(t) = h(t) for every t ≤ t0. Recall that the jumps
compensator can be disintegrated as νp(dζ,dt) = K(dζ, t) dν0(t), where ν0 is an
adapted increasing continuous process and the integral of (1∧ |ζ|2) with respect
to K(dζ, t) is bounded by 1. Furthermore, we may write dV cj (t) = vcj(t)dv

0(t),

d〈M c
k ,M

c
` 〉(t) = mc

k`(t)dv
0(t) and take v0 = ν0, after a redefinition of K.

The terminal time t1 may be infinite and the initial time t0 may be a stopping
time. Clearly, as mentioned above the process h is cad-lag and adapted, and the
(coefficients) processes g, σ and γ are assumed to be progressively measurable,
i.e., for every t1 > t0,{

g, σ : [t0, t1]× Rd × Ω→ Rd × Rn,

γ : Rm∗ × [t0, t1]× Rd × Ω→ R,
(5.129)

are measurable relative to the product Borel σ-algebras and F(t1) on Ω. More-
over, the coefficients are locally bounded, i.e., for any r > 0 there exists a real
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valued predictable process C(t, r) such that for every t ≥ t0 we have

sup
|x|≤r

{
|g(t, x, ω)|+ |σ(t, x, ω)|2+

+

∫
Rm∗
|γ(ζ, t, x, ω)|2K(dζ, t, ω)

}
≤ C(t, r, ω),

with P
{∫ t0+r

t0

C(t, r)dv0(t, ω) <∞
}

= 1,

(5.130)

and satisfy a uniform locally Lipschitz condition in the variable x, namely, there
exists a real valued predictable process M(r, t) > 0 such that for every (t, x),
(t, x′) in [t0,∞)× Rd with |x| ≤ r and |x′| ≤ r we have

|g(t, x)− g(t, x′)|2 + |σ(t, x)− σ(t, x′)|2+

+

∫
Rm∗
|γ(ζ, t, x)− γ(ζ, t, x′)|2K(dζ, t) ≤M(t, r)|x− x′|2,

with P
{

sup
t0≤t≤t0+r

M(t, r) <∞
}

= 1,

(5.131)

i.e., an adaptation of (5.111) and (5.112).
It is necessary to localize the concept of solution, which makes sense for

any progressively measurable locally bounded process. Indeed, for such a pro-
cess x(·), the measurability assumption (5.129) and the linear growth condition
(5.130) ensure the (locally) integrability of the terms appearing in the equa-
tion (5.127), so that a posteriori, a cad-lag adapted version, again denoted by
x(·) satisfies the same equation. Thus, a solution is a cad-lag adapted pro-
cess x(·) satisfying locally the ODE. Hence, for a sequence of stopping times
(τ1 ≤ τ1 ≤ · · · ) such that τi →∞ and τi < τi+1 if τi <∞, and

|dV c(t)|2 + |d〈M c,M c〉(t)|+ |dν0(t)| ≤ i, ∀t ≤ τi, (5.132)

we may say that the stochastic equation makes sense in L2 on the stochastic
time interval [t0, τi], for every i ≥ 1, essentially as in the previous sections. Note
that |dV c(t)| means the variation process.

We rephrase Definition 5.27. An adapted cad-lag process x(·) is a local
solution of the d-dimensional stochastic ordinary differential equation on the
time interval [t0, t1] if there exists a stopping time τx = τ > t0 such that (5.127)
is satisfied for every t in the stochastic interval Jt0, t1 ∧ τJ. Actually, a solution
means an equivalence class of processes represented by a cad-lag element. Thus,
we say that the local (strong) uniqueness holds whenever two solutions are each
one version of each other, i.e., if x and y are two solutions then

P{x(t) = y(t) : t0 ≤ t ≤ τx ∧ τy} = 0.

Moreover, the stopping time τ = ς is maximal if

either P
{
ς ≥ t1

}
= 1 or P

{
ς <∞, lim

t→ς
|x(t)| =∞

}
> 0.

and called lifetime of the solution, usually denoted by ς or ςx if necessary.
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Theorem 5.33 (existence and uniqueness). Consider the stochastic ordinary
differential equation (5.127) with h, V c, M c and ν̃ defined as above on a complete
filtered probability space (Ω,F , P,Ft : t ≥ 0), and with coefficients g, σ and γ
satisfying assumptions (5.129), (5.130) and (5.131). Then there exists one and
only one solution x with lifetime ς to the stochastic ODE (5.127). Moreover, if

P
{

sup
t0≤t<t1∧ς

|x(t)| <∞
}

= 1 (5.133)

then ς =∞, i.e., the solution is global on [t0, t1].

Proof. First, let us add two extra assumption, namely, the coefficients have
linear growth, i.e., there exists a constant C > 0 such that |g(t, x, ω)|2 + |σ(t, x, ω)|2 +

∫
Rm∗
|γ(ζ, t, x, ω)|2K(dζ, t, ω) ≤

≤ C(1 + |x|2),

(5.134)

for every (t, x, ω) in [t0,∞)×Rd ×Ω, and that the processes M(t, r) of (5.131)
is bounded in ω.

Then, the existence and uniqueness follows from a localization argument
based on the techniques shown in Theorem 5.3. Indeed, for any constant ε > 0
there exists a stochastic partition of stopping times (t0 = τ0 < τ1 ≤ τ2 ≤ · · · )
satisfying τi →∞, τi < τi+1 if τi <∞, (5.132) and

|dV c(t, ω)|2 + |d〈M c,M c〉(t, ω)|+ |dν0(t, ω)| ≤ ε, ∀ τi ≤ t ≤ τi+1.

Note that for each t1 > t0 and ω there exists n = n(t1 − t0, ω) such that
τn(ω) = t0. Now, using the Banach space Y of cad-lag adapted processes with
the L2-sup-norm

‖x‖ :=
√

E
{

sup
t0≤t≤t1

|x(t)|2
}
,

we check that the nonlinear operator

Ti(x)(t) := hi(t) +

∫ t∧τi+1

t∨τi
g(s−, x(s−), ω)dV c(s) +

+

∫ t∧τi+1

t∨τi
σ(s−, x(s−), ω)dM c(s) +

+

∫
Rm∗ ×]t∨τi,t∧τi+1]

γ(ζ, s−, x(s−), ω)ν̃(dζ,ds), ∀ t ∈ [t0, t1],

defined for any square integrable cad-lag adapted process hi(t), maps Y into
itself.

By making used of the supermartingale inequality, a direct estimate shows
that

‖Ti(x)− Ti(y)‖ ≤ C0

√
ε‖x− y‖, ∀x, y ∈ Y,
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where C0 is a constant depending on the global Lipschitz property of the co-
efficients. Thus, if the process h is also square integrable and the coefficients
satisfy a global Lipschitz condition in the variable x then Ti is a contraction
map, for ε sufficiently small. Therefore, by successively taking x0(·) = 0 and

hi(t) := [h(t)− xi−1(τi)]1t>τi + xi−1(t)1t≤τi ,

we find a fixed point Ti(xi) = xi, which is a solution to the stochastic ODE
on the stochastic interval [t0, τi+1]. Hence, a solution is defined on the whole
interval [t0, t1], with a finite number of iterations, for any t1 > t0 and each ω.

The proof of the existence of a solution can be completed, by removing
the extra global Lipschitz condition (just uniformly locally Lipschitz condition
suffices) and the square integrability on the process h(·) as in Theorem 5.3.

To prove the uniqueness, let x(·) and y(·) be two cad-lag adapted solutions.
Because x and y are bounded almost surely on any bounded interval, we can
modify the above sequence of stopping time (t0 = τ0 < τ1 ≤ τ2 ≤ · · · ) to
accommodate also the condition

|x(t)|+ |y(t)|+ |h(t)| ≤ i, ∀t ≤ τi,
without losing the property τi → ∞. By iteration, the contraction property
above shows that

‖[x− y]1[τi,τi+1[‖ = 0, i = 0, 1, . . . .

Hence x(·) = y(·) on the stochastic interval [t0, τi+1], and therefore P{x(·) =
y(·)} = 0.

Finally, we complete the proof (without the extra assumptions) as in Theo-
rem 5.28.

Note that if the temporal (initial) condition is stochastically continuous then
so is the solution. Moreover, under the condition (5.134) the solution is global,
i.e., ς =∞.

A more challenging problem is to include predictable jumps (i.e., to allow
discontinuities for the process V ) in the above stochastic ODE. Even the de-
terministic case (i.e., M c = 0 and ν̃ = 0) yields several difficulties as applied
to control theory, for instance, see the papers Barron et al. [11], Motta and
Rampazzo [185] and Schmaedke [222], among others.

For instance, once a cad-lag version x(t) of the solution has been chosen,
and assuming that the coefficients σ and γ are cad-lag in t, a predictable ver-
sion needed for the integrands in stochastic integrals is simply σ(t−, x(t−))
and γ(ζ, t−, x(t−)). Similarly, if the coefficients g is cad-lag in t then g(t, x(t))
and g(t−, x(t−)) differ (for every ω) in a countable time set, and because the
bounded variation process V is also continuous, we deduce that their pathwise
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integrals coincide. Therefore, equality (5.127) can be written as
x(t) = h(t) +

∫ t

t0

g(s−, x(s−))dV (s) +

∫ t

t0

σ(s−, x(s−))dM c(s) +

+

∫
Rm∗ ×]t0,t]

γ(ζ, s−, x(s−))ν̃(dζ,ds), ∀ t ≥ t0.
(5.135)

Thus, the above condition (5.135) is the proper or normalized expression of the
stochastic ODE for cad-lag processes. Moreover, this normalized form makes
sense even when the driven system (i.e., V, M c and ν̃) is not quasi-continuous,
i.e., V is only an adapted cad-lag bounded variation process, not necessarily
continuous. Clearly, we may write the stochastic ODE (5.135) in the form

x(t) = h(t) +

∫ t

t0

g(s−, x(s−))dV (s) +

+

∫ t

t0

σ(s−, x(s−))dM(s), ∀ t ≥ t0,
(5.136)

where M is a (quasi-continuous) local martingale, not necessarily continuous.
Sometimes, the formulation (5.136) is complemented with coefficients g and

σ of a functional type, i.e., we take g(x(·), s) and σ(x(·), s) instead of having
g(s, x(t)) and σ(s, x(s)). This means for a (cad-lag) local martingale M and an
adapted cad-lag process with bounded variation relative to a filtration {Ft : t ≥
0} on a probability space (Ω,F , P ) we assume:

(a) the processes s 7→ g(x(·), s) and s 7→ σ(x(·), s) are adapted cad-lag processes,
for every adapted cad-lag process x(·),
(b) for every stopping time T, if x(s) = y(s) for every s in [0, T ) then g(x(·), s) =
g(y(·), s) and σ(x(·), s) = σ(y(·), s) for every s in [0, T ),

(c) for every r > 0 there exist two increasing (real-valued) adapted processes
Cr = Cr(t, ω) and Kr = Kr(t, ω) such that

sup
0≤s≤t

{∣∣g(x(·), s)
∣∣2 +

∣∣σ(x(·), s)
∣∣2} ≤ Cr(t) sup

0≤s≤t

{∣∣x(s)
∣∣2},

and

sup
0≤s≤t

{∣∣g(x(·), s)− g(y(·), s)
∣∣2 +

∣∣σ(x(·), s)− σ(y(·), s)
∣∣2} ≤

≤ Kr(t) sup
0≤s≤t

{∣∣x(s)− y(s)
∣∣2},

for every adapted cad-lag processes x and y satisfying |x(s)| ≤ r and |y(s)| ≤ r,
for every s in [0, t], any t ≥ 0.

Now, if some conditions are imposed on the variation t 7→ var(V, [0, t]),
the optimal quadratic variation t 7→ [M,M ](t) and the processes Cr and Kr

in condition (c) above, then existence and uniqueness o is established for a
SDE with functional coefficients. For instance, if Cr and Kr are bounded (case
of global Lipschitz condition) then full details (and several other interesting
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properties) can be found in Protter [206, Chapter V, pp. 187–284]. However, to
include a random measure in a formulation like (5.136) with a semi-martingale,
we need to consider local martingales with values in a Hilbert space.

The same technique shown in Theorem 5.33 can be extended directly to this
non-continuous case.

Corollary 5.34 (existence and uniqueness). Consider the stochastic ordinary
differential equation (5.135) relative to the processes h, V, M c and ν̃ defined
as above on a complete filtered probability space (Ω,F , P,Ft : t ≥ 0), and with
coefficients g, σ and γ satisfying assumptions (5.129), (5.130), (5.131), which
are cad-lag in the variable t. Then there exists one and only one local solution
x to the stochastic ODE (5.135), with lifetime ς. Moreover, under the condition
(5.134) the solution is global, i.e., ς =∞.

Note that usually the process V is taken predictable, however adapted suf-
fices. Thus, assuming that the local martingale M in (5.136) is quasi-continuous
does not limit the settings. Clearly, the normalized stochastic ODE makes sense
only for a cad-lag version of the solution x(·) and the form (5.136) do have some
limitation on the way the jumps can be changed by the coefficients σ, instead
of γ as in (5.135).

5.4 Measure and Time Changes

It is clear that if w = (w1, . . . , wn) is a n-dimensional standard Wiener pro-
cess defined in (Ω,F , P,F(t) : 0 ≤ t ≤ T ) with F = F(T ) then for any con-
stants σ = (σik : i = 1, . . . , d, k = 1, . . . , n) the expression w̃(t) := σw(t)
is a new d-dimensional Wiener process with covariance matrix a = σ∗σ, i.e.,
aij :=

∑
k σikσjk (with vanishing drift, so a martingale). On the other hand, to

add a constant drift b = (b1, . . . , bn), instead of changing the process w̃, we are
going to change the probability measure P, namely, P̃ (dω) := Z(T, ω)P (dω),
where

Z(t) := exp
[∑

k

bk wk(t)− 1

2

∑
k

(bk)2 t
]
, ∀t ∈ [0, T ].

We claim that{
the process w̃ = σw is a d-dimensional Wiener process

with covariance a = σ∗σ and drift σb under P̃ .
(5.137)

Indeed, first set w̄i(t) := w̃i(t) −
∑
k σikbk t and notice that a simple applica-

tion of Itô formula shows that the (density) process Z satisfies the stochastic
differential equation

Z(t) = 1 +
∑
k

bk

∫ t

0

Z(s) dwk(s), ∀t ∈ [0, T ],

proving that (Z(t) : 0 ≤ t ≤ T ) is a non-negative continuous martingale. It is
clear that the new probability measure P̃ (dω) is defined on (Ω,F , P,F(t) : 0 ≤
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t ≤ T ), the mathematical expectation relative to P̃ is denoted by Ẽ{·} and in
view of the martingale property we have

P̃ (A) :=

∫
A

Z(t, ω)P (dω) ∀A ∈ F(t), t ∈ [0, T ].

Moreover, for any F(t)-measurable random variable y with Ẽ{|y|} < ∞, the
conditional expectation satisfies

Ẽ{y | F(s)} =
1

Z(s)
E{y Z(t) | F(s)},

almost surely relative to P and P̃ . Since 〈w̃i, Z〉(t) = Z(t)
∑
k σikbk t, by means

of Itô (or the integration-by-parts) formula we have

w̄(t)Z(t) = w̄(s)Z(s) +

∫ t

s

w̄(s)dZ(t) +

∫ t

s

Z(t)dw̃(s)

and because w̄ and Z are both martingale relative to P, we deduce the equality
E{w̄(t)Z(t) | F(s)} = w̄(s)Z(s), which implies Ẽ{w̃(t) | F(s)} = w̄(s), i.e.,
(w̄(t) : t ≥ 0) is a martingale relative to P̃ . Similarly, by means of Itô formula
we have

w̄i(t)w̄j(t)Z(t) = w̄i(s) w̄j(s)Z(s) +

∫ t

s

w̄i(s) w̄j(s)dZ(t) +

+

∫ t

s

Z(t)d(w̃i(s)w̃j(s)),

d(w̃i(s)w̃j(s)) = w̃i(s)dw̃j(s) + w̃j(s)dw̃i(s) + σik σjkds,

which yields

E{w̄i(t)w̄j(t)Z(t) | F(s)} = w̄i(s) w̄j(s)Z(s) + σik σjk Z(s) (t− s).

Hence

Ẽ{w̄i(t)w̄j(t) | F(s)} = w̄i(s) w̄j(s) + σik σjk (t− s),

proving that

w̄i(t) =
∑
k

σikwk(t)−
∑
k

σikbk t,

is a d-dimensional Wiener process with covariance a under P̃ , i.e., our claim
(5.137). In particular, if n = d and σ is the identity then w(t)− bt is a standard
Wiener process under the probability measure P̃ .

A general setting for a given n-dimensional standard Wiener process w =
(w1, . . . , wn) defined in (Ω,F , P,F(t) : t ≥ 0) with F = ∪t≥0F(t) is as follows.
Let b = (b1, . . . , bn) be an integrand with respect to w, i.e., b belongs to L2

loc(w),
namely

P
{∫ T

0

|bk(t)|2dt <∞
}

= 1, ∀T > 0, k = 1, . . . , n.
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Define

Z(t) := exp
[ n∑
k=1

∫ t

0

bk(s)dwk(t)− 1

2

n∑
k=1

∫ t

0

|bk(s)|2ds
]
, (5.138)

which is a (nonnegative) continuous local martingale satisfying the equation

Z(t) = 1 +

n∑
k=1

∫ t

0

Z(s) bk(s)dwk(s), ∀t ≥ 0.

Usually, the process Z = Zb,w is referred to as an exponential local martingale.
A priori, Z is a super-martingale which becomes a martingale if E{Z(t)} = 1 for
every t ≥ 0. This critical point can be overcame by means of Novikov sufficient
condition which states that for any continuous local martingale M satisfying

E
{

exp
[1
2
〈M〉t

]}
<∞, ∀t ≥ 0,

we have E{exp(Mt − 〈M〉t/2)} = 1, for every t ≥ 0. Thus, Z is a martingale
whenever

E
{

exp
[1
2

∫ t

0

|bk(s)|2ds
]}

<∞, ∀t ≥ 0

holds.
Now, consider the following Girsanov transformation M 7→ M̃ defined for

any continuous local martingale M by the formula

M̃(t) := M(t)−
n∑
k=1

∫ t

0

bk(s)d〈M,wk〉(s), ∀t ≥ 0. (5.139)

Since F = ∪t≥0F(t), we can define a unique probability measure P̃ on F satis-
fying

P̃ (A) = E{1AZ(t)}, ∀A ∈ F(t),

for every t ≥ 0, where Z = Zb,w is given by (5.138). Denote by Ẽ the mathe-

matical expectation relative to P̃ .

Theorem 5.35 (Girsanov). Assume that Zb,w defined by (5.138) satisfies the
condition E{Zb,w(t)} = 1 for every t ≥ 0. Then for any two processes M and
N which are continuous local martingales under P , the transformed processes
via (5.139) M̃ and Ñ are continuous local martingales under P̃ with the same
predictable quadratic covariation process 〈M̃, Ñ〉 = 〈M,N〉 computed under the
appropriate probability measure. In particular, w̃ = (w̃1, . . . , w̃n), with

w̃k = wk(t)−
∫ t

0

bk(s)ds, ∀t ≥ 0, k = 1, . . . , n

is a n-dimensional standard Wiener process under P̃ .
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A proof with some discussion can be found in Ikeda and Watanabe [110,
Section IV.4, pp. 190–202] or Karatzas and Shreve [124, Section 3.5, pp. 190–
201]. On the other hand, for discontinuous local martingales the result can be
rephrased as follows.

Theorem 5.36. Let Z be an exponential martingale, i.e., a non-negative mar-
tingale in a filtered space (Ω,F , P,F(t) : t ≥ 0) with F = ∪t≥0F(t) satisfying
the initial condition Z(0) = 1. Assume M a local martingale with M(0) = 0 such
that the optional quadratic covariation [M,Z] has a locally integrable variation,
and denote by 〈M,Z〉 its compensator (under P ). Then, the process

M̃(t) := M(t)−
∫

]0,t]

1

Z(s−)
d〈M,Z〉(s), ∀t ≥ 0

is a local martingale under P̃ , where P̃ is defined as the unique probability mea-
sure on F satisfying P̃ (A) = E{1AZ(t)} for every A in F(t) and for every t ≥ 0.
Moreover, the predictable quadratic variation 〈M c〉 of the continuous part M c

of M (under P ) is also a version of the predictable quadratic variation 〈M̃ c〉 of
the continuous part M̃ c of M̃ (under P̃ ).

Notice that if Z and M are two local martingales such that the jumps of M
are bounded by a (deterministic) constant, i.e., |δM | ≤ r for some r in (0,∞),
then the optional quadratic covariation [M,Z] has a locally integrable variation.

The point here is that δ[M,Z] = δM δZ and |δZ(t)| ≤
√∑

s≤t |δZ(s)|2, which

is locally integrable. Clearly, this applies to the particular case where M is
continuous.

It is also clear that the above statement includes the fact that such a proba-
bility P̃ exists uniquely and that M̃ is P̃ -almost surely defined as a real-valued
process, actually, we have P̃{inft Z(t) > 0} = 1, which implies that M̃ is locally
integrable.

This change of probability measures, known as Cameron-Martin change of
measure or Girsanov transformation, is very useful. First, we focus our interest
on a d-dimensional continuous local martingale M c with predictable quadratic
covariation (matrix) process 〈M c〉. Let (b1(s), . . . , bd(s)) be a progressively mea-
surable process such that for every i = 1, . . . , d and any r = 1, 2, . . . , we have

E
{ d∑
ij=1

∫
]0,τr]

bi(t)bj(t)d〈M c
i ,M

c
j 〉
}
<∞, (5.140)

where {τr : r ≥ 1} is a non-decreasing sequence of stopping times satisfying
τr →∞ almost surely. Define

Zb(t) := exp
{∫

]0,t]

b(s)dM c(s)− 1

2

∫
]0,t]

b2(s)d〈M c〉(s)
}
, (5.141)
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where∫
]0,t]

b(s)dM c(s) =

d∑
i=1

∫
]0,t]

bi(s)dM
c
i (s)∫

]0,t]

b2(s)d〈M c〉(s) =
d∑

i,j=1

∫
]0,t]

bi(s)bj(s)d〈M c
i ,M

c
j 〉(s),

for every t ≥ 0. As above, by means of Itô formula we deduce that the process
Zb satisfies the equation

Zb(t) = 1 +

d∑
i=1

∫
]0,t]

Zb(s)bi(s)dM
c
i (s), ∀t ≥ 0,

which implies that Zb is a local martingale and a super-martingale. Assume
that Zb is indeed a martingale, i.e., E{Zb(t)} = 1, for every t > 0, which is true
under the Novikov condition, namely,

E
{

exp
[1
2

d∑
i,j=1

∫
]0,t]

bi(s)bj(s)d〈M c
i ,M

c
j 〉(s)

]}
<∞, ∀t > 0 (5.142)

holds. Then, the exponential continuous martingale Zb defines a unique proba-
bility measure Pb, which is absolutely continuous with respect to P and satisfies
Pb(A) = E{1AZ(t)} for every A in F(t) and for every t ≥ 0. Girsanov Theorem
implies that the process M̃ c = (M̃ c

1 , . . . , M̃
c
d), given by

M̃ c
i (t) := M c

i (t)−
∫

]0,t]

d∑
j=1

bj(s)d〈M c
i ,M

c
j 〉(s), ∀t ≥ 0,

is a d-dimensional continuous local martingale with predictable quadratic co-
variation (matrix) process 〈M̃ c〉 = 〈M c〉.

Now, we focus our attention on a quasi-left continuous m-dimensional purely
discontinuous martingale. Let ν be a quasi-left continuous integer-valued ran-
dom measure in Rd∗, with local martingale measure ν̃ and compensator νp, and
let δ(z, s) be a positive predictable process such that

E
{∫

Rd∗×]0,τr]

[δ(z, t)− 1]2νp(dz,dt)
}
<∞, ∀r ≥ 1,

E
{∫

Rd∗×]0,τr]

[
δ(z, t)− 1− ln

(
δ(z, t)

)]
νp(dz,dt)

}
<∞,

(5.143)

where {τr : r ≥ 1} is a non-decreasing sequence of stopping times satisfying
τr → ∞ almost surely. Note the inequalities δ − 1 − ln(δ) ≥ 0 for every δ > 0,
and δ − 1 − ln(δ) ≤ [δ − 1]2/2 if δ ≥ 1. So, if the process δ(z, s) ≥ 1 then
only the first condition in (5.143) is relevant. The second condition in (5.143)
is equivalent to

E
{∫

Rd∗×]0,τr]

[
δ(z, t)− 1− ln

(
δ(z, t)

)]
ν(dz,dt)

}
<∞,
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which is understood as a (classic) Lebesgue integral as long as the predictable
version of the integrand is used.

Now set
Zδ(t) := exp

{∫
Rd∗×]0,t]

[δ(z, s)− 1]ν̃(dz,ds)−

−
∫
Rd∗×]0,t]

[
δ(z, s)− 1− ln

(
δ(z, s)

)]
ν(dz,ds)

}
,

(5.144)

for every t ≥ 0. Let ε be a positive constant and define Zεδ (t) as above where
the integer measure ν has been replaced by νε,

νε(B, [a, b[) := ν(B ∩ {|z| ≥ ε}, [a, b[), ∀B ∈ B(Rd∗), b > a ≥ 0,

with its corresponding compensator νpε and its local martingale measure ν̃ε.
Recalling that ν̃ε = νε − νpε , we have

Zεδ (t) = exp
{∫

Rd∗×]0,t]

ln
(
δ(z, s)

)
νε(dz,ds)−

−
∫
Rd∗×]0,t]

[
δ(z, s)− 1

]
νpε (dz,ds)

}
,

as long as δ > 0 almost surely. Moreover, if {zεi , τεi : i ≥ 1} are the atoms of νε,
with τi−1 < τi, then

Zεδ (τεi ) = Zεδ (τεi −)δ(zεi , τ
ε
i ),

Zεδ (τεi −) =

∫ τεi

τεi−1

Zεδ (s)
[
δ(z, s)− 1

]
νpε (dz,ds),

which proves that the density process Zδ satisfies the stochastic differential
equation

Zεδ (t) = 1 +

∫
Rd∗×]0,t]

Zεδ (s−)[δ(z, s)− 1]ν̃ε(dz,ds),

for every t ≥ 0. Replace δ with δ+(1/n) and as ε vanishes and later as n becomes
infinite, the same equation remains valid for Zδ with ν̃ in lieu of ν̃ε. This proves
that Zδ is a local martingale. Note that δ = 0 means no jump, so that we
may allow a nonnegative density processes δ(z, s) ≥ 0 as long as we interpret
ln δ(z, s) = 0 when δ(z, s) = 0, in (5.144) and also in the assumption (5.143).
Also, we may use either Zδ(s−) or Zδ(s) inside the stochastic integral, since the
compensator satisfies νp(Rd∗×{t}) = 0 for every t ≥ 0. Now, assuming7 that Zδ
is indeed a martingale, i.e., E{Zδ(t)} = 1, for every t > 0, the process Zδ is an
exponential martingale which defines an unique probability measure Pδ, which
is absolutely continuous with respect to P and satisfies Pδ(A) = E{1AZδ(t)},
for every A in F(t) and for every t ≥ 0. Set

Mν
i (t) :=

∫
Rd∗×]0,t]

γi(z, s)ν̃(dz,ds), ∀t ≥ 0,

7Kazamaki criterium affirms that it suffices to know that Zδ is a uniformly integrable
sub-martingale, e.g., δ bounded by a deterministic constant and νp(Rd∗, ·) is finite.
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where γ = (γ1, . . . , γd) is a predictable process bounded by a (deterministic)
constant. Under the probability Pδ, the process Mν = (Mν

1 , . . . ,M
ν
d ) is a d-

dimensional quasi-left continuous local martingale purely discontinuous with
predictable random measure compensator νpM on Rd∗ given by

νpM (B×]0, t]) =

∫
Rd∗×]0,t]

1{γ(z,s)∈B}ν
p(dζ,ds),

for every B in B(Rd∗) and t > 0, i.e., in short νpM = νp(γ). By means of Girsanov
Theorem we deduce that, under the probability measure Pδ, the process

M̃ν
i (t) :=

∫
Rd∗×]0,t]

γi(z, s)ν̃(dz,ds)−

−
∫
Rd∗×]0,t]

γi(z, s)[δ(z, s)− 1]νp(dz,ds),

or, equivalently,

M̃ν
i (t) :=

∫
Rd∗×]0,t]

γi(z, s)ν̃δ(dz,ds), ∀t ≥ 0,

is a quasi-left continuous local martingale purely discontinuous with predictable
random measure compensator νp

M̃
on Rd∗ given by

νp
M̃

(B×]0, t]) =

∫
Rd∗×]0,t]

1{γ(z,s)∈B}ν
p
δ (dz,ds),

for every B in B(Rd∗) and t > 0, where νpδ := δνp and ν̃δ := ν̃ − (δ − 1)νp.
In short νp

M̃
= δ νp(γ). When γ is not necessarily bounded by (deterministic)

constant, we can be replace γ by γ 1|γ|≤r. As r becomes infinity, the previous
transformation remains valid for coefficients satisfying only a local integrability
condition with respect to the compensator νp.

It is clear that we can combine expressions (5.141) and (5.144). Besides
the local integrability conditions (5.140) and (5.143) on the coefficients b and
δ, we need to impose Novikov condition (5.142) on b and something else on
δ. For instance, if δ is bounded by a deterministic constant then Zδ satisfies
E{Zδ(t)} = 1, for every t > 0.

A full proof of Theorem 5.36 as well as more details on Cameron-Martin-
Girsanov transformation can be found in Jacod and Shiryaev [117, Section III.3,
pp. 152–166] or Rogers and Williams [214, Section IV.6.38, pp. 79–83].

For the case of Itô processes with jumps we have the following results. Let
(σik(t) : t ≥ 0, i = 1, . . . , d, k = 1, . . . , n) and (γi(ζ, t) : t ≥ 0, ζ ∈ Rm0 ) be
predictable (adapted suffices) processes such that for every i = 1, . . . , d and any
t > 0 we have

P
{∫ t

0

n∑
k=1

|σik(s)|2ds+

∫
Rm∗ ×]0,t]

|γi(ζ, s)|2π(dζ,ds) <∞
}

= 1,

Mi(t) =

n∑
k=1

∫ t

0

σik(s)dwk(s) +

∫
Rm∗ ×]0,t]

γi(ζ, s)ν̃(dζ,ds).
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in some Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0), with
Lévy measure π(·). On the other hand, let (b1(s), . . . , bk(s)) and c = δ − 1 be
predictable (adapted suffices) processes satisfying

P
{ n∑
k=1

∫ t

0

|bk(s)|2ds <∞
}

= 1,

P
{∫

Rm∗ ×]0,t]

c2(γ(ζ, s)), s)π(dζ,ds) <∞
}

= 1,

and c ≥ 0, for every t > 0. Define the density process

Z(t) := exp
{∑

k

∫ t

0

bk(s)dwk(s)− 1

2

∑
ik

∫ t

0

|bk(s)|2ds+

+

∫
Rm∗ ×]0,t]

ln[1 + c(γ(ζ, s)), s)]ν̃(dζ,ds)−

−
∫
Rm∗ ×]0,t]

[
c(γ(ζ, s)), s)− ln[1 + c(γ(ζ, s)), s)]

]
π(dζ,ds)

}
,

assume E{Z(t)} = 1 for every t > 0, and construct the unique probability
measure Q satisfying Q(A) := E{Z(t)1A}, for every A in F(t) and for every
t ≥ 0.

Then, there is Wiener process w̃ (possible in extension of the given Wiener-
Poisson space if σ does not has constant rank) such that under the probability
measure Q we have

Mi(t) =

n∑
k=1

∫ t

0

σik(s)dw̃k(s) +

∫
Rm∗ ×]0,t]

γi(ζ, s)ν̃c(dζ,ds) +

+

n∑
k=1

∫ t

0

σik(s)bk(s)ds,

for every t ≥ 0. The local martingale measure is given by ν̃c := ν̃ − cπ with its
predictable compensator νpc = (1 + c)π, which is not necessarily deterministic.
Recall that in this context, an extension of a given Wiener-Poisson space

(Ω,F , P,F(t), w(t), ν̃(dz,dt) : t ≥ 0, z ∈ Rm∗ ),

with Lévy measure π(·), F = F(∞) and w being d-dimensional, is another
Wiener-Poisson space (Ω̃, F̃ , P̃ , F̃(t), w̃(t), ν̃(dz,dt) : t ≥ 0, z ∈ Rm∗ ), where
Ω̃ = Ω×Ω0, P̃ = P×P0, w̃ = (w,w0), ν̃ is (possible another) martingale measure
with predictable quadratic variation π(·), F̃(t) is the complete right-continuous
filtration generated by F(t) × F0(t), F̃ = F̃(∞), and (Ω0,F0, P0,F0(t), w0(t) :
t ≥ 0) is a d̃-dimensional Wiener space.

In particular, let ν(dζ,dt) be a Poisson random measure in a filtered prob-
ability space (Ω,F , P,F(t) : t ≥ 0) with Lévy measure π(·) in Rm∗ and (δ(ζ, t) :
t ≥ 0, ζ ∈ Rm∗ ) be a predictable (adapted is sufficient, but we take its pre-
dictable version) nonnegative process bounded by a deterministic constant and
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satisfying∫ t

0

ds

∫
Rm∗

[δ(ζ, s)− 1]2π(dζ) <∞,∫ t

0

ds

∫
Rm∗

[
δ(ζ, s)− 1− ln

(
δ(ζ, s)

)]
π(dζ) <∞,

P -almost surely for every t ≥ 0, with ln
(
δ(ζ, s)

)
= 0 whenever δ(ζ, s) = 0.

Consider the density process

Zδ(t) := exp
{∫

Rm∗ ×]0,t]

[δ(ζ, s)− 1]ν̃(dζ,ds)−

−
∫
Rm∗ ×]0,t]

[
δ(ζ, s)− 1− ln

(
δ(ζ, s)

)]
χδ(ζ, s)ν(dζ,ds)

}
for every t ≥ 0, where χδ(ζ, s) = 1 if δ(ζ, s) > 0 and χδ(ζ, s) = 0 otherwise. As
before, Zδ solves the equation

Zδ(t) = 1 +

∫
Rm∗ ×]0,t]

Zδ(s−)[δ(ζ, s)− 1]ν̃(dζ,ds),

for every t ≥ 0. Now, construct a new probability measure Pδ, which is abso-
lutely continuous with respect to P and satisfies Pδ(A) = E{1AZδ(t)}, for every
A in F(t) and t ≥ 0. Then the process

Mδ(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds)−
∫ t

0

ζδ(ζ, s)π(dζ)

is a quasi-left continuous purely discontinuous martingale process which associ-
ated local martingale random measure is given by

ν̃δ(B, ]0, t]) = ν(B, ]0, t])−
∫ t

0

ds

∫
B

δ(ζ, s)π(dζ), (5.145)

for every B in B(Rm∗ ) and t > 0, with (jump) compensator

νpδ (B, ]0, t]) =

∫ t

0

ds

∫
B

δ(ζ, s)π(dζ), ∀B ∈ B(Rm∗ ), t > 0 (5.146)

under the probability measure Pδ.
Summing up, the Lévy measure π is changed into a new Lévy measure πδ

with a density δ, namely, πδ(dζ)dt = δ(ζ, t)π(dζ)dt, or equivalently πδ(dζ)dt =(
1 + c(ζ, t)

)
π(dζ)dt, where the function c is square-integrable with respect to

π, in other words, if π integrates |ζ|2 ∧ 1 then the added part cπ will integrate
|ζ| ∧ 1, i.e., what we are able to add have a weaker singularity.

Beside this change of measure, there are other transformations that can be
performed with a Wiener process and Poisson measures. For instance, given a
n-dimensional Wiener process w = (w1, . . . , wn) and an integrable (with respect
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to w) matrix-valued process p = (phk : h, k = 1, . . . , n) we can define the new
process dwp = p dw,

wph(t) :=

n∑
k=1

∫ t

0

phk(s)dwk(s), ∀t, h,

which is a continuous martingale with predictable quadratic variation

〈wph, w
p
k〉(t) =

n∑
l=1

∫ t

0

phl(s)plk(s)ds, ∀t, h, k.

In particular, if p(s) is an orthogonal matrix for each s (i.e., a rotation of
coordinates) then 〈wph, w

p
k〉(t) = tδhk, so that wp is again a Wiener process.

Similarly, if (c(t) : t ≥ 0) is an adapted real-valued process with C1 ≤ c(t) ≤
C2, for every t ≥ 0 and some constants C2 ≥ C2 > 0, define

τ(t) :=

∫ t

0

c(s)ds, τ−1(s) := inf{t ≥ 0 : τ(t) > s},

then s 7→ wk(τ−1(s)) is a martingale and the process

wc,k(t) :=

∫ t

0

√
c(s)dwk(τ−1(s)), ∀t ≥ 0, k

is a d-dimensional Wiener process with respect to its natural filtration. The ran-
dom variables τ(t) are stopping time for each t, and they generate a filtration
Fc(t) := F(τ(t)), for every t ≥ 0. This is call a time change, which can be gen-
eralized to continuous local martingales, for instance, more details can be found
in Chung and Williams [45, Section 9.3, pp. 187–196] or in Kallenberg [121, in
various pages].

These transformations applied to Poisson measure produce changes in the
jump compensator. For instance, if ν(dz,dt) is an integer measure with jump
compensator νp(dz,dt), then (continuous) rotation or dilation in the variable z
on ν(dz,dt) (or time changes) are moved to the jump compensator νp(dz,dt).
Thus, unless the jump compensator processes have some homogeneity proper-
ties in the variable (z, t), we may not expect to preserve Poisson measures.
Therefore, if ν(dz,dt) is the integer measure corresponding to a typical Cauchy
process, i.e., with Lévy kernel Π(dz,dt) = |z|−m−1dz dt in Rm∗ × (0,∞) (which
is invariant under the operation (z, t) 7→ (λz, λt), for every λ 6= 0), and c is
a process as above, but predictable, then the random measure defined for any
compact subset K of Rm∗ and t ≥ 0 by the expression

ν̃c(K, ]0, t]) :=

∫ t

0

c(s)ν̃(K,d[τ−1(s)]),

with τ−1 as above, is indeed a martingale measure, which yields a Poisson
measure νc with the same Lévy kernel Π(dz,dt) = |z|−m−1dz dt.

In general, a random change of time (τ(t) : t ≥ 0) is a cad-lag (not necessarily
continuous) increasing process such that each τ(t) is a stopping time relative
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to the filtration (F(r) : r ≥ 0), for every t ≥ 0. The inverse τ−1 is defined as
τ−1(s) := ∞ if τ(t) ≤ s for every t ≥ 0 and τ−1(s) := inf{t ≥ 0 : τ(t) > s}
otherwise. Also, τ(∞) := limt→∞ τ(t) is set by definition. Certainly τ−1 is
cad-lag, τ(τ−1(s)) ≥ s and τ(t) := inf{s ≥ 0 : τ−1(s) > t}, for every s, t ≥ 0.
The process τ−1 is strictly increasing continuous if τ is so, but τ−1 may not be
continuous, whenever τ is only increasing and continuous. The family (Fτ (t) :
t ≥ 0) with Fτ (t) := F(τ(t)),

the σ-algebra generated by the stopping time τ(t), is indeed a filtration,
i.e., it is right-continuous and complete if (F(r) : r ≥ 0) is so. Any adapted
(or optional) process X is transformed into an adapted (or optional) process
Xτ (t) := X(τ(t)), relative to the filtration (Fτ (t) : t ≥ 0). If X is a martingale
then the Doob optional sampling theorem shows that Xτ (t) := X(τ(t)) is also a
martingale relative to the filtration (Fτ (t) : t ≥ 0). Also the maximal martingale
or p-estimates proves Xτ is p-integrable if X is so. It is simple to establish that
if X has (locally and/or integrable) bounded variation then the same is valid
for Xτ . A little more delicate is the fact that if X is a semi-martingale then
so is Xτ . Given a purely discontinuous (cad-lag) local martingale X, a typical
absolutely continuous change of times takes the form

τ−1(s) =

∫ s

0

c(r)dr and τ(t) = inf{s ≥ 0 : τ−1(s) > t},

where τ(t) = ∞ if τ−1(s) ≤ t for every s ≥ 0, and c(s) is a (usually bounded)
strictly positive predictable process. In this case, s 7→ τ−1(s) and t 7→ τ(t) are
both strictly increasing and continuous.

The reader is referred to the book Liptser and Shiryayev [158, Section 4.7,
pp. 246–248]. It is clear that we cannot expect to preserve predictable processes
when τ is not continuous. The change of time τ may introduce some extra dis-
continuities to the process. If τ is continuous and X is a continuous local
martingale with predictable quadratic covariation matrix process 〈Xi, Xj〉(t)
then Xτ is also a continuous local martingale with predictable quadratic co-
variation matrix process 〈Xτ

i , X
τ
j 〉(t) = 〈Xi, Xj〉(τ(t)). Similarly, if X is a

purely discontinuous local martingale with jump compensator νpX(K, ]0, t]) then
Xτ is also a purely discontinuous local martingale with jump compensator
νpXτ (K, ]τ(0), τ(t)]), for every t ≥ 0 and any compact subset K of Rd∗.

What follows (until the end of this subsection) should be taken as a heuristic
subsection, which is not completely understood (or at least, not in way needed in
this manuscript) and certain assertions should be taken as incomplete or unclear.
Perhaps, this will be clarified later, see Barndorff-Nielsen and Shiryaev [10] for
a comprehensive discussion.

Now consider change of times in an integer-valued measure (see Defini-
tion 4.6) ν on Rd∗ × [0,∞), i.e., besides ν being a measure for every ω, the
random process t 7→ ν(K × [0, t[) takes only integer values and is locally inte-
grable, for any compact set K of Rd∗ and any t > 0. Its jump compensator
νp (or dual predictable projection, see Definition 3.5) is the random mea-
sure satisfying E{ν(K × [0, t ∧ θ) − νp(K × [0, t ∧ θ])} = 0 or equivalently
t 7→ ν(K×]0, t]) − νp(K×]0, t]) is a martingale, for every compact K of Rd∗,
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any t > 0, and any finite stopping time θ, all this relative to the filtration
F = {F(t) : t ≥ 0}, generated by the family of random variables ν(K×]0, t]).

It is clear that h : Rd∗ → Rn∗ is a Borel measurable function such that
the closure of h−1(K) is a compact set in Rn∗ , for every compact K in Rd∗),
then νh(K×]0, t]) = ν(h−1(K)×]0, t]) defines an integer νh measure with jump
compensator νph(K×]0, t]) = νp(h−1(K)×]0, t]). Actually, we may take h to
be a random variable independent of ν, or even to be a predictable process
with respect to ν, i.e., νph(K×]0, t]) = νp({(z, s) : (h(z, s), s) ∈ K×]0, t]}) is a
predictable process for any compact set K of Rn∗ and any t > 0.

Continuing with the discussed above, a change of times is more delicate.
Indeed, let τ(z, t, ω) be Borel measurable random variable, (z, t) in Rd∗ × [0,∞],
with values in [0,∞], such that (a) t 7→ τ(z, t) is a non-decreasing cad-lag process
for every z and (b) τ(z, t) is a stopping time for every (z, t). Therefore, the
random mapping τ : (z, t) 7→

(
z, τ(z, t)

)
from Rd∗ × [0,∞] into itself transforms

an integer measure ν on into another integer measure

ντ (K×]0, s]) = ν
(
{(z, t) : z ∈ K, 0 < τ(z, t) ≤ s}

)
, ∀s ∈ (0,∞)

with jumps compensator given by

νpτ (K×]0, s]) = νp
(
{(z, t) : z ∈ K, 0 < τ(z, t) ≤ s}

)
, ∀s ∈ (0,∞).

Certainly, both transformations (h in Rd and τ in [0,∞)) can be combined,
i.e., considering the random mapping ϑ : (z, t) 7→

(
h(z, t), τ(z, t)

)
the integer

measure becomes νh,τ (K× [0, s[) = ν
(
ϑ−1(K× [0, s[)

)
, with jumps compensator

given by νph,τ (K × [0, s[) = νp
(
ϑ−1(K × [0, s[)

)
, Moreover, if νp is absolutely

continuous in t and can be expressed as

νp(K × [0, t[) =

∫
K

π(dz)

∫ t

0

m(z, r)dr, m(z, r) ≥ 0,

and the inverse time τ−1(z, s) has the representation

τ−1(z, s) =

∫ s

0

c(z, r)dr and τ(z, t) = inf{s ≥ 0 : τ−1(z, s) > t}, (5.147)

with τ(z, t) = +∞ if τ−1(z, s) ≤ t for every s ≥ 0, and some nonnegative locally
integrable F-predictable process c, then

νpτ (K × [0, s[) =

∫
K

π(dz)

∫ s

0

c(z, r)m(z, r)dr,

i.e., t 7→ ντ (K×]0, s]) − νpτ (K×]0, s]) is a martingale, for every compact K of
Rd∗, any s > 0, all this relative to the filtration Fτ = {Fτ (s) : s ≥ 0}, generated
by the family of random variables ντ (K×]0, s]).

Actually, if G = {G(t) : t ≥ 0} is another filtration independent of F then
the initial integer measure ν could be considered with respect to the filtration
G ∨ F, i.e., generated by the family of random variables ν(K×]0, t]) and the
σ-algebras G(t), t ≥ 0. In this case, the process c is G ∨ F-predictable and the
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process t 7→ ντ (K×]0, s])− νpτ (K×]0, s]) is a martingale relative to G ∨ Fτ , i.e.,
generated by the family of random variables ντ (K×]0, s]) and the σ-algebras
G(s). In particular, if the density is independent of z, i.e., c = c(s), then the
filtration Fτ = {Fτ (t) : t ≥ 0} generated image integer measure ντ satisfies
Fτ (t) = F(τ(t)), where F = {F(t) : t ≥ 0} is the filtration generated by the
initial integer measure ν. Note that the existence of a jump compensator is used
to obtain νp and the uniqueness of the jump compensator is necessary when νpτ
is identified as νpτ

(
(K × [0, s[)

)
= νp

(
ϑ−1(K × [0, s[)

)
. Moreover, if

τ−1
ε (s) = ν

(
{(z, t) : |z| ≥ ε, 0 < τ(z, t) ≤ s}

)
,

and its inverse τε(t) = inf{s ≥ 0 : τ−1
ε (s) > t},

and if f(z, t) and c(z, s) with 0 ≤ c(z, s) ≤ 1 are predictable processes with
respect to the filtration G ∨ F then the stochastic integral∫

{|z|≥ε}×]0,τε(t)]

f(z, τ−1(z, s)) ντ (dz,ds)

is defined and

E
{∣∣∣ ∫

{|z|≥ε}×]0,τε(t)]

f(z, τ−1(z, s))ντ (dz,dt)
∣∣∣2} =

= E
{∫
{|z|≥ε}×]0,t]

|f(z, t)|2c(z, t)νp(dz,dt)
}
,

as expected, and the argument is completed as ε→ 0.
In particular, if ν is a homogeneous Poisson measure (see Definition 4.9 with

intensity measure π(dz)dt, i.e., νp is the deterministic Radon measure π(dz)dt
on Rd∗ × [0,∞), and the transformation (5.147) is used with a nonnegative
bounded Borel (deterministic) function c(z, r), then the integer measure ντ de-
fined as above is indeed a Poisson measure with intensity measure Πτ (dz,dt) =
c(z, t)π(dz)dt. What is desired is to use the parameters c(z, t, x) and π to con-
struct a Poisson measure Π(c, dz,dt) with intensity measure c(z, t, x)π(dz)dt
such that x can be replaced by a predictable process x = y(t) later on.

Moreover, if π is a finite measure then the integer measure ν corresponds
to a composed Poisson process. For instance, let {ζn, θn} be a sequence of
iid random variables such that ζn is Rd∗-valued with distribution π/π(Rd∗) and
θn has exponential distribution with mean E{θn} = π(Rd∗). Define p(t) =∑
n ζn1{

∑
i≤n θi≤t}. If c(z) is a strictly positive π-integrable function and the

change of times is given by (5.147) then

pτ (t) =
∑
n

ζn1{τ(ζn,
∑
i≤n θi)≤t} =

∑
n

ζn1{
∑
i≤n θi≤τ−1(ζn,t)}

is another composed Poisson process with respect to the measure c(z)π(dz).
This is also valid if the density function c is only nonnegative, but the second
expression of pτ (t) with τ−1(ζn, t) may not hold true.

Regarding Lévy processes, consider a purely discontinuous Lévy process,
i.e., a compensated Poisson process p̃ = {p̃(t) : t ≥ 0} with valued in Rd,
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or equivalently a standard Poisson measure p in Rd∗ with Lévy measure π on
Rd∗, π(dz) dt = E{p(dz,dt)}, and martingale measure p̃(dz,dt) = p(dz,dt) −
π(dz) dt, i.e., the Lévy process is defined by means of the stochastic integral

p̃(t) =

∫
Rd∗×]0,t]

zp̃(dz,dt).

Given a bounded predictable process c(z, t) ≥ 0, indexed by z in Rd∗, define the
change of times

τ−1(z, s) =

∫ s

0

c(z, r)dr and τ(z, t) = inf{s ≥ 0 : τ−1(z, s) > t}.

where τ(z, t) =∞ if τ−1(z, s) ≤ t for every s ≥ 0, as in (5.147). Therefore, the
transformed purely discontinuous martingale or compensated Poisson process
p̃τ = {p̃τ (t) : t ≥ 0} should be expressed in term of the Poisson martingale
measure p̃(dz,dt), i.e.,

p̃τ (t) =

∫
Rd∗×]0,∞)

1{τ(z,r)≤t}p̃(dz,dr),

and not in term of the compensated Poisson process {p̃(t) : t ≥ 0}. This may
look non-anticipative,

p̃τ (t) =

∫
]0,∞)

1{τ(p̃(r)−p̃(r−),r)≤t}p̃(dr),

i.e., the stochastic integral cannot be defined? If a filtration F is attached to
the compensated Poisson process p̃ = {p̃(t) : t ≥ 0} then the new filtration Fτ
induced by the change of time τ has the σ-algebras Fτ (t), which are generated
by F

(
τ(z, t)

)
To end this heuristic discussion and go back to actual assertions, if we begin

with a Lévy process p with characteristic (0, I, π) in Rd then the continuous
part of p is a Wiener process w and the jumps yield a Poisson measure ν with
Lévy measure π (both in Rd), all relative to the filtration generated by p and
satisfying the usual conditions, where the Wiener processes and the Poisson
measures result independent. Equivalently, if we begin with a Wiener process w
and a Poisson measure ν with Lévy measure π, both in Rd and independent of
each other, then we can construct a Lévy process p (and the filtration satisfying
the usual conditions) with characteristic (0, I, π). Based on these arguments,
we can apply the above random change of time to a Lévy process. The reader
is referred to the book Barndorff-Nielsen and Shiryaev [10] for a comprehensive
discussion.

5.5 Weak and Strong Solutions

The assumptions of Theorem 5.3 are rather neat, but sometime weaker condi-
tions are needed. Note that in the previous sections we have assumed a fixed and

Section 5.5 Menaldi January 7, 2014



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 588

given Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0), with
Lévy measure π(·), i.e., a complete filtered probability space (Ω,F , P,Ft : t ≥ 0),
the stochastic process (w(t) : t ≥ 0) is a n-dimensional (standard) Wiener space
and (ν(B, ]0, t]) : B ∈ Rm∗ , t ≥ 0) is an independent (standard) Poisson measure
with (intensity) Lévy measure π(B) := E{ν(B, ]0, t])}/t, which satisfies∫

Rm∗

|ζ|2

1 + |ζ|
π(dζ) <∞,

with martingale measure ν̃(B, ]0, t]) := ν(B, ]0, t]) − tπ(B). This martingale
measure ν̃ is identified with the Rm-valued (Poisson) compensated-jump process

p̃(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds), t ≥ 0,

in the sense that given the Poisson integer measure ν we obtain the Poisson
martingale measure ν̃, which yields the Poisson compensated-jump process p̃,
and conversely, starting from a Poisson compensated-jump process p̃ we may
define a Poisson integer measure

ν(B, ]0, t]) =
∑

0<s≤t

1{p̃(s)−p̃(s−)∈B},

which yields the Poisson martingale measure ν̃.

• Remark 5.37. Using p̃ instead of ν̃ in the setting of the stochastic ordinary
differential equation correspond to taking a coefficient

γi(ζ, t, x) =
∑
j

γ̃i(t, x)ζj ,

i.e., particular cases, but sufficiently general.

A simple situation appears when the coefficients are time-independent, i.e.,
setting x(t, x0, t0) = x(t), with initial condition x(t0) = x0, and differential

dx(t) = g(x(t), v(t))dt+ σ(x(t), v(t))dw(t) +

∫
Rm∗
γ(ζ, x(t), v(t))ν̃(dζ,dt).

For the deterministic case, namely, when σ = 0 and γ = 0, it is clear that
x(·, x0, t0) = x(· − t0, x0, 0), but for the stochastic case, the equality holds only
in law, i.e., in the same way that for a Wiener process w(·) we deduce that
w(· + t0) − w(t0) is again a Wiener process, even if w(·) 6= w(· + t0) − w(t0).
Certainly, the statistics of x(·, x0, t0) and x(· − t0, x0, 0) are the same. A more
delicate problem occurs when the coefficients are not so smooth, as we will see
later. Thus, supposing that the Wiener-Poisson space is part of the unknown
solution becomes essential.

If the filtration F = {Ft : t ≥ 0} is generated by the processes w and p̃, i.e.,
F is the minimal completed filtration (right-continuous) such that w and p̃ are
adapted, then

(i) we can always reduce to the canonical Wiener-Poisson space, and
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(ii) the solution can be expressed as a deterministic functional of the processes
w and p̃, i.e., x = h(w, p̃), almost surely, where h is a Borel measurable functions
from C([0,∞[,Rd)×D([0,∞[,Rd) into D([0,∞[,Rd), as seen later in details.

Actually, a key point is the fact that the given filtration F = {Ft : t ≥
0} is not necessarily the filtration generated by the processes w and p̃, so in
general, to be able to immerse the problem in the canonical sample space Ω =
C([0,∞[,Rn)×D([0,∞[,Rm) we need to consider all three processes w, p̃ and
the solution x. This will be discuss in some detail later on this section, see also
Section 4.3.5 of the previous Chapter.

The setting of the d-dimensional stochastic ordinary differential equation is
slightly modified by including in the unknown elements not only the stochastic
process (x(t) : t ≥ 0) but the whole Rn × Rm∗ Wiener-Poisson space

(Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0),

and eventually the control process (v(t) : t ≥ 0). In the previous section, the
Wiener-Poisson space was given a priori so that the solution process (x(t) : t ≥
0) is adapted to the initial filtration (Ft : t ≥ 0), i.e., the solution is found in
term of filtration given on the the Wiener-Poisson space. Thus, we may use the
canonical setting, i.e., the canonical sample space C([0,∞[,Rn)×D([0,∞[,Rm)
as the probability space (Ω, P ), where P = Pw×Pν̃ is the product of the Wiener
and the Poisson measures as in (5.2) and (5.1). The projection maps (ω1, ω2) 7→(
ω1(t), ω2(t)

)
, defined for every t ≥ 0, from C([0,∞[,Rn) ×D([0,∞[,Rm) into

Rn × Rm, as Xw(t, ω) := ω1(t) = w(t, ω) and Xν̃(t, ω) := ω2(t) = p̃(t, ω), are
a standard Wiener process (w(t) : t ≥ 0) and the compensated jump (Poisson)
process

p̃(t) :=

∫
Rm∗ ×]0,t]

ζν̃(dζ,ds), t ≥ 0.

corresponding to a standard Poisson measure (ν(dζ,ds) : ζ ∈ Rm∗ , s ≥ 0),
with martingale measure ν̃(dζ,ds) and Lévy measure π(dζ) on Rm∗ . Clearly, the
minimal filtration, i.e., the generated by (the null sets and) the process (w, p̃)
can be used. In this context (and with coefficients independent of the control
process), the solution process x(·) is written as a deterministic functional of the
Wiener process and the Poisson measure, as discussed in detail later.

On the other hand, by letting the Wiener-Poisson space (and the control) be
part of the unknown, we can enlarge the filtration (but keeping the martingale
properties of the Wiener process w and the Poisson measure ν) so that the
solution may not be a predictable functional on the canonical sample space.
Sometime, a candidate for a solution is found and then the Wiener-Poisson
process is constructed accordingly.

In stochastic control theory, the control process (v(t) : t ≥ 0) is a feedback
of the state, i.e., v(t) := k(t, x(t−)), where k(t, x) is only a (deterministic) Borel
measurable function. Thus, the interest of this section is to study d-dimensional
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stochastic ordinary differential equation of the form
dx(t) = g(t, x(t))dt+

n∑
k=1

σk(t, x(t))dwk(t) +

+

∫
Rm∗

γ(ζ, t, x(t))ν̃(dζ,dt),

(5.148)

without any Lipschitz condition in the x variable.

Definition 5.38 (weak or strong). As we mention early, for a solution of the
above SDE (5.148) corresponding to the coefficients g, σ, γ, with initial condition
x0 at t0 and Lévy measure π(·), we mean an adapted cad-lag process (x(t) : t ≥
t0) satisfying x(t0) = x0, and (5.148) for every t ≥ t0, which implies that the
integrals∫ t

t0

|g
(
s, x(s)

)
|ds,

∫ t

t0

|σ
(
s, x(s)

)
|2ds,

∫ t

t0

ds

∫
Rm∗
|γ
(
ζ, s, x(s)

)
|2π(dζ),

are almost surely finite, for any t ≥ t0.
(a) Then, by weak existence of a solution with initial distribution P0 at t0,
we mean that for some Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈
Rm∗ , t ≥ 0), with Lévy measure π(·), there are a random variable x0 with
distribution P0 and a solution (x(t) : t ≥ t0) of the SDE (5.148) with initial
condition x(t0) = x0. Thus a weak solution is a solution not necessarily adapted
to the Wiener process and Poisson measure, in the sense that the filtration
F = {Ft : t ≥ 0} could be strictly larger than the canonical filtration generated
by w and ν. In most cases, the weak solution is found in the canonical sample
space Rd ×C([0,∞[,Rn)×D([0,∞[,Rm), with the product probability P0 × P
and some filtration to which the solution process is adapted and the canonical
Wiener process and Poisson measure are martingales.

(b) However, by strong existence of a solution with initial distribution P0 at t0,
we mean that for every Wiener-Poisson space (Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈
Rm∗ , t ≥ 0), with Lévy measure m(·) and any F0-measurable random variable x0

with distribution P0, there is a solution (x(t) : t ≥ t0) of the SDE (5.148) with
initial condition x(t0) = x0. Because the initial condition x0 (with distribution
P0, at t0 = 0 to simply notation) is independent of the Wiener process and the
Poisson measure, a strong solution is a solution in the canonical sample space
Rd × C([0,∞[,Rn) ×D([0,∞[,Rm), with the product probability P0 × P, and
the filtration F is the usually augmentation of the one generated by the initial
condition x0, the Wiener process w and the Poisson process, i.e., the strong
solution is a functional of the data x0, w and p.

(c) Thus, we say that the uniqueness in law holds whenever two solutions, in
possible distinct Wiener-Poisson spaces but with the same Lévy measure and
initial condition, have the same probability law, i.e., if x and y are two so-
lutions then x and y induce the same probability law on the canonical space
D([t0,∞[,Rd).
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(d) On the other hand, we say the pathwise uniqueness holds whenever two
solutions, in a common Wiener-Poisson space and with the same initial condi-
tion, are each one version of each other, i.e., if x and y are two solutions then
P{x(t) = y(t)} = 1, for every t ≥ t0.
Sometimes, uniqueness in law and pathwise uniqueness are called weak unique-
ness and strong uniqueness, respectively.

The following Tanaka’s example is used to clarify the two concepts of unique-
ness. The one-dimensional stochastic ordinary differential equation

x(t) =

∫ t

0

sgn(x(t))dw(t), t ≥ 0,

where sgn(·) is the sign function, has only uniqueness in law. Indeed, if (x,w)
is a weak solution then x is a continuous square-integrable martingale with
quadratic variation

〈x(t)〉 =

∫ t

0

sgn2(x(s))ds = t.

Hence x is a standard Wiener process, and the weak uniqueness holds. However,
the strong uniqueness can not hold since (−x,w) is also a solution and x is not a
version of −x. To make this clear, notice that if x is a standard Wiener process
on a given filtered space (Ω, P,F ,F(t) : t ≥ 0) then defining

w(t) :=

∫ t

0

sgn(x(s))dx(s), ∀t ≥ 0

we deduce that

x(t) =

∫ t

0

sgn2(x(s))dx(s) =

∫ t

0

sgn(x(s))dw(s),

which shows the existence of a weak solution (x,w). Moreover there is no strong
solution to this equation. Namely, if x(t) were a strong solution, it should be
adapted to the (completed) natural filtration of the driving Wiener w. Now,
since x is a Wiener process, we can consider the Tanaka formula and write

w(t) = |x(t)| − `xt (0),

where `xt (0) is the local time at 0 of the Wiener process x. This implies that
w is adapted to the filtration of |x|. Hence, x is adapted to the filtration of |x|
which is a contradiction.

A key point in the study of weak solutions is that fact that pathwise unique-
ness implies uniqueness in law. To simplify the notation, we take t0 = 0 in most
of this section.

Theorem 5.39 (Yamada-Watanabe). If the pathwise uniqueness holds for the
stochastic ordinary differential equation (5.148), as expressed by Definition 5.38,
then uniqueness in law also holds.
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Proof. This is essentially based on disintegration of probability measures, or in
other words, based on regular conditional probabilities. Indeed, a solution x of
(5.148) in [0,∞[ can be regarded as the element (x0, w, p̃, x− x0) in the Polish
space

Ω̃ := Rd × C([0,∞[,Rn)×D([0,∞[,Rm)×D([0,∞[,Rd)

together with a probability measure (still denoted by) P, which is defined by
the expression

P̃ (A) := P{(x0, w, p̃, x− x0) ∈ A}, ∀A ∈ B(Ω̃)

in terms of the initial probability P{·}. The marginal distribution in the vari-
ables (x0, w, p̃) is P∗ = Px0 × Pw × Pν̃ , see (5.1) and (5.2), where Px0 is the
distribution in Rd of the random variable x0 used as the initial condition. The
filtration (F̃(t) : t ≥ 0) is generated by (x0, w, p̃, x−x0)), made right-continuous
and completed with respect to the probability measure P̃ .

Denote by q = q(ξ, w, p̃, F ) a regular conditional probability for Borel σ-
algebra B

(
D([0,∞[,Rd)

)
given (ξ, w, p̃), i.e., a mapping q from

Rd × C([0,∞[,Rn)×D([0,∞[,Rm)× B
(
D([0,∞[,Rd)

)
into [0, 1] such that:

(a) for each ξ in Rd, w in C([0,∞[,Rn) and p̃ in D([0,∞[,Rm) the map
F 7→ q(ξ, w, p̃, F ) is a probability measure on B

(
D([0,∞[,Rd)

)
,

(b) for each F in B
(
D([0,∞[,Rd)

)
the map (ξ, w, p̃) 7→ q(ξ, w, p̃, F ) is mea-

surable with respect to B
(
Rd × C([0,∞[,Rn)×D([0,∞[,Rm)

)
,

(c) for every B in B
(
Rd × C([0,∞[,Rn)×D([0,∞[,Rm)

)
we have

P (B × F ) =

∫
B

q(ξ, w, p̃, F )P∗(dξ,dw,dp̃),

for every F in B
(
D([0,∞[,Rd)

)
.

At this point, if we have two weak solutions (x1(t) : t ≥ t0) and (x2(t) : t ≥
t0) with the same initial condition and probabilities P1 and P2, we can follow
the above construction on [t0,∞) to obtain two regular conditional probabilities
qi = qi(ξ, w, p̃, dy

i), with i = 1, 2. Hence, on the Polish space

Ω := Rd × C([0,∞[,Rn)×D([0,∞[,Rm)×D([0,∞[,Rd)×D([0,∞[,Rd)
we define the probability measure

P (dω) := q1(ξ, w, p̃,dy1) q2(ξ, w, p̃,dy2)P∗(dξ,dw,dp̃),

where ω = (ξ, w, p̃, y1, y2) denotes a generic element in Ω. The filtration (F(t) :
t ≥ 0) is generated by the projection maps (x0, w(t), p̃(t), x1(t)−x0, x2(t)−x0),
made right-continuous and completed with respect to the above probability
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measure P. In view of the properties satisfied by the regular conditional we
have

P
(
(ξ, w, p̃, yi) ∈ A

)
= Pi{(x0, w, p̃, xi − x0) ∈ A}, i = 1, 2,

for every A in B
(
Rd × C([0,∞[,Rn) × D([0,∞[,Rm)

)
. which shows that the

distribution of (ξ + yi, w, p̃) under P is the same as the initial distribution of
(xi, w, p̃) under Pi. Since the pathwise uniqueness means that

P
(
ξ + y1(t) = ξ + y2(t), ∀t ≥ 0

)
= 1,

which can be written as

P (ω = (ξ, w, p̃, y1, y2) ∈ Ω : y1 = y2) = 1.

This proves that

P
(
ω = (ξ, w, p̃, y1, y2) ∈ Ω : (ξ, w, p̃, y1) ∈ A

)
=

= P
(
ω = (ξ, w, p̃, y1, y2) ∈ Ω : (ξ, w, p̃, y2) ∈ A

)
,

for every A in B
(
Rd ×C([0,∞[,Rn)×D([0,∞[,Rm)×D([0,∞[,Rd)

))
, i.e., the

uniqueness in law holds true.

The reader may check the book Rogers and Williams [214, Section V.3, pp.
140–157] for more detailed on the above proof.

Corollary 5.40. The pathwise uniqueness and the weak existence imply the
strong existence (and uniqueness).

Proof. To be clear, set S = C([0,∞[,Rn) × D([0,∞[,Rm) and note that the
diagonal

B =
{

(y1, y2) ∈ D([0,∞[,Rd)×D([0,∞[,Rd) : y1 = y2

}
is a Borel set. Now, we have proved above that

P (Rd × S ×B) = 1

and ∫
Rd×S

P∗(dξ,dw,dp̃)

∫
B

q1(ξ, w, p̃,dy1) q2(ξ, w, p̃,dy2) = 1.

Hence∫
B

q1(ξ, w, p̃,dy1) q2(ξ, w, p̃,dy2) = 1

almost everywhere in (ξ, w, p̃) with respect to the measure P∗(dξ,dw,dp̃). Now,
using the fact that a product measure with support on the diagonal is necessarily
a Dirac measure, we deduce that there exists some function

y = k(ξ, w, p̃) : Rd × S → D([0,∞[,Rd)
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such that

q1(ξ, w, p̃, {k(ξ, w, p̃)}) = q2(ξ, w, p̃, {k(ξ, w, p̃)}) = 1

almost everywhere with respect to P∗(dξ,dw,dp̃). Since the functions q1 and
q2 are measurable, a monotone class argument yields the measurability of the
function k with respect to the Borel σ-algebra B

(
Rd × S). Moreover, this also

proves that k is adapted. Note that this function h depends on the initial density
P0 of the initial condition x0.

Hence, for any given weak solution (x, x0, w, p), relative to the same initial
distribution P0, we consider the function

h : Rd × C([0,∞[,Rn)×D([0,∞[,Rm)→ D([0,∞[,Rd),

defined by h(ξ, w, p̃) = ξ + k(ξ, w, p̃), which satisfies x = h(x0, w, p̃). Now,
we have also that starting from another probability base (x′0, w

′, p′), with x′0
distributed as x0, the process x′ = h(x′0, w

′, p̃′) verifies the equation, see Propo-
sition 4.46. Hence there is strong existence of solution.

Recall that the function h depends on the distribution P0 of the initial
condition and that the pathwise uniqueness holds under a linear growth and a
locally Lipschitz assumptions like: there exists a constant C > 0 such that

x · g(t, x) + |σ(t, x)|2 +

∫
Rm∗
|γ(ζ, t, x)|2π(dζ) ≤ C(1 + |x|2), (5.149)

for every (t, x) in [t0,∞)×Rd, and for any r > 0 there exists a positive constant
M = M(r) such that (x− x′) ·

(
g(t, x)− g(t, x′)

)
+ |σ(t, x)− σ(t, x′)|2+

+

∫
Rm∗
|γ(ζ, t, x)− γ(ζ, t, x′)|2π(dζ) ≤M |x− x′|2, (5.150)

and for some q > d there exists a constant Mq = Mq(r) such that∫
Rm∗
|γ(ζ, t, x)− γ(ζ, t, x′)|qπ(dζ) ≤Mq|x− x′|q, (5.151)

for every (t, x), (t, x′) in [t0,∞)× Rd with t ≤ t0 + r, |x| ≤ r and |x′| ≤ r.

Corollary 5.41. Under the assumptions (5.149) and (5.150) there exists a
non-anticipating functional

F : Rd × C([0,∞[,Rn)×D([0,∞[,Rm)→ D([0,∞[,Rd),

such that for any initial condition x0 the expression x = F (x0, w, p̃) yields the
unique (strong) solution of the stochastic ordinary differential equation (5.148).
Moreover, if (5.151) also holds then the function F is continuous in the first
variable.
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Proof. In this context, a (deterministic) non-anticipating functional means a
Borel measurable function F with the property that the function (ω1, ω2) 7→
F (t, ω1, ω2) is measurable with respect to the σ-algebra generated by the random
variables Xs : (ω1, ω2) 7→ (ω1(s), ω2(s)) for 0 ≤ s ≤ t, see Definition 4.44.
Actually, the proposed non-anticipating functional F is the same constructed in
the previous corollary under the name h. Moreover, by means of an truncation
argument as in Theorem 5.3, we may assume that (5.150) and (5.151) are global,
i.e., it is satisfied with a constant M = M(r) independent of r.

First, we have to prove that h can be constructed independently of the initial
distribution P0. Indeed, let F0 = h be the above functional corresponding to a
given initial distribution P0, and denote by Fx the particular case where P0 = δx
is the delta distribution concentrated at x. A simple conditioning argument
yields

P0

{
x ∈ Rd : F0(x,w, p̃) = Fx(x,w, p̃)

}
= 1,

which means that the function F (x0, w, p̃) = Fx(x,w, p̃)
∣∣
x=x0

is the right can-

didate, i.e., x = F (x0, w, p̃) almost surely.
Next, we should establish the (joint) measurability of F. To this purpose, we

note that the polynomial estimate (5.54) of Theorem 5.11 yields an estimate of
the type: there exist some positive constants α and β, such that for any T > 0
there is a constant M = MT > 0 satisfying

E
{

sup
0≤t≤T

|x(t)− x′(t)|α
}
≤M |x0 − x′0|d+β ,

for any initial conditions x0 and x′0. Hence, by means of this estimate, the
Kolmogorov continuous extension technique can be applied (e.g., see Kunita[143,
Section 1.4, pp. 31–38]) to get a continuous version of the process (or field)
x0 7→ x, i.e., F (x0, w, p̃) can be redefined as a continuous function in the variable
x0, and hence F is jointly measurable.

Now, without the condition (5.151) the arguments are slightly different. In-
deed, if we revise the proof of Theorem 5.3 then we realize that the fixed-point
argument and Proposition 4.47 (in the previous Chapter) prove that the iter-
ation xn+1 = T (xn) yields a non-anticipative functional, and so is the limit as
n → ∞, i.e., assumption (5.151) is not necessary to get a (joint measurable)
non-anticipating functional.

• Remark 5.42 (Carathéodory). In a measure space (Ω,F, µ), consider a func-
tion f : Rd × Ω → R such that: (a) for any x the function ω → f(x, ω) is
F-measurable, (b) for any ω the function x → f(x, ω) is continuous. Then f
is jointly measurable with respect to Bd × F. Indeed, to simplify the notation,
assume d = 1 and, for a fixed n, define the functions qn and fn as follows:

qn(x) = i/n if i/n ≤ x < (i+ 1)/n, i = 0,±1, . . .

fn(x, ω) = k/n if k/n ≤ f(qn(x), ω) < (k + 1)/n, i = 0,±1, . . . ,
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which enjoy, for any x, the following properties: (1) ω → fn(x, ω) is a simple
function, (2) fn(x, ω) = fn(qn(x), ω), (3) |f(qn(x), ω)− fn(qn(x), ω)| ≤ 1/n, (4)
|qn(x) − x| ≤ 1/n. Therefore, the function fn is jointly measurable and, the
continuity in x and the inequality

|f(x, ω)− fn(x, ω)| ≤ |f(x, ω)− f(qn(x), ω)|+ |f(qn(x), ω)− fn(x, ω)|
imply that fn → f pointwise, i.e., f is jointly measurable. On the other hand,
if only (c) the function x→ f(x, ω) is continuous in measure, i.e., for any ε > 0
and for any sequence xn → x we have µ{|f(xn, ω) − f(x, ω)| ≥ ε} → 0 as
n → ∞. Then the previous arguments show that fn(x, ·) → f(x, ·) in measure,
so by taken a subsequence, we may define the limit almost surely. This is,
under the assumption (c), instead of (b), there is a version of f which is jointly
measurable. This same argument is used to show that any adapted process
which is continuous in probability has a progressively measurable version.

For the Wiener case, the reader may find more details on the above proof in
Roger and Williams [214, Theorem V.13.1, pp 136–138]. Clearly, to show the
joint measurability it is not necessary to have continuity in x0, i.e., the assump-
tions (5.149), (5.150) and (5.151) are not necessary. Indeed, in the case without
jumps, the following result is found in Kallenberg [121, Theorem 21.14, pp 423–
426]: Assume that weak existence and pathwise uniqueness hold for solutions
starting at arbitrary fixed points. Then the strong existence and uniqueness in
law hold for every initial distribution. Furthermore, there exists a Borel measur-
able and universally predictable function h : Rd×C([0,∞[,Rn)→ C([0,∞[,Rd)
such that any solution (x,w) satisfies x = h(x(0), w) almost surely. Clearly, a
result similar to the above seems to hold for the Wiener-Poisson case.

• Remark 5.43. Actually, the coefficients g, σ and γ may be considered pre-
dictable functional on the canonical space, see Section 4.3.5 of the previous
Chapter. For some technical reasons, we consider the universally completed
predictable σ-algebra, and hence, universally predictable functionals on the
canonical sample space. Under these assumptions on the coefficients, the pre-
vious Theorem and Corollaries remain valid with obvious modifications on the
conditions (5.149), (5.150) and (5.151). Furthermore, if the coefficients are
predictable functional like g(t, x, v), σ(t, x, v) and γ(ζ, t, x, v), where v is a non-
anticipative process relative to the canonical Wiener-Poisson process (see Defi-
nition 4.41) then Corollary 5.41 holds true with natural changes, the solution is
a non-anticipating functional on w, p̃, v and the initial condition ξ, which may
be regarded as another non-anticipative process, see Proposition 4.47.

To emphasize this difference, let us discuss Tsirel’son example. Consider the
equation

x(t) =

∫ t

0

b(s, x(·)) ds+ w(t) (5.152)

where b : [0, 1] × C([0, 1],R) → [0, 1] is given as follows: choose a decreasing
sequence of times converging to 0

0← t−n < · · · < t−3 < t−2 < t−1 < t0 = 1,
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and defining

b(t, w) = f
(w(tk)− w(tk−1)

tk − tk−1

)
, tk ≤ t < tk+1

with f the fractional part, i.e., f(ξ) = ξ − [ξ], with [ξ] being the integer part of
a real number. Then, it is clear that by means of Girsanov theorem to reduce to
the Wiener process, and so, there exists a unique weak solution to (5.152). Now,
let us check that equation (5.152) has no strong existence of solution. Indeed,
let us suppose that the solution x is adapted to the Wiener process and we will
get a contradiction. First, from the equation (5.152) we can write

xk+1 = wk+1 + f(xk)

where

xk =
x(tk)− x(tk−1)

tk − tk−1
, wk =

w(tk)− w(tk−1)

tk − tk−1
.

The particular definition of the function f implies that e2πif(x) = e2πix. Hence
we can write, inductively,

e2nπixk+1 = e2nπiwk+1e2nπiwk . . . e2nπiwk−j+1e2nπixk−j .

Since the solution x is adapted to the Wiener process w, the random vari-
able xk+1 must be independent of xk, xk−1, . . . , wk, wk−1, . . ., and we deduce
E{e2πixk+1} = 0. Moreover, for any j,

E(e2πixk+1 | Bk+1
j ) = e2πiwk+1e2πiwk · · · e2πiwk−j+1E(e2πixk−j ) = 0,

where Bk+1
j is the σ-algebra generated by all increments w(t)−w(s) with tk−j ≤

s < t ≤ tk+1, and therefore Ftk+1
=
∨
j B

k+1
j . Then

e2πif(xk+1) = E(e2πixk+1 | Ftk+1
) = lim

j→∞
E(e2nπixk+1 | Bk+1

j ) = 0,

is uniformly distributed in [0, 1), which is a contradiction. The reader may
consult the book Rogers and Williams [214, Section V.3.18, pp. 155–157] for
more comments on the above example.

• Remark 5.44. In the above example, the solution x(t) is not adapted to the
Wiener process w. Compare this case with the simpler equation

x(t) =

∫ t

0

b(x(s)) ds+ w(t).

where b is only bounded and measurable, and therefore there exists a strong
solution, e.g., see Karatzas and Shreve [124, Proposition 5.17, pp. 341–342].

Returning to the control process, we can be regarded v as predictable func-
tional, but for simplicity, it is preferred the above setting with a specific control
v. Thus, to include the control process (v(t) : t ≥ 0) in the weak formulation we
need to fix the probability space. To be more specific, the data are:
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(a) the (deterministic) functions g(t, x, v), σ(t, x, v), γ(ζ, t, x, v) and a Lévy
measure π(·) as in the previous section,

(b) the canonical (pre-) filtered (Polish) space

Ω := C([0,∞[,Rn)×D([0,∞[,Rm), B(Ω), (Fo(t) : t ≥ 0),

where Fo(t) is the intersection in ε > 0 of the σ-algebra generated by the
projection maps Xw(s, ω1, ω2) := ω1(s) and Xν̃(s, ω1, ω2) := ω2(s) for 0 ≤ s ≤
t+ ε, with ω = (ω1, ω2), ω1 in C([0,∞[,Rn) and ω2 in D([0,∞[,Rm). The
canonical filtration (Fo(t) : t ≥ 0) is right-continuous, but it will be completed
as soon as a probability measure is defined on the Polish space Ω.

(c) a distribution P0 on Rd and a Rq-valued adapted process (v(t) : t ≥ 0).

And the unknowns are:

(1) a probability P = Pw × Pν̃ on
(
Ω,B(Ω)

)
such that Pw is the standard

Wiener measure, i.e., (5.2) holds, and Pν̃ is the standard compensated Poisson
measure with Lévy measure π(·), i.e., (5.1) holds,

(2) a Rd-valued random variable x0 with the given distribution P0 and a Rd-
valued adapted cad-lag process (x(t) : t ≥ 0) on (Ω,B(Ω), P,F(t) : t ≥ 0)
such that the equation (5.4) holds, where the filtration (F(t) : t ≥ 0) is the
completion of (Fo(t) : t ≥ 0) with respect to null sets in

(
P,B(Ω)

)
.

Due to some technical issues, sometime we allow the control process (v(t) : t ≥ 0)
to be universally predictable, the filtration {Fo(t) : t ≥ 0} are universally
completed to a new filtration {Fu(t) : t ≥ 0} to which the process is assumed
to be predictable.

Clearly, uniqueness in law implies that the law inD([0,∞[,Rd) of the stochas-
tic process (x(t) : t ≥ 0) is unique. With this setting we do have the key fact
that pathwise uniqueness implies uniqueness in law.

It is interesting to realize that identifying the concept of a Rd-valued cad-lag
stochastic process with a D([0,∞[,Rd)-valued random variable, we can rephrase
the meaning of a weak solution as follows. The data are (a) as above, and instead
of (b) and (c) we require

(b’) a distribution P0 on Rd and a measurable functional v on D([0,∞[,Rq)
such that the Rq-valued function ω(·) 7→ v(ω(t)), where ω(·) denote a generic
element in D([0,∞[,Rq), is measurable with respect to Fo(t), defined as above,
for every t ≥ 0.

The unknowns are:

(1) a (standard) n×m Wiener-Poisson space

(Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0)

with Lévy measure π(·),
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(2) a Rd-valued random variable x0 with distribution P0 and a D([0,∞[,Rd)-
valued random variable x such that ω 7→ x(t, ω) is measurable with respect to
Ft, for every t ≥ 0, and finally, the equation (5.4) holds.

Another important point to remark is the fact that as long as pathwise
uniqueness holds, there is not differences between strong and weak solution.

Global existence of weak solutions is only discussed under (Borel measura-
bility is implicitly assumed) the growth condition (5.8), i.e., linear growth in the
variable x for the diffusion term σ(t, x, v), the jumps term γ(ζ, t, x, v) and the
non-monotone part of the drift term g(t, x, v). This allows any growth for the
drift in variable x as long as it is in a “good” direction. The moment estimates
(5.52) and (5.53) are then valid.

Girsanov transformation is a good tool to establish the existence of a weak
solution for measurable drift coefficients. Indeed, let M be a (real-valued) con-
tinuous local martingale in a filtered probability space

(Ω,F , P,F(t) : t ≥ 0).

Assume that the process

Z(t) := exp
(
M(t)− 〈M〉(t)

2

)
,

is a martingale, where 〈·〉 denotes the optional quadratic variation. Since Z
is always a local martingale and a sub-martingale this means that we assume
E{Z(t)} = 1 for every t ≥ 0, which is true if

E
{

exp
( 〈M〉(t)

2

)}
<∞, ∀t ≥ 0,

in view of Novikov sufficient condition, see Section 5.4 for more details and
references. If Ω is a good probability space (e.g., a Polish space as the canonical
space D of cad-lag functions) then there exits a probability P̃ on Ω such that
for each t ≥ 0 we have

P̃ (A) =

∫
A

Z(t)P (dω), ∀A ∈ F(t),

in short we say either P̃ (dω) = ZP (dω) or P̃ (dω)|F(t) = Z(t)P (dω), for every
t ≥ 0. The measure P and P̃ are absolutely continuous one to each other. This is
know as Cameron-Martin change of measure or Girsanov transformation, which
affirms that for any continuous local martingale X in (Ω,F , P,F(t) : t ≥ 0) the
process

X̃(t) := X(t)− 〈X,M〉(t), ∀t ≥ 0

results a continuous local martingale in (Ω,F , P̃ ,F(t) : t ≥ 0), where 〈·, ·〉 is the
optional quadratic covariation of local martingales in (Ω,F , P,F(t) : t ≥ 0).

To make use of the above result, let (x(t) : t ≥ t0) be a solution of the
previous d-dimensional stochastic ordinary differential equation (5.5) with a
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initial condition at t0 and let b(t, x, v) be a Rn-valued measurable function.
Define the (density or exponential martingale) process

Z(t) := exp
(∑

k

∫ t

t0

bk(s, x(s), v(s))dwk(s)−

−1

2

∑
k

∫ t

t0

|bk(s, x(s), v(s))|2ds
)
,

for every t ≥ 0 under the assumption that

E
{

exp
(1

2

∑
k

∫ t

t0

|bk(s, x(s), v(s))|2ds
)}

<∞, ∀t ≥ 0.

which is clearly satisfied if b is bounded. Calculating the optional quadratic
covariation of continuous martingale part of the solution (x(t) : t ≥ 0) and the
Wiener process as follow

yi(t) :=
∑
k

∫ t

t0

σik(s, x(s), v(s))dwk(s),

〈yi, wk〉(t) =

∫ t

t0

σik(s, x(s), v(s)) bk(s, x(s), v(s))ds,

the Girsanov transformation shows that (x(t) : t ≥ 0) is a solution of the
following d-dimensional stochastic ordinary differential equation

dx(t) = g̃(t, x(t), v(t))dt+ σ(t, y(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, y(t), v(t))ν̃(dζ,dt),
(5.153)

where g̃i := gi +
∑
k σik bk, in the filtered probability space (Ω,F , P̃ ,F(t) :

t ≥ 0). Since we can do the inverse change of variables, we deduce that both
stochastic differential equation (5.5) and (5.153) are equivalent as long as we
change the probability measure. Hence, we have existence and uniqueness for
any drift of the form of g̃, where b is measurable and bounded, and g, σ and γ
satisfy the conditions of Theorem 5.3. Moreover, we can add a monotone term
to the drift coefficient g.

For instance, the reader may consult the books Ikeda and Watanabe [110,
Chapter IV, pp. 159–246] and Karatzas and Shreve [124, Chapter 5, pp. 281–
398] for a more detailed treatment.

5.6 Martingale Problems

After discussing weak solutions we realize that a solution is indeed a probability
measure in the canonical space satisfying a certain number of conditions which
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involve the given data. In particular, consider the following integro-differential
operator

A(t, v)ϕ(x) =

d∑
i,j=1

aij(t, x, v)∂ijϕ(x) +

d∑
i=1

gi(t, x, v)∂iϕ(x) +

+

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, t, x, v),

(5.154)

where ∂i and ∂ij denote the partial first xi and second xi, xj derivatives and ∇
is the gradient in the variable x,

aij(t, x, v) :=
1

2

n∑
k=1

σik(t, x, v)σjk(t, x, v), (5.155)

and

M(B, t, x, v) = π({ζ : γ(ζ, t, x, v) ∈ B}), ∀B ∈ B(Rd∗) (5.156)

is the jumps or Lévy kernel in Rd∗.
The proper integro-differential part of A, i.e., the last term or integral term

in expression (5.154), can be rewritten as I(t, v)ϕ(x) =

∫
Rm∗

[ϕ(x+ γ(ζ, t, x, v))− ϕ(x)−

−γ(ζ, t, x, v) · ∇ϕ(x)]π(dζ),

(5.157)

or, after using Taylor formula with γ(ζ) := γ(ζ, t, x, v),

I(t, v)ϕ(x) =

∫ 1

0

dθ

∫
Rm∗

γ(ζ) · [∇ϕ(x+ θγ(ζ))−∇ϕ(x)]π(dζ) =

=

∫ 1

0

(1− θ)dθ
∫
Rm∗

γ(ζ) ·
[
∇2ϕ

(
x+ θγ(ζ)

)
γ(ζ)

]
π(dζ),

as long as ϕ is smooth. Moreover, for any function ψ(z) satisfying ψ(z) = z in
a neighborhood of z = 0 and with a compact support in Rm, we see that a term
of the form∫

Rm∗

[
γ(ζ, t, x, v)− ψ

(
γ(ζ, t, x, v)

)]
π(dζ) · ∇ϕ(x),

can be regarded as part of the drift coefficient g. Therefore, the proper integro-
differential part I may take the form I(t, v)ϕ(x) =

∫
Rm∗

[
ϕ(x+ γ(ζ, t, x, v))− ϕ(x)]π(dζ)−

−ψ
(
γ(ζ, t, x, v)

)
· ∇ϕ(x)

]
π(dζ),

(5.158)

whenever necessary. This proves that if the coefficients g, σ and γ are locally
bounded, in particular if the growth condition (5.8) is satisfied then Aϕ is
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bounded (in t, x and v) for every twice-continuously differentiable function ϕ
with a compact support in Rd.

It is clear that the operator A is acting on the space variable x for smooth
functions ϕ (e.g., C2 with bounded second derivatives) and holds t and v as
parameters. Itô formula shows that for any solution (x(t) : t ≥ t0) on the
canonical Wiener-Poisson space

(Ω,F , P̃ ,F(t), w(t), ν̃(dt, dζ) : t ≥ 0, ζ ∈ Rm∗ ),

Ω = C([0,∞[,Rn)×D([0,∞[,Rm),

with Lévy measure π(·), the stochastic process for t ≥ 0,

Mϕ(t) := ϕ(x(t))− ϕ(x(t0))−
∫ t

t0

A(s, v(s))ϕ(x(s))ds, (5.159)

is a stochastic integral, and so a real-valued (quasi-left continuous, bounded,
local) martingale for any smooth function ϕ with a compact support. The reader
may check the books Stroock and Varadhan [241], where the so-called martingale
problem was introduced for diffusion processes or Ethier and Kurtz [76] where
the martingale problems are considered for more general Markov processes. For
instance, a more recent approach is given in He et al. [105] or Kallenberg [121].

Without the growth assumption (5.8) on the coefficients of the (non-local)
operator A we need to assume that the integral expression in (5.159) makes
sense as a Lebesgue integral in [t0, t] almost surely, i.e., the local martingale
condition for Mϕ should include the following condition:

P
{∫ t

t0

|A(s, v(s))ϕ(x(s))|ds <∞
}

= 1, ∀t.

If the coefficients of the integro-differential operator A are bounded, then the
above integral is bounded for any ϕ function which is bounded together with
its first and second derivatives.

The key point is the converse of the (local) martingale condition, namely,

Theorem 5.45. Suppose that g, σ and γ are Borel measurable coefficients sat-
isfying the growth condition (5.8), and that a control process v(·) is given as an
adapted (predictable) mapping from D([t0,∞),Rd) into Rq. Let a(s, x, v) and
M(B, s, x, v) be defined by (5.155) and (5.156), and let (x(t) : t ≥ t0) be a an
adapted cad-lag stochastic process in a filtered space (Ω,F , P,F(t) : t ≥ t0)
such that the process Mϕ in (5.159) is a bounded martingale, for every smooth
(i.e., differentiable of any order) real valued function ϕ with a compact support
in Rd, Then there is a Rd-valued (quasi-left continuous) local square-integrable
martingale M = (M1, . . . ,Md) with M(t0) = 0 such that

x(t) = x(t0) +

∫ t

t0

g(s, x(s), v(s))ds+M(t),

〈M c,M c〉(t) =

∫ t

t0

a(s, x(s−), v(s))ds,

νpM (B, ]t0, t]) =

∫ t

t0

M(B, s, x(s−), v(s))ds, ∀B ∈ B(Rd∗),

(5.160)
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for every t ≥ t0, where M c is the continuous part of M and νpM is the compen-
sator of the integer measure νM associated with M.

Proof. First, since Rd is a locally compact space, by truncation on closed balls
we deduce that the local martingale condition remains true for any ϕ function
which is C2 with bounded second derivatives. Moreover, Mϕ is a local square-
integrable martingale for any smooth function ϕ.

Next, based on the arguments used to prove the a priori estimate (5.52) in
Theorem 5.11 and because any smooth function with bounded second derivatives
ϕ produces a local martingale, we do have the a priori estimate (5.52) with
p = 2. Thus, even if the coefficients have a linear growth, the process x(·) is
locally square-integrable.

Then, take ϕ(x) = xi to deduce that

M(t) := x(t)− x(t0)−
∫ t

t0

gi(s, x(s), v(s))ds, ∀t ≥ t0

is a Rd-valued local square-integrable martingale with M(t0) = 0.
By means of the integration by parts applied to the (special and quasi-left

continuous) semi-martingale x(·) we have

xi(t)xj(t) = xi(t0)xj(t0) + [Mi,Mj ](t) +

+

∫ t

t0

[
xi(s) gj(s, x(s), v(s)) + xj(s) gi(s, x(s), v(s))

]
ds+

+

∫
]t0,t]

[
xi(s−)dMj(s) + xj(s−)dMi(s)

]
,

and by taking ϕ(x) := xi xj we deduce that

[Mi,Mj ](t) = qij(t) +

∫ t

t0

aij(s, x(s), v(s))ds+

+

∫ t

t0

ds

∫
Rm∗

zizjM(dz, s, x(s), v(s)),

where qij is a martingale. This proves that the predictable quadratic covariation
of Mi and Mj satisfies

〈Mi,Mj〉(t) =

∫ t

t0

aij(s, x(s−), v(s))ds+

+

∫ t

t0

ds

∫
Rm∗

zizjM(dz, s, x(s−), v(s)).

In the case without jumps, i.e., when γ = 0, we have finished as long as M
is assumed continuous. Thus, only the last statement in (5.160) remain to be
verified.
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In general, denote by νM = ν the integer random measure in Rd∗ associated
with M, i.e., ν(B×]a, b]) is the number of jumps M(t)−M(t−) in the interval
]a, b] that belong to B, a Borel subset of Rd∗. Now, define the stochastic process

M c(t) := M(t)−
∫
Rd∗×]t0,t]

zν̃(dz,ds), ∀t ≥ t0,

where ν̃ := ν − νp and νp = νpM is the predicable compensator of ν = νM . It is
clear that M c is the continuous part of M.

To check that νM is quasi-left continuous, we take a smooth function ϕ with
compact support in Rd∗. The martingale property and Doob’s optional sampling
theorem show that

E
{
ϕ
(
x(τ)− x(θ)

)
+

∫ τ

θ

A(s, v(s))ϕ(x(s))ds | F(θ)
}

= 0,

for any bounded stopping times θ ≤ τ. Because ϕ vanishes near the origin and
x(·) has always a finite number of jumps (outside of neighborhood of the origin)
on any bounded time interval, so that the expression ϕ

(
x(τ)− x(θ)

)
is a finite

sum for each ω, and

E{ϕ
(
x(τ)− x(θ)

)
} = E

{∫
Rd∗
ϕ(z)

(
ν(dz, τ)− ν(dz, θ)

)}
≤

≤ E
{∫ τ

θ

|A(s, v(s))ϕ(x(s))|ds
}
<∞,

the proof of the quasi-left continuity is completed.
From the integration by parts we deduce the following property: if X is a

local square-integrable martingale and Y is an adapted cad-lag process with
local bounded variation paths, such that s 7→ Y (s−) is locally integrable with
respect to X, then the process

X(t)Y (t)−
∫ t

t0

X(s−)dY (s)−

−
∑

t0<s≤t

[X(s)−X(s−)][Y (s)− Y (s−)],

is a stochastic integral and therefore a local martingale. Essentially, by means of
the mentioned property and by using ϕ(x) = exp[iξ · x+ψ(x)] (with i :=

√
−1

and ψ a smooth function having a compact support in Rd∗) in the martingale
condition (5.159), we deduce that the process

exp
{
iξ ·

[
x(t)− x(t0)−

∫ t

t0

g(s, x(s), v(s))ds
]

+

+

∫
Rd∗

ψ(z)ν(dz, ]t0, t])−
∫ t

t0

ξ · a(s, x(s), v(s))ξds+

+

∫ t

t0

ds

∫
Rm∗

[
1− eiξ·z+ψ(z) + iξ · z

]
M(dz, s, x(s), v(s))

}
,

(5.161)
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is a local (square-integrable) martingale. This remains valid for any bounded
Borel measurable function ψ vanishing near the origin.

Now, set

Rψ(t) :=

∫
Rd∗
ψ(z)ν(dz, ]t0, t])−

∫ t

t0

ψ(z)M(dz, s, x(s), v(s))

and take ξ = 0, θψ instead of ψ in (5.161) to show that the process

exp
{
θRψ(t) +

∫ t

t0

ds

∫
Rm∗

[
1− eθψ(z) + θψ(z)

]
M(dz, s, x(s), v(s))

}
is a local martingale. Hence, differentiating with respect to θ and taking θ = 0
we obtain that Rψ is a local martingale. A second differentiation shows that

R2
ψ(t)−

∫ t

t0

ds

∫
Rm∗

ψ2(z)M(dz, s, x(s), v(s))

is also a local martingale. This proves that for any compact subset K of Rd∗ the
process

t 7→ νM (K, ]t0, t])−
∫ t

t0

ds

∫
K

M(dz, s, x(s), v(s))

is a local martingale, i.e., M(dz, s, x(s), v(s)) is the compensator or νM and
(5.160) is established.

A more detailed proof can be found in the book Bensoussan and Lions [16,
Section 3.7.2 pp. 252–259].

• Remark 5.46 (characteristics). The converse of Theorem 5.45 (i.e., if we have
a semi-martingale with characteristics as in (5.160) then we have a solution of
the martingale problem) follows from the Itô formula for semi-martingales, e.g.
see Jacod and Shiryaev [117, Theorem 4.57, Chapter 1, pp. 57–58], Remark 4.32
and Theorem 4.31 of Chapter 4.

It is clear now that, based on identification (5.160), the representation of
martingales (see Section 4.2.6 in Chapter 7 for more detail) shows that mar-
tingale problem solution is equivalent to the weak solution of the stochastic
differential equation. Essentially, if the matrix a of (5.160) is non degenerate
then we construct easily a Wiener process and the Poisson to represent M , oth-
erwise, we need to enlarge (standard extension) the probability space to obtain
the desired processes.

To define the integro-differential operator A by (5.154) we only need the drift
vector g(t, x, v), the diffusion covariance matrix a(t, x, v) and the jump or Lévy
kernel M(dz, t, x, v). It is clear that g takes values in Rd, a(t, x, v) is a symmetric
non-negative d-dimensional square matrix, i.e., ξ · a(t, x, v)ξ ≥ 0 for every ξ in
Rr, and M(·, t, x, v) is a Radon measure in Rd∗, i.e., it is finite on every compact
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(actually, any closed subset separated from the origin) subset of Rd∗. Besides
measurability, we impose a growth condition, namely, x · g(t, x, v) + |a(t, x, v)|+

∫
Rd∗
|z|2M(dz, t, x, v) ≤

≤ C (1 + |x|2),

(5.162)

for every (t, x, v) in [t0,∞)×Rd×Rq and some positive constant C. Under this
condition, the a priori estimate (5.52) in Theorem 5.11 with p = 2 as discussed
above, and the following definition may be considered.

Definition 5.47. A probability measure on the canonical space D([t0,∞),Rd)
or equivalently an adapted cad-lag stochastic process x(·) in a (completed) fil-
tered probability space (Ω,F , P,F(t) : t ≥ t0) is called a solution of the martin-
gale problem relative to the integro-differential operator (5.154) with measurable
coefficients g, a and M(dz, t, x, v) satisfying (5.162) and a control process v(·) on
the time interval [t0,∞) if the stochastic process (5.159) is a martingale for
every test function.

It is clear that under the growth condition (5.162) the martingale condition
(5.159) is equivalent to the assertion (5.160), which can be used as the definition
of the martingale problem.

As mentioned early, a local integrability condition for Aϕ must be part
of the definition of the property (5.159) if local martingale is used instead of
martingale. This is actually a local square-integrable martingale for any C2

function with bounded second derivatives. It is also clear that we consider the
problem on a bounded interval [t0, t1] instead of the semi-line [t0,∞).

Note that the martingale condition (5.159) on the process Mϕ can be rewrit-
ten as

E
{
ϕ
(
x(t)

) n∏
i=1

hi
(
x(si)

)}
= E

{
ϕ
(
x(s)

) n∏
i=1

hi
(
x(si)

)}
+

+E
{∫ t

s

A(r, v(r))ϕ
(
x(r)

) n∏
i=1

hi
(
x(si)

)
dr
}
,

(5.163)

for any integer n, for every t0 ≤ s1 < s2 · · · ≤ sn ≤ s < t, any (real-valued)
Borel and bounded functions hi, i = 1, . . . , n. It is clear know that the filtered
probability space is a convenient tool, but it may be taken to the canonical
space of cad-lag (or continuous, when no jumps are involved) functions from
[t0,∞) into Rd. Moreover, Rd may be replaced by a Polish space O. If O is not
locally compact, then some extra difficulties appear and extra care should be
taken to work with smooth functions. Essentially, when O is a Banach space
then smooth functions with compact support should be replaced by smooth
functions vanished outside of a ball (this produces some extra difficulties).

An initial condition takes the form

P{x(t0) ∈ B} = P0(B), ∀B ∈ B(Rd), (5.164)
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where P0 is a distribution in Rd. The control process v(·) is regarded as an
adapted (predictable) mapping from D([t0,∞),Rd) into Rq. Certainly, the mar-
tingale condition (5.159) is equivalent to the condition (5.160) of Theorem 5.45,
where the characteristics of the martingale are explicitly given.

By measurability for the Lévy kernel, we mean that for every compact subset
K of Rd∗ the function (t, x, v) 7→ M(K, t, x, v) is Borel measurable. However, by
a continuous Lévy kernel with respect to the variable x we mean that for any
continuous and integrable function ϕ(z), every t and v, the function

x 7→
∫
Rd∗
ϕ(z)M(dz, t, x, v)

is continuous. If the kernel is given by an expression like (5.156) then this
means that the jump coefficient γ(ζ, t, x, v) is continuous in x. The dependency
on the variables t, x, and v of the Lévy kernel M(dz, t, x, v) is hard to track. For
instance, a uniform integrability condition of the type

lim
ε→0

sup
t,x,v

{
(1 + |x|2)−1

∫
{|z|<ε}

|z|2M(dz, t, x, v)
}

= 0. (5.165)

is very general and useful. This is mainly used for bounded coefficients and
without the term (1 + |x|2).

As discussed in the books Stroock and Varadhan [241, Section 5.2, pp. 131–
134] and Ethier and Kurtz [76, Section 5.3, pp. 290–301], if the symmetric
non-negative matrix valued function a(t, x, v) is uniformly (local) Lipschitz con-
tinuous in x with either a bounded inverse (matrix) a−1(t, x, v) or bounded
second derivatives ∂ija(t, x, v), then there exists a square root a1/2(t, x, v) uni-
formly (local) Lipschitz continuous in x.

Clearly, we say that the drift coefficient g(t, x, v) and diffusion coefficients
a1/2(t, x, v) (or simply a(t, x, v) even if we really mean square root of a) have
linear growth if

|g(t, x, v)|2 + |a(t, x, v)| ≤ C (1 + |x|2), (5.166)

or even the following weaker growth condition

x · g(t, x, v) + |a(t, x, v)| ≤ C (1 + |x|2), (5.167)

for every (t, x, v) in [t0,∞)× Rd × Rq and some positive constant C.
Instead of given structural condition on the Lévy kernel M(dz, t, x, v) we

prefer to use the following concrete representation, see Garroni and Menaldi [93,
94],

M(B, t, x, v) =

∫
{ζ : j(ζ,t,x,v)∈B}

m(ζ, t, x, v)π(dζ), (5.168)

for every B in B(Rd∗), where j(·) and m(·) are measurable functions taking values
in Rd and [0, 1], respectively, and π is a Radon measure on Rm∗ such that for
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some measurable real-valued function ̄(ζ) we have
|j(ζ, t, x, v)| m(ζ, t, x, v) ≤ (1 + |x|) ̄(ζ),∫
Rm∗

̄2(ζ)π(dζ) ≤ C,
(5.169)

for every ζ, t, x, v and for some positive constant C. Thus, conditions (5.167)
and (5.169) imply the growth assumption (5.162). In most of the cases, all
coefficients are bounded and the linear growth term (1 + |x|) is not necessary.
Usually, it is convenient to set j(ζ, t, x, v) = 0 when m(ζ, t, x, v) = 0. The fact
that the density m takes values in [0, 1] is a normalization, always we may reduce
(by changing the base measure π) to this case if we assume m bounded. Hence,
the full integro-differential operator A(t, v) is expressed as

A(t, v)ϕ(x) =

d∑
i,j=1

aij(t, x, v)∂ijϕ(x) +

+

d∑
i=1

gi(t, x, v)∂iϕ(x) + I(t, v)ϕ(x),

(5.170)

where the proper integro-differential operator I(t, v) takes the form I(t, v)ϕ(x) =

∫
Rm∗

[ϕ(x+ j(ζ, t, x, v))− ϕ(x)−

−j(ζ, t, x, v) · ∇ϕ(x)]m(ζ, t, x, v)π(dζ),

(5.171)

on which Taylor formula can be used when ϕ is twice continuously differentiable
with bounded second derivative. Note that under the above conditions on j and
m, cf., (5.169), the non-local operator I(t, v) maps twice continuously differen-
tiable functions with compact supports into bounded functions, uniformly in t
and v.

We say that the coefficients g(t, x, v), a(t, x, v), j(ζ, t, x, v) and m(ζ, t, x, v)
are uniformly local continuous x if for every ε > 0 there exists a δ > 0 such that
for every t, x, x′, v satisfying 0 ≤ t− t0 ≤ 1/ε, |x−x′| < δ, |x| ≤ 1/ε, |x′| ≤ 1/ε,
we have

|g(t, x, v)− g(t, x′, v)|+ |a(t, x, v)− a(t, x′, v)| ≤ ε,

|j(ζ, t, x, v)− j(ζ, t, x′, v)| ≤ ε ̄(ζ)

|m(ζ, t, x, v)− m(ζ, t, x′, v)| ≤ ε,

(5.172)

where ̄(ζ) is a square-integrable function as in (5.169), and a posteriori taken
to be the same function.

As we may expect, Borel measurability on the coefficients and the bound
(5.162) are not sufficient for the existence of a weak solution. In ODE, continuity
and a priori bounds imply global existence of a solution. A quite similar result
can be established for the weak solution or the martingale problem.
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Theorem 5.48 (existence). Let A be an integro-differential operator as given
(5.170), (5.171), where the drift vector g(t, x, v), the diffusion covariance matrix
a(t, x, v) and the jump or Lévy kernel M(dz, t, x, v), written as in (5.168), are
Borel measurable and satisfy the growth conditions (5.167) and (5.169). As-
sume also that the coefficients are uniformly local continuous x in the sense
(5.172), that a Rq-valued adapted process v(·) is given on the canonical space
D([t0,∞),Rd) and that an initial distribution P0 is prescribed in Rd. Then
there exists a solution to the martingale problem (5.159) relative to the integro-
differential operator (5.170) satisfying the initial condition (5.164).

Proof. The proof for the diffusion case, i.e., without the jumps, is due to Stroock
and Varadhan [241, Section 6.1, pp. 139–145]. A more general case can be found
in Jacod and Shiryaev [117, Sections III.1, III.2, pp. 129–152], among others.
The arguments are as follows: first existence is established for regular coefficients
and then a passage to the limit is applied. We proceed in several steps.
• Let 0 < p ≤ 2 and λ > 0 be given and let α(p, λ) be defined by (5.44)

with γ and π(dζ) replaced by j(ζ, t, x, v) and m(ζ, t, x, v)π(dζ). If P is a mar-
tingale solution satisfying the initial condition then estimates (5.52) and (5.53)
of Theorem 5.11 hold true. Moreover, to consider p > 2 we need to add the
p-integrability condition∫

Rm∗
̄p(ζ)π(dζ) ≤ C,

for some constant C and where ̄(ζ) is the same function in assumption (5.169).
Indeed, the martingale condition (5.159) for a function ϕ(x) = (1 + |x|2)p/2 for
|x| ≤ r and the time s in [0, τr ∧ t], where τr is the first exit time of the process
x(s) from the ball {|x| ≤ r}. As r → ∞ we deduce the estimates by using
Fatou’s Lemma. Actually, because the initial condition may not have a finite p
moment, we review the proof of Theorem 5.11 to obtain the estimates

E
{

(λ+ |x(t0)|2)−p/2 (λ+ |x(t)|2)p/2 e−α(t−t0) +

+[α− α(p, λ)](λ+ |x(t0)|2)−p/2 ×

×
∫ t

t0

(λ+ |x(s)|2)p/2 e−α(s−t0)ds
}
≤ 1,

(5.173)

and 
E
{

(λ+ |x(t0)|2)−p/2 sup
t0≤s≤t

(λ+ |x(s)|2)p/2 e−α(s−t0)
}
≤

≤ C
[
1 +

1

α− α(p, λ)

]
.

(5.174)

for every t ≥ t0, where the constant C depends only on p and the bounds of σ
and γ through assumptions (5.167) and (5.169). This yields the property: for
every ε > 0 there exists a sufficient constant N, depending only on ε, the initial
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distribution P0, and the bounds in the assumptions (5.167) and (5.169) such
that

P{ sup
0≤t≤1/ε

|x(t)| ≥ N} ≤ ε.

Now, remark that

|x(t)− x(s)| ≤
∫ t

s

|g(r, x(r), v(r))|dr +

+
∣∣∣ ∫ t

s

dM c(r)
∣∣∣+
∣∣∣ ∫

]s,t]×Rm∗
zν̃x(dz,dr)

∣∣∣,
where (M c(t) : t ≥ 0) is a continuous (local) martingale with predictable
quadratic variation 〈M c,M c〉(t) = a(t, x(t), v(t), and M(dz, t, x, v), given by
(5.168) is the Lévy kernel associated with the local martingale measure ν̃x. Then,
if τN denotes the first exit time of the process x(·) from the ball {|x| ≤ N} we
deduce

E
{

sup
s≤r≤t≤τN

|x(r)− x(s)|
}
≤ CN

[
(t− s) + (t− s)1/2

]
,

for every 0 ≤ s, t ≤ N and some constant CN depending only on N, and the
bounds on the coefficients. Therefore, for every ε > 0 there is a δ > 0 depending
only on ε, the initial distribution P0, and the bounds in the assumptions (5.166)
and (5.169) such that

P{ sup
0≤t≤1/ε

|x(t)| ≥ 1/δ}+

+P{ sup
0≤r≤δ

|x(s+ r)− x(s)| ≥ ε} ≤ ε.
(5.175)

This proves that the set of probability measures P that solve a martingale prob-
lem is tight or pre-compact. Moreover, because of the continuity assumption
(5.172), the martingale condition (5.159) is preserved by weak convergence of
probabilities. Hence, the martingale solutions form a compact set.
• Let assume that the coefficients have a linear growth, i.e., assumptions

(5.166) and (5.169). By means of the uniform local continuity in x of the coef-
ficients in the sense (5.172), we can use a mollification in x to show that there
exist sequences of smooth functions in x (actually C2 is sufficient) {gn(t, x, v)},
{an(t, x, v)}, {jn(ζ, t, x, v)} and {mn(ζ, t, x, v)}, n ≥ 1 such that the linear
growth conditions (5.166) and (5.169), and the uniformly local continuity are
satisfied uniformly in n, and also the following convergence holds: for every
ε > 0 there exits Nε such that for every n ≥ Nε, and for every t, x, v satisfying
0 ≤ t− t0 ≤ 1/ε, |x| ≤ 1/ε, we have

|gn(t, x, v)− g(t, x, v)|+ |an(t, x, v)− a(t, x, v)| ≤ ε

|jn(ζ, t, x, v)− j(ζ, t, x, v)| ≤ ε ̄(ζ),

|mn(ζ, t, x, v)− m(ζ, t, x, v)| ≤ ε,
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where ̄(ζ) is the same square-integrable function in assumption (5.169) and
(5.172). Since an(t, x, v) is C2 in x and symmetric non-negative square matrix,
the exits a (square-root) symmetric non-negative square matrix σn(t, x, v) such
that 2 an = σ2

n. Also we define the finite Radon measure πn(dζ) by

πn(B) := π(B ∩ {(1/n) ≤ |ζ| ≤ n}), ∀B ∈ B(Rm),

for every n ≥ 1.
Since the coefficients gn(t, x, v), an(t, x, v) and jn(ζ, t, x, v) are locally Lip-

schitz in x, the assumptions of Theorem (5.3) on the existence and uniqueness
of strong solution are satisfied with gn, σn, jn and πn (even π) in lieu of g,
σ, γ and πn. Let be given a d-dimensional Wiener process w(t) and a Poisson
random measure νn on Rm∗ on the canonical product space of continuous and
cad-lag functions C([t0,∞),Rd) ×D([t0,∞),Rm) under a probability measure
Qn and the canonical filtration (F(t) : t ≥ t0). Then, there exists one and only
one strong solution, denoted by xn, of the stochastic differential solution

dxn(t) = gn(t, xn(t), v(t))dt+ σn(t, xn(t), v(t))dw(t) +

+

∫
Rm∗

jn(ζ, t, xn(t), v(t))ν̃n(dζ,dt), t ≥ t0,

with the initial condition x(t0) = x0, where x0 is a random variable having P0

as its distribution and the Poisson martingale measure ν̃n has πn as its Lévy
measure. On the other hand, without a lost of generality we may suppose that
(1/n) ≤ mn(ζ, t, x, v) ≤ 2 and because πn is finite, the exponential martingale
solution of stochastic differential solution

Zn(t) = 1 +

∫
]t0,∞)×Rm∗

Zn(s−)
[
mn(ζ, s, xn(s−), v(s))− 1

]
ν̃n(dζ,ds),

is defined for every t ≥ t0. Moreover, if mn(ζ, s) := mn(ζ, s, xn(s−), v(s)) then

Zn(t) = exp
{∫

]t0,∞)×Rm∗

[
mn(ζ, s)− 1

]
ν̃n(dζ,ds)−

−
∫

]t0,∞)×Rm∗

[
mn(ζ, s)− 1− ln

(
mn(ζ, s)

)]
νn(dζ,ds)

}
.

Now, construct a new probability measure Q̄n, which is absolutely continuous
with respect to Qn and satisfies Q̄n(dω)|F(t) = Zn(t, ω)Qn(dω), for every t ≥ 0.
Therefore, under the probability measure Q̄n, the quasi-left continuous random
measure

˜̄νn(B, ]0, t]) := ν̃n(B, ]0, t])−

−
∫ t

0

ds

∫
B

mn(ζ, s, xn(s−), v(s))πn(dζ)

is a martingale measure with jump compensator

ν̄pn(B, ]0, t]) :=

∫
B

mn(ζ, s, xn(s−), v(s))πn(dζ)
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and we have

dxn(t) = gn(t, xn(t), v(t))dt+ σn(t, xn(t), v(t))dw(t) +

+

∫
Rm∗

jn(ζ, t, xn(t), v(t))˜̄νn(dζ,dt), t ≥ t0.

In other words, if Pn is the probability law in D([t0,∞),Rd) of the process xn
under the probability Q̄n, i.e.,

Pn{B} := Q̄n{ω : xn(·, ω) ∈ B},

for every Borel subset B of D([t0,∞),Rd), is a solution of the martingale prob-
lem relative to the coefficients gn(t, x, v), an(t, x, v), jn(ζ, t, x, v), mn(ζ, t, x, v)
and πn. Moreover, if necessary we may fix π and assume that mn(ζ, t, x, v) = 0
for any |ζ| ≤ 1/n or |ζ| ≥ n. Thus, the initial Poisson random measure ν̃n = ν̃
is independent of n. However, the random measure ˜̄νn depends on n, in general.
Notice that for any t ≥ 0, we have

Pn{B} :=

∫
{ω:xn(·,ω)∈B}

Zn(t, ω)Qn(dω),

for every Borel subset B of D([t0, t],Rd).
• If An denotes the full integro-differential operator corresponding to the

coefficients gn(t, x, v), an(t, x, v), jn(ζ, t, x, v), mn(ζ, t, x, v) and πn, then the
local uniform convergence of the coefficients shows that for every test function
with compact support ϕ in Rd we have the following convergence holds: for
every ε > 0 there exists Nε such that for every n ≥ Nε, and for every t, x, v
satisfying 0 ≤ t− t0 ≤ 1/ε, |x| ≤ 1/ε, we have

|An(t, v)ϕ(x)−A(t, v)ϕ(x)| ≤ ε.
Thus, the process

Mn
ϕ (t) := ϕ(x(t))− ϕ(x(t0))−

∫ t

t0

An(s, v(s))ϕ(x(s))ds, ∀t ≥ t0,

is a Pn-martingale, for any test function with compact support ϕ in Rd, where
x(t) := ω(t) is the canonical process in D([t0,∞),Rd). In view of the continuity
assumption on the variable x (5.172), the Lebesgue integral∫ t

t0

A(s, v(s))ϕ(x(s))ds, ∀t ≥ t0

is a continuous functional on the Polish space D([t0,∞),Rd). Then, the a priori
estimates (5.175) applied to Pn proves that there exist a subsequence, still de-
noted by {Pn}, and a probability P such that Pn converges weakly to P. Hence,
P is a solution of the martingale problem relative to the integro-differential
operator (5.170).
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• To complete the proof, we need to pass from the linear growth condition
(5.167) to the weaker growth condition (5.166). To this purpose, we approximate
the drift coefficient g by truncation as follows

gM (t, x, v) :=


g(t, x, v) if |g(t, x, v)| ≤M,

g(t, x, v)
M

|g(t, x, v)|
otherwise.

Thus, gM (t, x, v) is bounded (for each M > 0), and the growth and continuity
conditions (5.166) and (5.172) are satisfied uniformly in M. Hence, we proceed
as above to pass to the limit as M →∞ and the theorem is established.

Notice the use of Girsanov transformation. Let us assume that there exist
d × n matrix-valued measurable functions σk := (σik(t, x, v) : i = 1, . . . , d),
k = 1, . . . , n, and a constant C > 0 such that

aij(t, x, v) :=
1

2

∑
k

σik(t, x, v)σjk(t, x, v),∑
k

|σk(t, x, v)| ≤ C (1 + |x|), ∀t, x, v.

As in Theorem 5.45, for any solution P of the martingale problem relative to
the coefficients j(ζ, t, x, v), m(ζ, t, x, v) = 1, a(t, x, v) and g(t, x, v), the canonical
process x(t) := ω(t) in D([t0,∞),Rd) satisfies the equation

dx(s) = g(s, x(s), v(s))ds+
∑
k

σk(s, x(s), v(s))dwk(s) +

+

∫
Rm∗

j(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀s > t0,

where w = (w1, . . . , wn) is a n-dimensional Wiener process and ν̃ is the Poisson
martingale measure obtained from the (standard) Poisson random measure ν
with Lévy measure π.

Given a measurable function k(ζ, t, x, v) satisfying the same assumptions
(5.169) as j(ζ, t, x, v), let us consider the integer measure νk associated with the
purely jumps local martingale∫

Rm∗ ×]t0,t]

k(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀t ≥ t0,

with local martingale measure ν̃k and jumps compensator

νpk (B, ]t0, t]) :=

∫ t

t0

π
(
{ζ : k(ζ, s, x(s−), v(s)) ∈ B}

)
ds,

for every B in B(Rd∗) and t > t0. Suppose that b := (bk(t, x, v) : k = 1, . . . , n)
and c(z, t, x, v) are measurable functions such that for some constants C, c0 > 0
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and any ζ, t, x, v we have
|b(t, x, v)| ≤ C,

−1 < −c0 ≤ |c(z, t, x, v)| ≤ C,∫
Rd∗
|c(k(ζ, t, x, v), t, x, v)|2π(dζ) ≤ C,

(5.176)

and define the following density process

δ(t) := exp
{∑

k

∫ t

t0

bk(s)dwk(s)− 1

2

∑
k

∫ t

t0

|bk(s)|2ds+

+

∫
Rd∗×]t0,t]

c(z, s)ν̃k(dz,ds)−

−
∫
Rd∗×]t0,t]

[
c(z, s)− ln[c(z, s) + 1]

]
νk(dz,ds)

}
,

where bk(s) := bk(s, x(s), v(s)) and c(z, s) := c(z, s, x(s), v(s)). Since 0 ≤ c −
ln(1 + c) ≤ c/(1 + c0), for every c ≥ −c0 > −1, the above stochastic integrals
are well defined and the process δ is an exponential martingale, i.e., E{δ(t)} = 1
for every t > t0. Note that∫

Rd∗×]t0,t]

c(z, s)ν̃k(dz,ds) =

∫
Rm∗ ×]t0,t]

c(k(ζ, s), s)ν̃(dζ,ds),∫
Rd∗×]t0,t]

[
c(z, s)− ln[c(z, s) + 1]

]
νk(dz,ds) =

=

∫
Rm∗ ×]t0,t]

[
c(k(ζ, s), s)− ln[c(k(ζ, s), s) + 1]

]
ν(dζ,ds),

where k(ζ, s) := k(ζ, s, x(s), v(s)).
Then, the probability measure P̄ satisfying P̄ (dω)|F(t) = δ(t, ω)P (dω), for

every t ≥ t0, is a solution of the martingale problem relative to the coefficients
ḡ(t, x, v), σk(t, x, v) and M̄(dz, t, x, v). where

ḡi(t, x, v) := gi(t, x, v) +
∑
k

bk(t, x, v)σik(t, x, v),

M̄(B, t, x, v) := π({ζ : j(ζ, t, x, v) ∈ B}) +

+

∫
{k(ζ,t,x,v)∈B}

c(k(ζ, t, x, v), t, x, v)π(dζ),

(5.177)

for every B in B(Rd∗), and any t, x, and v. It is clear that j(ζ, t, x, v), k(ζ, t, x, v),
M̄(ζ, t, x, v), a(t, x, v), g(t, x, v) and ḡ(t, x, v) are measurable and they satisfy the
growth conditions in Theorem 5.48, namely, (5.167) and (5.169).

In particular, if the locally uniform continuity (in x) condition (5.172) holds
then there is a solution to the martingale problem relative to the coefficients
M̄(dζ, t, x, v), a(t, x, v) and ḡ(t, x, v). Thus, if the coefficients g(t, x, v), σk(t, x, v),
j(ζ, t, x, v) are locally Lipschitz in x (i.e., δ = Kε in (5.172) for some constant
K) and m(ζ, t, x, v) = 1, then the solution is unique, i.e., a strong solution plus

Section 5.6 Menaldi January 7, 2014



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 615

a Girsanov transformation. Notice that the measure c(k(ζ, t, x, v), t, x, v)π(dζ)
is of first order in the sense that it integrates the jumps k(ζ, t, x, v) instead of
the square of the jumps |k(ζ, t, x, v)|2 as it happens with just π.

Now, if P is a solution of the martingale measure relative to the coefficients
g(t, x, v), a(t, x, v) and the Lévy kernel M(dz, s, x, v) then we write

dx(s) = g(s, x(s), v(s))ds+ dM c(s) +

∫
Rd∗
zνx(dz,ds),

where the continuous martingale M c(t) has a predictable compensator satisfying

〈M c〉(t) =

∫ t

0

a(s, x(s−), v(s))ds,

the canonical integer measure νx associated with the process x(·), i.e., ν̃x :=
νx − νpx and νpx is the jumps compensator which satisfies

νpx(B, ]t0, t]) =

∫ t

0

ds

∫
{ζ∈Rm∗ : j(ζ,s,x(s−),v(s))∈B}

m(ζ, s, x(s−), v(s))π(dζ),

for every B in B(Rd∗) and t > t0, i.e., νpx(dz, ds) = M(dz, s, x(s−), v(s)) ds, where
the Lévy kernel is as in (5.168). If c(z, s, x, v) and b(s, x, v) are measurable such
that for some constants C, c0 > 0 and for every z, s, x, v we have

|b(s, x, v) a(s, x, v)| ≤ C,

−1 < −c0 ≤ c(z, s, x, v) ≤ C,∫
Rd∗
|c(z, s, x, v)|2M(dz, s, x, v) ≤ C,

(5.178)

then going back to the definition of the density process δ(t, ω) we can set

δ(t) := exp
{∫ t

t0

b(s) · dM c(s) +

∫
Rd∗×]t0,t]

c(z, s)ν̃x(dz,ds)−

−
∫ t

t0

[
b(s) · a(s, x(s), v(s)) b(s)

]
ds−

−
∫
Rd∗×]t0,t]

[
c(z, s)− ln[c(z, s) + 1]

]
νx(dz,ds)

}
,

where b(s) := b(s, x(s), v(s)) and c(z, s) := c(z, s, x(s), v(s)), which is again an
exponential martingale.

Then, the probability measure P̄ satisfying P̄ (dω)|F(t) = δ(t, ω)P (dω), for
every t ≥ t0, is a solution of the martingale problem relative to the coefficients
ḡ(t, x, v), a(t, x, v) and the Lévy Kernel M̄(dz, s, x, v), where{

ḡ(t, x, v) := g(t, x, v) + 2b(t, x, v) a(t, x, v),

M̄(dz, t, x, v) :=
[
1 + c(z, t, x, v)

]
M(dz, t, x, v).

(5.179)

Hence, we see that by means of Girsanov transformation we can add a bounded
measurable drift 2ba (which is arbitrary if the covariance diffusion matrix a is
non-singular) and a jump density c(z, t, x, v) which yields a first order Lévy
kernel c(z, t, x, v)M(dz, t, x, v).
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• Remark 5.49. The arguments used here are not valid when the linear growth
conditions (5.166) or (5.167) and (5.169) hold only locally, i.e. for any x with
|x| ≤ r and constants C = C(r). However, if a Lyapunov function can be
constructed, then most of the technique can be used. A Lyapunov function is a
nonnegative smooth function v(t, x) such that v(t, x) goes to ∞ locally uniform
in t as x goes to ∞ and satisfies

∂tv(t, x) +A(t, x)v(t, x) ≤ cv(t, x),

for some constant c ≥ 0, for every x and t, where A(t, x) is the integro-differential
operator (5.154). The reader is referred to Khasminskii [130], for a study of this
technique for diffusion processes in the whole space, with focus on stationary
distributions and invariant measures.

5.7 Strong Markov Property

A family of controlled Markov processes (or a Markov process dynamic)

(X(t) : t ≥ 0) = {X(t, x, s, v(·)) : t ≥ s ≥ 0, x ∈ Rd} (5.180)

is naturally constructed by means of stochastic differential equations. Usually,
X represents the state of the system at time t when the initial state was x at
time s under the control v(·). After the coefficients have been estimated, i.e., the
drift g(t, x, v), the diffusion σ(t, x, v) and the jumps γ(ζ, t, x, v) are known, the
evolution of the system should be defined, i.e., the initial state x at the initial
time t and the control v(·) on the interval [s, t[ should determine the state x at
the time t. Thus, a natural model is a stochastic ordinary differential equation,
namely,

X(t) = x+

∫ t

s

g(r,X(r), v(r))dr +

∫ t

s

σ(r,X(r), v(r))dw(r) +

+

∫
Rm∗ ×]s,t]

γ(ζ, r,X(r), v(r))ν̃(dζ,dr), ∀ t ≥ s,
(5.181)

where the solution process is denoted by (5.180). The driven Wiener process
and Poisson martingale measure

(w(t) : t ≥ 0), (ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0)

are statistically given through their characteristic functions (or Fourier trans-
forms) as discussed at the beginning of this chapter. The particular realization
of this Wiener-Poisson space is (of little importance and) mainly used to set
up a filtered probability space (Ω, P,F ,F(t) : t ≥ 0) where the control process
(v(t) : t ≥ 0) is realized as an adapted (or progressively measurable) process tak-
ing values in some closed subset of an Euclidean space. In particular, only the
control v(·), and the increments of the Wiener process and Poisson martingale
measure on the time interval [s, t] are used to defined the solution X(t, x, s, v(·)).
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Moreover, since (5.181) has a unique (almost surely) solution we deduce that
(t, x, s) 7→ X(t, x, s, v(·)) is continuous in probability and

X(t, x, s, v(·)) = X(t,X(r, x, s, v(·)), r, v(·)), (5.182)

for every s ≤ r ≤ t and x in Rd. Moreover, the time r and the state x can
be replaced by a stopping time R and a F(R)-measurable random variable.
Equality (5.182) is usually refer to as a flow condition.

Because of the control v(·), it is clear that (X(t) : t ≥ 0) is not (unless v(·) is
a deterministic constant) a Markov process. However, if another variable X0 is
added the couple X̄ = (X,X0) becomes a Markov process. Indeed, (X0(t) : t ≥ 0
is the constant process v(·), i.e., with values in the space C of adapted processes
(the control space policies) endowed with the trivial σ-algebra C = {C, ∅}. The
Markov property for X̄ becomes

P{X̄(t) ∈ Ā | F̄(s)} = P{X̄(t) ∈ Ā | X̄(s)}, a.s.

for every t > s and any Ā in B(Rd)× C, where F̄(s) = F(s)× C. In short, this
controlled Markov property can be written as

P{X(t) ∈ B | F(s)} = P{X(t) ∈ B |X(s), v(·)}, a.s.

for every t > s and any B in B(Rd), or equivalently as

E{ϕ(X(t)) | F(s)} = E{ϕ(X(t)) |X(s), v(·)}, a.s. ∀t > s, (5.183)

for any smooth function ϕ with compact support in Rd. Because of the trivial
σ-algebra C, the conditioning with respect to v(·) means the evaluation for (or
conditioning to a set) X0 = v(·). Thus, the controlled transition function is
defined as a temporal functional on the control (i.e., on the restriction v[s, t) to
the interval [s, t) of v(·), namely,

P
(
s, t, x,B; v[s, t)

)
= P{X(t, x, s, v(·)) ∈ B},

for every t > s and any B in B(Rd), provided a unique solution of the stochastic
ordinary differential equation (5.181) exists and a continuous version in the
variables t, x, s is chosen.

Actually, only measurability with respect to the variables s, x, t is necessary
to show the validity of the controlled Markov property. Indeed, for every smooth
function ϕ with compact support we can use Itô formula (i.e., the martingale
property) to get

E{ϕ(X(t)) | F(s)} = ϕ(X(s)) + E
{∫ t

s

A(r, v(r))ϕ(X(r))dr
∣∣∣ F(s)

}
,

almost surely, for every t > s, where A(t, v) is the second-order integro-differen-
tial operator (5.154) associated with the coefficients. Hence, by means of equal-
ity (5.182) we obtain

E{ϕ(X(t, x0, t0, v(·))) | F(s)} = ϕ(X(s)) + Φ(X(s); v(·)),

Φ(x; v(·)) = E
{∫ t

s

A(r, v(r))ϕ(X(r, x, s, v(·)))dr
∣∣∣ F(s)

}
,

Section 5.7 Menaldi January 7, 2014



CHAPTER 5. STOCHASTIC DIFFERENTIAL EQUATIONS 618

for every t0 ≤ s ≤ t and x, x0 in Rd, which yields (5.183).
For the uncontrolled process, namely,

X(t) = x+

∫ t

s

g(r,X(r))dr +

∫ t

s

σ(r,X(r))dw(r) +

+

∫
Rm∗ ×]s,t]

γ(ζ, r,X(r))ν̃(dζ,dr), ∀ t ≥ s,
(5.184)

where X(t) = X(t, x, s), there are several way of proving the Markov property
in the form

E{ϕ(X(t)) |X(s1), . . . , X(sn)} = E{ϕ(X(t)) |X(sn)}, a.s. (5.185)

for every s1 ≤ · · · ≤ sn < t and for any smooth function ϕ with compact support
in Rd.

As mentioned early, the stochastic ordinary differential equation (5.184) or
(5.181) can be used to define in a unique manner (under suitable assumptions)
the solution process (X(t) : t ≥ s) with an initial condition X(s) = x where s
could be a stopping time and x a F(s)-measurable function. Alternatively,
if a continuous (measurable suffices) version in all variables of the solution
{X(t, x, s) : t ≥ s, x ∈ Rd has been chosen for, then the substitution in the
function

(x, s) 7→ X(t, x, s) for s a stopping time and x for a F(s)-measurable random
variable should give the unique solution. Since both, the Wiener process and the
Poisson martingale measure have independent increment, the following result on
conditional expectation, which is proved with the usual Fubini’s and monotone
class theorems,

Proposition 5.50. Let (Ω,F , P ) be a probability space and f(x, ω) be a mea-
surable function with respect to the product σ-algebra B(Rd) × F . Suppose ξ is
a Rd-valued random variable which is independent of the σ-algebra generated
by the family of random variables {f(x, ω) : x ∈ Rd}. If E{|f(ξ, ·)|} < ∞ and
g(x) = E{f(x, ·)} then the function g is B(Rd)-measurable and E{f(ξ, ·) | ξ} =
g(ξ), almost surely.

can be applied to verify the Markov property (5.185). Moreover, a stronger
version

E{ϕ(X(t)) | F(S)} = E{ϕ(X(t, x, s))}|x=X(S),s=S , a.s. (5.186)

for every stopping time S ≤ t and for any smooth function ϕ with compact
support in Rd.

This strong Markov property (5.186) can be proved in a more direct way
and in several steps as in Krylov [142, Section 9.11, pp. 220-224]. Some details
are given in what follows.

First, denote by G(t, s) the σ-algebra generated by the random variables
{w(r) − w(s) : s < r ≤ t}, {ν̃(B, ]s, r]) : B ∈ B(Rm∗ ), s < r ≤ t} and the
null sets, i.e., the completed σ-algebra generated by the Wiener process and
the Poisson martingale measure on the interval (s, t]. Now, note that xn → x
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implies X(t, xn, s)→ X(t, x, s) in probability for any sequence {xn} of random
variables independent of G(t, s) which converges in probability to x. Also, for
any t ≥ s the random variable X(t, x, s) is measurable with respect to G(s, t).

Since the Wiener process and the Poisson martingale measure have indepen-
dent increments, the σ-algebras F(s) and G(s, t) are independent, proving that
the random variable X(t, x, s) is independent of F(s).

Next, for a smooth function ϕ with compact support in Rd (bounded con-
tinuous suffices) define

Φ(t, x, s) = E{ϕ(X(t, x, s))}, ∀x ∈ Rd, t ≥ s.

If ξ is a Rd-valued random variable F(s)-measurable assuming a countable num-
ber of values, say N, and ζ is a bounded F(s)-measurable set then

E{ζϕ(X(t, ξ, s)} =
∑
n∈N

E{ζϕ(X(t, n, s)1ξ=n} =

=
∑
n∈N

E{ζΦ(t, n, s)1ξ=n} = E{ζΦ(t, ξ, s)}.

By means of the continuity in probability, this remains valid for any F(s)-
measurable random variable ξ. Now, consider X(t) = X(t, x0, s0) for some x0

and s0 ≤ s1 ≤ · · · ≤ sn ≤ t, so that the previous arguments show that

E{ϕ(X(t)) | F(sn)} = Φ(t,X(sn), sn), a.s.,

which yields the Markov property (5.185). Because both sides of (5.185) are
measures, the equality holds for any Borel and bounded function ϕ.

Finally, the above arguments are also valid for a stopping time S in lieu of
the deterministic time s, proving the validity of strong Markov property (5.186).

5.8 Diffusions with Jumps

It is clear by now that there are two ways of study (or starting) the construction
of (standard) Markov processes or more specifically diffusion process with jumps.
One way is to look for a family of cad-lag stochastic processes X = {Xx(t) : t ≥
0, x ∈ Rd} with values in Rd and defined in some abstract probability space or
equivalently to look for a family of probability measures P = {Px : x ∈ Rd} on
the canonical (Polish) space D([0,∞),Rd). Another way is to look for a family
of probability measures (a transition function) {P (x, t,dy) : t > 0, x ∈ Rd} on
the Borel space B(Rd). Actually, when talking about Markov processes we are
implicitly referring to all this elements and more.

Stochastic differential equations (SDE) technique is a typical way to con-
struct the family of stochastic processes X based on previously discussed (and
better well known) spacial homogeneous processes such as the Wiener process
or the Poisson process (in general the Lévy process). This approach requires
some probability (in particular, the stochastic integral theory) to extend the
classic techniques used in analysis to study ordinary differential equations.
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Equivalently, the so-called Martingale problem (MP) is better adapted to the
study of the family of probability measures P = {Px : x ∈ Rd} on the canon-
ical (Polish) space D([0,∞),Rd). However, a deeper probability (and analysis)
knowledge is necessary to understand this approach.

Besides the variety of assumptions needed for each method, SDE or MP,
the comparison is relatively simple, stochastic differential equations handles
efficiently degeneracy in the diffusion coefficients while martingale problems
allows weaker regularity assumptions (with not equivalent for the deterministic
case) on the coefficients.

Partial differential equations (and integro-differential equations) methods
are necessary to discuss the construction of a transition function. we may go
directly for the transition function, which in analysis is called fundamental so-
lution or Green function associated with a Cauchy or (parabolic problem, or
alternatively, study the Cauchy problem itself, meaning getting existence and
uniqueness results as well as a priori estimates. Again, here we may attack the
parabolic problem directly or as a product of a well develop techniques known
as the semigroup theory. Essentially, the semigroup arguments extend the exis-
tence and uniqueness results and a priori estimates proven on elliptic equations
(i.e., stationary problems) to parabolic equations. Certainly, there are plenty of
comments about this point that are not mentioned here. All techniques (in this
more analytic way) start with a previous analysis of easier problems, such as
the heat equation, and growth all the way to more complete and complex cases.

The key connection between the probability and the analysis view points is
the realization results (given the transition function a Markov process is con-
structed) and the conditional probability results (given the Markov process the
transition function is defined). Clearly, the Kolmogorov (backward and for-
ward) equations is at the heart of the discussion. Except for a few number of
simple examples, such as the Wiener or Poisson process, there is not an ex-
plicit expression for the transition probability (or Green) function, so that the
explicit characteristics of a diffusion process with jumps (or even a standard
Markov process) is the second order integro-differential operator, which acts as
its infinitesimal generator.

5.8.1 Probabilistic Viewpoint

A Wiener process, a Poisson process and a Lévy process are typical prototypes
of a diffusion process, a jump process and a diffusion process with jumps, re-
spectively. Let x(·) be a (cad-lag) Markov process with values in Rd such that
for any t ≥ 0 and any test function ϕ in C∞0 (Rd) (infinite differentiable with a
compact support) we have

lim
r↓0

E{ϕ(x(t+ r))− ϕ(x(t))
∣∣ x(s), s ≤ t} −A(t)ϕ(x(t))

r
= 0, (5.187)
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where A(t) is a linear operator from C∞0 (Rd) into C0
b (Rd) (bounded continuous

functions), moreover
A(t)ϕ(x) =

d∑
i,j=1

aij(t, x)∂ijϕ(x) +

d∑
i=1

ai(t, x)∂iϕ(x) +

+

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, t, x),

(5.188)

where aij = aji, all coefficients aij and ai are measurable and M(dz, t, x) inte-
grates the function z 7→ |z|2∧|z|. Except for the measurability of the coefficients
and the integrability at infinity of the function z 7→ |z| for the Lévy kernel, any
linear operator as above must have the integro-differential form (5.188).

The above process x(·) is called a diffusion with jumps or just a diffusion
if the Lévy kernel M(dz, t, x) vanishes. Similarly, we can say that process x(·)
is a (special) semi-martingale with characteristics (ai(s, x(s))) (drift-vector),
(aij(s, x(s))) (diffusion-matrix) and M(dz, s, x(s)) (jump-measure), i.e., the pro-
cesses

t 7→Mi(t) := xi(t)− xi(t0)−
∫ t

t0

ai(s, x(s))ds, ∀t > t0,

t 7→M c
i (t)M c

j (t)−
∫ t

t0

aij(s, x(s))ds,

t 7→
∑

t0<s≤t

ψ
(
M(s)−M(s−)

)
−
∫ t

t0

ds

∫
Rd∗
ψ(z)M(dz, s, x(s)),

(5.189)

for every t > t0, are local martingales, for any i, j, and for every test function
ψ in C∞0 (Rd∗) (infinite differentiable with a compact support in Rd∗), and where
M c
i (·) is the continuous part of the local martingale Mi(·). Actually,

M c
i (t)M c

j (t) = Mi(t)Mj(t)−

−
∑

t0<s≤t

(
Mi(s)−Mi(s−)

)(
Mj(s)−Mj(s−)

)
,

for every t > t0, and Mi(s) −Mi(s−) = xi(s) − xi(s−), for every s > t0. This
holds for every t0 ≥ 0.

In term of the characteristic function, these conditions means that the com-
plex-valued process

E
{

exp
[
iξ ·

[
x(t)− x(0)−

∫ t

t0

a(s, x(s))ds
]

+

+
∑

t0<s≤t

ψ
(
x(s)− x(s−)

)
−
∫ t

t0

ξ · a(s, x(s))ξds+

+

∫ t

t0

ds

∫
Rm∗

[
1− eiξ·z+ψ(z) + iξ · z

]
M(dz, s, x(s))

}
,

(5.190)

is a local (square-integrable) martingale, for every test function ψ in C∞0 (Rd∗)
and any ξ in Rd, where i =

√
−1, a(s, x(s)) = (ai(s, x(s))) and a(s, x(s)) =
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(aij(s, x(s))). Perhaps a more elegant way is to use the martingale problem, i.e.,
to impose that the real-valued process

Mϕ(t) := ϕ(x(t))− ϕ(x(t0))−
∫ t

t0

A(s)ϕ(s)ds, ∀t ≥ t0, (5.191)

be a (bounded) martingale for any test function ϕ in C∞0 (Rd). This is translated
into the condition

E
{
ϕ
(
x(t)

) n∏
i=1

hi
(
x(si)

)}
= E

{
ϕ
(
x(s)

) n∏
i=1

hi
(
x(si)

)}
+

+E
{∫ t

s

Aϕ
(
x(r)

) n∏
i=1

hi
(
x(si)

)
dr
}
,

(5.192)

for any integer n, for every t0 ≤ s1 < s2 · · · ≤ sn ≤ s < t, any (real-valued)
Borel and bounded functions hi, i = 1, . . . , n. Recall that the integro-differential
operator A(t) maps twice-continuously differentiable functions with compact
support into Borel and bounded functions, locally uniformly in t > t0, and any
t0 ≥ 0.

As in Ikeda and Watanabe [110], we adopt the following framework;

Definition 5.51. A family of probability measures (Ps,x : s ≥ 0, x ∈ Rd) on
the canonical space D([0,∞),Rd) is called a Markov probability measures if (1)
Ps,x{ω(s) = x} = 1 for every x in Rd,
(2) the function (s, x) 7→ Ps,x(B), form [0,∞)×Rd into [0, 1], is Borel measurable
for each Borel subset B of D([0,∞),Rd),
(3) for every x in Rd, t > r > s ≥ 0, any subset B in Bs,r

(
D([0,∞),Rd)

)
and

Borel subset A of Rd we have

Ps,x(B ∩ {ω : ω(t) ∈ A}) =

∫
B

Pr,ω′(r)(ω : ω(t) ∈ A)Ps,x(dω′),

where Bs,r
(
D([0,∞),Rd)

)
is the ]s, r]-Borel sets, i.e, the σ-algebra generated by

cylinders of the forms {ω(r1) ∈ A1, . . . , ω(rn) ∈ An}, s < r1 ≤ · · · < rn ≤ r,
Ai, . . . , An are Borel subsets of Rd, for any integer n ≥ 1.

The family of measures {P (s, x, t, dy), t > s ≥ 0, x ∈ Rd} on Rd defined by

P (s, x, t, A) := Ps,x{ω : ω(t) ∈ A}, ∀A ∈ B(Rd)

is called the transition function.

(4) if the transition function is time-invariant, i.e., P (s, x, t, A) = P (s+ r, x, t+
r,A) for every r ≥ 0, then either transition function P (x, t,dy) := P (0, x, t, dy),
t > 0, x ∈ Rd or the family of probability measures Px := P0,x, x ∈ Rd) is
relevant and called (time) homogeneous.

On the other hand, a Markov probability measures (Ps,x : s ≥ 0, x ∈ Rd
is called a diffusion with jumps determined by an integro-differential operator
(A(t) : t ≥ 0) as in (5.188) if
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(5) for every s ≥ 0, x in Rd and any test function ϕ in C∞0 (Rd), the process

Mϕ(t) := ϕ(ω(t))− ϕ(ω(s))−
∫ t

s

A(r)ϕ(ω(r))dr, ∀t ≥ s,

is a (bounded) martingale with respect to the probability measure Ps,x. If the
coefficients are independent of t, i.e., A(t) = A, then Px := P0,x is called homo-
geneous diffusion with jumps.

A successive application of the Markov property (3) of Definition 5.51 yields

Ps,x
(
ω(t1) ∈ A1, ω(t2) ∈ A2, . . . , ω(tn) ∈ An,

)
=

=

∫
A1

P (s, x, t1,dy1)

∫
A2

P (t1, y1, t2,dy2) . . .

∫
An

P (tn−1, yn−1, tn,dyn),

for every 0 ≤ t1 < t2 < · · · < tn, Ai in B(Rd), 1 ≤ i ≤ n. It is then clear that
two Markov measures with the same transition function coincide. However, an
integro-differential operator determines a version of a diffusion with jumps, i.e.,
the uniqueness of Ps,x is usually related with the continuity properties in (s, x).
On the other hand, we also have

lim
t↓s

P (s, x, t, {y : |y − x| ≥ ε}) = 0,

for every ε > 0, any s ≥ 0 and x in Rd. Nevertheless, continuity in the variables
(s, x) should be assumed if needed. Indeed, the transition function P (s, x, t, dy)
is called a (strong) Feller transition if for any t > s ≥ 0, any x in Rd and
every bounded and continuous (bounded and Borel measurable) function h the
mapping

(s, x) 7→
∫
Rd
h(y)P (s, x, t, dy) (5.193)

is continuous. Setting x(t, ω) := ω(t) the canonical process in D([0,∞),Rd)
we see that a diffusion with jumps Ps,x solves the martingale problem rela-
tive to the integro-differential operator A(t). If not jumps kernel is given, i.e.,
M(dz, s, x(s)) = 0 then Ps,x is a probability measure in the canonical space
C([0,∞),Rd) of continuous processes.

A Markov probability measures (Ps,x : s ≥ 0, x ∈ Rd on the canonical space
of cad-lag functions D([0,∞),Rd) or continuous functions C([0,∞),Rd) is called
strong Markov probability measures if the property (3) of Definition 5.51 holds
true for any stopping times. To properly state this condition we need some
notation. As above Bs,t

(
D([0,∞),Rd)

)
denotes the ]s, r]-Borel sets, i.e, the

σ-algebra generated by cylinders of the forms {ω(r1) ∈ A1, . . . , ω(rn) ∈ An},
s < r1 ≤ · · · < rn ≤ t, Ai, . . . , An are Borel subsets of Rd, for any integer
n ≥ 1. The universally complete filtration B̄s,t

(
D([0,∞),Rd)

)
with respect to

a Markov probability measures (Ps,x : s ≥ 0, x ∈ Rd is defined as the minimal
filtration (i.e., right-continuous) which contains all negligible sets with respect
to the probabilities Pr,x for every s ≤ r ≤ t and x in Rd. A s-stopping time is a
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measurable variable τ > s on D([0,∞),Rd) such that {ω : τ(ω) ≤ t} belongs to
B̄s,t = B̄s,t

(
D([0,∞),Rd)

)
for every t > s. Then B̄s,τ = B̄s,τ

(
D([0,∞),Rd)

)
is

the σ-algebra generated by Borel sets A satisfying A ∪ {τ ≤ t} belongs to B̄s,t.
Hence, the strong Markov property is written as

Ps,x(B ∩ {ω : ω(τ(ω) + t) ∈ A}) =

=

∫
B

Pτ(ω′),ω′(τ(ω′))(ω : ω(τ(ω) + t) ∈ A)Ps,x(dω′),

for any subset B in B̄s,τ
(
D([0,∞),Rd)

)
, or equivalently (in term of the regular

conditional probability)

Ps,x
{
ω : ω(τ(ω) + t) ∈ A

∣∣ B̄s,τ}(dω′) =

= Pτ(ω′),ω′(τ(ω′))

(
ω : ω(τ(ω) + t) ∈ A

)
Ps,x(dω′),

for every Borel subset A of Rd, every s-stopping time τ, any t ≥ 0. This expresses
the fact that the canonical process x(t, ω) := ω(t) is a strong Markov process in
D([0,∞),Rd) with the transition function P (s, x, t, dy).

Proposition 5.52. Let (Ps,x : s ≥ 0, x ∈ Rd) be a diffusion with jumps de-
termined by an integro-differential operator (A(t) : t ≥ 0) as in Definition 5.51.
Assume that the martingale problem relative to (A(t) : t ≥ 0) has the uniqueness
property, i.e., if (P ′s,x : s ≥ 0, x ∈ Rd) is another Markov probability measures

then for every real-valued smooth function h with a compact support in Rd we
have either

Es,x{h(ω(t))} = E′s,x{h(ω(t))}, ∀t > s ≥ 0, x ∈ Rd,

or ∫ ∞
s

e−λ(t−s)Es,x{h(ω(t))}dt =

∫ ∞
s

e−λ(t−s)E′s,x{h(ω(t))}dt,

for every λ > 0, s ≥ 0 and x in Rd, where Es,x and E′s,x denotes the mathemat-

ical expectation with respect to Ps,x and P ′s,x. Then (Ps,x : s ≥ 0, x ∈ Rd) is a
strong diffusion with jumps, i.e., the above strong Markov property is satisfied.

Proof. It is clear that the above assumption yields the uniqueness in law of the
martingale problem, i.e., Ps,x = P ′s,x, for every s ≥ 0 and x in Rd. Since the pro-
cess Mϕ(t) is a Ps,x-martingale, it is also a martingale relative to the universally
completed filtration B̄s,∞

(
D([0,∞),Rd)

)
and by Doob’s optimal sampling theo-

rem, the process t 7→Mϕ(t+ τ) is also a martingale relative to B̄τ,∞
(
D([0,∞)

)
,

for any bounded s-stopping time τ. In particular, for every t > s ≥ 0 A in
B̄s,τ

(
D([0,∞)

)
and B in B̄τ,∞

(
D([0,∞)

)
we have

Es,x
{[
Mϕ(τ + t)−Mϕ(τ + s)

]
1A 1B

}
= 0,

which remains true for any s-stopping time not necessarily bounded, e.g., replace
τ by τ ∧ n, with n → ∞. Hence, if Pω

′
is a regular conditional probability of
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Ps,x given B̄τ,∞
(
D([0,∞)

)
then Pω

′{ω : ω(τ(ω)) = ω(τ(ω′))} = 1. By the

uniqueness of the martingale problem, Pω
′

= Pτ(ω′),ω′(τ(ω′)), which proves the
desired result.

It is clear that we may replace Rd with any locally compact Polish space O
and the previous Proposition remains true. Moreover, if O is not locally com-
pact, then we need to take a larger family of smooth functions ϕ, for instance,
bounded functions with a bounded support if O is a Banach space.

The martingale problem can be considered for any continuous and linear
operator (A(t) : t ≥ 0) from C∞0 (Rd) into C0

b (Bd), not necessarily an integro-
differential operator of the form (5.188). Moreover, (A(t) : t ≥ 0) may be
a multi-valued operator as in Ethier and Kurtz [76, Chapter 4, pp. 155–274].
Thus, a direct consequence of the previous Proposition 5.52 is the following fact:
if Ps,x is the unique solution of a martingale problem with Ps,x{ω(s) = x} = 1
and the mapping (s, x) 7→ Ps,x then (Ps,x : s ≥ 0, x ∈ Rd) is a strong diffusion
with jumps.

Suppose the coefficients aij(t, x), ai(t, x) satisfy

aij :=
1

2

n∑
k=1

σik σjk, ai := gi +

n∑
k=1

bk σik, (5.194)

where gi, bk and σik are (Borel) measurable and for some constant C > 0 and
any t, x, we have

x · g(t, x) +

n∑
k=1

|σk(t, x)|2 ≤ C (1 + |x|2),∑
k

|bk(t, x)| ≤ C,

and for every r > 0 there is a constant Cr such that

|g(t, x)− g(t, x′)|+
n∑
k=1

|σk(t, x)− σk(t, x′)| ≤ Cr |x− x′|,

for any 0 ≤ t ≤ r, |x| ≤ r, |x′| ≤ r. The Lévy or jump kernel M(dz, t, x) has the
form  M(B, t, x) := π({ζ : j(ζ, t, x) ∈ B}) +

+

∫
{ζ : k(ζ,t,x)∈B}

c(k(ζ, t, x), t, x)π(dζ),
(5.195)

for every B in B(Rd∗), t ≥ 0, and x in Rd, where all coefficients are measurable
and π is a Radon measure on Rm∗ , such that there exit some positive constant
C, c0 and some measurable real-valued function ̄(ζ), such that for every ζ, t, x, z
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we have

|j(ζ, t, x)|+ |k(ζ, t, x)| ≤ (1 + |x|) ̄(ζ),∫
Rm∗

̄2(ζ)π(dζ) ≤ C,

−1 < −c0 ≤ c(z, t, x) ≤ C,

|c(k(ζ, t, x), t, x)| ≤ ̄(ζ),

and for every r > 0 there is a constant Cr such that

|j(ζ, t, x)− j(ζ, t, x′)|+ |k(ζ, t, x)− k(ζ, t, x′)| ≤ Cr ̄(ζ) |x− x′|,

for any 0 ≤ t ≤ r, |x| ≤ r, |x′| ≤ r, where ̄(ζ) is a square-integrable with respect
to π as above, and a posteriori taken to be the same function.

Based on the strong existence and uniqueness of stochastic differential equa-
tions Theorem 5.3 and Girsanov transformation, we deduce

Theorem 5.53. Let (A(t) : t ≥ 0) be an integro-differential operator as in
(5.188) where the coefficients satisfy conditions (5.194) and (5.195). Then
the corresponding diffusion with jumps can be defined as a strong Markov pro-
cess. Moreover, if the coefficients b(t, x), k(ζ, t, x) and c(z, t, x) are locally uni-
form continuous in x then the diffusion with jumps satisfies the Feller property
(5.193).

Proof. Under these assumptions the martingale problem has one and only one
solution, so that the previous Proposition 5.52 proves that the diffusion with
jumps is indeed a strong Markov process. On the other hand, if Girsanov trans-
formation is not used, i.e., the coefficients b(t, x), k(ζ, t, x) and c(z, t, x) vanish,
then the estimates for the strong solution of stochastic differential equations
Theorem 5.11 shows the Feller property (5.193). In general, if all coefficients
are locally uniform continuous in x then the expression of the density process
(used to applied Girsanov transformation) is continuous in x(·), and the Feller
character is preserved.

There is a case not included in the previous theorem, which is related to
uniqueness question of the martingale problem with continuous coefficients, cf.
Jacod and Shiryaev [117, Theorem III.2.34, p. 146].

Theorem 5.54. Assume that the diffusion matrix aij(t, x) is bounded, invert-
ible and continuous everywhere, that the drift vector ai(t, x) is measurable and
bounded, and that the Lévy kernel M(dz, t, x) is such that for every B in B(Rd∗)
the function

(t, x) 7→
∫
B

|z|2 ∧ |z| M(dz, t, x)

is continuous, uniformly in B. Then the martingale problem has one and only
one solution, which is a strong Markov process satisfying the strong Feller prop-
erty.
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The proof for the diffusion case, i.e. without the jump kernel M(dz, t, x), is
very well know and several variations on the above assumptions are possible,
e.g. see Stroock and Varadhan [241, Chapter 7, pp. 171–190]. The general case
is very similar. The existence is handled a way similar to Theorem 5.48, but the
uniqueness and the strong Feller property are obtained from analytic results on
partial differential equations. The arguments are as follows: on one hand, for
any real-valued smooth function ϕ with a compact support in Rd we consider
the integro-partial differential equation{

∂sψ(s, x) = −A(s)ϕ(x), ∀s < t, x ∈ Rd,

ψ(t, x) = ϕ(x), ∀x ∈ Rd,

and on the other hand, an integral version of Itô formula (or equivalently the
so-called Dynkin formula) is applied to the function ψ to deduce

ψ(s, x) = Es,x{ϕ(x(t))} =

∫
Rd
ϕ(y)P (s, x, t, dy),

Hence, the uniqueness of the solution ψ yields the uniqueness of the transition
function P (s, x, t, dy) and so the uniqueness of the martingale problem. The
uniqueness property for the above integro-partial differential equation in ψ is
usually obtained from the weak maximum principle, and the solution ψ should
be found in a class of function where Dynkin formula can be used. A priori
estimates on the solution ψ show the Feller character of the diffusion with jumps.
The continuity condition on the Lévy kernel can be replaced by the condition
that the the function

(t, x) 7→
∫
B

|z|2 ∧ 1 M(dz, t, x),

is continuous, but in this case, the canonical process x(t) = ω(t) may not have a
first order moment, due to the large jumps. When the coefficients have a linear
growth in x, the (integro-)partial differential equation has some extra difficul-
ties, for instance see Bensoussan and Lions [16, Section III.1.13, pp. 202–207],
Besala [24] and Cerrai [36] for the diffusion case, and Menaldi and Robin [174]
for diffusion with jumps.

Even if no uniqueness is ensured, we may be able to find a measurable
selection from the solutions of a martingale problem and then to construct a
strong Markov process, this is the case under the assumptions of Theorem 5.48.
For the sake of completeness we rewrite the integro-differential operator A(t) as

A(t)ϕ(x) =

d∑
i,j=1

aij(t, x)∂ijϕ(x) +

d∑
i=1

gi(t, x)∂iϕ(x) +

+

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, t, x),

(5.196)

where aij = aji, all coefficients a = (aij) and g = (gi) are measurable satisfying
the growth (linear) condition

x · g(t, x) + |a(t, x)| ≤ C (1 + |x|2),
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for every (t, x) in [0,∞)× Rd and some positive constant C.

M(B, t, x) =

∫
{ζ : j(ζ,t,x)∈B}

m(ζ, t, x)π(dζ), ∀B ∈ B(Rd∗),

where j(·) and m(·) are measurable functions taking values in Rd and [0, 1],
respectively, and π is a Radon measure on Rm∗ such that for some measurable
real-valued function ̄(ζ) we have

|j(ζ, t, x)| m(ζ, t, x) ≤ (1 + |x|) ̄(ζ),∫
Rm∗

̄2(ζ)π(dζ) ≤ C,

for every ζ, t, x and for some positive constant C. Again, these assumptions are
referred to as measurability and a linear growth condition, even if the diffusion
matrix a(t, x) has at most a quadratic growth and the drift vector g(t, x) may
not has a linear growth in all directions.

Moreover, suppose that all coefficients g(t, x), a(t, x), j(ζ, t, x) and m(ζ, t, x)
are uniformly local continuous x if for every ε > 0 there exists a δ > 0 such that
for every t, x, x′ satisfying 0 ≤ t− t0 ≤ 1/ε, |x− x′| < δ, |x| ≤ 1/ε, |x′| ≤ 1/ε,
we have

|g(t, x)− g(t, x′)|+ |a(t, x)− a(t, x′)| ≤ ε,

|j(ζ, t, x)− j(ζ, t, x′)| ≤ ε ̄(ζ),

|m(ζ, t, x)− m(ζ, t, x′)| ≤ ε,

(5.197)

where ̄(ζ) is the square-integrable function used above.

Theorem 5.55. Let (A(t) : t ≥ 0) be an integro-differential operator as in
(5.196) satisfying (5.197). Then the solution of the martingale problem Ps,x
with initial condition x(s) = x forms a non-empty compact set with respect
to the weak convergence of probability measures defined on the canonical space
D([0,∞),Rd). Furthermore, there exists a measurable selection which is a dif-
fusion with jumps satisfying the strong Markov property.

The diffusion case (which has almost no differences with the case of diffusion
with jumps) follows from Krylov [137]. The fact that the solutions form a non-
empty compact set is essentially proved in Theorem 5.48. The measurable
selection is based on the following result. First, if Q is a given separable metric
space with a metric d(·, ·) then Cp(Q), the class of all compact subsets of Q,
with the metric dc(·, ·) is also a separable metric space, the metric dc(K1,K2)
is defined as the infimum of all ε > 0 such that K1 ⊂ Kε

2 and K2 ⊂ Kε
1 , where

Kε := {q ∈ Q : d(q, p) < ε, for some p ∈ K},

i.e., Kε is a ε-ball around K. It is clear that Q is embedded isometrically in
Cp(Q).
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Theorem 5.56. Let (E, E) a measurable space and consider e 7→ Ke a measur-
able map from E into Cp(Q). Then there is a measurable map e 7→ k(e) from E
into Q such that k(e) belongs to Kq for every e in E.

The proof of this result and a complete discussion can be found in Stroock
and Varadhan [241, Chapter 12, pp. 285–303].

From the control point of view, a very important question is the existence of
a solution under measurability assumption, without any condition of continuity
on the variable x. This is due to the fact that the control process v(t) is Markov
feedback, i.e., v(t) = k(x(t−)) for some measurable function k(·). The optimal
feedback k(·) is obtained as a minimizer of some equation, which in most of
the cases is only measurable, no condition of continuity can be assumed, cf.
Krylov [139].

A proof of the following result, for non-degenerate diffusion with jumps and
measurable coefficients with m = 1, can be found in the paper Anulova and
Pragarauskas [5]. Thus, assume that the diffusion matrix is non-degenerate,
i.e., there exists a constant a0 > 0 such that

ξ · a(t, x)ξ ≥ a0|ξ|2, ∀ξ ∈ Rd, (5.198)

for every t ≥ 0 and x in Rd. Similar to Theorem 5.55 we have

Theorem 5.57. Let (A(t) : t ≥ 0) be an integro-differential operator as in
(5.196) satisfying only the linear growth condition and the non-degeneracy as-
sumption (5.198). Then the solution of the martingale problem Ps,x with initial
condition x(s) = x forms a non-empty compact set with respect to the weak con-
vergence of probability measures defined on the canonical space D([0,∞),Rd).
Furthermore, there exists a measurable selection which is a diffusion with jumps
satisfying the strong Markov property.

Proof. We discuss only the existence of the martingale problem under non-
degeneracy and measurability conditions. The arguments are the same as in
Theorem 5.48, by means of the strong solutions and Girsanov transformation,
we find a solution of the martingale problem Pn = Pns,x (we take s = 0 for sim-
plicity) with smooth coefficients gn(t, x), an(t, x), jn(ζ, t, x) and mn(ζ, t, x), i.e.,
if An(t) denotes the integro-differential operator with these smooth coefficients
then the process for t ≥ s ≥ 0,

Mn
ϕ,s(t) := ϕ(x(t))− ϕ(x(s))−

∫ t

s

An(r)ϕ(x(r))dr,

is a (bounded) martingale with respect to Pn, for any n ≥ 1, for every test
function ϕ, where x(t) := ω(t) is the canonical process defined on the canonical
space D([0,∞),Rd).

These coefficients satisfy a linear growth condition and a non-degeneracy
assumption uniformly in n, with mn(ζ, t, x) = 0 if |ζ| ≤ 1/n or |ζ| ≥ n and
1/n ≤ mn(ζ, t, x) ≤ 2, otherwise. Moreover, gn → g, an → a, jn(ζ, ·, ·) →
j(ζ, ·, ·) and mn(ζ, ·, ·)→ m(ζ, ·, ·) in Lp(]0, T [×B) for every bounded measurable
subset B of Rd, any p ≥ d+ 1 and any ζ in Rm∗ . Recall that we may also assume
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that |jn(ζ, t, x)| ≤ (1 + |x|) ̄(ζ), where ̄(ζ) is square-integrable with respect to
π. Thus, for every test function ϕ, any bounded subset B of Rd and T > 0 we
have

lim
n

∫ T

0

dt

∫
B

|An(t)ϕ(x)−A(t)ϕ(x)|pdx = 0,

for every p ≥ d + 1. Furthermore, because ϕ has a compact support, the as-
sumptions on the coefficients imply that the sequence {An(t)ϕ(x) : n ≥ 1} is
equi-bounded in [0,∞× Rd.

Since the coefficients satisfy the linear growth condition uniformly in n, we
also have the following property (referred to as bounded and continuous in
probability): for every ε > 0 there is a δ > 0 independent of n such that

Pn{ sup
0≤t≤1/ε

|x(t)| ≥ 1/δ}+

+Pn{ sup
0≤r≤δ

|x(s+ r)− x(s)| ≥ ε} ≤ ε.

This proves that the set of probability measures Pn is tight (or pre-compact) and
that there exists a subsequence (still denoted by Pn) which converges weakly
to some limit P.

Hence, the arguments in Theorem 4.69 of the previous chapter show that

En{Mn
ϕ,s(t) | F(r)} → E{Mϕ,s(t) | F(r)}, as n→∞,

for every t ≥ r ≥ s ≥ 0, where

Mϕ,s(t) := ϕ(x(t))− ϕ(x(s))−
∫ t

s

A(r)ϕ(x(r))dr,

for every t ≥ s ≥ 0. This proves that the limiting probability P is a solution of
the martingale problem relative to the integro-differential operator A(t) given
above.

Notice that for any measurable and bounded Lévy measures, i.e., when
M(Rd∗, s, x) ≤ C <∞, for every x in Rd and s ≥ 0, the diffusion with jumps can
be constructed, without any particular structure on the kernel, e.g., see Bensous-
san and Lions [17, Section 3.7.5, pp. 274–280]. Thus, assume that the integro-
differential operator A(t) can be approximated by a sequence {An(t) : n ≥ 1}
satisfying uniformly the measurability and growth conditions, with bounded
Lévy measures and such that An(t)ϕ(x) is equi-bounded and converges to
A(t)ϕ(x) in Ld+1

loc (]0,∞[×Rd), for every smooth function ϕ with a compact sup-
port in Rd. Then the above arguments can be used to prove the existence of a
strong diffusion with jumps.
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5.8.2 Analytic Viewpoint

From the analysis (rather than probability) point of view, we are interested in
the Markov semigroup or backward evolution operator

Φ(s, t)h(x) := E{h
(
x(t)

) ∣∣ x(s) = x}, ∀t > s ≥ 0, x ∈ Rd,

defined on Borel and bounded function h. Its infinitesimal generator given by
the expression

A(s)h := lim
t→s+

Φ(s, t)h(x)− h(x)

t− s
, s ≥ 0,

A(t)h := lim
s→t−

h(x)− Φ(s, t)h(x)

t− s
, t > 0,

which define the operator and its domain of definition. The homogeneous case,
i.e., when Φ(s, t) = Φ(t− s) and A(s) = A, is better well known. It is clear that
by adding one more dimension, the variable t can be regarded as part of the
state variable x, however, the assumptions on t are generally weaker than those
on x. Using the transition function P (s, x, t, dy) we can rewrite the semigroup
as

Φ(s, t)h(x) :=

∫
Rd
h(y)P (s, x, t, dy), ∀t > s ≥ 0, x ∈ Rd.,

for any h in B(Rd) (real-valued Borel and bounded functions on Rd).
The formal connection between the transition function P (s, x, t, dy) and

the integro-partial differential equation is the Chapman-Kolmogorov identities,
namely, the backward equation

∂sP (s, x, t, dy) = −A(s)P (s, x, t, dy), ∀s ∈ [0, t), x ∈ Rd, dy

lim
s↑t

P (s, x, t, dy) = δx(dy), ∀t > 0, x ∈ Rd, dy

and the forward equation

∂tP (s, x, t, dy) = A∗(t)P (s, x, t, dy), ∀t > s ≥ 0, x ∈ Rd, dy,

lim
t↓s

P (s, x, t, dy) = δx(dy), ∀s ≥ 0, x ∈ Rd, dy,

where δx(·) is the Dirac delta measure with unit mass at x, and the operator
A(s) is acting on the variable x as usually, but A∗(t) is the adjoint (or dual)
operator acting on the y variable, i.e.∫

Rd
ϕ(y)

(
A∗(t)P (s, x, t, ·)

)
(dy) :=

∫
Rd

(
A(t)ϕ

)
(y)P (s, x, t, dy),

for every test function ϕ in C∞0 (Rd). Clearly, the most interesting case is when
P (s, x, t, dy) has a density with respect to the Lebesgue measure, i.e.,

P (s, x, t, dy) := p(s, x, t, y) dy,
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and p(s, x, t, y) satisfies the backward and forward equations in the usual sense.
Note that the backward equation has a terminal condition, whilst the forward
equation has a initial condition (in the simplest case A(s) = A∗(t) = ∇2 is the
Laplacian).

As mentioned above, the backward equation follows from Dynkin or Itô for-
mula, and the forward equation can be derived by means of an integration by
parts, but it requires much more regularity on the coefficients of A(t). The tran-
sition density function p(s, x, t, y) is essentially the main fundamental solution
or Green function associated with the parabolic integro-differential operator
∂t + A(t) with a terminal condition (or ∂t − A(t) with an initial condition). A
comprehensive study on the transition density function p(s, x, t, y) (or Green
function) corresponding to non-degenerated diffusion with jumps can be found
in Garroni and Menaldi [93, 94], where full details are given only for bounded do-
mains with oblique boundary conditions. However, most of the estimates remain
true for the whole space, where the technique is neater and easier. The purely
diffusion case is much more well known, and the construction and estimates of
the Green function involves the heat kernel, e.g., see the books Eidelman [72],
Ladyzhenskaya et al. [147], Lieberman [153], Gilbarg and Trudinger [100], and
the papers Ivasǐsen [114], Solonnikov [232, 233], among others.

On the other hand, if the diffusion term a(t, x) is degenerate (i.e., the con-
dition (5.198) above is not satisfied) then a transition density function is not
guarantee. However, the differentiability of the strong solution with respect to
the initial data, see Proposition 5.22, ensures that the function

u(s, x) :=

∫
Rd
h(y)P (s, x, t, dy) +

∫ t

s

dr

∫
Rd
f(r, y)P (s, x, r, dy) =

= Es,x{h(x(t))}+

∫ t

s

Es,x{f(r, x(r))}dr

is twice-continuously differentiable if the coefficients, f and h are so. Hence

∂su(s, x) +A(s)u(s, x) = f(s, x), ∀s ∈ [0, t), x ∈ Rd,

u(t, x) = h(x), ∀x ∈ Rd,

which is the actual meaning of the backward equation.
This connection with the partial differential equations is of fundamental im-

portance, and a carefully study is needed. For instance, we refer to Bensoussan
and Lions [16, 17], Cerrai [36], Doob [60], Engel and Nagel [74], Freidlin [87],
Friedman [90], Gihman and Skorohod [97], Taira [243], among others.

To be specific, let us rewrite the integro-differential operator A(s) given by
(5.188) as A(s) = I(s)−L(s), where the proper integral part I(s) and the proper
differential part L(s) are given by

L(s)ϕ(x) = −
d∑

i,j=1

aij(s, x)∂ijϕ(x)−
d∑
i=1

ai(s, x)∂iϕ(x),

I(s)ϕ(x) =

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, s, x),

(5.199)
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where aij = aji, all coefficients aij and ai are measurable, with a structural
condition on the Lévy kernel M(dz, s, x) of the form

M(B, s, x) =

∫
{ζ : j(ζ,s,x)∈B}

m(ζ, s, x)π(dζ), (5.200)

for every B in B(Rd∗), where j(·) and m(·) are measurable functions taking values
in Rd and [0, 1], respectively, and π is a Radon measure on Rm∗ such that for
some measurable real-valued function ̄(ζ) we have

|j(ζ, s, x)| m(ζ, s, x) ≤ (1 + |x|) ̄(ζ),∫
Rm∗

̄2(ζ)π(dζ) ≤ C,
(5.201)

for every ζ, s, x and for some positive constant C. We may add a zero-order term
to the expression of L(s), i.e., to replace L(s)ϕ(x) by L(s)ϕ(x) + a0(s, x)ϕ(x),
which corresponds to kill the initial Markov process with an exponential prob-
ability density of parameter a0(s, x) ≥ 0.

As discussed in Chapter 2, classic results (e.g. see the books by Fried-
man [89] or Ladyzhenskaya et al. [147]) ensure (under some assumptions) the
existence, uniqueness and suitable estimates (in term of the heat kernel) of the
principal fundamental solution (or Green function) pL(s, x, t, y) corresponding
to the parabolic second order partial differential operator ∂s − L(s) with a ter-
minal condition. For instance, besides uniform ellipticity, typical assumptions
are bounded and Hölder continuous coefficients aij(s, x), ai(s, x) for (s, x) in
[0, T ] × Rd, for every T > 0, which yield a Hölder continuous Green function
in all its variables (i.e., x, y in Rd, 0 ≤ s < t ≤ T ), with Hölder continuous
second derivatives in x and first derivative in s, bounded relative to the heat
kernel. If the lower order coefficients ai(s, x) are not longer Hölder continu-
ous then the Green function pL(s, x, t, y) is not necessarily Hölder continuous
in (t, y) and the second derivative in x and first derivative in s are not longer
Hölder continuous, however, bounds in term of the heat kernel remain true.
Clearly, this involves the so called strong (and weak) solution in Sobolev spaces,
which can be pushed even to the case of only continuous higher order coefficients
aij(s, x) (even measurable in (s, x), continuous in x and locally bounded in s)
and measurable and bounded (even a linear growth in x is allowed) lower order
coefficients ai(s, x). There is a large variety of results and huge list of references
regarding parabolic second order differential equations. From the probabilistic
point of view, the reader may consult the statements quoted in the book Stroock
and Varadhan [241, Chapter 3 and Appenix], where a Lp-type estimate (involv-
ing the heat kernel) is proved for the particular case of coefficients independent
of x but not enough in s, see also the book Eidelman [72].

As stated in Section 2.12, the addition of the integral part I(s) destroys the
explicit presence of the heat kernel in the estimates of the Green function, so
that only a set of key properties are preserved, see Garroni and Menaldi [93, 94].

If pL denotes the Green function associated with the differential operator
∂s+L(s) then Green function p associated with the integro-differential operator
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∂s + L(s)− I(s), we solve a Volterra equation{
either find QI such that QI = QL +QL •QI ,
or find p such that p = pL + pL • I(·)p ,

with the relations QL = I(·)pL and p = pL + pL •QI . Recall that the bullet •
means the kernel-convolution, i.e., for any ϕ(x, t, y, s) and ψ(x, t, y, s)

(ϕ • ψ)(x, t, y, s) :=

∫ T

0

dτ

∫
Rd
ϕ(x, t, z, τ)ψ(z, τ, y, s)dz,

for every 0 ≤ s < t ≤ T, x and y in Rd. Actually, we express QI as the following
series

QI =

∞∑
n=1

Qn , Q0 = QL, Qn = QL •Qn−1 , n ≥ 1,

where the convergence is in the sense of following Green spaces. Notice that in
Section 2.12 we used G and GL instead of p and pL, as well as initial condition
instead of initial condition.

If pλ denotes the Green function associated with ∂s + L(s) + λ(s), where
λ(s) ≥ 0 is a measurable bounded coefficient of zero-order, then a simple change
of variable proves that

pλ(s, x, t, y) = e−
∫ t
s
λ(r)drpL(s, x, t, y),

for every x, y in Rd and 0 ≤ s < t. Moreover, if the integral part I(t) has the
form

I(s)ϕ(x) =

∫
Rm∗

[ϕ(x+ k(ζ, s, x))− ϕ(x)]m(dz, s),

with m(Rm∗ , s) ≤ C <∞, for every s in [0, T ], then the Green function p associ-
ated with ∂s + L(s)− I(s) satisfies the equation

p(s, x, t, y) = e−
∫ t
s
m(Rm∗ ,r)drpL(s, x, t, y) +

∫ t

s

e−
∫ t
r
m(Rm∗ ,u)dudr ×

×
∫
Rd
p(s, x, t, z)dz

∫
Rm∗

pL(r, z + k(ζ, r, z), t, y)m(dz, s),

for every x, y in Rd and 0 ≤ s < t. The reader is referred to the book Sko-
rokhod [230, Section I.2, pp. 23–41] for more probabilistic arguments in this
direction.

5.9 Symmetric Markov Jumps

A Markov jump process is characterized by its (proper) integro-differential op-
erator

either I(t)ϕ(x) =

∫
Rd∗

[ϕ(x+ z)− ϕ(x)]M(dz, t, x),

or I(t)ϕ(x) =

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, t, x),
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depending on whether the Levy kernel M(dz, t, x) integrates the function z 7→ |z|
(jumps of bounded variation) or z 7→ |z|2 ∧ |z|, both with finite first moment.
In any case, the bounded kernel Mε(dz, t, x) = M(dz, t, x)1{|z|≥ε} produces work-
able approximations, for most of the key arguments. The dependency of the
kernel M(dz, t, x) on the variables (t, x) is hard to track in general and structural
assumptions are made, such as I(t)ϕ(x) =

∫
Rm∗

[ϕ(x+ j(ζ, t, x))− ϕ(x)−

−j(ζ, t, x) · ∇ϕ(x)]m(ζ, t, x)π(dζ),

(5.202)

or, after using Taylor formula with j(ζ) := j(ζ, t, x),

I(t)ϕ(x) =

∫ 1

0

dθ

∫
Rm∗

j(ζ) · [∇ϕ(x+ θj(ζ))−∇ϕ(x)]m(ζ, t, x)π(dζ) =

=

∫ 1

0

(1− θ)dθ
∫
Rm∗

j(ζ) ·
[
∇2ϕ

(
x+ θj(ζ)

)
j(ζ)

]
m(ζ, t, x)π(dζ),

as long as ϕ is smooth.
Contrary to the Wiener process, a space-time homogeneous Markov jump

process is not necessarily symmetric, i.e., for
either I(t)ϕ(x) =

∫
Rd∗

[ϕ(x+ z)− ϕ(x)]M(dz),

or I(t)ϕ(x) =

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz),
(5.203)

to be symmetric we need to require∫
Rd∗

(|z|2 ∧ |z|)M(dz) <∞, M(B) = M(−B), ∀B ∈ B(Rd∗), (5.204)

which effectively reduces the either-or above expressions to only one, namely,

Iϕ(x) =

∫
Rd∗

[ϕ(x+ z)− ϕ(x)]M(dz), (5.205)

since any odd function, such as z 7→ z, has mean-zero with respect to M(dz).
Perhaps, a typical example is the symmetric Poisson process where M = (δ+1 +
δ−1)/2, i.e.,

Iϕ(x) =
1

2
[ϕ(x+ z) + ϕ(x− z)− 2ϕ(x)],

for any measurable function ϕ.
Let us consider the space S(Rd) of rapidly vanishing at infinity and its dual

space S ′(Rd) of tempered distributions. After identifying the Hilbert space
L2(Rd) with its dual space, we have the inclusions

S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd),
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and we denote by (·, ·) the inner product in L2(Rd) and by 〈·, ·〉 the duality
pairing.

Let us consider the integro-differential operator I given by (5.205), under
the assumptions (5.204), as an unbounded linear operator densely defined on
L2(Rd), i.e., I : S(Rd)→ S ′(Rd) with

〈Iϕ, ψ〉 = (Iϕ, ψ) =

∫
Rd

(∫
Rd∗

[ϕ(x+ z)− ϕ(x)] M(dz)
)
ψ(x) dx.

Approximating M(dz) with Mε(dz), exchanging the order of the integrals and
performing the change of variable x 7→ y = x+ z in the integration, we obtain

〈Iϕ, ψ〉 =

∫
Rd
ϕ(x) dx

∫
Rd∗

[ψ(x− z)− ψ(x)] M(dz),

which yields 〈Iϕ, ψ〉 = 〈ϕ, Iψ〉, after using the symmetry of the kernel M(dz) =
M(−dz). In turn, the equality

[ϕ(x+ z)− ϕ(x)][ψ(x+ z)− ψ(x)] =

= [ϕ(x+ z)ψ(x+ z) + ϕ(x)ψ(x)]− [ϕ(x+ z)ψ(x) + ϕ(x)ψ(x+ z)]

and the previous change of variables provide the symmetric expression

〈Iϕ, ψ〉 = −1

2

∫
Rd

dx

∫
Rd∗

[ϕ(x+ z)− ϕ(x)][ψ(x+ z)− ψ(x)] M(dz), (5.206)

which makes sense for every bounded and Lipschitz functions ϕ and ψ. Thus
(ignoring the growth at infinite), the symmetric bilinear form i(u, v) = 〈Iu, v〉
associated with I requires only differentiable functions, while the domain DI of I
may need twice-differentiable functions. Hence, the completion of S(Rd) under
the inner product i(u, v) is a Hilbert space, which plays the roll of H1, when
dealing with the Laplacian operator instead of the integro-differential operator
I. Clearly, the theory of Dirichlet forms is very hand at this point.

Therefore, instead of allowing the kernel M(dz) in (5.203) to depend on (x, t),
for symmetric processes, we may allow the kernel M(dz) in (5.206) to depends
on (x, t), i.e., M(dz, t, x) given rise to a family of symmetric bilinear forms. Note
that a mixed terms of the form∫

Rd
dx

∫
Rd∗

[ϕ(x+ z)− ϕ(x)][∇ψ(x)] M1(dz)

is not included.
In any case, working with the structural assumption (5.202) we calculate

the formal adjoint of I as in Garroni and Menaldi [94, Section 2.4, pp. 64–
72]. A key condition in this development is assuming that the function j(ζ, t, x)
is continuously differentiable in x for any fixed (ζ, t) and that there exists a
constant c0 > 0 such that for any t, x, x′ we have

c0|x− x′| ≤ |(x− x′) + [j(ζ, t, x)− j(ζ, t, x′)]| ≤ c−1
0 |x− x′|. (5.207)
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This implies that the change of variables ξ = x + j(ζ, t, x) is a diffeomorphism
of class C1 in Rd, for any t in [0, T ], and ζ in Rm∗ . Moreover, the Jacobian of
the transformation satisfies

c−1
1 ≤ det[Id +∇j(ζ, t, x)] ≤ C1, (5.208)

for any ζ, t, x and some constants C1, c1 ≥ 1, where Id is the identity matrix
in Rd, ∇j(ζ, t, x) is the matrix of the first partial derivatives in x, and det[·]
denotes the determinant of a matrix. Under this assumption, the change of
variable x 7→ ξ = x + j(ζ, t, x) is allowed for each ζ and t fixed. Moreover, we
can uniquely define two functions{

ξ = x+ j(ζ, t, x) if and only if ξ − j∗(ζ, t, ξ) = x,

m∗(ζ, t, ξ)|det[Id +∇j(ζ, t, x)]| = m(ζ, t, x).
(5.209)

where j∗ : Rm∗ × [0, T ] × Rd → Rd∗ and m∗ : Rm∗ × [0, T ] × Rd → [0,∞). Note
that j(ζ, t, x) = j∗(ζ, t, ξ) and for the particular case when m(ζ, t, x) = 1 we
have m∗(ζ, t, ξ) = |det[Id + ∇j(ζ, t, x)]|−1. Among other things, this tells that
ODE problems in strong form as in Section 5.1 are not well adapted to handle
symmetric processes with variable coefficients. Weak solutions or martingale
problems seems more adequate.

5.9.1 Adjoint with Variable Coefficients

Suppose that I is given by

I(t)ϕ(x) =

∫
Rm∗

[ϕ(x+ j(ζ, t, x))− ϕ(x)]m(ζ, t, x)π(dζ). (5.210)

and assume that the functions j and m are measurable and satisfy, besides
(5.207), the condition |j(ζ, t, x)| ≤ ̄(ζ), 0 ≤ m(ζ, t, x) ≤ C0,∫

{̄<1}
̄(ζ)π(dζ) +

∫
{̄≥1}

π(dζ) <∞, (5.211)

where π(dζ) is a Radon measure on Rm∗ , ̄(ζ) is a measurable functions from
Rm∗ into (0,∞) and some constant C0 > 0. Then, we define its (proper part)
formal adjoint integro-differential operator

I∗1 (t)ϕ(x) =

∫
Rm∗

[ϕ(x− j∗(ζ, t, x))− ϕ(x)]m∗(ζ, t, x)π(dζ), (5.212)

which have essentially the same properties as I, i.e., the functions j∗ and m∗

satisfy (5.211), with the same ̄ but perhaps a larger C0.
If π is a bounded measure then the change of variables x 7→ ξ = x+j(ζ, t, x)

yields ∫
Rd

dx

∫
Rm∗

ϕ(x+ j(ζ, t, x))ψ(x)m(ζ, t, x)π(dζ) =

=

∫
Rd

dξ

∫
Rm∗

ϕ(ξ)ψ(ξ − j∗(ζ, t, ξ))m∗(ζ, t, ξ)π(dζ),
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and therefore

〈I(t)ϕ,ψ〉 = 〈ϕ, I∗1 (t)ψ〉+ (ϕ, i0(t)ψ), (5.213)

for every ϕ and ψ in S(Rd), where the function i0, defined by

i0(t, x) =

∫
Rm∗

[m∗(ζ, t, x)− m(ζ, t, x)]π(dζ), ∀t, x,

is bounded and measurable. If π is necessarily a bounded measure then we need
some extra hypotheses on the coefficients,

Lemma 5.58. Let I(t) be given by (5.210), and besides assumptions (5.207)
and (5.211), suppose that there exist a constant M1 such that{

|m(ζ, t, x)− m(ζ, t, x+ j(ζ, t, x))| ≤M1̄(ζ),

|∇j(ζ, t, x)| ≤M1̄1(ζ),
(5.214)

for every ζ, t, x, where ̄ is the same function as in (5.211). Then

|m∗(ζ, t, ξ)− m(ζ, t, ξ)| ≤M̄(ζ),

for some constant M depending only on the various constants intervening in the
assumptions, i.e., the function i0(t, x) is bounded and measurable, and we have
the equality (5.213). Moreover, if for every t, x we have

∫
̄(ζ)≥ε

[ϕ(x+ j(ζ, t, x))− ϕ(x)]m(ζ, t, x)π(dζ) =

=

∫
̄(ζ)≥ε

[ϕ(x− j∗(ζ, t, x))− ϕ(x)]m∗(ζ, t, x)π(dζ),
(5.215)

for every ε > 0 and any ϕ in S(Rd), then I(t) is a symmetric operator.

Proof. Indeed, since ∇j(ζ, t, x) is a matrix, we have |det(Id +A)− 1| ≤ |A|, for
every A and a convenient norm | · | on the matrix A, which we may assume to
be the same used in (5.214) for the matrix ∇j(ζ, t, x). Next, denote by ̄(ζ) a
function satisfying (5.211) and (5.214), and remark that

|m∗(ζ, t, x)− m(ζ, t, x)| ≤ |m(ζ, t, ξ)− m(ζ, t, x)|+
+C0|1/ det(Id +∇j(ζ, t, x))− 1| ≤M1(1 + C0c

−1
1 )̄(ζ),

for every ζ, t, x and ξ = x+ j(ζ, t, x)).
Finally, with πε(dζ) = 1{|ζ|≥ε}π(dζ), ε > 0, and the change of variables

x 7→ ξ = x+ j(ζ, t, x) we deduce∫
Rd

dx

∫
Rm∗

ϕ(x+ j(ζ, t, x))ψ(x)m(ζ, t, x)πε(dζ) =

=

∫
Rd

dξ

∫
Rm∗

ϕ(ξ)ψ(ξ − j∗(ζ, t, ξ))m∗(ζ, t, ξ)πε(dζ),

which yields (5.213), for every ϕ and ψ in S(Rd).
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Moreover, instead of using (5.202) we may suppose that I(t) is given by I(t)ϕ(x) =

∫
Rm∗

[ϕ(x+ j(ζ, t, x))− ϕ(x)−

−1{̄(ζ)<1}j(ζ, t, x) · ∇ϕ(x)]m(ζ, t, x)π(dζ),

(5.216)

with  |j(ζ, t, x)| ≤ ̄(ζ), 0 ≤ m(ζ, t, x) ≤ C0,∫
{̄<1}

(̄(ζ))2π(dζ) +

∫
{̄≥1}

π(dζ) <∞, (5.217)

instead of (5.211), then we propose I∗2 (t)ϕ(x) =

∫
Rm∗

[ϕ(x− j∗(ζ, t, x))− ϕ(x)+

+1{̄(ζ)<1}j
∗(ζ, t, x) · ∇ϕ(x)]m∗(ζ, t, x)π(dζ).

(5.218)

The addition of the function 1{̄(ζ)<1}, is to remark the non-dependency on (t, x)
of the function separating small-jumps from long-jumps, i.e., to distinguish the
behaviors at the origin and at the infinite of the unbounded Levy kernel.

Because of the extra term, to establish a connection between I(t) and I∗2 (t)
we need more assumptions, namely, there exist a constant M2 such that with
the same function ̄(ζ) as in (5.217) we have{

|m(ζ, t, x)− m(ζ, t, x+ j(ζ, t, x))| ≤M1̄(ζ),

|∇j(ζ, t, x)| ≤M1̄(ζ),
(5.219)

and
|∇m(ζ, t, x)| ≤M2, |∇j(ζ, t, x)| ≤M1̄(ζ),

|∇ · j(ζ, t, x)−∇ · j(ζ, t, x+ j(ζ, t, x))| ≤M2(̄(ζ))2,

|m(ζ, t, x+ j(ζ, t, x))− m(ζ, t, x)− j(ζ, t, x) · ∇m(ζ, t, x)| ≤M2(̄(ζ))2,

(5.220)

for every ζ, t, x. Clearly, we may assume that the function ̄ is the same as in
(5.217) and (5.214). Note that ∇·j(ζ, t, x) means the divergence of the function
x 7→ j(ζ, t, x), for any fixed ζ and t.

Similarly to above, define i0(t, x) =

∫
Rm∗

[
m∗(ζ, t, x)− m(ζ, t, x) + 1{̄(ζ)<1}×

×
(
m(ζ, t, x)∇ · j(ζ, t, x) + j(ζ, t, x) · ∇m(ζ, t, x)

)]
π(dζ),

(5.221)

and

i1(t, x) =

∫
{̄<1}

[
j(ζ, t, x)m(ζ, t, x)− j∗(ζ, t, x)m∗(ζ, t, x)

]
π(dζ), (5.222)

for every t, x, If π is a bounded measure then an integration by part shows the
relation

〈I(t)ϕ,ψ〉 = 〈ϕ, I∗2 (t)ψ〉+ (ϕ, i1(t) · ∇ψ) + (ϕ, i0(t)ψ), (5.223)

for every ϕ and ψ in S(Rd). In general we have
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Lemma 5.59. Let I(t) be given by (5.216), and besides assumptions (5.207) and
(5.217). Then the function i1(t, x), given by (5.222), is bounded and measurable
under condition (5.219), and the function i0(t, x), given by (5.221), is bounded
and measurable under condition (5.220). Moreover, the equality (5.223) holds,
and if for every t, x we have

∫
{̄<1}

[
j(ζ, t, x)m(ζ, t, x)− j∗(ζ, t, x)m∗(ζ, t, x)

]
π(dζ) = 0,∫

̄(ζ)≥ε
[ϕ(x+ j(ζ, t, x))− ϕ(x)]m(ζ, t, x)π(dζ) =

=

∫
̄(ζ)≥ε

[ϕ(x− j∗(ζ, t, x))− ϕ(x)]m∗(ζ, t, x)π(dζ),

(5.224)

for every ε > 0 and any ϕ in S(Rd), then I(t) is a symmetric operator.

Proof. Indeed, we should only estimate i0(t, x) and i1(t, x). To this purpose,
under the relation ξ = x+ j(ζ, t, x), we note that

j(ζ, t, ξ) = j∗(ζ, t, x) = x− ξ,
m(ζ, t, ξ) = m∗(ζ, t, x) det

(
Id +∇j(ζ, t, ξ)

)
,

which yields

j∗(ζ, t, x)m∗(ζ, t, x) = j(ζ, t, ξ)m(ζ, t, ξ)/det
(
Id +∇j(ζ, t, ξ)

)
,

and as previously, we have |det(Id +A)− 1| ≤ |A| for a suitable norm | · | used
for matrices. Hence, the function i1(t, x) is bounded by the integral in π(dζ)
over {̄ < 1} of∣∣j(ζ, t, x)m(ζ, t, x)− j(ζ, t, ξ)m(ζ, t, ξ)/ det[Id +∇j(ζ, t, ξ)]

∣∣ ≤
≤ C0|j(ζ, t, x)− j(ζ, t, ξ)|+ ̄(ζ)|m(ζ, t, x)− m(ζ, t, ξ)|+

+C0c
−1
1 ̄(ζ)

∣∣ det[Id +∇j(ζ, t, ξ)]− 1
∣∣ ≤

≤M1(C0 + 1)̄(ζ)|x− ξ|+ C0c
−1
1 (̄(ζ))2 ≤M(̄(ζ))2,

with M = M1(C0 + 1 + C0c
−1
1 ), i.e., i1(t, x) is a bounded function in view of

assumption (5.219).
To estimate i0(t, x) we used the inequality∣∣∣ 1

det(Id +A)
− 1 + Tr(A)

∣∣∣ ≤ c−1
1 |A|2,

valid for any symmetric matrix A satisfying c1 det(Id+A) ≥ 1 and some suitable
norm | · | for matrices. This implies∣∣m(ζ, t, ξ)/ det[Id +∇j(ζ, t, ξ)]− m(ζ, t, ξ)[1−∇ · j(ζ, t, ξ)]

∣∣ ≤
≤ c−1

1 |∇j(ζ, t, ξ)|2.
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Hence, i0(t, x) is bounded by the integral in π(dζ) over {̄ < 1} of∣∣m(ζ, t, ξ)/ det[Id +∇j(ζ, t, ξ)]− m(ζ, t, x) + m(ζ, t, x)∇ · j(ζ, t, x) +

+j(ζ, t, x) · ∇m(ζ, t, x)
∣∣ ≤ c−1

1 |∇j(ζ, t, ξ)|2 +

+
∣∣[m(ζ, t, ξ)− m(ζ, t, x)− j(ζ, t, x) · ∇m(ζ, t, x)][1−∇ · j(ζ, t, ξ)]

∣∣+

+
∣∣j(ζ, t, x) · ∇m(ζ, t, x)∇ · j(ζ, t, ξ)

∣∣ ≤ C(̄(ζ))2,

for some constant C > 0, in view of assumption (5.220). Thus i0(t, x) is a
bounded function.

5.9.2 Symmetric Bilinear Forms

Suppose that a (time independent to simplify) symmetric bilinear form i(·, ·) of
the form i(ϕ,ψ) =

∫
Rd

dx

∫
Rm∗

[ϕ(x+ j(ζ, x))− ϕ(x)]×

× [ψ(x+ j(ζ, x))− ψ(x)]m(ζ, x)π(dζ),

(5.225)

defined for every ϕ and ψ in S(Rd), with |j(ζ, x)| ≤ ̄(ζ), 0 ≤ m(ζ, x) ≤ C0,∫
{̄<1}

(̄(ζ))2π(dζ) +

∫
{̄≥1}

π(dζ) <∞. (5.226)

Now, under condition (5.207) and assuming that π is a bounded measure we
deduce

i(ϕ,ψ) = −〈Iϕ, ψ〉, ∀ϕ,ψ ∈ S(Rd), (5.227)

where Iϕ(x) =

∫
Rm∗

[(
ϕ(x+ j(ζ, x))− ϕ(x)

)
m(ζ, x) +

+
(
ϕ(x− j∗(ζ, x))− ϕ(x)

)
m∗(ζ, x)

]
π(dζ).

(5.228)

This integro-differential operator can also be written as

Iϕ(x) =

∫
Rm∗

[
ϕ(x+ j(ζ, x))− ϕ(x)− j(ζ, x)) · ∇ϕ(x)

]
m(ζ, x)π(dζ) +

+

∫
Rm∗

[(
m(ζ, x)j(ζ, x))− m∗(ζ, x)j∗(ζ, x))

)
· ∇ϕ(x)

]
π(dζ) +

+

∫
Rm∗

[
ϕ(x− j∗(ζ, x))− ϕ(x) + j∗(ζ, x) · ∇ϕ(x)

]
m∗(ζ, x)

)]
π(dζ),

and we have
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Lemma 5.60. Let i(·, ·) be the symmetric bilinear form given by (5.225) with
assumptions (5.226). Suppose that there exists a constant M1 > 0 such that for
the same function ̄(ζ) as in (5.226) we have{

|m(ζ, x)− m(ζ, x+ j(ζ, x))| ≤M1̄(ζ),

|∇j(ζ, x)| ≤M1̄(ζ),
(5.229)

for every ζ, x. Then the integro-differential operator I given by (5.228) is defined
for every ϕ in S(Rd), and the equality (5.227) holds.

Sometimes, the symmetric bilinear form is presented as follows:

i(ϕ,ψ) =

∫
Rd×Rd

[ϕ(x)− ϕ(y)][ψ(x)− ψ(y)]µ(dx, dy),

for any smooth functions ϕ, ψ, with an assumption like∫
Rd×Rd

(
|x− y|2 ∧ 1

)
µ(dx, dy) <∞.

for a symmetric measure µ(dx, dy) = µ(dy,ds) on Rd×Rd. The interested reader
may check Dirichlet forms, e.g., Fukushima et al. [92], Ma and Röckner [161],
among others.
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Part III

Reflected SDE with Jumps

643



Chapter 6

Stochastic Differential
Equations II

Let O be a non-empty proper d-dimensional domain, i.e., an connected open

subset of Rd such that Ȯ, the interior of the closure of O, coincides with O.
Following the discussion in the previous chapter, now we focus on stochastic
processes with values in either O or O which satisfy some conditions on the
boundary ∂O of the domain O, e.g., controlled diffusions processes with jumps
and with boundary conditions. For instance, consider a stochastic ordinary
differential equation of the form

x(t) = x0 +

∫ t

t0

g(s, x(s), v(s))ds+

∫ t

t0

σ(s, x(s), v(s))dw(s) +

+

∫
Rm∗ ×]t0,t]

γ(ζ, s, x(s), v(s))ν̃(dζ,ds), ∀ t ≥ t0,

where the drift g, the diffusion σ and the jumps γ coefficients satisfy

(1) σ(t, x, v) = 0 for any t ≥ t0, v ∈ Rq and any x in O near the boundary ∂O,
(2) x+ γ(ζ, t, x, v) belongs to O for every ζ in the support of the measure π(·)
relative to Rm, t ≥ t0, x ∈ O and v ∈ Rq,
(3) g(t, x, v) · n(x) ≤ 0 for every t ≥ t0, x on the boundary ∂O and v ∈ Rq,
1mm] where the exterior normal unit vector n(x) with respect to O is defined at
any boundary point x, and all is refereed to a (standard) n×m Wiener-Poisson
space

(Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0),

with Lévy measure π(·). It is clear that because condition (2) there is not jumps
outside the (closed) domain O (within itself), because condition (1) there is
not diffusion near the boundary ∂O, and condition (3) implies that the velocity
g(s, x(s), v(s)) is not driving the system outside the (closed) domain O. Thus,
we have a simple case where the above stochastic ordinary differential equation
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is restrained to the (closed) domain O. Clearly, for condition (1) we only need
σ = 0 on the boundary ∂O, and condition (2) can be generalized to impose that
x plus the support of the measure z 7→ M(dz, t, x) be included in O, for every
t ≥ t0 and x ∈ O, where M(dz, t, x) denotes the Lévy kernel.

Another simple situation is when the evolution is stopped at the boundary,
i.e., by means to the functional

τ(x0) := inf
{
s ≥ t0 : x(s) ∈ Rd rO

}
,

we only consider a new process (s, ω) 7→ x(s ∧ τ(x0, ω), ω) which stays inside
the (closed) domain O. Similarly, in the definition of the functional τ we may
use x(s−) and/or Rd r O to study other models. Eventually, we could patch
the stopped process x(s ∧ τ(x0)) for t > τ(x0), with some other process on the
boundary ∂O.

On the other hand, diffusion process with jumps are well understood via
stochastic differential equations in the whole space Rd. This corresponds to a
second-order integro-differential operator of the form

A(t)ϕ(x) =

d∑
i,j=1

aij(t, x)∂ijϕ(x) +

d∑
i=1

ai(t, x)∂iϕ(x) +

+

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, t, x),

(6.1)

where (aij(t, x)) is a non-negative definite matrix-valued function, (ai(t, x)) is
a vector-valued function, the Lévy kernel M(dz, t, x) integrate the function z 7→
|z|2 ∧ |z|, all coefficients are at least measurable and locally bounded, so that
A(t)ϕ(x) is defined for any smooth functions in the whole space Rd. The first
part is a second-order differential operator, which admits natural (i.e., well
known) boundary conditions, but the non-local part needs further study.

If we vanish the jump part then the discussion is more familiar, analytically
the boundary ∂O of an elliptic-parabolic (or degenerate elliptic) problem is
decomposed in three pieces, namely

∂1O :=
{
x ∈ ∂O : a∂O(x) 6= 0

}
,

∂2O :=
{
x ∈ ∂O r ∂1O : b∂O(x) < 0

}
,

∂3O :=
{
x ∈ ∂O r ∂1O : b∂O(x) ≥ 0

}
,

where

a∂O(x) :=
∑
ij

aij(x)ni(x)nj(x),

b∂O(x) :=
∑
ij

[ai(x) + ∂jaij(x)]ni(x),

n(x) = (ni(x), . . . , nj(x)) is the exterior normal unit vector and, for simplicity,
the variables t and v have been dropped. The set ∂1O is the non-characteristic
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portion of the boundary, and the discriminator function b∂O(x) is used to de-
lineate on which portions of the boundary data may (∂2O) or may not (∂3O)
be assigned. The well known case is when the matrix (aij) does not degenerate
and therefore the whole boundary is non-characteristic, i.e., ∂O = ∂1O. As seen
later, the trajectories x(t) of the diffusion process will leave (almost surely) the
closed domain O through the part ∂1O ∪ ∂2O. The relation between a Markov-
Feller semigroup in a closed bounded domain O and an integro-differential of the
above form is well know, e.g., results concerning the expression of the infinites-
imal generator, the boundary conditions and the construction of the semigroup
can be found in Taira [243, Chapters 9 and 10, pp. 321–424], and recently in
Skubachevskii [231] and references therein.

The passage from Rd to manifolds may be delicate and certainly, more no-
tation is necessary, for instance, we refer the reader to the book Ikeda and
Watanabe [110, Chapter V, pp. 247–435] for a in deep study. Simple cases
can be easily considered, e.g., a hyper cube with periodic boundary conditions
can be studied, after the corresponding construction of Wiener processes and
Poisson measures in a hyper cube with periodic conditions.

An important role is played by the so-called local time associated with a
semi-martingale in the following way. First, for any convex function ϕ(x) in
Rd and any d-dimensional semi-martingale (M(t) : t ≥ 0) one can review Itô
formula to deduce that the process

1

2
`ϕ(t) := ϕ(M(t))− ϕ(M(0))−

d∑
i=1

∫
]0,t]

∂−i ϕ(M(s−))dMi(s)−

−
∑

0<s≤t

[
ϕ(M(s))− ϕ(M(s−))−

d∑
i=1

(Mi(s)−Mi(s−))∂−i ϕ(M(s−))
]

is nondecreasing and continuous, where ∂−i ϕ means the derivative from the left
with respect to the variable xi. Moreover, if the function ϕ is continuously differ-
entiable having locally Lipschitz first derivative, then the process (`ϕ(t) : t ≥ 0)
has local bounded variation. Certainly, if ϕ is twice-continuously differentiable
then

`ϕ(t) =

d∑
i,j=1

∫
]0,t]

∂ijϕ(M(s−))d[Mi,Mj ]
c(s),

where [Mi,Mj ]
c is the continuous part of the optional quadratic cross-variation

of Mi and Mj , which is equal to 〈M c
i ,M

c
j 〉, the predictable quadratic cross-

variation of the continuous parts M c
i and M c

j of the semi-martingales. In the
case of a quasi-left continuous special semi-martingale, the jumps can be re-
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written in term of the jump compensator νpM associated with M,∑
0<s≤t

[
ϕ(M(s))− ϕ(M(s−))− ∂−i ϕ(M(s−))(M(s)−M(s−))

]
=

=

∫
Rd∗×]0,t]

[
ϕ(M(s−) + z)−

−ϕ(M(s−))−
d∑
i=1

zi∂
−
i ϕ(M(s−))

]
νpM (dz,ds),

which is a continuous process, locally of bounded variation, and nondecreasing
whenever ϕ is convex. For instance, the reader may check the books Bertoin [21,
Chapters IV, V, pp. 103–154], Dellacherie and Meyer [58, Sections VIII.2.25–29,
pp. 348–353], Karatzas and Shreve [124, Section 3.6.D, pp. 212–215].

Applying this formula for the functions (x − a)+, (x − a)−, |x − a|, with
a fixed a in R we obtain the expression of the local times (in dimension one),
known as Tanaka’s formula, i.e., for x+ and M

M+(t) = M+(0) +

∫
]0,t]

1{M(s−)>0}dM(s) +
1

2
`+(t) +

+
∑

0<s≤t

[
1{M(s−)≤0}M

+(s) + 1{M(s−)>0}M
−(s)

]
,

while for x+ and −M,

M−(t) = M−(0) +

∫
]0,t]

1{M(s−)<0}dM(s) +
1

2
`−(t) +

+
∑

0<s≤t

[
1{M(s−)<0}M

+(s) + 1{M(s−)≤0}M
−(s)

]
.

Since x− = x+ − x, we deduce∫
]0,t]

1{M(s−)=0}dM(s) =
∑

0<s≤t

1{M(s−)=0}M(s) +

+
1

2
[`+(t)− `−(t)],

and the processes `+ and `− increase only when M(s−) = 0.
...***...
Sometimes it is necessary to make a time changes in Stieltjes integrals. For

a given nondecreasing cad-lag process ` with values in (0,∞] consider

`−1(s) := inf{t ≥ 0 : `(t) > s}, ∀s ≥ 0,

and `−1(s) := +∞ if `(t) ≤ s for all t ≥ 0. This define a cad-lag process
(`−1(s) : s ≥ 0) with the properties

`−1(s−) = inf{t ≥ 0 : `(t) ≥ s}, and `[`−1(s)] ≥ s ∀s ≥ 0,

`(t) = inf{s ≥ 0 : `−1(s) > t}, ∀t ≥ 0.
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If ` is continuous then `−1 may not be continuous (when ` is not strictly in-
creasing). The following change of variables formula can be obtained. For any
nonnegative Borel measurable process f on [0,∞) we have∫

[0,∞)

f(t)d`(t) =

∫ ∞
0

f(`−1(s))1`−1(s)<∞ds,∫
]a,b]

f(t)d`(t) =

∫ `(b)

`(a)

f(`−1(s))ds,∫
[k(a),k(b)]

f(t)d`(t) =

∫
[a,b]

f(k(t))d`(k(t)),

for any continuous non-decreasing process k on the bounded interval [a, b].
If, for a given filtration (F(t) : t ≥ 0), the random variables ω 7→ `(t, ω) is a

stopping for every fixed t ≥ 0, then we can define the filtration (F`(t) : t ≥ 0),
where F`(t) = F(`(t)) is the σ-algebra generated by the stopping time `(t).
Notice that because ` is continuous from the right, we have F`(t+) = F`(t) for
every t ≥ 0. If the process ` is continuous and the initial filtration (F(t) : t ≥ 0)
is quasi-left continuous, i.e., F(τ) = F(τ−) for every predictable stopping time,
then it is clear that the transformed filtration (F`(t) : t ≥ 0) is also quasi-left
continuous. Now, if M is a (continuous, local) martingale with respect to (F(t) :
t ≥ 0) then M `, where M `(t) := M(`(t)) is a (continuous, local) martingale with
respect to (F`(t) : t ≥ 0). Moreover, if 〈M〉(t) is the predictable quadratic co-
variation of M then 〈M〉(`(t)) is the predictable quadratic co-variation of M `.
In particular, if M is a d-dimensional standard Wiener process then M ` is a
continuous square-integrable martingale with predictable quadratic co-variation
of 〈M `

i ,M
`
i 〉 = ` and 〈M `

i ,M
`
j 〉 = 0 for any i 6= j. Similarly, if ν(dz,dt) is an

integer random measure with jump compensator νp(dz,dt) relative to the initial
filtration (F(t) : t ≥ 0), then ν`(dz,dt) defined by

ν`(B, ]a, b]) := ν(B, ]`(a), `(b)]), ∀B ∈ B(Rd∗), b > a ≥ 0,

is an integer random measure with jump compensator νp` (dz,dt) relative to the
transformed filtration (F`(t) : t ≥ 0), where

νp` (B, ]a, b]) := νp(B, ]`(a), `(b)]), ∀B ∈ B(Rd∗), b > a ≥ 0.

In particular, if the jump compensator has the form

νp(B, ]a, b]) =

∫ b

a

ν̇p(B, s)ds, ∀B ∈ B(Rd∗), b > a ≥ 0,

for some kernel ν̇p(B, s) such that (1) the process t 7→ ν̇p(K, t) is predictable
and locally bounded for every compact subset K of Rd∗ and (2) B 7→ ν̇p(B, t) is
a measure for every t ≥ 0, then

νp` (B, ]a, b]) =

∫ `(b)

`(a)

ν̇p(B, s)d`(s), ∀B ∈ B(Rd∗), b > a ≥ 0,
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The read interested in local times, may want to take a look at the book by
Marcus and Rosen [166, Chapter 3, pp. 62-120].

...***...

6.1 Simple Boundary Conditions

Here we discuss some simple boundary conditions with a very natural interpre-
tation, particularly, absorbing and sticking boundaries. As a by product, we
adapt and extended results (of great interest in some cases) from the previous
chapter.

...***...
As it is well established, there is a general probabilistic representation of the

solution of a parabolic (and also elliptic) equation through the Itô’s stochastic
calculus.

Adapting the previous notation, let us consider the operator
A(t)ϕ(x) := A0(t)ϕ(x) +

d∑
i=1

gi(t, x)∂iϕ(x)− a0(t, x)ϕ(x),

A0(t)ϕ(x) := 1
2

d∑
i,j=1

( n∑
k=1

σik(t, x)σjk(t, x)
)
∂ijϕ(x),

(6.2)

where the coefficients may depends on the variable (t, x), a0 ≥ 0, the (vector)
drift g := (g1, . . . , gd) replaces the notation a and the matrix σ = (σij) is a
square root of the symmetric nonnegative matrix (aij) used in the previously
used. The drift g and the diffusion σ are assumed regular enough to have a
unique solution of the following stochastic differential equation{

dX(s) = g(s,X(s))ds+ σ(s,X(s))dW (s), s ≥ t,

X(t) = x
(6.3)

where {W (t) : t ≥ 0} is a standard n-dimensional Wiener process and X =
(X1, . . . , Xd). Also we will use

X0(s) := exp
(
−
∫ s

t

a0(r,X(r))dr
)
, ∀s ≥ t ≥ 0. (6.4)

when necessary.
For a given open connected region O in Rd, with boundary ∂O, we define

the first exit time from the closure Ō as follows

τ(t, x) = inf
{
s > t : X(s) 6∈ Ō

}
,

and τ(t, x) =∞ if X(s) belongs to Ō for every s ≥ t. Clearly, by continuity we
have X(τ(t, x)) in ∂O if τ(t, x) is finite.
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6.1.1 Dirichlet Boundary Conditions

One reverses time for the representation formula, so that instead of having initial
condition one uses terminal condition, i.e., the backward equation

∂tu+A(t)u = f(t, x), ∀(t, x) ∈ [0, T )×O,

u(T, x) = u0(x), ∀x ∈ O,

u(t, x) = ψ(t, x), ∀(t, x) ∈ [0, T )× ∂O,

(6.5)

where T > 0 is given.
By means of Itô formula for u(t,X(t)) in t, and with the notation (6.4), we

obtain

u(t, x) = E
{
X0

(
T ∧ τ(t, x)

)
u
(
T ∧ τ(t, x), X(T ∧ τ(t, x))

)}
+

+E
{∫ T∧τ(t,x)

t

X0(s)f(s,X(s))ds,

i.e.,

u(t, x) =

∫
τ(t,x)<T

[
X0(τ(t, x))ψ

(
τ(t, x), X(τ(t, x))

)]
dP +

+

∫
τ(t,x)≥T

[
X0(T )u0(X(T ))

]
dP + E

{∫ T∧τ(t,x)

t

X0(s)f(s,X(s))ds
}
.

Clearly, the case f = 0, ψ = 0 corresponds to the Cauchy problem with (homoge-
neous) Dirichlet boundary conditions, while the case f = 0, u0 = 0 corresponds
to the so called Poisson problem.

Next, if a0 = 0 then we set

PT (t, x,ds,dy) := P{τ(t, x) < T, τ(t, x) ∈ ds, X(τ(t, x)) ∈ dy},

GT (t, x,ds,dy) := P{s < τ(t, x), τ(t, x) ∈ ds, X(T ∧ s) ∈ dy},

while in general, for a0 ≥ 0,

PT (t, x, I, B) := E
{
1τ(t,x)<T 1{τ(t,x)∈I} X0(τ(t, x))1{X(τ(t,x))∈B}

}
,

GT (t, x, I, B) := E
{∫ T∧τ(t,x)

t

1{τ(t,x)∈I} X0(s)1{X(s)∈B}ds
}
,

GT (t, x, {T}, B) := E
{
1τ(t,x)≥T X0(T )1{X(T )∈B}

}
,

for every t ≥ 0, x in Ō, for any I ⊂ [0, T ] and B ⊂ Rd belonging to a class
of sets generating the Borel σ-algebra in [0, T ] and Rd, respectively (e.g., semi-
closed intervals). It is clear that PT (t, x, ·, ·) is supported in (t, T ) × ∂O while
GT (t, x, ·, ·) is supported in (t, T ]×O. Since τ(t, x) ≥ T is possible, the measure
ds 7→ GT (t, x,ds,dy) has an atom at {T}. Moreover, we may have P{τ(t, x) =
∞} > 0 in the degenerate case. Actually, for the degenerate case, the boundary
condition is not given in the whole boundary, but only on points belonging to the
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support of PT (t, x, ·, ·). For instance, if P{τ(t, x) =∞} = 1 then PT (t, x, ·, ·) = 0
and no condition on the boundary can be given, the process never reaches the
boundary ∂O. Sometimes, it may be convenient to define

GT (t, x, s, B) := E
{∫ τ(t,x)

s

X0(T ∧ s)1{X(T∧s)∈B}ds
}
,

and understand GT (t, x,ds,B) as the (unique) measure induced by the non-
increasing function s 7→ GT (t, x, s, B) satisfying the equalityGT (t, x, [s, T ], B) =
GT (t, x, s, B) for every s in [t, T ].

Then we can rewrite

u(t, x) =

∫
(t,T )×∂O

ψ(s, y)PT (t, x,ds,dy) +

+

∫
O
u0(y)GT (t, x, {T},dy) +

∫
(t,T )×O

f(s, y)GT (t, x,ds,dy),

for any (t, x) in [0, T ]×Ō. Therefore, after reversing the time again (i.e., changing
s into T−t), the functions PT and GT are called the Poisson and Green functions
associated with the second-order differential operator A and Dirichlet boundary
conditions in O.

For instance, if the coefficients are independent of t and v(t, x) solves the
forward equation

∂tv = A(t)v + f(t, x), ∀(t, x) ∈ (0, T ]×O,

v(0, x) = v0(x), ∀x ∈ O,

v(t, x) = ψ(t, x), ∀(t, x) ∈ (0, T ]× ∂O,

(6.6)

then we have

v(t, x) =

∫
(0,t)×∂O

ψ(t− s, y)PT (x, ds,dy) +

+

∫
O
v0(y)GT (x, t,dy) +

∫
(0,t)×O

f(t− s, y)GT (x, ds,dy),

for any (t, x) in [0, T ]× Ō, where now

PT (x, I,B) := E
{
1τ(0,x)<T 1{τ(0,x)∈I} X0(τ(0, x))1{X(τ(0,x))∈B}

}
,

GT (x, I,B) := E
{∫ T∧τ(0,x)

0

1{τ(0,x)∈I} X0(s)1{X(s)∈B}ds
}
,

GT (x, {t}, B) := E
{
1T∧τ(0,x)≥t X0(t)1{X(t)∈B}

}
,

for every t > 0, x in Ō, for any I ⊂ (0, T ] and B ⊂ Rd belonging to a class of sets
generating the Borel σ-algebra in (0, T ] and Rd, respectively (e.g., semi-closed
intervals).

It is probably wise not to write (or really get) the expression with initial
condition and time-variable coefficients, may be too messy?
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...***...
Before giving details, recall the sample space D([t0,∞),Rd) of cad-lag func-

tions (which is a complete metric space with the Skorokhod topology) and define
two maps τ(·,O) and τ̃(·,O) from D([t0,∞),Rd) into [0,∞]{

τ(x(·),O) := inf{t ≥ t0 : x(t) 6∈ O},

τ̃(x(·),O) := inf{t ≥ t0 : x(t) or x(t−) 6∈ O},
(6.7)

whereO is a given Borel subset of Rd, and τ(x(·),O) =∞ if x(t) belongs toO for
every t ≥ t0, i.e., when the set to take infimum is empty. Similarly for τ̃(x(·),O),
and by convention x(t0−) = x(t0). Clearly, these extended functionals are called
the first exit time from the subset O, and certainly τ(x(·),O) = τ̃(x(·),O) for
every x(·) in the sample space C([t0,∞),Rd) of continuous functions (which is a
complete metric space with the locally uniform converge topology). Depending
on what is to be emphasized, we use the notation τ(x(·),O) or simply τ(x(·))
or τ(O), and similarly for τ̃(x(·),O).

Proposition 6.1. Let O open subset of Rd, and {x, x1, x2, . . .} be functions in
D([t0,∞),Rd).
(a) First τ(x,O) = τ̃(x,O).

(b) If xn(t) converges to x(t) for each t ≥ t0 then

lim sup
n→∞

τ(xn,O) ≤ τ(x,O),

i.e., τ(·,O) is upper semi-continuous in D([t0,∞),Rd) for the topology induced
by the pointwise convergence.

(c) If xn(s) converges to x(s), uniformly on [t0, t] for each t > t0 then

lim inf
n→∞

τ̃(xn,O) ≥ τ̃(x,O),

i.e., τ̃(·,O) is lower semi-continuous in D([t0,∞),Rd) for the topology induced
by the locally uniform converge.

Proof. To show (a) we argue as follows. First τ(x,O) ≥ τ̃(x,O), for any x.
Next, if t > τ̃(x,O) then there exists t′ ≤ t such that x(t′) or x(t′−) is not
in O. If x(t′) is not in O then τ(x,O) ≤ t′ ≤ t. Alternatively, if only x(t′−)
is not in O then for some s < t′, the point x(s) does not belong to O, i.e,
τ(x,O) ≤ s < t′ ≤ t. Since t can be taken arbitrary close to τ̃(x,O) we deduce
τ(x,O) ≤ τ̃(x,O).

To establish (b), only the case τ(x,O) < ∞ need to be considered. So, for
any t > τ(x,O) there exists a t′ ≤ t such that x(t′) belongs to Rd rO. Because
O is closed and xn(t′) converges to x(t′) we deduce that xn(t′) belongs to RdrO
for n sufficiently large, i.e., τ(xn,O) ≤ t′ ≤ t. Hence the desired result.

Finally to prove (c) for any t < τ̃(x,O) the set {x(s), x(s−) : s ∈ [t0, t]} is
compact and included in the open set O. Therefore, the locally uniform conver-
gence implies that for n sufficiently large, the set {xn(s), x(s−) : s ∈ [t0, t]} is
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included in the open set O, so that τ̃(xn,O) > t. Since t can be taken arbitrary
close to τ̃(x,O) we conclude.

Given a cad-lag strong Markov process (x(t) : t ≥ t0) with values in Rd, the
expression (6.7) defines a strong Markov functional, i.e., x(τ̃ ∧ t) and x(τ ∧ t)
are also cad-lag strong Markov process.

6.1.2 Absorbing Boundary

This and the next section may need to be renamed?
Absorbing
Killing
Sticking
Dirichlet

...***...
The absorbing boundary condition is a very natural way of converting a

Markov-Feller process acting in the whole space, say Rd, into another Markov
(not necessarily Feller) process living in only a domain O of Rd. The technique
uses the first exit time τ̃(x(·),O), as defined by (6.7). Since x(·) is a Markov-
Feller process, all (cad-lag) paths are determined by the initial condition x(t0) =
x0, so that we can write τ̃(x(·)) = τ̃(x(t0), ω). This random variable τ̃(x(t0), ω)
is a stopping time relative to the canonical filtration associated with x(·) for any
Borel domain, in particular for any open O or closed set O, or even O union a
(relative open or closed) part of the boundary ∂O.

Hence, if x(·) takes valued in Rd then the new Markov (not necessarily Feller)
process

xτ (t) :=

{
x(t), if t < τ̃(x(t0, ω)

∞, otherwise.
(6.8)

The symbol ∞ is used to express the fact that (xτ̃ (t) : t ≥ t0) takes values into
O ∪ {∞}, which is view as a one-point compactification of O. Assuming the
initial Markov-Feller process is time-homogeneous, we can take always t0 = 0.
The semigroup associated with (xτ̃ (t) : t ≥ t0) is given by

SO(t)f(x) := E{f(x(t ∧ τ̃O))}, t ≥ 0, (6.9)

and defined for every real-valued function f in C∗(O), continuous functions
defined on vanishing at infinity, i.e., for every ε > 0 there exists a compact
subset K of O such that |f(x)| ≤ ε for any x in O rK. Clearly, any function
in C∗(O) is extended to O ∪ {∞}, by setting f(∞) = 0. In this construction,
the boundary ∂O is ignored or unseen by the absorbed process xO(·) = xτ̃ (·).
The particle (represented by the path) dies (or disappears) as soon as it exits
the domain O, and it is sent to the coffin state denoted by the symbol ∞.

If the (SO(t) : t ≥ 0), given by (6.9) is a Feller semigroup, and AO denotes
its infinitesimal generator, then the potential function

u(x) :=

∫ ∞
0

e−αtSO(t)f(x)dt
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belongs to the domain D(AO) of the infinitesimal generator AO and it is a
solution of the following boundary value problem{

−Au+ αu = f in O,

u = 0 on ∂O,

for every α > 0 and f in C∗(O), where the initial infinitesimal generator A
coincides with AO for functions in C∗(O), and the so-called Dirichlet boundary
condition is added. Note that when O is unbounded, we are also imposing a
vanishing condition at infinity. Recall that, u = Rαf, where

R(α,AO) := (αI −AO)−1, α > 0,

is the resolvent operator.
The converse (of this argument) is the construction of a Markov process

starting from a sub-Markov process, i.e., when the semigroup S(t) satisfies
S(t)1 ≤ 1 instead of S(t)1 = 1. In this case, a new state is added where all
paths (with initial condition x0) are sent after a time τ with an exponential
distribution to complete the deficit 1− S(t)1(x0).

This technique can be applied to a stochastic ordinary differential equation
in Rd and a delicate point is the dependency of the first exit time τ and τ̃ , given
by (6.7), with respect to the initial data. As seen in Chapter 5, under natural
conditions we have (local uniform) continuity of the path with respect to the
initial data, and in view of Proposition 6.1, we deduce that x0 = x(t0) 7→ τ̃(x,O)
and x0 = x(t0) 7→ τ(x,O) are lower and upper semi-continuous, respectively.
Hence, if

P{x(t0) = x0, τ̃(x,O) = τ(x,O)} = 1,

for every x0 in the open domain O then x0 = x(t0) 7→ τ(x,O) = τ̃(x,O) is
continuous from O into [0,∞]. Since τ̃(x,O) = 0 whenever x(t0) = x0 belongs to
∂O, to discuss continuity on the boundary we need to assume that the set of all
initial (boundary) points which paths exit (the closure O) with full probability,
i.e.,

∂0O :=
{
x0 ∈ ∂O : x(t0) = x0, P{τ(x,O) > 0} = 0

}
. (6.10)

is the whole boundary ∂O. In view of the strong Markov property, if almost
every path x(·) is continuous then the condition ∂O0 = ∂O suffices to ensure
that τ(x,O) = τ̃(x,O), for every x(t0) = x0 in O, which yields the continuity
of the first exit time with respect to the initial data in the closure O. The case
of only cad-lag paths need further consideration. For instance, we may have
a time t, where x(t) and x(t−) belong to the interior O and to the boundary
∂O, respectively, which yields the inequality τ(x,O) > t ≥ τ̃(x,O). On the
other hand, if τ(x,O) is continuous then ∂O0 is a closed set. In the case of non
degenerated diffusion processes the converse also holds.

The main technique is based the existence of barrier functions, which should
be constructed for each point in O0, the set of points where some path exits the
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closed domain O, i.e., the minimal set satisfying

P{x(τ(x,O)) ∈ O0, τ(x,O) <∞} = 1, (6.11)

for every initial condition x(t0) = x0 in the closure O (which includes the set
of all possible jumps from O). If almost every paths are continuous then the
strong Markov property shows that O0 is the set of all initial points (on the
boundary ∂O) having paths which exit with non-zero probability, i.e.,

O0 =
{
x0 ∈ ∂O : x(t0) = x0, P{τ(x,O) = 0} > 0

}
.

Moreover, one may hope that P{τ(x,O) = 0} > 0 implies P{τ(x,O) = 0} = 1,
so that O0 = ∂O0, given by (6.11) and (6.10). In general, if paths are cad-lag,
we only have O0 ⊂ Rd r O. By definition of the subset O0, so-called regular
points, we have

τ(x(·),O) = inf{t ≥ t0 : x(t) ∈ O0},

where τ(x(·),O) is the first exit time from the closure as given by (6.7). Hence,
the arguments of Proposition 6.1 show that τ(x(·),O) is lower semi-continuous
if the set of regular points Oe is closed, in which case

τ(x(·),O) = inf{t ≥ t0 : x(t) or x(t−) ∈ O0},

and the function x 7→ τ(x(·),O) is continuous with respect to the locally uniform
converge.

A typical assumption is to suppose that for each point ξ in O0 there exists
a real-valued function x 7→ φ(ξ, x), defined in Rd, smooth in O (i.e., Itô formula
can be applied up to the first exit time of the closure O) and such that φ(ξ, ξ) =
0, 

−Aφ(ξ, ·) ≥ 1, in O,

φ(ξ, ·) ≥ 0 in O ∪O0,

φ0(x) := inf
ξ∈O0

φ(ξ, x),

(6.12)

where A = A(t) is the integro-differential operator (6.1), with coefficients inde-
pendent of the variable t. The function φ0 satisfies φ0(ξ) = 0 for every ξ in O0

and it is upper semi-continuous and non necessarily smooth. More details are
needed to check that under (6.12), the set of regular points O0 is a closed. Now,
any regularity imposed on the inf-barrier function φ0 (also called sub-solution)
is passed to the first exit time τ(x,O).

Proposition 6.2. Let (x(t) : t ≥ t0) and (x̄(t) : t ≥ t̄0) be a diffusion process
with jumps corresponding the integro-differential operator (6.1), with initial con-
dition x(t0) = x0 and x̄(t̄0) = x̄0. Assume that condition (6.12) is satisfied with
a finite inf-barrier function φ0. Then

E{τ(x,O)} ≤ t0 + φ0(x0),
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so that τ = τ(x,O) is finite with full probability. Moreover

E
{
|e−ατ − e−ατ̄ |

}
≤ αE

{
e−α(τ∧τ̄)|φ0(x(τ ∧ τ̄)− φ0(x̄(τ ∧ τ̄)|

}
,

for every given α ≥ 0.

Proof. First, apply Itô formula to the function x 7→ φ(ξ, x) and the diffusion
process with jumps x(t), between t0 and t ∧ τ, τ = τ(x,O), to deduce that

E{φ(ξ, x(t ∧ τ)) + t ∧ τ} ≤ t0 + φ(ξ, x(t0)),

after using condition (6.12). This implies E{τ} <∞, so τ <∞ almost surely.
Next, for any given constant α > 0, apply Itô formula to the function (t, x) 7→

e−αt φ(ξ, x), between any stopping time t0 ≤ θ ≤ τ and τ , to deduce that the
process

X(ξ, t) := φ(ξ, x(t ∧ τ)) e−α(t∧τ) −

−
∫ t∧τ

t∧θ
[Aφ(ξ, x(s))− αφ(ξ, x(s))]e−α(s−θ)ds,

is a martingale after θ, for each ξ. Hence

X(ξ, θ) = E{X(ξ, t) | F(θ)} ≥ E{ inf
ξ∈O0

X(ξ, t) | F(θ)},

which implies that

E
{

e−ατφ0(x(τ)) +
e−αθ − e−ατ

α

∣∣∣ F(θ)
}
≤ e−αθφ0(x(θ)),

as t goes to∞. Now, take θ := τ ∧ τ̄ , where τ̄ is the first exit time corresponding
to the path x̄(·) with initial condition x̄(t̄0) = x̄0, to get

E{e−α(τ∧τ̄) − e−ατ} ≤ αE{1τ>τ̄ [e−α(τ∧τ̄)φ0(x(τ ∧ τ̄)− e−ατφ0(x(τ))]}.

Since φ0(x(τ)) = 0 = φ0(x̄(τ̄)) we deduce

E{e−α(τ∧τ̄) − e−ατ} ≤ αE{1τ>τ̄e−ατ̄ |φ0(x(τ̄))− φ0(x̄(τ̄))|},
and the proof is completed by symmetry.

Actually, the existence of a (nonnegative) barrier function for just one point
ξ in O0 implies that the first exit time from the closure O has a finite moment,
so it is finite almost surely. On the other hand, if φ0(x0) = 0 then τ(x,O) = 0,
x(t0) = x0.Hence, if φ0 is continuous thenO0 is closed and τ(x,O) is continuous.
Moreover, the arguments of the previous Proposition 6.2 extend to any strong
Markov process x(·) instead of a diffusion process with jumps.

Considering the strong solution of a stochastic ordinary differential equa-
tion, we can use Theorem 5.11 a priori estimates to show that if the inf-barrier
function φ0 of condition (6.12) is continuous or (locally) Lipschitz continuous,

so is the function x0 7→ E{e−ατ(x0)}, with τ(x0) = τ(x,O), x(t0) = x0, α > 0.
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Moreover, an estimate with the modulus of continuity is obtained from Propo-
sition 6.2, i.e., estimates uniformly with respect to the control parameter. Fur-
thermore, continuity with respect to the initial time t0 can be established, how-
ever, to get (locally) Lipschitz continuity we need to consider the time t as one
more state variable, i.e., re-written the time non-homogeneous Markov process
in Rd as an homogeneous Markov process in Rd+1.

Note that one of the arguments used in Proposition 6.2 is the fact that the
sup (inf) of sub-(super)martingales is also a sub-(super)martingale. Moreover,
we can say{

−Aφ0(·) ≥ 1, in martingale sense on O rO0,

φ0(ξ) = 0, ∀ξ ∈ O0.
(6.13)

In general, given three functions α, u and v defined inO, we say that−Au+αu ≥
v in martingale sense on O rO0 if the process

X(t) = u(x(t ∧ τ)) exp
[ ∫ t∧τ

t0

α(x(r))dr
]

+

+

∫ t∧τ

t0

v(x(s)) exp
[ ∫ s∧τ

t0

α(x(r))dr
]
ds, ∀t ≥ t0

is a strong super-martingale, i.e., a (separable) super-martingale where the
Doob’s sampling theorem holds. For this to make sense, we have to assume
that α ≥ 0 is bounded and Borel measurable, and u and v are bounded (or
with polynomial growth) and Borel measurable, and u is upper semi-continuous
over the paths, i.e., the function t 7→ u(x(t ∧ τ)) is (almost surely) upper semi-
continuous from the right. Similarly, we say that −Au+ αu ≤ v in martingale
sense on O r O0 if the process X(·) is a strong sub-martingale, here u must
be lower semi-continuous over the paths. Certainly, we do have the property
−Au+ αu ≤ v if and only if −Au ≤ v − αu

If all jumps are inside the closure O, i.e., the jumps coefficient satisfies

x ∈ O ⇒ x+ γ(ζ, t, x, v) ∈ O, ∀ζ, t, v,

then O0 ⊂ ∂O, moreover, O0 = ∂0O, i.e., the set of regular points as defined by
(6.10). The Dirichlet problem takes the form{

Au+ αu = f in O r ∂0O,

u = 0 on ∂0O.

However, if jumps are allowed outside of the closed domain O then O0 may
contain points outside the closure O, so that the natural Dirichlet boundary
condition u = 0 on the ∂O is incomplete, instead the subset O0 should be used.
Thus, the whole exterior RdrO may be involved in the boundary condition. In
this case, a condition like only jumps of order 1 is necessary to obtain smooth
solutions.
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If the transition density function in the whole one-dimensional space R of
the Wiener-Poisson process with parameter (γi, ci) is denoted by

Γ1(t, xi, γi, ci) := (2πt)−1/2e−cit
∞∑
k=0

(cit)
k exp

(
− [xi + kγi]

2

2t

)
,

for every t > 0 and xi in R (γi in R and ci > 0), then the transition density
function of the absorbed Wiener-Poisson process in the d-dimensional semi-space
O = Rd+ is given by

Γ(t, x̃, xd, ξd) :=
[ d−1∏
i=1

Γ1(t, xi, γi, ci)
]
×

×
[
Γ1(t, xd − ξd, γd, cd)− Γ1(t, xd + ξd, γd, cd)

]
,

for every t > 0, x = (x1, . . . , xd) in Rd+ and ξd ≥ 0, with x = (x̃, xd) and the
condition γd ≥ 0, so that no jumps are outside the closed semi-space R̄d+ :=
{(x̃, xd) : x̃ ∈ Rd−1, xd ≥ 0}.

A comprehensive study for degenerated diffusion processes can be found the
paper Stroock and Varadhan [240], while the analytic counterpart, degener-
ate Dirichlet problems, is carefully considered in the book Oleinik and Radke-
vic [192]. Applications to optimal control are developed in a series of articles
[170, 169] and Lions and Menaldi [156], among others. Diffusion processes with
jumps, even in the non-degenerate case, present another challenge due to the
nonlocal character of their (integro-differential elliptic operators) infinitesimal
generators. The reader is referred to the book Garroni and Menaldi [94, Chapter
2, pp. 48–81] and references therein.

...***...
Include differentiability of the first exit time of a closed (smooth) subset of

Rd.
...***...

6.1.3 Sticking Boundary

The sticking barrier is another very natural boundary condition, which also uses
the first exit time (6.7). Intuitively, the particle (represented by the path) does
not die (nor disappear) when exiting the domain O, the path is stopped and
instead of being sent to the coffin state, it remains there alive. Thus, given an
initial Markov-Feller process x(·) acting in the whole space, say Rd, the stopped
Markov process x(t ∧ τ) takes values in Oe = O ∪O0, where O0 is the minimal
set satisfying

P{x(τ) ∈ O0, x(τ−) ∈ O0, τ <∞} = 1,

which includes the set of all possible jumps from O. In particular, if all paths
(x(t) : t ≥ 0) are continuous then x(t∧τ) takes values in the closureO, moreover,
for a time-homogeneous case, the strong Markov property shows that

O0 = ∂0O,
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where

∂0O :=
{
x0 ∈ ∂O : P{τ(x0) = 0} > 0

}
,

τ(x0) := inf{t ≥ 0 : x(t) 6∈ O, x(0) = x0},

and x(0) = x0 is the initial condition. Note that τ = τ(x0, ω) is the first exit
time from the closure O.

The expression (6.9) of the stopped semigroup (SO(t) : t ≥ 0) is also valid
for the sticking boundary, but now, we want to consider a space of function
larger than C∗(O), namely, C∗(Oe). Depending on the jumps, we may have
Oe ⊂ O or even Oe = Rd. Contrary to the absorbing barrier, the process with
sticking barrier may involve (a) the boundary ∂O if the process continuous, and
the whole exterior Rd r O if the process is only cad-lag. For any x in ∂0O
or x in Oe r O, the path exits the domain O with a positive probability, and
because the evolution is stopped we have (formally) AOeu(x) = 0, where AOe is
the infinitesimal generator of stopped semigroup (SO(t) : t ≥ 0) considered in
C∗(Oe). We are then treating the following boundary value problem{

−Au+ αu = f in O,

Au = 0 on ∂0O ∪ (Oe rO),

plus a vanishing condition at infinity if Oe is unbounded.
Sometimes, it not desirable to stop completely the evolution when exiting

the domain O, what may be required is to restrict the evolution to be boundary.
This is better seen in a simple domain, such as Rd+ = {x : xd > 0}. In this case,
the new stopped Markov process is defined by

xτ (t) :=
(
x1(t), . . . , xd−1(t), xd(t ∧ τ)

)
, t ≥ 0.

The boundary value problem associated with this process is given by
−Au+ αu = f in O,

ATu = f on ∂0O ∪ (Oe rO),

ANu = 0 on ∂0O ∪ (Oe rO),

plus a vanishing condition at infinity if Oe is unbounded, where AT is the
tangential part of A, i.e., for the case O = Rd+, the operator AT is A without

the variables xd, e.g., if A =
∑d
i=1 ∂

2
i then AT =

∑d−1
i=1 ∂

2
i . Similarly, AN is the

normal part of A, i.e., AN := A−AT .
In the semi-space Rd+ with a non-degenerate homogeneous (in time and

space) diffusion with jumps, i.e., corresponding to an integro-differential op-
erator with constant coefficients (and no jumps outside Rd+ from itself, γd ≥ 0),
we can have an explicit expression of the transition density function (after some
change of variables, if necessary)

G(t, x̃, xd, ξd) = Γ(t, x̃, xd − ξd)− Γ(t, x̃, xd + ξd) +

+2 δ0(ξd)

∫
yd≤xd

Γ(t, x̃, yd)dyd,
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where Γ(t, x̃, xd) is the transition density function in the whole space Rd, x =
(x̃, xd) and δ0 is the Dirac measure at ξd = 0. Clearly, only the xd is stopped at
the first exist time but, with respect to the variable x̃ the diffusion (with jumps)
is unchanged. Note that∫

[0,∞)

G(t, x̃, xd, ξd)dξd =

∫
R

Γ(t, x̃, xd − ξd)dξd,

for every x in R̄d+, t > 0. Moreover, if (y(t) : t ≥ 0) denotes the diffusion with
jumps with sticking boundary, then

P{y(t) ∈ B | y(0) = x} =

∫
B

G(t, x̃− ξ̃, xd, ξd)dξ,

for every x in Rd+ and t > 0. Here, the product expression (in terms of functions
of one variable xi) holds.

On the other hand, if all variables x̃ and xd are stopped at the first exist
time from the closed semi-space R̄d+, then the transition (density) function takes
the form

G(t, x̃, xd, ξd) = Γ(t, x̃, xd − ξd)− Γ(t, x̃, xd + ξd) +

+2 δ0(ξd)δ0(x̃)

∫
Rd−1

dỹ

∫
yd≤xd

Γ(t, ỹ, yd)dyd,

and clearly, we have∫
R̄d+
G(t, x̃− ξ̃, xd, ξd)dξ =

∫
Rd

Γ(t, x̃− ξ̃, xd − ξd)dξ = 1,

for every t > 0. The reader is referred to the examples in Section 2.13 of Chapter
2.

6.1.4 Periodic Boundary Conditions

I do not what to put here, but we should cover this point!
...***...

6.1.5 SDE with Martingales

Check the end of Section 5.1.1 Existence and Uniqueness of Chapter 5.
...***...

6.2 SDE in a Semi-Space

Let us look at the semi-space Rd+, r ≥ 2, with x = (x1, x2, . . . , xd), xd ≥ 0, and
boundary ∂Rd+ = {x : xd = 0}, which is identified with whole space Rd−1.

...***...
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6.2.1 Some Wentzell Boundary Conditions

As early, we consider the following second-order differential boundary operator
Bϕ(x) := B0ϕ(x) + bd∂dϕ(x)− ρ 1

2∆ϕ(x), ∀x ∈ Ṙd+,

B0ϕ(x) := 1
2

d−1∑
i,j=1

bij∂ijϕ(x) +

d−1∑
i=1

bi∂iϕ(x)− b0ϕ(x),

where (bij) is a symmetric non-negative definite matrix, b0, bd, ρ ≥ 0, and ρ > 0
or bd > 0.

Let us recall that for any convex function f : R→ R there exists a countable
set N ⊂ R outside of which f is differentiable, i.e., the right-hand and the
left-hand derivatives agree, f ′+(x) = f ′−(x) for every x in RrN. Moreover

f(x)− f(0) =

∫ x

0

f ′−(r)dr =

∫ x

0

f ′+(r)dr, ∀x ∈ R.

Actually, f is locally Lipschitz, f ′+ and f ′− are non-decreasing and, by exchanging
the monotone limits as ε ↓ 0 with h ↓ 0 in the expressions

f(x+ ε+ h)− f(x+ ε)

h
and

f(x− ε− h)− f(x− ε)
h

,

we see that f ′+ is right-continuous and f ′− is left-continuous. Furthermore, the
second derivative f ′′ exists as a measure. Indeed, because at each point x where
f ′− or f ′+ is continuous (i.e., f ′−(x+) = f ′−(x) or f ′+(x−) = f ′+(x)) we have
f ′−(x) = f ′+(x) = f ′(x), it is clear that either

f ′′−
(
[a, b[

)
:= f ′−(b)− f ′−(a) or f ′′+

(
]a, b]

)
:= f ′+(b)− f ′+(a), ∀b > a,

induces the same Radon measure, denoted by f ′′. Hence, as a Riemann-Stieltjes
or Lebesgue-Stieltjes integral, for every continuous function g, which is piecewise
continuously differentiable having a compact support in R, we have∫ +∞

−∞
g(x)df ′±(x) =

∫ +∞

−∞
g(x)f ′′(dx) = −

∫ +∞

−∞
g′(x)f ′(x)dx,

where g′(x) is defined for every x outside of a finite set, and f ′(x) is defined for
every x outside of the countable set N.

Conversely, for any given Radon measure µ and any closed intervals I ⊂ J
the functions

1
2

∫
I

|x− y|µ(dy) and 1
2

∫
J

|x− y|µ(dy)

are convex on the open interval İ and their difference is an affine function. Thus,
there exists a convex function f in the whole R such that

f(x) = 1
2

∫
I

|x− y|µ(dy) + aIx+ bI , ∀x ∈ R,
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for some constants aI and bI . Therefore

f ′±(x) = 1
2

∫
I

sgn±(x− y)µ(dy) + aI , ∀x ∈ İ ,

where the sign functions sgn−(x) := 1 if x > 0 and sgn−(x) = −1 if x ≤ 0,
while sgn−(x) := 1 if x ≥ 0 and sgn−(x) = −1 if x < 0. Hence, for every

smooth function φ with a compact support in the open interval İ we have∫
R
φ(x)µ(dx) = −

∫
R
φ′(x)f ′±(x)dx,

i.e., f ′′ = µ. Moreover, if µ integrate the function y 7→ |x− y| for every x (e.g.,
µ has a compact support) then one can write

f(x) = 1
2

∫
R
|x− y|µ(dy) + ax+ b, ∀x ∈ R,

f ′±(x) = 1
2

∫
R

sgn±(x− a)µ(da) + a, ∀x ∈ R,

for some constants a and b.
Applying Itô formula to the function fε : R→ R, fε(x) =

√
ε2 + x2, and the

Brownian motion β(t), with β(0) = 0, we have

fε(x+ β(t)) = fε(x) +

∫ t

0

f ′ε(x+ β(s))dβ(s) + 1
2

∫ t

0

f ′′ε (x+ β(s))ds.

Since f ′ε(x) = x (ε2 + x2)−1/2, we get

fε(x+ β(t))→ |x+ β(t)| and f ′ε(x+ β(t))→ sgn(x+ β(t)),

as ε→ 0, where the sign function is defined as sgn(x) = 1 if x > 0, sgn(x) = −1
if x < 0 and sgn(x) = 0 if x = 0. Hence we have the following convergence in
probability∫ t

0

f ′ε(x+ β(s))dβ(s)→
∫ t

0

sgn(x+ β(s))dβ(s),

Now, observe that the process

`ε(t, x) = 1
2

∫ t

0

f ′′ε (x+ β(s))ds

is a non negative, non decreasing process, converging in probability to

`ε(t, x)→ `(t, x) := |x+ β(t)| − |x| −
∫ t

0

sgn(x+ β(s))dβ(s). (6.14)

By means of Burkhölder-Davis-Gundy inequalities applied to the process

β̄(t, x) =

∫ t

0

sgn(x+ β(s)) dβ(s),
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with some p > 2. i.e., for some positive constant Cp,

E
{
|β̄(t, x)− β̄(t′, x)|p

}
≤ Cp|t− t′|p/2.

It is also clear that β̄(t, x) can be taken jointly measurable in (t, x). Moreover,
a direct calculation shows (e.g., see Karatzas and Shreve [124, Section 3.6.B,
pages 207]) that

E
{
|β̄(t, x)− β̄(t, x′)|p

}
≤ Cp|x− x′|p/2,

which implies that the process `(t, x) can be chosen continuous in (t, x). Clearly,
this also shows that process β̄(t) is a Brownian motion. Moreover `(t, x) is non
negative, non decreasing, and constant whenever x + β(t) 6= 0. This process
`(t, x) is called the local time of the Brownian motion β(t) at level x. We have
also

Theorem 6.3 (Itô-Tanaka). If f is a convex function, then

f(β(t)) = f(0) +

∫ t

0

f ′−(β(s)) dβ(s) + 1
2

∫ t

0

`(t, x)f ′′(dx) (6.15)

where we recall that the second derivative of a convex function exists as a mea-
sure. Moreover, the occupation times formula holds, i.e., there exists a negligible
set outside of which∫ t

0

φ(β(s)) ds =

∫
R
φ(x) `(t, x) dx

for every t ≥ 0 and for any nonnegative Borel function φ.

Proof. First, for any nonnegative continuous function φ one can find a convex
function f such that f ′′ = φ and, by comparing the Itô formula and the Itô-
Tanaka formula one gets occupation times formula for φ. Next, one can extend
the result to any nonnegative Borel function by approximations, i.e., as an
application of the monotone class theorem.

To prove Itô-Tanaka formula for any convex function f, one sees that by
stopping the Wiener process β(t) at the first exit time from a compact set, it
suffice to consider only convex functions f having f ′′ with compact support,
i.e.,

f(x) = 1
2

∫
R
|x− y|f ′′(dy) + ax+ b, ∀x ∈ R,

for some constants a and b. Hence, by means of (6.14) we get

f(β(t)) = 1
2

∫
R
|β(t)− y|dy + aβ(t) + b =

= aβ(t) + f(0) + 1
2

∫
R

(∫ t

0

sgn
(
y + β(s)

)
dβ(s) + `(t, y)

)
f ′′(dy).
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Since 2 sgn(·) = sgn+(·) + sgn−(·) we have∫
R

sgn
(
y + β(t)

)
f ′′(dy) = f ′+(β(t)) + f ′−(β(t)),

which yields the symmetric Itô-Tanaka formula

f(β(t)) = f(0) + 1
2

∫ t

0

[f ′− + f ′+](β(s)) dβ(s) + 1
2

∫ t

0

`(t, x)f ′′(dx).

Actually, because P{y + β(s) = 0} = 0, the processes sgn±(y + β(t)) and
sgn(y + β(t)) are versions of each other and the stochastic integral coincides,
i.e., we can replace sgn(·) above with either sgn+(·) or sgn−(·), and deduce
Itô-Tanaka formula (6.15).

The previous results remain valid for (continuous) semi-martingales, and
clearly, the proof of Itô-Tanaka formula requires only the joint measurability
of the local time `(t, x). The (right-) continuity of `(t, x) in x can be proved
by means of the occupation times formula and a bound on E{[`(t, x)]p} locally
uniformly in x, for each t > 0 and some p > 2. Depending on how the smooth
functions fε approximates x 7→ |x| (e.g., with f ′ε → sgn− in lieu of sgn), we may
define the local time process as

`±(t, x) := |x+ β(t)| − |x| −
∫ t

0

sgn±(x+ β(s))dβ(s),

instead of (6.14). Thus, to have f ′+, f
′
− or the symmetric sum (f ′+ + f ′−)/2 we

may need to use the local times `+, `− or `. For instance, full details on the
local times can be found in Karatzas and Shreve [124, Section 3.6, pp. 201–226]
or Revuz and Yor [212, Chapter VI, pp. 221–277].

Besides the fact that the (t, x) 7→ `(t, x) could be only right-continuous,
it seems to me the above arguments are applicable for a Wiener-Poisson pro-
cess (i.e., quasi-continuous local-martingale?). Taking a look at Bertoin [21] or
Sato [220] book, the local time for non-continuous semi-martingale (e.g., a Levy
process) is so, so, so complicate.
What do you think?

After all this preliminaries, by making use of the occupation times formula,
one can define the local time `(t, x) associated with the process x + β(t) as a
continuous non decreasing process satisfying

`(t, x) = lim
ε→0

1
2ε

∫ t

0

1[−ε,ε](x+ βr)dr,

which is constant when x + β(t) 6= 0. Actually, there is a simpler formula,
namely

τ(x) := inf
{
t ≥ 0 : x+ β(t) ≥ 0

}
,

`(t, x) = 1
2 max

{
x+ β(s) : τ(x) ≤ s ≤ t

}
,
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valid in this case. Clearly, one may deduce the continuity in (t, x) directly from
the above expressions.

With a multidimensional notation, let w(t) =
(
w1(t), . . . , wd(t)

)
be a d-

dimensional (standard) Wiener process. The following cases can be considered.

Example 6.1 (Dirichlet). This is the case b0 = 1, b̃ = 0, bd = 0, ρ = 0 and
(bij) = 0. The process associated to the Laplacian in the space Rd+ is given by
Xt = x + w(t) with a lifetime ζ = τx = inf{t > 0 : wd(t) = xd}. We can
reformulate with the language of local time `(t, x) of xd +wd(t) at zero, that is
ζ = inf{t > 0 : `(t, x) > 0} = τx.

Example 6.2 (Neumann). This is the case bd = 1, b0 = 0, b̃ = 0, ρ = 0 and
(bij) = 0. The process associated to the Laplacian in the space Rd+ is given by
Xt = x+ (w1(t), w2(t), . . . , wd−1(t), |wd(t)|).

Example 6.3 (Absorbing). This is the case b0 = 0, b̃ = 0, bd = 0, ρ = 1 and
(bij) = 0, which is also called sticking The process associated to the Laplacian
in the space Rd+ is given by X(t) = x+w(t∧ τx) where τx = inf{t > 0 : wd(t) =
xd}.

Example 6.4 (Elastic). This is the case b0 > 0, b̃ = 0, bd > 0, ρ = 0 and
(bij) = 0. The process associated to the Laplacian in the space Rd+ is given
by X(t) = x + (w1(t), w2(t), . . . , wd−1(t), |wd(t)|) with a lifetime ζ = inf{t >
0 : `(t, x) > Z}, where Z is an independent (of the Brownian motion) random
variable exponentially distributed with parameter λ = b0

bd
. Observe that the

limit case bd = 0 corresponds to the Dirichlet case, and the other limit case
b0 = 0 corresponds to Neumann case.

Example 6.5 (Sticky). This is the case b0 = 0, b̃ = 0, bd > 0, ρ > 0 and
(bij) = 0. The process associated to the Laplacian in the space Rd+ is given
by X(t) = x+(w1(r(t)), w2(r(t)), . . . , wd−1(r(t)), |wd(r(t))|), where the random
process r(t) is the inverse function of c(t) = t + ρ

bd
`(t, x). Observe that in the

limit case of bd = 0, one obtains the absorbing case, and as ρ → 0 one obtains
again the Neumann case.

Example 6.6 (Oblique). This is the case b0 = 0, b̃ 6= 0, bd > 0, ρ = 0 and
(bij) = 0.

More stuff here. . .

Example 6.7 (Second-Order). This is the case b0 = 0, b̃ 6= 0, bd > 0, ρ = 0
and (bij) 6= 0.

More stuff here. . .

Example 6.8 (In General). Now, it easier to understand the general case with
bd > 0, the process associated to the Laplacian in the space Rd+ is given by

X(t) = x+ (w1(r(t)), w2(r(t)), . . . , wd−1(r(t)), |wd(r(t))|),

Section 6.2 Menaldi January 7, 2014



CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS II 666

where the random process r(t) is the inverse function of c(t) = t+ ρ
bd
`(t, x), but

with a lifetime ζ = inf{t > 0 : `(r(t), x) > Z}, where Z is an independent (of the
Brownian motion) random variable exponentially distributed with parameter
λ = b0

bd
.

...***...

6.2.2 Drift and Diffusion Terms

Suppose that on the interior Ṙd+ = {x : xd > 0} we are given a a second-order
elliptic (possible degenerate) differential operator (without zero-order term)

A(t)ϕ(x) :=

d∑
i,j=1

aij(t, x)∂ijϕ(x) +

d∑
i=1

ai(t, x)∂iϕ(x), (6.16)

for very continuously differentiable functions ϕ with a compact support in the
closed semi-space Rd+, where (aij(t, x)) is a symmetric non-negative definite
matrix for each (t, x), and all coefficients aij(t, x) and ai(t, x) are bounded (linear
growth suffices) and continuous functions. A boundary operator of Wentzell type
has the form

B(t)ϕ(x) := B0(t)ϕ(x) + bd(t, x)∂dϕ(x)− ρ(t, x)A(t)ϕ(x),

B0(t)ϕ(x) :=

d−1∑
i,j=1

bij(t, x)∂ijϕ(x) +

d−1∑
i=1

bi(t, x)∂iϕ(x),
(6.17)

where (bij(t, x)) is a symmetric non-negative definite matrix, bd(t, x) ≥ 0 and
ρ(t, x) ≥ 0, for every (t, x), and all coefficients are bounded and continuous.
Notice that ∂d is the interior normal derivative on the boundary ∂Rd+.

A diffusion measure P = Pt0,x generated by the pair A(t) and B(t) with
initial condition P{x(t0) = x0}, x(t) := ω(t), is a probability measure on the
canonical space C([t0,∞),Rd+) such that there exists an adapted, non-decreasing
and continuous process `(t), so-called local time, satisfying the conditions `(t0) =
0, ∫ t

t0

1∂Rd+(x(s))d`(s) = `(t), ∀t ≥ t0,∫ t

t0

1∂Rd+(x(s))ds =

∫ t

t0

ρ(s, x(s))d`(s), ∀t ≥ t0,

and such that the process

Mϕ(t) := ϕ(x(t))− ϕ(x(t0))−
∫ t

t0

A(s)ϕ(x(s))ds−

−
∫ t

t0

B(s)ϕ(x(s))d`(s),

is a martingale for any smooth function ϕ.
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Notice that the boundary operator B(t) is determined by the diffusion mea-
sure up to a multiplicative constant, i.e., if B̃(t)ϕ(x) := α(t, x)B(t)ϕ(x), with
α(t, x) being a positive and continuous functions on the boundary Rd+, then∫ t

t0

B(s)ϕ(x(s))d`(s) =

∫ t

t0

B̃(s)ϕ(x(s))d˜̀(s),

where

˜̀(t) :=

∫ t

t0

α(s, x(s))ϕ(x(s))d`(s), ∀t ≥ t0.

On the other hand, the martingale process Mϕ(t) can be re-written as

Mϕ(t) = ϕ(x(t))− ϕ(x(t0))−
∫ t

t0

1Ṙd+
(x(s))A(s)ϕ(x(s))ds−

−
∫ t

t0

1∂Rd+(x(s))B′(s)ϕ(x(s))d`(s), ∀t ≥ t0,

where B′ = B0 + bd∂d, i.e., B = B′− ρA, and Ṙd+ and ∂Rd+ are the interior and
the boundary of the half-space Rd+.

All this can be written in the form of a stochastic differential equation

dxi(t) = 1Ṙd+
(x(t))

[
ai(t, x(t))dt+

n∑
k=1

σik(t, x(t))dwk(t)
]

+

+1∂Rd+(x(t))
[
bi(t, x(t))d`(t) +

m∑
k=1

ςik(t, x(t))dw`k(t)
]
,

for i = 1, . . . , d− 1,

dxd(t) = 1Ṙd+
(x(t))

[
ad(t, x(t))dt+

n∑
k=1

σdk(t, x(t))dwk(t)
]

+

+bd(t, x(t))d`(t),

and

1∂Rd+(x(t))dt = ρ(t, x(t))d`(t),

where (w1, . . . , wn) is a (standard) n-dimensional Wiener process, and the pro-
cess (w`1, . . . , w

`
m) is an independentm-dimensional continuous square-integrable

martingale with predictable quadratic co-variance given by

d〈w`i , w`j〉 =

d` if 1 ≤ i, j ≤ n,

0 otherwise,

i.e., w`i (s) = w∗i (`(s)) for some independent (standard) m-dimensional Wiener
process (w∗1 , . . . , w

∗
m), and

aij =
1

2

n∑
k=1

σikσjk, 1 ≤ i, j ≤ d,

bij =
1

2

m∑
k=1

ςikςjk, 1 ≤ i, j ≤ d− 1.
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relates the coefficients.
Roughly speaking, bd(t, x) > 0 produces a normal reflection and ρ(t, x) > 0

yields a sojourn or viscosity, both at time t and state x on the boundary ∂Rd+. So,
if bd(t, x) = ρ(t, x) = 0 then the above boundary problem is not allowed, unless
the diffusion is degenerate and the characteristics does not exit the domain Rd+.

Theorem 6.4. Assume the coefficients σik(t, x), ςik(t, x), ai(t, x), bi(t, x) are
measurable in (t, x), locally uniform Lipschitz continuous in x and at most of
linear growth in x. Also suppose that ρ(t, x) is bounded and continuous, that
ςik(t, x) and bi(t, x) are also continuous, and that there exists a constant c > 0
satisfying

bd(t, x) ≥ c, ∀t ≥ t0, x ∈ ∂Rd+,
p∑
k=1

σ2
dk(t, x) ≥ c, ∀t ≥ t0, x ∈ Rd+.

Then for any initial condition x0 at t0 there exists a solution x(t), `(t) of the
above stochastic differential equation with boundary conditions, which is unique
in law. 2

This is a variation of Ikeda and Watanabe [110, Theorem IV.7.2, pp. 222–
228], where the proof is given under the assumption that all coefficients are
time-independent and bounded. The steps in the proof are as follows. First, a
simple normal reflection problem is solved, i.e., with ρ(t, x) = 0, ad(t, x) = 0,
σd1(t, x) = 1 and σdk(t, x) = 0 for k = 2, . . . , n. Indeed, given a (standard)
n + m-dimensional Wiener process (β1, . . . , βn+m) define the processes xd(t)
and `(t) by

`(t) := max
t0≤s≤t

{
[β1(s) + xd(t0)]−

}
∀t ≥ t0,

xd(t) := xd(t0) + β1(t) + `(t), ∀t ≥ t0,

where [·]− denotes the negative part of a real number. Thus, xd is the reflecting
Wiener process in [0,∞) and ` its local time. Now set x̃ = (x1, . . . , xd−1) and
wk(t) := βk(t) if 1 ≤ k ≤ n, and w`k(t) := βm+k(`(t)) if n + 1 ≤ k ≤ n + m, to
solve the (d− 1)-dimensional stochastic differential equation

dx̃i(t) =

n∑
k=1

σik(t, x̃(t), xd(t))dwk(t) + ai(t, x̃(t), xd(t))dt+

+

m∑
k=1

ςik(t, x̃(t), xd(t))dw
`
k(t) + bi(t, x̃(t), xd(t))d`(t),

as in the previous chapter. Actually, because w` is a continuous square-integrable
martingale (no in general a Wiener process), we need to change the time t into
t + `(t) to apply the iteration method of Chapter 5. Notice that only the val-
ues of ς(t, x) and bi(t, x) on the boundary ∂Rd+ are used, i.e., xd(t) = 0 when
dw`(t) 6= 0 or d`(t) 6= 0. This yields a Rd+-valued process x which satisfies all
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the required conditions. Next, by means of a rotation of the Wiener process,
i.e., a transformation

w̃k(t) :=

n∑
h=1

∫ t

t0

rkh(s, x(s))dwh(s),

where r = (rhk(t, x)) is a n-dimensional orthogonal matrix for each (t, x), we
can modify the components of σ(t, x), i.e., the matrix (aij(t, x)), and reduce to
the previous simple reflection case, after modifying the drift (setting ad = 0)
by means of a Girsanov transformation. Finally, if (x(·), w(·), `(·), w`(·)) is a
solution corresponding to σik, ςik, ai, bi and ρ = 0, then apply a time change of
the type

τ(t) := t+

∫ t

t0

ρ(x(s))d`(s), ∀t ≥ t0,

as follows

xτ (t) := x(τ−1(t)), `τ (t) := `(τ−1(t)),

w`,τk (t) := w`k(τ−1(t)),

wτk(t) := wk(τ−1(t)) +

∫ t

t0

1∂Rd+

(
x(τ−1(s)

)
dβ∗k(s), 1 ≤ k ≤ n,

where (β∗1 , . . . , β
∗
n) is another (standard) n-dimensional Wiener process, to ob-

tain the solution (xτ (·), wτ (·), `τ (·), w`,τ (·)), for the case ρ(x) ≥ 0. Indeed, the
relations

τ−1(t) =

∫ t

t0

1Ṙd+

(
x(τ−1(s)

)
ds,∫ t

t0

1∂Rd+

(
x(τ−1(s)

)
ds =

∫ t

t0

ρ(x(τ−1(s))d`(τ−1(s))

yield the desired existence result.
The uniqueness in law is ensured by the (strong) uniqueness of the (d− 1)-

dimensional stochastic differential equation and the invertibility of the above
changes of probability and time.

The condition imposed on the coefficients (reflection and non-degeneracy on
the boundary) may be too strong in some cases. Reflection on the boundary
can be replaced by

bd(t, x) + ρ(t, x) ≥ c > 0, ∀t ≥ t0, x ∈ ∂Rd+,
so that a reflection or a sojourn is allowed on the boundary. Probabilistically,
this transversality condition means that every Markov process on ∂O is the
trace on the boundary of some Markov process on O. On the other hand, the
non-degeneracy condition is only used to construct the local time `(t) and the
reflecting coordinate xd(t), but this can be accomplished independently, e.g. see
the papers Stroock and Varadhan [239, 240].

Is this correct with t? See Ikeda and Watanabe [110, Section
IV.7.2, pp. 217–232].
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6.2.3 General Boundary Conditions

Essentially results form paper Anulova [3, 4]?
...***...
Skubachevskii [231] (and references therein) for a full treatment of even more

general boundary conditions for Markov-Feller processes.
...***...

6.3 Stochastic Variational Inequalities

In this section we discuss the reflected stochastic differential equation as a set
of two inequalities with a complementary condition, typically conditions de-
rived form an orthogonal projection. In a deterministic situation this is very
well known, e.g., see the classic books Bensoussan and Lions [16], Kinderlehrer
and Stampacchia [131] among others. Here we follows the arguments presented
in the papers [171], Menaldi and Robin [173], and the references therein, e.g.,
Tanaka [247]. This is mainly concerning the strong formulation, but it can be
easily adapted to obtain existence and uniqueness of weak solutions. More-
over, some results for stochastic partial differential equations are obtained in
Bensoussan and Rascanu [19] and Rascanu [209].

Let (Ω,F , P,Ft, w(t), ν̃(dζ,dt) : ζ ∈ Rm∗ , t ≥ 0), be a (standard) n × m
Wiener-Poisson space with Lévy measure π(·), i.e., in a complete filtered prob-
ability space (Ω,F , P, Ft : t ≥ 0), the stochastic process (w(t) : t ≥ 0) is
a n-dimensional (standard) Wiener space and (ν(B, ]0, t]) : B ∈ Rm∗ , t ≥ 0)
is an independent (standard) Poisson measure with (intensity) Lévy measure
π(B) := E{ν(B, ]0, t])}/t, which satisfies∫

Rm∗

|ζ|2

1 + |ζ|
π(dζ) <∞,

with martingale measure ν̃(B, ]0, t]) := ν(B, ]0, t])−tπ(B), as discussed in previ-
ous chapters. This Wiener-Poisson space as well as a Rq-valued adapted process
(control process) (v(t) : t ≥ 0) are fixed throughout this section.

The coefficients g(t, x, v), σ(t, x, v) and γ(ζ, t, x, v) are always supposed Borel
measurable, and because we are interested in global solutions defined on a
prescribed bounded interval, say [t0, t1], we impose a linear growth condition,
namely, there exist a constant C > 0 such that |g(t, x, v)|2 + |σ(t, x, v)|2 +

∫
Rm∗
|γ(ζ, t, x, v)|2π(dζ) ≤

≤ C(1 + |x|2),

(6.18)

for every (t, x, v) in [t0,∞)× Rd × Rq. Also we add a uniform locally Lipschitz
condition in the variable x, namely, for any r > 0 there exists a positive constant
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M = M(r) such that
|g(t, x, v)− g(t, x′, v)|2 + |σ(t, x, v)− σ(t, x′, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)− γ(ζ, t, x′, v)|2π(dζ) ≤M |x− x′|2,

(6.19)

for every (t, x, v), (t, x′, v) in [t0,∞) × Rd × Rq with t ≤ t0 + r, |x| ≤ r and
|x′| ≤ r. Recall that we say uniform (global) Lipschitz condition in the variable
x if the bound (6.19) holds true for any (t, x, v), (t, x′, v) in [t0, t0 +r)×Rd×Rq.

The associated integro-differential operator
A(t, v)ϕ(x) =

d∑
i,j=1

aij(t, x, v)∂ijϕ(x) +

d∑
i=1

gi(t, x, v)∂iϕ(x) +

+

∫
Rd∗

[ϕ(x+ z)− ϕ(x)− z · ∇ϕ(x)]M(dz, t, x, v),

(6.20)

where ∂i and ∂ij denote the partial first xi and second xi, xj derivatives and ∇
is the gradient in the variable x,

aij(t, x, v) :=
1

2

n∑
k=1

σik(t, x, v)σjk(t, x, v), (6.21)

and

M(B, t, x, v) = π({ζ : γ(ζ, t, x, v) ∈ B}), ∀B ∈ B(Rd∗) (6.22)

is the jumps or Lévy kernel in Rd∗.
First, the case of a convex domain not necessarily smooth is studied. Next,

this is extended to a simply connected smooth domain via a diffeomorphism
and finally the technique is adapted to a general smooth domain.

6.3.1 Convex Domain

Our objective is to solve the following problem, so-called stochastic variational
inequality, by means of a drift penalty argument.

Definition 6.5 (SVI). Given a convex domain O in Rd and an initial condition
x0 at time t0 ≥ 0, a strong solution of a stochastic variational inequality is a
pair of adapted cad-lag processes (x(t), η(t) : t ≥ t0) such that:

(1) x(·) takes values in the closure O and η(·) is continuous and has locally
bounded variation,

(2) the initial conditions x(t0) = x0 and η(t0) = 0 are satisfied,

(3) the following equation is satisfied
dx(t) + dη(t) = g(t, x(t), v(t))dt+ σ(t, x(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, x(t), v(t))ν̃(dζ,dt),
(6.23)
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(4) for every adapted cad-lag process (y(t) : t ≥ t0) with valued in the closure
O we have∫ t1

t0

[x(s)− y(s)]dη(s) ≥ 0, (6.24)

for every t1 > t0. Note that t0 may be a stopping time and x0 a Ft0-measurable
random variable.

Usually, (x(t) : t ≥ t0) is called (normal) reflected diffusion process with
jumps and (η(t) : t ≥ t0) is its associated d-dimensional local time process.
Since η(·) is continuous, the last inequality (6.24) is equivalent to∫ t1

t0

[x(t−)− y(t−)]dη(t) ≥ 0, (6.25)

for every t1 > t0. Thus, no jumps should be outside the closure O, i.e., we
impose the condition

x ∈ O ⇒ x+ γ(ζ, t, x, v) ∈ O, (6.26)

for every (ζ, t, v) in Rm∗ × [t0,∞) × Rq. To eliminate this only interior jumps
condition, we need to set-up the stochastic variational inequality with the condi-
tion (6.25) instead of (6.24) and to take a decision regarding the jumps outside
the closed region O, e.g., have the jumps also normally reflected. Anyway, in
this section we always assume the condition (6.26), perhaps after re-defining
γ(ζ, t, x, v) = 0 when ζ does not belong to the support of π(dζ).

This stochastic variational inequality can be approximated by means of a
classic penalty argument applied to a stochastic differential equation in the
whole space Rd. Without any loss of generality, one can assume that the co-
efficients are defined to the whole space Rd, even if they need to be defined
only on the closure O. Moreover, the assumption (6.26) on the interior jumps
is complemented with the condition

γ(ζ, t, x, v) = γ(ζ, t, PO(x), v), ∀ζ, t, x, v, (6.27)

where PO(x) denotes the orthogonal projection on O of the point x in Rd. Note
that PO(x) = x for every x in the closure O.

Define the penalty function β(x) := x− PO(x) (as a column vector), i.e.,

β(x) =
1

2
∇x min

y∈O
{|x− y|2}, ∀x ∈ Rd,

and, for every ε > 0, consider the stochastic ordinary differential equation
dxε(t) = g(t, xε(t), v(t))dt+ σ(t, xε(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, xε(t), v(t))ν̃(dζ,dt)− 1

ε
β(xε(t))dt,

(6.28)

with the initial condition xε(t0) = x0. Since β is Lipschitz continuous, under
assumptions (6.18) and (6.19) there exists one and only one solution xε(·) of
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(6.28) satisfying the given initial conditions. Note that β(x) = 0 for every x in
the closure O.

Due to the large jumps, we add to assumption (6.18) the condition: there
exist constant p̄ > 2 and C > 0 such that∫

Rm∗
|γ(ζ, t, x, v)|p̄π(dζ) ≤ C(1 + |x|p̄), ∀t, x, v. (6.29)

When the convex domain O is unbounded, we need to require a technical as-
sumption, namely, there exists a point a in Rd and a positive constant c > 0
such that

(x− a)β(x) ≥ c|β(x)|, ∀x ∈ Rd, (6.30)

where | · | denotes the Euclidean norm. If O is bounded then for any a in the
interior O one can find constant c > 0, proportional to the distance from a to the
boundary ∂O, such that (6.30) is satisfied. For instance, in the one dimensional
case for O := [0,∞), the orthogonal projection is the positive part PO(x) = x+

and the penalty function is β(x) = x − x+ = −x−. Hence (x − a)β(x) =
(a − x)x− ≥ ax− for every x in R and a > 0. Therefore, condition (6.30) is
trivially satisfied for the semi-space O := Rd+.

Since O is convex, the function β is monotone, i.e.,

(x′ − x)[β(x′)− β(x)] ≥ 0, ∀x, x′ ∈ Rd. (6.31)

In particular,

(x̃− x)β(x) ≤ 0, ∀x ∈ Rd, x̃ ∈ O,

and if x̃ = PO(x′) = x′ − β(x′) then

(x′ − x)β(x) ≤ β(x′) · β(x), ∀x, x′ ∈ Rd. (6.32)

First, a couple of a priori estimates on the stochastic ordinary differential
equation (6.28) are established.

Lemma 6.6. Suppose that the growth conditions (6.18) and (6.29) on the coef-
ficients g, σ and γ are satisfied, as well as the assumptions (6.26), (6.27), (6.30)
relative to a convex domain O in Rd. Then the following a priori estimates on
a solution (xε(t) : t ≥ t0) of (6.28) with the initial condition xε(t0) = x0 holds:
for every p in [1, p̄], with p̄ as in (6.29), and t1 > t0 there exists a constant
C > 0, independent of ε, such that

E
{(1

ε

∫ t1

t0

|β(xε(t))|dt
)p

+ sup
t0≤t≤t1

|xε(t)|p
}
≤ C, ∀ε > 0, (6.33)

and, for every p in [2, p̄], t1 > t0 and x0 in O we also have

E
{1

ε

∫ t1

t0

|β(xε(t))|pdt+ sup
t0≤t≤t1

|β(xε(t))|p
}
≤ C εp/2−1, (6.34)
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for another constant C > 0, independent of ε in (0, 1]. Moreover, for every
1 ≤ p ≤ p̄, 0 < q ≤ p̄/2 − p/p̄, q < p/2, t1 > t0 and x0 in O, there exists a
constant C > 0 such that

E
{( 1

ε′

∫ t1

t0

|β(xε
′
(t))| |β(xε(t))|dt

)p}
≤ C εq, (6.35)

for every ε, ε′ > 0. Furthermore, all constants in the above estimates can be
taken independent of the initial condition x0 and t0, as long as they remain in
a bounded region.

Proof. First, we proceed as in Section 5.1.4 of the previous chapter. For a fixed
p in [1, p̄] and a in Rd, we define

α(p, a) := pαg(a) + pασ(p, a) + αγ(p, a), (6.36)

where

αg(a) := sup
{∑

i

(xi − ai) gi(t, x, v)

1 + |x− a|2
}
,

ασ(p, a) := sup
{∑

i,k

σ2
ik(t, x, v)

1 + |x− a|2
+

+(p− 2)
∑
i,j,k

(xi − ai)σik(t, x, v)σjk(t, x, v) (xj − aj)
(1 + |x− a|2)2

}
,

and

αγ(p, a) := sup
{∫

Rm∗

[
(1 + |x− a+ γ(ζ, t, x, v)|2)p/2 −

−(1 + |x− a|2)p/2 −
∑
i

p (xi − ai) γi(ζ, t, x, v)×

×(1 + |x− a|2)p/2−1
]

(1 + |x− a|2)−p/2π(dζ)
}
,

and the suprema are taken for every (t, x, v) in [t0,∞)× Rd × Rq, The growth
conditions (6.18) and (6.29) on the coefficients g, σ and γ ensure that α(p, a) is
finite. Now apply Itô formula to the function

(t, x) 7→ e−α(t−t0)
(
1 + |x− a|2

)p/2
, α ≥ α(p, a)

with the stochastic process xε(t) solution of (6.28) to get

e−α(t−t0)
(
1 + |xε(t)− a|2

)p/2 ≤ (1 + |x− a|2
)p/2

+ I(t)−

−p
ε

∫ t

t0

(
xε(s)− a

)
β(xε(s)) e−α(s−t0)

(
1 + |xε(s)− a|2

)p/2
ds,

where I(t) is a stochastic integral. This implies

E
{
|xε(t)|p

}
≤ C, ∀t ∈ [t0, t1], ε > 0,
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for some constant C > 0 independent of ε. Moreover, the Davis-Burkhölder-
Gundy inequality (i.e., the stochastic integral inequalities (5.46) and (5.47),
with p = 1, of the previous Chapter), applied to the exact expression of the
stochastic integral I(t) yields one part of estimate (6.33), namely

E
{

sup
t0≤t≤t1

|xε(t)|p
}
≤ C, ∀ε > 0, (6.37)

for some constant C independent of ε.
Now, going back to Itô formula, taking p = 2 and using the assumption

(6.30), we obtain

2c

ε

∫ t

t0

e−α(s−t0)|β(xε(s))|ds ≤
(
1 + |x− a|2

)1/2
+

+

∫ t

t0

e−α(s−t0)(xε(s)− a)σ(s, xε(s), v(s))dw(s) +

+

∫
Rm∗ ×]t0,t]

e−α(s−t0)(xε(s)− a)σ(s, xε(s), v(s))ν̃(dz,ds),

and we get the second part of estimate (6.33).
Recall the expression (6.20) of the integro-differential operator A(t, v) =

Ag,σ(t, v) + I(t, v), where Ag,σ(t, v) is the local part and I(t, v) the proper
integro-differential part. Now, consider the penalty function ϕ(x) := |β(x)|p,
with p in [2, p̄]. Since the gradient satisfies ∇|β(x)|2 = 2β(x), we deduce that

∇ϕ(x) = p β(x) |β(x)|p−2, ∀x ∈ Rd,
which yields

|∂iϕ(x)| ≤ C|β(x)|p−1, ∀x ∈ Rd,

|∂ijϕ(x)| ≤ C|β(x)|p−2, a.e. x ∈ Rd.

Thus, in view of the growth condition (6.18) on the coefficients g and σ, we
proves that for some constant C > 0 such that

|Ag,σ(t, v)ϕ(x)| ≤ C
[
(1 + |x|2) |β(x)|p−2 + (1 + |x|2)1/2 |β(x)|p−1

]
for every t, v and almost every x in Rd. On the other hand, the proper integro-
differential part I(t, v) satisfies

I(t, v)ϕ(x) =
∑
ij

∫ 1

0

(1− θ)dθ
∫
Rm∗

γiγj∂ij ϕ(x+ θγ)π(dζ),

with γ = γ(ζ, t, x, v), and

|∂ijϕ(x+ θγ(ζ, t, x, v))| ≤ C|β(x+ θγ(ζ, t, x, v))|p−2.

In view of condition (6.27) and the property

|β(x+ θγ(ζ, t, x, v))| ≤ |x+ θγ(ζ, t, x, v)− y|, ∀y ∈ O,
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we may choose y = PO(x) + θγ(ζ, t, PO(x), v) to deduce from the growth con-
dition (6.18) that there exists a constant C > 0 such that

|I(t, v)ϕ(x)| ≤ C1 (1 + |x|2) |β(x)|p−2,

for every t, v and almost every x in Rd. This establishes the estimate

|A(t, v)ϕ(x)| ≤ C0

[
(1 + |x|2) |β(x)|p−2 + (1 + |x|2)1/2 |β(x)|p−1

]
,

for some constant C0 > 0 and for every t, v and almost every x in Rd.
By means of a mollification of the penalty function ϕ(x), namely,

ϕn(x) :=
( ∫

Rd
|β(x− y)|2ρn(y)dy

)p/2
,

where (ρn : n ≥ 1) is a sequence of smooth positive kernels with compact support
as usual, we can approximate ϕ by smooth functions to apply Itô formula and
to justify the inequality

|β(xε(t))|p +
p

ε

∫ t

t0

|β(xε(s))|pds ≤ I(t) +

+C0

∫ t

t0

[
(1 + |xε(s)|2) |β(xε(s))|p−2 + (1 + |xε(s)|2)1/2 |β(xε(s))|p−1

]
ds

where I(t) is a stochastic integral, namely

I(t) := p

∫ t

t0

β(xε(s)) · σ(s, xε(s))|β(xε(s))|p−2dw(s) +

+p

∫ t

t0

∫
Rm∗

β(xε(s)) · γ(ζ, s, xε(s))|β(xε(s))|p−2ν̃(dζ,ds).

Using the Davis-Burkhölder-Gundy inequality, the growth condition (6.18) on
the coefficients σ and γ and the inequality

(a b)1/2 ≤ 2(a/2)1/2 (b/2)1/2 ≤ a

2
+ b, ∀a, b > 0,

we verify that there exists a constant C > 0 such that

E
{

sup
t0≤t≤t1

|I(t)|
}
≤ C E

{(∫ t1

t0

(1 + |xε(s)|2) |β(xε(s))|2p−2ds
)1/2}

≤

≤ C E
{(

sup
t0≤s≤t1

|β(xε(s))|p
∫ t1

t0

(1 + |xε(s)|2) |β(xε(s))|p−2ds
)1/2}

≤

≤ 1

2
E
{

sup
t0≤s≤t1

|β(xε(s))|p
}

+ C E
{∫ t1

t0

(1 + |xε(s)|2) |β(xε(s))|p−2ds
}
.

Next, by means of the inequality

AB ≤ Aq

q
+
Bq
′

q′
,

1

q
+

1

q′
= 1,

for appropriate non-negative factors A and B, first for q′ := p/(p− 1) and then
for q′ := p/(p− 2), we deduce estimate (6.34).
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To show estimate (6.35) we start with

1

ε′

∫ t1

t0

|β(xε
′
(t))| |β(xε(t))|dt ≤ AB,

with

A :=
1

ε′

∫ t1

t0

|β(xε
′
(t))|dt,

B := sup
t0≤t≤t1

|β(xε(t))| .

Since, for r > 2 and r′ = r/(r − 1)

E
{

(AB)p
}
≤
(
E{Apr}

)1/r (E{Bpr′})1/r′ ,
we deduce form the previous estimates (6.33) and (6.34) that

E
{

(AB)p
}
≤ C εp/2−1/r

for some constant C > 0, which implies estimate (6.35) if the constant r is
chosen as large as possible.

We are ready to present the main result of this section

Theorem 6.7 (SVI). Let the growth conditions (6.18), (6.29) and the uniform
locally Lipschitz condition (6.19) on the coefficients g, σ and γ be satisfied.
Suppose also assumptions (6.26), (6.27), (6.30) relative to a convex domain
O in Rd. Then there is one and only one solution (x(t), η(t) : t ≥ t0) of the
stochastic variational inequality as described by Definition 6.5. Moreover for
every t1 > t0, the following convergence holds in probability

sup
t0≤t≤t1

{
|xε(t)− x(t)|+ |ηε(t)− η(t)|

}
→ 0 as ε→ 0, (6.38)

where (xε(t) : t ≥ t1) is the solution of the stochastic ordinary differential
equation (6.28) with the initial condition xε(t0) = x0, for some given x0 in O,
and

ηε(t) :=
1

ε

∫ t

t0

β(xε(s))ds,

with β being the penalty function. Furthermore, if the coefficients are uniform
Lipschitz then we also have

E
{

sup
t0≤t≤t1

{|xε(t)− x(t)|p + |ηε(t)− η(t)|p}
}
→ 0 as ε→ 0,

for every 1 ≤ p ≤ p̄ and locally uniform with respect to the initial condition x0
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Proof. If (x(t), η(t) : t ≥ 0) and (x̄(t), η̄(t) : t ≥ 0) are two solutions of the
stochastic variational inequality (6.23), (6.24) then, Itô formula applied to the
quadratic function ξ 7→ |ξ|2 and the process ξ(t) := x(t)− x̄(t) yields

E{|x(t)− x̄(t)|2} ≤ C E
{∫ t

t0

|x(s)− x̄(s)|2ds
}

+

+ 2E
{∫ t

t0

[x(s)− x̄(s)] · [dη̄(s)− dη(s)]
}
,

assuming that the coefficients g, σ and γ are uniformly Lipschitz and the initial
data x0 has a finite second moment. Hence, based on the monotony (6.31) of
the penalty function and Gronwall inequality we deduce first x(·) = x̄(·) and
next η(·) = η̄(·). To complete this argument about the uniqueness, similarly to
Theorem 5.3 in the previous chapter, for any r > 0, define the adapted process

χr(t) :=

0 if |x(s)| > r or |x̄(s)| > r for some s > t,

1 otherwise,

i.e., if τr(x(·)) denotes the first exit time from the closed ball of radius r for the
process x(·) then

χr(t) = 1 if and only if t < τr,

where τr := τr(x(·)) ∧ τr(x̄(·)). Since χr(t) = χr(t)χr(s) for every s ≤ t, we
have

[x(t)− x̄(t)]χr(t) =

∫ t

t0

χr(s)
[
g(s, x(s), v(s))− g(s, x̄(s), v(s))

]
ds

+

∫ t

t0

χr(s)
[
σ(s, x(s), v(s))− σ(s, x̄(s), v(s))

]
dw(s)+

+

∫
Rm∗ ×]t0,t]

χr(s)
[
γ(ζ, s, x(s), v(s))− γ(ζ, s, x̄(s), v(s))

]
ν̃(dζ,ds) +

+

∫ t

t0

χr(s)[dη̄(s)− dη(s)], t0 ≤ t ≤ τr.

Thus, apply Itô formula on the stochastic as above, but on the interval [t0, τr),
to deduce that

E{|x(t)− x̄(t)|2χr(t)} ≤ K E
{∫ t∧τr

t0

|x(s)− x̄(s)|2χr(s)ds
}
≤

≤ K
∫ t

t0

E{|x(s)− x̄(s)|2χr(s)}ds,

for every t in [t0, t1], and for some constant K depends only on t1 − t0, r and
the constant M = M(r) of hypothesis (6.19). Using Gronwall inequality, we
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deduce that for any t in [t0, t1] and any r > 0 we have |x(t) − x̄(t)|χr(t) = 0
with probability one. Since x and x̄ are cad-lag, and

P
{
χr(t) = 0 in [t0, t1]

}
≤ P

{
sup

t0≤t≤t1
|x(t)| > r

}
+ P

{
sup

t0≤t≤t1
|x̄(t)| > r

}
,

the a priori estimate (6.33) of Lemma 6.6 yields the existence of a set with
probability one where x(t) = x̄(t) for every t in [t0, t1].

Now, assume a uniform (global) Lipschitz condition (6.29) on the coefficients
g, σ and γ. We claim that for every 1 ≤ p ≤ p̄, 0 < q ≤ p̄/2 − p/p̄, q < p/2,
t1 > t0 and x0 in O, there exists a constant C > 0 such that

E
{

sup
t0≤t≤t1

{|xε(t)− xε
′
(t)|p + |ηε(t)− ηε

′
(t)|p}

}
≤ C (ε+ ε′)q (6.39)

as ε, ε′ vanish. To proof this claim, we apply Itô formula to the quadratic
function ξ 7→ |ξ|2 and the process ξ(t) := xε(t)− xε′(t) to get

|xε(t)− xε
′
(t)|2 ≤ I(t) + C

∫ t

t0

|xε(s)− xε
′
(s)|2ds+

+2

∫ t

t0

[xε(s)− xε
′
(s)] · [dηε

′
(s)− dηε(s)],

where C is a constant depending on the uniform (global) Lipschitz condition
(6.29), and I(t) is the stochastic integral

I(t) :=

∫ t

t0

[xε(s)− xε
′
(s)]σ(s)dw(s) +

+

∫
Rm∗ ×]t0,t]

[xε(s)− xε
′
(s)]γ(ζ, s)ν̃(dζ,ds),

with

σ(s) := σ(s, xε(s), v(s))− σ(s, xε
′
(s), v(s)),

γ(s) := γ(ζ, s, xε(s), v(s))− γ(ζ, s, xε
′
(s), v(s)).

Again, the Davis-Burkhölder-Gundy inequality (i.e., the stochastic integral in-
equalities (5.46) and (5.47), with p = 1, of the previous Chapter), the uniform
(global) Lipschitz condition (6.29) and the simple inequality(∫ t1

t0

|f(t)|2dt
)1/2

≤ sup
t0≤t≤t1

|f(t)|1/2
(∫ t1

t0

|f(t)|dt
)1/2

≤

≤ 1

2
sup

t0≤t≤t1
|f(t)|+ 1

2

∫ t1

t0

|f(t)|dt,

applied to the expression of I(t) yield

E
{

sup
t0≤t≤t1

|I(t)|p
}
≤ 1

2
E
{

sup
t0≤t≤t1

|xε(t)− xε
′
(t)|p

}
+

+ C E
{∫ t1

t0

|xε(s)− xε
′
(s)|pds

}
,
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for some constant C > 0. On the other hand, the monotone property (6.32) on
the penalty function β implies∫ t

t0

[xε(s)− xε
′
(s)] · [dηε

′
(s)− dηε(s)] ≤

≤
(1

ε
+

1

ε′

)∫ t

t0

|β(xε(s))| |β(xε
′
(s))|ds.

for every positive ε and ε′.
Hence, collecting all pieces and by means of estimate (6.35) in Lemma 6.6,

we deduce

E
{

sup
t0≤t≤t1

|xε(t)− xε
′
(t)|p

}
≤

≤ C E
{∫ t1

t0

|xε(s)− xε
′
(s)|pds

}
+ C (ε+ ε′)q.

which implies the claim (6.39), after using Gronwall inequality and the stochastic
equation relating xε and ηε.

Based on (6.39), we can define the stochastic processes

x(t) := lim
ε→0

xε(t), η(t) := lim
ε→0

ηε(t),

which clearly satisfy the properties (1), (2) and (3) of Definition 6.5. Also, the
same monotone property (6.32) proves that∫ t

t0

[xε(s)− y(s)] · dηε(s) ≥ 0,

for every t > t0, ε > 0 and any adapted cad-lag process (y(t) : t ≥ t0) with
values in the closure O. Passing to the limit, we check condition (6.24).

To extend these results to the uniform locally Lipschitz case, we remark
that under this weaker assumption, all a priori bounds of Lemma 6.6 hold true.
Thus, we can review the arguments used in estimate (6.39) to obtain

E
{

sup
t0≤t≤τε,ε′,r

{|xε(t)− xε
′
(t)|p + |ηε(t)− ηε

′
(t)|p}

}
≤ C (ε+ ε′)q

where τε,ε′,r is the first exit time from the ball of radius r, i.e.,

τε,ε′,r := inf
{
t ≥ t0 : |xε(t)|+ |xε

′
(t)| > r

}
.

In view of estimate (6.33) of Lemma 6.6, we have

lim
r→0

P
{
τε,ε′,r ≤ t1

}
= 0, ∀t1 > 0,

uniformly in ε and ε′. Hence

sup
t0≤t≤t1

{|xε(t)− xε
′
(t)|+ |ηε(t)− ηε

′
(t)|} → 0, (6.40)

in probability, as ε+ ε′ vanish. The proof is then completed.
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• Remark 6.8. If the initial condition is stochastic i.e., x0 is a Ft0-measurable
O-valued random variable, then the convergence in Theorem 6.7 is uniform in
x0, as long as the p-moments of x0 are uniformly bounded. On the other hand,
approximating the coefficient γ by a sequence of functions satisfying condition
(6.29), we deduce that the convergence in probability (6.38) of Theorem 6.7
remains true without the extra assumption (6.29) on the integrability of large
jumps. It is also clear that if the initial condition x0 does not belongs to the
closure O then the approximation xε converges to the solution of the stochastic
variational inequality with the initial condition x(0) = PO(x0).

• Remark 6.9. The reflected diffusion process with jumps is Lipschitz continuous
with respect to the initial condition. Indeed, denote by (x(t), η(t) : t ≥ t0) and
(x̄(t), η̄(t) : t ≥ t0) the solution to stochastic variational inequality (6.23), (6.24)
with initial conditions x(t0) = x0 and x̄(t0) = x̄0, respectively. Proceeding as in
Theorem 5.11 of the previous Chapter, suppose α ≥ β(p), 0 < p ≤ 2, as defined
by the extreme (5.49) in the previous Chapter, corresponding to the coefficients
g, σ and γ. Because of the monotone property (6.32) of the penalty function β,
then under the uniform (global) Lipschitz condition (6.19) we have E

{
[α− β(p)]

∫ t

t0

|x(s)− x̄(s)|p e−α(s−t0)ds+

+|x(t)− x̄(s)|p e−α(t−t0)
}
≤ E

{
|x(t0)− x̄(t0)|p

}
,

(6.41)

for every t ≥ t0. Furthermore, we have
E
{

sup
t0≤s≤t

|x(s)− x̄(s)|p e−α(s−t0)
}
≤

≤M
[
1 +

1

α− β(p, λ)

]
E
{

(|x(t0)− x̄(t0)|p
}
,

(6.42)

for every t ≥ t0 and for some constant M depending only on p and the bounds
of σ and γ through conditions (6.19), which is condition (5.50) in Section 5.1.4.
To use p > 2 we need to add assumption in Section 5.1.4, relative to the jump
coefficient γ. Clearly, this a priori estimates (6.41) and (6.42) are established
for the approximation solution uniformly in the parameter ε.

Let us look at the case of a smooth and convex domain O, i.e., the distance-
to-the-boundary function x 7→ dist(x, ∂O) can be extended to a twice-differentia-
ble function ρ from Rd into R, which implies

O = {x ∈ Rd : ρ(x) < 0},

∂O = {x ∈ Rd : ρ(x) = 0},

|ρ(x)| = dist(x, ∂O), ∀x ∈ Rd satisfying ρ(x) > −δ,

for some constant δ > 0. Since ∇ρ(x) = n(x) is the exterior unit normal vector
at a point x on the boundary ∂O relative to O, we have ∇ρ · β = |β|. Thus, by
applying Itô formula to the function ρ(x) and the process xε(s), solution of the
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stochastic variational inequality, we have

1

ε

∫ t

t0

|β(xε(s)|ds = ρ(x)− ρ(xε(t)) + Iερ(t) +

∫ t

t0

Lερ(s)ds,

where Iερ(t) is a stochastic integral and Lερ(t) is an integro-differential process
A(s, v(s))ρ(xε(s)). Hence, estimate (6.39) or (6.40) yields

sup
t0≤t≤t1

∣∣∣1
ε

∫ t

t0

|β(xε(s)|ds− `(t)
∣∣∣p → 0

in Lp or in probability. The limiting process (`(t) : t ≥ t0) is nonnegative,
nondecreasing, continuous, adapted and satisfies

η(t) =

∫ t

t0

n(x(s)) d`(s), ∀t ≥ 0

and

`(t) =

∫ t

t0

1{x(s)∈∂O} d`(s), ∀t ≥ 0.

As mentioned in the previous section, the stochastic process (`(t) : t ≥ t0) is
called the local time associated with the reflected diffusion process with jumps
(x(t) : t ≥ t0).

6.3.2 Oblique Reflection

Following the case of a smooth convex domain, we discuss non-convex cases.
Let O be a smooth domain in Rd, in the sense that its exterior normal unit
vector n(x) is uniquely defined at any point x on the boundary ∂O. Besides the
coefficients g, σ and γ, suppose given an oblique interior direction b(t, x) = (bi :
i = 1, . . . d) as a continuous vector field defined in [t0,∞)× ∂O which satisfies

− b(t, x) · n(x) ≥ c > 0, ∀t ≥ t0, x ∈ ∂O. (6.43)

In the semi-space Rd+ = {x : xd > 0}, this means bd(t, x) ≥ c > 0, for every
x = (x̄, xd), xd = 0 as used in Theorem 6.4. For convenience, the vector field
b is extended to the whole domain O, but it is only used on the boundary ∂O.
Now,

Definition 6.10 (OR-SODE). Given an initial condition x0 inO at time t0 ≥ 0,
a strong solution of a stochastic ordinary differential equation with instanta-
neous reflection according to the oblique interior direction b is a pair of adapted
cad-lag processes (x(t), `(t) : t ≥ t0) such that:

(1) x(·) takes values in the closure O and `(·) is nondecreasing and continuous,

(2) the initial conditions x(t0) = x0 and `(t0) = 0 are satisfied,
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(3) the following equation is satisfied
dx(t) = g(t, x(t), v(t))dt+ σ(t, x(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, x(t), v(t))ν̃(dζ,dt) + b(t, x(t))d`(t),
(6.44)

(4) we have

d`(t) = 1{x(t)∈∂O}d`(t), (6.45)

for every t > t0. Note that t0 may be a stopping time and x0 a t0-measurable
random variable.

Usually, (x(t) : t ≥ t0) is called reflected diffusion process with jumps, with
drift g, diffusion σ, jumps γ, and oblique interior reflecting direction b (or oblique
exterior reflecting direction −b). Also (`(t) : t ≥ t0) is its associated increasing
process or local time process. Notice that depending on the context, sometimes
is preferable to use an oblique exterior direction instead of an oblique interior
direction, so that a change of sign is found in the literature, i.e., changing b into
−b. Similarly, the coefficients aij and ai (defining the differential operator) may
have a negative sign.

If O is a bounded simply connected subset of Rd with a smooth connected
and orientate boundary ∂O then the following condition holds: there exists a
diffeomorphism Ψ of class C3 between the closure O and the closed unit ball
B, i.e., a one-to-one map Ψ from a neighborhood of O onto a neighborhood of
closed unit ball B, such that Ψ and its inverse Ψ−1 are three times continuously
differentiable, and

Ψ(O) = B, Ψ(∂O) = ∂B. (6.46)

Such a diffeomorphism Ψ of class C3 may exist under other smoothness assump-
tions.

Theorem 6.11. Suppose O be a smooth domain satisfying (6.46) and b(t, x)
be an oblique interior direction (6.43), which is continuously differentiable in
t and twice continuously differentiable in x. Then, under the growth condition
(6.18), the uniform locally Lipschitz condition (6.19) on the coefficients g, σ and
γ, there exists a unique solution of the reflected stochastic differential equation
of Definition 6.10.

Proof. The point is to build a diffeomorphism between the closure O and the
closed unit ball B such that the oblique exterior direction −b is transformed
into the outward normal direction. Hence, by means of Itô formula, we con-
sider a stochastic variational inequality on a closed ball B, which can be solved
accordingly to Theorem 6.7 and Remark 6.8. Thus, going back to the initial
domain O via the diffeomorphism, the existence and uniqueness of a solution is
actually established.

If Ψ denotes the diffeomorphism satisfying (6.46) then for some open subsets
O1 ⊃ O and B1 ⊃ B such that Ψ : O1 → B1 and its inverse Ψ−1 are three
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times continuously differentiable. The condition (6.46) implies that for any two
curves C1 and C2 in O1 with nonzero angle their images Ψ(C1) and Ψ(C2)
are also two curves in B1 with nonzero angle. This fact, which is true for
any smooth diffeomorphism, allows us to verify that assumption (6.43) on the
oblique interior direction is preserved by Ψ, i.e., for another constant c > 0 we
have

−b1(t, y) · n1(y), ∀t ≥ t0, y ∈ ∂B,

where n1(y) is the exterior (or outward) unit normal to the unit ball B at
the point x on the boundary ∂B, i.e., n1(y) = y/|y|, and b1(t, y) := b(t, x),
with Ψ(x) = y. Thus b1 = B∇Ψ, where ∇Ψ stands for the matrix of the first
derivative of Ψ.

Now, our problem has been reduced to the case O = B (the unit ball) with
an oblique internal direction b1(t, y). To transform b1 into the interior (inward)
unit direction, we consider a continuous vector field f t(y), twice continuously
differentiable in y on the open set 0 < |y| < 2 and satisfies

f t(y) = −b1(t, y), if |y| = 1,

−2 f t(y) · y ≥ c|y|, ∀y,

f t(y) = − y

|y|
, if |y| ≤ 2

3
.

Because of the assumptions made on the direction b and the diffeomorphism Ψ,
the oblique internal direction b1 is continuous in (t, y) and twice differentiable
in x. Thus, the vector field f t can be constructed. Next, define a map Ψ1 :
(t, z) 7→ y, by means of an ordinary differential equation as follows: First, for
any given a with |a| = 1, denote by yt(s, a) the solution of the initial valued
problem

ẏt(s, a) = f t(yt(s, a)), y(1/2) = a.

for s ≥ 1/2, where t is a parameter. Set

Ψ1(t, z) =

{
z, if |z| ≤ 1/2

yt(|z|, z/|z|), otherwise

This means that a curve of the form {sa : 0 ≤ s ≤ 2} in z-coordinate becomes
the curve

{sa : 0 ≤ s ≤ 1/2} ∪ {yt(s, a) : 1/2 ≤ s ≤ 2}

in the y-coordinate. This proves that −b1(t, y), with Ψ1(t, z) = y is the trans-
formed of the exterior normal direction z in ∂B, not necessarily of unit length.
Clearly, the classic theory of ordinary differential equations guarantees that
z 7→ y = Ψ1(t, z) is a diffeomorphism of class C2, which is continuously differ-
entiable in t. Therefore,

b1(t, y) = b2(t, z) = −λ(t, z) z,
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where the scalar λ(t, z) ≥ c > 0, for some constant c, and for any t ≥ t0, and
y = Ψ1(t, z), y in ∂B.

For a smooth convex domain, such as the unit ball B, there is no difference
between a normal reflection and a reflection following an interior direction of
the form −λ(t, x)n(x) Indeed, the process η(·) is uniquely determined, so that if
(x(t), `(t) : t ≥ t0) and (x̄(t), ¯̀(t) : t ≥ t0) are solutions relative to −λ(t, x)n(x)
and −λ̄(t, x)n(x) with λ(t, x), λ̄(t, x) ≥ c > 0, then we have

x(t) = x̄(t), ∀t ≥ t0,

λ(t, x(t))d`(t) = λ̄(t, x(t))d¯̀(t), ∀t ≥ t0.

Finally, if (z(t), η(t)) is the solution of a normal reflected stochastic ordinary
differential equation in the unit ball B with appropriated coefficients, we deduce
that

y(t) := Ψ(t, z(t)), `(t) := −∇Ψ(t, z(t))dη(t)

λ(t, z(t))

satisfies the desired equation, This completes the proof.

• Remark 6.12. The reflecting direction b(t, x) is assumed continuously differ-
entiable in t so that Itô formula can be properly used. Thus, to accommodate a
control v on the reflection direction, i.e., b0(t, x, v), this approach presents some
difficulties, since v = v(t) should be a cad-lag adapted process.

• Remark 6.13. Assumption (6.46) is not really needed. It suffices to know that
the domain O can be transformed into a convex domain, via a diffeomorphism
of class C2 with the property of mapping the oblique interior direction b into the
interior normal direction, even if the boundary is only piecewise smooth.

Now we reconsider the penalty argument for a smooth domain, not necessar-
ily convex. Assume that the distance to the boundary ∂O is a smooth function,
i.e. {

x 7→ dist(x, ∂O) is a twice continuously differentiable

function with bounded first and second derivatives,
(6.47)

for x sufficiently near to the boundary ∂O. This implies that there is a twice con-
tinuously differentiable function ρ : Rd → R, which first and second derivatives
are bounded, such that

O = {x ∈ Rd : ρ(x) < 0},

∂O = {x ∈ Rd : ρ(x) = 0},

|∇ρ(x)| ≥ 1 ∀x ∈ ∂O,

and |ρ(x)| = dist(x, ∂O) if dist(x, ∂O) < δ1, for some constant δ1 > 0, |∇ρ(x)| ≥
1 for every x belongs to Rd rO, and ρ(x) is bounded for x in O. Note that the
domain O may be unbounded.
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The positive part ρ+(x) behaves (locally) like dist(x,O), the distance to the
set O (or equivalently, distance to the closure O) from the point x, i.e., for every
r > 0 there exist two constants Cr ≥ 1 ≥ cr > 0 such that

cr dist(x,O) ≤ ρ+(x) ≤ Cr dist(x,O), . (6.48)

for every x in Rd with |x| ≤ r. Essentially, this follows from the equality

ρ+(x) =

∫ 1

0

(x− a) · ∇ρ
(
a+ θ(x− a)

)
1{a+θ(x−a)6∈O}dθ,

for every x in Rd and a in O.
The exterior unit normal at the boundary point x is given by

n(x) = |∇ρ(x)|−1∇ρ(x), ∀x ∈ ∂O.

Since the domain is not longer convex, the key inequality (x−x′) ·n(x) ≥ 0, for
every x on the boundary ∂O and x′ in the closure O, is not satisfied anymore.
However, the identity

ρ(x′)− ρ(x) = (x′ − x) · ∇ρ(x) +

+

∫ 1

0

(x′ − x) ·
[
∇ρ
(
x+ θ(x′ − x)

)
−∇ρ(x)

]
dθ,

and the Lipschitz continuity of ρ yield{
ρ+(x)(x′ − x) · ∇ρ(x) ≤

≤ ρ+(x)ρ+(x′) + Cρ+(x)|x− x′|2, ∀x, x′,
(6.49)

for some constant C > 0. Properties (6.48) and (6.49) are the equivalent to the
monotone properties (6.31) and (6.32) in the convex case.

Even if the domain O is unbounded, under this regularity on the boundary
∂O, there exists a Lipschitz continuous function PO : Rd → Rd such that

|x− PO(x)| ≤ C1 dist(x,O) and PO(x) ∈ O,

for every x satisfying dist(x,O) < c1, for a sufficiently small constant C1, c1 > 0.
Notice that PO(x) = x for every x in O.

A priori, all coefficients g, σ and γ are initially defined on the closure O.
Instead of condition (6.26) on the jumps, we assume{

x+ θγ(ζ, t, x, v) ∈ O, ∀θ ∈ [0, 1],

∀(ζ, t, x, v) ∈ Rm∗ × [0,∞)×O × Rq.
(6.50)

Then, by means of the function PO, we can extend their definition to the whole
space Rd preserving the assumptions (6.18), (6.19) and (6.29). In particular,
taking a smooth function χ1 from Rd into [0, 1] satisfying χ(x) = 0 for any x
with dist(x,O) > c1 (the same constant c1 as above), and χ1(x) = 1 for every
x with dist(x,O) < c1/2, we may extend the jump coefficient as follows

γ(ζ, t, x, v) = χ1(x)γ(ζ, t, PO(x), v), ∀ζ, t, x, v,
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so that condition (6.50) yields{
dist(x+ θγ(ζ, t, x, v),O) ≤ C1 dist(x,O), ∀θ ∈ [0, 1],

∀(ζ, t, x, v) ∈ Rm∗ × [0,∞)× Rd × Rq,
(6.51)

where C1 is the same constant as above.
We assume that the oblique interior direction b(t, x) has the form

b(t, x) = −M(t, x)n(x), ∀t, x, (6.52)

where n(x) is the exterior normal at the boundary point x and M(t, x) is a
symmetric d × d square matrix defined and continuous for t ≥ 0 and x in a
neighborhood of the boundary ∂O, which is continuously differentiable in t,
twice continuously differentiable in x, and satisfies

c|η|2 ≤ η ·M(t, x)η ≤ C|η|2, ∀η ∈ Rd, (6.53)

for every t, x and some constants C ≥ c > 0. Certainly, only the lower bound
in c is relevant when the domain O is bounded. Moreover, by constructing a
smooth function χ2 from Rd into [0, 1] such that χ2(x) = 1 in a neighborhood of
the boundary ∂O and χ2(x) = 0 whenever M(x, ·) is not defined, we may extend
the definition of the matrix M(t, x) := χ(x)M(t, x) +

(
1− χ(x)

)
Id, where Id is

the identity d× d matrix. The property (6.53) on the (symmetric nonnegative)
matrix is preserved, i.e., (6.53) holds for every t and x.

Now, we are ready to define the penalty function β(t, x), differentiable in t
and uniformly Lipschitz continuous in x, by the expression

β(t, x) := ρ+(x)M(t, x)∇ρ(x), (6.54)

where ρ+ denotes the positive part of the function ρ defining the domain O
under the assumption (6.47). Notice that, in view of the upper bound in (6.53),
we have

|β(t, x)| ≤ Cρ+(x)|∇ρ(x)|, ∀t, x,

for some constant C ≥ 1, while the lower bound in (6.53) yields

∇ρ(x) · β(t, x) ≥ cρ+(x)|∇ρ(x)|2, ∀t, x, (6.55)

for some constant 0 < c ≤ 1.
Given ε > 0, consider the stochastic ordinary differential equation

dxε(t) = g(t, xε(t), v(t))dt+ σ(t, xε(t), v(t))dw(t) +

+

∫
Rm∗

γ(ζ, t, xε(t), v(t))ν̃(dζ,dt)− 1

ε
β(t, xε(t))dt,

(6.56)

with the initial condition xε(t0) = x0. Since β is Lipschitz continuous in x,
under assumptions (6.18) and (6.19) there exists only and only one solution
xε(·) of (6.56) satisfying the given initial conditions. At this point, we have
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almost the same properties of used for the stochastic variational inequality used
in the convex case. The ε-local time process is defined by

`ε(t) :=
1

ε

∫ t

t0

ρ+(xε(s))|∇ρ(xε(s))|ds, (6.57)

for every t ≥ t0.

Theorem 6.14 (OR-SODE). Let the growth condition (6.18) and the uniform
locally Lipschitz condition (6.19) on the coefficients g, σ and γ be satisfied.
Suppose also assumptions (6.47), (6.51), (6.52) and (6.53) relative to a smooth
domain O in Rd and a oblique interior direction b. Then there is one and only
one solution (x(t), `(t) : t ≥ t0) of the oblique reflected stochastic ordinary
differential equation (6.44), (6.45), as described by Definition 6.10. Moreover
for every t1 > t0, the following convergence holds in probability

sup
t0≤t≤t1

{
|xε(t)− x(t)|+ |`ε(t)− `(t)|

}
→ 0 as ε→ 0, (6.58)

where (xε(t) : t ≥ t1) is the solution of the penalized stochastic ordinary dif-
ferential equation (6.56) with the initial condition xε(t0) = x0, for some given
x0 in O. Furthermore, if the coefficients are uniform Lipschitz and the growth
condition for every α > 0,

|g(t, x, v)|2 + |σ(t, x, v)|2 +

+

∫
Rm∗
|γ(ζ, t, x, v)|2 exp

(
α|γ(ζ, t, x, v)|

)
π(dζ) ≤ Cα,

(6.59)

for some constant Cα > 0 and for every (t, x, v) in [t0,∞)×Rd×Rq, is satisfied,
then we also have

E
{

sup
t0≤t≤t1

{|xε(t)− x(t)|p + |`ε(t)− `(t)|p}
}
→ 0 as ε→ 0, (6.60)

for every p ≥ 1 and locally uniform with respect to the initial condition x0

Proof. For a given constant α > 0, consider the function φα

(t, ξ, x, y, `) 7→
(
ξ · [M−1(t, x) +M−1(t, y)]ξ

)
exp[−α(t+ `)], (6.61)

Since M(t, x) is a nonnegative symmetric matrix, the matrix M−1(t, x) is con-
tinuously differentiable in t, twice continuously differentiable in x and satisfies

c|η|2 ≤ η ·M−1(t, x)η ≤ C|η|2, ∀η ∈ Rd,
for some constants C ≥ 1 ≥ c > 0. Thus, for some constant C > 0, we obtain
the bound

|∂tφα(t, ξ, x, y, `)|+ |∂kxφα(t, ξ, x, y, `)|+

+|∂kyφα(t, ξ, x, y, `)| ≤ C|ξ|2 exp
(
− α(t+ `)

)
,
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for every (t, ξ, x, y, `), k = 1, 2, where ∂t, ∂
k
x and ∂ky denote the partial derivatives

with respect to the variables t, x and y. Also, by means of the property (6.49)
we deduce

|∂ξφα(t, ξ, x, y, `) ·M(t, x)∇ρ(x)− 2ξ · ∇ρ(x) exp
(
− α(t+ `)

)
| ≤

≤ C|ξ| |x− y| exp
(
− α(t+ `)

)
,

for every (t, ξ, x, y, `) and some constant C > 0. This inequality and the Lipschitz
continuous property of ∇ρ yield

∂ξφα(t, x− y, x, y, `) ·M(t, x)∇ρ(x) ≤

≤
[
2(y − x) · ∇ρ(x) + C|x− y|2

]
exp

(
− α(t+ `)

)
≤

≤
[
2
(
ρ(y)− ρ(x)

)
+ C|x− y|2

]
exp

(
− α(t+ `)

)
,

for every (t, ξ, x, y, `) and some constant C > 0. Hence,

∂ξφα(t, x− y, x, y, `) ·M(t, x)∇ρ(x) ≤

≤ C|x− y|2 exp
(
− α(t+ `)

)
,

for every y in O, x on the boundary ∂O, any t and `.
To show the uniqueness, let (x(t), `(t) : t ≥ t0) and (x̄(t), ¯̀(t) : t ≥ t0) be

two solutions of the oblique reflected stochastic ordinary differential equation
(6.44), (6.45). As in Theorem 6.7, for any r > 0, define the adapted process

χr(t) :=

0 if |x(s)| > r or |x̄(s)| > r for some s > t,

1 otherwise,

and its associate stopping time τr with χr(t) = 1 if and only if t < τr, to check
that

[x(t)− x̄(t)]χr(t) =

∫ t

t0

χr(s)
[
g(s, x(s), v(s))− g(s, x̄(s), v(s))

]
ds

+

∫ t

t0

χr(s)
[
σ(s, x(s), v(s))− σ(s, x̄(s), v(s))

]
dw(s)+

+

∫
Rm∗ ×]t0,t]

χr(s)
[
γ(ζ, s, x(s), v(s))− γ(ζ, s, x̄(s), v(s))

]
ν̃(dζ,ds) +

+

∫ t

t0

χr(s)[1{x(t)∈∂O}b(t, x(t))d`(s)− 1{x̄(t)∈∂O}b(t, x̄(t))d¯̀(s)],

for every t0 ≤ t, in particular for t ≤ τr. Now, apply Itô formula to the function

(t, x, y, `) 7→ φα(t− t0, x− y, x, y, `)
with the processes

xt := x(t), yt := x̄(t), `t := `(t) + ¯̀(t)
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to get

E
{
|x(t)− x̄(t)|2χr(t) exp

(
− α(t− t0 + `(t) + ¯̀(t))

)}
≤

≤ (Cr − αc)E
{∫ t

t0

|x(s)− x̄(s)|2χr(s)×

× exp
(
− α(s− t0 + `(s) + ¯̀(s))

)
[ds+ d`(s) + d¯̀(s)]

}
for some constant Cr > 1 > c > 0, which may depend on r but not on α. Thus,
for α sufficiently large, we get x(t) = x̄(t) for every t0 ≤ t ≤ τr. Next, as r
become large, we deduce x(·) = x̄(·), i.e., the uniqueness holds.

For given constants λ ≥ λ0 ≥ 1 sufficiently large so that ρ(x) + λ0 ≥ 1, for
every x, consider the function

ψλ : (t, x, `) 7→ (λλ0 + |x|2)1/2 + λρ(x), (6.62)

which is twice continuously differentiable and satisfies

∇ψλ ·M(t, x)∇ρ(x) ≥ C x · ∇ρ(x)(λλ0 + |x|2)−1/2 + c |∇ρ(x)|2 ≥

≥
[
− C + c λ |∇ρ(x)|

]
|∇ρ(x)|,

for every x, in view of the assumption (6.53) on the matrix M(t, x). Since
|∇ρ| ≥ 1 in Rd rO, we have

∇ψλ ·M(t, x)∇ρ(x) ρ+(x) ≥ [c λ− C] |∇ρ(x)| ρ+(x),

for every x in Rd. Thus we take λ sufficiently large so that c λ− C ≥ 1.
Now, similarly to Lemma 6.6 and under the extra assumption (6.29), apply

Itô formula to the function

(t, x) 7→ [ψλ(x)]p exp [−α(t− t0)]

with the process xε(t) to obtain first a bound on supt |xε(t)|p and then a bound
on the ε-local time process `ε(t) defined by (6.57), i.e.,

E
{(
`ε(t1)

)p
+ sup
t0≤t≤t1

|xε(t)|p
}
≤ C, ∀ε > 0, (6.63)

and, for every p in [2, p̄], t1 > t0 and x0 in O.
Again, similarly to the Lemma 6.6, apply Itô formula to the function x 7→

[ρ+(x)]p with the process xε(t) to obtain, for every p in [2, p̄], t1 > t0 and x0 in
O the estimate

E
{1

ε

∫ t1

t0

[ρ+(xε(t))]pdt+ sup
t0≤t≤t1

[ρ+(xε(t))]p
}
≤ C εp/2−1, (6.64)

for another constant C > 0, independent of ε in (0, 1]. Moreover, for every
1 ≤ p ≤ p̄, 0 < q ≤ p̄/2 − p/p̄, q < p/2, t1 > t0 and x0 in O, there exists a
constant C > 0 such that

E
{( 1

ε′

∫ t1

t0

ρ+(xε
′
(t)) ρ+(xε(t))dt

)p}
≤ C εq, (6.65)

Section 6.3 Menaldi January 7, 2014



CHAPTER 6. STOCHASTIC DIFFERENTIAL EQUATIONS II 691

for every ε, ε′ > 0. Furthermore, in the above estimates (6.63), (6.64) and (6.65),
all constants can be taken independent of the initial condition x0 and t0, as long
as they remain in a bounded region and assumption (6.29) holds.

At this point, we have extended all a priori bounds of Lemma 6.6 to a
smooth (not necessarily convex) domain O. Assume the growth condition (6.59)
and uniform Lipschitz continuity on the coefficients g, σ and γ. Applying Itô
formula to the function ρ(x) with the process xε(t) we deduce an exponential
bound for the approximate local time process `ε(t), namely, for every α > 0
there exists a Cα > 0 such that

E
{

sup
t0≤s≤t

exp[α`ε(s)]
}
< Cα, ∀t > t0, (6.66)

for every ε > 0. Note that condition (6.59) implies the extra assumption (6.29)
for every p̄ > 2. The general case is obtained by approximation.

Now, with φα given by (6.61), apply Itô formula to the function (the same
used to show the uniqueness)

(t, x, y, `) 7→ φα(t− t0, x− y, x, y, `)
with the processes

xt := xε(t), yt := xε
′
(t), `t := `ε(t) + `ε

′
(t)

to get

|xε(t)− xε
′
(t)|2 exp

(
− α(t− t0 + `ε(t) + `ε

′
(t))
)
≤ I(t) +Q(t) +

+(C − αc)
∫ t

t0

|xε(s)− xε
′
(s)|2 ×

× exp
(
− α[s− t0 + `ε(s) + `ε

′
(s)]
)
[ds+ d`ε(s) + d`ε

′
(s)],

where the stochastic integral I(t) and the pathwise integral Q(t) satisfy

E
{

sup
t0≤t≤t1

|I(t)|
}
≤ C E

{[∫ t1

t0

|xε(s)− xε
′
(s)|2 ×

× exp
(
− 2α[s− t0 + `ε(s) + `ε

′
(s)]
)
ds
]1/2}

,

and

Q(t) ≤ C
(1

ε
+

1

ε′

)∫ t

t0

ρ+(xε(s)) ρ+(xε
′
(s)) ds

for some constants C > 1 > c > 0, independent of α, ε. Hence, by means of
(6.65) as in Theorem 6.7, we can estimate

E
{

sup
t0≤t≤t1

|xε(t)− xε
′
(t)|2p exp

(
− pα(t− t0 + `ε(t) + `ε

′
(t))
)}
,

for every p ≥ 1, which together with (6.66) yield

E
{

sup
t0≤t≤t1

|xε(t)− xε
′
(t)|p

}
≤ Cpq (ε+ ε′)q,
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for some constant Cpq > 0 and any ε, ε′ > 0 and any p > 2q > 2. Then, from
the stochastic ordinary differential equation (6.56) follows

E
{

sup
t0≤t≤t1

|ηε(t)− ηε
′
(t)|p

}
≤ Cpq (ε+ ε′)q,

where the process η(·) is defined by

ηε(t) :=
1

ε

∫ t

t0

β(s, xε(s))ds,

for every t ≥ t0.
Now we need to establish that for every t1 > t0 and p > 2 we have

E
{

sup
t0≤t≤t1

|`ε(t)− `ε
′
(t)|p

}
→ 0, (6.67)

as ε+ ε′ vanishes. Indeed, by definition

dηε(t) =
1

ε
ρ+(xε(t))M(t, xε(t))∇ρ(xε(t))ds = aε(t)d`

ε(t),

where

aε(t) := M(t, xε(t))∇ρ(xε(t)) |∇ρ(xε(t))|−1.

Thus, defining

bε(t) := M−1(t, xε(t))∇ρ(xε(t)) |∇ρ(xε(t))|−1.

we get

E
{

sup
t0≤t≤t1

|bε(t)− bε′(t)|p
}
≤ Cpq (ε+ ε′)q,

for a constant Cpq > 0 as above, and

aε(t) · bε(t) = 1,

|aε(t)|+ |bε(t)| ≤ C,

for some constant C > 0 and every t ≥ t0, and ε > 0. Hence,

bε(t) · dηε(t) = bε(t) · aε(t)d`ε(t) = d`ε(t),

which yields

`ε(t)− `ε
′
(t) =

∫ t

t0

[bε(s)− bε′(s)] · dηε
′
(s) +

+

∫ t

t0

bε(s) · [dηε(s)− dηε
′
(s)].

The convergence of the first integral (with respect to dηε) is easily seen, and
to check the convergence of the second (pathwise) integral we may proceed as
follows. We approximate either (a) the integral with a finite sum or (b) the
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integrand with smooth processes. For instance, because the function (t, x) 7→
M−1(t, x)∇ρ(x) |∇ρ(x)|−1 is continuously differentiable, we can define a process

bε,δ(t) = hδ(t, x
ε(t)),

for some smooth function hδ(t, x), which is continuously differentiable in t and
twice-continuously differentiable in x, such that for some constant C > 0 we
have

|bε(t)− bε,δ(t)| ≤ C δ,
for every t ≥ t0 and ε, δ > 0. Thus,∣∣∣ ∫ t

t0

bε(s) · [dηε(s)− dηε
′
(s)]
∣∣∣ ≤ C δ(`ε(t) + `ε

′
(t)
)

+

+

∫ t

t0

bε,δ(s) · [dηε(s)− dηε
′
(s)],

by means of Itô formula (integration by parts), the convergence of the above
(pathwise) integral in dηε − dηε

′
can be controlled by the stochastic integral∫ t

t0

[ηε(s)− ηε
′
(s)] · dbε,δ(s).

Collection all, we deduce the convergence (6.67).
Next, from the above properties we verify that the processes

x(t) := lim
ε→0

xε(t), `(t) := lim
ε→0

`ε(t),

are well defined, solve the oblique reflected stochastic ordinary differential equa-
tion (6.44), (6.45), and satisfy (6.60).

Finally, as in Theorem 6.7, we can ignore the growth condition (6.59) and
uniform Lipschitz continuity on the coefficients g, σ and γ to obtain only the
convergence in probability (6.58).

• Remark 6.15. Note that estimates (6.63), (6.64) and (6.65) hold under the
extra assumption (6.29), and the smooth boundary condition (6.47), but without
assuming the smoothness on the oblique interior direction, only the bounds
(6.53) are necessary. The growth condition (6.59) can be substituted by a (6.29)
as long as the exponential of the local time is not involved, e.g., a condition to
ensure that

|∂kxφα(t, ξ, x, y, `)| ≤ C|ξ|2(1 + |x|)−k exp
(
− α(t+ `)

)
,

for every (t, ξ, x, y, `), k = 1, 2 (similarly for ∂kyφα). Anyway, there are other
possible choices for the functions φα, ψλ. Certainly, Lipschitz continuity with
respect to the initial data, i.e., a priori estimates of the type (6.41) and (6.42)
hold true.
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Notice that the oblique interior direction b(t, x) is always assumed contin-
uously differentiable in t, so that a controlled reflection of the type b(t, x, v) is
not included in this section.

Is there a good technique to construct the reflected diffusion by
local coordinates?

6.4 SDE with Boundary Conditions

Case with control on the drift, diffusion and jump coefficients. Again, focus
attention to estimates. ?CHECK the validity of estimates with measurable
coefficients Section 4.6 for this case.

Check also Dupuis and Ishii [64] and Dupuis and Ramanan [65]. Include the
case of a domain given by the intersections of a finite number of semi-spaces
(either bounded or unbounded) and a reflection other than the normal.

RECALL: the Skorokhood map is Lipschitz continuous from D([0,∞),Rd)
into itself with either the Skorokhood topology or the locally uniform topology if
the domain has a “piecewise-linear” boundary. If the boundary is just “enough”
then this fact seems not to be true...

Check the recent book by Rong [215] and Rong [216].

6.4.1 Strong Formulation

FROM papers Chaleyat-Maurel, El Karoui and Marchal [37] and Lions and
Sznitman [157]

CHECK paper Anulova [3, 4] and Anderson [2]
...***...

6.4.2 Weak Formulation

FROM papers Chaleyat-Maurel, El Karoui and Marchal [37] and Lions and
Sznitman [157]

...***...

6.5 Girsanov’s Change of Measure

Something close to the section 5.4 Measure and Time Changes in Chapter 5,
with the reflection.

Control via Girsanov transformation and setting of the dynamical of a con-
trol problem (not optimal control!), with out the cost or value function.

Maybe this should go as a Subsection between “Strong Formulation” and
“Weak Formulation” of section “SDE with Boundary Conditions”.

Je croix que tu peux faire ce partie mieux que moi...
... ...
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6.6 Reflected Diffusion with Jumps

Oblique reflection. Some discussion (refer to Chapter 2 and the books Gar-
roni and Menaldi [93, 94]) on the transition function. Explicitly mention Kol-
mogorov’s Forward and Backward equations, relation with the Green Function
(and Fundamental Solution) in the stationary and time-dependent cases

Add Feynman-Kac type formula. Mention Itô formula for smooth flows.
... ...//*** ***
Chapter 6. This will be your first serious work on the book! 1.- Finish the

section on Backward Equation, incorporating the first subsection form Chapter
4.
2.- Section 6.4 (SDE with Boundary Conditions), we think I know from where
to take them (see note in the text)
3.- Section 6.5 (Reflected Diffusion w/Jumps), this should be analogous to Sec-
tion 5.7, as mentioned early.
4.- Section 6.6 (Girsanov’s Change of Measure) , this should be analogous to
Section 5.3.
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Chapter 7

Stochastic Differential
Equations III

MAINLY A WORKING CHAPTER ...***...
In the first three section we give details on some analytic techniques used to

show the existence and regularity of the density (with respect to the Lebesgue
measure) of the jump diffusion with or without boundary condition. We choose
the half-space as a model case, in general regions, most of the arguments are
based on local coordinates and sharp estimates proved in a half-space.

...***...

7.1 Constant Coefficient in Half-Space

BASED ON PAPER Menaldi and Tubaro [177]
Suppose that on the interior Ṙd+ = {x : xd > 0} we are given a second-order

constant elliptic differential operator
Aϕ(x) := A0ϕ(x) +

d∑
i=1

ai∂iϕ(x)− a0ϕ(x),

A0ϕ(x) := 1
2

d∑
i,j=1

aij∂ijϕ(x),

(7.1)

for every continuously differentiable functions ϕ with a compact support in the
closed half-space Rd+, where (aij) is a symmetric positive definite matrix and
a0 ≥ 0. If necessary, a denotes the d-dimensional square matrix (aij) and also,
a (or a) denotes the d-dimensional vector (ã, ad), where ã (or ã) is equal to
(a1, . . . , ad−1). Also, assume that B is a (constant) Wentzell type boundary
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differential operator of the form
Bϕ(x) := B0ϕ(x) + bd∂dϕ(x)− ρAϕ(x), ∀x ∈ Ṙd+,

B0ϕ(x) := 1
2

d−1∑
i,j=1

bij∂ijϕ(x) +

d−1∑
i=1

bi∂iϕ(x)− b0ϕ(x),
(7.2)

where (bij) is a symmetric non-negative definite matrix, b0, bd, ρ ≥ 0, and ρ > 0

or bd > 0. If necessary, b̃ denotes the (d−1)-dimensional square matrix (bij) and

also, b (or b) denotes the d-dimensional vector (b̃, bd), where b̃ (or b̃) is equal to
(b1, . . . , bd−1). Most of the time, the tilde˜sign is used to emphasize the (d− 1)
dimension of the given element, while the underline x and the double underline
x refer to a vector and a matrix, respectively. It may be convenient to write
bij =

∑
k ςikςjk, where the matrix ς̃ is the product of an orthogonal matrix %̃ and

a diagonal matrix (β̃)1/2, i.e., b̃ = %̃β̃%̃∗ and ςij = %ij
√
βj , where β1, . . . , βd−1

are the eigenvalues of the matrix (bij).
Consider the boundary value problem

∂tu(t, x) = Au(t, x), ∀t > 0, x ∈ Ṙd+,

Bu(t, x) + ψ(t, x) = 0, ∀t > 0, x ∈ ∂Rd+,

u(0, x) = ϕ(x), ∀x ∈ Ṙd+,

(7.3)

and the representation formula
u(t, x) =

∫
Rd+
GA,B(t, x̃, xd, ỹ, yd)ϕ(y)dy +

+

∫ t

0

ds

∫
Rd−1

PA,B(t− s, x̃, xd, ỹ)ψ(s, y)dỹ,

(7.4)

where GA,B and PA,B are the Green and the Poisson functions. Actually, both
GA,B and PA,B have the form GA,B(t, x̃− ỹ, xd, yd) and PA,B(t, x̃− ỹ, xd).

HAVE TO CHECK THE ADJOINT PROBLEM?

Remark that the adjoint problem to (7.3) is given by
∂tu(t, x) = A∗u(t, x), ∀t > 0, x ∈ Ṙd+,

B∗u(t, x) + ψ(t, x) = 0, ∀t > 0, x ∈ ∂Rd+,

u(0, x) = ϕ(x), ∀x ∈ Ṙd+,

(7.5)

where the adjoint operators

A∗ϕ(x) := A0ϕ(x)−
d∑
i=1

ai∂iϕ(x)− a0ϕ(x), (7.6)
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and 
B∗Aϕ(x) := B∗A0ϕ(x) + bd∂dϕ(x)− ρA∗ϕ(x),

B∗A0ϕ(x) := 1
2

d−1∑
i,j=1

bij∂ijϕ(x)−
d−1∑
i=1

bi∂iϕ(x)−
(
b0 +

addad
bd

)
ϕ(x),

(7.7)

i.e., the coefficient ai changes into a∗i = −ai, for i = 1, . . . , d and bi changes
into b∗i = −bi, for i = 1, . . . , d− 1, and b∗0 = b0 + addad/bd. Clearly, we have the
relation

PA∗,B∗A (t, x̃, xd, ỹ) = PA,B(t, ỹ, xd, x̃), GA∗,B∗A (t, x, y) = GA,B(t, y, x),

for the Poisson and Green functions.
Our purpose is to discuss the construction of these Green and Poisson func-

tions as well as their heat-kernel type estimates. Particularly, we denote by Dk
B

any derivative of order k with respect to some coefficients of the operator B, i.e.,
with respect to any ςij (or %ij or βi)

1, any b0, b1, . . . , bd and ρ. Also, we denote
by Dn

tx any partial derivative in the variable t and x = (x1, . . . , xd) of parabolic
order n, i.e., n = 2n0 + n1 + · · ·+ nd with Dn

tx = ∂n0
t ∂n1

1 . . . ∂ndd . Therefore, for
any n and k there exit positive constants C0 = Cnk and c0 = cnk such that

|Dn
txD

k
BQB(t, x)| ≤ C0t

−(d+n)/2 exp
(
− c0

|x|2

2t

)
, (7.8)

for every t > 0 and x in Rd+.

7.1.1 Heat-Kernel Notation

Denote by Γd the heat-kernel (or Gaussian kernel) of dimension d, i.e.,

Γd(t, x) = Γd(t, x̃, xd) := (2πt)−d/2 exp
(
− 1

2t

d∑
i=1

x2
i

)
, (7.9)

with x in Rd, which may be written as (x̃, xd) or (x1, . . . , xd−1, xd). Note that
Γd(rt, r

2x) = r−d/2Γd(t, x), for every r > 0. As long as confusion does not arrive,
it may be convenient to use the notation

Γd(q, x) := (2π)−d/2 det(q)−1/2 exp
(
− 1

2

d∑
i,j=1

xiq
ijxj

)
, (7.10)

for any symmetric (strictly) positive matrix q = (qij) with inverse matrix
(qij). Thus, if 1 is the identity matrix then Γd(t1, x) = Γd(t, x̃, xd). Clearly,
Γd(q, x) = det(q)−1/2Γ(1, q−1/2x) and x 7→ Γd(q, x−m) is the normal or Gaus-
sian distribution in Rd, with mean vector m and co-variance matrix q. Since q is

1in the degenerate case, the inverse mapping (bij) 7→ (ςij) is not differentiable

Section 7.1 Menaldi January 7, 2014



CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS III 699

a symmetric positive matrix, it can be written as q = ρλρ∗, where λ a diagonal
matrix (of eigenvalues) and ρ a orthogonal matrix, and then

Γd(q, x) = det(λ)−1/2Γd(1, λ
−1/2ρ∗x) =

d∏
i=1

Γ1

(
λi, (ρ

∗x)i
)
,

where λi > 0 are the eigenvalues of the matrix q.
Note that

−∂dΓd(t, x) =
xd
t

Γd(t, x) = (2πt)−d/2
xd
t

exp
(
− |x|

2

2t

)
,

for any t > 0 and x in Rd, and besides the properties

Γd(t, x) =

d∏
i=1

Γ1(t, xi) and

∫
Rd

Γd(t, x)dx = 1, ∀t > 0,

we also have∫ ∞
0

dt

∫
Rd−1

∂dΓd(t, x̃, xd)dx̃ = 1, ∀xd > 0,

after using the changes of variables x̃√
2t

= z̃ and xd√
2t

= s. However,∫ ∞
0

Γd(t, x)dt = cd|x|2−d, ∀x ∈ Rd,

where cd
2 is finite only for d ≥ 3.

The Fourier and the Laplace transforms of the heat-kernel can be calculated,
namely

F
{

Γd(q, x)
}

(y) =

∫
Rd
e−ix·yΓd(q, x)dx = exp

(
− 1

2

d∑
i,j=1

yiqijyj

)
and

L
{

Γ2k+1(t, x)
}

(s) =

∫ ∞
0

e−stΓ2k+1(t, x)ds = (−1)k∂ks
1√
2s
e−|x|

√
2s.

Note that for even dimensions, the Laplace transform involves the modified
Bessel functions of the second kind (also called Kelvin or MacDonald functions).

Besides the well known semigroup property∫
Rd

Γd(t, y)Γd(s, x− y)dy = Γd(t+ s, x), ∀t, s > 0, x ∈ Rd,

2Note that 2cd = π−d/2Γ(d/2− 1), with Γ(·) denoting the Gamma function.
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based on the Fourier transform, one can check that∫
Rd

Γd(q, y)Γd(p, x− ry)dy = Γd(p+ rqr∗, x), ∀x ∈ Rd,

for any symmetric positive definite matrices p, q and any matrix r. Also, essen-
tially based on the Laplace transform, one can verify that∫ t

0

ds

∫
Rd−1

∂dΓd(t− s, x̃− ỹ, xd)∂dΓd(s, ỹ, yd)dỹ = −∂dΓd(t, x̃, xd + yd),

and ∫ t

0

ds

∫
Rd−1

∂dΓd
(
t− s, x̃+ b̃(t− s)− ỹ, xd + bd(t− s)

)
×

× ∂dΓd(s, ỹ + b̃s, yd + bds)dỹ = −∂dΓd(t, x̃+ b̃t, xd + bdt+ yd),

for every t, xd, yd > 0, x̃ in Rd−1 and b = (b̃, bd) in Rd.
Certainly, the heat-kernel satisfies the equation

∂tΓd(t, x) = 1
2∆Γd(t, x), ∀t > 0, x ∈ Rd,

the initial condition

lim
t→0

∫
Rd

Γd(t, x− y)ϕ(y)dy = ϕ(x), ∀x ∈ Rd,

and the boundary condition

lim
xd→0, xd>0

∫ t

0

ds

∫
Rd−1

∂dΓd(t− s, x̃− ỹ, xd)ψ(s, ỹ)dỹ = −ψ(t, x̃),

for every t > 0, x̃ in Rd−1, and for any smooth functions with compact support
ϕ and ψ.

This last jump condition gives rise the so-called single-layer and double-layer
potentials. Indeed, for any symmetric (strictly) positive matrix q = (qij) with
inverse matrix (qij), the heat-kernel satisfies the equation

∂tΓd(tq, x) =
1

2

d∑
i,j=1

qij∂ijΓd(tq, x), ∀t > 0, x ∈ Rd,

the initial condition remains the same, but for the boundary condition one need
to replace the normal derivative ∂d with the co-normal derivative

∑d
i=1 qdi∂i,

i.e.,

lim
xd→0, xd>0

d∑
i=1

∫ t

0

ds

∫
Rd−1

qdi∂iΓd
(
(t− s)q, x̃− ỹ, xd

)
ψ(s, ỹ)dỹ = −ψ(t, x̃),
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for every t > 0, x̃ in Rd−1 and any smooth function with compact support ψ.
Note that the kernel (t, x̃) 7→ ∂iΓd(tq, x̃, 0) is not integrable for any i 6= d, but
the cancellation property∫

Rd−1

∂iΓd(tq, x̃, xd)dx̃ = 0, ∀t > 0, xd ≥ 0, i 6= d,

and the normalization property∫ ∞
0

dt

∫
Rd+
qdd∂dΓd(tq, x̃, xd)dx̃ = 1, ∀xd > 0,

hold true. Moreover, one can replace the constant matrix q with a parametrix
one, i.e., with a bounded Hölder continuous matrix-valued function q = q(s, ỹ),
and the above boundary-layer (or initial condition) limit remains true. Fur-
thermore, a domain with a smooth boundary (e.g., having a Hölder continuous
normal direction) O can be used instead of the simple half-space Rd+, where the
boundary is flat with a constant normal direction.

7.1.2 Degenerate Equations

To simplify the notation for the heat-kernel (7.9), we use Γ̃0(t, x̃) = Γd−1(t, x̃)
and Γ0(t, x) = Γ0(t, x̃, xd) = Γd(t, x), for any t > 0 and x = (x̃, xd) in Rd.

For a degenerate second-order differential operator B0 given by (7.2), we are
interested in the following two problems in the (open) half-space Ṙd+ = Rd−1 ×
(0,∞), without any boundary condition at ∂Rd+, both with a representation
formula, and where the maximum principle ensures the uniqueness, at least for
smooth data rapidly decreasing as |x| → ∞. For ρ > 0, a parabolic problem in
[0,∞)× Ṙd+ with initial condition{

B0u(t, x) + bd∂du(t, x)− ρ∂tu(t, x) + v(t, x) = 0, ∀t > 0, x ∈ Ṙd+,
u(0, x) = u0(x), ∀x ∈ Rd+,

(7.11)

with 
u(t, x) = e−b0(t/ρ)

∫
Rd−1

Γ̃0(
t

ρ
, z̃)u0(x̃− ς̃ z̃ + b̃

t

ρ
, xd + bd

t

ρ
)dz̃+

+

∫ t/ρ

0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)v(t− ρr, x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃.

(7.12)

For ρ = 0 and bd > 0, a parabolic problem in Rd−1 × [0,∞) with terminal
conditionB0u(x̃, xd) + bd∂du(x̃, xd) + v(x̃, xd) = 0, ∀xd > 0, x̃ ∈ Rd−1,

lim
xd→∞

u(x̃, xd) = 0, ∀x̃ ∈ Rd−1,
(7.13)
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with

u(x̃, xd) =

∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃. (7.14)

Clearly, if ς̃ vanishes then the above representations are simplified, without the
used of the fundamental solution Γ̃0 = Γd−1 as in (7.9).

To verify the representation or inversion formula (7.14), we check

d∑
i=1

bi∂i

[ ∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃
]

=

=

∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)∂rv(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃

and

1
2

d−1∑
i,j=1

bij∂ij

[ ∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃
]

=

=

∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃) 1
2∆z̃v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃ =

= lim
ε↓0

∫ ∞
ε

e−b0rdr

∫
Rd−1

[
∂rΓ̃0(r, z̃)

]
v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃

This yields

B0

[ ∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃
]

=

= lim
ε↓0

∫ ∞
ε

∂r

[
e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)v(x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃
]
,

which prove (7.13). Similarly, we show the validity of the other representation
or inversion formula (7.12).

7.1.3 Poisson and Green Functions

Let us assume A = 1
2∆ and introduce the (parabolic) Green function and the

Poisson for the Dirichlet problem in the half-space Ṙd+,{
GD(t, x, y) = Γd(t, x̃− ỹ, xd − yd)− Γd(t, x̃− ỹ, xd + yd) =

= Γd−1(t, x̃− ỹ)
[
Γ1(t, xd − yd)− Γ1(t, xd + yd)

]
,

(7.15)

and

PD(t, x, ỹ) = −∂dΓd(t, x̃− ỹ, xd), (7.16)

where Γd(t, x̃, xd) = Γd(t, x) for any x = (x̃, xd) is given by (7.9). Recall that
we write Γ0(t, x) = Γ0(t, x̃, xd) = Γd(t, x̃, xd).
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Without giving all details, let us mention that the solution of the heat-
equation in the half-space with a Dirichlet boundary condition

∂tu(t, x) = 1
2∆u(t, x) + f(t, x), ∀t > 0, x ∈ Ṙd+,

u(t, x) = g(t, x), ∀t > 0, x ∈ ∂Ṙd+,
u(0, x) = u0(x), ∀x ∈ Ṙd+,

(7.17)

is given by the expression
u(t, x) =

∫ t

0

ds

∫
Rd−1

PD(t− s, x, ỹ)g(s, ỹ)dỹ+

+

∫
Rd+
GD(t, x, y)u0(y)dy +

∫ t

0

ds

∫
Rd+
GD(t− s, x, y)f(s, y)dy,

for any sufficiently smooth data f, g and u0. Here, we identify the boundary
∂Ṙd+ with the (d−1)-dimensional space Rd−1, so that g(t, x) with x in ∂Ṙd+ can
be written as g(t, x̃) with x̃ in Rd−1.

The Green function GD, considered as a distribution in (0,∞)×Ṙd+, satisfies

(7.17) with f(t, x) = δ(t, x), g = 0 and u0 = 0, while as a distribution in Ṙd+,
it satisfies (7.17) with f(t, x) = 0, g = 0 and u0(x) = δ(x). On the other hand,
the Poisson function PD satisfies (7.17) with f(t, x) = 0, g(t, x̃) = δ(t, x̃) and
u0 = 0, considered as a distribution in Rd+.
• Remark 7.1. Another typical case is the Green function GN and the Poisson
function PN with Neumann boundary conditions, i.e.,

∂tu(t, x) = 1
2∆u(t, x) + f(t, x), ∀t > 0, x ∈ Ṙd+,

∂du(t, x) + g(t, x) = 0, ∀t > 0, x ∈ ∂Ṙd+,
u(0, x) = u0(x), ∀x ∈ Ṙd+.

It is known that,

GN (t, x, y) = Γd(t, x̃− ỹ, xd − yd) + Γd(t, x̃− ỹ, xd + yd),

PN (t, x, ỹ) = Γd(t, x̃− ỹ, xd),

This is discussed as a particular case of what follows. Note the relations PD =
−∂dPN and

PD(t, x̃− ỹ, yd) = ∂xdGD(t, x̃, 0, ỹ, yd),

PD(t, x̃− ỹ, xd) = −∂ydGD(t, x, ỹ, 0),

where ∂xd or ∂yd means partial derivatives with respect to the variable xd or yd,
respectively.

To solve the heat-equation in the half-space with a Wentzell type boundary
condition, i.e.,

∂tu(t, x) = 1
2∆u(t, x) + f(t, x), ∀t > 0, x ∈ Ṙd+,

Bu(t, x) + g(t, x) = 0, ∀t > 0, x ∈ ∂Ṙd+,
u(0, x) = u0(x), ∀x ∈ Ṙd+,

(7.18)
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with B given by (7.2), we may proceed as follows. If f = 0 then ∂tu = 1
2∆u and

the boundary condition Bu + g = 0 is equivalent to the degenerate parabolic
equations discussed in the previous subsection, (7.11) and (7.13). Thus, the
corresponding Poisson function PB is obtained by using the representations or
inversion formulae (7.12) and (7.14) with PD, i.e., PB(t, x, ỹ) = QB(t, x̃− ỹ, xd),
where QB is given as follows, for ρ > 0,QB(t, x) = −∂d

∫ t/ρ

0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)×

×Γ0(t− ρr, x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃,

(7.19)

and for ρ = 0 and bd > 0,QB(t, x) = −∂d
∫ ∞

0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)×

×Γ0(t, x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃.

(7.20)

Note that the variable t is a parameter in the expressions (7.20), and that the
partial derivative ∂d can be calculated inside or outside the integral signs.

• Remark 7.2. It is clear that the above integrals defining QB are non-singular
for t > 0 and xd > 0, and that upper estimates of the heat-kernel type (7.8) are
necessary to make the above formula workable. Later, we are going to verify
these estimates only in particular cases, with explicit calculations.

To find the expression of the Green function GB , first we remark that if u is
a solution of the Wentzell type boundary condition problem (7.18) with f = 0,
g = 0 and u0, then Bu is a solution of the Dirichlet problem (7.17) with f = 0,
g = 0 and u0 replaced by Bu0. Also we note that

∫
Rd+
GD(t, x, y)By0u0(y)dy =

∫
Rd+
Bx0GD(t, x, y)u0(y)dy+

+2bd

∫
Rd+
∂dΓ0(t, x̃− ỹ, xd + yd)u0(y)dy.

and 
∫
Rd+
GD(t, x, y)∆yu0(y)dy =

∫
Rd+

∆xGD(t, x, y)u0(y)dy−

−2

∫
Rd+
∂xdΓ0(t, x̃− ỹ, xd)u0(ỹ, 0)dỹ,

i.e., we have
∫
Rd+
GD(t, x, y)Byu0(y)dy = 2bd

∫
Rd+
∂dΓd(t, x̃− ỹ, xd + yd)u0(y)dy+

+ρ

∫
Rd+
∂dΓd(t, x̃− ỹ, xd)u0(ỹ, 0)dỹ −

∫
Rd+
BxGD(t, x, y)u0(y)dy.
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Now the inversion formulae and the uniqueness (e.g., for v = BxGD we get
u = GD from the representation) yield{

GB(t, x, y) = GD(t, x, y) + 2bdQB(t, x̃− ỹ, xd + yd)+

+ρδ0(yd)QB(t, x̃− ỹ, xd),

where QB is given by (7.19) or (7.20) according to the various cases, and δ0 is
the delta measure in the variable yd.

The expression for the kernel QB can be simplify. Indeed, first recall that
bij =

∑d−1
k=1 %ikβk%jk and ςij = %ij

√
βj , i.e., ς̃ = %̃(β̃)1/2, the diagonal matrix β̃,

with entries βi ≥ 0, i = 1, . . . , d− 1 (in the diagonal) are the eigenvalues of the
matrix (bij), and the orthogonal matrix %̃ satisfied |det(%̃)| = 1 and |%̃x̃| = |x̃|,
for every x̃ in Rd−1. Since Γ̃0(r, %̃z̃) = Γ̃0(r, z̃), we deduce∫

Rd−1

Γ̃0(r, z̃)Γ̃0(t, x̃− ς̃ z̃)dz̃ =

∫
Rd−1

Γ̃0(r, z̃)Γ̃0(t, %̃∗x̃− β̃1/2z̃)dz̃.

Next, after the individual change of variables yi = zi
√
βi only if βi > 0, remark-

ing that Γ1(r, yi
√
βi) =

√
βiΓ1(βir, yi) and∫

Rd
Γd(s, y)Γd(t, x− y)dy = Γd(s+ t, x), ∀t, s > 0, x ∈ Rd, d = 1, 2 . . . ,

we get∫
Rd−1

Γ̃0(r, z̃)Γ̃0(t, x̃− ς̃ z̃)dz̃ =

∫
Rd−1

( d−1∏
i=1

Γ1(βir, yi)
)

Γ̃0(t, %̃∗x̃− ỹ)dỹ =

=

d−1∏
i=1

Γ1(t+ βir, (%̃
∗x)i) = det(t1̃ + rβ̃)−1/2Γ̃0

(
1, (t1̃ + rβ̃)−1/2%̃∗x

)
,

where 1̃ denotes the identity matrix of dimension d−1. Alternatively, by means
of the Fourier transform we can check that the convolution is indeed a centered
normal distribution with (invertible) covariance matrix (t1 + rς̃ ς̃∗), i.e.,∫

Rd−1

Γ̃0(r, z̃)Γ̃0(t, x̃− ς̃ z̃)dz̃ = Γd−1(t1̃ + rς̃ ς̃∗, x) =

= (2π)−d/2
[

det(t1̃ + rς̃ ς̃∗)
]−1/2

exp
[
− |(t1̃ + rς̃ ς̃∗)−1/2x|2

]
,

with the notation (7.10), which agrees with the previous expression.
This is to say that the formulae for QB can be reduced, without the integral

in Rd−1, i.e, for ρ > 0,

QB(t, x) = −∂d
∫ t/ρ

0

e−b0rΓd
(
(t− ρr)1 + rb, x+ br

)
dr, (7.21)

and for ρ = 0 and bd > 0,

QB(t, x) = −∂d
∫ ∞

0

e−b0rΓd
(
t1 + rb, x+ br

)
dr, (7.22)
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where b is the matrix (bij) enlarged by zeros to be a square d-dimensional
matrix, and the notation (7.10) is used. Clearly, the expression (7.21) becomes
(7.22) as ρ approaches zero. Thus, formula (7.21) represents all cases, with the
convention t/ρ =∞ if ρ = 0.

• Remark 7.3. To summarize, we have shown that
PB(t, x, ỹ) = QB(t, x̃− ỹ, xd),

GB(t, x, y) =
[
Γd(t, x̃− ỹ, xd − yd)− Γd(t, x̃− ỹ, xd + yd)

]
+

+ 2bdQB(t, x̃− ỹ, xd + yd) + ρδ0(yd)QB(t, x̃− ỹ, xd),

are the Poisson and Green functions corresponding to the heat-equation with a
Wentzell type boundary condition (7.18), where the kernel QB is given by the
formula (7.21) and satisfies

BQB(t, x) = ∂dΓd(t, x), ∀t > 0, x ∈ Rd+.

Clearly, these equalities prove the heat-kernel type estimates for PB and GB ,
knowing the validity of (7.8) for the kernel QB . Moreover, even if B may contain
second-order derivative the expression BQB satisfies heat-kernel type estimates
as ∂dΓd, i.e., a singularity comparable to first-order derivatives.

Elastic Case

In the elastic case, i.e., for ρ = 0, ς = 0 and bd > 0 we can compute the above
integral, by first calculating∫ ∞

0

e−b0rΓ0(t, x+ b r) dr = (2πt)−d/2
∫ ∞

0

e−b0re−
|x+br|2

2t dr.

Indeed, by observing that

|x+ br|2 = |x|2 + 2(x · b)r + |b|2r2 =
[
|b|r +

(x · b)
|b|

]2
+ |x|2 − (x · b)2

|b|2

we have∫ ∞
0

e−b0rΓ0(t, x+ br) dr =

= (2πt)−d/2e
(x·b+b0t)

2−|b|2|x|2

2|b|2t

∫ ∞
0

e−
1
2t

(
|b|r+ x·b+b0t

|b|

)2
dr.

Hence, the following natural change of variables

ρ =
1√
2t

(
|b|r +

x · b+ b0t

|b|

)
,

yields ∫ ∞
0

e−b0rΓ0(t, x+ br) dr =

= (2πt)−d/2e
[x·b+b0t]

2−|b|2|x|2

2|b|2t

√
2t

|b|

∫ ∞
x·b+b0t√

2t|b|

e−ρ
2

dρ.
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Now, take the derivative of this expression with respect to xd to get

Qe(t, x) =
1

|b|2
Γ0(t, x)

{
bd +

+
√

2
|b|2xd − bd[b · x+ b0t]

|b|
√
t

e
[b·x+b0t]

2

2t|b|2

∫ ∞
b·x+b0t√

2t|b|

e−z
2

dz
}
,

or 
Qe(t, x) = |b|−2 Γ0(t, x)

{
bd +

√
π
|b|2xd − bd[b · x+ b0t]

|b|
√

2t
×

× exp
( [b · x+ b0t]

2

2t|b|2
)

Erfc
(b · x+ b0t√

2t|b|

)}
.

(7.23)

using the complementary error function Erfc(·). In particular, for the Neumann
problem, i.e., b0 = 0, bd = 1 and b̃ = 0, we found QN = Γ0 which yields the well
know formulae

PN (t, x, ỹ) = Γd(t, x̃− ỹ, xd),
GN (t, x, y) = Γd(t, x̃− ỹ, xd − yd) + Γd(t, x̃− ỹ, xd + yd),

as expected.
The above explicit formula allow a simple verification of the lower and upper

heat-kernel estimates for the elastic case, i.e., by means of the bounds
2

r +
√
r2 + 2

≤
√
π er

2

Erfc(r) ≤ 2

r +
√
r2 + 1

, ∀r ≥ 0,

2 = Erfc(−∞) < Erfc(r) ≤ Erfc(0) = 1, ∀r ≤ 0,

we can estimate the expression

Re(t, x) = bd +
√
π
|b|2xd − bd[b · x+ b0t]

|b|
√

2t
e

[b·x+b0t]
2

2t|b|2 Erfc
(b · x+ b0t√

2t|b|

)
appearing in the definition (7.23) of the kernel Qe. Indeed, since

|b|2xd− bd[b ·x+ b0t] = |b̃|2xd− bd(b̃ · x̃+ b0t) ≤ |b| |b̃| |x|, ∀t ≥ 0, x ∈ Rd+,

if b · x+ b0t ≤ 0 we have b̃ · x̃ ≤ −bdxd − b0t,

[b·x+b0t]
2 = (b̃·x̃)2+2(b̃·x̃)(bdxd+b0t)+(bdxd+b0t)

2 ≤ |b̃|2|x̃|2−(bdxd+b0t)
2

and

[b · x+ b0t]
2

2|b|2t
≤ |b̃|

2|x̃|2 − (bdxd)
2

2|b|2t
=
|x|2

2t
− b2d|x|2

2|b|2t

then

bd ≤ Re(t, x) ≤ bd +
√

2π |b̃| |x|√
t

exp
( |x|2

2t
− b2d|x|2

2|b|2t

)
, (7.24)
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while if b · x+ b0t ≥ 0 then the calculations are longer. Begin with

Re(t, x) ≤
2|b|2xd + bd

[√
(b · x+ b0t)2 + |b|24t− (b · x+ b0t)

]
(b · x+ b0t) +

√
(b · x+ b0t)2 + |b|24t

,

and use[√
(b · x+ b0t)2 + |b|24t− (b · x+ b0t)

]
=

=

[
(b · x+ b0t)

2 + |b|24t− (b · x+ ct)2
][√

(b · x+ b0t)2 + |b|24t+ (b · x+ b0t)
] =

=
|b|24t√

(b · x+ b0t)2 + |b|24t+ (b · x+ b0t)
,

to get

Re(t, x) ≤
2|b|2xd

[
(b · x+ b0t) +

√
(b · x+ b0t)2 + |b|24t

]
+ bd|b|24t[

(b · x+ b0t) +
√

(b · x+ b0t)2 + |b|24t
]2 .

Similarly, we obtain

Re(t, x) ≥
2|b|2xd

[
(b · x+ b0t) +

√
(b · x+ b0t)2 + |b|22t

]
+ bd|b|22t[

(b · x+ b0t) +
√

(b · x+ b0t)2 + |b|22t
]2 .

This shows that for

r =
(b · x+ b0t) +

√
(b · x+ b0t)2 + |b|24t√
t

and ρ =
xd√
t

we have

Re(t, x) ≤ max
{
bd, 2|b|2(ρr−1 + 2bdr

−2)
}
,

2|b| ≤ r ≤ 2|b|+ 2
|b|2

bd
ρ, ρ ≥ 0,

i.e., if b · x+ b0t ≥ 0 then

Re(t, x) ≤ bd +
xd√
t
, ∀t > 0, x ∈ Rd+. (7.25)

A lower bound is found similarly, namely, for

r =
(b · x+ b0t) +

√
(b · x+ b0t)2 + |b|22t√
t

and ρ =
xd√
t

we have

Re(t, x) ≥ min
{
bd, 2|b|2(ρr−1 + bdr

−2)
}
,

2|b| ≤ r, r2 ≤ 4
( [b · x+ b0t]

2

t
+ |b|2

)
, ρ ≥ 0,
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i.e., if b · x+ b0t ≥ 0 then

Re(t, x) ≥ bd
2

( [b · x+ b0t]
2

|b|2t
+ 1
)−1

, ∀t > 0, x ∈ Rd+. (7.26)

These estimates (7.24), (7.25) and (7.26) yield upper and lower estimates on
Qe, i.e., for every c0 > 0 such that b2dc0 < |b| there exists a constant C0 > 0
(depending only on c0, |b| and bd > 0) satisfying

Qe(t, x) ≤ C0t
−d/2 exp

(
− c0

|x|2

2t

)
, ∀t > 0, x ∈ Rd+, (7.27)

and for any c1 > 1 there exists a constant C1 > 0 (depending only on c1, |b| and
bd > 0) satisfying

Qe(t, x) ≥ C1(1 + b0t)
−1t−d/2 exp

(
− c1

|x|2

2t

)
, ∀t > 0, x ∈ Rd+. (7.28)

Moreover, upper bound estimate can also be found for all derivatives of Qe as
in (7.8).

The elastic case for bb → 0 and ς̃ = 0 yields

Qe(t, x) = Γ0(t, x)
√
π

xd√
2t|b̃|

exp
( [b̃ · x̃+ b0t]

2

2t|b̃|2
)

Erfc
( b̃ · x̃+ b0t√

2t|b̃|

)
.

However, we see that as b̃ · x̃→ −∞, the heat-kernel type estimate is lost.

Sticky Case

In the sticky case, i.e., if ρ > 0, but b0 = 0 and ς = 0 then

Qs(t, x) = −∂d
∫ t/ρ

0

Γ0

(
t− ρr, x+ br

)
dr =

= −(2π)−d/2 ∂d

∫ t/ρ

0

(t− ρr)−d/2e−
|x−br|2
2(t−ρr) dr.

This integral can be computed using the complementary error function Erfc(·)
for any odd dimension d. Otherwise, the function Φν(t, x) defined by the integral

Φν(t, x) =
1

2ν

∫ t

0

1

sν+1
e−(s+ x2

4s ) ds, ∀t, x, ν > 0

should be used. Observe that

Φν+1(t, x) = − 1

x

∂

∂x
Φν(t, x), ∀t, x, ν > 0.

and that for t→∞ the function reduces to the so-called modified Bessel func-
tions of second kind defined by

Kν(x) =
1

2

(x
2

)ν ∫ ∞
0

1

sν+1
e−(s+ x2

4s ) ds, x, ν > 0,
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which are also called Kelvin or MacDonald functions.
We have

Qs(t, x) = −1

ρ

1

(2π)d/2
exp

[
(x+ b tρ ) · (b1

ρ
)
]
×

×
[
bd |b|d−2 1

ρd−1
Φ d

2−1

( |b|2t
2ρ2

,
1

ρ
|b||x+ b

t

ρ
|
)
−

− (xd + bd
t

ρ
) |b|d 1

ρd
Φ d

2

( |b|2t
2ρ2

,
1

ρ
|b||x+ b

t

ρ
|
)]
,

(7.29)

where we remark the homogeneity in b/ρ as expected.
Clearly, dimension d = 1 corresponds to ν = −1/2. In this case, we can

calculate
∫ t

0

e−(s+ x2

4s ) ds√
s

= e−x
∫ ∞
x−2 t

2
√
t

e−z
2

dz − ex
∫ ∞
x+2 t

2
√
t

e−z
2

dz =

=

√
π

2
e−x Erfc(

x− 2 t

2
√
t

)−
√
π

2
ex Erfc(

x+ 2 t

2
√
t

).

(7.30)

In particular, for t→∞, one gets∫ ∞
0

e−(s+ x2

4s ) ds√
s

= e−x
√
π.

Indeed, performing the substitution s = r2 one get∫ t

0

e−(s+ x2

4s ) ds√
s

= 2

∫ √t
0

e−(r2+ x2

4r2
) dr.

Now observe that

r2 +
x2

4r2
=
(
r − x

2r

)2

+ x,

and that the invertible substitution ρ = r − x
2r yields

r = 1
2 (ρ+

√
ρ2 + 2x) and 2dr =

(
1 +

ρ√
ρ2 + 2x

)
dρ.

Hence∫ t

0

e−(s+ x2

4s ) ds√
s

= e−x
∫ 2t−x

2
√
t

−∞
e−ρ

2
(

1 +
ρ√

ρ2 + 2x

)
dρ,

which can be written as (7.30), after remarking that the integration with respect

the measure
(
ρ/
√
ρ2 + 2x

)
dρ is zero on symmetric intervals about zero.

Thus, for example we have

Φ− 1
2
(t, x) =

√
2
(

e−x
∫ ∞
x−2t

2
√
t

e−z
2

dz − ex
∫ ∞
x+2t

2
√
t

e−z
2

dz
)
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and

Φ 1
2
(t, x) = − 1

x

∂

∂x
Φ− 1

2
(t, x) =

√
2

x

(
e−x
∫ ∞
x−2t

2
√
t

e−z
2

dz + ex
∫ ∞
x+2t

2
√
t

e−z
2

dz
)
,

which gives

Qs(t, x) = 1√
2π

e
t+2cx

4c2

[
− t+ 2cx

4c2
Φ 1

2

(
t

8c2 ,
t+2cx

4c2

)
+ Φ− 1

2

(
t

8c2 ,
t+2cx

4c2

)]
,

and using the complementary error function Erfc(·),

Qs(t, x) = − 2√
π

e
t+cx

2c2

∫ ∞
t+cx

c
√

2t

e−z
2

dz = exp
( t+ cx

2c2

)
Erfc

( t+ cx

c
√

2t

)
,

for d = 1, b = bd = 1 and ρ/2 = c, see the notation of Example 2.8 in Chapter 2.

7.1.4 General Constant Coefficients

We begin with the particular case

Aϕ(x) = 1
2∆ϕ(x) + ad∂dϕ(x), (7.31)

where the starting point is the following (parabolic) fundamental solution

Γ0(t, x̃, xd − adt) = (2πt)−d/2 exp
(
− |x̃|

2 + |xd − adt|2

2t

)
,

for any t > 0 and x = (x̃, xd) in Rd. Similarly,
First, note that any solution of an homogeneous Dirichlet problem in the

half-space
∂tu(t, x) = 1

2∆u(t, x) + ad∂du(t, x) + f(t, x), ∀t > 0, x ∈ Ṙd+,
u(t, x̃, 0) = g(t, x̃), ∀t > 0, x ∈ Rd+1,

u(0, x) = u0(x), ∀x ∈ Ṙd+,

can be extended to a problem in the whole space by setting

u(t, x̃, xd) := g(t, x̃)− e−2adxd [u(t, x̃,−xd)− g(t, x̃)] if xd < 0.

Indeed, because of the zero boundary condition, this extension produces a C1-
continuous function across the boundary which is a solution of the Cauchy
problem{

∂tu(t, x) = 1
2∆u(t, x) + ad∂du(t, x) + f̂(t, x), ∀t > 0, x ∈ Rd,

u(0, x) = û0(x), ∀x ∈ Rd.

in the whole space, where û0 and f̂ are the corresponding extensions.
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This yields an explicit representation, namely,

u(t, x) =

∫ t

0

ds

∫
Rd

Γ0(t− s, x̃− ỹ, xd − ad(t− s)− yd)f̂(s, y)dy+

+

∫
Rd

Γ0(t, x̃− ỹ, xd − adt− yd))û0(y)dy,

i.e., the expression of the Green function is{
Gad,D(t, x, y) := Γ0(t, x̃− ỹ, xd − adt− yd)−

−e2adydΓ0(t, x̃− ỹ, xd − adt− yd).
(7.32)

after a change of variables.
To find the expression of the Poisson function for the Dirichlet problem in the

half-space corresponding to the operator (7.31), we begin with the double-layer
potential jump relation for Γ0, i.e., as already mentioned,

lim
xd↓0

∫ t

0

ds

∫
Rd−1

[
− ∂dΓ0(t− s, x̃− ỹ, xd)

]
ψ(s, ỹ)dỹ = ψ(t, x̃),

for every continuous function with a compact support ψ, for any t > 0 and x̃ in
Rd−1. Since

xd
t

Γ0(t− s, x̃− ỹ, xd − adt) = eadxd−a
2
d(t−s)/2[− ∂dΓ0(t− s, x̃− ỹ, xd)

]
,

we also have

lim
xd↓0

∫ t

0

ds

∫
Rd−1

[ xd
t− s

Γ0(t− s, x̃− ỹ, xd − adt)
]
ψ(s, ỹ)dỹ = ψ(t, x̃),

for any continuous function with a compact support ψ. Since the functions
∂dΓ0(t, x− adt) and adΓ0(t, x− adt) solve the homogenous equation, the same
holds true for their sum, i.e., for

Pad,D(t, x, ỹ) :=
xd
t

Γ0(t, x̃− ỹ, xd − adt), (7.33)

which is then the Poisson function corresponding to (7.31).
Once the Poisson function Pad,D is known, an alternative way to find the

expression (7.32) of the Green function Gad,D is to propose

Gad,D(t, x, y) = Γ0(t, x̃− ỹ, xd − adt− yd)− V (t, x̃− ỹ, xd, yd)

and to solve the non-homogeneous Dirichlet problem in the half-space satisfied
by V. This yields

V (t, x̃, xd, yd) =

∫ t

0

ds

∫
Rd−1

Pad,D(t− s, x, ỹ)Γ0(s, ỹ, yd − ads)dỹ,

which can be explicitly computed to reproduce (7.32).
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Going back to the general case (7.1), first, let us check that we can choose
a change of variables z = cx, i.e., zi =

∑
j cijxj , such that the purely second

order differential operator
∑
ij aij∂ij in the variable x belonging to Rd+ becomes

the ∆ in the variable z also belonging to Rd+. Indeed, we find an orthogonal
(rotation) matrix σ transforming

∑
ij aij∂

x
ij into

∑
i αi∂

y
ii for y = σx, where

αi are the eigenvalues of the matrix (aij). Next, a diagonal matrix α, ξi =
(αi)

−1/2yi, transforms it into ∆ξ. However, the semi-space xd ≥ 0 has became∑d
i=1 σid

√
αiξi ≥ 0. Then, another orthogonal matrix γ will take back this semi-

space into the half-space zd ≥ 0. Only the d-column of γ is determined by the
condition

γid = σid
√
αi

( d∑
j=1

αjσ
2
jd

)−1/2

, ∀i = 1, . . . , d,

and the other columns are arbitrary chosen keeping γ an orthogonal matrix.
Thus c = γα−1/2σ, with

cij =

d∑
k=1

γik(αk)−1/2σkj , ∀i, j = 1, . . . , d.

Note that

aij =

d∑
k=1

σkiαkσkj , and

d∑
k,`=1

cikak`cj` = δij , ∀i, j = 1, . . . , d,

where δk` = 1 only when k = ` (and 0 otherwise), while the inverse matrix (aij)
of (aij) is given by

aij =

d∑
k=1

σki(αk)−1σkj =

d∑
k=1

ckickj , ∀i, j = 1, . . . , d.

Because Rd+ is invariant,

c =

(
c̃ 0

∗ cdd

)
, cdd =

1
√
add

,

where the last row (∗, cdd) of the matrix c is (cd1, . . . , cdd). Also, one has the
estimate

min
i
{λi} ≤ det(c̃)

√
det(a) ≤ max

i
{λi},

with a = (aij) and λi its eigenvalues. In short, we have cc∗ = a−1 and cac∗ = 1,
and therefore |cx|2 = x · a−1x, where · denotes the scalar or dot product and
a−1 is the inverse of the matrix a.
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At the same time the coefficients of the boundary differential operator of
Wenzell type B, denoted by B̄, become

b̄ij =

d−1∑
k,`=1

cikbk`cj` and b̄i =

d∑
k=1

cikbk, ∀i, j = 1, . . . , d− 1,

and b̄d = cddbd = bd(add)
−1/2. Thus, except for the lower terms coefficients in

A given by (7.1), i.e., for A0 instead of A, we are reduced to the case studied in
the precedent subsections.

Next, to incorporate the lower order coefficients ai, for i = 1, . . . , d − 1,
we make the change of variables xi = zi − ait, i.e., ∂xi = ∂zi and ∂t = ∂t −∑d−1
i=1 ai∂

x
i . Clearly, to add the zero-order term a0 we use the factor e−a0t in all

the expression. Thus, the expressions
GA,D(t, x, y) := e−a0t

[
Γd
(
t, c(x̃− ãt− ỹ, xd − adt− yd)

)
−

− e2cddadydΓd
(
t, c(x̃− ãt− ỹ, xd − adt+ yd)

)]
,

PA,D(t, x, ỹ) := e−a0t
cddxd
t

[
Γd
(
t, c(x̃− ãt− ỹ, xd − adt)

)]
,

provide the Green and Poisson functions in the half-space Rd+ for the operator
A (7.1) with Dirichlet boundary conditions. Note that ã = (a1, . . . , ad−1) and
that Γd = Γ0 if the d-dimensional Gaussian kernel (7.9). Clearly, by using the
matrix a = (aij) and the normal distribution notation (7.10), we can write

GA,D(t, x, y) := e−ta0
[
Γd
(
ta, x̃− tã− ỹ, xd − tad − yd

)
−

− e2adyd/
√
addΓd

(
ta, x̃− tã− ỹ, xd − tad + yd

)]
,

PA,D(t, x, ỹ) := e−ta0
xd

t
√
add

[
Γd
(
ta, x̃− tã− ỹ, xd − tad

)]
,

where the vector single-underline notation is used, ã = (a1, . . . , ad−1), to em-
phasize the difference with the matrix double-underline notation. Note that

FA(t, x) = Γd
(
ta, x̃− tã, xd − tad

)
is the fundamental solution corresponding to the operator A.

Finally, we may repeat the previous subsection, with GA,D and PA,D instead
of GD and PD, or alternatively, we can make the change of variables

u(t, x̃, xd) 7→ υ(t, ξ̃, ξd), u(t, x̃, xd) := e−a0tυ
(
t, c(x̃− ãt, xd)

)
and Gad,D and Pad,D (associated with B̄) instead of GD and PD, to obtain an
expression (all in term of a kernel QA,B similar to QB) of Green and Poisson
functions for corresponding to the operator (7.1) with Wentzell type boundary
conditions, i.e., with the convention t/ρ =∞ when ρ = 0, we have

QA,B(t, x) = e−a0t
∫ t/ρ

0

e−b0r
( xd + bdr

add(t− ρr)

)
×

×
( d∏
i=1

Γ1(αit+ βir − αiρr, xi + bir − ait)
)

dr,

(7.34)
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where αd = add, βd = 0, αi, βi, i = 1, . . . , d − 1, are the eigenvalues of (aij),
(bij), and Γ1 if the Gaussian kernel (7.9) with d = 1. Note that the last factor
in the above product is Γ1

(
add(t − ρr), xd + bdr − adt

)
, and by means of the

normal distribution (7.10), we have

d−1∏
i=1

Γ1(αit+ βir − αiρr, xi + bir − ait) =

= Γd−1

(
(t− ρr)ã+ rq̃, x+ rb̃− tã

)
,

where ã = (a1, . . . , ad−1), b̃ = (b1, . . . , bd−1), and the (d−1)-dimensional square
matrices ã = (aij), b̃ = (bij), q̃ = c̃ b̃ c̃∗ or perhaps just q̃ = [(ãb̃)(ãb̃)∗]1/2, or

simply q̃ = b̃, i.e., qij =?

. . . exp(HELP). . .
Is all this correct? Is this the right expression of QA,B? How do
the coefficients aid and adj affect the calculation? It is true that
if βi are the eigenvalues of (bij) then βi/αi are the eigenvalues of
(b̄ij)? What do you think?

7.2 Variable Coefficients in Half-Space

Let A be a second-order (uniformly) elliptic differential operator with bounded
and Hölder continuous coefficients the open half-space Ṙd+ = {x : xd > 0}, i.e.,

A(t)ϕ(x) := A0(t)ϕ(x) +

d∑
i=1

ai(t, x)∂iϕ(x)− a0(t, x)ϕ(x),

A0(t)ϕ(x) := 1
2

d∑
i,j=1

aij(t, x)∂ijϕ(x),

(7.35)

where a0 ≥ 0, aij = aji for any i, j, and for some positive constants c0, C0 and
any t > 0, x in Rd+ we have

c0|ξ|2 ≤
d∑

i,j=1

aij(t, x)ξiξj ≤ C0|ξ|2, ∀ξ ∈ Rd, (7.36)

and

aij , ai, a0 ∈ Cαb ([0,∞)× Rd+), ∀i, j, (7.37)

for every continuously differentiable functions ϕ with a compact support in the
closed half-space Rd+. Also, let B be a (uniform) Wentzell type boundary second-
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order differential operator with bounded and Hölder continuous coefficients, i.e.,
B(t)ϕ(x) := B0(t)ϕ(x) + bd(t, x̃)∂dϕ(x)− ρ(t, x̃)A(t)ϕ(x),

B0(t) := 1
2

d−1∑
i,j=1

bij(t, x̃)∂ij +

d−1∑
i=1

bi(t, x̃)∂i − b0(t, x̃),
(7.38)

where bij = bji is a symmetric non-negative definite matrix, b0, bd, ρ ≥ 0, and
for some positive constant c0 and any t > 0, x̃) in Rd−1 we have

ρ(t, x̃) ≥ c0 or bd(t, x̃) ≥ c0, (7.39)

and

bij , bi, b0, ρ ∈ Cαb ([0,∞)× Rd−1), ∀i, j. (7.40)

Note that all coefficients are trivially extended to the whole half-space. Some-
times, we may need to use the notation Aϕ(x) = A(t)ϕ(x) = A(t, x)ϕ(x) and
Bϕ(x) = B(t)ϕ(x) = B(t, x̃)ϕ(x) to emphasize the (t, x)-dependency of the
coefficients.

Consider the boundary value problem
∂tu(t, x) = A(t)u(t, x), ∀t > t0, x ∈ Ṙd+,

B(t)u(t, x) + ψ(t, x) = 0, ∀t > t0, x ∈ ∂Rd+,

u(t0, x) = ϕ(x), ∀x ∈ Ṙd+,

(7.41)

and the representation formula
u(t, x) =

∫
Rd+
GA,B(t, x̃, xd, t0, ỹ, yd)ϕ(y)dy +

+

∫ t

t0

ds

∫
Rd−1

PA,B(t, x̃, xd, s, ỹ)ψ(s, ỹ)dỹ,

(7.42)

where GA,B and PA,B are the Green and the Poisson functions.
If the coefficients are smooth, then it is convenient to define the formal

adjoint operators
A∗(t)ϕ(x) := A∗0(t)ϕ(x) +

d∑
i=1

∂i
(
a∗i (t, x)ϕ(x)

)
− a∗0(t, x)ϕ(x),

A∗0(t)ϕ(x) := 1
2

d∑
i,j=1

∂j
(
aij(t, x)∂iϕ(x)

)
,

(7.43)

and 
B∗(t)ϕ(x) := B∗0(t)ϕ(x) + bd(t, x̃)∂dϕ(x)− ρA∗ϕ(x),

B∗0(t) := 1
2

d−1∑
i,j=1

∂j
(
bij(t, x̃)∂i ·

)
+

d−1∑
i=1

∂i
(
b∗i (t, x̃) ·

)
− b∗0(t, x̃),

(7.44)
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where the adjoint coefficients may be computed as follows

aij(t, x) = a∗ij(t, x), a∗0(t, x) = a0(t, x) +

d∑
i=1

∂iai(t, x),

a∗i (t, x) = −ai(t, x)−
d∑
j=1

∂jaij(t, x),

and

b∗ij(t, x̃) = bij(t, x̃), b∗0(t, x̃) = b0(t, x̃) +

d−1∑
i=1

∂ibi(t, x̃),

b∗i (t, x̃) = −bi(t, x̃)−
d−1∑
j=1

∂jbij(t, x̃),

Remark that in the construction of the Green and Poisson functions we
require a0(t, x) ≥ 0 and b0(t, x̃) ≥ 0 (among other assumptions) but not neces-
sarily a∗0(t, x) ≥ 0 and b∗0(t, x̃) ≥ 0. Thus, the adjoint problem does not always
satisfy the conditions for the direct construction, however, the above relation
(7.64) shows the existence (with estimates) also for the adjoint problem.

7.2.1 Green and Poisson Representations

In this sub-section we discuss a probabilistic version (which applies to the vari-
able coefficients case) of the arguments used to construct the Green and Poisson
functions for constant coefficients. Let us begin with the explicit representation
of the solution of a (possible) degenerate differential equation in the half-space
associated with the boundary operator B.

The explicit expressions (7.12) and (7.14) can be written in terms of a
stochastic equations. Indeed, with X̃(t, x̃, t0, r) = X̃(r) consider

X̃(r) = z̃ +

∫ r

t0

ς(t, X̃(r))dw̃(r) +

∫ r

t0

b̃(t, X̃(r))dr, (7.45)

and Xd(t, x̃, xd, t0, r) = Xd(r), X0(t, z̃, t0, r) = X0(r) are given by

Xd(r) := xd +

∫ r

t0

bd(t, X̃(r))dr, X0(r) :=

∫ r

t0

b0(t, X̃(r))dr, (7.46)

valid even for variable coefficients.
First, note that by means of Itô formula, for any given u smooth function,

we have

E
{
e−X0(T )u(t, X̃(T ), Xd(T ))

}
− u(t, x̃, xd) =

=

∫ T

t0

E
{
e−X0(r)

[
B0(t, X̃(r))u(t, X̃(r), Xd(r)) +

+bd(t, X̃(r))∂du(t, X̃(r), Xd(r))
]}

dr,
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so that as T →∞ we have

u(t, x̃, xd) =

∫ ∞
t0

E
{
e−X0(t,x̃,t0,r)v(t, X̃(t, x̃, t0, r), Xd(t, x̃, xd, t0, r))

}
dr,

B0u(t, x̃, xd) + bd(t, x̃)∂du(t, x̃, xd) + v(t, x̃, xd) = 0.

for any t > t0, x in Rd+, usually used for xd = 0. Note that t plays the role of a
parameter. This reduces to (7.14) when the coefficients are constants.

To check (7.12), we add another equation, namely, with T (t, x̃, t0, r) = T (r),
X̃(r) = X̃(t, x̃, t0, r), Xd(r) = Xd(t, x̃, xd, t0, r) and X0(r) = X0(t, x̃, t0, r), for
t ≥ t0, where

T (r) = t−
∫ r

t0

ρ(T (r), X̃(r))dr,

X̃(r) = z̃ +

∫ r

t0

ς(T (r), X̃(r))dw̃(r) +

∫ r

t0

b̃(T (r), X̃(r))dr,
(7.47)

and 
Xd(r) := xd +

∫ r

t0

bd(T (r), X̃(r))dr,

X0(r) :=

∫ r

t0

b0(T (r), X̃(r))dr,

τ(t, x̃, t0) := inf
{
r > t0 : T (t, x̃, t0, r) = t0

}
.

(7.48)

Again, Itô formula yields

E
{
e−X0(τ)u(T (τ), X̃(τ)), Xd(τ))

}
− u(t, x̃, xd) =

= E
{∫ τ

t0

e−X0(r)
[
B0(T (r), X̃(r))u(T (r), X̃(r), Xd(r)) +

+bd(T (r), X̃(r))∂du(T (r), X̃(r), Xd(r))−

−ρ(T (r), X̃(r))∂tu(T (r), X̃(r), Xd(r))
]
dr
}
,

i.e.,

u(t, x̃, xd) = E
{
e−X0(τ)u(t0, X̃(τ), Xd(τ)

}
+

+E
{∫ τ

t0

e−X0(r)v(T (r), X̃(r), Xd(r))dr
}
,

B0u(t, x̃, xd) + bd(t, x̃)∂du(t, x̃, xd)− ρ(t, x̃)∂tu(t, x̃, xd) + v(t, x̃, xd) = 0.

for any t > t0, x in Rd+. Note the initial condition at t0 and that, as one may
expect, the variable xd plays an independent role, only Xd depends on xd.

It would be appropriate to study under which conditions on the coefficients
bij(t, x̃), bi(t, x̃), b0(t, x̃) and ρ(t, x̃) the upper bounds estimates of the heat-
kernel type are preserved from v into u, i.e., if for some constants C0, c0 > 0
and some s > 0, y in Rd+,

|v(t, x)| ≤ C0(t− s)−d/2 exp
(
− c0

|x− y|2

t− s

)
, ∀t > s, x ∈ Rd+,
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then u(t, x) also has a heat-kernel type upper bound, i.e., the same estimate
holds true for u(t, x), perhaps with a large constant C0 and a smaller positive
constant c0. We will need the same type of estimates for d replaced for (d− 1),
and estimates on the first and second derivative. However, no such a study was
found by the authors, even for the constant coefficients case.

Now, following the discussion in Section 6.2.2 of the previous Chapter with
n = d and m = d−1, let X(t) = (X̃(t), Xd(t)) be the (diffusion process) solution
of the martingale problem relative to the operators A1 and B1, i.e., there is a
local time `(t), satisfying the conditions `(0) = 0,∫ t

t0

1{Xd=0}d`(s) = `(t), ∀t ≥ t0,∫ t

t0

1{Xd=0}ds =

∫ t

t0

ρ(s,X(s))d`(s), ∀t ≥ t0,

and such that the process

Mϕ(t) := ϕ(X(t))− ϕ(x0)−
∫ t

t0

A1(s)ϕ(X(s))ds−

−
∫ t

t0

B1(s)ϕ(X(s))d`(s),

is a martingale for any smooth function ϕ. Here A1 and B1 do not have a
zero-order term, i.e., A = A1 − a0 and B = B1 − b0. Certainly, some regular-
ity conditions (e.g., locally Lipschitz in x with a linear growth) and bd(t, x̃) +
ρ(t, x̃) ≥ c0 > 0 are required for the existence of such a diffusion process. Thus
X = X(t0, x0, t) and ` = `(t0, x0, t).

Adding another coordinate X0(t) = X0(t0, x0, t) defined by

X0(t) :=

∫ t

t0

[
a0(s, X̃(s), Xd(s)) + 1{Xd(s)=0} b0(s, X̃(s))

]
ds, ∀t ≥ t0,

form Itô formula one deduces that the following expression is a martingale for
any smooth function ϕ,

e−X0(t)ϕ(t,X(t))− ϕ(t0, x0)−
∫ t

t0

e−X0(t) [∂s +A(s)]ϕ(s,X(s))]ds−

−
∫ t

t0

e−X0(t) [∂s +B(s)]ϕ(s,X(s))d`(s),

which includes the a0 and b0 terms.
Now, if u(t, x) is a smooth solution of the PDE problem in Rd+ with a terminal

condition relative to the operators A and B, i.e.,
[∂t +A(t)]u(t, x) = f(t, x), ∀x ∈ Ṙd+, t < T,

u(T, x) = uT (x), ∀x ∈ Ṙd+,

B(t)u(t, x̃, 0) = ψ(t, x̃),∀x̃ ∈ Rd−1, t < T,
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I do not know too well how to write this stuff! Can you help me
how to include all cases in the representation formula?
What do you think?
PLEASE CHECK CAREFULLY!

7.2.2 Green Identity in Half-Space

For a second-order differential operator A considered on the half-space or semi-
space Rd+, as (7.35) we define the co-normal differential operators ∂A and ∂∗A,

∂Aϕ(x) := 1
2

d∑
i=1

(
aid(t, x̃, 0)∂iϕ(x)

)
,

∂∗Aϕ(x) := 1
2

d∑
j=1

∂j
(
adj(t, x̃, 0)ϕ(x)

)
− ad(t, x̃, 0)ϕ(x)

(7.49)

on the boundary ∂Rd+ ' Rd−1. Note that for A = 1
2∆ we have ∂A = ∂∗A = 1

2∂d.
First, we study the case with coefficients independent of t, and we integrate

by parts two given smooth functions with compact support u and v to get

d∑
i,j=1

∫
Rd+
aij(x)

(
∂iju(x)

)
v(x)dx = −

d∑
i,j=1

∫
Rd+

(
∂iu(x)

)
∂j
(
aij(x)v(x)

)
dx−

−
d∑
i=1

∫
Rd−1

aid(x̃, 0)
(
∂iu(x̃, 0)

)
v(x̃, 0)dx̃,

−
d∑

i,j=1

∫
Rd+
u(x)∂ij

(
aij(x)v(x)

)
dx =

d∑
i,j=1

∫
Rd+

(
∂iu(x)

)
∂j
(
aij(x)v(x)

)
dx+

+

d∑
j=1

∫
Rd−1

u(x̃, 0)∂j
(
adj(x̃, 0)v(x̃, 0)

)
dx̃,

and

d∑
i=1

∫
Rd+
ai(x)

(
∂iu(x)

)
v(x)dx = −

d∑
i=1

∫
Rd+
u(x)∂i

(
ai(x)v(x)

)
dx−

−
∫
Rd−1

ad(x̃, 0)u(x̃, 0)v(x̃, 0)dx̃,
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to get the following Green identity
∫
Rd+

[(
Au(x)

)
v(x)− u(x)

(
A∗v(x)

)]
dx =

= −
∫
Rd−1

[(
∂Au(x̃, 0)

)
v(x̃, 0)− u(x̃, 0)

(
∂∗A v(x̃, 0)

)]
dx̃,

(7.50)

with the notation (7.49) with coefficients independent of t.
If the coefficients depends also on t, then add the relation∫ t2

t1

(
∂tu(t, x)

)
v(t, x)dt = −

∫ t2

t1

u(t, x)
(
∂tv(t, x)

)
dt+

+
[
u(t2, x)v(t2, x)− u(t1, x)v(t1, x)

]
,

and integrate in t the equality (7.50) to obtain the following parabolic Green
identity

∫ t2

t1

dt

∫
Rd+

[(
Au(t, x)

)
v(t, x)− u(t, x)

(
A∗v(t, x)

)]
dx =

=

∫
Rd+

[
u(t2, x)v(t2, x)− u(t1, x)v(t1, x)

]
dx+

+

∫ t2

t1

dt

∫
Rd−1

[(
∂Au(t, x̃, 0)

)
v(t, x̃, 0)− u(t, x̃, 0)

(
∂∗A v(t, x̃, 0)

)]
dx̃,

(7.51)

for any t2 > t1 ≥ 0, where A = ∂t −A(t) and A∗ = −∂t −A∗(t).
If (s, y) 7→ G(t, x, s, y) satisfies

A∗G(t, x, ·, ·) = 0, G(t, x, t, ·) = δx, (7.52)

for t > s ≥ 0 and x, y in Rd+, and (t, x) 7→ u(t, x) is a solution of the problem

Au = f, u(t0, x) = u0(x), (7.53)

then taking v(s, y) = G(t, x, s, y) in (7.51) with t1 = t0 ≥ 0 and t2 = t we
deduce∫ t

t0

ds

∫
Rd+
f(s, y)G(t, x, s, y)dy = u(t, x)−

∫
Rd+
u0(y)G(t, x, t0, y)dy +

+

∫ t

t0

ds

∫
Rd−1

[(
∂Au(s, ỹ, 0)

)
G(t, x, s, ỹ, 0)− u(s, ỹ, 0)

(
∂∗AG(t, x, s, ỹ, 0)

)]
dỹ.

Now, if we add the complementary boundary conditions

∂∗AG(t, x, ·, ·, 0) = 0, and ∂Au(·, ·, 0) + ψ(·, x̃) = 0,

we have the representation

u(t, x) =

∫ t

t0

ds

∫
Rd+
G(t, x, s, y)f(s, y)dy +

∫
Rd+
G(t, x, t0, y)u0(y)dy +

+

∫ t

t0

ds

∫
Rd−1

G(t, x, s, ỹ, 0)ψ(s, ỹ)dỹ,
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or the alternative complementary boundary conditions

G(t, x, s, ỹ, 0) = 0 and u(t, x̃, 0) = ψ(t, x̃),

we get

u(t, x) =

∫ t

t0

ds

∫
Rd+
G(t, x, s, y)f(s, y)dy +

∫
Rd+
G(t, x, t0, y)u0(y)dy +

+

∫ t

t0

ds

∫
Rd−1

(
− ∂∗AG(t, x, s, ỹ, 0)

)
ψ(s, ỹ)dỹ.

Therefore, the Green and Poisson functions satisfy
PA,D(t, x, s, ỹ) = −∂∗AGA,D(t, x, s, ỹ, 0),

GA,D(t, x, s, y) = G∗A,D(s, y, t, x),

PA,N (t, x, s, ỹ) = GA,N (t, x, s, ỹ, 0),

(7.54)

for Dirichlet and co-normal (Neumann) boundary conditions. Note that the co-
normal first differential operator ∂∗A , defined by (7.49), is acting on the variable
y. Moreover, the Green function is found as solving the adjoint problem in the
variable (s, y), i.e., (7.52) plus a complementary boundary condition.

Let us now consider the case of a boundary differential operator B given by
(7.38). Clearly when ρ = 0, for the tangential derivative we have∫

Rd−1

[(
B0u(x̃, 0)

)
v(x̃, 0)− u(x̃, 0)

(
B∗0v(x̃, 0)

)]
dx̃ = 0,∫

Rd−1

(
∂Au(x̃, 0)

)
v(x̃, 0)dx̃ = −

∫
Rd−1

u(x̃, 0)
(
∂̃∗A v(x̃, 0)

)
dx̃+

+

∫
Rd−1

(
add(t, x̃, 0)∂du(x̃, 0)

)
v(x̃, 0)dx̃,

where

∂̃∗Aϕ(x) = 1
2

d−1∑
i=1

∂i
(
aid(t, x̃, 0)ϕ(x)

)
.

If

add(t, x̃, 0) = 2bd(t, x̃), ∀ t ≥ 0, x̃ ∈ Rd−1, (7.55)

then ∫
Rd−1

[(
Bu(x̃, 0)

)
v(x̃, 0)− u(x̃, 0)

(
B∗0 + ∂̃∗A

)
v(x̃, 0)

]
dx̃ =

=

∫
Rd−1

(
∂Au(x̃, 0)

)
v(x̃, 0)dx̃,

which yields
∫
Rd+

[(
Au(x)

)
v(x)− u(x)

(
A∗v(x)

)]
dx =

= −
∫
Rd−1

[(
Bu(x̃, 0)

)
v(x̃, 0)− u(x̃, 0)

(
B∗Av(x̃, 0)

)]
dx̃,

(7.56)
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and 

∫ t2

t1

dt

∫
Rd+

[(
Au(t, x)

)
v(t, x)− u(t, x)

(
A∗v(t, x)

)]
dx =

=

∫
Rd+

[
u(t2, x)v(t2, x)− u(t1, x)v(t1, x)

]
dx+

+

∫ t2

t1

dt

∫
Rd−1

[(
Bu(t, x̃, 0)

)
v(t, x̃, 0)− u(t, x̃, 0)

(
B∗Av(t, x̃, 0)

)]
dx̃,

(7.57)

where condition (7.55) is enforced,

B∗A := B∗0 + ∂̃∗A + ∂∗A = B∗0 + 2∂̃∗A + ∂d
(
add ·

)
− ad,

and A = ∂t −A(t), A∗ = −∂t −A∗(t).
Therefore, if the above functions v(s, y) : (s, y) 7→ G(t, x, s, y) and u(s, y)

satisfy the boundary condition

B∗AG(t, x, s, ỹ, 0) = 0 and Bu(t, x̃, 0) = ψ(t, x̃),

then, the Green and Poisson functions, corresponding to the differential opera-
tors A and B given by (7.35) and (7.38), satisfy

PA,B(t, x, s, ỹ) = GA,B(t, x, s, ỹ, 0), (7.58)

for the case ρ = 0 and 2bd = add.

• Remark 7.4. Remark that if the normalization condition (7.55) is not a priori
satisfied, then the PDE boundary problem (7.41) can be re-stated (equivalently)
with a new boundary boundary operator B satisfying (7.55). This is, given a
boundary differential operator B as in (7.38) one can define another operator B̂
by the relation 2bdB̂ = addB. Thus, A and B̂ satisfy the (7.55) and their Green
and Poisson functions satisfy (7.58) with B̂ in lieu of B. However the equation
yields

GA,B = GA,B̂ and PA,B 2bd = PA,B̂ add.

Hence, (7.58) becomes

PA,B(t, x, s, ỹ) 2bd(s, ỹ) = GA,B(t, x, s, ỹ, 0) add(s, ỹ, 0),

for the case ρ = 0. Clearly, this relation is proved for smooth coefficients (i.e.,
when the adjoint differential operator A∗ and B∗ are defined), but it remains
true (by passage to the limit) for Hölder continuous operators where these Green
and Poisson functions can be constructed.

Next, to treat the case 2bd = add and ρ > 0, we use the integration by parts∫ t2

t1

dt

∫
Rd−1

ρ(t, x̃)
[(
∂tu(t, x)

)
v(t, x) + u(t, x)

(
∂tv(t, x)

)]
dx̃ =

=

∫
Rd−1

[
ρ(t, x̃)u(t, x)v(t, x)

]t=t2
t=t1

dx̃−

−
∫ t2

t1

dt

∫
Rd−1

(
∂tρ(t, x̃)

)
u(t, x)v(t, x)dx̃,
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so that for u satisfying (7.53) and v such that ∂tv(t, x) = −A∗(t)v(t, x) we
deduce

−
∫ t2

t1

dt

∫
Rd−1

[
ρ(t, x̃)

(
A(t)u(t, x)

)
v(t, x)− u(t, x)

(
A∗(t)v(t, x)

)]
dx̃ =

=

∫ t2

t1

dt

∫
Rd−1

ρ(t, x̃)f(t, x)v(t, x)dx̃−

−
∫
Rd−1

[
ρ(t, x̃)u(t, x)v(t, x)

]t=t2
t=t1

dx̃+

+

∫ t2

t1

dt

∫
Rd−1

(
∂tρ(t, x̃)

)
u(t, x)v(t, x)dx̃,

Thus, setting t = s, x = y, assuming v(t2, ỹ, 0) = 0, letting yd → 0 and using
the identity (7.57), we obtain

∫ t2

t1

ds

∫
Rd+

[(
Au(s, y)

)
v(s, y)− u(s, y)

(
A∗v(s, y)

)]
dy =

= −
∫ t2

t1

dt

∫
Rd−1

ρ(s, ỹ)f(s, ỹ, 0)v(s, ỹ, 0)dx̃−

−
∫
Rd−1

ρ(t1, ỹ)u(t1, ỹ, 0)v(t1, ỹ, 0)dỹ +

+

∫
Rd+

[
u(t2, y)v(t2, y)− u(t1, y)v(t1, y)

]
dy +

+

∫ t2

t1

ds

∫
Rd−1

[(
Bu(s, ỹ, 0)

)
v(s, ỹ, 0)− u(s, ỹ, 0)

(
B∗Av(s, ỹ, 0)

)]
dỹ,

(7.59)

where condition (7.55) is enforced and the A-adjoint of the boundary operator
B is given by

B∗A := B∗0 + 2∂̃∗A + ∂d
(
add ·

)
− ad − ρA∗ + (∂tρ), (7.60)

i.e.,

B∗A (t)ϕ(x) := B∗A0 (t)ϕ(x) + ∂d
(
bd(t, x̃)ϕ(x)

)
− ρ(t, x̃)A∗,

B∗A0 (t)ϕ(x) := 1
2

d−1∑
i,j=1

bij(t, x̃)∂ijϕ(x)
)

+

d−1∑
i=1

b̄∗i (t, x̃)∂iϕ(x)− b̄∗0(t, x̃)ϕ(x),

b∗i (t, x̃) = −bi(t, x̃)− 1
2

d−1∑
j=1

∂jbij(t, x̃) +

d−1∑
i=1

aid(t, x̃, 0),

b∗0(t, x̃) = b0(t, x̃) +

d−1∑
i=1

∂ibi(t, x̃)− ∂tρ(t, x̃) + ad(t, x̃, 0)−
d−1∑
i=1

∂iaid(t, x̃, 0),

after using the symmetry adi = aid.
Now, take t2 = t, t1 = t0 and v(s, y) = G(t, x, s, y) satisfying (7.52). It is

clear that either the heat-kernel type estimates or the terminal condition ensure
that

G(t, x, s, ỹ, 0)→ 0 as s→ t, ∀t > 0, x = (x̃, xd), x̃ ∈ Rd−1, xd > 0,
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i.e., v(t, ỹ, 0) = 0. If G and u satisfy the boundary condition

B∗AG(t, x, s, ỹ, 0) = 0 and Bu(t, x̃, 0) = ψ(t, x̃),

then we obtain the representation formula

u(t, x) =

∫ t

t0

ds

∫
Rd+
G(t, x, s, y)f(s, y)dy +

∫
Rd+
G(t, x, t0, y)u0(y)dy +

+

∫ t

t0

ds

∫
Rd−1

G(t, x, s, ỹ, 0)ψ(s, ỹ)dỹ +

+

∫ t

t0

dt

∫
Rd−1

G(t, x, s, ỹ, 0)ρ(s, ỹ)f(s, ỹ, 0)dỹ +

+

∫
Rd−1

G(t, x, t0, ỹ, 0)ρ(t0, ỹ)u0(ỹ, 0)dỹ,

Since the representation formula and the maximum principle yield the unique-
ness of the Green and Poisson functions, we deduce that the Green and Poisson
functions satisfy{

PA,B(t, x, s, ỹ) = Q(t, x, s, ỹ, 0),

GA,B(t, x, s, y) = Q(t, x, s, y) +Q(t, x, s, ỹ, 0)ρ(s, ỹ)δ(yd),
(7.61)

for the case ρ ≥ 0 and 2bd = add, where the kernel Q satisfies

A∗Q(t, x, s, y) = 0, Q(t, x, t, y) = δx(y), B∗AQ(t, x, s, ỹ, 0) = 0, (7.62)

for t > s ≥ 0 and x, y = (ỹ, yd) in Rd+, with A∗ = −∂t − A∗, A∗ and B∗A given
by (7.43) and (7.60), both acting on the variables (s, y). Certainly, the problem
(7.62) is really meaningful when some estimates of heat-kernel type are satisfied.
Note that we do have

GA,B(t, x, s, ỹ, yd)→ PA,B(t, x, s, ỹ) as yd → 0,

in a pointwise sense.

• Remark 7.5. The kernel Q can be regarded as the Green function correspond-
ing to ρ > 0 but with data vanishing on the boundary, i.e., f(t, x̃, 0) = 0 and
u0(x̃, 0) = 0, for any t ≥ 0 and x̃ in Rd−1. The argument used in Remark 7.4
can be used with QA,B̂ as early by means of (7.62) with B̂ in lieu of B, and

ρB̂ = B so that one may express

PA,B(t, x, s, ỹ) = QA,B(t, x, s, ỹ, 0),

GA,B(t, x, s, y) = GA,D(t, x, s, y) +QA,B(t, x, s, y)
2bd(s, ỹ)

add(s, ỹ, 0)
+

+QA,B(t, x, s, ỹ, 0)ρ(s, ỹ)δ(yd),

where GA,D is the Green functions with Dirichlet boundary conditions and QA,B
is a suitable kernels. Note that GA,D(t, x, s, y) = 0 for either xd = 0 or yd = 0.
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To treat the case bd = 0 and ρ > 0 we proceed as above, for u satisfying
(7.53), an integration by parts (with the tangential derivatives) yields∫ t

t0

ds

∫
Rd−1

[(
Bu(s, ỹ, 0)

)
v(s, ỹ, 0)− u(s, ỹ, 0)

(
B∗ρv(s, ỹ, 0)

)]
dỹ =

= −
∫ t

t0

ds

∫
Rd−1

ρ(s, ỹ)f(s, ỹ, 0)v(s, ỹ, 0)dỹ −

−
∫
Rd−1

[
ρ(s, ỹ)u(s, ỹ, 0)v(s, ỹ, 0)

]s=t
s=t0

dỹ,

where B∗ρ = B∗0 −
(
∂tρ ·

)
. Hence, taking v(s, ỹ, 0) = PB(t, x̃, s, ỹ) satisfying

B∗ρPB(t, x̃, s, ỹ) = 0 and ρ(t, ·)PB(t, x̃, t, ·) = δx̃,

we deduce∫ t

t0

ds

∫
Rd−1

ψ(s, ỹ)PB(t, x̃, s, ỹ)dỹ =

= −
∫ t

t0

ds

∫
Rd−1

ρ(s, ỹ)f(s, ỹ, 0)PB(t, x̃, s, ỹ)dỹ +

+u(t, x̃)−
∫
Rd−1

ρ(t0, ỹ)u0(ỹ, 0)PB(t, x̃, t0, ỹ)dỹ.

Now, we use the Green identity (7.51) for Dirichlet boundary conditions, i.e.,
the representation formula with G = GA,D to get

u(t, x) =

∫ t

t0

ds

∫
Rd+
G(t, x, s, y)f(s, y)dy +

∫
Rd+
G(t, x, t0, y)u0(y)dy +

+

∫ t

t0

ds

∫
Rd−1

(
− ∂∗AG(t, x, s, ỹ, 0)

)
u(s, ỹ)dỹ.

Hence, if we define

PA,B(t, x, s, ỹ) :=

∫ t

s

dτ

∫
Rd−1

(
− ∂∗AGA,D(t, x, τ, ξ̃, 0)

)
PB(τ, ξ̃, s, ỹ)dξ̃

then

u(t, x) :=

∫
Rd+
GA,D(t, x, t0, y)u0(y)dy +

∫ t

t0

ds

∫
Rd+
GA,D(t, x, s, y)f(s, y)dy +

+

∫ t

t0

ds

∫
Rd−1

PA,B(t, x, s, ỹ)ψ(s, ỹ)dỹ +

+

∫ t

t0

ds

∫
Rd−1

PA,B(t, x, s, ỹ)ρ(s, ỹ)f(s, ỹ, 0)dỹ +

+

∫
Rd−1

PA,B(t, x, t0, ỹ)ρ(t0, ỹ)u0(ỹ, 0)dỹ,

for bd = 0 and ρ > 0. Note that in this case, the conditions on the bound-
ary and on the interior are independent, i.e., first get PB and GA,B = GA,D
independently, and then build PA,B as a singular integral.
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Therefore, if the coefficients are smooth, then the adjoint problem (with a
terminal condition) to (7.41) is given by

−∂tu(t, x) = A∗(t)u(t, x), ∀t < t0, x ∈ Ṙd+,

B∗A (t)u(t, x) + ψ(t, x) = 0, ∀t < t0, x ∈ ∂Rd+,

u(t0, x) = ϕ(x), ∀x ∈ Ṙd+,

(7.63)

for any given t0 ≥ 0, with B∗A given by (7.60), with 2bd = add. Clearly, if ρ = 0
then we have the relation PA∗,B∗A (t, x̃, xd, t0, ỹ) = PA,B(t0, ỹ, xd, t, x̃),

GA∗,B∗A (t, x, t0, y) = GA,B(t0, y, t, x),
(7.64)

for the Poisson and Green functions. Note that when ρ > 0 a δ-measure appears
on the boundary and the above relation is modified as described in Remarks 7.4
and 7.5 when bd > 0.

7.2.3 Successive Approximations

Perhaps the first step in the construction of the fundamental functions for vari-
ables coefficients is to study a Volterra equation for heat-type kernelsQ(t, x, τ, ξ),
namely, Q(t, x, τ, ξ) = Q0(t, x, τ, ξ) + (Q0 ? Q)(t, x, τ, ξ),

(Q0 ? Q)(t, x, τ, ξ) :=

∫ t

τ

ds

∫
Rd
Q0(t, x, s, y)Q(s, y, τ, ξ)dy,

(7.65)

where the given kernel Q0 satisfies the estimates

|Q0(t, x, τ, ξ)| ≤ C0(t− τ)−
d+2−α

2 exp
(
− c0

|x− ξ|2

t− τ

)
, (7.66)

for any t > τ, and x, ξ in Rd, and some α > 0. For a given c0 > 0, it is
convenient to denote by JQ0K(α) the smallest constant C0 for which the bound
(7.66) is satisfied.

Essentially based on the Beta-function and the equality∫
Rd

exp
(
− c0

|x− y|2

t− s

)
exp

(
− c0

|y − ξ|2

s− τ

)
dy =

=
[( π
c0

)( (t− s)(s− τ)

t− τ

)] d
2

exp
(
− c0

|x− ξ|2

t− τ

)
,

one can prove that the sequence of kernel Qn defined by the recurrence as

Qn+1(t, x, τ, ξ) = (Q0 ? Qn)(t, x, τ, ξ)

satisfies

JQnK(nα) ≤
qα

(n!)
α
2
, ∀n = 1, 2, . . . ,
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where the constant qα depends only on c0, C0, α and d. Hence, the Volterra
(7.65) has a (unique) solution given by the series

Q(t, x, τ, ξ) =

∞∑
n=0

Qn(t, x, τ, ξ),

where the limit is uniformly within compact sets in {(t, x, τ, ξ) : t > τ, x, ξ ∈
Rd}.

This same argument can be use with the Green function in half-space Rd+,
where the Volterra equation has the form

Q(t, x, τ, ξ) = Q0(t, x, τ, ξ) + (Q0 ? Q)(t, x, τ, ξ),

(Q0 ? Q)(t, x, τ, ξ) :=

∫ t

τ

ds

∫
Rd+
Q0(t, x, s, y)Q(s, y, τ, ξ)dy,

(7.67)

with a given kernel Q0 defined within any Rd+ instead Rd, and also, with the
Poisson function in half-space Rd+, where now the Volterra equation has the
form  R(t, x, τ, ξ̃) = R0(t, x, τ, ξ̃) + (R0?̃R)(t, x, τ, ξ̃),

(R0?̃R)(t, x, τ, ξ̃) :=

∫ t

τ

ds

∫
Rd−1

R0(t, x, s, ỹ)R(s, ỹ, 0, τ, ξ̃)dy,
(7.68)

with y = (ỹ, yd) and R(s, y, τ, ξ̃) = R(s, ỹ, yd, τ, ξ̃). The Volterra equation (7.67)
works very similar to the initial equation (7.65) in Rd, and its (unique) solution
is expressed as (convergent) series of kernels Rn+1 = R0?̃Rn. However, to study
the Volterra equation (7.68) we need to have a kernel satisfying

|R0(t, x, τ, ξ)| ≤ C0(t− τ)−
d+1−α

2 exp
(
− c0

|x− ξ|2

t− τ

)
, (7.69)

for any t > τ, and x, ξ in Rd, i.e., the heat-kernel type estimates in Rd+ like
(7.66) with d − 1 instead of d. If we just keep heat-kernel type estimates like
(7.66) in Rd+, then, because the kernel convolution ?̃ is only in dimension (d−1)

the second integral in s involves a factor of the form (t− s)(α−3)/2, which is not
integrable if α ≤ 1. Alternatively, we may assume that the kernel R0 satisfies a
variation of (7.66), namely

|R0(t, x, τ, ξ̃)| ≤ C0

( xd√
t− τ

+ 1
)

(t− τ)−
d+1−α

2 ×

× exp
(
− c0

|x− ξ|2

t− τ

)
,

(7.70)

for any t > τ, and x, ξ in Rd+, and some α > 0. Thus, if J̃R0K̃(α) denotes the

smallest constant C0 for which the bound (7.70) is satisfied, then we have

J̃RnK̃(nα) ≤
rα

(n!)
α
2
, ∀n = 1, 2, . . . ,
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where the constant rα depends only on c0, C0, α and d.
Next, to obtain a Hölder estimate of the k-type, namely,

|Q(t, x, τ, ξ)−Q(t′, x′, τ ′, ξ′)| ≤ C0

[
|t− t′|α/2 + |x− x′|α +

+|τ − τ ′|α/2 + |ξ − ξ′|α
]
(t− τ)−

d+2+k
2 exp

(
− c0

|x− ξ|2

t− τ

)
,

(7.71)

for any t > τ, t′ > τ ′, and x, ξ, x′, ξ′ in Rd, with (t− τ)|x′ − ξ′|2 ≤ (t′ − τ ′)|x−
ξ|2, for the same α > 0 and c0 > 0, is harder. A more complicate argument
(essentially based on some cancellation property of Q0) is used to show the
validity of (7.71) for the kernel Q, solution of the Volterra equation (7.65) with
k = 0. Similarly for the kernel R.

Fundamental Solution

The problem is set in the whole space, and boundary conditions are replaced
by growth conditions on the functions and its derivatives. For instances, com-
prehensive details on this classic case can be found in the books Friedman [88]
or Ladyzhenskaya et al. [147].

The fundamental solution G(t, x, s, y) defined for t > s ≥ 0 and x, y in Rd
is expressed as

F (t, x, s, y) = F0(t− s, x− y; s, y) + F0 ? Q(t, x, s, y),

where F0(t, x; s, y) is the fundamental solution with freezed coefficients and Q is
a kernel to be determined, This is usually refer to as parametix method. Clearly,
constant or parameterized by (s, y) means

F0(t, x; s, y) = e−ta0(s,y)Γd
(
t
√
a(s, y), x− ta(s, y)

)
,

with the notation (7.10), only the part with the matrix a are most relevant, the
terms with a0 and the vector a may be omitted, i.e., they can be part of the
kernel Q.

If A(s, y) denotes the second-order differential operator (7.35) with param-
eterized coefficients (but acting on the variable x) and set

Q0(t, x, s, y) := [A(s, y)−A(t, x)]F0(t− s, x− y; s, y),

then the kernel Q is found as the solution of the Volterra equation

Q = Q0 +Q0 ? Q,

which can be solved by the method of successive approximations in view of
the non-degeneracy and bounded Hölder continuity assumptions (7.36), (7.37)
on the coefficients, and the heat-kernel type estimates proved on the explicit
expression of F0.

The next step is to establish the validity heat-kernel estimates for the fun-
damental solution F, based on the above expression.
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Dirichlet Conditions

Essentially, the Green function with Dirichlet boundary conditions is constructed
with the same arguments used to build the fundamental solution, but the initial
G0 is the Green function with constant (or parameterized) coefficients corre-
sponding to Dirichlet boundary conditions. Again, G0 has an explicit expression
as discussed in previous sections. In this case, the Volterra equation is solved
by the method of successive approximations in the half-space Rd+ and the Green
function GD is obtained as a series.

However, the arguments to construct the Poisson function are more delicate
since the heat-kernel type estimates have a stronger singularity, (t − s)−1/2

higher than the Green function. If the coefficient were smooth, then the Poisson
function can be calculated as normal derivative of the adjoint Green function
with Dirichlet boundary conditions, via Green identity. For bounded Hölder
continuous coefficients, the expression

PD := P0 +GD ? [A0 −A]P0,

provided the Poisson function, where P0(t−s, x−y; s, y) is the Poisson function
corresponding to constant (or parameterized) coefficients and

[A0 −A]P0(t− s, x− y; s, y) := [A(s, y)−A(t, x)]P0(t− s, x− y; s, y),

with both differential operators A0 and A acting on the variable x. The hard
point is to establish the heat-kernel type estimates for PD − P0 given by the
above relation. Essentially, some kind of integration by parts is used to relate
the singular integral GD ? [A0−A]P0 with the non-singular (weak or integrable)
integral [A0 −A]GD ? P0.

Alternatively, one may begin with the fundamental solution for variable
coefficients denoted by F (t, x, s, y) and then one solves the Dirichlet problem in
the variables t and x,

AF1 = 0 in Rd+ and F1 = F on ∂Rd+,

with vanishing initial condition, and finally setting G = F − F1 as the Green
function with Dirichlet boundary conditions. Here, the point is to show the
estimates necessary to allow the construction of the kernel F1. At the same
time, this procedure produces estimates for the Poisson kernel PD.

For instance, details can be found in Ivasǐsen [114] and Solonnikov [233] for
parabolic systems. Also, in the books Eidelman [72] and Friedman [88] the
interested reader will find some useful discussion.

Oblique Derivative

This is the case where the assumptions ρ = 0, b0 ≥ 0, normalization 2bd = add,
no second-order derivatives, non-degeneracy (7.36), (7.39) and bounded Hölder
continuous coefficients (7.37), (7.40) are imposed.

The arguments are similar to those of the fundamental solution, but a two-
step method is necessary, one step to make variable the coefficients of the interior
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differential operator A and another step for the boundary operator B. Indeed,
first set

G1 = G0 +G0 ? Q,

and determine the kernel Q by the Volterra equation

Q = Q0 +Q0 ? Q, Q0 := [A0 −A]G0,

where G0(t− s, x− y; s, y) is the Green function corresponding to constant (or
parameterized) coefficients, and again both differential operators A0 = A(s, y)
and A = A(t, x) act on the x variable. In view of the heat-kernel type estimates
on G0, this Volterra equation is solved by the method of successive approxima-
tions in the half-space Rd+. The Green function G1 and the Poisson function,
according to Remark 7.4, are related by the equality

P1(t, x, s, ỹ) := G1(t, x, s, ỹ, 0)
add(s, ỹ, 0)

2bd(s, ỹ)
,

which corresponds to interior variable coefficients and constant (or parameter-
ized) coefficients on the boundary, i.e., satisfying on the boundary

B0G1 = 0 and B0P1 = δ̃,

where the boundary differential operator B0 = B(s, y) is acting on the variable
x, and δ̃ is the delta measure on (t, x̃) concentrated at (s, ỹ).

The next step is to set

P = P1 + P1?̃R, and G = G1 + P ?̃[B0 −B]G1,

and to determine the kernel R by solving

R = R0 +R0?̃R, R0 := [B0 −B]P1,

where G1 and P1 are as above, and both boundary differential operators B0 =
B(s, y) and B = B(t, x) are acting on the variable x. Note that because P1 is
the Poisson function one has

BP = δ̃ + [B −B0]P1 +R−R0?̃R = δ̃,

and

BG = δ̃ + [B −B0]G1 + [B0 −B]G1 = 0,

which reproduces the desired equations.
Since the boundary operator B does not contain second-order derivatives,

the kernel R0 has a weak (integrable) singularity (t− s)(−d−1+α)/2, and so that
the Volterra equation for R is solvable, and heat-type estimates are possible for
the (surface) kernel convolution

Alternatively, first we may set

P1 = P0 + P0?̃R,
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and determining R by solving the Volterra equation

R = R0 +R0?̃R, R0 := [B0 −B]P0,

where P0(t− s, x̃− ỹ, xd) is the Poisson function corresponding to constant (or
parameterized) coefficients. Thus, once P1 has been found, the expression

G1 = G0 + P1?̃[B0 −B]G0

gives the Green function, i.e.,

A0G1 = δ, and BG1 = 0.

Next, we have to solve the Volterra equation

Q = Q0 +Q0 ? Q, Q0 := [A0 −A]G1

and then G = G1 + G1 ? Q results the expression of the Green function corre-
sponding to A and B.

Certainly, a great effort is needed to establish the heat-kernel type estimates
for the Green functions G = GA,B and its derivatives. Note that in this case,
the Poisson function PA,B is equal to the Green function on the boundary,
i.e., PA,B(t, x, s, ỹ) := GA,B(t, x, s, ỹ, 0), provided the normalization conditions
add(t, x̃, 0) = 2bd(t, x̃) holds. Full details can be found in Garroni and Solon-
nikov [95], Ivasǐsen [114] and Solonnikov [233].

Sticky Boundary

This is the case ρ > 0, b0 ≥ 0 and bd > 0. Hence, we normalize by setting ρ = 1,
i.e., defining a new boundary operator B̂ by the relation ρB̂ = B. Then, we
proceed as in the previous case of oblique derivative or alternatively, one may
begin setting

P̂1 = P̂0 + P̂0?̃R,

and determining R by solving the Volterra equation

R = R̂0 + R̂0?̃R, R̂0 := [B̂0 − B̂]P0,

where P̂0(t− s, x̃− ỹ, xd) is the Poisson function corresponding to constant (or
parameterized) coefficients. Remark that [B̂0 − B̂] contains only derivatives up
to the first order (even if ρ > 0, the term with A0 is unchanged), and so the
previous Volterra equation can be solved. Thus, once P̂1 has been found, the
expression

Ĝ1 = Ĝ0 + P̂1?̃[B̂0 − B̂]Ĝ0

gives associated Green function, i.e.,

A0Ĝ1 = δ, and B̂G1 = 0.
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Note that B̂ −A0 is a first order differential boundary operator. Next, we have
to solve the Volterra equation

Q̂ = Q0 +Q0 ? Q̂, Q0 := [A0 −A]G1

and then

QA,B̂ = Ĝ1 + Ĝ1 ? Q̂,

PA,B(t, x, s, ỹ) := QA,B̂(t, x, s, ỹ, 0)
add(s, ỹ, 0)

2bd(s, ỹ)

is the expression of the Poisson function corresponding to A and B, and

GA,B(t, x, s, y) = QA,B̂(t, x, s, y) +QA,B̂(t, x, s, ỹ) ρ(s, ỹ) δ(yd)

is the Green function, see Remark 7.5.

Independent Conditions

This is the case ρ > 0, b0 ≥ 0 and bd = 0. Clearly, this reduces to the Dirich-
let boundary condition, and really independent conditions when b0 = 0, see
Section 7.2.2.

Second-order derivatives

When the boundary differential operator contains second-order (tangential)
derivative in xi, i = 1, . . . , d − 1, the calculations are more delicate, but essen-
tially the same arguments are valid. In particular, as in with Dirichlet boundary
conditions, one may begin with the fundamental solution for variable coefficients
denoted by F (t, x, s, y) and then one solves the boundary value problem in the
variables t and x,

AF1 = 0 in Rd+ and BF1 = BF on ∂Rd+,

with vanishing initial condition, and finally setting G = F − F1 as the Green
function with the boundary conditions given by the operator B. The point here
is that BF is a smooth (Hölder continuous) function for x on the boundary
∂Rd+, as long as y is in the interior of Rd+. Thus, general Theorem can be used
to find a unique solution F1, but a lot of effort should be done to produce sharp
estimates leading to the mentioned heat-kernel estimates, e.g., see Eidelman [72]
and Solonnikov [233].

7.2.4 Heat-Kernel Estimates

As discussed in the previous Subsection 7.2.2, the Green and Poisson functions
have various forms, depending on the boundary conditions. The operators A
and B are as in Section 7.2, under the assumptions (7.35), (7.36), (7.37) for A
in Rd+, and (7.38), (7.39), (7.40) for B on the boundary ∂Rd+ = Rd−1.
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To establish a clear relation with the probabilistic counterpart, we use ter-
minal condition instead of initial condition (as customary used in analysis and
described in the previous subsection) to define Green and Poisson function, this
involves only a change of the variables t into T −t, where T is the terminal time.
Since the time derivative is not involved (directly) in the boundary conditions,
the part concerning ρA (which could be expressed using ρ∂t) of the Wentzell
boundary operator B does not change sign.

For a fixed terminal time T > 0, we consider the boundary value problem
∂tu(t, x) +A(t)u(t, x) = f(t, x), ∀(t, x) ∈ [0, T [×Ṙd+,

B(t)u(t, x̃, 0) + ψ(t, x̃) = 0, ∀(t, x̃) ∈ [0, T [×Rd−1,

u(T, x) = ϕ(x), ∀x ∈ Ṙd+,

(7.72)

with the compatibility condition

B(T )ϕ(x̃, 0) + ρ(T, x̃)f(T, x̃, 0) + ψ(T, x̃) = 0, (7.73)

for any x̃ in Rd−1, with the notation (7.38). Clearly, this compatibility condition
comes form replacing the term ρA by −ρ∂t in the expression of the Wentzell
operator B and taking the limit of the boundary condition as t approaches T.
As mentioned early, we can distinguish three cases.

Dirichlet Type

The Dirichlet boundary conditions includes bd = 0, ρ = 0, b0 > 0, and in this
case, the tangential first and second-order coefficients (bi, bij : i, j = 1, . . . , d−1)
are irrelevant, and may be taken all zeros. In this case, the singularity of the
Poisson function is higher than the one of the Green function.

The Green and Poisson functions with terminal condition GA,D(t, x, s, y)
and PA,D(t, x, s, ỹ) are defined for 0 ≤ t < s ≤ T, x, y in Rd+ and ỹ in
Rd−1. For a fixed s, y and ỹ the functions (t, x) 7→ GA,D(t, x, s, y) and (t, x) 7→
PA,D(t, x, s, ỹ) are twice continuously differentiable in x and once in t and satisfy

[∂t +A(t)]GA,D(t, x, s, y) = δ(t− s, x− y), ∀(t, x) ∈ [0, s[×Ṙd+,

GA,D(t, x̃, 0, s, y) = 0, ∀(t, x̃) ∈ [0, s[×Rd−1,

lim
t→s

GA,D(t, x, s, y) = δ(x− y), ∀x ∈ Ṙd+,

(7.74)

and 
[∂t +A(t)]PA,D(t, x, s, ỹ) = 0, ∀(t, x) ∈ [0, s[×Ṙd+,

PA,D(t, x̃, 0, s, ỹ) = δ(t− s, x̃− ỹ), ∀(t, x̃) ∈ [0, s[×Rd−1,

lim
t→s

PA,D(t, x, s, ỹ) = 0, ∀x ∈ Ṙd+,

(7.75)
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where the meaning of the δ measures is given by the representation formula

u(t, x) =

∫ T

t

ds

∫
Rd+
GA,D(t, x, s, y)f(s, y)dy +

+

∫ T

t

ds

∫
Rd−1

PA,D(t, x, s, ỹ)ψ(s, ỹ)dỹ +

+

∫
Rd+
GA,D(t, x, T, y)ϕ(y)dy,

(7.76)

where u(t, x) is the solution of (7.72) with Dirichlet boundary conditions and
smooth (bounded and Hölder continuous) data f, ψ and ϕ satisfying the com-
patibility condition ψ(T, x̃) + ϕ(x̃, 0) = 0 for any x̃ in Rd−1.

Clearly, the construction of GA,D and PA,D involves only the operator A
with the assumptions (7.35), (7.36), (7.37) on the coefficients. To state the
heat-kernel estimates we denote by ∂`, ` = 0, 1, 2 any derivative in x of order `
or the derivative in t for ` = 2. Then, there exist two constants C ≥ c > 0 such
that for every 0 ≤ t < s ≤ T, x, y in Rd+ and ỹ in Rd−1, we have

|∂`GA,D(t, x, s, y)| ≤ C|s− t|
2−d−`

2 exp
(
− c |x− y|

2

s− t

)
,

|∂`PA,D(t, x, s, ỹ)| ≤ C|s− t|
2−d−`−1

2 exp
(
− c |x̃− ỹ|

2 + x2
d

s− t

)
,

(7.77)

and 
|∂`GA,D(t, x, s, y)− ∂`GA,D(t′, x′, s′, y′)| ≤

≤ C
[
|t− t′|α2 + |x− x′|α + |s− s′|α2 + |y − y′|α

]
×

×
[
|s− t|

2−d−`−α
2 exp

(
− c |x− y|

2

s− t

)]
,

(7.78)


|∂`PA,D(t, x, s, ỹ)− ∂`PA,D(t′, x′, s′, ỹ′)| ≤

≤ C
[
|t− t′|α2 + |x− x′|α + |s− s′|α2 + |ỹ − ỹ′|α

]
×

×
[
|s− t|

2−d−`−1−α
2 exp

(
− c |x̃− ỹ|

2 + x2
d

s− t

)]
,

(7.79)

for |s− t| ≤ |s′− t′|, |x− y| ≥ |x′− y′| and |x̃− ỹ|2 +x2
d ≥ |x̃′− ỹ′|2 +x′2d , where

0 < α < 1 is the Hölder exponent of the coefficients. In what follows, we will
refer these estimates on ∂`GA,D and ∂`PA,D as heat-kernel estimates (sup and
Hölder) of order ` and `− 1 respectively.

As already mentioned, the Hölder continuity of the higher-order coefficients
(aij : i, j = 1, . . . d) plays a primary role in the construction and estimation of
the Green and Poisson functions. However, if we drop the Hölder continuity of
the lower order coefficients (a0, ai : i = 1, . . . d) then only the estimate relative
to the Hölder continuity of ∂`GA,D and ∂`PA,D in the variable s and y is actually
lost.
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Neumann Type

The Neumann type or oblique derivative includes bd > 0, ρ = 0 and b0 ≥ 0.
Properly speaking, oblique derivative correspond to the case b0 = 0 and zero
tangential second-order coefficients bij = 0 for any i, j = 1, . . . , d − 1. There
is not essential changes-of-behavior in the Green and Poisson functions due
to the addition of the non-zero tangential second-order coefficients, only more
difficulties in the construction and the proof of suitable estimates. One may
introduce some modification in the behavior as T →∞ of the Green and Poisson
functions by adding a zero-order term b0 > 0, as seen in the particular case of
elastic Brownian motion.

The Green and Poisson functions GA,B(t, x, s, y) and PA,B(t, x, s, ỹ) with
terminal condition (and boundary condition given by B) are defined for 0 ≤
t < s ≤ T, x, y in Rd+ and ỹ in Rd−1. As in the Dirichlet case, they are twice
continuously differentiable in x and once in t and satisfy

[∂t +A(t)]GA,B(t, x, s, y) = δ(t− s, x− y), ∀(t, x) ∈ [0, s[×Ṙd+,

B(t)GA,B(t, x̃, 0, s, y) = 0, ∀(t, x̃) ∈ [0, s[×Rd−1,

lim
t→s

GA,B(t, x, s, y) = δ(x− y), ∀x ∈ Ṙd+,

(7.80)

and 
[∂t +A(t)]PA,B(t, x, s, ỹ) = 0, ∀(t, x) ∈ [0, s[×Ṙd+,

B(t)PA,B(t, x̃, 0, s, ỹ) = δ(t− s, x̃− ỹ), ∀(t, x̃) ∈ [0, s[×Rd−1,

lim
t→s

PA,B(t, x, s, ỹ) = 0, ∀x ∈ Ṙd+,

(7.81)

where the meaning of the δ measures is given by the representation formula

u(t, x) =

∫ T

t

ds

∫
Rd+
GA,B(t, x, s, y)f(s, y)dy +

+

∫ T

t

ds

∫
Rd−1

PA,B(t, x, s, ỹ)ψ(s, ỹ)dỹ +

+

∫
Rd+
GA,B(t, x, T, y)ϕ(y)dy,

(7.82)

where u(t, x) is the solution of (7.72) with ρ = 0 and smooth (bounded and
Hölder continuous) data f, ψ and ϕ satisfying the compatibility condition

B(T )ψ(T, x̃) + ϕ(x̃, 0) = 0,

for any x̃ in Rd−1.
As mentioned early, since ρ = 0 we have

PA,B(t, x, s, ỹ) 2bd(s, ỹ) = GA,B(t, x, s, ỹ, 0) add(s, ỹ, 0), (7.83)

for any 0 ≤ t < s ≤ T, x in Rd+ and ỹ in Rd−1. Contrary to the Dirichlet
case, the Green and the Poisson functions have the same degree of singularity.
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Namely, both ∂`GA,B and ∂`PA,B satisfy the heat-kernel estimates of order
` = 0, 1, 2. Moreover, also there exist two constants C ≥ c > 0 such that for
every 0 ≤ t < s ≤ T, x, y in Rd+ and ỹ in Rd−1, we have

|B(t)GA,B(t, x, s, y)| ≤ C|s− t|
1−d
2 exp

(
− c |x− y|

2

s− t

)
,

|B(t)PA,B(t, x, s, ỹ)| ≤ C|s− t|
1−d
2 exp

(
− c |x̃− ỹ|

2 + x2
d

s− t

)
,

(7.84)

which are rather clear when the boundary operator B(t) does not contain tan-
gential second-order terms, but very essential in the general case. As mentioned
early, the constants C and c depend only on the Hölder continuous constant of
the higher-order coefficients (aij : i, j = 1, . . . , d), bd, and the constants C0 and
c0 in assumptions (7.36) and (7.39). Clearly, a companion Hölder type estimate
to (7.84) also holds, i.e.,

|B(t)GA,B(t, x, s, y)−B(t′)GA,B(t′, x′, s′, y′)| ≤

≤ C
[
|t− t′|α2 + |x− x′|α + |s− s′|α2 + |y − y′|α

]
×

×
[
|s− t|

2−d−`−α
2 exp

(
− c |x− y|

2

s− t

)]
,

(7.85)

for |s− t| ≤ |s′− t′|, |x− y| ≥ |x′− y′| and |x̃− ỹ|2 +x2
d ≥ |x̃′− ỹ′|2 +x′2d , where

0 < α < 1 is the Hölder exponent of the coefficients.

Wentzell Type

The general Wentzell type allows ρ > 0, and depending on whether bd is positive
we see two distinct situations. Again, the tangential first and second-order
coefficients have little effect in the qualitative behavior. In this case, the Green
function has a delta-measure concentrated on the boundary. Because ρ is strictly
positive, it is convenient to factor out ρ, i.e., to write ρB̂ = B = B1 − ρA and
use the boundary conditions given through B̂ = B̂1 − A, where the only non-
tangential derivative in B1 and B̂1 is bd∂d.

First one finds the Green and Poisson functions corresponding to the problem
(7.72) for the particular case where ϕ(x̃, 0) = 0, ψ(T, x̃) = 0 and f(T, x̃, 0) = 0.
These particular Green and Poisson functions ĜA,B̂(t, x, s, y) and P̂A,B̂(t, x, s, ỹ)
are twice continuously differentiable in x and once in t and satisfy

[∂t +A(t)]ĜA,B̂(t, x, s, y) = δ(t− s, x− y), ∀(t, x) ∈ [0, s[×Ṙd+,

[∂t + B̂1(t)]ĜA,B̂(t, x̃, 0, s, y) = 0, ∀(t, x̃) ∈ [0, s[×Rd−1,

lim
t→s

ĜA,B̂(t, x, s, y) = δ(x− y), ∀x ∈ Ṙd+,

(7.86)

and 
[∂t +A(t)]P̂A,B̂(t, x, s, ỹ) = 0, ∀(t, x) ∈ [0, s[×Ṙd+,

[∂t + B̂(t)]P̂A,B̂(t, x̃, 0, s, ỹ) = δ(t− s, x̃− ỹ), ∀(t, x̃),

lim
t→s

P̂A,B̂(t, x, s, ỹ) = 0, ∀x ∈ Ṙd+,

(7.87)
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where the meaning of the δ measures is given by the representation formula

u(t, x) =

∫ T

t

ds

∫
Rd+
ĜA,B̂(t, x, s, y)f(s, y)dy +

+

∫ T

t

ds

∫
Rd−1

P̂A,B̂(t, x, s, ỹ)ψ(s, ỹ)dỹ +

+

∫
Rd+
ĜA,B̂(t, x, T, y)ϕ(y)dy,

(7.88)

where u(t, x) is the solution of (7.72) with ρ > 0 and smooth (bounded and
Hölder continuous) data f, ψ and ϕ satisfying the restrictions ϕ(x̃, 0) = 0,
ψ(T, x̃) = 0 and f(T, x̃, 0) = 0, for any x̃ in Rd−1.

For simplicity we have used B̂, but clearly, by using ρ∂t + B1 instead of
∂t + B̂1, we get the relation

ĜA,B(t, x, s, y) = ĜA,B̂(t, x, s, y),

P̂A,B(t, x, s, ỹ) ρ(s, ỹ) = P̂A,B̂(t, x, s, ỹ), ∀t, x, s, y, ỹ.

If bd is strictly positive, i.e., bd(t, x̃) ≥ c0 > 0 then

P̂A,B̂(t, x, s, ỹ) 2bd(s, ỹ) = ĜA,B̂(t, x, s, ỹ, 0) add(s, ỹ, 0),

for any 0 ≤ t < s ≤ T, x in Rd+ and ỹ in Rd−1. However, if bd = 0 then

both kernels are independent, actually ĜA,B̂ = GA,D the Green function with
Dirichlet boundary conditions. In any case, the complete Green and Poisson
functions have the form PA,B(t, x, s, ỹ) = P̂A,B̂(t, x, s, ỹ)

1

ρ(s, ỹ)
,

GA,B(t, x, s, y) = ĜA,B̂(t, x, s, y) + P̂A,B̂(t, x, s, ỹ)δ(yd),
(7.89)

or equivalently
PA,B(t, x, s, ỹ) = QA,B(t, x, s, ỹ, 0),

GA,B(t, x, s, y) = GA,D(t, x, s, y) +QA,B(t, x, s, ỹ, 0)
2bd(s, ỹ)

add(s, ỹ, 0)
+

+QA,B(t, x, s, ỹ, 0)ρ(s, ỹ)δ(yd),

for some suitable kernel, this means that two extra terms, namely,
∫ T

t

ds

∫
Rd−1

P̂A,B̂(t, x, s, ỹ)f(s, ỹ, 0)dỹ +

+

∫
Rd+
P̂A,B̂(t, x, T, ỹ)ϕ(ỹ, 0)dỹ,

(7.90)

to the representation formula (7.88).
Finally, both kernels ∂`ĜA,B̂(t, x, s, y) and ∂`P̂A,B̂(t, x, s, ỹ) satisfy the heat-

kernel estimate of order ` = 0, 1, 2, as well as the extra boundary estimates like
(7.84) and (7.85).
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Local Description

The construction and estimation of the Green and Poisson functions for parabolic
system can be found in Eidelman [72], Ivasǐsen [114] and Solonnikov [233], in
particular this applies to second-order parabolic equations. The parametrix
technique goes as follows. First a model problem is considered in the whole
space or the half-space with constant coefficients, where specific expressions are
found for the fundamental, Green and Poisson functions. Next one considers
parametric coefficients, i.e., the operators A and B with variable coefficients are
frozen and, for an equation with constant coefficients, say A(s, x) and B(s, y)
the previous expression (valid for constant coefficients) is used. For instance,
denote by (t, x) 7→ G0(s− t, x− y; s, y) one of those expression, either the fun-
damental, the Green or the Poisson functions with parametric coefficients in
(s, y). Then, the kernel G0(t, x; s, y) satisfies the heat-estimates of a suitable
order, namely, for any ` = 0, 1, 2, . . . there exist two constants C` ≥ c` > 0 such
that for every 0 < t ≤ T, s in [0, T ], x and y in Rd+ we have

|∂`G0(t, x; s, y)| ≤ C`t
2−d−`

2 exp
(
− c`
|x|2

t

)
(7.91)

and  |∂
`G0(t, x; s, y)− ∂`G0(t, x; s′, y′)| ≤

≤ C`
[
|s− s′|α2 + |ỹ − ỹ′|α

][
t
2−d−`

2 exp
(
− c`
|x|2

t

)]
,

(7.92)

where 0 < α < 1 is the Hölder exponent of the coefficients. Certainly, some
changes are necessary for the Poisson function. Remark that there is an almost
explicit expression (either directly of via a Fourier-Laplace transform) for the
kernel G0. Recall that B(s, ỹ)G0(t, x; s, ỹ, 0) = P0,D(t, x; s, ỹ), the (parametrix)
Poisson function with Dirichlet boundary conditions, and so the derivative
∂`B(s, ỹ)G0(t, x; s, ỹ, 0) satisfied suitable heat-kernel estimates, i.e., as above
of order `+ 1, even if B includes second-order derivatives. Besides, all tangen-
tial derivative can be integrated by parts, which yields a cancellation property
on the boundary.

At this point, one propose G(t, x, s, y) = G0(s− t, x− y; s, y) +G1(t, x, s, y)
to get the fundamental, Green or Poisson function for variable coefficients. It
is found that ∂`G1 satisfies some heat-kernel estimates of order ` + α, i.e., an
integrable singularity even for ` = 2. Finally, one uses local coordinates to extend
the result from the half-space to a smooth domain O of Rd. Certainly, all this
argument need a lot of complicate details, found in the above references.

7.3 Nonlocal Operator in Half-Space

In this section we follow the technique developed in the books Garroni and
Menaldi [93, 94] to treat the case of a second-order integro-differential operator
with Wentzell boundary conditions. Only a guide is given, full details are out
of the scope of this work.
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First we take a look at an integro-differential operator acting on the half-
space Rd+, I(t)ϕ(x) =

∫
Rm∗

[
ϕ(x+ j(ζ, t, x))− ϕ(x)− j(ζ, t, x) · ∇ϕ(x)

]
×

× m(ζ, t, x)π(dζ),

(7.93)

where the coefficients satisfy
|j(ζ, t, x)|1{m(ζ,t,x)>0} ≤ ̄(ζ), 0 ≤ m(ζ, t, x) ≤ 1,∫
{̄<1}

[̄(ζ)]γπ(dζ) +

∫
{̄≥1}

̄(ζ)π(dζ) ≤ C0,
(7.94)

for every ζ, t, x and for some positive constants C0, 0 ≤ γ < 2 and a positive
measurable function ̄(·). We also need Hölder continuity, i.e., there exist a
positive measurable function (again denoted by) ̄(·) and some constant M0 > 0
such that for any t, t′ x, x′ and ζ we have

|j(ζ, t, x)− j(ζ, t′, x′)| ≤ ̄(ζ)[|t− t′|α/2 + |x− x′|α],

|m(ζ, t, x)− m(ζ, t′, x′)| ≤M0[|t− t′|α/2 + |x− x′|α],∫
{̄<1}

[̄(ζ)]γπ(dζ) +

∫
{̄≥1}

π(dζ) ≤M0.

(7.95)

We need to assume that j(ζ, t, x) is continuously differentiable in x for any fixed
ζ, and that there exist a constant c0 > 0 such that

c0|x− x′| ≤ |(x− x′) + θ[j(ζ, t, x)− j(ζ, t, x′)]| ≤ c−1
0 |x− x′|, (7.96)

for any t, x, x′ and 0 ≤ θ ≤ 1.
Now, a (complete) second-order integro-differential is the combination of the

A(t) in the previous Section 7.2 with I(t), called again A(t), i.e.,

A(t)ϕ(x) := A2ϕ(x) + I(t)ϕ(x),

A2(t)ϕ(x) := A0(t)ϕ(x) +

d∑
i=1

ai(t, x)∂iϕ(x)− a0(t, x)ϕ(x),

A0(t)ϕ(x) := 1
2

d∑
i,j=1

aij(t, x)∂ijϕ(x),

(7.97)

where the coefficients a0 ≥ 0, aij = aji for any i, j are bounded, Hölder contin-
uous and uniformly elliptic, i.e., (7.36) and (7.37) are satisfied.

To setup the problem in the half-space, we need to localize the integral part
of I(t), to make it acting on functions defined only on the half-space Rd+. In this
case, the condition is simple, namely

[xd + jd(ζ, t, x)]1{m(ζ,t,x)>0} ≥ 0, ∀(ζ, t, x) ∈ Rm∗ × [0, T ]× Rd+. (7.98)
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i.e., all jumps x+j(ζ, t, x) from x in Rd+ should belongs to Rd+. Alternatively, one
may use an extension operator ϕ 7→ Pϕ and to re-define I(t)ϕ(x) = I(t)(Pϕ)(x),
where certainly (Pϕ)(x) = ϕ(x) for every x in Rd+. For instance, for Dirichlet
boundary conditions, we may use a zero-extension, but some extra difficulties
appear due to the fact that such a zero-extension preserves Lipschitz continuous
functions (vanishing on the boundary), but not necessarily C2 functions, see the
discussion in Section 2.11.

Technically, one may add an integro-differential part to the Wentzell bound-
ary operator, but again some delicate issues appear. For instance, the interested
reader may check the book by Skubachevskii [231].

Consider the boundary operator B(t) given by (7.38) and satisfying (7.39),
(7.40). Under the previous assumptions, our interest is on the boundary value
problem with terminal condition,

∂tu(t, x) +A(t)u(t, x) = f(t, x), ∀(t, x) ∈ [0, T [×Ṙd+,

B(t)u(t, x) + ψ(t, x) = 0, ∀(t, x) ∈ [0, T [×∂Rd+,

u(T, x) = ϕ(x), ∀x ∈ Ṙd+,

(7.99)

and the representation formula

u(t, x) =

∫ T

t

ds

∫
Rd+
GA,B(t, x, s, y)f(s, y)dy +

+

∫ T

t

ds

∫
Rd−1

PA,B(t, x, s, ỹ)ψ(s, ỹ)dỹ +

+

∫
Rd+
GA,B(t, x, T, y)ϕ(y)dy,

(7.100)

where GA,B and PA,B are the Green and the Poisson functions. As in the purely
differential case, if ρ > 0 then the Green function GA,B contains a delta-measure
on the boundary, and the above formula is suitable modified.

7.3.1 Constant Coefficients

For a general constant coefficients non-local operator I, we can take j(ζ, t, x) =
j(ζ) and m(ζ, t, x) = m(ζ),

Iϕ(x) =

∫
Rm∗

[
ϕ(x+ j(ζ))− ϕ(x)− j(ζ) · ∇ϕ(x)

]
m(ζ)π(dζ).

Clearly, we can approximate I with

Iεϕ(x) =

∫
|j(ζ)|≥ε

[
ϕ(x+ j(ζ))− ϕ(x)− j(ζ) · ∇ϕ(x)

]
m(ζ)π(dζ), (7.101)

as ε→ 0, and the assumption (7.94) reduces to 0 ≤ m(ζ) ≤ m0 and∫
{|j(ζ)|<1}

[j(ζ)]γπ(dζ) +

∫
{|j(ζ)|≥1}

|j(ζ)|π(dζ) ≤ C0, (7.102)
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for some constants C0 > 0 and 0 ≤ γ < 2.
First, if F0(t, x) is the fundamental function corresponding to the constant

coefficients differential operator A2 then one may propose F = F0+F0?Q where
? means the kernel convolution in [0,∞)× Rd, i.e.,

[ϕ ? φ](t, x) =

∫ t

0

ds

∫
Rd
ϕ(t− s, x− y)ψ(s, y)dy, ∀t ≥ 0, x ∈ Rd.

This yields a Volterra equation for either F or Q, namely,

F = F0 + F0 ? IQ, Q = IF0 + IF0 ? Q.

If Q0 = IF0 then the formal series

F =

∞∑
k=0

Fk, Fk = F0 ? IFk−1 and Q =

∞∑
k=0

Qk, Qk = Q0 ? Qk−1,

represent the (unique) solutions. Clearly, the presence of the non-local opera-
tor I makes disappear the heat-kernel type estimates and the difficulty is the
convergence of these series.

For the particular case

Iϕ(x) = m[ϕ(x+ j)− ϕ(x)],

one can calculate explicitly the solution. Indeed, by means of the identity

F0(t+ s, x) =

∫
Rd
F0(t, x− z)F0(s, z)dz = [F0(t, ·) ∗ F0(s, ·)](x)

we get

Fk(t, ·) =
tk

k!
IkF0(t, ·) and Qk(t, ·) =

tk

k!
Ik+1F0(t, ·), (7.103)

where

Ikϕ(x) =

k∑
i=0

(
k

i

)
(−1)k−iϕ(x+ ij)mk.

Hence

F (t, x) =

∞∑
k=0

k∑
i=0

(
k

i

)
(−1)k−i

(mt)k

k!
F0(t, x+ ij) =

= e−mt
∞∑
k=0

(mt)k

k!
F0(t, x+ kj), ∀t > 0, x ∈ Rd.

A posteriori, we can check the convergence of the series (and all its derivatives),
but the heat-kernel estimates are lost, there are many singular points, not just
the origin.
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Now for a general I, we approximate I with Iε to establish the relation
(7.103), but the expression of the power of I is more complicate, and sim-
ple explicit calculations are not longer possible. As studied in Garroni and
Menaldi [93], several semi-norm are introduced, but only two are necessary
(with a slight change of notation) for the constant coefficient case, namely, for
any kernel ϕ(t, x) and k real (usually non-negative) we define

K0(ϕ, k) = inf
{
K0 ≥ 0 : |ϕ(t, x)| ≤ K0t

−1+(k−d)/2, ∀t, x
}
,

Kn(ϕ, k) = inf
{
Kn ≥ 0 :

∫
Rn
|ϕ(t, x̃(n), x(n))|dx̃(n) ≤

≤ Knt
−1+(k−d+n)/2, ∀t, x(n)

}
,

Kd(ϕ, k) = inf
{
Kd ≥ 0 :

∫
Rd
|ϕ(t, x)|dx ≤ Kdt

−1+k/2, ∀t
}
,

K(ϕ, k) = max
{
K0(ϕ, k), . . . ,Kd(ϕ, k)

}
,

(7.104)

where x = (x̃(n), x(n)), x̃(n) = (x1, . . . , xn), x(n) = (xn+1, . . . , xd), n = 1, . . . , d−
1. Actually, K0, Kd−1 and Kd are the most relevant semi-norms. In view of the
heat-kernel estimates satisfied by the fundamental function F0, the semi-norm
K(∂`F0, 2− `) is finite, for any ` = 0, 1, . . . , where ∂` denotes any derivative of
order `x in x and order `t in t with ` = 2`t + `x.

The constant 0 ≤ γ < 2 in assumption (7.102) plays an important role.
Indeed, for 0 ≤ γ ≤ 1, the operator I may have a simpler form, i.e,

Iϕ(x) =

∫
Rm∗

[
ϕ(x+ j(ζ))− ϕ(x)

]
m(ζ)π(dζ),

which yields

K(Iϕ, 1 + k − γ) ≤ m0C0 [K(ϕ, 1 + k) +K(∇ϕ, k)].

Similarly, for 1 ≤ γ ≤ 2, by means of the expression

Iϕ(x) =

∫ 1

0

dθ

∫
Rm∗

j(ζ) ·
[
∇ϕ(x+ θj(ζ))−∇ϕ(x)

]
m(ζ)π(dζ),

we get

K(Iϕ, 2 + k − γ) ≤ m0C0 [K(∇ϕ, 1 + k) +K(∇2ϕ, k)].

Hence K(∂`Fk, 2 + k(2− γ)− `) is finite, and moreover, setting

K2(ϕ, k) = max
{
K(ϕ, 2 + k), K(∇ϕ, 1 + k), K(∇2ϕ, k)

}
,

and using the fact that

F0(t+ s, ·) = F0(t, ·) ∗ F0(s, ·), and IF0(t+ s, ·) = IF0(t, ·) ∗ F0(s, ·),

we have the estimate (as in Garroni and Menaldi [93, Chapter 3]) CAN WE DO
A BETTER/SIMPLER EXPLANATION THAN IN G-M FOR THIS CASE?

K2(∂`Fk, k(2− γ)− `) ≤ Ck1 (k!)−(2−γ)K2(∂`F0,−`),
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for any k and ` and for some constant C1, depending only on the dimension d
and the constants C0 and m0 in (7.102). Clearly, this provides the convergence
(and estimates) of the series defining the fundamental solution F corresponding
to the second-order integro-differential operator A with constant coefficients.

Now, to construct the Green and Poisson functions for constant coefficients
we are in almost the same situation as in Subsection 7.1.3. Clearly, by imposing
the following restriction

jd(ζ) ≥ 0, ∀ζ ∈ Rm∗ , (7.105)

we are able to localize the operator I to Rd+.

Dirichlet Conditions

To simplify the presentation, we take A = 1
2∆ as in Subsection 7.1.3 and by

means of the procedure discussed in Subsection 7.1.4 we can add a first-order
and zero-order constant differential part. Thus, as in the purely differential case,
the Poisson function have the form

PI,D(t, x, ỹ) =
xd
t
F (t, x̃− ỹ, xd), (7.106)

where F (t, x̃, xd) = F (t, x) for any x = (x̃, xd) is the fundamental solution
constructed above, i.e., the series

F =

∞∑
k=0

Fk, Fk(t, ·) =
tk

k!
IkF0(t, ·),

with F0 the heat-kernel.
Indeed, we need to check that∫ t

0

xd
s

ds

∫
Rd−1

Fk(s, ỹ, xd)ψ(t− s, x̃− ỹ)dỹ → 0 as xd → 0, (7.107)

for any k = 1, 2, . . .. By means of the explicit expression of the heat-kernel F0

and the condition (7.105) we deduce∫
Rd−1

|IF0(t, ỹ, xd)|dỹ ≤ C1t
−1−γ/2 exp

(
− x2

d

2t

)
,

which yields (7.107) for k = 1. Similarly, we have∫
Rd−1

|Fk(t, ỹ, xd)|dỹ ≤ Ckt−1+k(2−γ)/2 exp
(
− x2

d

2t

)
,

for any k = 2, . . . , and then∫ t

0

xd
s

ds

∫
Rd−1

PI,D(s, ỹ, xd)ψ(t− s, x̃− ỹ)dỹ → ψ(t, x̃),

as xd → 0, for any smooth function ψ.
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Next, we have to check that PI,D solves the homogeneous integro-differential
equation in Rd+, i.e.,

[∂t −
1

2
∆]PI,D(t, x) = 0, ∀t > 0, x ∈ Rd+. (7.108)

To this purpose, it suffices to show the above equation for Iε instead of I, see
(7.101). Moreover, we can move the differential part to A2, i.e., add a first order
coefficients a of the form

a =

∫
{|j(ζ)|≥ε}

j(ζ)m(ζ)π(dζ),

so that we are reduced to the case

Iϕ(x) =

∫
Rm∗

[
ϕ(x+ j(ζ))− ϕ(x)

]
m(ζ)π(dζ),

under the condition 0 ≤ m(ζ) ≤ m0 and∫
Rm∗
|j(ζ)|π(dζ) ≤ C0,

actually, j(ζ) is bounded and π(Rm∗ ) <∞, and A2 = 1
2∆ + a · ∇.

Thus, define ϕd(x) = xd and

I ′dϕ(x) =

∫
Rm∗

ϕ(x+ j(ζ))jd(ζ)m(ζ)π(dζ)

to see that

[I(ϕdϕ)](x) = ϕd(x)Iϕ(x) + I ′dϕ(x).

Hence[
adF0(t, x)− ∂dF0(t, x)] = ϕd(x)F0(t, x)

and therefore[
adtIF0(t, x)− tI∂dF0(t, x)

]
= ϕd(x)IF0(t, x) + I ′dF0(t, x).

Again

I
[
adtIF0(t, x)− tI∂dF0(t, x)

]
= ϕd(x)I2F0(t, x) + II ′dF0(t, x) + I ′dIF0(t, x)

and because I and I ′d commute, we deduce by induction

Ik−1
[
adtIF0(t, x)− tI∂dF0(t, x)

]
= ϕd(x)IkF0(t, x) + kI ′dI

k−1F0(t, x),

for any k ≥ 1. This proves that[
adFk(t, x)− ∂dFk(x)

]
=
xd
t
Fk(x) + I ′dFk−1(x), ∀k ≥ 1.
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Next, by means of the series (7.103) we obtain[
adF (t, x)− ∂dF (t, x)

]
=
xd
t
F (t, x) + I ′dF (t, x), ∀t > 0, x ∈ Rd. (7.109)

Since F, ∂dF and I ′dF are solutions of the homogeneous equation then xdF (t, x)/t
is also a solution, i.e., the equation (7.108) is satisfied and PI,D is indeed the
Poisson function associated to 1

2∆ + I with Dirichlet boundary conditions.
Now, to find the Green function we need to calculate the integral

V (t, x̃, xd, yd) =

∫ t

0

xd
t− s

ds

∫
Rd−1

F (t− s, x̃− ỹ, xd)F (s, ỹ, yd)dỹ,

where the most singular term, namely∫ t

0

xd
t− s

ds

∫
Rd−1

F0(t− s, x̃− ỹ, xd)F0(s, ỹ, yd)dỹ = F0(t, x̃, xd + yd),

is computed exactly, and all other lower order terms can be estimated with the
semi-norms

K0(ϕ, k) = inf
{
K0 ≥ 0 : |ϕ(t, x̃, xd)| ≤

≤ K0t
−1+ k−d

2 exp
(
−x

2
d

3t

)
, ∀t, x̃, xd

}
,

Kd−1(ϕ, k) = inf
{
Kd−1 ≥ 0 :

∫
Rd−1

|ϕ(t, x̃, xd)|dx ≤

≤ Kd−1t
−1+ k−1

2 exp
(
−x

2
d

3t

)
, ∀t, xd

}
,

K(ϕ, k) = max
{
K0(ϕ, k),Kd−1(ϕ, k)

}
,

(7.110)

as in the case of the fundamental solution.
As mentioned early, we can add constant first-order and zero-order terms

(ai : i = 1, . . . , d) and a0 to the operator A. Moreover, we can studied the
dependency on the coefficients of the Green and Poisson function to be able to
discuss the parametrix method.

An alternative way to construct the Green function corresponding to the
second-order integro-differential operator A = A2 + I with Dirichlet boundary
conditions in Rd+ is to proceed as in the case of the fundamental solution, by
solving the following Volterra equation for either G or Q, namely,

G = G0 +G0 ? IQ, Q = IG0 + IG0 ? Q,

where G0 is the Green function corresponding to the purely differential part A2,
and now the (non-commutative) kernel convolution ? is in [0,∞]× Rd+, i.e.,

(ϕ ? ψ)(t, x̃, xd, yd) =

∫ t

0

ds

∫
Rd+
ϕ(t− s, x̃− z̃, xd, zd)ψ(s, z̃, zd, yd)dz,
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with z = (z̃, zd). If Q0 = IG0 then the formal series

G =

∞∑
k=0

Gk, Gk = G0 ? IGk−1 and Q =

∞∑
k=0

Qk, Qk = Q0 ? Qk−1.

provide the (unique) solutions. Clearly, we do have the property

G0(t+ s, x̃, xd, yd) =

∫
Rd+
G0(t, x̃− z̃, xd, zd)G0(s, z̃, zd, yd)dz,

but we do not have anymore the equality I(ϕ?ψ) = ϕ? (Iψ), which would yield
Gk(t, ·) = tkIkG0(t, ·)/k!. On the other hand, we need to modify the definition
of the semi-norms, namely, for kernels ϕ(t, x, yd),

K0(ϕ, k) = inf
{
K0 ≥ 0 : |ϕ(t, x, yd)| ≤ K0t

−1+(k−d)/2, ∀t, x, yd
}
,

Kd(ϕ, k) = inf
{
Kd ≥ 0 :

∫
Rd+
|ϕ(t, z̃, zd, yd)|dz +

+

∫
Rd+
|ϕ(t, z̃, xd, zd)|dz ≤ Kdt

−1+k/2, ∀t, xd, yd
}
,

K(ϕ, k) = max
{
K0(ϕ, k),Kd(ϕ, k)

}
,

(7.111)

where x = (x̃, xd). Also, we may use semi-norms of the type Kn(·, ·), for n =
1, . . . , d − 1. Moreover, estimating the G is simple, but it may be complicate
to handle ∂`G for ` = 1, 2, . . . . However, in view of the condition (7.105), the
semi-norm

K0(ϕ, k) = inf
{
K0 ≥ 0 : |ϕ(t, x̃, xd, yd)| ≤

≤ K0t
−1+ k−d

2 exp
[
− (xd − yd)2

3t

]
, ∀t, xd, yd

}
,

Kd−1(ϕ, k) = inf
{
Kd−1 ≥ 0 :

∫
Rd−1

|ϕ(t, x̃, xd, yd)|dx ≤

≤ Kd−1t
−1+ k−1

2 exp
[
− (xd − yd)2

3t

]
, ∀t, xd, yd

}
,

can be used, and one can essentially redo the calculations of the purely differ-
ential case. Thus the Green function G = GA,D has almost the same estimates
as the fundamental solution. If the Green function is found first, then one may
obtain the Poisson function as

PI,D(t, x) = ∂ydGI,D(t, x, 0),

where ∂yd is the derivative with respect to the last variable, i.e., yd.

Wentzell Conditions

The arguments developed in Subsection 7.1.3 can be used in this context, i.e.,
we begin with the case A = 1

2∆ + I and then we use the arguments in Subsec-
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tion 7.1.4. Thus, for the constant coefficients, the functions
PI,B(t, x, ỹ) = QI,B(t, x̃− ỹ, xd),

GI,B(t, x, y) = GI,D(t, x̃− ỹ, xd, yd)+
+ 2bdQI,B(t, x̃− ỹ, xd + yd) + ρδ0(yd)QI,B(t, x̃− ỹ, xd),

are the Poisson and Green functions corresponding to the second-order integro-
differential operator A = 1

2∆+I with constant coefficients and Wentzell bound-
ary conditions B in Rd+, where the kernel QI,B is given by the formula

QI,B(t, x) =

∫ t/ρ

0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)×

×xd + bdr

t− ρr
F (t− ρr, x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃,

(7.112)

for ρ > 0, and
QI,B(t, x) = −∂d

∫ ∞
0

e−b0rdr

∫
Rd−1

Γ̃0(r, z̃)×

×xd + bdr

t
F (t, x̃− ς̃ z̃ + b̃r, xd + bdr)dz̃,

(7.113)

for ρ = 0 and bd > 0, where F = FI is the fundamental solution corresponding
to A = 1

2∆ + I. Moreover, we have

BQI,B(t, x) = −xd
t
F (t, x) = PI,D(t, x), ∀t > 0, x ∈ Rd+,

where PI,D denotes the Poisson function with Dirichlet boundary conditions.
Clearly, these equalities prove the heat-kernel estimates for the main singular
part of PI,B and GI,B , and the K semi-norms estimate for the non-local part.
Moreover, even if B may contain second-order derivative the expression BQI,B
satisfies heat-kernel type estimates as PI,D, i.e., a singularity comparable to
first-order derivatives.

On the other hand, we could add a tangential non-local part to the boundary
Wentzell operator B and use the arguments of the construction of the funda-
mental solution FA in term of a series, i.e., add the integro-differential operator

Jϕ(x) =

∫
Rm∗

[
ϕ(x̃+ ̃(ζ))− ϕ(x̃)− ̃(ζ) · ∇̃ϕ(x̃)

]
π(dζ).

to B. In this case, we have to modify the expression (7.112) and (7.113) defining
the kernel QI,B , which would be given in tern of a series similar to the one used
to express the fundamental solution FA. Again, as mentioned early, we can
add constant first-order and zero-order terms (ai : i = 1, . . . , d) and a0 to the
operator A.
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7.3.2 Variable Coefficients

This is more complicate, we are going to give only some indications of how this
can be proven using the technique in the books Garroni and Menaldi [93, 94],
where the read can find full details for the case of oblique boundary conditions
in a smooth region of Rd. Moreover, by means of local coordinates, the case
of the half-space Rd+ is the reference, i.e., to which the structure is locally
isomorphic. Note that the Poisson function obtained form the Green function
in the various cases. The only case that may require some special attention for
the construction of the Poisson function is the Dirichlet boundary conditions
where the coefficients are only Hölder continuous, in this case, one has to redo
suitable estimates.

The assumptions are as stated in the beginning of this section and we assume
γ + α < 2 to simplify the estimates, in any case we do suppose 0 ≤ γ < 2.
Then, we follows the guidelines of Section 7.2.3 on the successive approximation
method, but we need to use various semi-norms to solve the corresponding
Volterra equations.

7.3.3 Density and Processes

THIS SHOULD BE A CONTINUATION OF SECTION 7.2.1 ON GREEN
AND POISSON REPRESENTATION, WITH THE EQUATION WITH TER-
MINAL CONDITION (instead of initial).

WHAT DO YOU THINK?

7.4 Forward-Backward Equations

May be interesting? If this section is added, then Section 4.5 (representation of
martingales) may be moved as a subsection of this Backward Equations. This
will make shorter Chapter 4, which is relatively long.

Check books Mao [165, Chapter 7, pp. 233–268] and Yong and Zhou [261,
Chapter 7, pp. 345–400].

7.5 Function-Valued Integrals

Our main interest are the following situations:
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Case 1 Let {wk(t) : t ≥ 0, k = 1, 2, . . .} be a sequence of independent
standard real valued Wiener processes. Now, let (Z,Z) be a measurable space,
where the σ-algebra Z is countably generated with an increasing sequence {Zn}
of subsets in Z such that Z =

⋃
n Zn. Moreover, let {pk(B, t) : t ≥ 0, B ∈

Z, k = 1, 2, . . .} be a sequence of independent real valued standard Poisson
measures with (same) Levy measure π(B) = E{pk(B, t)}/t defined on (Z,Z),
π(B) < ∞ for every B in Zn = {B ∈ Z : B ⊂ Zn}. Denote by {qk(B, t) : t ≥
0, B ∈ Z, k = 1, 2, . . .} the Poisson martingale measure qk(B, t) = pk(B, t) −
tπ(B). Furthermore, let (Ω,F, P ), F = {F(t) : t ≥ 0} be a filtered probability
space where wk(·) and qk(B, ·) are martingales relative to F, for any B in Zn.
Therefore the expression

M(t, x) = M0 +
∑
k

∫ t

0

σk(s, x)dwk(s) +
∑
k

∫
Z×]0,t]

γk(ζ, s, x)qk(dζ,ds),

where M0 is a real-valued random variable F0 measurable, {σk(t, x) : t ≥ 0, x ∈
O, k = 1, 2, . . .} and {γk(t, x) : t ≥ 0, x ∈ O, k = 1, 2, . . .} are sequences of
adapted and predictable (respectively) random fields such that∑

k

∫ t

0

|σk(s, x)|2ds+
∑
k

∫ t

0

ds

∫
Z

|γk(ζ, s, x)|2π(dζ) <∞,

almost surely, for any t > 0 and x in O.
Case 2 Clearly, this can be re-written in term of a separable Hilbert space K,

with norm | · |
K

and scalar product (·, ·)
K
. Given a real-valued F0-measurable

random variable M0, (w(t) : t ≥ 0) is cylindrical K-valued standard Wiener
process, and q(ζ,ds) is a K-valued standard Poisson martingale measure,

Mt(x) = M0 +

∫ t

0

(
σ(s, x),dw(s)

)
K

+

∫
Z×]0,t]

(
γk(ζ, s, x), q(dζ,ds)

)
K
,

where the random fields (σ(s, x) : s ≥ 0, x ∈ O) and (γ(s, x) : s ≥ 0, x ∈ O)
are adapted and predictable, respectively, such that∫ t

0

|σ(s, x)|2
K

ds+

∫ t

0

ds

∫
Z

|γ(ζ, s, x)|2
K
π(dζ) <∞,

almost surely, for any t > 0 and x in O.
Case 3 In term of two separable Hilbert spaces H and K, and the space

of Hilbert-Schmidt (linear) operators LHS(K,H), we are given almost the same
elements, a H-valued F0-measurable random variable M0, (w(t) : t ≥ 0) is cylin-
drical K-valued Wiener process, and q(ζ,ds) is a cylindrical K-valued Poisson
martingale measure, we have the expression

Mt = M0 +

∫ t

0

σ(s)dw(s) +

∫
Z×]0,t]

γ(ζ, s)q(dζ,ds),

where the L
HS

(K,H)-valued processes (σ(s) : s ≥ 0) and (γ(s) : s ≥ 0) are
adapted and predictable, respectively, such that∫ t

0

‖σ(s)‖2
HS

ds+

∫ t

0

ds

∫
Z

‖γ(ζ, s)‖2
HS
π(dζ) <∞, ∀t > 0,
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almost surely, where ‖ · ‖HS denotes the Hilbert-Schmidt norm. Note that
σ∗(s)σ(s) and γ∗(ζ, s)γ(ζ, s) are nuclear or trace-class operator on K.

It is clear that Case 1 is really Case 2 with K = `2(R), or in general, Case
2 becomes Case 1 after a basis have been chosen. The interest of Case 1 or
Case 2 is to treat B-valued martingales, where the Banach function space B
is of the type Cm,α(O), m ≥ 0, 0 < α < 1, or Sobolev spaces Wm,p

0 (O), with
m ≥ 0, 1 < p < ∞. For Case 3, the Hilbert space H is a Sobolev space, e.g.,
Hm

0 (O, with m ≥ 0.
I need your help here...

7.5.1 Function-valued Martingales

In this section we continue the discussion initiated early on martingales, now
considering processes {M(t) : t ∈ T} with values in some function spaces. To
simplify the notation, we take T = [0,∞) and sometimes we write (Mt : t ≥ 0).
Typical (separable) function spaces are Lebesgue spaces Lp(O), 1 ≤ p < ∞,
Sobolev spaces (which are reflexive) and continuous-type spaces Ck(Ō), k =
0, 1, . . . , where O is a domain in Rd (which are not reflexive). Other typical
function spaces are the Hölder spaces Cα(Ō), 0 < α < 1, which are nor separable
neither reflexive. Note that, given a measure space (Ω,F , P ) and a Banach
space B, a Borel measurable function f : Ω → B is limit a.e. of a sequence of
(measurable) simple functions if and only if the image f(Ω r N) is separable
for some set N of P -measure zero, and so, a bounded and Borel measurable
function may not be integrable.

Let H be an abstract separable Hilbert space with its inner product (·, ·)
H

and norm ‖ · ‖
H

, and B be a separable Banach space of functions (i.e., B is a
subset of real or complex valued functions defined in some domain in Rd) with its
norm ‖·‖

B
. It is clear that a vector (H or B) valued process X = (Xt : t ∈ T ) is

a measurable map from a measurable space (Ω,F) into the Borel-product spaces
(HT ,BT (H)) or (BT ,BT (B)). The total order defined in index set T is used to
generate an increasing family of σ-algebras (Ft : t ∈ T ) on (Ω,F). As soon as a
probability is given on (Ω,F), the process X is identified with its P -equivalent
class, and the probability PX on (HT ,BT (H)) or (BT ,BT (B)) is defined as
image of P through X. To realize (or to construct) a process X, we want to
prescribe the values of PX on a sufficiently large family of sets in BT (H) or
BT (B) so that a (unique) probability measure PX can be defined. In this sense,
the initial probability measure P and the measurable map X are tied together.
Thus, when discussing processes, we refer to either P or X, if the other item
X or P is understood by default. However, as mentioned early, due essentially
to the fact that the Borel product σ-algebra BT (H) or BT (B) is too small for
the product space HT or BT , the above project requires a little correction,
i.e., the initial (product) topology in BT or HT has to be changed when T is
uncountable, i.e., a sub-space (such as continuous or cad-lag functions from T
into H or B) of the spaces HT or BT is used. Within these sub-spaces, an
element (or function defined in T ) can be regarded as a unique extension of its
restriction to any countable subset of the index set T. This procedure effectively
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reconciliate the concepts of version and equality of stochastic processes.
All these points were discussed early in the chapter, however, the new com-

plication now is the fact that the spaces H and B have (in general) no a finite
dimension with at least two topologies (weak and strong). For instance, the
interested reader may consult the book Métivier [178]
(who else here?)
for a carefully analysis.

The martingale property for a H or B valued process (Mt : t ∈ T ) involves
an increasing family of (completed) σ-algebras (Ft : t ∈ T ). However, even in
the case of a space of functions, any sub σ-algebra of F is generated by B-valued
random variables X, and as one may expect, the real-valued family of random
variables X(x), for x in O is disregarded in this context.

First, in the case of a function Banach space

E{|Mt(x)|} <∞, ∀t, E{Mt(x) | Fs} = Ms(x), a.s. ∀t > s, x.

Since Mt(x) is a real-valued process for each (or almost every) x in the domain
O, this last condition is clearly understood. Note that implicitly, one assume
that E{‖Mt‖B} < ∞ implies E{|Mt(x)|} < ∞ for every or almost every x,
depending on whether B is a Lebesgue or a Hölder (or continuous-type) Banach
space.

The conditional expectation can be considered as an orthogonal projection
operator in the Hilbert space L2(H) = L2(Ω,F , P ;H), i.e., if G is a sub σ-
algebra of F and L2(G, H) = L2(Ω,G, P ;H) then

E
{
· | G

}
: L2(H) −→ L2(G, H),

E{
(
E{x | G}, y

)
H
} = E{(x, y)

H
}, ∀y ∈ L2(G, H).

However, the conditional expectation for Banach-valued random variables is
defined as follows. For every simple function

f =

n∑
i=1

1Fibi, bi ∈ B, Fi ∈ F ,

one defines

E{f | G} =

n∑
i=1

E{1Fi | G}bi.

This defines a continuous linear mapping from a dense (by definition of the space
L1) linear subspace of L1(F) = L1(Ω,F , P ;B) into L1(F) = L1(Ω,G, P ;B)
with norm less than or equal to 1. Clearly, this mapping can be uniquely
extended to the whole space L1(F). Certainly, this definition agrees with the
previous one.

On the other hand, as early noted, an important role is played by square-
integrable martingales, i.e.,

E
{
‖Mt‖2H

}
<∞, ∀t, E{Mt | Fs} = Ms, a.s. ∀t > s,
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with the previous meaning. Since t 7→ ‖Mt‖2 is a sub-martingale, one can define
the quadratic optional (or predictable) variation processes [M ]t (or 〈M〉t) as H-
valued processes and [‖M‖]t (or 〈‖M‖〉t) as real-valued processes. Certainly,
we may have a square integrable B-valued martingale if E{|Mt|2B} <∞ and we
can localize these definitions by means of stopping times.

It is worth to note that even for the simple case of H = R2, we may have
some difficulties (???)

Definition 7.6 (K-valued). TO BE ADJUSTED...
Let (Ω,F , P ) be a probability space, K be a separable Hilbert space with scalar
product (·, ·), and R be a nuclear (trace-class) self-adjoint positive definite oper-
ator R on K. A continuous process (w(t) : t ≥ 0) with independent increments
and values in K satisfying

E
{

exp
(
i(w(t), k)

)}
= exp

(
− t

2
(Rk, k)

)
, ∀t > 0, k ∈ K,

is called a K-valued Wiener process with covariance (operator) R. Similarly,
given a measure π on K∗ = K r {0} satisfying∫

K∗

(Rk, k)π(dk) <∞,

a cad-lag process (q(t) : t ≥ 0) with independent increments and values in K
satisfying

E
{

exp
(
i(q(t), k)

)}
=

= exp
(
t

∫
K∗

[
ei(Rh,k) − 1− i(Rh, k)

]
π(dh)

)
, ∀t > 0, k ∈ K,

is called a K-valued compensated Poisson point (or purely jumps) process with
Levy measure πR, πR(B) = π(R−1B), B in B(K∗). Analogously, let m be a
σ-finite measure on K∗ and B0(K∗) = {B ∈ B(K∗) : m(B) < ∞}. A family
{w(B, t) : t ≥ 0, B ∈ B0(K∗)} (or {p(B, t) : t ≥ 0, B ∈ B0(K∗)}) of con-
tinuous (or cad-lag) processes with independent increments and values in K,
indexed by B in B0(K∗), is called a K-valued Wiener (or Poisson) measure with
characteristic (R,m) if

E
{

exp
(
i(w(B, t), k)

)}
= exp

( t
2
m(B)(Rk, k)

)
, ∀t > 0, k ∈ K,

for every B in B0(K∗) (or

E
{

exp
(
i(p(B, t), k)

)}
=

= exp
(
t

∞∑
j=1

m(ejB)
[
ei(Rej ,k) − 1

])
, ∀t > 0, k ∈ K, B ∈ B0(K∗),

where {ej} is an orthonormal basis in K and ejB is the projection of B in the
direction ej , i.e., ejB = {(b, ej)ej : b ∈ B}. Note that m(B) =

∑
jm(ejB) and
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so the above series is convergent). The expression p̃(B, t) = p(B, t)−E{p(B, t)}
(or w(B, t) is called a Poisson (or Wiener) martingale (compensated) measure
with values in K.

Given an orthonormal basis {ej} in K and a measure m on K with m({0}) =
0, one has m(B) =

∑
jm(ejB), where ejB is the projection of B in the direction

ej , i.e., ejB = {(b, ej)ej : b ∈ B}. Moreover, the vector valued measure m̂(B) =∑
jm(ejB)ej satisfies∫

K∗

(
f̂(k), m̂(dk)

)
=

∞∑
j=1

∫
K∗

f(k)m(ejdk) =

∫
K∗

f(h)m(dh)

for any integrable function f with f̂ =
∑
j f
(
(ej , k)

)
ej .

It is clear that the image space K1 = R1/2K becomes a Hilbert space with
the natural scalar product (h, k)1 = (R1/2h,R−1/2k), which is dense and contin-
uously imbedded in K. Thus we have the triplet K1 ⊂ K = K ′ ⊂ K ′1, where the
prime ′ denotes the dual space via Riesz’ representation theorem. Moreover, as
in Section 1.14 in Chapter 1, we may use the Hilbert space L2(]0,∞[,K) instead
of just K to describe the characteristic function, which would include the fact
that the processes have independent increments, e.g.,

E
{

ei〈ẇ,k〉
}

= exp
(
− 1

2

∫ ∞
0

(Rk(t), k(t))dt
)
,

for any k in L2(]0,∞[,K). Similarly, for q(t) one has

E
{

ei〈q̇,k〉
}

= exp
(∫ ∞

0

dt

∫
K∗

[
ei(Rh,k(t)) − 1− i(Rh, k(t))

]
π(dh)

)
.

Next, after a proper justification (e.g., estimating the moments), one select a
continuous or cad-lag version of 〈ẇ,1(0,t)k〉 or 〈q̇,1(0,t)k〉. However, for w(B, t)
or p(B, t) one should use L2

m(]0,∞[×K,K) (with q = p− Ep),

E
{

ei〈ẇ,φ〉
}

= exp
(
− 1

2

∫ ∞
0

dt

∫
K∗

(
Rφ(t, k), φ(t, k)

)
m(dk)

)
,

or

E
{

ei〈q̇,φ〉
}

=

= exp
( ∞∑
j=1

∫ ∞
0

dt

∫
K∗

[
ei(Rej ,φ(t,k)) − 1− i(Rej , φ(t, k))

]
m(ejdk)

)
,

where m(ejdk) denotes the projection measure on the direction ej . Then, after
a proper justification (e.g., using the separability of the σ-algebras), one select
a measure version of 〈ẇ, φ〉 or 〈q̇, φ〉 with φ = k1(0,t)1B .

Given K and R as above, by means of Sazonov’s Theorem (e.g., Kallianpur
and Xiong [123, Theorem 2.3.4, pp. 68–70]) one get a realization of the above
Levy processes (Wiener and compensated Poisson point processes) and Poisson
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measure. The condition that R is a trace-class operator is necessary and forbid
the choice R = I, when K is not of finite dimension. However, the transfor-
mation R1/2 applied to the previous K-valued processes provide the K ′1-valued
processes R−1/2w(t) and R−1/2q(t), which are called cylindrical Wiener process
and cylindrical compensated Poisson point process. Therefore, for any com-
plete orthonormal basis {ei : i = 1, 2, . . .}, the projections (w(t), ei), (q(t), ei)
and (p(B, t), ei) form independent sequences of real-valued standard Wiener
process, (standard) compensated Poisson point (or purely jumps) process and
(standard) Poisson measure, and the following series∑

i

(w(t), ei),
∑
i

(q(t), ei)

are almost surely convergent in K ′1, for any t > 0 and B in B0(K∗). Conversely,
if {wi}, {qi} and {pi} are sequences of independent real-valued standard Wiener
processes, (standard) compensated Poisson point (or purely jumps) processes
and (standard) Poisson measures, then the expressions∑

i

wi(t)ei,
∑
i

qi(t)ei

are almost surely convergent in K ′1, for any t > 0 and B in B0(K∗), and provided
a realization of the above cylindrical K ′1-valued processes.

It should be clear the equivalence between (standard) compensated Poisson
point (or purely jumps) processes and (standard) Poisson measures, as in the
finite dimensional case. Indeed, if p(B, t) is first given, then stochastic integral(

q(t), k
)

=

∫
K∗×]0,t]

(
p̃(dk, ds), k

)
,

where p̃(B, t) = p(B, t)− E{p(B, t)}, for any t > 0 and B ∈ B0(K∗), yields the
compensated jump process. Conversely, if q(t) is first given, then the jumps
{j(t) = q(t)− q(t−) : t > 0} define the random measure

p(B, t) =
∑

0<s≤t

j(s)1{j(s)∈B}, t ≥ 0,

for any B in B(K0) separated form the origin. Note that E{
(
p(B, t), k

)
} =

t (Rk, k)π(B), for any t > 0, k in K and B in B0(K∗).
If the measure π on B(K∗) satisfies only∫

K∗

(
(Rk, k) ∧ 1

)
π(dk) <∞, (7.114)

then we need to adjust the definition of a compensated Poisson point process,
which is a particular case but its first or second moment may be infinite due
to the long (or big) jumps. Moreover, we may consider a compound Poisson
process with finite first moment, i.e., a Poisson measure with Levy measure πR
on K∗ = K r {0} satisfying∫

K∗

(
1 +

√
(Rk, k)

)
π(dk) <∞,
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A realization of such a process can be simplified, since p(t) = p(K∗, t) defines
a K-valued process. Indeed let us consider a sequence of independent iden-
tically distributed R × K∗-valued random variables {(τj , xj) : j = 1, 2, . . .},
where {τj} are exponentially distributed with parameter πR(K∗) and {xj} have
πR(·)/πR(K∗) as law and is independent of τj . Since

πR(K∗)E{|xj |} =

∫
K∗

√
(Rk, k)π(dk) <∞,∑

j

E{1{τ1+···+τj≤t}} <∞,

the inequality

E{|p(t)|} ≤
∑
j

E{|xj |}E{1{τ1+···+τj≤t}}

allows us to define

p(t) =
∑
j

xj 1{τ1+···+τj≤t}, ∀t ≥ 0,

almost surely as a cad-lag (piecewise constant) process with values in K. In
general, if only assumption (7.114) is satisfied then one approximate πR with
πεR, π

ε
R(B) = πR(B ∩ {k : ε ≤ |k| ≤ 1/ε}), so that, first we apply the prece-

dent construction to πεR and next we let ε vanishing. The fact that R is a
trace-class operator is used to insure the existence of a sequence of independent
identically distributed K∗-valued random variables {xj : j = 1, 2, . . .} with law
πR(·)/πR(K∗). RIGHT?

...///...

Definition 7.7 (fv-martingale). TO BE ADJUSTED...
A (general) martingale with states in separable Banach space B of real func-
tions (defined in some domain O ⊂ Rd) is a (complete) probability measure
P on (Ω,F), together with a measurable mapping M (P -equivalence class)
from (Ω,F) into (BT ,BT (B)) and an increasing family of completed σ-algebras
(Ft : t ∈ T ) on (Ω,F) satisfying the martingale property

E
{
|Mt(x)|

}
<∞, ∀t, E{Mt(x) | Fs} = Ms(x), a.s. ∀t > s,

for each (or almost every) x in O. If the family of σ-algebras (Ft : t ∈ T ) is
not mentioned, then it is assumed (Ft : t ∈ T ) is the history (Ht : t ∈ T )
of the process (Mt : t ∈ T ), i.e., Ht is generated by the random variables
{Ms : s ≤ t} and the null sets. Moreover, we say that the martingale is cad-lag
if (Ft : t ∈ T ) is a filtration satisfying the usual conditions and except on a
set of P -probability zero, the paths of (Mt(x) : t ∈ T ) are cad-lag for every (or
almost every) x. The martingale is continuous if their paths are continuous.
Furthermore, since Mt(x) takes values in R, we may define also super - or sub-
martingale by replacing the equal sign by either ≤ or ≥ in the above condition.
Finally, if the process M is valued in an abstract Hilbert H then only (general)
square-integrable martingales are defined.

Section 7.5 Menaldi January 7, 2014



CHAPTER 7. STOCHASTIC DIFFERENTIAL EQUATIONS III 757

Eventually, one can easily generalize the definition of martingales taking val-
ues into a separable dual space of an abstract Banach space and to a countably
Hilbertian space.

Now, we need to know that we can always construct a version of M which is
cad-lag. Essentially, one uses the ideas of real-valued sub-martingales for each
x in a countable dense set of O and then specific properties of the topology
in the Banach space of functions B to conclude. Certainly, this is obvious for
square-integrable martingales with values in some abstract Hilbert space H.
(Hope this is TRUE?)

RECALL to include the case where a random-martingale can be considered
as a Hilbert-valued martingale, see G-K

PERHAPS RECALL to include the case of a countably Hilbert space valued
stochastic integral, which includes Rigged Hilbert/Banach Spaces!...

Let S = ∩∞n=0Sn be a nuclear countably Hilbertian space as in Definition 2.5
of Chapter 2, i.e.,

S ⊂ · · · ⊂ Sn ⊂ · · · ⊂ S1 ⊂ S0 = S ′0 ⊂ S−1 ⊂ S−n ⊂ · · · ⊂ S ′,

where all inclusions are continuous and dense, and the norm and the inner
product in the space Sn and its dual space S−n are denoted by ‖ · ‖n, (·, ·)n,
and ‖ · ‖−n, (·, ·)−n, respectively.

7.5.2 Martingale Measures

Usually, (real-valued) martingales measures are obtained from (random) inte-
ger measures, as a part of the so-called random measures on Blackwell spaces,
which are measurable spaces (E, E) with the disintegration (or regular condi-
tional probability) property, i.e., if X is any (E, E)-valued random variable on
any probability space (Ω,F , P ) and if G is any sub σ-field of F then X admits
a regular conditional probability with respect to G. Integer measures provide
a way of study the jumps of cad-lag processes, and the key point is the pre-
dictable compensators, which is a random measure. Thus, starting from an
integer measure {ν(B, t) : t ≥ 0, B ∈ E} one get its predictable compensator
{νp(B, t) : t ≥ 0, B ∈ E}, and then ν̃(B, t) = ν(B, t)−νp(B, t) is a (real-valued,
local) martingale measure. The most important example is the (real-valued)
standard Poisson measure, i.e., an integer measure p(B, t) with a deterministic
predictable compensator of the form E{p(B, t)} = tπ(B), where π is a σ-finite
measure on (E, E). Actually, if such a π (called intensity measure) is given
on as Blackwell space (E, E) then a standard (also called homogeneous) Pois-
son measure with intensity measure π can be constructed, e.g., see Jacod and
Shiryaev [117, Section II.1, pp. 64–74]. A standard Poisson measure with in-
tensity measure π is a family of Poisson process {p(B, t) : t ≥ 0}, indexed by B
in E0 = {B ∈ E : π(B) <∞}, with mean E{p(B, t)} = tπ(B), and for any finite
number of disjoint subsets B1, . . . , Bn in E0, the processes p(B1, t), . . . , p(Bn, t)
are independent. Clearly, q(B, t) = p(B, t) − tπ(B) is a family of martingales
indexed by B. Also, it can be defined as a family of cad-lag processes with
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characteristic function

E
{

exp
(
irp(B, t)

)}
= exp

(
tπ(B)

[
eir − 1

])
, ∀r ∈ R,

for every t > 0 and B in E0. Hence, given a (real-valued) strictly positive square-
integrable function γ, the integral (defined ω-per-ω or via a stochastic integral,
almost surely)

pγ(B, t) =

∫
B

γ(ζ)p(dζ, t), ∀t > 0, B ∈ E0,

yields a family of cad-lag processes with characteristic function

E
{

exp
(
irpγ(B, t)

)}
= exp

(
t

∫
B

[
eirγ(ζ) − 1

]
π(dζ)

)
,

for every t > 0, r in R and B in E0. Thus, πγ = πγ−1, i.e., πγ(R) = π(γ−1(R)),
for any Borel subset R of R∗ = Rr {0}, is the Levy measure of pγ .

IS all this business with γ correct? For instance, since∫
E

|γ(ζ)|2π(dζ) <∞

we can simply use the stochastic integral∫
B

γ(ζ)p(dζ, t) =

∫
B×(0,t]

γ(ζ)q(dζ,ds) + t

∫
B

γ(ζ)π(dζ)

to define pγ(B, t), for any t > 0 and B in E0.
On the other hand, let (Z,Z) be a measurable space, where the σ-algebra

Z is countably generated, e.g., Z = Rm∗ = Rm r {0} with its Borel sets Z.
Furthermore we re given an increasing sequence {Zn} of subsets in Z such that
Z =

⋃
n Zn, and set Zn = {B ∈ Z : B ⊂ Zn}, e.g., in the case of Z = Rm∗ , we

choose Zn = {x ∈ Rm∗ : 1
n ≤ |x| ≤ n}.

Definition 7.8. A family of random variables q(B, t), indexed by (B, t), with
t ∈ R+ and B ∈ Z, is a (local) martingale measure if

(1) q(B, ·) is a (local) square integrable martingale for any B in
⋃
nZn.

(2) q(B1 ∪ B2 ∪ . . . ∪ Bn, t) = q(B1, t) + q(B2, t) + . . . + q(Bn, t) a.s., for any t
and any pairwise disjoint sets B1, B2, . . . , Bn ∈ Zn.
(3) For every (t, ω) there exists a measure %t on (Z,Z) such that %t is finite on
Zn, the process %·(B) is predictable for every B ∈ Zn and

〈q(B, ·)〉t =

∫
]0,t]

%s(B) dVs <∞

for every t and B ∈
⋃
Zn and some increasing predictable cad-lag (real valued)

processes with V0 = 0.

(4) 〈q(B1, ·), q(B2, ·)〉t = 〈q(B1 ∩B2, ·)〉t for every t and B1, B2 ∈
⋃
nZn.
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• Remark 7.9. The property (4) easily implies the notion of orthogonal mar-
tingale measure (see Definition 3.33, i.e. 〈q(B1, ·), q(B2, ·)〉t = 0 if B1 ∩B2 = ∅.
On the other hand the property of being orthogonal implies (4), namely we can
write B1 = (B1 r B2) ∪ (B1 ∩ B2) and q(B1, t) = q(B1 r B2, t) + q(B1 ∩ B2, t)
by using (2). By using the analogous decomposition for q(B2, t) we can write

q(B1, t)q(B2, t) = q(B1 rB2, t)q(B2, t) + q(B1 ∩B2, t)
2+

+q(B1 ∩B2, t)q(B2 rB1, t).

Now, the orthogonality property implies (4).

• Remark 7.10. Perhaps the two most typical examples are the Gaussian and
Poisson orthogonal martingale measure. Given a σ-measure µ on (Z,Z), a
Gaussian orthogonal martingale measure W (B, t) is a family of independent
Wiener processes indexed by B, µ(B) <∞) such that E{W (B1, t)W (B2, s)} =
(t ∧ s)µ(B1 ∩ B2). On the other hand, given a σ-measure ν on (Z,Z) and a
function h in L2(ν), a Poisson orthogonal martingale measure P (B, t) is a family
of h-compensated Poisson processes indexed by B, ν(B) < ∞, i.e., P (B, t) =∫
B
h(z)

(
N(dz, t) − tν(dz)

)
, where N(B, t) is a family of independent Poisson

processes such that E{N(B, t)} = tν(B), (i.e., a Poisson random measure). It
is clear that 〈W (B, ·)〉t = tµ(B) and 〈P (B, ·)〉t = tν(B), i.e., condition (3) of
Definition 7.8 with V (t) = t and a deterministic processes %t.

Let us denote Π(B, t) := 〈q(B, ·)〉t; for every P × Z measurable function ϕ
such that∫

Z×]0,t]

ϕ2(ζ, s) Π(dζ,ds) <∞ (7.115)

with probability 1, we can define the stochastic integral

It(ϕ) =

∫
Z×]0,t]

ϕ(ζ, s) q(dζ,ds)

in the usual way (by approximating with step predictable processes) and It(ϕ)
is a (local) martingale.

Let us choose a countable family {B1, B2, . . .} that generates Z and such
that q(Bi, t) <∞ for any i, any t and any ω. For every (s, ω), the sequence of
functions {1B1

,1B2
, . . .} is total in every Hilbert space L2

(s,ω)(Z, %s(ω,dζ)). For

each L2
(s,ω)(Z, %s(ω,dζ)), we can construct an orthonormal base

g
(1)
(s,ω)(z), g

(2)
(s,ω)(z), g

(3)
(s,ω)(z), . . .

by applying the Gram-Schmidt ortho-normalization procedure to the previous

total sequence, in such a way that any (s, ω, ζ)→ g
(n)
(s,ω)(z) is P×Z-measurable.

Let us consider the sequence of real-valued (local) martingales

hn(t) := It
(
g

(n)
(s,ω)(·)

)
=

∫
Z×]0,t]

g
(n)
(s,ω)(ζ) q(dζ,ds).
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We have 〈hn(·)〉t = Vt and 〈hn(·), hm(·)〉t = 0 for n 6= m. Now define

H(t) =

∞∑
n=1

1
n hn(t) en, en = (0, 0, 0, . . . , 0, 1, 0, . . . , 0, . . .),

where the 1 is the n-coordinate, i.e. the set {e1, e2, e3, . . .} is the standard
orthonormal base of `2, the space of all sequences (an)∞n=1 such that

∑
n a

2
n <∞.

The stochastic process H(t) is a local square integrable martingale in `2.
On the other hand we can consider the sequence

ϕn(s, ω) =

∫
Z

ϕ(ζ, s) g
(n)
(s,ω)(ζ) %s(ω,dζ)

of components of ϕ(s, ·) in each L2
(s,ω)(Z, %s(ω,dζ)). Let us consider the se-

quence of stochastic integrals

jn(t) :=

∫
]0,t]

ϕn(s) dhn(s)

and it is easy to see that the series j(t) := j1(t) + j2(t) + · · · converges in the
L2(Ω) sense. We recall that this can be interpreted as the stochastic integral

j(t) =

∫
]0,t]

〈φ(s),dH(s)〉

where φ(t) : {a ∈ `2 :
∑
n

1
n2 |an|2 < ∞} → R is the linear map defined by

〈φ(t, ω), en〉 = nϕn(t, ω). We have

Theorem 7.11. The stochastic integral with respect to a (local) martingale
measure can be represented as a stochastic integral with respect to an `2-valued
martingale:∫

Z×]0,t]

ϕ(ζ, s) q(dζ,ds) =

∫
]0,t]

〈φ(s),dH(s)〉,

with the previous notation.

Proof. Exchanging the series with the integral, it is easy to see that∫
Z×]0,t]

ϕ(ζ, s) q(dζ,ds) =

∞∑
n=1

∫
]0,t]

ϕn(s) dhn(s);

the right hand side is just the stochastic integral j(t).

Now let us consider function-valued integrators. Given a filtered space
(Ω,F , P,Ft : t ≥ 0) and a measure space (A,A, µ), for each point a in A, let us
assume that Mc(t, a) is a real-valued continuous (local) square-integrable mar-
tingale with predictable quadratic co-variation αa,b(t) = 〈Mc(·, a),Mc(·, b)〉(t)
and Mj(t, a) is a Rd-valued purely jump (local) square-integrable martingale
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with predictable co-compensator νpa,b in Rm∗ × (0,∞), m = 2d, i.e., the pre-
dictable compensator corresponding to the integer random measure νa,b asso-
ciated with the Rm-valued process t 7→

(
Mj(t, a),Mj(t, b)

)
, which yields the

(local) martingale measure ν̃a,b = νa,b − νpa,b. To simplify notation, we set
αa(t) := αa,a(t), ν̃a := ν̃a,a and νpa := νpa,a. If that f(t, a) and g(ζ, t, a) are
two real-valued predictable processes belonging to L2

loc(αa) and L2
loc(νpa), re-

spectively, then the stochastic integral

I(t, a) =

∫ t

0

f(s, a)Mc(ds, a) +

∫
Rm∗ ×(0,t]

g(ζ, s, a)ν̃a(dζ,ds)

is defined for every a in A. Now, one wants to regard I(t, a) as a process in both
variables (t, a). If all processes f, g, Mc and Mj are jointly measurable (which
imply that αa,b(t), ν̃a,b(B, (0, t]) and νpa,b(B, (0, t]) are too), then the stochastic
integral process I(t, a) is also jointly measurable.

Indeed, to check this point, it suffices to see that if {In(t, a) : n ≥ 1} is a
sequence of jointly measurable predictable processes such that

qt,a(In, I, ε) := P
{
|In(t, a)− I(t, a)| > ε

}
→ 0, as n→∞,

for every ε > 0, t ≥ 0 and a in A, then defining inductively the sequence of
indexes {n(k, t, a) : k ≥ 1} by n(0, t, a) = 1 and

n(k, t, a) = inf
{
r > n(k − 1, t, a) : sup

n,m≥r
qt,a(In, Im, 2

−k) ≤ 2−k)
}
,

one deduce that the series

∞∑
k=1

{
|In(k+1,a)(t, a)− In(k,a)(t, a)|

}
is almost surely convergent, proving that there is a jointly measurable (also cad-
lag or continuous in t) process Ī(t, a) such that Ī(·, a) = I(·, a), almost surely,
for each a in A. Hence, the stochastic integral can be taken jointly measurable.

Note that the predictable quadratic co-variation associated with the contin-
uous part of the stochastic integral I(t, a) is the process∫ t

0

f(s, a)f(s, b)dαa,b(t),

while ∫
(0,t]×Rm∗

g(ζ, s, a)g(ζ, s, b)νpa,b(dζ,ds)

is the predictable co-compensator.
Once the measurability question is resolved, a Fubini’s type theorem for

stochastic integral follows, i.e., under the above joint measurability conditions
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and assuming that Mc(t, a) = Mc(t) and Mj(t, a) = Mj(t) are independent of
a, one has∫

A

I(t, a)µ(da) =

∫ t

0

(∫
A

f(s, a)µ(da)
)
Mc(ds) +

+

∫
Rm∗ ×(0,t]

(∫
A

g(ζ, s, a)µ(da)
)
ν̃(dζ,ds)

provided that the processes f and g are (locally) square-integrable with respect
to the product measure µ(da)×dα(t)×dP and µ(da)×νp(dζ,dt)×dP, respec-
tively.

Can we have a more general version of Fubini’s theorem? Something like
starting from a (local) martingale-measure in Υ(da, t) in the product A ×
[0,∞), and the sections martingale-measures M(dt, a)µ(da) and µ(da, t)M(dt)
to make-up Fubini’s theorem.
What do you think?

7.6 Function-valued Stochastic Equation?

NOW, THE STUFF FROM Gyongy-Krylov..., UPDATED!

7.6.1 Stochastic Differentials and Flows

Itô and energy formulae
THIS HAS A NON-EMPTY INTERSECTION WITH “FLOWS” Perhaps,

we should check book Kunita [143]!

7.6.2 Existence and Uniqueness

NOW, THE STUFF FROM Gyongy-Krylov..., by now, only mainly “Existence
and Uniqueness” remain...

THIS IS NOT STOCHASTIC PDE, BUT IT IS RELATED, THE COEFFI-
CIENTS ARE FUNCTION-VALUED LOCALLY LIPSCHITZ WITH LINEAR
GROWTH (OR POLYNOMIAL GROWTH WITH A PRIORI BOUNDS), THE
MARTINGALE IS ALSO FUNCTION-VALUED, OK?

MAINLY, the coefficients g, σ and γ were (in Chapter 5) functions from
[0,∞) × Rd, [0,∞) × Rd and Rm∗ × [0,∞) × Rd into Rd, Rd × Rn and Rd,
respectively, and now we will have Rn and Rm replaced by a Hilbert space K
and Rm∗ replaced by K∗ = K r {0}, and the space where the solution live Rd
replaced by another Hilbert space H. Usually, this will be “applicable when ”H
will have a finite dimension or the coefficient will be linear bounded operators.
The driven processes are K-valued Levy process, i.e., first a Wiener process
with a trace-class covariance operator R1 denoted by {w(t) : t ≥ 0} and a
second a Poisson point process with a trace-class covariance operator R2 and
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Levy measure π, this means that

E{ei(w(t),k)} = exp
(
− t(R1k, k)/2

)
,

E{ei(p(t),k)} = exp
(
t

∫
K∗

[
ei(R2h,k) − 1− i(R2h, k)

]
π(dh)

)
,

for every t ≥ 0 and k in K, where (·, ·) = (·, ·)K denotes the inner product in
K. Certainly π satisfies∫

K∗

(
|k|2 ∧ |k|

)
π(dk) <∞,

where | · | = | · |K is the norm in K.
———————————————————————————

7.7 Applications of Backward Integration

This section is taken from [50], where we use the notion of backward integration
to treat, in a simpler and unifying way, various results obtained with other
technique. This includes Girsanov and Feynman-Kac formulae.

Suppose given functions g : [0, T ]×Rd 7→ Rd, σ : [0, T ]×Rd 7→ L(Rd,R`) and
γ : Rm∗ × [0, T ]× Rd 7→ Rd satisfying the assumptions:

(a) The coefficients g(t, x), σ(t, x) and γ(z, t, x) are always supposed Borel mea-
surable, and because we are interested in global solutions defined on a prescribed
bounded interval, say [0, T ], we impose a linear growth condition, namely, there
exists a constant C > 0 such that

|g(t, x)|2 + |σ(t, x)|2 +

∫
Rm∗
|γ(z, t, x)|2π(dz) ≤ C(1 + |x|2), (7.116)

for every (t, x) in [0, T ] × Rd. Thus, the initial condition x must be an F(t0)-
measurable random variable (most of the time, a deterministic value).

(b) A clean existence and uniqueness theory is developed adding a uniform
locally Lipschitz condition in the variable x, namely, for any r > 0 there exists
a positive constant M = M(r) such that

|g(t, x)− g(t, x′)|2 + |σ(t, x)− σ(t, x′)|2 +

+

∫
Rm∗
|γ(z, t, x)− γ(z, t, x′)|2π(dz) ≤M |x− x′|2,

(7.117)

for every (t, x), (t, x′) in [0, T ]× Rd with |x| ≤ r and |x′| ≤ r.
(c) The functions g(t, x), σ(t, x) and γ(z, t, x) are twice continuously differen-
tiable in x and locally bounded, i.e., if ∂`xg(t, x), ∂`xσ(t, x) and ∂`xγ(z, t, x) denote
any of the derivatives up to the order ` ≤ 2 then for any r > 0, we have

|∂`xg(t, x)|2 + |∂`xσ(t, x)|2 +

∫
Rm∗
|∂`xγ(z, t, x)|2π(dz) ≤ K`

r , (7.118)
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for any 0 ≤ t ≤ T, |x| ≤ r and some constant K`
r .

Now, for a given T > 0, x in Rd and s in [0, T ], let us consider the stochastic
differential equation

X(t) = x+

∫ t

s

g(r,X(r))dr +

∫ t

s

σ(r,X(r))dw(r) +

+

∫
Rm∗ ×]s,t]

γ(z, r,X(r))p̃(dz,dr),
(7.119)

with t in ]s, T ]. Note that one may replace σ(r,X(r)) and γ(z, r,X(r)) with
σ(r,X(r−)) and γ(z, r,X(r−)) in both stochastic integrals.

It is well known that, under conditions (7.116), (7.117) and (7.118), the
stochastic differential equation (7.119) has a unique solution, that we denote by
X(t, s, x), t in [s, T ], such that X(t, s, x) is twice differentiable on x. Clearly
this is set on a complete filtered probability space (Ω,F , P ) with a (standard)
Wiener process w and a (standard) Poisson measure p with Lévy measure π.
We also consider the flow operators Us,t acting on functions ϕ : Rd × Ω 7→ R
defined as

Us,tϕ(x) = ϕ(X(t, s, x)), 0 ≤ s ≤ t ≤ T.

It is easy to check that the backward evolution property:

Us,t = Us,rUr,t, 0 ≤ s ≤ r ≤ t ≤ T,

holds thanks to the semigroup law of X(t, s, x). In particular if ϕ is deterministic
then we are interested in the process (random field) (s, x) 7→ ϕ(X(t, s, x)) =
Us,tϕ(x) which we denote by utϕ(s, x).

7.7.1 Definitions

Let us recall briefly the backward integration for a standard Wiener process
and a Poisson measure. In a given probability space (Ω,F , P ) let (w(t), t ≥ 0)
be a R`-valued Wiener process and let {p(·, t) : t ≥ 0} be a standard Poisson
measure with Lévy (characteristic or intensity) measure π(·) in Rm∗ = Rmr{0},
and (local) martingale measure {p̃(·, t) : t ≥ 0}, p̃(·, t) = p(·, t)− tπ(·). Given a
fix T > 0, define the standard Wiener process ŵT (t) = w(T )−w(T − t) and the
a standard Poisson measure p̂T (·, t) := p(·, T )− p(·, T − t), for t in [0, T ), with
Lévy (characteristic or intensity) measure π̂T (·) = π(T )− π(T − t), and (local)
martingale measure ˜̂pT (·, t) = p̂T (·, t) − tπ̂T (·). Then the backward integral is
the (forward) integral with respect to ŵT and ˜̂pT .

Define the two-index family of sub σ-algebras {Fba : t > s ≥ 0} or {F(b, a) :
b ≥ a ≥ 0} generated by the increments w(t)− w(s) and p(B, t)− p(B, s), b ≥
t > s ≥ a, B ∈ Rm∗ . Now, for a given T > 0, define {F̂Tt : t ≤ T} also denoted by
{F̂T (t) : t ≤ T}, where F̄T (t) = ∩ε>0F(T, t+ ε), clearly the single-index family
of sub σ-algebras {F̄T (t) : t ≤ T} is decreasing and left-continuous, called
backward filtration. An elementary or simple process (backward-predictable)
has the form
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(1)-either f(t, ω) = fi(ω) if ti−1 ≤ t < ti with some i = 1, . . . , n, where 0 ≤
t0 < t1 < · · · < tn = T are real numbers and fi is a F̄T (ti) measurable bounded
random variable for any i, and f(t, ω) = 0 otherwise;

(2)-or g(z, t, ω) = gi,j(ω) if ti−1 ≤ t < ti and z belongs to Kj with some
i = 1, . . . , n, and j = 1, . . . ,m, where 0 ≤ t0 < t1 < · · · < tn = T are real
numbers, Kj are disjoint sets with compact closure in Rm∗ and gi,j is a F̄T (ti)
measurable bounded random variable for any i, and g(z, t, ω) = 0 otherwise.

It is clear what the backward integral should be for any backward-predictable
processes f(t) and g(z, t), namely∫ T

0

f(s) d̂w(s) :=

n∑
i=1

fi [w(ti)− w(ti−1)],∫ b

a

f(s) d̂w(s) :=

∫ T

0

f(s)1[a,b)(s) d̂w(s),

and ∫
Rm∗ ×[0,T )

g(z, s) p̃(dz, d̂s) :=

n∑
i=1

m∑
j=1

gi,j p̃(Kj×]ti−1, ti]),∫
Rm∗ ×[a,b)

g(z, s) p̃(dz, d̂s) :=

∫
Rm∗ ×[0,T )

g(z, s)1[a,b)(s) p̃(dz, d̂s),

for every b > a ≥ 0.
Then for any right-continuous backward-adapted process (i.e., adapted to

the filtration {F̄T (t) : t ≤ T ) of the form g(z, t, ω) = gj(t, ω) when z belongs to
Kj , we can calculate the backward stochastic integral, namely,∫

Rm∗ ×[t,T )

m∑
j=1

gj(s)1Kj (z) p(dz, d̂s) :=

m∑
j=1

p(t,Kj ,ω)∑
k=1

gj(θk(ω,Kj), ω),

for any t ≥ 0, where θk(ω,Kj) is the time of the k jump of the Poisson process
t 7→ p(Kj , t). In the case of a compound-Poisson process as above, we may
forget about the K dependency, and make the previous pathwise definition, both
concepts agree, i.e., if the Poisson measure p(B, t) is approximated by the ε-
Poisson measure p(B, t) with finite Levy measure πε(B) := π({z ∈ B : |z| ≥ ε})
then the backward stochastic integral can be written as above.

The Poisson measure p(dz,ds) with Lévy measure π satisfies p(Rm∗ , {0}) = 0
and can be approximated by another Poisson measure pε(dz,ds) with Lévy
measure πε = 1Kεπ, where the support Kε = {0 < ε ≤ |z| ≤ 1/ε} of πε is
a compact on Rm∗ , i.e., all jumps smaller than ε or larger than 1/ε have been
eliminated. The integer measure pε is associated with a compound Poisson
process and has a finite (random) number of jumps, i.e., for any T > 0 there is
an integer N = N(T, ω), points zi = zi(T, ω) in Kε for i = 1, . . . , N and positive

reals θi = θi(T, ω), i = 1, . . . , N such that pε(B, ]a, b], ω) =
∑N
n=1 1zi∈B1a<θi≤b,

for every B ∈ B(Rm∗ ), 0 ≤ a < b ≤ T. In this case, the forward stochastic integral
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can be written as∫
Rm∗ ×(0,T ]

f(z, s) p̃ε(dz,ds) =

N∑
i=1

f(zi, θi−)−
∫ T

0

ds

∫
Kε

f(z, s)π(dz),

for any adapted (forward, i.e. to Fs0 , s ≥ 0) cad-lag process f(z, s), continuous
in z. On the other hand, the backward stochastic integral is written as∫

Rm∗ ×[0,T )

g(z, s) p̃ε(dz, d̂s) =

N∑
i=1

g(zi, θi)−
∫ T

0

ds

∫
Kε

g(z, s)π(dz),

for any adapted (backward, i.e. to FTs , s ≤ T ) cad-lag process g(z, s), contin-
uous in z. Recall that elementary forward processes are left-hand continuous
while elementary backward processes are right-continuous. However, after tak-
ing limits for elementary processes, both, cad-lag and cag-lad adapted (either
forward or backward) processes are integrable, but one takes the cag-lad version
for the forward integral and the cad-lag version for the backward integral.

Finally, the backward stochastic integral is extended to all backward pre-
dictable processes, including all cag-lad (i.e., left-hand continuous having right-
hand limit) processes, satisfying∫ T

0

|f(t)|2dt <∞ and

∫ T

0

dt

∫
Rm∗
|g(z, t)|2π(dz) <∞

almost surely, similarly to Chapter chap-4.
It is then clear that∫ b

a

f(t) d̂w(t) =

∫ T−a

T−b
f̂T (t) dŵT (t),∫

Rm∗ ×[a,b)

g(z, t) p̃(dz, d̂t) =

∫
Rm∗ ×(T−b,T−a]

ĝT (z, t) ˜̂pT (dz,dt),

for any 0 ≤ a < b ≤ T, where f̂T (t) := f(T − t) and ĝT (z, t) := g(z, T − t).
Note that by using backward integration with respect to a Wiener and a

Poisson measure we avoid possible difficulties with time reversal.

7.7.2 Backward Itô Formula

For any nonnegative integer k, we denote by Ck(Rd) (resp. Ckb (Rd)) the space
of all functions from Rd into R which are uniformly continuous (resp. uniformly
continuous and bounded) together with their derivatives of order less or equal
than k.

In what follows, we prove a backward Itô formula for the process ϕ(X(t, s, x)),
where ϕ in C2(Rd) and X(t, s, x) is the solution to (7.119). The proof is based
on Taylor formula and explicitly exploits the fact that X(t, s, x) is the solution
to the differential stochastic equation (7.119).

We denote by Ls and Ms the linear operators defined for ϕ in C2
b (Rd)

Lsϕ(x) = L0
sϕ(x) + Lγsϕ(x), (7.120)
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where

L0
sϕ(x) = 1

2Tr[D2ϕ(x)σ(s, x)σ∗(s, x)] +
(
g(s, x), Dϕ(x)

)
,

Lγsϕ(x) =

∫
Rm∗

[ϕ(x+ γ(z, s, x))− ϕ(x)− (γ(z, s, x), Dϕ(x))]π(dz),

and {
Msϕ(x) = σ(s, x)∗Dϕ(x),

Ns(z)ϕ(x) = ϕ(x+ γ(z, s, x))− ϕ(x).
(7.121)

To simplify the notation, we may use(
Msϕ(x), y

)
=
(
σ(s, x)y,Dϕ(x)

)
, ∀y ∈ Rd,

where (·, ·) is the scalar (or dot) product in Rd. We have

Proposition 7.12. Assume conditions (7.116), (7.117) and (7.118) and let ϕ in
C2(Rd). Then the random field utϕ(s, x) = ϕ(X(t, s, x)) satisfies the stochastic
partial differential equation

utϕ(s, x) = ϕ+

∫ t

s

Lrutϕ(r, x)dr +

∫ t

s

(
Mru

t
ϕ(r, x), d̂w(r)

)
+

+

∫
[s,t[×Rm∗

Nr(z)utϕ(r, x)p̃(dz, d̂r),
(7.122)

where we recall that d̂w(t) and p̃(dz, d̂r) stand for backward stochastic integra-
tion.

Proof. The arguments are similar to those in Ikeda and Watanabe [110, Theorem
II.5.1, p. 66]. The first step is to prove the result without the small jumps, e.g.,
we approximate the function γ in (7.119) and the measure π. Indeed, without
any lost of generality we assume γ(z, t, x) continuous in z and we set πn(B) =
π({z ∈ B : n|z| ≥ 1, |z| ≤ n}), n = 1, 2, . . . and B any Borel subset of Rm∗ , so
that if pn is the corresponding Poisson measure then there exist an increasing
sequence of stopping times {τ1, τ2, . . .} and an adapted sequence of random
variables (jumps) {z1, z2, . . .} such that

pn(]0, t]× Rm∗ ) =

∞∑
m=1

zi1{τi≤t}.

Clearly, 0 < τi < τi+1 if τi <∞ and τi is the time of the i jump given by zi.
Consider the process Xn(t) = Xn(t, s, x) solution to the following stochastic

differential equation
Xn(t) = x+

∫ t

s

g(r,Xn(r))dr +

∫ t

s

σ(r,Xn(r))dw(r) +

+

∫
Rm∗ ×]s,t]

γ(z, r,Xn(r))p̃n(dz,dr).
(7.123)
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Such solution Xn(t) has properties similar to those of equation (7.119), and if
utϕ,n(s, x) = ϕ(Xn(t, s, x)) then converges (in probability) to utϕ(s, x), together
with their first and second derivatives in x, uniformly for 0 ≤ s ≤ t ≤ T and
|x| ≤ r, for any fixed r > 0. Moreover, we can write the stochastic differential
equation (7.123) as

Xn(t) = x+

∫ t

s

g(r,Xn(r))dr +

∫ t

s

σ(r,Xn(r))dw(r) +

+
∑
i

γ(zi, τi, Xn(τi))1{s<τi≤t} −
∫ t

s

dr

∫
Rm∗

γ(z, r,Xn(r))πn(dz),

for any n.
Hence we have

ϕ(Xn(t, s, x))− ϕ(x) =

=
∑
i

{ϕ(Xn(t, s ∨ τi−1, x))− ϕ(Xn(t, s ∨ τi−, x))}+

+
∑
i

{ϕ(Xn(t, s ∨ τi−, x))− ϕ(Xn(t, s ∨ τi, x))}.

(7.124)

and we can deal with first sum as a continuous process. Therefore, we assume
temporarily that

Xn(t) = x+

∫ t

s

g̃n(r,Xn(r))dr +

∫ t

s

σ(r,Xn(r))dw(r), (7.125)

where

g̃n(t, x) = g(t, x)−
∫
Rm∗

γ(z, t, x)πn(dz),

i.e., without changing notation we are working between two consecutive jumps,
namely, in ]τi, τi+1[ or alternatively, we do consider the jumps.

Now, let Σst be the set of all decompositions (or partitions) σ = {s = s0 <
s1 < . . . < sN = t} of the interval [s, t], partially ordered in the usual way. For
any σ in Σst we set

|σ| = max
{
sk − sk−1 : k = 1, . . . , N

}
.

and we have

ϕ(Xn(t, s, x))− ϕ(x) =

N∑
k=1

[
ϕ(Xn(t, sk−1, x))− ϕ(Xn(t, sk, x))

]
=

=
N∑
k=1

[
ϕ(Xn(t, sk, Xn(sk, sk−1, x)))− ϕ(Xn(t, sk, x))

]
.
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To simplify the notation, we set

ϕn(t, s, x) = ϕ
(
Xn(t, s, x)

)
= unt,ϕ(s, x),

ϕ′n(t, s, x) = Dx

[
ϕ
(
Xn(t, s, ·)

)]
(x),

ϕ′′n(t, s, x) = D2
x

[
ϕ
(
Xn(t, s, ·)

)]
(x),

where Dx means derivative in the variable x. It follows

ϕ(Xn(t, s, x))− ϕ(x) =

N∑
k=1

(
ϕn(t, sk, x), Xn(sk, sk−1, x)− x

)
+

= 1
2

N∑
k=1

(
ϕ′′n(t, sk, x)(Xn(sk, sk−1, x)− x), Xn(sk, sk−1, x)− x

)
+

+R1(|σ|),

Then

N∑
k=1

(
ϕ′n(t, sk, x), Xn(sk, sk−1, x)− x

)
=

=

N∑
k=1

(
ϕ′n(t, sk, x), g̃(sk, x)

)
(sk − sk−1) +

+

N∑
k=1

(
ϕ′n(t, sk, x), σ(sk, x)(w(sk)− w(sk−1))

)
+R2(|σ|),

and

1
2

N∑
k=1

(
ϕ′′n(t, sk, x)(Xn(sk, sk−1, x)− x), Xn(sk, sk−1, x)− x

)
=

= 1
2

N∑
k=1

(
ϕ′′n(t, sk, x)σ(sk, x), σ(sk, x)

)
(sk − sk−1) +R3(|σ|).

Gathering all, we find

ϕ(Xn(t, s, x))− ϕ(x) =

N∑
k=1

(
ϕ′n(t, sk, x), g̃(sk, x)

)
(sk − sk−1) +

+

N∑
k=1

(
ϕ′n(t, sk, x), σ(sk, x)(w(sk)− w(sk−1))

)
+

+ 1
2

N∑
k=1

(
ϕ′′n(t, sk, x)σ(sk, x), σ(sk, x)

)
(sk − sk−1) +R(|σ|),

(7.126)

where

R(|σ|) = R1(|σ|) +R2(|σ|) +R3(|σ|).
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Now, by proceeding as in the usual proof of Itô formula, taking into account
that we have

Xn(sk, sk−1, x)− x =

∫ sk

sk−1

g̃(r,Xn(r, sk−1, x))dr +

+

∫ sk

sk−1

σ(r,Xn(r, sk−1, x))dw(r),

we deduce R(|σ|) → 0 in probability. So now, by setting ϕn(s) = ϕ(t, s, x) =
ϕ(Xn(t, s, x)) with Xn(t, s, x) given by (7.125), and letting |σ| tend to 0 in
(7.126), we obtain

ϕn(s) = ϕ+

∫ t

s

L0
rϕn(r)dr −

∫ t

s

∫
Rm∗

(
γ(z, r, x), Dϕn(r)

)
πn(dz)dr +

+

∫ t

s

(
Mrϕn(r), d̂w(r)

)
,

This means that for the first sum in (7.124) yields the contribution

ϕ(x) +

∫ t

s

L0
ru
t
ϕ,n(r, x)dr −

∫ t

s

∫
Rm∗

(
γ(z, r, x), Dutϕ,n(r, x)

)
πn(dz)dr +

+

∫ t

s

(
Mru

t
ϕ,n(r), d̂w(r)

)
,

where utϕ,n(s, x) = ϕ(Xn(t, s, x)) with Xn(t, s, x) given by (7.123).
For the second sum in (7.124), i.e., the sum of jumps, we set γn(z, s) =

γ(z, s,Xn(t, s−, x)) and we have∑
i

{ϕ(Xn(t, s ∨ τi−, x))− ϕ(Xn(t, s ∨ τi, x))} =

=
∑
i

{ϕ(Xn(t, τi−, x))− ϕ(Xn(t, τi, x))}1{s<τi≤t} =

=

∫
[s,t)×Rm∗

[
ϕ(Xn(t, r−, x) + γ(z, r, x))− ϕ(Xn(t, r−, x))

]
pn(dz,dr) =

=

∫
[s,t)×Rm∗

[
ϕ(Xn(t, r−, x) + γ(z, r, x))− ϕ(Xn(t, r−, x))

]
p̃n(dz,dr) +

+

∫ t

s

dr

∫
Rm∗

[
ϕ(Xn(t, r−, x) + γ(z, r, x))− ϕ(Xn(t, r−, x))

]
πn(dz),

thus, establishing (7.122), replacing p̃ with p̃n, for utϕ,n(s, x).
Now, we can pass to the limit for n→∞. One have Xn(t, s, x)→ X(t, s, x),

DxXn(t, s, x) → DxX(t, s, x) and D2
xXn(t, s, x) → D2

xX(t, s, x), a.s. (also uni-
formly in finite intervals with respect to s and x). Consequently, utϕ,n(s, x) →
utϕ(s, x) and L0

ru
t
ϕ,n(s, x) → L0

ru
t
ϕ(s, x) a.s. (also uniformly in finite intervals

with respect to s and x).
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Also, it is easy to see, by the dominated convergence theorem, that∫ t

0

L0
ru
t
ϕ,n(r, x)dr →

∫ t

0

L0
ru
t
ϕ(r, x)dr, a.s.,

∫ t

0

(
Mru

t
ϕ,n(r), d̂w(r)→

∫ t

0

(
Mru

t
ϕ(r), d̂w(r) in L2([0, T ]× Ω),

∫ t

s

dr

∫
Rm∗

[
ϕ(Xn(t, r−, x) + γ(z, r, x))− ϕ(Xn(t, r−, x))

]
πn(dz)

→
∫ t

s

dr

∫
Rm∗

[
ϕ(X(t, r−, x) + γ(z, r, x))− ϕ(X(t, r−, x))

]
π(dz),

a.s., and∫
[s,t)×Rm∗

[
ϕ(Xn(t, r−, x) + γ(z, r, x))− ϕ(Xn(t, r−, x))

]
p̃n(dz,dr)

→
∫

[s,t)×Rm∗

[
ϕ(X(t, r−, x) + γ(z, r, x))− ϕ(X(t, r−, x))

]
p̃(dz,dr),

where the convergence is meant in L2([0, T ] × Ω). Thus the proof is now com-
plete.

• Remark 7.13. Using Stratonovich integral, instead of backward Itô integral,
the second order term in Lt disappears, consequently equation (7.122) reduces to
the first order stochastic partial differential equation studied by Kunita [143].
In other words equation (7.122) is essentially a first order equation, see also
Krylov and Rozovskii [218].

• Remark 7.14. If ϕ in C2
b (Rd), then by taking expectation in (7.122) we readily

see that function v(s, x)

v(s, x) = E
{
ϕ(X(t, s, x))

}
, 0 ≤ s ≤ t ≤ T,

gives a solution of backward Kolmogorov equation{
∂sv(s, x) + Lsv(s, x) = 0, ∀s ∈]0, t],

v(t, x) = ϕ(x), ∀x ∈ Rd,

in the whole space Rd.
• Remark 7.15. If the function ϕ also depends on the backward time s, i.e.,
ut,ϕ(s, x) = ϕ(s,X(t, s, x)) then the backward Itô formula is modified by adding
a term ∂sϕ(s,X(t, s, x))) into the operator L.
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Let us introduce three mappings F : [0, T ] × Rd 7→ R, G : [0, T ] × Rd 7→ R`
and H : Rm∗ × [0, T ] × Rd 7→ (−1,∞), and let us assume that F and G are
continuous on [0, T ]× Rd and

E
{∫ T

s

dr

∫
Rd∗
|H(z, r,X(r, s, x))|2π(dz)

}
<∞,

E
{∫ T

s

dr

∫
Rd∗

[
H(z, r,X(r, s, x))−

− ln
(
1 +H(z, r,X(r, s, x))

)]
π(dz)

}
<∞,

(7.127)

for any s in [0, T ]. Then we consider the following linear stochastic differential
equation, for any t in ]s, T ],

ηs(t) = 1 +

∫ t

s

ηs(r)F (r,X(r, s, x))dr +

+

∫ t

s

ηs(r)
(
G(r,X(r, s, x)),dw(r)

)
+

+

∫
Rm∗ ×]s,t]

ηs(r)H(z, r,X(r, s, x))p̃(dz,dr),

(7.128)

where X(t, s, x) is the solution of (7.119).
From now on, we denote this process ηs(t) by ηt(s, x), because we want to

study the dependency on (s, x). Under conditions (7.116), (7.117), (7.118) and
(7.127), the unique solution of problem (7.128) is given by

ηt(s, x) = exp
{∫ t

s

(
G(r,X(r, s, x)),dw(r)

)
+

+

∫ t

s

[
F (r,X(r, s, x))− 1

2 |G(r,X(r, s, x))|2
]

dr +

+

∫
Rm∗ ×]s,t]

H(z, r,X(r, s, x))p̃(dz,dr) +

+

∫ t

s

dr

∫
Rm∗

[
H(z, r,X(r, s, x))− ln

(
1 +H(z, t,X(r, s, x))

)]
π(dz)

}
.

(7.129)

We want to compute the backward Itô differential of ηt(s, x) in s. To this
end, let us introduce the following operators

LF,G,Hs ψ(x) = Lsψ(x) +
(
σ(s, x)G(s, x), Dψ(x)

)
+

+

∫
Rm∗
H(z, s, x)[ψ(x+ γ(z, s, x))− ψ(x)]π(dz) + F (s, x)ψ(x),

(7.130)

and 
MG

s ψ(x) =Msψ(x) +G(s, x)ψ(x),

NH
s (z)ψ(x) = Ns(z)ψ(x) +H(z, s, x)ψ(x+ γ(z, s, x)),

(7.131)

for ψ in C2
b (Rd). Then, by using the same technique as in the proof of Proposi-

tion 7.12, we can prove the following result:
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Proposition 7.16. Let us assume that conditions (7.116), (7.117), (7.118) and
(7.127) hold. Then we have

ηt(s, x) = 1 +

∫
Rm∗ ×[s,t[

NH
r (z)ηt(r, ·)(x)p̃(dz, d̂r) +

+

∫ t

s

(
MG

r η
t(r, ·)(x), d̂wr

)
+

∫ t

s

LF,G,Hr ηt(r, ·)(x)dr,

(7.132)

for any 0 ≤ s < t ≤ T, and x in Rd.

Proof. For this end we note first that ηt(s, x) verifies the following identity

ηt(s, x) = ηt(r,X(r, s, x)) ηr(s, x), (7.133)

where s ≤ r ≤ t.
As usual, the first step is to prove the result without the small jumps, actually

we approximate π, p and p̃ by πn, pn and p̃n as before.
Considering Xn(t) given by (7.123) and

ηtn(s, x) = 1 +

∫ t

s

ηrn(s, x)F (r,Xn(r, s, x))dr +

+

∫ t

s

ηrn(s, x)
(
G(r,Xn(r, s, x)),dw(r)

)
+

+

∫
Rm∗ ×]s,t]

ηrn(s, x)Hn(z, r,Xn(r, s, x))p̃n(dz,dr),

which can be rewrite as

ηtn(s, x) = 1 +

∫ t

s

ηrn(s, x)F (r,Xn(r, s, x))dr +

+

∫ t

s

ηrn(s, x)
(
G(r,Xn(r, s, x)),dw(r)

)
+

+
∑
i

ητin (s, x)H(zi, τi, Xn(τi, s, x))1{s<τi≤t} −

−
∫ t

s

dr

∫
Rm∗

ηrn(s, x)H(z, r,Xn(r, s, x))πn(dz),

then we have

ηtn(s, x)− 1 =
∑
i

{ηtn(s ∨ τi−1, x)− ηtn(s ∨ τi−, x)}+

+
∑
i

{ηtn(s ∨ τi−, x)− ηtn(s ∨ τi, x)}.

The first sum can be dealt as a continuous process, that is like (7.125) and

ηtn(s, x) = 1 +

∫ t

s

ηrn(s, x) F̃n(r,Xn(r, s, x))dr +

+

∫ t

s

ηrn(s, x)
(
G(r,Xn(r, s, x)),dw(r)

)
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where

F̃n(t, x) = F (t, x)−
∫
Rm∗

H(z, t, x)πn(dz).

Then, let σ = {s = s0 < s1 < . . . < sN = t} in Σst. Then we have

ηtn(s, x)− 1 =

N∑
k=1

[
ηtn(sk−1, x)− ηtn(sk, x)

]
.

Now we note that, in view of (7.133), we have

ηtn(sk−1, x)− ηtn(sk, x) = ηtn(sk, Xn(sk, sk−1, x)) ηskn (sk−1, x)− ηtn(sk, x),

and then we can write ηtn(sk−1, x)− ηtn(sk, x) = Jk1 + Jk2 + Jk3 , where

Jk1 = ηtn(sk, Xn(sk, sk−1, x))− ηtn(sk, x),

Jk2 = ηtn(sk, x)
(
ηskn (sk−1, x)− 1

)
,

Jk3 =
[
ηtn(sk, Xn(sk, sk−1, x))− ηtn(sk, x)

](
ηskn (sk−1, x)− 1

)
.

Considering J1 =
∑N
k=1 J

k
1 and arguing as in preceding section, we can write

J1 =

N∑
k=1

[
L0
sk
ηtn(sk, ·)(x)−

∫
Rm∗

(γ(z, sk, x), Dηtn(sk, x))πn(dz)
]
(sk − sk−1)

+

N∑
k=1

(
Mskη

t
n(sk, ·)(x), w(sk)− w(sk−1)

)
+R′(|σ|).

Analogously, for J2 =
∑N
k=1 J

k
2 , we can write

J2 =

N∑
k=1

ηtn(sk, x)
[
F (sk, x)−

∫
Rm∗

H(z, sk, x)πn(dz)
]
(sk − sk−1) +

+

N∑
k=1

ηtn(sk, x)
(
G(sk, x), w(sk)− w(sk−1)

)
+R′′(|σ|).

Finally, for J3 =
∑N
k=1 J

k
3 , we can write

J3 =

N∑
k=1

(
Mskη

t
n(sk, ·)(x), G(sk, x)

)
(sk − sk−1) +R′′′(|σ|).

Taking into account that Xn(t, s, x) fulfills equation (7.119), and that ηtn(s, x)
is the solution to (7.128), we have, arguing as in the proof of Itô formula,

R(|σ|) = R′(|σ|) +R′′(|σ|) +R′′′(|σ|)→ 0,
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in probability as |σ| → 0. Since ηtn(s, x)− 1 = J1 + J2 + J3, letting |σ| tend to
0, we have the following contribution to ηtn(s, x) from the first sum

1 +

∫ t

s

L0
rη
t
n(r, x)dr −

∫ t

s

dr

∫
Rm∗

(
γ(z, r, x), Dηtn(r, x)

)
πn(dz) +

+

∫ t

s

(
Mrη

t
n(r, ·)(x), G(r, x)

)
dr +

+

∫ t

s

ηtn(r, x)
[
F (r, x)−

∫
Rm∗

H(z, r, x)πn(dz)
]
dr

+

∫ t

s

(
Mrη

t
n(r) + ηtn(r, x)G(r, x), d̂w(r)

)
.

For the second sum, i.e., the jumps, we have to use the analogous of identity
(7.133), that is

ηtn(τi−, x) = ηtn(τi, X(τi, τi−, x))ητin (τi−, x).

Hence,∑
i

{ηtn(s ∨ τi−, x))− ηtn(s ∨ τi, x))} =

=
∑
i

{ηtn(τi−, x)− ηtn(τi, x)}1{s<τi≤t} =

=
∑
i

{ηtn(τi, X(τi, τi−, x))ητin (τi−, x)− ηtn(τi, x)}1{s<τm≤t} =

=
∑
i

{ηtn(τi, X(τi, τi−, x))− ηtn(τi, x) +

+ηtn(τi, X(τi, τi−, x))[ητin (τi−, x)− 1]}1{s<τm≤t}
Writing this sum as an integral, that is∫

Rm∗ ×[s,t)

[
ηtn(r−, x+ γ(z, r, x))− ηtn(r, x)

]
pn(dz, d̂r) +

+

∫
Rm∗ ×[s,t)

[
ηtn(r−, x+ γ(z, r, x))H(z, r, x)

]
pn(dz, d̂r),

we arrive to write it in the final form∑
i

{ηtn(s ∨ τi−, x))− ηtn(s ∨ τi, x))} =

=

∫
[s,t)×Rm∗

[
ηtn(r−, x+ γ(z, r, x))− ηtn(r, x)

]
p̃n(dz, d̂r) +

+

∫ t

s

∫
Rm∗

[
ηtn(r−, x+ γ(z, r, x))− ηtn(r, x)

]
πn(dz) dr +

+

∫
[s,t)×Rm∗

[
ηtn(r−, x+ γ(z, r, x))H(z, r, x)

]
p̃n(dz, d̂r) +

+

∫ t

s

∫
Rm∗

[
ηtn(r−, x+ γ(z, r, x))H(z, r, x)

]
πn(dz) dr.
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Thus, we have established (7.122) for ηtn(s, x). Now, we can pass to the limit
for n→∞ in the same way as in the preceding section.

7.7.3 Generalized Girsanov Formula

Using the notation for the operators LF,G,Hs ,MG
s andNH

s (z), defined by (7.130)
and (7.131), we have the following theorem

Theorem 7.17. Assume that conditions (7.116), (7.117), (7.118) and (7.127)
hold. Let ϕ in C2

b (Rd) and denote

yt(s, x) = ϕ(X(t, s, x))ηt(s, x).

Then yt(s, x) satisfies the backward stochastic partial differential equation
yt(s, x) = ϕ(x) +

∫ t

s

LF,G,Hr yt(r, ·)(x)dr +

+

∫ t

s

(
MG

r y
t(r, ·)(x), d̂wr

)
+

∫
Rm∗ ×[s,t[

NH
r (z)yt(r, ·)(x)p̃(dz, d̂r),

(7.134)

where the operators in (7.134) are defined in the previous section. Here recall

that d̂w(t) and p̃(dz, d̂t) mean the backward stochastic integration.

Proof. We point out that we do not need any change of probability space to
obtain a Girsanov formula.

The proof of Theorem 7.17 uses the following Lemma 7.18 as follows. First
we apply the following lemma with u(s) = ϕ(X(t, s, x)) and v(s) = ηt(s, x).
Recalling (7.122) and (7.132), we easily arrive to the conclusion.

Lemma 7.18. Let us suppose that u(s), v(s) be of the following form

u(s)− u(t) =

∫ t

s

u1(r)dr +

∫ t

s

u2(r) d̂wr +

∫
Rm∗ ×[s,t)

u3(z, r) p̃(dz, d̂r),

v(s)− v(t) =

∫ t

s

v1(r)dr +

∫ t

s

v2(r) d̂wr +

∫
Rm∗ ×[s,t)

v3(z, r) p̃(dz, d̂r).

Then we have

u(s) v(s)− u(t) v(t) =

=

∫ t

s

(
u1(r) v(r) + u(r) v1(r) + u2(r) v2(r) +

+

∫
Rm∗

u3(z, r)v3(z, r)π(dz)
)

dr +

+

∫ t

s

(
u2(r) v(r) + u(r) v2(r)

)
d̂wr +

+

∫
[s,t)×Rm∗

(
u3(z, r) v(r) + u(r) v3(z, r) +

+u3(z, r)v3(z, r)
)
p̃(dz, d̂r)

(7.135)
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Proof. The procedure is just the same as before. As usual, the first step is to
prove the result without the small jumps, actually we approximate π, p and p̃
by πn, pn and p̃n as before, i.e., πn(B) = π({z ∈ B : n|z| ≥ 1}), n = 1, 2, . . .
and B any Borel subset of Rm∗ .

Thus, let us consider the following processes

u(n)(s)− u(n)(t) =

∫ t

s

u1(r)dr +

∫ t

s

u2(r) d̂wr +

+

∫
[s,t)×Rm∗

u3(z, r) p̃n(dz, d̂r)

v(n)(s)− v(n)(t) =

∫ t

s

v1(r)dr +

∫ t

s

v2(r) d̂wr +

+

∫
[s,t)×Rm∗

v3(z, r) p̃n(dz, d̂r),

then, there exists a sequence of stopping times (where one jump occurs) 0 < τ1 <
τ2 < · · · and jumps z1, z2, . . . , such that we can write the preceding equations
as

u(n)(s)− u(n)(t) =

∫ t

s

u1(r)dr +

∫ t

s

u2(r) d̂wr +

+
∑
i

u3(zi, τi)1{s≤τi<t} −
∫ t

s

dr

∫
Rm∗

u3(z, r)πn(dz),

v(n)(s)− v(n)(t) =

∫ t

s

v1(r)dr +

∫ t

s

v2(r) d̂wr +

+
∑
i

v3(zi, τi)1{s≤τi<t} −
∫ t

s

dr

∫
Rm∗

v3(z, r)πn(dz),

then we have

u(n)(s)v(n)(s)− u(n)(t)v(n)(t) =

=
∑
i

{u(n)(s ∨ τi−1)v(n)(s ∨ τi−1)− u(n)(s ∨ τi−)v(n)(s ∨ τi−)}+

+
∑
i

{u(n)(s ∨ τi−)v(n)(s ∨ τi−)− u(n)(s ∨ τi)v(n)(s ∨ τi)}.

The first sum can be dealt as a continuous process, that is (we drop the index
n to simplify notation)

u(s)− u(t) =

∫ t

s

ū1(r)dr +

∫ t

s

u2(r) d̂wr,

v(s)− v(t) =

∫ t

s

v̄1(r)dr +

∫ t

s

v2(r) d̂wr
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with

ū1(r) = u1(r)−
∫
Rm∗

u3(z, r)πn(dz),

v̄1(r) = v1(r)−
∫
Rm∗

v3(z, r)π(dz).

Hence, let us write

u(s) v(s)− u(t) v(t) =

N∑
k=1

(
u(sk−1) v(sk−1)− u(sk) v(sk)

)
=

N∑
k=1

(u(sk−1)− u(sk)) v(sk) +

N∑
k=1

u(sk) (v(sk−1)− v(sk)) +

+

N∑
k=1

(u(sk−1)− u(sk)) (v(sk−1)− v(sk)).

Now we can write

u(sk−1)− u(sk) = ū1(sk)(sk − sk−1) + u2(sk)(w(sk)− w(sk−1)) + L1
k,

v(sk−1)− v(sk) = v̄1(sk)(sk − sk−1) + v2(sk)(w(sk)− w(sk−1)) + L2
k,

and

(u(sk−1)− u(sk)) (v(sk−1)− v(sk)) = u2(sk)v2(sk)(sk − sk−1) + L3
k.

Setting

L(|σ|) =

n∑
k=1

{
v(sk)L1

k + u(sk)L2
k + L3

k

}
,

it follows that L(|σ|)→ 0 in probability as |σ| → 0. Hence

u(n)(s) v(n)(s)− u(n)(t) v(n)(t) =

=

∫ t

s

(
u1(r) v(r) + u(r) v1(r) + u2(r) v2(r)−

−
∫
Rm∗

u(r)v3(z, r)π(dz)−
∫
Rm∗

u3(z, r)v(r)π(dz)
)

dr +

+

∫ t

s

(
u2(r) v(r) + u(r) v2(r)

)
d̂wr
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For the second sum we have simply∑
i

{u(n)(s ∨ τi−)v(n)(s ∨ τi−)− u(n)(s ∨ τi)v(n)(s ∨ τi)} =

=
∑
i

{
u(n)(τi−)v(n)(τi−)− u(n)(τi)v

(n)(τi)
}
1{s<τi≤t} =

=

∫
[s,t)×Rm∗

[
u(n)(r)v3(z, r) + u3(z, r)v(n)(r) +

+u3(z, r)v3(z, r)
]
pn(dz,dr) =

=

∫
[s,t)×Rm∗

[
u(n)(r)v3(z, r) + u3(z, r)v(n)(r) +

+u3(z, r)v3(z, r)
]
p̃n(dz,dr) +

+

∫ t

s

dr

∫
Rm∗

[
u(n)(r)v3(z, r) + u3(z, r)v(n)(r) +

+u3(z, r)v3(z, r)
]
πn(dz).

Thus, we have established (7.135) for u(n)(s)v(n)(s). Now, we can pass to the
limit for n→∞ in the same way as in the preceding section.

Corollary 7.19. Assume that conditions (7.116), (7.117), (7.118) and (7.127)
hold, G is bounded and F is bounded above. If ϕ belongs to C2

b (Rd), then the
function

u(s, x) = E
{
yt(s, x)

}
, 0 < s < t,

is a solution to the (backward) Kolmogorov equation{
∂su(s, x) + LF,G,Hs u(s, ·)(x) = 0, ∀s < t,

u(t, x) = ϕ(x), ∀x ∈ Rd.
(7.136)

in the whole space Rd.

First, let us consider the case of F = H = 0. Here we want to find an expres-
sion for the transition semigroup corresponding to the following the stochastic
differential equation, with t in [s, T ],

Y (t) = x+

∫ t

s

[g(r, Y (r)) + σ(r, Y (r)G(r, Y (r))]dr +

+

∫ t

s

σ(r, Y (r))dw(r) +

∫
Rm∗ ×]s,t]

γ(z, r, Y (r))p̃(dz,dr),
(7.137)

in terms of X(t), the solution to the “simpler” equation
X(t) = x+

∫ t

s

g(r,X(r)) dr +

∫ t

s

σ(r,X(r))dw(r) +

+

∫
Rm∗ ×]s,t]

γ(z, r,X(r))p̃(dz,dr),
(7.138)

The following result can be considered as a formulation of Girsanov’s theorem.
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Theorem 7.20. Assume that conditions (7.116), (7.117) and (7.127) hold with
F = 0, H = 0, with G bounded. Let ϕ be in Cb(Rd), and let Y (t, s, x) and
X(t, s, x) be the solutions to (7.137), and (7.138) respectively. Then we have,
for every 0 ≤ s ≤ t ≤ T and x ∈ Rd,

E
{
ϕ(Y (t, s, x)

}
= E

{
ϕ(X(t, s, x))ηt(s, x)

}
, (7.139)

where ηt(s, x) is given by

ηt(s, x) = exp
{∫ t

s

(
G(X(r, s, x)),dw(r)

)
− 1

2

∫ t

s

|G(X(r, s, x))|2dr

Proof. Actually, first under the regularity assumption (7.118) and assuming ϕ
in C2

b (Rd), we only need to prove that both sides of identity (7.139), considered
as functions of (s, x) fulfill the Kolmogorov equation{

∂su(s, x) + L0,G,0
s u(s, ·)(x) = 0, ∀s < t, x ∈ Rd,

u(t, x) = ϕ(x), ∀x ∈ Rd.

This is obviously true for the left hand side. For as the right hand side is
concerned it is enough to apply formula (7.136), choosing F = 0 and H = 0.
Finally, we approximate the coefficients and ϕ to conclude.

Now consider 0 ≤ s < T fixed and the stochastic differential equation as-
sociated with the integro-differential operator L0,G,H

s , see (7.130) and (7.131),
considered in the variable r, i.e., the probability Psx in the canonical space such
that Psx({ω ∈ D([s, T ],Rd) : ω(s) = x}) = 1 and the process

Mϕ(t) = ϕ
(
ω(t)

)
+

∫ t

s

L0,G,H
r ϕ(ω(r))dr, ∀t ∈ [s, T ],

is a Psx-martingale for every smooth function ϕ.
Here we want to find an expression for the transition semigroup correspond-

ing to the above probability Psx in terms of the same X(t) as in (7.138). The
following result can be considered as a formulation of Girsanov’s theorem.

Theorem 7.21. Assume that conditions (7.116), (7.117), and (7.127) hold with
F = 0, with G and H bounded. Let ϕ be in Cb(Rd), and let X(t, s, x) be the
solution to (7.138) and Psx be the unique martingale solution associated with
the integro differential operator L0,G,H

r . Then we have, for every 0 ≤ s ≤ t ≤ T
and x ∈ Rd,

Esx
{
ϕ
(
ω(t)

)}
= E

{
ϕ(X(t, s, x))ηt(s, x)

}
, (7.140)

where Esx denotes the expectation with respect to Psx and ηt(s, x) is given by

ηt(s, x) = exp
{∫ t

s

(
G(X(r, s, x)),dw(r)

)
− 1

2

∫ t

s

|G(X(r, s, x))|2dr +

+

∫
Rm∗ ×]s,t]

H(z, r,X(r, s, x))p̃(dz,dr) +

+

∫ t

s

dr

∫
Rm∗

[
H(z, r,X(r, s, x))− ln

(
1 +H(z, t,X(r, s, x))

)]
π(dz)

}
.
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Proof. This is essentially the same of the case F = 0 and H = 0, the only
point to notice is that now, the right-hand side of (7.140) is used to define a
probability which is the solution of the desired martingale problem.

Note that in the previous case, the stochastic equations for Y and X could
be set (but non necessarily) in the same probability space with the same Wiener
process and Poisson measure. However, when the jumps are involved, one may
have the stochastic equations for X set in an arbitrary probability space, and
by taken the image, one may suppose that (7.138) is really set on the canoni-
cal probability space D([0,∞),Rd) where the canonical process ω(t) = X(t, ω)
solves the stochastic equation under the initial probability measure. Then, un-
der the new probability measure Psx, the same canonical process ω(t) solves the
equivalent of equation (7.137), which is given as a martingale problem or by
specifying the characteristics of the canonical process under Psx, namely, the
drift and diffusion terms are as in (7.137), but the integer measure ν (associated
with the jumps of ω) has

νp(B×]a, b]) =

∫
]a,b]

dr

∫{
z∈Rm∗ :γ(z,r,ω(r−))∈B

}(1 +H(z, r, ω(r−)))π(dz),

for every B in B(Rd∗), 0 ≤ a < b, as its predictable compensator, i.e., the Lévy
measure or kernel has changed from π{z ∈ Rm∗ : γ(z, r, ·) ∈ B}ds into

M(B, s, ·) ds =
(∫
{z∈Rm∗ :γ(z,r,·)∈B}

(1 +H(z, r, ·))π(dz)
)

ds,

as expected.

7.7.4 Feynman-Kac Formula

We have

Theorem 7.22. Assume that conditions (7.116), (7.117), (7.118) and (7.127)
hold, with G = 0 and H = 0, and that F is bounded above. If ϕ is in C2

b (Rd),
then the function

u(s, x) = E
{
yt(s, x)

}
, 0 < s < t,

where yt(s, x) = ϕ(X(t, s, x))ηt(s, x), is a solution to the (backward) Kolmogorov
equation{

us(s, x) + Lsu(s, ·)(x) + F (s, x)u(s, x) = 0, ∀s < t, x ∈ Rd,

u(t, x) = ϕ(x), x ∈ Rd

where ηt(s, x) is given by (7.128) or (7.129).

Proof. Since G = H = 0, we have from (7.129)

ηt(s, x) = exp
{∫ t

s

F (X(r, s, x))dr
}
.
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Moreover formula (7.134) becomes

yt(s, x) = ϕ(x) +

∫ t

s

[
Lryt(r, ·)(x) + F (r, x)yt(r, x)

]
dr +

+

∫ t

s

(
Mry

t(r, x), d̂wr
)

+

∫
Nr(z)yt(r, x)p̃(dz, d̂r).

Taking expectation, the conclusion follows.

Now we take a look at a stochastic version of the Feynman-Kac formula.
Assume that we are given two probability filtered spaces (Ω1,F (1), P1) and
(Ω2,F (2), P2), with respectively a pair of a k1-dimensional Wiener process w1

and a (Poisson) random measure p1(dz1,dt) (with compensator π1(dz1)), with

jump values in Rm1
∗ , both adapted to a filtration {F (1)

t }t≥0, and a pair of a
k2-dimensional Wiener process w2 and a (Poisson) random measure p2(dz2,dt)
(with compensator π2(dz2)), with jump values in Rm2

∗ , both adapted to a filtra-

tion {F (2)
t }t≥0.

Let us consider Ω = Ω1 × Ω2, F = F (1) ⊗ F (2), w = (w1, w2) and that
G = (0, G2) where G2 is k2-dimensional and the matrix σ = (σ1, σ2) where σ1

is n×k1 matrix and σ2 is n×k2 matrix. Moreover, we can define on Rm∗ , where
m = m1 +m2, the random measure

p(dz,dt) = p1(dz1,dt) δ(dz2) + δ(dz1) p2(dz2,dt)

with associated compensator

π(dz) = π1(dz1) δ(dz2) + δ(dz1)π2(dz2),

and γ(z, t, x) = γ1(z1, t, x) + γ2(z2, t, x); we can suppose that γi(0, t, x) = 0.
hence, we consider the solution X(t) = X(t, s, x) to the equation (7.119), that
can be written as

X(t) = x+

∫ t

s

g(r,X(r)) dr +

+

∫ t

s

σ1(r,X(r))dw1(r) +

∫ t

s

σ2(r,X(r))dw2(r) +

+

∫
Rm1
∗ ×]s,t]

γ1(z1, r,X(r))p̃1(dz1,dr) +

∫
Rm2
∗ ×]s,t]

γ2(z2, r,X(r))p̃2(dz2,dr).

We are here concerned with the following stochastic partial differential equa-
tion

u(s, x) = ϕ(x) +

∫ t

s

{
Lru(r, ·)(x) + σ2(r, x)G2(r, x), Du(r, ·)(x)

)
+

+

∫
Rm2
∗

H2(z2, r, x)[u(r, x+ γ2(z, r, x))− u(r, x)]π2(dz2)
}

dr +

+

∫ t

s

(
σ∗2(r, x)Du(·)(x) +G2(r, x)u(r, x), d̂w2(r)

)
+

+

∫
Rm2
∗ ×[s,t)

[u(r, x+ γ2(z2, r, x))− u(r, x) +H2(z2, r, x)u(r, x)]p̃2(dz2, d̂r).

(7.141)
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In our case, we can write Lr = L0
r + Lγ1r + Lγ2r where for i = 1, 2

Lγis ϕ(x) =

∫
Rmi∗

[ϕ(x+ γi(z, s, x))− ϕ(x)− (γi(z, s, x), Dϕ(x))]πi(dz).

This problem arises in studying Filtering Theory, e.g., see Pardoux [194] or
Rozovskii [218].

Let us consider

ηt(s, x) = exp
{∫ t

s

(
G2(X(r, s, x)), dw2(r)

)
− 1

2

∫ t

s

|G2(X(r, s, x))|2)dr +

+

∫
Rm2
∗ ×]s,t]

H2(z2, r,X(r, s, x))p̃2(dz2,dr) +

+

∫ t

s

dr

∫
Rm∗

[
H2(z2, r,X(r, s, x))− ln

(
1 +H2(z2, t,X(r, s, x))

)]
π2(dz2)

}
.

where X(t, s, x) is the process indicated above.
The following result gives a representation formula for the solution to (7.141).

Theorem 7.23. Assume that conditions (7.116), (7.117), (7.118) and (7.127)
hold with F = 0, and let ϕ be in C2

b (Rd). Then function (here we denote by E1

the expectation value with respect to first variable ω1)

u(s, x) = E1

{
ϕ(X(t, s, x))ηt(s, x)

}
, ∀s ∈ [0, t],

is a solution to the stochastic Kolmogorov equation (7.141).

Proof. Consider yt(s, x) = ϕ(X(t, s, x))ηt(s, x). This process satisfies the equa-
tion

yt(s, x) = ϕ(x) +

∫ t

s

[
Lryt(r, ·)(x) +

(
σ2(r, x)G2(r, x), Dyt(r, ·)(x)

)]
dr +

+

∫ t

s

dr

∫
Rm2
∗

H2(z2, r, x)[yt(r, x+ γ2(z2, r, x))− yt(r, x)]π2(dz2) +

+

∫ t

s

(
Dyt(r, ·)(x), σ1(r, x)d̂w1(r)

)
+

+

∫ t

s

(
σ∗2(r, x)Dyt(r, ·)(x) +G2(r, x)yt(r, x), d̂w2(r)

)
+

+

∫
Rm1
∗ ×[s,t)

[yt(r, x+ γ1(z1, r, x))− yt(r, x)] p̃1(dz1, d̂r) +

+

∫
Rm2
∗ ×[s,t)

[yt(r, x+ γ2(z2, r, x))− yt(r, x) +

+H2(z2, r, x)yt(r, x)] p̃2(dz2, d̂r).

Taking conditional expectation E1, the conclusion follows.

.̇. ...
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Chapters IX–XI (Théories discréte du potentiel), 1983, Chapters XI–XVI
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applications, volume Vol. 1. Dunod, Paris, 1968. 114, 123

[156] P.L. Lions and J.L. Menaldi. Optimal control of stochastic integrals and
Hamilton-Jacobi-Bellman equations. SIAM J Control Optim., 20:58–95,
1982. 658

[157] P.L. Lions and A.S. Sznitman. Stochastic differential equations with re-
flecting boundary conditions. Comm. Pure Appl. Math., 37:511–537, 1984.
694

[158] R.S. Liptser and A.N. Shiryayev. Theory of Martingales. Kluwer Academic
Publ., Dordrecht, 1986. 70, 222, 223, 224, 225, 227, 310, 375, 584
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cations. Birkhäuser, Boston, 1997. 156, 646, 670, 741

[232] V.A. Solonnikov. A priori estimates for second order equations of parabolic
type. Trudy Math. Inst. Steklov , 70:133–212, 1964. 157, 632

[233] V.A. Solonnikov. On Boundary Value Problems for Linear General
Parabolic Systems of Differential Equations. Trudy Math. Inst. Steklov.
English transl., Amer. Math. Soc., Providence, Rhode Island, 1967. 157,
632, 730, 732, 733, 739

[234] W. Stannat. Dirichlet forms and Markov processes: A generalized frame-
work including both elliptic and parabolic cases. Potential Analysis, 8:21–
60, 1998. 143

[235] W. Stannat. (Nonsymmetric) dirichlet operators on l1: existence, unique-
ness and associated Markov processes. Ann. Scuola Norm. Sup. Pisa Cl.
Sci, (4) 28:99–140, 1999. 138, 143

[236] W. Stannat. The theory of generalized Dirichlet forms and its applications
in analysis and stochastics, volume 142, no. 678, 101 pp. of Mem. Amer.
Math. Soc. Am. Math. Soc., Providence, Rhode Island, 1999. (PhD Thesis,
University of Bielefeld 1996). 143

[237] K.R. Stromberg. Probability for Analysts. Chapman and Hall, New York,
1994. 2, 11

[238] D.W. Stroock. Probability Theory: An Analytic View. Cambridge Uni-
versity Press, Cambridge, 1999. revised edition. 2, 11, 254

[239] D.W. Stroock and S.R. Varadhan. Diffusion processes with boundary
conditions. Comm. Pure Appl. Math., 24:147–225, 1971. 286, 669

[240] D.W. Stroock and S.R. Varadhan. On degenerate elliptic-parabolic oper-
ators of second order and their associagted diffusions. Comm. Pure Appl.
Math., 25:651–714, 1972. 141, 286, 658, 669

[241] D.W. Stroock and S.R. Varadhan. Multidimensional diffusion process.
Springer-Verlag, Berlin, 1979. 24, 71, 82, 89, 269, 286, 602, 607, 609, 627,
629, 633
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Notation

Some Common Uses:

N, Q, R, C: natural, rational, real and complex numbers.

i, <(·), I: imaginary unit, the real part of complex number and the identity
(or inclusion) mapping or operator.

P, E{·}: for a given measurable space (Ω,F), P denotes a probability measure
and E{·} the expectation (or integration) with respect to P. As customary
in probability, the random variable ω in Ω is seldom used in a explicit
notation, this is understood from the context.

F(t), Ft, B(t), Bt: usually denote a family increasing in t of σ-algebra (also
called σ-fields) of a measurable space (Ω,F). If {xt : t ∈ T} is a family of
random variables (i.e., measurable functions) then σ(xt : t ∈ T ) usually
denotes the σ-algebra generated by {xt : t ∈ T}, i.e., the smallest sub
σ-algebra of F such that each function ω → xt(ω) is measurable. Usually
F denotes the family of σ-algebras {F(t) : t ∈ T}, which is referred to as
a filtration.

X(t), Xt, x(t), xt: usually denote the same process in some probability space
(Ω,F , P ). One should understand from the context when we refer to the
value of the process (i.e., a random variable) or to the generic function
definition of the process itself.

1A: usually denotes the characteristic function of a set A, i.e., 1A(x) = 1 if x
belongs to A and 1A(x) = 0 otherwise. Sometimes the set A is given as a
condition on a function τ , e.g., τ < t, in this case 1τ<t(ω) = 1 if τ(ω) < t
and 1τ<t(ω) = 0 otherwise.

δ: most of the times this is the δ function or Dirac measure. Sometimes one write
δx(dy) to indicate the integration variable y and the mass concentrated at
x. On certain occasions, δ denotes the jumps operator, defined be δX(0) =
0 and δX = X(t+)−X(t−), t > 0, any process X without discontinuity
of the second kind.

dµ, µ(dx), dµ(x): together with the integration sign, usually these expressions
denote integration with respect to the measure µ. Most of the times dx
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Notation 803

means integration respect to the Lebesgue measure in the variable x, as
understood from the context.

ET , B(ET ), BT (E): for E a Hausdorff topological (usually a separable com-
plete metric, i.e., Polish) space and T a set of indexes, usually this denotes
the product topology, i.e., ET is the space of all function from T into E
and if T is countable then ET is the space of all sequences of elements in
E. As expected, B(ET ) is the σ-algebra of ET generated by the product
topology in ET , but BT (E) is the product σ-algebra of B(E) or gener-
ated by the so-called cylinder sets. In general BT (E) ⊂ B(ET ) and the
inclusion may be strict.

C([0,∞),Rd) or D([0,∞),Rd) canonical sample spaces of continuous or cad-
lag (continuous from the right having left-hand limit) and functions, with
the locally uniform or the Skorokhod topology, respectively. Sometimes
the notation Cd or C([0,∞[,Rd) or Dd or D([0,∞[,Rd) could be used.

Most Commonly Used Function Spaces:

C(X): for X a Hausdorff topological (usually a separable complete metric, i.e.,
Polish) space, this is the space of real-valued (or complex-valued) continu-
ous functions on X. If X is a compact space then this space endowed with
sup-norm is a separable Banach (complete normed vector) space. Some-
times this space may be denoted by C0(X), C(X,R) or C(X,C) depending
on what is to be emphasized.

Cb(X): for X a Hausdorff topological (usually a complete separable metric, i.e.,
Polish) space, this is the Banach space of real-valued (or complex-valued)
continuous and bounded functions on X, with the sup-norm.

C0(X): for X a locally compact (but not compact) Hausdorff topological (usu-
ally a complete separable metric, i.e., Polish) space, this is the separable
Banach space of real-valued (or complex-valued) continuous functions van-
ishing at infinity on X, i.e., a continuous function f belongs to C0(X) if
for every ε > 0 there exists a compact subset K = Kε of X such that
|f(x)| ≤ ε for every x in X rK. This is a proper subspace of Cb(X) with
the sup-norm.

C0(X): for X a compact subset of a locally compact Hausdorff topological (usu-
ally a Polish) space, this is the separable Banach space of real-valued
(or complex-valued) continuous functions vanishing on the boundary of
X, with the sup-norm. In particular, if X = X0 ∪ {∞} is the one-
point compactification of X0 then the boundary of X is only {∞} and
C0(X) = C0(X0) via the zero-extension identification.

C0(X), C0
0 (X): for X a proper open subset of a locally compact Hausdorff topo-

logical (usually a Polish) space, this is the separable Fréchet (complete
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locally convex vector) space of real-valued (or complex-valued) continu-
ous functions with a compact support X, with the inductive topology of
uniformly convergence on compact subset of X. When necessary, this
Fréchet space may be denoted by C0

0 (X) to stress the difference with the
Banach space C0(X), when X is also regarded as a locally compact Haus-
dorff topological. Usually, the context determines whether the symbol
represents the Fréchet or the Banach space.

Ckb (E), Ck0 (E): for E a domain in the Euclidean space Rd (i.e, the closure of
the interior of E is equal to the closure of E) and k a nonnegative integer,
this is the subspace of either Cb(E) or C0

0 (E) of functions f such that all
derivatives up to the order k belong to either Cb(E) or C0

0 (E), with the
natural norm or semi-norms. For instance, if E is open then Ck0 (E) is a
separable Fréchet space with the inductive topology of uniformly conver-
gence (of the function and all derivatives up to the order k included) on
compact subset of E. If E is closed then Ckb (E) is the separable Banach
space with the sup-norm for the function and all derivatives up to the
order k included. Clearly, this is extended to the case k =∞.

B(X): for X a Hausdorff topological (mainly a Polish) space, this is the Banach
space of real-valued (or complex-valued) Borel measurable and bounded
functions on X, with the sup-norm. Note that B(X) denotes the σ-algebra
of Borel subsets of X, i.e., the smaller σ-algebra containing all open sets in
X, e.g., B(Rd), B(Rd), orB(E), B(E) for a Borel subset E of d-dimensional
Euclidean space Rd.

Lp(X,m): for (X,X ,m) a complete σ-finite measure space and 1 ≤ p < ∞,
this is the separable Banach space of real-valued (or complex-valued) X -
measurable (class) functions f on X such that |f |p is m-integrable, with
the natural p-norm. If p = 2 this is also a Hilbert space. Usually, X
is also a locally compact Polish space and m is a Radon measure, i.e.,
finite on compact sets. Moreover L∞(X,m) is the space of all (class of)
m-essentially bounded (i.e., bounded except in a set of zero m-measure)
with essential-sup norm.

Lp(O), Hm
0 (O), Hm(O): for O an open subset of Rd, 1 ≤ p ≤ ∞ and m =

1, 2, . . . , these are the classic Lebesgue and Sobolev spaces. Sometimes we
may use vector-valued functions, e.g., Lp(O,Rn).

D(O), S(Rd), D′(O), S ′(Rd): for O an open subset of Rd, these are the classic
test functions (C∞ functions with either compact support in O or rapidly
decreasing in Rd) and their dual spaces of distributions. These are sep-
arable Fréchet spaces with the inductive topology. Moreover, S(Rd) =
∩mHm(Rd) is a countable Hilbertian nuclear space. Thus its dual space
S ′(Rd) = ∪mH−m(Rd), where H−m(Rd) is the dual space of Hm(Rd).
Sometimes we may use vector-valued functions, e.g., S(Rd,Rn).

Some ??:
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P-regular, 197

absolutely continuous part, 199
active boundary, 246
adapted, 186
adapted process, 196
additive process, 253
analytic sets, 196
announcing sequence, 196

Bernoulli process, 235
boundary condition, 252
boundary conditions, 241
Brownian motion, 256

Cauchy process, 275
change-of-variable rule, 393
Chapman-Kolmogorov identity, 267
characteristic, 258
characteristic exponent, 254
characteristic functions, 253
coffin state, 277
compensator, 214
conditional Poisson process, 242
continuous part, 199
counting jump process, 250
counting process, 230, 243

definition of
compensator, 205
extended generator, 233
general martingale, 209
Lévy process, 253
localization, 219
Markov process, 278
martingale, 190
Poisson-measure, 329
predictable projection, 205

quasi-left continuous, 225
random orthogonal measure, 287
regular, 226
semi-martingale, 223
super or sub martingale, 190
transition function, 267

Dirichlet class, 213
doubly stochastic Poisson process, 242
dual optional projection, 205
Dynkin formula, 232

entry time, 195
evanescent, 204
extended Poisson process, 326

Feller property, 268
Feller transition, 268
filtration, 186
forward flow, 246
fresh-start property, 235
functional

additive, 280
multiplicative, 280

Girsanov Theorem, 576

hazard rate, 236
hitting time, 187, 195
homogeneous Lipschitz flow, 244
Hunt process, 282

independence, 190
infinitely divisible, 254
integrable bounded variation, 204
intensity, 242
Itô’s formula, 393

jump rate, 230
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jumps measure, 206

Kunita-Watanabe inequality, 382

lifetime, 277
lifetime functional, 280
local martingale, 193

Markov process, 227
Markov property, 267
Markov-Feller process, 226
martingale problem, 212
martingale property, 209, 212, 752
maximum principle, 270
measured filtration, 197
memoryless, 235, 236
multivariate point processes, 243

natural, 213
natural and regular processes, 414
natural enlargement, 197
nearly empty, 197
non-active boundary, 246
non-explosive, 245
nonexplosive, 243

optional, 194, 196
optional projection, 205
orthogonal random measure, 208

point processes, 258
Poisson measures, 230, 258
Poisson process, 236, 255, 326
positive definite, 253
predictable, 186, 196
predictable quadratic variation, 215
product probability, 187
purely discontinuous, 215

quadratic variation, 215
quasi-left continuous, 196, 277
quasi-martingale, 218

random walk, 187
Ray process, 284
realization, 229, 276
reducing sequence, 219

regularisable, 210
renewal process, 238
resolvent, 266

equation, 263, 267
kernel, 262
operators, 262

right-constant, 195

sample path, 267
semi-concave, 541
semigroup, 247
semigroup property, 231, 267, 268
separable, 24
sequences of random variables, 186
shift operator, 279
single-server queue, 240
singular continuous part, 199
special semi-martingale, 223
square integrable local martingales, 200
standard Poisson process, 326
standard process, 281, 282
state space, 228
stochastic continuity property, 268
stochastically continuous, 30
stopping time, 195
strong Feller property, 263
strong infinitesimal generator, 232
strong Markov process, 229, 279
strong Markov property, 195, 270, 279
sub-Markov process, 280
sub-Markov transition function, 279
subordinator, 256

tail, 190, 276
time changes, 201
totally inaccessible, 277
transition function, 228
transition probability, 187

uniform distribution, 235
uniformly integrable, 212
uniformly on compacts in probability,

426
uniformly stochastically continuous, 269
universal completion, 197
universally complete, 274

Section 7.7 Menaldi January 7, 2014



INDEX 808

universally completed, 229, 279, 298

variation operator, 198
vector field, 244
version, 267

well-measurable, 194
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