

 University of Groningen

Teaching and practicing RE for agility
de Brock, Bert

Published in:
2nd International Workshop on Agile Methods for Information Systems Engineering

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
de Brock, B. (2023). Teaching and practicing RE for agility. In 2nd International Workshop on Agile
Methods for Information Systems Engineering (pp. 24-29). (CEUR Workshop Proceedings; Vol. 3414).
CEUR Workshop Proceedings (CEUR-WS.org).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 05-12-2023

https://research.rug.nl/en/publications/3cff14e0-3baf-46bb-8581-88a925ae57e5

24

Teaching and practicing RE for agility

Bert de Brock
1

1 University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands

Abstract
During the development of an information system, requirements might constantly change. The

practice of Information Systems Engineering clearly evolved because of the adoption of agile

methods. However, after practice and theory of agile development, teaching agile development

should follow. We have to let our students experience agile development and to teach them

how to deal with it, not only in theory but also in practice. E.g., in practice it is difficult to keep

everything consistent in a constantly changing situation. Also, for students it is (very) strange

that something which is judged good in an earlier stage might be judged wrong in a later stage.

In this paper, we describe how we simulate agility in our course and how we let the students

experience constantly changing requirements, and how we teach them how to handle that. And

because of a sudden pandemic (COVID), we were forced to teach all this on-line, with all its

educational restrictions (e.g., no personal meetings, limited human interaction/dynamics, etc.).

Keywords 1
Changing requirements, information systems, agile development, increments, iterations, teach-

ing agility, course design, turning on-line

1. Introduction

During the development of an information system, you usually have to deal with constantly changing

requirements, because internal and external circumstances might change during development. The prac-

tice of Information Systems Engineering (ISE) has evolved substantially because of the adoption of

agile methods. However, after practice and theory of agile development comes teaching agile develop-

ment: We have to teach our students how to deal with this, not only theoretically (incremental and

iterative development, agility, etc.) but also how to handle it effectively in practice. Moreover, at a

certain moment, we had to teach the course completely on-line (because of the COVID-rules).

Therefore, the goal of this paper, intended for requirements engineers in general and RE-educators

in particular, is to describe our improved teaching practice to teach our students how to deal with con-

stantly changing requirements. Or, with a variant on the theme of Agil-ISE, the theme of this paper is:

How can teaching practice be improved or innovated to make it more effective in supporting our

students with the agility of ISE processes in practice?

The document is based on our course Problem Analysis & Software Design. One of the goals of the

course is to let our students experience how difficult it is to keep everything consistent in a constantly

changing situation and to teach them how to handle that. Moreover, students are not yet used to the

phenomenon that something which is judged good in an earlier stage might be wrong in a later stage.

The rest of the paper is organized as follows: In Section 2, we position the course within our curric-

ulum and within several ACM-curricula. Section 3 describes the expected learning outcomes and some

main characteristics of the course. In Section 4 we describe how we arrange the course. Section 5 enu-

merates the topics covered in the course. In Section 6 we describe how we made the course completely

on-line. Finally, we summarize and draw conclusions in Section 7.

Agil-ISE23: 2nd Intl. Workshop on Agile Methods for Information Systems Engineering, June 13, 2023, Zaragoza, Spain

EMAIL: e.o.de.brock@rug.nl
ORCID: : 0000-0003-4400-0187

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

25

2. Positioning the course in a curriculum

The course is given in the second quarter of the second year to our students in Computing Science

(compulsory). The course is elective for AI-students in their third year. Beforehand, the CS-students

had some courses on programming, logic, and algorithms & data structures, among others, and a data-

base course called Introduction to information systems (https://www.rug.nl/ocasys/fwn/vak/show?code

=WBCS021-05). For CS-students, the course precedes the course Software Engineering (https://www.

rug.nl/ocasys/fwn/vak/show?code=WBCS017-10). Our students already have some background in sys-

tem design, programming/implementation, and testing. But in this course, the emphasis is on require-

ments analysis and software design. For the CS-students, it is the first CS-course without programming.

We can also position the course in terms of computing curricula, say those of the ACM [1,2]. The

course would fit in several of those curricula:

For the Undergraduate Degree in the Software Engineering program, the course covers the

knowledge area Requirements analysis and specification; see [3].

For the Graduate Degree in the Software Engineering program, the course covers much of the

knowledge area Requirements Engineering; see [4].

For Undergraduate Degree Programs in Computer Science, the course covers part of the knowledge

area Software Engineering, in particular the knowledge unit Requirements Engineering; see [5].

For Undergraduate Degree Programs in Information Systems, the third part of the course deepens

the course IS Project Management, in particular for the (technical) manager of an agile development

project; see [6].

3. Expected learning outcomes

As formulated in our Course Catalogue, at the end of the course the student is able to:
(1) use gained experience in using methods and tools for problem analysis and software design efficiently

(2) structure and redefine problems and ask adequate questions (problem analysis)

(3) make a good design for a software application (software design)

(4) get to the heart of a problem using abstraction and modelling and be able to indicate whether existing

solutions are applicable (design patterns)

(5) adequately document the results of problem analysis and software design so that both the client and

the programmer can get to grips with this

(6) work in a project-based way and in a team to come to an problem analysis and software design.

Or formulated alternatively:

For problems that might be solvable by means of software:
o to be able to clarify, structure, and redefine inadequate (and changing) problem statements and ask ad-

equate questions to the problem owners (Problem Analysis part)

o to be able to make a good software design that can serve as a starting point for the implementation

(Software Design part)

So, no clearly formulated problems and no programming in this course (only design). For (early)

second year CS-bachelors, this is difficult to get used to: They are used to (and fond of) solving clearly

formulated problems by programming. We let our students experience agile development and teach

them how to deal with changing requirements.

Theme of the course is how to come from initial user wishes to a design in a way that has certain

‘desirable properties’, properties such as straightforward, modular, flexible, quick, incremental/agile,

transparent, traceable.

We emphasize that RE is not a stand-alone topic but that RE and the subsequent steps (and their

feedback for RE) should all be aligned. The emphasis of the course is on practice that is based on theory

and principles.

https://www.rug.nl/ocasys/fwn/vak/show?code%20=WBCS021-05
https://www.rug.nl/ocasys/fwn/vak/show?code%20=WBCS021-05

26

4. How we arranged the course

For several years, my colleague and I are the teachers of the course. First I do the Problem Analysis

part (five lectures of 2 hours), then my colleague does the Software Design part (also five lectures of 2

hours), and finally I do the Organization & Management part (two lectures of 2 hours). In between there

are some Q&A sessions. All this theory is given during the first 4 weeks, because the students need the

theory for their assignments and need time for the iterations (see the iteration deadlines below).

Each year, a new case is used. The cases we used concerned, among others, an auction house, a

moving company, a ferry company, a school stay organization, and a teaching effort system for a faculty

of a university.

How to let the students experience constantly changing requirements and teach them how to handle

it in an agile way? For that purpose, the case is extended and/or changed every single iteration, in such

a way that it might also influence the students’ previous work! This is meant to let the students deal

with the realistic situation that clients will change their requirements while the project is going. In this

way, the students experience how difficult it is to keep everything consistent with everything else. In

the ferry case, for example, a use case Delete a reservation made perfectly sense, initially. However, in

a later iteration, the customer wanted to know whether reservations were used well/seriously or whether

there were many cancellations or ‘no shows’ (and why). But then the ‘old’ use case Delete a reservation

is considered harmful and should itself be deleted or changed into something like Archive a reservation

(probably including a reason). Students need to experience that something which is judged good in an

earlier iteration might become wrong in a later iteration, and they need to learn how to handle that.

In order to assess the students in our course, we issue a case for which a software system must be

designed (not built). We deliberately deliver the case description in 3 rounds / ‘iterations’, where each

description is about 1 to 1½ page. A team needs to write its report in 3 iterations: In each iteration, the

report must include their analysis and design regarding that case so far. The intermediate reports will

be commented on by the teaching assistants and the teachers in order to help the students to get a better

end report. That end report is assessed by the teachers. Some parts are assessed for the individual student

and some parts for the team as a whole (e.g., the team’s conceptual data model and class diagram).

Each new part of the case description will be revealed immediately after the report deadline for the

previous round. The first deadline is after 2 weeks, the second one after 4 weeks, and the last one after

10 weeks. So, the first two rounds are a kind of ‘sprint’: a short, time-boxed period where a team works

to complete a set amount of work. Sprints are at the heart of agile methodologies.

Altogether, a team of 3 students has to do the analysis and design of 6 use cases. In Iteration 1, based

on Part 1 of the case description, each team must create 3 relevant use cases, one by each student. In

order to get a good spread of clearly different use cases within a team, we stipulate that it should pref-

erably be a Create, an Update, and a Delete. Subsequently, the teacher annotates those use cases.

In the next round (Iteration 2), each use case must be improved by another student in the team, based

on our annotations, and then the third student must make a software design for it. The rationale of this

is that in practice, you might also have to continue with the work of others. Subsequently, the teacher

annotates the report again.

In the third round (Iteration 3), each software design from the previous round must be improved by

the original student. Hence, the rotation scheme is:

Student A:

Create Use Case
→

Student B:

Improve Use Case
→

Student C:

Make SW design
→

Student A:

Improve SW design

Also in Iteration 3, one of the students in the team must create a relevant Read use case based on

Part 2 of the case description, while the other two students must create a relevant use case based on Part

3 of the case description. In that same round, for each new use case, a different student must make a

software design. This time, the rotation scheme is ‘backwards’:

Student A ← Student B ← Student C ← Student A

Two e-mail addresses are available for the students: One towards the customer (for questions about

the case) and one towards the helpdesk (for questions about the course itself). My colleague played the

customer. He answered the questions ‘in a customer’s way’, i.e., not always concretely, maybe incom-

pletely, or sometimes even inconsistently (with earlier statements), and not knowing our terminology.

27

(For example, when a student asked which actors were involved, the customer reacted somewhat irri-

tated: ‘What do you mean with actors? Are we going to perform a play??’.)

For the report we provide a template (in LaTeX), with sections such as Management Summary,

Introduction, General remarks, Actors and other stakeholders, Elaboration of use cases, Data model,

Class diagram, and optionally Notes on possible implementations, Potential future developments, and

Appendices. It must include an appendix Correspondence with the customer and may include an appen-

dix Glossary: Terms and abbreviations.

For drawings (of use case diagrams, sequence diagrams, domain models, data models, class dia-

grams, and packages) we use - and advise our students to use - the open-source drawing generation tool

PlantUML (https://plantuml.com). Its specification language matches very well with our grammar for

textual System Sequence Descriptions (SSDs). So, it provides an easy way to generate the correspond-

ing graphical SSDs. For that purpose, we also wrote a small, dedicated PlantUML tutorial; see [7].

The teams preferably consist of three students. The teams are formed by the lecturers, deliberately

mixed internationally (e.g., one Dutch student, one non-Dutch EU-student, and one student from outside

the EU). Our argument against potential objections from the students (because students often want to

work together with their own ‘mates’) is that in practice, you cannot choose your colleagues either.

Not all students that are enrolled will actually follow the course. However, we have to know who

will actively participate, so we introduced an (easy) ‘Iteration 0’ in which each student must write down

individually what the relevant user wishes, user stories, and involved actors are, based on the first part

of the case description. We call it a ‘confirmation of participation’. If a student does not submit an

Iteration 0, (s)he is considered ‘out’. After that, we compose the teams. The first thing a team must do,

is discuss and integrate the 3 individual results of Iteration 0.

Over the recent years, the number of students were growing (and will still be growing). For instance,

in the academic year 2020/2021, about 200 students enrolled, while almost 160 students actively fol-

lowed the course. In that academic year, we had 53 teams (51 of 3 students and 2 of 2 students). It

resulted in more than 900 pages in Iteration 1, more than 1,500 pages in Iteration 2, and more than 3,100

pages in Iteration 3. So, on average, there were almost 60 pages per end report. To help us, we had 5

teaching assistants, so that they could work in parallel.

Until a few years ago, we mainly used the book Applying UML and patterns of Larman [8]. Gradu-

ally, we introduced our own papers and an own syllabus. Meanwhile, I worked out and extended the

Problem Analysis part and the Organization & Management part, which resulted in the textbook [7].

5. What we treated in the course

This section gives a global impression of the topics covered in the course. Most topics might be

familiar to you, but some might be less common. The course consists of 3 parts: Problem Analysis,

Software Design, and Organization & Management. That last part is not so much targeted at the general

software manager but more at the (technical) manager of a development project.

We open the course with the well-known tree swing cartoon ("How the Customer explained it", etc.;

see https://www.smart-jokes.org/how-it-projects-really-work.html), for instance. We use the caption

The problem area under the cartoon.

The topics covered per part are as follows:

(A) Global contents of the Problem Analysis part:
1 Introduction: Sketch of the problem area, Overview of our approach, Functional and other requirements

2 Developing a functional requirement: User Wish (= User Story without role and reason), CRUD-verbs,

User Story, Use Case (= Main Success Scenario + Alternative Scenarios), Dos and Don’ts for writing

Use Cases, Scenario Integration, (textual) System Sequence Description, Grammar for textual SSDs,

Generating graphical SSDs from textual SSDs. So, many ‘agile ingredients’

3 Development patterns for functional requirements: General pattern, CRUD-patterns, Registration

‘forms’ and Search ‘forms’, Indicating the parameters one by one, Browsing, Personalization, Communi-

cating with others

4 Domain modelling: What is it? Purpose, Finding its ingredients, Frequent concepts (customer, product,

sale, etc.). Special cases: Many-to-many associations, Generalization/Specialization, Individual items vs.

‘Catalogue’ items, Concepts related to themselves (e.g., (sub)products), Representing trees, hierarchies,

graphs, etc.

https://plantuml.com/
https://www.smart-jokes.org/how-it-projects-really-work.html

28

5 Conceptual data models: Purpose, Ingredients, From Domain Model to Data Model. Special cases: The

same as under point 4 (Domain modelling)

(B) Global contents of the Software Design part:
1 From Analysis to Design: Black Box SD (Sequence Diagram), Grey Box SD, White Box SD

2 System Design vs. Detailed Design: From DM to Class Diagram, Different layers, Packages, Life Lines

3 Sequence Diagrams vs. Communication Diagrams: Advantages and disadvantages

4 GRAS-patterns: Creator, Controller, Façade, Adaptor, Observer, (Abstract) Factory, Visibility, etc.

5 Design Guidelines: Low Coupling, High Cohesion, Design by Contract, MVC, etc.

(C) Finally, and overarching the other two parts: Organizing and managing the development process
1 Communication Problems: Users’ language/thinking ≠ developers’ language/thinking, User wishes are

vague and also changing, Communication shortcomings within the development organization itself,

Scope of the system is unclear, System must support an entirely new business and/or business model,

further explanation of that tree swing cartoon, and hence the need for agility

2 How to overcome them? By stepwise clarification, stepwise refinement, and stepwise specification.

This is schematically expressed in the table below (followed by the abbreviations used):

Elaborating what …

Problem Analysis part Software Design part

the system must do:

the system must know:

- UW → US → UC (= MSS + AS*) → SSD = BB-SD → GB-SD → WB-SD

- Domain Models* → Conceptual Data Model → Class Diagrams
+ (refinements)

 *: zero or more +: one or more

Abbreviations used in the table

UW: User Wish MSS: Main Success Scenario BB-SD: Black Box Sequence Diagram

US: User Story AS: Alternative Scenario GB-SD: Grey Box Sequence Diagram

UC: Use Case SSD: System Sequence Diagram WB-SD: White Box Sequence Diagram

3 Organization & Management Problems: The ‘times to market’ must become shorter and shorter, hun-

dreds (or thousands) of requirements, ever quicker changing circumstances (externally and internally)

All in all: The requirements are usually only clear at the end of the project… How to manage that?

Here again, we emphasize the need for agility in order to manage that

4 Possible (and usual) consequences for the development project: Insufficient functionality (too little),

not within time (too late), and not within budget (too costly). So, actually failing all three basic project

requirements

5 Some methods history (Why are we where we are now?): Waterfall methods, Parallel development,

CASE tools etc., Forms of Prototyping, Iterative development vs. Incremental development, Agile de-

velopment, and Continuous development

6 How to overcome those Organization & Management Problems? Arranging real customer participa-

tion and availability (on-site customer vs. on-site developer), Iterative & Incremental development, Short

feedback loops, Agile/rolling planning (not predictive or prescriptive but adaptive), Reasons for changes,

Dealing with (disruptive) changes, Ranking requirements (but only the next ones), Potential ranking cri-

teria, Teams and team composition

6. How we made the course completely on-line

Given all the limitations during the COVID-pandemic, everything had to go on-line and personal

meetings were not allowed during that period. The lectures and tutorials were held on-line using Black-

board Collaborate (https://help.blackboard.com/Learn/Instructor/Ultra/Interact/Blackboard_Collabo-

rate). While one of the lecturers was lecturing, the other lecturer plus at least one teaching assistant

attended, meanwhile answering questions in the chat. The students could react in the chat: asking ques-

tions, answering our questions, making remarks, etc. They were able to do it anonymously, by logging

in with a nick name. We also recorded all our lectures (because students might be at their home in

completely different time zones).

During the lectures, we were mainly presenting and discussing the slides. We rewrote all our lecture

slides and tutorial slides (more than 600), to adapt to the new circumstances. During the tutorials, we

were also ‘writing’ on the slides, denoting the suggestions and solutions. Although the students could

https://help.blackboard.com/Learn/Instructor/Ultra/Interact/Blackboard_Collaborate
https://help.blackboard.com/Learn/Instructor/Ultra/Interact/Blackboard_Collaborate

29

toggle between the slides and the video showing the lecturer, there was not much added value in looking

at our ‘talking heads’. We didn’t see our (dozens of) students. This was a real drawback because we

could not see whether they did understand the material.

To discuss the course with our teaching assistants, we used Slack and Google Meet (with video).

Some teaching assistants were not even in the country. We also arranged a ‘meeting with the customer’,

on-line via Blackboard Collaborate. Since the customer was played by my colleague, we pretended that

the employee was working from home (as usual in those days), ‘unfortunately’ without an audio- and

video-connection…

In previous years, before the pandemic, the students had to hand in printed versions of the interme-

diate reports and end reports at a concrete location at the faculty. We used those printed versions to

make annotations, to cross out texts, to tear off and easily compare different pages, to draw arrows

between conflicting statements, etc. Very handy (for us). With all the restrictions because of the pan-

demic, the students could (remotely) upload a pdf-version of their report in Blackboard, our digital

learning environment, and we made our annotations on the digital versions. We could sometimes extend

our annotations later on when they turned out to be unclear for the students. But, all in all, it was not

that handy anymore.

Before the pandemic, the team members could (and should) also meet each other physically, but

now they couldn’t. Therefore, per team we made a group in our digital learning environment so that

they could communicate with each other.

The move to on-line teaching had implications for the simulation of agile development practices

because team meetings or personal meetings were not allowed then, while that is an important aspect

in agile development (and in many other development paradigms as well).

7. Summary and conclusion

In this paper, we described how we simulated agility in a course (Problem Analysis & Software

Design). We taught our students how to deal effectively with constantly changing requirements, theo-

retical as well as practical. For instance, students had to learn how to deal with the practical fact that

something which is good in an earlier iteration might become wrong in a later iteration… We also

described how we arranged this, also completely on-line (during the COVID period), with all its edu-

cational limitations. For instance, the student teams could not have personal (stand-up) meetings and

missed many of the human aspects.

With this improved course design, we are more effective in supporting our students to deal with the

agility of ISE processes in practice. The course is challenging and demanding, but the students learn a

lot, not only the theory but also how to apply the theory in (agile) practice.

8. References

[1] Curricula Recommendations, ACM. URL: https://www.acm.org/education/curricula-recommen-

dations.

[2] Computing Curricula 2005: The Overview Report. URL: https://www.acm.org/binaries/con-

tent/assets/education/curricula-recommendations/cc2005-march06final.pdf.

[3] Software Engineering 2014. URL: https://www.acm.org/binaries/content/assets/educa-

tion/se2014.pdf.

[4] Graduate Software Engineering 2009. URL: https://www.acm.org/binaries/content/assets/educa-

tion/gsew2009.pdf.

[5] Computer Science Curricula 2013. URL: https://www.acm.org/binaries/content/assets/educa-

tion/cs2013_web_final.pdf.

[6] IS 2010: Curriculum Guidelines for Undergraduate Degree Programs in Information Systems.

URL: https://www.acm.org/binaries/content/assets/education/curricula-recommendations/is-

2010-acm-final.pdf.

[7] E.O. de Brock, Developing Information Systems Accurately – A Wholistic Approach, Springer

Cham, 2023.

[8] C. Larman, Applying UML and patterns, Addison Wesley Professional, 2005.

