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Abstract

In recent years, many interpretability methods
have been proposed to help interpret the in-
ternal states of Transformer-models, at differ-
ent levels of precision and complexity. Here,
to analyze encoder-decoder Transformers, we
propose a simple, new method: DecoderLens.
Inspired by the LogitLens (for decoder-only
Transformers), this method involves allowing
the decoder to cross-attend representations of
intermediate encoder layers instead of using
the final encoder output, as is normally done
in encoder-decoder models. The method thus
maps previously uninterpretable vector repre-
sentations to human-interpretable sequences
of words or symbols. We report results from
the DecoderLens applied to models trained on
question answering, logical reasoning, speech
recognition and machine translation. The De-
coderLens reveals several specific subtasks that
are solved at low or intermediate layers, shed-
ding new light on the information flow inside
the encoder component of this important class
of models.

1 Introduction

Many new methods for interpreting the internal
states of deep learning models in general — and
those of Transformer-based models in particular —
have been proposed in the last few years. Meth-
ods in this interpretability toolkit’ operate at many
different levels of granularity. This ranges from
model-agnostic attribution methods that treat mod-
els as black boxes, to probing methods that train
additional diagnostic classifiers on top of model
representations, to fine-grained ‘mechanistic inter-
pretability’ methods that explain model behavior
in terms of highly localized circuits (Elhage et al.,
2021). Methods in this latter category are strongly
tied to specific features of the model architecture
itself: specific components of the model are being
leveraged to provide a more faithful insight into
how the model operates.
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Figure 1: Schematic overview of the DecoderLens: by
applying intermediate encoder layers directly to the de-
coder, we can gain a qualitative insight into how repre-
sentations evolve across layers.

In this paper, we propose a method that also
leverages the model’s own components to explain
the inner workings of encoder-decoder Transform-
ers, which we call DecoderLens. Our method is
directly inspired by the LogitLens method of nostal-
gebraist (2020), which takes advantage of a crucial
feature of the Transformer architecture: the resid-
ual stream, that emerges because there is an un-
interrupted stream of residual connections around
the Transformer’s attention blocks, ranging from
the input embeddings to the final model layer. The
LogitLens method, however, is defined only for
decoder-only Transformers (such as the GPT mod-
els), and, therefore, is unable to explain how repre-
sentations evolve in the encoder of encoder-decoder
models.

DecoderLens, therefore, adapts the LogitLens
to encoder-decoder models by directly applying
the decoder to intermediate layers of the encoder,
taking advantage of the residual stream that ex-
ists within the encoder (but not between encoder
and decoder). This method turns out to provide a
rich and detailed view on the information flow and
computations happening within a range of different
encoder-decoder models. It operates without any
additional training but lets the model — in some
sense — explain itself in the human-interpretable,



predictive space. We provide a graphical overview
of our approach in Figure 1.

We test the DecoderLens on a range of tasks,
models, and domains. First, we demonstrate how
representations evolve in Flan-T5, a large-scale
encoder-decoder LM (Chung et al., 2022), by
prompting the model to predict country capitals.
Next, we conduct an experiment in a more con-
trolled domain, examining how Transformers are
able to resolve variable assignment in propositional
logic. Finally, we apply the DecoderLens to two
common applications of encoder-decoder models:
neural machine translation, using the NLLLB model
(Costa-jussa et al., 2022), and speech-to-text tran-
scription and translation, using the Whisper model
(Radford et al., 2022).

We find that intermediate outputs can be useful
to find hypotheses about the strategies a model uses
for solving (sub)tasks. One surprising finding, for
example, is that Flan-T5 encodes geographical in-
formation better in intermediate layers than in the
top layer. Our findings in the speech domain show
that the middle encoder layers of Whisper make a
pretty good guess of the output distribution for gen-
erating the true transcription, and the later layers
seem to refine these guesses to make them more
accurate. The DecoderLens thus provides a useful
tool that can be used in combination with other in-
terpretability tools to gain a more complete insight
into the inner workings of these neural models.

2 Related Work

The current state of interpretability methods can be
categorized by the different levels of granularity at
which they explain model behavior. At the coarsest
level, model-agnostic methods such as feature attri-
butions (e.g., Sundararajan et al., 2017; Lundberg
and Lee, 2017) focus on explaining model output in
terms of the most important input features. A major
concern with this line of work is the faithfulness
of a method: whether the attributions the method
produces in fact correspond to the true, underlying
causes of the model’s output. The strong disagree-
ment between different attribution methods raises
doubts that the faithfulness requirement is met in
practice (Jacovi and Goldberg, 2020; Neely et al.,
2022; Lyu et al., 2022).

In response to these concerns, a novel line of
work that has received increasing attention in re-
cent years attempts to explain models at a more
fine-grained level, leveraging knowledge about a

model’s inner workings based on specific compo-
nents (e.g., Elhage et al., 2021; Meng et al., 2022;
Mohebbi et al., 2023; Wang et al., 2023).

A common way of studying Transformers in this
line of work is to take advantage of the residual
stream. In this view, each layer can be seen as
adding or removing information by reading from
or writing to the hidden states in the residual stream.
LogitLens (nostalgebraist, 2020) uses this idea by
directly applying the unembedding operation to
the middle layers of GPT to obtain a logit distribu-
tion for every intermediate layer. As the method
projects into the output (logit) space, it can pro-
vide interpretable insights about which information
arises in which layers.

Merullo et al. (2023) use the Logit Lens to iden-
tify different generic stages of processing through-
out GPT’s layers in a Question Answering task.
Halawi et al. (2023) use the Logit Lens to study the
phenomenon of overthinking, identifying critical
layers in which the logit distribution suddenly shifts
to an incorrect prediction. Geva et al. (2022) use
the idea of the residual stream to study what kind
of updates happen in each feed-forward layer, by
analyzing the differences in logit outputs between
layers. The updates are in vocabulary space, which
means they are easily interpretable to humans. Sim-
ilarly, Dar et al. (2023) also project other Trans-
former components into vocabulary space, such as
its attention weights, and find that these can encode
coherent concepts and relations. This projection
has been deployed in earlier work to connect prob-
ing methods to the model vocabulary (Saphra and
Lopez, 2019; Jumelet et al., 2021).

The idea of early exiting in Transformers is not
new: outside the field of interpretability, it has
been a widely employed technique outside for im-
proving model efficiency. Early exiting enables
models to make early predictions by skipping sub-
sequent layers once the model reaches sufficient
confidence, which speeds up model inference. This
is usually achieved by training intermediate classi-
fiers on top of each encoder layer in encoder-only
models to predict the target label (Liu et al., 2020;
Zhou et al., 2020; Schwartz et al., 2020; Liao et al.,
2021; Xin et al., 2020, 2021), or by training in-
termediate unembedding heads for each decoder
layer in decoder-only or encoder-decoder models
to generate the next token in a sequence (Schuster
et al., 2022).
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Figure 2: Distribution of response types for three Flan-T5 models on the country capital prediction task. Each
row indicates the encoder layer that was used for the DecoderLens. Capital prediction accuracy denotes the model
performance on the task for the two prompt types, including the best performing layers for the capitalized prompts.

3 DecoderLens

The concept of the DecoderLens is based on the
LogitLens method of nostalgebraist (2020). The
main intuition behind this method is that the resid-
ual stream in Transformer decoder-only models
(e.g. GPT-n) forces representations across layers
to gradually converge towards the final representa-
tion, iteratively refining its guess (Jastrzebski et al.,
2018; Dehghani et al., 2019). This gradual change
makes it possible to inspect how model predictions
are formed across layers by directly applying the
final unembedding transformation to intermediate
hidden states.

For encoder-decoder models, the LogitLens can
only be applied to the decoder of a model, because
the residual stream is interrupted between encoder
and decoder, and the unembedding operation can
only be applied in the latter. To investigate how
representations in the encoder evolve across layers,
we therefore introduce the DecoderLens, which
applies the entire decoder to intermediate encoder
layers. This is achieved by early exiting the en-
coder at earlier layers. The DecoderLens allows
for richer insights than the LogitLens, as we can
generate full output based on intermediate repre-
sentations. Using the entire decoder as a lens may
also help mitigate out-of-distribution issues that
may arise from using a single simple vocabulary
projection (e.g. Belrose et al., 2023). This allows
the model to output plausible strings that adhere to
the original training objective: it allows us to see
how the task is progressively addressed through-
out encoder layers. We define the DecoderLens as
follows. For an encoder-decoder model M with n
layers, the output of the decoder is normally gen-
erated based on the top-layer representations of
the encoder, combined with a decoding algorithm
(e.g. beam search). Often, the encoder layers are

first passed through a final non-linear operation f,
such as layer normalization (Ba et al., 2016). The
DecoderLens operates in a similar way, by first
passing the i intermediate encoder layer through
the non-linear operation f, and then feeding it as
input to the decoder:

M(w) = Dec(f(Enc(w)n))
DecoderLens(w,i) = Dec (f(Enc(w);))

In the following sections, we investigate the ef-
fectiveness of DecoderLens by applying it to a va-
riety of tasks, models, and domains.

4 Factual Trivia QA

We first apply the DecoderLens to investigate the
factual knowledge of a general-purpose encoder-
decoder LM, Flan-T5 (Chung et al., 2022). As a
case study, we consider country capital prediction,
using query prompts of the form “What is the cap-
ital of X?”. The list of country-capital pairs we
consider consists of all 193 United Nations mem-
ber states. We investigate Flan-T5 models of three
sizes (large, xI, xx/, with 0.78B, 3.0B and 11.3B pa-
rameters); all three models contain the same num-
ber of layers (24) and hidden state size (1024), but
differ in the feed-forward layer size and the number
of attention heads (Raffel et al., 2020).

Evaluation To investigate the types of responses
generated by the DecoderLens, we divide the re-
sponses in the following categories: 1) correct re-
sponse, based on a full string match, 2) incorrect
response in the form of a different city name, 3)
country name itself, 4) repetition of the question,
5) tautologies (The capital of X is the capital of X),
6) empty responses containing no alphanumeric
characters, and 7) a miscellaneous category for
anything that doesn’t fall under these previous six



categories. We arrived at these categories based on
manual inspection of the DecoderLens results. We
conduct the experiment on lowercased and capital-
ized prompts.

Results We present the results for the experiment
in Figure 2. It can be seen that the capitalized and
lowercased prompts yield considerably different
patterns across layers. For capitalized prompts, all
three model types yield better responses in inter-
mediate layers than at the top layer of the model.
For lowercase prompts, on the other hand, the
top layer always yields the highest accuracy of
all layers. The difference between the capitalized
and lowercase prompts indicates that geographical
knowledge is stored in different locations based
on capitalization. One reason for this might be
that lowercased country names are more often split
into multiple subtokens (188 out of 193 countries)
than capitalized country names (only 87 out of 193
countries, including multi-word countries). Coun-
try names split into multiple subtokens need to be
compositionally combined first, before the actual
capital retrieval can be performed.

The Flan-T5-large model has a long phase in
which the DecoderLens results in a repetition of
the original query prompt. In the x/ model this
occurs in lower layers too, next to responding the
country name itself. The xx/ model is less prone
to these patterns, and (in the capitalized case) pro-
duces correct results in much lower layers already.

5 Propositional Logic

Results from the previous section indicate that De-
coderLens can be useful for identifying the layers
in which factual information arises and can be read-
ily decoded in general pre-trained language models.
In this section, we go one step further and apply
DecoderLens to a model exclusively trained on a
downstream task. We believe it is advantageous
to test novel interpretability methods on models
that are trained to solve a simple, unambiguous
task within a carefully controlled setup (e.g., Hup-
kes et al., 2018; Hao, 2020; Jumelet and Zuidema,
2023; Nanda et al., 2023).

In this section, we apply the DecoderLens to
a small Transformer model that is trained from
scratch on a synthetic sequence-to-sequence task:
predicting variable assignments for a propositional
logical formula. This task is non-trivial, but simple:
all inputs and outputs strictly adhere to a certain
format, making them more straightforward to cat-

egorize and interpret when compared to natural
language tasks.

Task We study an encoder-decoder model that is
specifically trained on propositional logic, based
on the setup of Hahn et al. (2021). The model is
trained to output a partial satisfying assignment
given a satisfiable formula in propositional logic.
These inputs consist of logical operators (NOT/—/!,
AND/A/&, OR/V/|, IFF/<+ and XOR/®) and at most
five propositional variables. Unlike in the data used
to train large language models, there is no implicit
knowledge in the data: the meaning of variable
symbols, for instance, is solely determined by the
input formula in which they appear. Table 1 lists a
few examples.

Formula | Input | Output
—aAN(bVe) | &!al|bcl|albl
a® —e xor a ! e alel

Table 1: Example datapoints for two formulas. Inputs
are in Polish or prefix notation to avoid the use of paren-
theses. Outputs are always alphabetically sorted. Note
that the first assignment is partial: the value of c is
contingent (it could be either @ or 1) and may therefore
be omitted.

The models are trained in a standard sequence-
to-sequence setup: they are trained using teacher
forcing and only have access to a single satisfy-
ing output, even though there are multiple possible
partial assignments that are semantically correct.
Nevertheless, this limited setup seems sufficient to
teach these models the semantics of propositional
logic (Hahn et al., 2021). At test time, the mod-
els are able to output novel assignments to unseen
formulas with 93% accuracy.

Experimental setup The encoder and decoder
are both standard Transformers with six layers each.
The encoder has a state size of 128, the state size
of the decoder is 64. Models are trained for 128
epochs on the PropRandom35 training set of Hahn
et al. (2021), which consists of 800k randomly
generated formulas, each of length 35 or less. The
ground truth output assignments are generated by
a symbolic SAT solver using pyaiger (Vazquez-
Chanlatte and Rabe, 2018). To ensure that the
results are not specific to a single model, we train
three different seeds and aggregate their results.



5.1 Evaluation on Controlled Data

We apply the DecoderLens to 1) randomly gener-
ated data and 2) a handcrafted set of formulas based
on templates of varying difficulty. We hypothesize
that easier formulas are already solved in earlier
layers.

First, we evaluate on random data: the PropRan-
dom35 validation set of 200k sentences, and an ad-
ditional dataset of 200k short sentences, PropRan-
dom12, with a maximum length of 12.! Second, to
gain more insight into what types of formulas can
be solved by which layers, we generate a dataset
according to four templates:

T1. Simple conjunction: formulas in the form of
l1 Nla ANl3 N ly, where [, is a propositional
literal (p or —p). These formulas can be solved
“locally”, simply by reading the truth value
from each variable separately.

T2. Local XOR: formulas in the form of (I; @
l2) A (I3 @ ly), where all literals are distinct.
Variables interact with their siblings via @,
but the two parts of the formula can be solved
independent of one another.

T3. Non-local XOR: formulas in the form of ({1 &
l2)A\(I3®ly), where o and I3 contain the same
variable. The two parts cannot necessarily be
solved independent of one another.

T4. Non-local CNF: formulas in the form of (p; V
—p2) A (p2 V —p3) A (ps V —p1), containing
dependencies between the clauses: this means
the formulas cannot be solved locally.

For each template, we generate all possible non-
trivial variable combinations, for multiple order-
ings of the subformulas. We filter out any formulas
that are not solved by the model at all. The total
size of the template dataset is 30k.

Results We evaluate the DecoderLens on the vali-
dation set of PropRandom35: the results are shown
in Figure 3. We manually inspect some intermedi-
ate model outputs. Three examples are shown in
Table 2.

Nearly all incorrect outputs are still in the correct
format, although many contain irrelevant variables
that do not occur in the input formula. This gives
us an indication of the task distribution between

'These shorter sentences are easier to automatically group
into varying levels of difficulty.

the encoder and decoder: the decoder is completely
in charge of the formatting and variable ordering.”
Note that there are a limited number of possible
correctly formatted outputs (242 in total), of which,
on average, 29% are semantically correct. The total
semantic accuracy of the embedding layer and the
first two layers is below 29%, meaning they do
not perform better than random chance. Moreover,
these often produce irrelevant variables, suggesting
that their representations are misaligned with the
final layer representations to an extent that they are
not informative for the decoder to be able to output
even the correct variables.

Layers three and four prune these irrelevant vari-
ables and perform well above chance level. Exam-
ples of formulas that are already solved by these
layers are the first two formulas in Table 2.

1.0 0.09 < 0.07
0.19 0.16
0.30 | | 0.28 0.25
0.8
2 0.40 | &2 05
k]
£ 0.6 N 0.50
S 0.29 | | 0.35
s 0.08 | | .58
0.4
\o" 0.19 1
° 1 0.15 pd 0.55
0.2 A 0.34
0.21 | | 0.21 oG
0.0 T T S U |UJ T T T
0 1 2 3 4 5 6
Layer of encoder used
Prediction

Correct (semantics)
Correct (form)

Incorrect + irrelevant vars.
Incorrect
Correct but irrelevant vars.

Figure 3: Performance on the PropRandom35 valida-
tion set, throughout the encoder layers. Layer O denotes
the embedding layer. The category correct (semantics)
denotes outputs are correct, but deviate from the ground
truth sequences. All outputs in the category correct
(syntax) are also semantically correct. Irrelevant vari-
ables are variables that did not occur in the input, but
did occur in the prediction.

Another function of the final two layers is to
prune contingent variables, refining an already cor-
rect solution. For instance, in the first example in
Table 2, layer five refines the solution from layer
four by removing the unnecessary “c 1". Around
20% of outputs of layer six and five are strict sub-
outputs of the previous layer, cutting 1.3 variables
from the previous output on average. In a small
number of cases (2.6%), layer five outputs a cor-

2Even when random noise is passed to the decoder, it still
outputs variables and their truth values in the correct order.



rect assignment but layer six does not: this could
be seen as the model overthinking the output (Ha-
lawi et al., 2023). Only in a minority of these cases
(20% of the 2.6%), layer six is pruning a variable
from the layer five output that should not have been
pruned.

The examples in Table 2 also demonstrate that
solutions are more /ocal in earlier layers. For in-
stance, in the second example, layer three assigns
false to both a and d, as they both occur negated
in the sentence. The operator XOR, which requires
communication between the two variables, is not
taken in consideration yet.

Layer | =bA(cVa) —d®-a bd (bAa)
Lo a0ObleO alblclel alblcOeO
L1 albleO albldlel alblel
L2 albOcl a0d0eO alblcOel
L3 albOcl a0b0do albleO
L4 albOcl al0dl albl

L5 albo a0dl alObl

Lé bOcl a0dl alObl

Table 2: Predictions on three simple logical formulas
throughout the encoder layers. Layer LO denotes the
embedding layer. Semantically correct outputs are itali-
cized.

5.2 Locality of Intermediate Outputs

To further investigate the notion of locality, we ap-
ply the model to multiple sets of sentences based
around the XOR-operator and its logical opposite,
IFF. We group the short formulas from PropRan-
dom12 into three categories: ones where neither
operator is present (e.g. ~(a A b)), ones where ei-
ther operator is present but is not the direct parent
of another XOR/IFF (e.g. (a +> b) A (b & ¢)), and
ones where the formula contains at least one nested
instance of these two operators (e.g. (a ©b) >
(c A b)). Whereas these patterns can be indicators
of the difficulty of the sentence, random formulas
are not guaranteed to be (non)local. We therefore
also analyze the performance of earlier layers on
the handcrafted sentences described in §5.1.

Results The results for the middle layers for both
of these patterns are shown in Figure 4. Throughout
the layers, there are large jumps in performance for
the different sets of formulas. Simple conjunctions
(pattern T1) can already be solved in layer three.
This layer cannot solve formulas including XOR.
Instead, the layer outputs a local solution as in
example 2 in Table 2: it simply assigns O to each
variable that occurs in the input negated, and [ if it

2 3 4 5
Encoder layer used

Formula type
[ Template T1: Simple conjunction 3 Random12: contains neither XOR, IFF
B Template T2: Local XOR EEE Random12: contains non-nested XOR/IFF
3 Template T3: Non-local XOR 3 Random12: contains nested XOR/IFF
B Template T4: Non-local CNF

Figure 4: Performance on different kinds of formulas
for the middle encoder layers.

occurs non-negated. It outputs a local solution for
at least one of the subformulas in 87% of cases, and
for both formulas in 53% of cases. Other layers
output local solutions as a much lower rate: more
details can be seen in Figure 8 in Appendix A.

Layer 4 sees the largest improvement for all
other types of formulas, but still lags behind in
solving non-local formulas, especially those con-
taining nested XOR or IFF-operators.

This result can be viewed as the model gradually
contextualizing its representations: first, variables
collect local information about their possible truth
value. These variables can only exchange informa-
tion with other variables in the later layers to reach
a coherent solution.

6 Machine Translation

Following the interesting findings of our proposi-
tional logic analysis, we apply the DecoderLens
method to various sequence-to-sequence tasks to
find commonalities in how encoder-decoder struc-
ture information across encoder layers.

Model We apply DecoderLens to NLLB-
600M (Costa-jussa et al., 2022), a state-of-the-art
multilingual model trained in over 200 languages,
to quantify encoder influence on translation quality
and properties. NLLB was selected because of its
strong performances, its support for multiple trans-
lation directions, and because it was the subject of
previous interpretability studies investigating con-
text mixing in encoder representations (Ferrando
et al., 2022). We test the effect of DecoderLens on
NLLB’s decoder generations on the dev/test split of
Flores-101 (Goyal et al., 2022), using English <+
{Italian, French, Dutch} as high-resource pairs and
English <+ {Xhosa, Zulu} as low-resource pairs.
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Figure 5: Performance of NLLB using the DecoderLens
approach across encoder layers. Scores are averaged
across into-English (XX — EN) and from-English direc-
tions (EN — XX) for low-resource and high-resource
languages.

Metrics We evaluate the translation quality of
DecoderLens outputs using the widely-adopted
BLEU and COMET metrics (Papineni et al., 2002;
Rei et al., 2022). Moreover, two ad-hoc metrics
are used to estimate additional properties of gen-
erated texts. To quantify repetition we compute
the difference in counts between most common to-
kens in the output and reference translation (AREP).
To measure syntactic reordering we compute tree
edit distance (TED) of source and target syntax
trees for output (TEDgyr) and reference translations
(TEDggr), and take the difference between them
ATED = TEDgyr—TEDggr. Positive scores for this
metric reflect more syntactic reordering in the out-
put compared to the reference translation. We limit
our TED evaluation to layers with BLEU > 10 and
high-resource pairs, using the Stanza, FastAlign
and ASTrED libraries (Qi et al., 2020; Dyer et al.,
2013; Vanroy et al., 2021) for parsing, alignment
and TED computations respectively.

Quantitative Results Figure 5 presents the re-
sults of our evaluation. We remark a stark dif-
ference in quality between translation into low-
resource languages and other settings, with per-
formance increasing rapidly halfway through en-
coder layers only in the latter case. All language
directions exhibit a large number of repetitions for
the first half of the encoder, suggesting that initial
encoder layers are generally tasked to model n-
gram co-occurrences, similar to findings by Voita
et al. (2021) for initial phases of neural MT train-
ing. Repetitions decline to match reference fre-
quency around models’ intermediate layers, coin-

Source: In late 2017, Siminoff appeared on shopping television channel QVC.
Reference: Fin 2017, Siminoff est apparu sur la chaine de télé-achat QVC.

L1: Dans la télévision, il est possible de faire une pause dans la conversation.
L2: Dans le cas de la télévision, il est possible de faire une demande de renseignement.
L3: En 2017, le téléviseur a été mis au défi de la télévision.

L4: En 2017, le canal de télévision de la télévision a été mis en vente.

L5: En 2017, Siminoff est apparu sur la chaine de télévision QVC.

L6: En 2017, Siminoff est apparu sur la chaine de télévision QVC.

L7: En 2017, Siminoff est apparu sur la chaine de télévision de shopping QVC.
L8: En 2017, Siminoff est apparu sur la chaine de télévision de shopping QVC.
L9: En 2017, Siminoff est apparu sur la chaine de shopping TV QVC.

L10: En 2017, Siminoff est apparu sur la chaine de télévision de shopping QVC.
L11: Fin 2017, Siminoff est apparu sur la chaine de télévision de shopping QVC.
L12: Fin 2017, Siminoff est apparu sur la chaine de télévision de shopping QVC.

Table 3: Example DecoderLens translations for an En-
glish — French sentence of Flores-101.

ciding with the largest increase in translation qual-
ity. Regarding reordering, we find syntax in transla-
tions to stabilize early through encoder layers, with
model outputs showing a lower degree of syntactic
reordering relative to source texts when compared
to human references, in line with previous find-
ings (Vanroy, Bram, 2021). The lack of a spike
in translation quality for intermediate encoder lay-
ers in low-resource directions using DecoderLens
can be connected to the low source context usage
shown by Ferrando et al. (2022), suggesting that
poor encoder capabilities for these directions might
be due to the out-of-distribution behavior of the
decoder component.

Qualitative Evaluation We manually examine
a subset of 50 DecoderLens translations through
encoder layers (Table 3, more examples in Ap-
pendix B.1). For high-resource pairs, we find trans-
lations in the first few layers to be fluent and with
some keywords from the original sentence, but
completely detached from the source. In intermedi-
ate layers, we often observe examples of incorrect
word sense disambiguation (e.g. ‘“shopping TV
channel” interpreted as “TV channel being sold” in
L4). Finally, more granular information is often
added at later stages (e.g. ’shopping" added in L7
and “Fin" in L11).

7 Speech-to-Text

Using DecoderLens, this section explores how in-
formation flows within encoder-decoder speech
Transformers when performing speech-to-text
tasks.

Model Experiments are conducted on Whisper
(Radford et al., 2022), a state-of-the-art multilin-
gual speech model trained to predict the next token
on a set of supervised audio-to-text tasks, includ-
ing multilingual speech transcription and speech
translation to English. We used Whisper in three
different sizes (base, small, and medium) which
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Figure 6: The change in Word Error Rate (wer) of
Whisper-medium for transcription and translation, av-
eraged over our test examples, w.r.t number of encoder
layer used at inference. Shaded areas show 1 standard
deviation.

differ in their number of layers (6, 12, and 24, re-
spectively).

Data We used CoVoST 2 (Wang et al., 2020),
a multilingual speech-to-text translation dataset
based on Common Voice corpus (Ardila et al.,
2019). In our experiments, we cover nine lan-
guages, including English (en), French (fr), Span-
ish (es), Portuguese (pt), Dutch (nl), Japanese (ja),
Arabic (ar), Persian (fa), and Turkish (tr), sampling
100 utterances per language. Since the dataset in-
cludes both source and translation references for
each utterance, we can inspect Whisper’s behavior
for both transcription and translation tasks on the
same examples, providing an unbiased comparison
between the tasks.

Results Figure 6 shows the overall results of
Word Error Rate (WER) across various source lan-
guages when applying DecoderLens to Whisper-
medium for transcription and translation tasks.
While the overall pattern of WER is decreasing,
we can discern that fundamental information nec-
essary to cope with the tasks emerges from the
intermediate layers. Comparing the trend of WER
for transcription and translation, it appears that the
essential information required for transcription is
prepared in the earlier encoder layers compared to
translation. The same pattern is observed for the
other model sizes, reported in Appendix C.1.
Table 4 shows a more fine-grained view of the
changes in model output transcription. We found a
pattern where early exiting from the first 7 layers of
the encoder leads to empty outputs, indicating that

Input utterance: turning off gadgets that are not in use can save a lot of energy

L8: “of the world”

L9: “tornado”

L10: “i am going to talk about the new technology that we have”

L11: “tornado”

L12: “i am going to go ahead and say that i am a little bit more of a fan of the channel...”
L13: “i am going to go ahead and turn it over to you and i am going to turn it over to you and...””
L14: “tony i am glad you are here”

L15: “turning off gadgets that are not news can save a lot of energy”

L16: “turning off gadgets that are not news can save a lot of energy”

L17: “turning off gadgets that are not news can save a lot of energy”

L18: “turning off gadgets that are not news can save a lot of energy”

L19: “turning off gadgets that are not news can save a lot of energy”

L20: “turning off gadgets that are not used can save a lot of energy”

L21: “turning off gadgets that are not in use can save a lot of energy”

L22: “turning off gadgets that are not in use can save a lot of energy”

L23: “turning off gadgets that are not in use can save a lot of energy”

L24: “turning off gadgets that are not in use can save a lot of energy”

Table 4: Whisper-medium transcription for an English
utterance when employing different encoder layers in
DecoderLens. Words that are correctly generated by the
model for the first time are underlined.
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Figure 7: Distribution of Whisper-medium output types
when transcribing w.r.t number of encoder layer used at
inference.

the information is not yet ready for transcribing.
Subsequently, layers 8-11 generate a limited num-
ber of irrelevant words (notably, generating single
words in layers 9 and 11), while layers 12-13 pro-
duce a long sequence of repeating irrelevant words.
The main part of the true transcription, yet, can
be constructed starting from layer 15 (with some
minor errors; the word ‘news’ is generated instead
of ‘in use’ in this example). The error in this run-
ning example is then corrected in layer 21, and this
information is carried to the final encoder layer.
Figure 7 quantifies this to show that the pattern
holds for the majority of examples in all languages.
We find that the same pattern holds for both tasks
and different model sizes, except for the earlier
encoder layers of Whisper-small: here, the model
tends to generate single irrelevant words instead of
empty sequences.’

3We report these results to Appendix C.2.



8 Conclusion

Our work contributes to a growing body of work on
the interpretability of large language models. By
introducing the DecoderLens, we provide insights
into how model predictions evolve through en-
coders of encoder-decoder Transformers. We apply
our method to various models, tasks, and domains,
and find that intermediate outputs can provide valu-
able insights into the model’s decision-making pro-
cess. Our findings reveal that certain subtasks (e.g.,
simple conjunctive logic formulas) are effectively
accomplished early in the encoder layers and per-
sist up to the final model output through the residual
stream, while others (e.g., speech transcription or
translation) are partially resolved and subsequently
refined as they progress through the subsequent
layers. This observation is in line with previous
work on probing, which showed that linguistic sub-
tasks in LMs are performed at different stages in
Transformers (Tenney et al., 2019). The Decoder-
Lens does not directly reveal where within a layer
a specific subtask is solved (i.e., which heads or
MLP-units within the layer are responsible for solv-
ing them), nor does it reveal how these subtasks
are solved. However, by providing human inter-
pretable labels for intermediate layers, we believe
it opens up many opportunities for further research,
using other tools from the emerging interpretabil-
ity toolbox designed specifically to answer these
important questions.

Future work and limitations One important
concern regarding the direct use of intermediate
representations to make predictions is that of rep-
resentational drift: features may be represented
differently in earlier layers, reducing the ability of
the decoder to use this information. To mitigate
this representational misalignment, representations
can for instance be funed to more closely match
the representations the decoder expects (Belrose
et al., 2023). This could lead to more meaningful
intermediate outputs for early layers, whose pre-
dictions now often consisted of hallucinations, or
were completely empty.

Another direction for future work could be to
apply the DecoderLens to architectures such as
the Universal Transformer (Dehghani et al., 2018),
especially when applied to algorithmic tasks (Csor-
dés et al., 2021). Its intermediate outputs may be
more interpretable and compositional, thanks to the
shared weights between the different layers.

Finally, we saw some evidence that early layer
outputs are similar to outputs generated during
early training (Voita et al., 2021). The Decoder-
Lens may be used to investigate the correlation
between training dynamics (i.e. which examples
are learned early during training) and the layer in
which it is first correctly predicted (Choshen et al.,
2022; Belrose et al., 2023).
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Figure 8: Distribution of the types of predictions on
three small datasets. A local solution means the layer
assigns false (@) to a variable if it occurs in the input
negated, and true (1) if the variable appears non-negated.
We therefore consider only the subset of data for which
each variable either only occurs negated or only occurs
non-negated. Layer 3 produces the largest number of
local solutions in all cases.

B Machine Translation
B.1 Additional Examples of DecoderLens
Translations

Tables 5 and 6 showcase some additional examples
for some of the selected translation directions.
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Source: Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and
scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.

Reference: Le Dr Ehud Ur, professeur de médecine a 1’Université Dalhousie de Halifax (Nouvelle-Ecosse) et président de la
division clinique et scientifique de I’ Association canadienne du diabete, a averti que la recherche en était encore a ses débuts.

L1: Le professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le
professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le professeur de la médecine, le [...]

L2: Le Dr. Ehud, le professeur de la médecine, a déclaré: "La recherche de la médecine est une expérience de la médecine de la
médecine, mais je suis en train de me dire que je suis en train de me lancer dans la recherche.

L3: Le professeur de la médecine de 1’Université de Halifax et de la division scientifique de 1’ Association canadienne de la
recherche est toujours dans la recherche de la recherche de la recherche de [...]

L4: Le Dr. Ehud, professeur de 1’Université de Halifax, a présenté la recherche de la division scientifique de 1’ Académie
canadienne de la recherche et de la recherche.

LS5: Le Dr. Ehud, professeur de médecine a 1I’Université de Halifax, et le président de la division scientifique du Diabetes
Association canadien, ont fait état de la recherche qui se déroule dans ses premieres années.

L6: Le professeur de médecine de I’Université de Halifax, le professeur d’Eud Ur, et le président de la division scientifique du
Diabete canadien, ont fait remarquer que la recherche est toujours en cours.

L7: Le professeur de médecine Ehud Ur, professeur de médecine a 1’Université de Halifax, en Nouvelle-Ecosse, et président de
la division clinique et scientifique de I’ Association canadienne du Diabete a mis en garde que la recherche est toujours dans ses
premiers jours.

L8: Le professeur de médecine de 1'Université de Dalhousie, en Nouvelle-Ecosse, et président de la division clinique et
scientifique de I’ Association canadienne du diabete, a souligné que la recherche est encore a ses débuts.

L9: Le professeur de médecine de 1'Université de Dalhousie, en Nouvelle-Ecosse, et président de la division clinique et
scientifique de 1’ Association canadienne du diabete, Dr. Ehud Ur, a souligné que la recherche est encore en début de phase.
L10: Le Dr Ehud Ur, professeur de médecine a 1’Université Dalhousie a Halifax, en Nouvelle-Ecosse, et président de la division
clinique et scientifique de I’ Association canadienne du diabete, a averti que la recherche est encore dans ses premiers jours.
L11: Le professeur de médecine de I’université Dalhousie 4 Halifax, en Nouvelle-Ecosse, et président de la division clinique et
scientifique de 1’ Association canadienne du diabete, Dr Ehud Ur, a averti que la recherche était encore a ses débuts.

L12: Le Dr Ehud Ur, professeur de médecine a 1’Université Dalhousie a Halifax, en Nouvelle-Ecosse, et président de la division
clinique et scientifique de I’ Association canadienne du diabéte, a averti que la recherche est encore a ses débuts.

Source: "We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.
Reference: "Abbiamo topi di quattro mesi che prima erano diabetici e ora non lo sono piu", ha aggiunto.

L1: "Ci sono due problemi che hanno portato a questo problema, ma non ci sono problemi che possono essere risolti.
L2: "Abbiamo 4-month-diabetic che sono utilizzati per essere, che sono utilizzati per il diabete.

L3: "Abbiamo 4-month-that sono i non-diabetic che sono utilizzati, che sono aggiunti".

L4: "Abbiamo ora 4 mesi che sono i non-diabetic che sono utilizzati per essere diabetico," ha aggiunto.

LS5: "Abbiamo ora 4 mesi di cicli che sono non-diabetic che hanno usato per essere diabetico, "ha aggiunto.
L6: "Abbiamo ora 4 mesi di topi che sono non-diabetico che hanno usato per essere diabetico”, ha aggiunto.
L7: "Abbiamo ora topi di 4 mesi che sono non diabetici che erano diabetici", aggiunge.

L8: "Abbiamo ora topi di 4 mesi che non sono diabetici e che erano diabetici", aggiunge.

L9: "Abbiamo ora i topi di 4 mesi che non sono diabetici e che erano diabetici", ha aggiunto.

L10: "Abbiamo ora topi di 4 mesi che non hanno il diabete e che erano diabetici", ha aggiunto.

L11: "Ora abbiamo topi di 4 mesi che non hanno il diabete e che erano diabetici", ha aggiunto.

L12: "Ora abbiamo topi non diabetici di 4 mesi che erano diabetici", ha aggiunto.

Source: Plus de 4 000 000 personnes sont se sont rendues a Rome pour I’enterrement.
Reference: Over four million people went to Rome to attend the funeral.

L1: 4 people are in the process of getting their hands on the car.

L2: 4 000 people are in the city.

L3: More than 4 000 people are being sent to Rome for their own country.
L4: More than 4 000 people are being made to Rome for the entertainment.
LS5: More than 4 000 people have been to Rome for the entertainment.
L6: More than 4 000 000 people have gone to Rome for the funeral.

L7: More than 4,000,000 people have gone to Rome for the funeral.

L8: More than 4 000 000 people have gone to Rome for the funeral.

L9: More than 4,000,000 people have come to Rome for the funeral.

L10: More than 4 million people attended the funeral in Rome.

L11: More than four million people have come to Rome for the funeral.
L12: More than four million people went to Rome for the funeral.

Table 5: Examples for English — French, English — Italian and French — English translation using DecoderLens
on NLLB.



Source: While one experimental vaccine appears able to reduce Ebola mortality, up until now, no drugs have been clearly
demonstrated suitable for treating existing infection.

Reference: Eén experimenteel vaccin lijkt in staat te zijn de ebola-sterfte terug te dringen, maar tot nu toe zijn nog geen
medicijnen duidelijk geschikt voor de behandeling van bestaande infecties.

L1: Een vaccinatie is een goede manier om de ziekte te voorkomen.

L2: Een Ebola-infectie is een gevaarlijk risico. Het is een gevaarlijk risico dat de ziekte van de ziekte van de ziekte van de ziekte
van de ziekte van de ziekte kan voorkomen.

L3: Terwijl de Ebola-vaccinatie wordt verminderd, is de aanwezigheid van een Ebola-vaccinatie niet mogelijk.

L4: Hoewel de ebola-vaccinatie in de praktijk wordt beperkt, wordt de ebola-vaccinatie niet meer gebruikt.

LS5: Terwijl een experimentele vaccine lijkt te verminderen Ebola-taligheid, is er tot nu toe geen drugs die geschikt zijn voor het
behandelen van bestaande infectie.

L6: Terwijl een experimentele vaccine de Ebola-sterfte kan verminderen, zijn er tot nu toe geen geneesmiddelen die geschikt
zijn voor de behandeling van bestaande infectie.

L7: Hoewel een experimentele vaccine de Ebola-sterfte kan verminderen, is er tot nu toe geen enkele geneesmiddel die geschikt
is voor de behandeling van bestaande infectie.

L8: Hoewel één experimentele vaccine de Ebola-sterfte kan verminderen, is er tot nu toe geen enkele geneesmiddel geschikt
voor de behandeling van bestaande infectie.

L9: Hoewel een experimental vaccin de sterfte van Ebola kan verminderen, is er tot nu toe geen enkel geneesmiddel geschikt
voor de behandeling van bestaande infecties.

L10: Hoewel een experimentele vaccine de sterfte van Ebola lijkt te verminderen, is tot nu toe geen enkele geneesmiddel
duidelijk geschikt voor de behandeling van bestaande infectie.

L11: Hoewel één proefvaccin de sterfte van Ebola lijkt te verminderen, is tot nu toe geen enkel geneesmiddel duidelijk
aangetoond dat het geschikt is voor de behandeling van bestaande infectie.

L12: Hoewel één experimentele vaccin de sterfte van ebola lijkt te kunnen verminderen, is tot nu toe geen enkel geneesmiddel
duidelijk aangetoond dat geschikt is voor de behandeling van bestaande infectie.

Source: Volgens wetenschappers was het verenkleed van dit dier kastanjebruin met een bleke of carotenoidekleurige onderzijde.
Reference: Scientists say this animal’s plumage was chestnut-brown on top with a pale or carotenoid-colored underside.

L1: According to the Bible, the dead were not born, and the dead were not born, and [...] the dead were not yet alive.
L2: According to the Bible, the animal was not a good animal, but a good animal.

L3: According to the scientists, this was a very dangerous disease.

L4: According to the scientists, this was a kind of animal that was not a carotenoid.

L6: According to scientists, the crest of this animal was a brown or carotenoid-coloured crest.

L7: According to scientists, the embroidery of this animal was chestnut with a pale or carotenoid-coloured underside.
L8: According to scientists, the animal was a brownish-brown animal with a pale or carotenoid undercoat.

L9: According to scientists, the animal was a brownish-brown, with a pale or carotenoid undercoat.

L10: According to scientists, the animal’s undercoat was brown with a pale or carotenoid underside.

L11: According to scientists, the animal’s embroidery was chestnut with a pale or carotenoid undercoat.

L12: Scientists say the animal’s disguise was chestnut brown with a pale or carotenoid undercoat.

Source: L’annuncio ¢ stato fatto a seguito di un colloquio telefonico tra Trump e il presidente turco Recep Tayyip Erdogan.
Reference: The announcement was made after Trump had a phone conversation with Turkish President Recep Tayyip Erdogan.

L1: A phone call from the president of the United States of America was made.

L2: The president’s speech was broadcast on the Internet.

L3: The president of the Republic of Turkey, President Tayyip Erdogan, is a member of the Turkish parliament.

L4: The announcement was made at a meeting of the President of the Republic of Turkey, President of the Republic of Turkey,
and the President of the [...]

LS: The announcement was made following a phone call between the President of Turkey, President Tayyip Erdogan.

L6: The announcement was made following a phone call between Trump and the Turkish President, Recep Tayyip Erdogan.
L7: The announcement was made following a phone conversation between Trump and the Turkish President Recep Tayyip
Erdogan.

L8: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdogan.
L9: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdogan.
L10: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdogan.
L11: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdogan.
L12: The announcement was made following a phone conversation between Trump and Turkish President Recep Tayyip Erdogan.

Table 6: Examples for English — Dutch, Dutch — English and Italian — English translation using DecoderLens on
NLLB.



C Speech to Text
C.1 WER results for other model sizes

Task
E] Transcription El Translation

en fr es
1-
0.75-
0.50-
0.25-
0-
pt nl ja
1- I ——— |
0.75-
5 0.50
go
0.25-
0-
ar fa tr
1-
0.75-
0.50-
0.25-
0= . . | . . | . . |
2 4 6 2 4 6 2 4 6

Encoder Layer

Figure 9: The change in Word Error Rate (wer) of
Whisper-base for transcription and translation, averaged
over our test examples, w.r.t number of encoder layer
used at inference. Shaded areas show std.
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Figure 10: The change in Word Error Rate (wer) of
Whisper-small for transcription and translation, aver-
aged over our test examples, w.r.t number of encoder
layer used at inference. Shaded areas show std.

C.2 Distribution of output types for other
model sizes
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Figure 11: Distribution of Whisper-base output types
when transcribing w.r.t number of encoder layer used at
inference.
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Figure 12: Distribution of Whisper-small output types
when transcribing w.r.t number of encoder layer used at
inference.
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Figure 13: Distribution of Whisper-base output types
when translating to English w.r.t number of encoder
layer used at inference.
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Figure 14: Distribution of Whisper-small output types
when translating to English w.r.t number of encoder
layer used at inference.
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Figure 15: Distribution of Whisper-medium output
types when translating to English w.r.t number of en-
coder layer used at inference.



