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Abstract

Complex diseases such as cardiovascular disease (CVD), obesity, inflammatory

bowel disease (IBD), kidney disease, type 2 diabetes (T2D), and cancer have

become a major burden to public health and affect more than 20% of the

population worldwide. The etiology of complex diseases is not yet clear, but

they are traditionally thought to be caused by genetics and environmental

factors (e.g., dietary habits), and by their interactions. Besides this,

increasing pieces of evidence now highlight that the intestinal microbiota

may contribute substantially to the health and disease of the human host via

their metabolic molecules. Therefore, decoding the microbial genomes has

been an important strategy to shed light on their functional potential. In this

review, we summarize the roles of the gut microbiome in complex diseases

from its functional perspective. We further introduce artificial tools in

decoding microbial genomes to profile their functionalities. Finally, state‐of‐
the‐art techniques have been highlighted which may contribute to a

mechanistic understanding of the gut microbiome in human complex diseases

and promote the development of the gut microbiome‐based personalized

medicine.
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• Functional roles of the gut microbiome in human health and disease.

• Commonly used tools in decoding microbial functionalities.

• State of the art techniques in validating microbial functionalities.

iMeta. 2022;1:e14. wileyonlinelibrary.com/journal/imt2 | 1 of 19
https://doi.org/10.1002/imt2.14

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. iMeta published by John Wiley & Sons Australia, Ltd on behalf of iMeta Science.

http://orcid.org/0000-0003-0660-3518
mailto:lianminchen@njmu.edu.cn
mailto:kongxq@njmu.edu.cn
https://wileyonlinelibrary.com/journal/imt2
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fimt2.14&domain=pdf&date_stamp=2022-03-29


INTRODUCTION

Genome‐wide association studies (GWAS) have dissected
the genetic architecture of human complex diseases,
which has advanced our understanding of disease
etiology and promoted the development of genome‐
based therapy [1]. However, genetics can only explain a
limited proportion of an individual's risk of developing a
complex disease [2]. For instance, GWAS can only
explain the heritability of type 2 diabetes (T2D) and
Crohn's disease with 6% and 20% [2] success, respec-
tively. Recently, the contribution of the gut microbiome
to the development of complex human diseases has
increasingly been recognized ‐ and become a booming
field of research [3–11].

The human intestines are colonized by a vast number
of bacteria, archaea, microbial eukaryotes, and viruses, as
abundant as our somatic cells, which are collectively
known as the gut microbiome [12]. The gut microbiome
has been involved in digesting food, training host
immunity, regulating gut endocrine function and neuro-
logical signaling, modifying drug action and metabolism,
eliminating toxins, and producing numerous compounds
that influence the host [13]. In mice studies, gut
microbiota has been shown to be essential for germ‐
free animal models to develop inflammatory bowel
disease (IBD) [14]. Human infants born from mothers
with immune‐related diseases presented altered gut
microbial compositions which was further proved to
have the potential to trigger adaptive immune response
[15–17]. All the evidence pinpoints to the critical roles of
gut microbiota in developing complex diseases.

Rapid development of metagenomics sequencing tech-
nology and big cohort studies allow us to integrate gut
microbiome profiles with host clinical phenotypes, to
identify candidate disease‐related microbial features in a
large scale. Numerous associations between the gut
microbial composition and complex diseases have been
reported, including but not limited to cardiovascular disease
(CVD), diabetes, IBD, allergy, and cancer [3–10]. Unlike the
human genome, modification of gut microbial communities
is feasible and ethical, the gut microbiome is thereby
emerging as an attractive therapeutic target for disease
prevention and treatment. However, there are still big gaps
between research and clinical translation, including the
lacking consistency of disease‐specific microbial taxa across
studies, poor causal inference, and unsatisfactory efficiency
of current microbiome‐based therapies in patients (e.g., fecal
microbiome transplant and probiotic usage). These could be
as a result of (1) many gut bacteria are opportunistic, and
they could present adverse effects differently dependent on
specific conditions, (2) most of studies focus on the microbial
composition which is far from enough because different

subspecies could behave differently. Functional analysis by
decoding the microbial genomes found that microbial genes
like cutC/D are responsible for the biosynthesis of pheny-
lacetylglutamine and trimethylamine‐N‐oxide (TMAO), two
metabolites that can induce CVD risk [18,19]. Therefore,
going beyond microbial composition and understanding the
gut microbial functionalities could facilitate to shed light on
the issues above.

Here, we summarize recent research advances in the
intestinal microbiome related to human health and
disease, with a particular focus on their functionalities,
mainly including microbial virulence factors such as
capsule and biofilm, microbiota‐derived small molecules,
and drug metabolize. We further introduce artificial tools
in decoding microbial genomes to characterize the
functional potential. Finally, we highlight state‐of‐the‐
art techniques that may help us gain a mechanistic
understanding of the gut microbiome in human complex
disease and to promote the development of gut
microbiome‐based personalized medicine.

MICROBIAL FUNCTIONALITIES
THAT AFFECT HUMAN HEALTH
AND DISEASE

Via specific structures

The direct influence of gut microbes on the host can be
attributed to the fundamental structures that lead to
resistance and virulence such as flagella and fimbriae,
capsule, spore, and biofilm, which facilitate the survival
and activity of trillions of bacteria in the human intestine
[20,21] (Figure 1).

Fimbriae are straight filaments arising from the
bacterial cell wall while flagella are much longer than
fimbriae. Flagella spins the spirochete around and
generates thrust, propelling bacteria moving forward.
The formation of fimbriae and flagella always relies on
gene clusters and varies substantially between species.
For instance, the Salmonella fim cluster comprises 10
genes [22] while in Escherichia coli more than six gene
clusters for fimbriae formation are identified [23]. Both
can lead to host infection, but the mechanisms are
different. Many bacterial pathogens require motility to
infect, including E. coli, Salmonella enterica and others
[24], thus flagella play key roles during this progress.
Unlike flagella, fimbriae carry virulence factors and help
in the adherence of bacteria to human cells. For instance,
Bordetella pertussis uses its adhesin to bind to ciliated
respiratory cells and cause whooping cough [25].
Fimbriae of Neisseria gonorrhea help it to bind to cervical
cells and buccal cells to cause gonorrhea [26]. Without
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fimbriae to bind to the intestinal epithelium, E. coli and
Campylobacter jejuni cannot cause diarrhea [27].

Capsule is a polysaccharide layer that lies outside the
cell envelope and is considered a part of the outer envelope
of a bacterial cell. The capsule is found in both Gram‐
negative and positive bacteria. However, it is different from
the second lipid membrane, which contains lipo-
polysaccharide (LPSs) and lipoproteins found only in
Gram‐negative bacteria [20]. The capsule protects bacteria
from mechanical injury and environmental changes (such
as temperature, drying, bacteriophages, and eukaryotic
cells) [28]. It also helps in the adherence of bacteria to
smooth surfaces. For example, Streptococcus mutans, which
causes dental caries, attaches to the surface of the teeth by
its capsule [29]. The capsule is essential for pathogenic
microorganisms to invade the host immune system and
prevents them from being phagocytosed by macrophages
and neutrophils [30]. A study revealed that the thickness of
the capsule in Streptococcus pneumoniae was associated
with the severity of meningitis [31]. Interacting with β‐
glucans on the fungal cell wall during fungi infection leads
to host Dectin‐1‐related CARD9 signaling pathways activa-
tion which can induce inflammation [32]. However,
capsular materials have also been successfully used as
vaccination against S. pneumoniae and Haemophilus
influenza [33].

Unlike capsule, the spore is a very hardy cell and allows
a bacterial cell to survive under even the worst conditions.
Therefore, spore can protect the pathogenic bacteria from
antibiotics and other injures to produce virulence factors
[34]. Bacillus and Clostridium species are the most common
bacteria to create spores and can induce various infection
diseases [34]. For example, Bacillus cereus is well‐known for
its ability to cause foodborne illness because of its spores
surviving various temperatures [35]. Spores of B. anthracis
cause cutaneous, gastrointestinal, inhalational, and injec-
tion anthrax via the production of anthrax toxins and the
formation of a poly‐γ‐D‐glutamic acid capsule, which
protects the bacteria from phagocytosis and immune
surveillance [36].

Biofilm is defined as a bacterial colony with a self‐
produced matrix of extracellular polymeric substances
that protects the bacterial cells from unfavorable external
influences, such as temperature changes, dehydration,
and biocides [21]. Bacterial biofilms are usually patho-
genic, and it has been estimated that up to 80% of
microbial infections in humans, including endocarditis,
cystic fibrosis, periodontitis, rhinosinusitis, osteomyelitis,
nonhealing chronic wounds, meningitis, kidney infec-
tions, and prosthesis and implantable device‐related
infections, are associated with biofilm formation [37].
Many bacteria can form biofilms, with the most common

FIGURE 1 Microbial structures that contribute to resistance and virulence. The direct influence of gut microbes on the host can be
attributed to the fundamental structures that lead to resistance and virulence such as flagella and fimbriae, capsule, spore, and biofilm,
which facilitate the survival and activity of trillions of bacteria in the human intestine. Specific microbial structures can help microbes attach
human cells or receptors which further activates various signaling pathways. Besides this, they may carry antibiotic resistance and virulence
factors, as well as various metabolites and other disease‐relevant molecules
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ones being E. coli, Enterococcus faecalis, Staphylococcus
aureus, Staphylococcus epidermidis, Streptococcus viri-
dans, Klebsiella pneumoniae, Proteus mirabilis, and
Pseudomonas aeruginosa [38]. Notably, S. aureus and S.
epidermidis are estimated to cause approximately 50% of
prosthetic heart valve infections, 70% of catheter biofilm
infections, and 80% of bloodstream infections [38].
Unfortunately, the use of antibiotics alone is ineffective
in treating biofilm‐related infections. This is because
biofilms can delay or prevent the penetration of
antibiotics [39], acquire resistance via horizontal gene
transfer [40], and use multidrug efflux pumps to pump
antibiotic agents out of the maturing biofilms and
into the extracellular matrix [41]. In addition, biofilms
can activate the innate immune system via secretion of

C‐di‐NMPs, which induce an immune response through
STING and subsequently activate type 1 IFNs [42].

Via metabolic molecules

Gut microbes are involved in the biosynthesis and
biotransformation of a series of bioactive metabolites
that can act as substrates and signaling molecules,
contributing to normal human physiological functions
or eliciting complex diseases [13]. Specific classes of
microbiota related metabolic molecules mainly include
short‐chain fatty acids (SCFAs) [43], amino acids (AAs)
[44], vitamins [45], bile acids (BAs) [46], toxins [47],
anthocyanins [48], and phytoestrogens [49] (Figure 2).

FIGURE 2 Gut microbial‐related metabolites that affect human health. Gut microbes are involved in the biosynthesis and
biotransformation of a series of bioactive metabolites that can act as substrates and signaling molecules, contributing to normal human
physiological functions or eliciting complex diseases. Specific classes of microbiota related metabolic molecules mainly include short‐chain
fatty acids (SCFAs), amino acids, vitamins, bile acids, toxins, anthocyanins, and phytoestrogens
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SCFAs can be biosynthesized by gut microbes from
the colon via fermentation of carbohydrates (e.g.,
glucose, starch, and fiber) or AAs (e.g., lysine, arginine,
glycine, leucine, valine, and isoleucine) [50]. Gut
microbial‐derived SCFAs mainly include acetic, propi-
onic, butyric, valeric, and caproic acids. Notably, acetic,
propionic, and butyric acids account for more than 95%
of the total SCFAs and are present at a molar ratio of
approximately 60:20:20 in the human gut [51]. Bio-
synthesis of acetate mainly relies on microbial genes
encode phosphotransacetylase or acetate kinase [52]. For
propionate, genes involved in succinate pathway, acry-
late pathway, and propanediol pathway are essential
[53]. For butyrate biosynthesis, pyruvate pathway,
4‐aminobutyrate pathway, glutarate pathway, and lysine
pathway have been characterized [54]. Well‐known
butyrate producers include a wide range of species that
mainly belong to the Firmicutes phylum, including
Faecalibacterium prausnitzii, Eubacterium spp., Copro-
coccus spp., and Roseburia spp. mediated by butyrate
kinase or butyryl CoA:acetate CoA transferase [55]. The
genome of Bifidobacterium spp. harbors several carbohy-
drases, which allow them to participate in the production
of acetate and lactate during nondigestible carbohydrate
breakdown. However, laboratory studies have shown
that the ability of Bifidobacterium spp. to produce SCFAs
is highly strain‐dependent owing to the variety in gene
content [56,57]. In addition, Akkermansia muciniphila
produces SCFAs by mucin degradation and is a
beneficial bacterium that induces the secretion of anti‐
inflammatory cytokines and enhances the intestinal
mucosal barriers [58].

SCFAs are important fuels for the human host, and
they control the luminal pH. In addition, SCFAs are
closely related to human health and disease. The
production of the SCFA butyrate by the gut is associated
with improved insulin response after an oral glucose
tolerance test, whereas abnormalities in the production
or absorption of propionate are related to an increased
risk of T2D [59]. The mechanisms underlying the
important roles of SCFAs in human physiological
processes may rely on their signaling capacities in
activating the free fatty acid receptors (FFARs, FFAR2,
and FFAR3), G protein‐coupled receptors (GPR109A and
GPR42), olfactory receptors (OR51E1 and OR51E2),
peroxisome proliferator‐activated receptor‐γ and the aryl
hydrocarbon receptor (AhR) [60–62]. Activation of these
receptors by acetic, propionic, and butyric acids can
further result in the activation of signaling cascades,
including phospholipase C, mitogen‐activated protein
kinase (MAPK), phospholipase A2, and nuclear factor‐κB
(NF‐κB) pathways. These pathways are known to be
involved in the etiology of various complex diseases

owing to their functional roles in regulating satiety,
energy harvesting, fat storage, adipose inflammation, and
neuro system [60–62]. In addition, intracellular SCFAs
can influence acetylation and deacetylation of histones
(mainly 3 and 4), which mainly occurs on the epsilon
amino groups of lysine residues on the N‐terminal tails.
This increases the accessibility of the transcriptional
machinery to promote gene transcription. This process
occurs by inhibiting the activity of histone deacetylases
(HDACs), resulting in more transcriptionally active
chromatin, or by increasing the activity of histone
acetyltransferases, thereby stimulating acetylation.
HDACs are involved in a range of complex diseases,
including colorectal cancer and Alzheimer's disease [61].
Butyrate, propionate, and acetate inhibit HDACs, with
butyrate being the most potent [63]. Therefore, SCFAs
produced by gut microbes may act as modulators of
complex diseases.

AAs can be produced by gut microbes via digestion of
food proteins or through de novo biosynthesis. Importantly,
all the nine human essential AAs, including histidine, lysine,
methionine, phenylalanine, threonine, tryptophan, iso-
leucine, leucine, and valine can be biosynthesized by the
gut microbiota [64], through a large group of oxaloacetate/
aspartate AAs biosynthesis genes [65]. Studies have shown
that manipulating microbial genomes, for example, fldC in
Clostridium sporogenes, could change the human blood
aromatic AAs [66]. In addition to the roles as substrate for
protein assembly and fermentation of SCFAs, deficiency of
AAs is related to human disorders. Among them, tryptophan
is the most chemically complex AA, which is associated with
both host‐ and microbiota‐dominated pathways. Tryptophan
decarboxylases have been observed in several bacterial
genomes, including Lactobacillus spp., Peptostreptococcus
spp., Bacteroides spp., and Bifidobacterium spp., which play
an important role in the conversion of tryptophan to
tryptamine and indole derivatives [67,68]. The downstream
metabolites can be sensed by different host intestinal
receptors and thereby participate in regulating a variety of
molecular pathways. These receptors include GPR35, AhR,
serotonin receptors (5‐HT4R and 5‐HT3R), peroxisome
proliferator‐activated receptor‐γ coactivator 1α (PGC‐1α),
and pregnane X receptor (PXR) that are associated with
brain, skeletal muscle, pancreas, and kidney disorders [50].
Histidine may impair insulin signaling in T2D through
activation of the p38γ–p62–mTORC1 pathway [69]. Phenyl-
alanine can be derived from dopamine and is associated with
nervous system disorders such as Parkinson's disease [70].
Lysine, methionine, and threonine are derived from the
oxaloacetate/aspartate AA biosynthesis pathway that is
involved in insulin secretion and glucose metabolism via
mitochondrial sirtuin 4 (SIRT4) [71], fibroblast growth factor
21 [72], and serine/threonine‐protein kinase 25 [73],
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respectively. In addition, leucine, isoleucine, and valine are
branched‐chain amino acids associated with insulin resist-
ance and glucose intolerance; however, the mechanism is
unclear [74].

Toxins can be generated by gut microbes from various
substrates, including AAs and choline class compounds.
Protein‐bound uraemic toxins such as TMAO, indole, p‐
cresol, phenol, and their sulfates and glucuronides,
polyamines, as well as hippuric acid are derived from
AAs by gut microbes [47]. Microbial genes that encode
choline‐TMA lyase (cutC/D), carnitine monooxygenase,
betaine reductase, and TMAO reductase are responsible
for TMAO and derivatives [75]. The production of AAs
derived uremic toxins such as indole, p‐cresol, and phenol
largely depends on the gene content across different taxa
[75]. For example, the gene coding tryptophanases
presents differently in Bacteroides species and therefore,
only certain Bacteroides spp. produce indoxyl sulfate [76].
Such toxins can further induce chronic kidney disease and
CVD through the NF‐κB, MAPK, and Jun N‐terminal
kinase pathways, thereby initiating the transcription of
proinflammatory cytokines and adhesion molecules lead-
ing to inflammation and oxidative stress [47,77]. Toxins
derived from choline class compounds chiefly include
TMAO and its derivatives, which have several roles in
CVD, and probably act via MAPK and NF‐κB signaling
[78], as well as via NLRP3 inflammasome [79], leading to
inflammation. In addition, Gram‐negative bacteria, pri-
marily from the Bacteroidales order [80], can biosynthesize
the toxin LPS, which plays a role in coronary artery
disease through the NF‐κB pathway [81].

Vitamins are essential human nutrients that must be
obtained from exogenous sources, including food and the
gut microbiota. The gut microbiota mainly synthesizes
vitamin K and most of the water‐soluble B vitamins, such
as biotin (H), cobalamin (B12), folate (B9), nicotinic acid
(B3), pantothenic acid (B5), pyridoxine (B6), riboflavin
(B2), and thiamine (B1), which are produced by 40%–65%
of human gut bacteria [82]. The potential microbial
pathways that is responsible for B vitamins biosynthesis
have been introduced recently [83]. It has been estimated
that up to half of the daily vitamin K requirement is
provided by the gut microbiota (e.g., Bacteroides, Bifido-
bacterium, and Enterococcus) [84]. Notably, the produc-
tion of vitamin K and water‐soluble B vitamins isoforms
vary across strains with different enzymes [85]. Vitamin
K plays a key role in blood clotting and building bones, as
both prothrombin and osteocalcin require this vitamin
[86]. In addition, vitamin K can regulate the NF‐κB/Nrf2
pathway via activation of Gla proteins to influence
vascular inflammation in T2D [87]. Furthermore, B
vitamins have transcriptional regulatory roles. For
example, biotin acts via the holocarboxylase synthetase‐

soluble guanylate cyclase‐cGMP‐dependent protein
kinase (PKG) pathway [88], pyridoxine, cobalamin, and
pantothenic acid act via Nrf2 [89–91], folate acts via
interaction with bromodomain‐containing protein 4 and
the folate pathway enzyme methylenetetrahydrofolate
dehydrogenase, cyclohydrolase, and formyltetrahydrofo-
late synthetase 1 [92], nicotinic acid acts via G protein‐
coupled receptor 109 [93], riboflavin acts via DNA
methylation [94] and thiamine via p53 [95].

BAs are amphipathic steroids that are synthesized
from cholesterol in the liver, referred to as primary BAs.
Primary BAs can be reabsorbed from the small intestine
and further be structurally modified by colonic microbes
to form secondary BAs [96]. This process is mediated by
7α/β‐dehydroxylation enzymes. A recent study has
characterized hundreds of microbial genetic structural
variation associations to the human plasma BAs, but the
functionalities of majority of those structural variation
were unknown [97]. Microbial structural variants (SVs)
are highly variable segments of bacterial genomes,
including presence/absence (deletion SVs) and copy
number variations (variable SVs) that have been defined
in recent years based on metagenomic sequencing data
[98]. In addition to their roles in bile formation,
facilitating the absorption of intestinal lipid and fat‐
soluble vitamins, maintenance of cholesterol homeosta-
sis, and antimicrobial actions in the small intestine [99],
several other functions of BAs have been discovered in
the past two decades [46,100]. It has been established
that BAs exert hormone‐like actions to control glucose,
lipid, and energy metabolism modulate immune func-
tions and cellular proliferation and control detoxification
reactions [46,100]. The actions of BAs are mediated
through activation of nuclear receptors, that is, the
established BA receptor farnesoid X receptor as well as
vitamin D receptor, PXR, constitutive androstane recep-
tor as well as membrane‐bound receptors, such as
Takeda G protein‐coupled receptor 5 and sphingosine‐
1‐phosphate receptor 2 [101]. Importantly, differently
structured primary and secondary BAs that are present
within a certain type and between different types show
wide variability in their capacities to exert classical as
well as signaling functions [102]. This appears to be of
physiological relevance since remarkable interindividual
variations in plasma BA concentration and composition
have been reported in several human cohorts associated
with liver fat content [103], fatty liver disease [104], T2D
[105], as well as various plasma lipid parameters [103].

Anthocyanins are flavones containing a phenolic
structure that are widely distributed in plant vacuoles and
demonstrate pH‐dependent color. Anthocyanins are known
for their possible health benefits in preventing various
conditions, including CVD, cancer and neurodegenerative
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disorders, and improving visual and brain functions [48].
Pelargonidin, cyanidin, delphinidin, peonidin, petunidin,
and malvidin are the common anthocyanins occurring
naturally in food [75,106]. Notably, the prebiotic effects of
anthocyanins rely on microbial modulations. For instance,
catabolism of the anthocyanin cyanidin‐3‐glucoside in the
gut microbiome results in the production of phenolic
compounds, including protocatechuic acid, vanillic acid,
phloroglucinaldehyde, and ferulic acid, which have an
effect on oxidative stress and inflammation in the gut via
activation of the Nrf2, MAPK, and NF‐κB pathways [106].
The microbiota anthocyanin metabolite gallic acid (GA) has
been shown to increase the levels of nitric oxide by
increasing the phosphorylation of endothelial nitric oxide
synthase [107]. GA also inhibits the angiotensin‐I convert-
ing enzyme, leading to a reduction in blood pressure [108].

Phytoestrogens are nonsteroidal secondary metabolites
of plants with unique diphenolic structures that include
different classes of chemical compounds such as stilbenes,
coumestans, isoflavones, ellagitannins, and lignans [49].
Phytoestrogens can be found in our daily diet and exhibit
various physicochemical and biological effects, including
antioxidative, antibacterial, anti‐inflammatory, anti-
carcinogenic, and cardioprotective effects [109]. Similar
to anthocyanins, phytoestrogens preferentially bind to
estrogen receptors (ERs) with weak affinity [110].
However, the variants of phytoestrogens transformed by
the gut microbiome through novel enzymatic reactions
can substantially enhance their bioactivities. The gut
microbiome can transform phytoestrogens into molecules,
such as equol, enterolactone, and enterodiol [111]. Equol
can bind to the nuclear ERs expressed in many regions of
the brain to improve the development of the cerebellum
[112]. Both enterolactone and enterodiol can alleviate the
effect of peripheral blood lymphocytes activated by LPSs,
which further leads to inhibitory‐κB degradation and
NF‐κB activation, thereby resulting in the production of
TNF‐α [113].

Via interactions with drugs

The gut microbiome can influence human health and
disease through bidirectional interactions with drugs
(Figure 3). On one hand, antibiotics can kill most of the
gut bacterial species that play important roles in main-
taining the metabolic health of the host via a series of
mechanisms [114,115]. For instance, penicillin works by
attacking the cell wall of bacteria to prevent them from
synthesizing peptidoglycan, which provides strength to
the wall required for survival in the human body [116].
Quinolones target DNA gyrase, an important enzyme that
helps unwind DNA for replication to prevent bacterial

multiplication [117]. Tetracycline prevents key molecules
from binding to selected sites on ribosomes to stop asexual
reproduction [118]. The antituberculosis antibiotics
belonging to the rifamycin group exert a similar effect
by inhibiting the synthesis of RNA [119].

In contrast, commonly used nonantibiotic drugs
can be influenced by the gut microbiome via enzymatic
transformation that changes their bioavailability,
bioactivity, or toxicity [120]. A recent study conducted
in vitro tests to assess the ability of 76 bacterial strains
from the human gut, representing 68 species from
the main bacterial taxonomic groupings, to metabolize
271 drugs. The drugs were chosen to include a diverse
group based on factors, such as molecular structure or
effect on the body. The study reported that 176 drugs
demonstrated a substantial metabolic change caused
by at least one bacterial strain, which resulted in
reduced levels of the active drug molecule in the
bacteria [121]. These results state the possibility that
most drugs are modified by the microbiota, and such
tests could prove useful during drug selection by
isolating the agents that would probably be deactivated
by specific gut microbes.

TOOLS FOR DECODING THE GUT
MICROBIAL FUNCTIONALITIES

Based on high‐throughput next‐generation sequencing,
which provides targeted or the whole microbial
genomes, a series of bioinformatics tools have been
developed to decode the microbial DNA sequence and

FIGURE 3 Microbial interactions with drugs. The gut
microbiome can influence human health and disease through
bidirectional interactions with drugs. On one hand, antibiotics
can kill most of the gut bacteria that play important roles in
maintaining the metabolic health of the host via a series of
mechanisms. On the other hand, commonly used nonantibiotic
drugs can be influenced by the gut microbiome via an
enzymatic transformation that changes their bioavailability,
bioactivity, or toxicity
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predict their functionalities. In general, such tools can
be divided into three categories based on their theories,
namely, taxonomic marker gene‐based indirect predic-
tion, gene homology‐based direct prediction, and
sequence similarity‐based de novo prediction.

Taxonomic marker gene‐based indirect
prediction

Amplicon‐based sequencing of marker genes like 16S
ribosomal RNA is a powerful tool to assess and
compare the structure of microbial communities
within or between samples. However, insights into
the functional capabilities of the gut microbiome are
limited because the sequence information is only
derived from specific genomic regions. Nevertheless,
researchers often infer functions of uncultured orga-
nisms from their cultured counterparts, as a clade's
core genome consists of genes, which its members can
be expected to carry with a high probability. Thus,
functions encoded in the genome of an organism may
partially be predicted based on the functions encoded
in closely related and well‐annotated genomes. Based
on this theory, tools including PICRUSt2 [122],
Tax4Fun2 [123], BugBase [124], and Piphillin [125]
have been developed to profile functional components
of the gut microbiome based on taxonomy information
(Table 1).

PICRUSt2 [122] uses an extended ancestral‐state
reconstruction algorithm based on IMG [126] to
predict the gene families present and subsequently
combines the gene families by a weighting method to
estimate the composite metagenome. Tax4Fun2 [123]
relies on the identification of the nearest neighbor with
Ref100NR and generates Kyoto Encyclopedia of Genes
and Genomes (KEGG) [127] outputs with normaliza-
tions and linear combinations. Piphillin [125] uses
global nearest neighbor matching to generate opera-
tional taxonomic unit abundance tables that are
independent of any proposed phylogenetic tree and
further links to the most updated KEGG to profile the
functional components. BugBase [124] utilizes a
phylogenetic approach to predict genomic content
based on 16S and biologically interpretable phenotypes
such as oxygen tolerance, Gram staining, and patho-
genic potential with existing knowledge. As the pre-
dictive power of the aforementioned tools chiefly relies
on the functional information derived from the
available genomes, recent progress in the construction
of metagenomic‐assembled genomes [128] is likely to
enhance the accuracy of functional inferences after
incorporation. T
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Gene homology‐based direct prediction

Compared with the taxonomic marker gene‐based
indirect prediction, massive sequencing reads generated
by shotgun metagenomic/metatranscriptomic sequenc-
ing (MGS) that cover the entire genomes rather than
marker genes can result in more accurate prediction of
the gut microbial functionalities via directly mapping
reads against well‐annotated gene databases. The com-
monly used tools for functional prediction of MGS
include HUMAnN3 [129], MEGAN [130], ShotMAP
[131], and gutSMASH [132] (Table 2). HUMAnN3 [129]
generates species‐level gene abundances based on UniRef
[133] and further assigns them to MetaCyc pathways
[134]. MEGAN [130] profiles microbial functionalities
based on SEED [135], eggNOG [136], and KEGG.
ShotMAP [131] translates reads into predicted open
reading frames and further searches the SFams [137]
protein family database. GutSMASH [132] mines primary
specialized metabolic gene clusters that are responsible
for the biosynthesis of various metabolites in the human
gut microbiome with the taxonomic resolution based on
the KnownClusterBlast and ClusterBlast databases.

Sequence‐based de novo prediction

The current microbial genomic annotation pipelines are
based on the principle of sequence similarity with
existing databases, such as UniRef [133], MetaCyc
[134], SEED [135], eggNOG [136], and KEGG [127].
Currently, only approximately 60% of the microbiome
genomes can be annotated [128] with a homolog‐based
approach, and nearly half of the microbial functionalities
remain a mystery. In addition, genetic polymorphisms
arise rapidly through de novo mutations (e.g., single‐
nucleotide variations), which could have regulatory
effects on gene expression and functions. Notably, a
prevailing belief across modern molecular biology
research is that a gene sequence defines the structure
of the gene product and this structure, in turn, designates
a unique function [138]. In other words, even with 99%
similarity between the sequences of two genes, their
functionalities may be completely different due to
structural differences caused by variations in the
remaining 1%. Thus, predicting the functionality of
microbial genes based on the structure of the end
product, for example, protein structure, can be a
promising approach. Recently, a novel machine learning
approach named AlphaFold has been developed to
predict protein structures with atomic accuracy even in
cases where the homologous protein structure is not
known [139]. AlphaFold incorporates physical and T
A
B
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biological knowledge regarding the protein structure and
leverages multisequence alignments into the design of
the deep learning algorithm. It does not impose known
rules of protein biophysics or mimic the physical process
of protein folding. Instead, AlphaFold performs purely
geometric refinements learned from repeated attempts to
predict protein structures. Thus, it may sweep the field of
decoding microbial functionality in a novel manner.

However, before utilizing shotgun metagenomic
sequencing data for decoding strain‐level microbial func-
tionalities, the binning of short reads is considered a crucial
step. There are two types of binning approaches, including
reference‐dependent and independent binning. Reference‐
dependent approach basically maps reads against a
database of existing microbial reference genomes using
tools such as bowtie2 [140]. But the main drawback is that
it lacks the ability to characterize unknown microbial
genomes. Reference independent approach is an
unsupervised method to cluster contigs into individual
genome bins without the assistance of any reference
databases. The performance of various tools for metage-
nomic genome binning has been evaluated recently [141],
and highlighted that most genome binning tools performed
well for unique strains but reconstructing common strains
still is a substantial challenge for all genome binning tools
[141]. This may be due to the fact that common strains
shared similar genomes that cannot be discriminated easily.
Nevertheless, advances in the long‐read sequencing may
facilitate de novo binning [142].

TECHNIQUES FOR VALIDATING
MICROBIAL FUNCTIONALITIES

In silico approaches have identified hundreds of
microbes through association‐based theory, which are
likely to be important in human health and disease.
However, the proposed putative functionalities of gut
microbes of interest lack functional validation. Thus,
taking advantage of state‐of‐the‐art techniques such as
culturomics, genome editing, novel models, as well as
multiomics may further strengthen our understanding of
their functionalities and entirely develop the gut
microbiome‐based personalized medicine (Figure 4).

Culturomics

Sequencing the gut microbiome highlighted that most
bacteria in the gut remain uncultured and revealed the
functional importance of specific gut microbes. However,
the technique might be associated with bias in DNA
extraction protocols, bioinformatics tools, as well as
minority microbial populations. Consequently, culturo-
mics was developed to culture and identify unknown
bacteria that inhabit the human gut for direct functional
validation and clinical application. Culturomics is a
culturing approach that uses multiple culture conditions,
mass spectrometry(, and a sequencing approach to
identify bacterial species [143]. The first step in

FIGURE 4 Verifying microbial functionalities with state‐of‐the‐art techniques. Many gut microbes have been found to be associated
with various diseases in human participant‐based studies. Although the potential functional role of the gut microbes can be predicted via
various bioinformatics tools, the proposed putative functionalities of gut microbes of interest lack functional validation. Thus, taking
advantage of state‐of‐the‐art techniques such as culturomics, genome editing, novel models, as well as multiomics may further strengthen
our understanding of their functionalities and entirely develop the gut microbiome‐based personalized medicine
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culturomics is to enable the provision of multiple culture
conditions and promote the growth of fastidious bacteria
from the human gut. This is achieved by improving the
culture media to promote the growth of minority
populations. Next, mass spectrometry is performed for
the rapid identification of microbial species, which relies
on the comparison of the protein mass spectra of the
isolate with the most updated database. Following this,
16S and whole‐genome sequencing are applied to
confirm the new taxa by comparing the existing
microbial genomes recovered from humans. The appli-
cation of culturomics has resulted in thousands of
bacterial isolates, and a substantial proportion of them
have been considered novel species/strains [144–147].
Such resources allow us to test the association‐based
functional hypotheses directly with isolates in mechanis-
tic studies when coupled with in vitro and animal models
or clinical applications such as microbiota transplanta-
tion and microbial editing with CRISPR‐Cas9.

Genome editing

It has been shown that structure variations widely exist
in the gut microbial genomes [11]. Besides, single
nucleotide polymorphism (SNP) level phylogenetic anal-
ysis of worldwide metagenomic samples showed remark-
able within‐species genetic variability [128]. Variations
observed in the genomes of microbial strains from the
same species may vary in their functionalities. To
understand the role of genomic variations, modifying
genomes of microbial isolates with genome editing tools
such as CRISPR‐Cas9 [148] is a promising approach to
test genetic regulations of microbial functionalities.

Humanized animal and organ‐on‐chip
models

Human participants cannot be directly subjected to
verification of unpredictable functional roles of the gut
microbiome in health and disease due to ethical issues.
Consequently, novel in vivo and in vitro models such as
humanized animal and organ‐on‐chip technology have
emerged as the next‐generation disease and drug models
[149,150]. Humanized animal models are animal models
with human‐like phenotypes obtained by editing the
animal genome or inducing external perturbations. For
instance, a mouse model with a human‐like BA pool has
been generated by knocking out the Cyp2c70 gene with
CRISPR/Cas9 [148], which might be a powerful tool to
reveal the effects of the gut microbiota on BA metabolism
and CVD. In the organ‐on‐a‐chip model, human induced

pluripotent stem cells can be differentiated to obtain
different tissue and cell types that can be used to
construct organs‐on‐chips. In particular, organs‐on‐a‐
chip such as gut‐on‐a‐chip and liver‐on‐a‐chip would be
very interesting to investigate microbe‐intestine and
host–microbe metabolic interactions.

Multiomics

Instead of accessing microbial functionalities via
genomes, generating various types of omics datasets
such as metabolomics, proteomics, and transcriptomics,
and further linking them to the gut microbiome may
enhance our understanding regarding the importance of
gut microbes in complex diseases progressing from
taxonomical association to potential functionality. How-
ever, challenges persist in both proteomics and metabo-
lomics that prohibit further exploration of the function-
ality of gut microbes. Although the traditional targeted
approach can result in accurate identification and
quantification of individual metabolites or proteins. But
its low throughput and relatively high cost make it less
suitable for application in large cohort studies. Untar-
geted approaches by innovative tandem mass spectrome-
try approaches can profile thousands of molecules after a
single injection; however, functional annotation and
quantification remain a bottleneck in this approach.
Although community guidelines for metabolite identifi-
cation were published over a decade ago, adoption of the
recommended standards has been limited [151]. Devel-
oping targeted extraction/identification protocols for
specific metabolite and protein classes might be a
promising approach to resolve these issues. In addition,
with a better understanding of enzymatic functions, the
gap in knowledge regarding unknown metabolites and
proteins is reducing. Knowledge of metabolic reactions
should promote the development of more powerful
identification tools. For transcriptomics, a major chal-
lenge would be the isolation of microbial RNA, as the
fecal samples are complex which makes it hard to get
high‐quality microbial RNA. However, the development
of a single bacterial sequencing technology might be a
good solution.

FUTURE PERSPECTIVES

Nowadays, microbiome studies are mainly focused on
the abundance of microbial taxa and functional genes.
However, we have to bear in mind that the abundance of
gut microbes generated by bioinformatic pipelines from
sequencing data cannot really reflect the real density

MICROBIAL FUNCTIONALITIES ENCODED BY GENOMES | 11 of 19

 2770596x, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

t2.14 by U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [06/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(absolute abundance) of microbial organisms in the
human gut. If the microbial load varies substantially
between samples, relative profiling will hamper attempts
to link microbiome features to quantitative data such as
metabolite concentrations [152]. As a cause, the quanti-
tative microbiome profiling method that combines
microbial cell count using flow cytometry with fecal
microbiome sequencing data has been developed
recently [153], which provides more power in assessing
microbial variation within and between individuals.
However, drawbacks still exist as the method is lab skill
dependent in which a single measurement does not
estimate the equilibrium abundance well. Besides this, it
is expensive and time‐consuming and not suitable for big
cohort‐based studies. Thus, future improvements in this
technique are needed.

Apart from the importance of variations of the gut
microbial genes in copy numbers, studying variations in
microbial genomes is another essential direction to go.
Like the human genome, SNPs, SVs (e.g., insertion and
deletion), mobile genetic elements (e.g., bacteriophages
and transposable elements) in the microbial DNA
sequences may also be important for microbial function-
alities and related to human diseases [11,154]. In the past
decades, genetic regulation of microbial functionalities
mainly focused on the limited number of well‐known
genes. Yet, systematic microbial genome‐wide associa-
tion (e.g., SNPs and SVs) to physiology measurements or
metabolite concentrations generated with omics tech-
niques is still absent, which may reveal novel knowledge
regarding the functional role of the human gut micro-
biome in host health and disease with a much higher
resolution than microbial abundances. However, many
challenges remain in both bioinformatics (e.g., problems
in genome binning that have been discussed in the above
sections) and statistics (e.g., millions of SNPs in the
microbial genomes increase the number of statistical
tests, which will have a negative effect on detection
power). The employment of long‐read sequencing and
common variants might be a potential direction to
explore at the early stage.

CONCLUSIONS

The effects of gut microbiota on the host are mainly
mediated by microbial virulence factors, metabolic
molecules, and bidirectional interaction with drugs. We
have highlighted the functional potential of gut microbes
in human health and disease and summarized the
associated molecular mechanisms. In addition, bio-
informatics tools have been introduced that can be
applied to decode the functionalities from microbial

genomes, which might be helpful for researchers to
prioritize them for a specific purpose. Finally, we
highlighted the importance of culturomics and genome
editing, multiomics, as well as novel models for
functional verification and stated the possibilities of
modulating the gut microbiome to improve human
health.
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