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A B S T R A C T

Directly mining high-dimensional time series presents several challenges, such as time and space costs.
This study proposes a new approach for representing time series data and evaluates its effectiveness in
detecting collective anomalies. The proposed method, called bidirectional piecewise linear representation
(BPLR), represents the original time series using a set of linear fitting functions, which allows for dimensionality
reduction while maintaining its dynamic characteristics. Similarity measurement is then performed using the
piecewise integration (PI) approach, which achieves good detection performance with low computational
overhead. Experimental results on synthetic and real-world data sets confirm the effectiveness and advantages
of the proposed approach. The ability of the proposed method to capture more dynamic details of time series
leads to consistently superior performance compared to other existing methods.
1. Introduction

With the rapid development of Internet of Things (IoT), a large
number of sensors are capable of collecting and transmitting real-time
data [1]. These data are often presented in the form of time series,
which is a sequence of data points recorded in chronological order [2,
3]. By effectively processing and analyzing time series data, the massive
information provided by IoT can be better utilized. The benefits of
dimensionality reduction in enhancing the efficiency and effectiveness
of time series mining have gained widespread attention [4–6]. As a
result, this paper concentrates on the development of a novel method
for the representation of time series data in a lower-dimensional space.

Time series anomaly detection is a crucial subfield of time series
data mining [7], which aims to identify unexpected behavior in the
entire dataset. As anomalies are often caused by different mechanisms,
they lack specific criteria for definition. In practice, data that exhibits
expected behavior tend to receive greater attention, while anoma-
lous data is often perceived as noise and subsequently disregarded or
eliminated. However, anomalies can contain useful information, mak-
ing their detection highly significant. For instance, in cybersecurity,
anomalies in network traffic or user behavior can signal potential se-
curity breaches or attacks [8]. Additionally, precise anomaly detection
can help mitigate unnecessary adverse effects in various fields, such as
the environment [9], industry [10], finance [11], and others.

∗ Corresponding author at: Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Nijenborgh 9, 9747 AG,
Groningen, The Netherlands.

E-mail addresses: s.wen@rug.nl (W. Shi), g.azzopardi@rug.nl (G. Azzopardi), d.karastoyanova@rug.nl (D. Karastoyanova), huang_ym@seu.edu.cn
(Y. Huang).

Anomalies in time series can be classified into the following three
categories [12]; (1) Point anomalies: a data point is regarded as anoma-
lous, with respect to the rest of the data points. These anomalies are
often caused by measurement errors, sensor malfunctions, data input
errors, or other exceptional events; (2) Contextual anomalies: in a
specific context, a data point is considered anomalous, but otherwise
not; and (3) Collective anomalies: a subsequence of a time series that
exhibits abnormal behavior. This is quite a challenging task because
such anomalies may not be considered anomalous when analyzed
individually. Instead, it is the collective behavior of the group that is
anomalous. Collective anomalies can also provide valuable insights into
the underlying system or process being analyzed, as they may indicate
a group-level problem or issue that needs to be addressed. Detecting
collective anomalies can thus be an essential task in many fields, such
as cybersecurity, finance, and healthcare [13]. In this paper, we focus
on evaluating the proposed approach for the detection of collective
anomalies.

The high dimensionality of time series data necessitates signifi-
cant computational resources when using the original data to identify
anomalies. However, to enhance anomaly detection efficiency, a typical
approach involves reducing the dimensionality first and then utilizing a
distance measure to perform the task in the transformed representation
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474-0346/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.aei.2023.102155
Received 30 June 2023; Received in revised form 16 August 2023; Accepted 25 Au
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

gust 2023

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:s.wen@rug.nl
mailto:g.azzopardi@rug.nl
mailto:d.karastoyanova@rug.nl
mailto:huang_ym@seu.edu.cn
https://doi.org/10.1016/j.aei.2023.102155
https://doi.org/10.1016/j.aei.2023.102155
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.102155&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Advanced Engineering Informatics 58 (2023) 102155W. Shi et al.

r
s
s
m
a
n
m

2

d
c
w

2

u
c
h
a
t
a
c
d
t
l
i
i

2

s
I
n
s
m
d
d
h
c
m

space. Therefore, we propose a novel bidirectional segmentation algo-
rithm for piecewise linear representation, which we call BPLR. With
this new method, we can transform the original time series into a low-
dimensional expression form, which is suitable for efficient analysis.
We also propose a novel similarity measurement based on the idea of
piecewise integration (PI), which performs effective similarity measure
computation with a relatively low computing overhead. Finally, the
proposed BPLR and PI methods are combined to detect collective
anomalies in time series.

The proposed BPLR method contributes to the field in the following
ways:

• It enables efficient selection of segmentation points, which can
significantly reduce the volume of original data and minimize
computational complexity.

• It facilitates data visualization and allows for the identification of
intrinsic characteristics of time series data.

• It enhances sensitivity to the volatility of the original time series,
as the newly obtained time series reflects its dynamic character-
istics after data representation.

• It provides a stable similarity measurement that yields more
precise detection results than other approaches.

The remainder of this paper is organized as follows. Section 2
eviews the methodologies for detecting collective anomalies in time
eries. Section 3 introduces several definitions of time series and sub-
equences. Section 4 presents the details of the proposed BPLR-based
ethod. Section 5 illustrates the computational complexity and evalu-

tion criteria of the proposed method. Section 6 validates the effective-
ess of the proposed method through comparison with other existing
ethods. Finally, the conclusions are drawn in Section 7.

. Related works

Anomaly detection methods for collective anomalies can be mainly
ivided into three categories [5]: (1) prediction-based [14,15]; (2)
lassification-based [16,17]; and (3) representation-based [5,13,18],
hich are introduced in what follows.

.1. Prediction- and classification-based methods

Prediction and classification-based methods for anomaly detection
se supervised learning techniques to train the detection model that
an separate normal data from anomalous data. These two methods
ave the following drawbacks; (1) Dependency on labels: classification
nd prediction-based methods require labeled training data, while ob-
aining labeled data can be difficult or expensive in many practical
pplications [5], (2) Inapplicable to unknown anomalies: the model
an only recognize known anomaly patterns, and it may not effectively
etect anomalies when faced with new ones [19], and (3) Difficult to in-
erpret: classification and prediction models use statistical and machine
earning techniques to identify patterns and make predictions based on
nput data. However, they are complex and difficult to interpret their
nference [20].

.2. Representation-based methods

Methods based on representation learning identify the internal
tructure and patterns of data using a new representational space.
n this space, similarity assessments measure the differences between
ormal and anomalous data. Samples that significantly deviate in
imilarity from most samples are considered anomalous. This kind of
ethod is unsupervised learning and does not require labeled anomaly
ata. This paradigm has a wide range of applications, can handle high-
imensional data, can discover complex anomalies, and can achieve
igh accuracy and robustness [13]. Representation-based methods
ontain two main steps, namely data representation and similarity
2

easurement.
2.2.1. Data representation
Data representation refers to extracting core characteristics of given

time series data and representing it in different forms. For captur-
ing collective anomalies, the original time series need to be divided
into a group of sub-series of data, called subsequences. Then, several
approaches, such as piecewise aggregate approximation (PAA) [21],
symbolic aggregate approximation (SAX) [22,23], information gran-
ulation theory [24], piecewise linear representation (PLR) [25,26],
and others, can be used to represent each subsequence. Among these
approaches, PAA works by dividing a time series into fixed-length
segments and representing each segment with its average, thereby
reducing the dimensionality of the data [21]. SAX takes this a step
further by discretizing these averages into symbols, allowing the time
series data to be represented at even lower dimensions [22]. Due to its
remarkable capacity for reducing dimensionality while preserving es-
sential features, SAX has garnered significant attention and undergone
notable development in recent years For instance, Park and Jung [27]
employ SAX to symbolize time series, and then use association rule
mining for discovering frequent rules among the symbols of deviant
events. Regarding information granulation theory, Duan et al. [28]
propose a novel method for time series granulation, and apply it
to construct a framework of time series clustering. Guo et al. [29]
propose a trend-based granular representation method for time series
and evaluate its effectiveness in a clustering task. The mentioned rep-
resentation methods all achieve good results in their respective tasks.
However, these techniques might inadvertently neglect or mitigate
sudden changes or anomalous trends in the original data [30,31]. As
a result, they are more popular for classification and clustering tasks.
In contrast, PLR identifies key segmentation points within the original
sequence where significant shifts in data behavior occur, and then uses
several straight lines to connect the segmentation points. This approach
decomposes nonlinear relationships into multiple linear segments for
easier processing, enabling it to effectively capture and describe abrupt
deviations and anomalous patterns within the data [12]. Therefore,
PLR is more suitable for anomaly detection tasks. Kong et al. [13]
effectively use PLR in combination with the weighted local outlier
factor, achieving notably high accuracy in detecting anomalies within
time series data. Existing segmentation criteria of PLR, include the
bottom-up approach [32], top-down approach [33,34], and optimal
partitioning approach [2], among others. These methods, however,
have high computational complexity. To address this issue, we propose
BPLR to select segmentation points more efficiently. Moreover, the
proposed BPLR method fully considers the volatility of the original
time series, which helps reduce the fitting error between representative
subsequences and the original ones.

2.2.2. Similarity measurement
After data representation, the next step is to measure the similarity

of all the subsequences in the representation space, and then the
anomaly score of each subsequence can be obtained. Subsequences
whose anomaly scores are higher than a given threshold are labeled
as anomalies. There are several commonly utilized methods for sim-
ilarity measurement, namely Longest common subsequence similarity
(LCSS) [35,36], dynamic time warping (DTW) [37], and local outlier
factor (LOF) [38], to name a few. These methods come with a high
computational burden. Research in recent years has addressed this issue
by attempting to propose new algorithms or optimize existing ones. For
instance, Zhou et al. [39] employ efficient data structures to enhance
the performance of LCSS in heart disease classification. Choi et al. [40]
introduce two novel methods, namely fast Sakoe–Chiba DTW (SC-DTW)
and fast incremental DTW (I-DTW), which exhibit faster computational
speeds compared to the conventional DTW. Zhang et al. [41] propose
a time series similarity measurement method, which utilizes series
decomposition and DTW. This method possesses lower complexity than
DTW and demonstrates notable efficiency in classification tasks. Liu

et al. [42] propose a top-n local outlier detection method based on
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Table 1
Symbols and abbreviations in this paper.

Symbol Meaning

𝑇 A time series
𝑌 A subsequence
𝑀 Length of 𝑌
𝑡𝑡𝑝𝑟 A trend turning point
𝐹𝑟 Importance factor of 𝑡𝑡𝑝𝑟
𝑉 𝐷(⋅) Vertical distance
𝛽 Deviation tolerance factor
𝛿𝛽 Maximum deviation of 𝑌
𝑇𝑇𝑃 Trend turning point
𝑇𝑇𝑃𝑜 The list of trend turning points sorted in descending

order of their importance factor
𝐵𝑃𝐿𝑅 Bidirectional piecewise linear representation
𝑃𝐼 Piecewise integration

Fig. 1. An example of time series with partitioned subsequences.

Kernel Density Estimation (KDE), which minimizes the computational
cost and performs well in detecting local outliers in data streams. The
aforementioned methods, designed to calculate the distance between
corresponding data points in two time series, have achieved good
results on their respective datasets. Nevertheless, when confronted with
the more abstract notion of linear segments, these methods fall short
due to their lack of customization to account for the unique structure
and distinct characteristics intrinsic to these segments [43]. Conse-
quently, these methods do not offer suitable solutions for calculating
distances between such segments. Therefore, we present a PI-based
similarity method that can perform an effective similarity measure
computation for the linear segments, with a relatively low computing
overhead.

3. Preliminary

This section provides definitions related to the proposed anomaly
detection approach based on BPLR. Table 1 contains a list of symbols
and abbreviations frequently employed throughout this paper.

3.1. Time series and subsequences

Definition 1 (Time Series [44]). A sequence of pairs, 𝑇 =
{

(𝑡1, 𝑥1),
(𝑡2, 𝑥2),… , (𝑡𝑁 , 𝑥𝑁 )

}

, where 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 , 𝑥𝑖 represents the value
of a data point at time 𝑡𝑖.

Definition 2 (Subsequence [22]). Given a time series 𝑇 =
{

(𝑡1, 𝑥1),
(𝑡2, 𝑥2),… , (𝑡𝑁 , 𝑥𝑁 )

}

, a subsequence 𝑌 of 𝑇 can be obtained by extract-
ing a window of size 𝑀(𝑀 ≤ 𝑁), Fig. 1. One can split 𝑇 in 𝑝−element
non-overlapping subsequences

{

𝑌1, 𝑌2,… , 𝑌𝑝
}

, where 𝑝 = ⌊𝑁∕𝑀⌋ and
⌊⋅⌋ denote rounding down.
3

Fig. 2. Illustration of all possible trend turning points (TTPs).

3.2. Definitions of terms within a subsequence

Considering a time series 𝑇 =
{

𝑌1, 𝑌2,… , 𝑌𝑝
}

, 𝑌𝑘 = {(𝑡𝑘,1, 𝑦𝑘,1),
(𝑡𝑘,2, 𝑦𝑘,2),… , (𝑡𝑘,𝑀 , 𝑦𝑘,𝑀 )} denotes a subsequence in 𝑇 , where 𝑘 =
1, 2,… , 𝑝. Note that we use 𝑌 , 𝑦𝑖 and 𝑡𝑖 to represent 𝑌𝑘, 𝑦𝑘,𝑖 and 𝑡𝑘,𝑖
in the following text, for simplification reasons. Thus, we have 𝑌 =
{

(𝑡1, 𝑦1), (𝑡2, 𝑦2),… , (𝑡𝑀 , 𝑦𝑀 )
}

. Then, we give the following definitions
for a subsequence 𝑌 .

Definition 3 (Trend Turning Points (𝑇𝑇𝑃𝑠)). Given a subsequence
𝑌 , each element (𝑡𝑖, 𝑦𝑖) in 𝑌 that satisfies Eq. (1) is labeled as a
trend turning point (𝑇𝑇𝑃 ). 𝑇𝑇𝑃𝑠 in 𝑌 can be expressed as 𝑇𝑇𝑃𝑠 =
{

𝑡𝑡𝑝1, 𝑡𝑡𝑝2,… , 𝑡𝑡𝑝𝑟,… , 𝑡𝑡𝑝𝑍
}

, where 1 ≤ 𝑟 ≤ 𝑍, and 𝑍 ≤ 𝑀 .

{𝑦𝑖 ∈ 𝑌 ∶ 𝑦𝑖 ≥ 𝑦𝑖−1 and 𝑦𝑖 > 𝑦𝑖+1}

∪ {𝑦𝑖 ∈ 𝑌 ∶ 𝑦𝑖 > 𝑦𝑖−1 and 𝑦𝑖 = 𝑦𝑖+1}

∪ {𝑦𝑖 ∈ 𝑌 ∶ 𝑦𝑖 ≤ 𝑦𝑖−1 and 𝑦𝑖 < 𝑦𝑖+1}

∪ {𝑦𝑖 ∈ 𝑌 ∶ 𝑦𝑖 < 𝑦𝑖−1 and 𝑦𝑖 = 𝑦𝑖+1},

(1)

where 1 < 𝑖 < 𝑀 .

From Eq. (1), it can be deduced that there are six situations where
(𝑡𝑖, 𝑦𝑖) can be defined as a trend turning point, as illustrated in Fig. 2.
The essential structure of a given subsequence can be represented by its
volatility characteristics. To this end, we introduce the concept of TTPs,
which capture the morphological features of the original time series.
Since a large number of TTPs may result from significant fluctuations
in the time series, we rank them based on their importance according
to the factor defined below.

Definition 4 (Importance Factor (𝐹 )). Given a subsequence 𝑌 , 𝐹 is the
vertical distance [2] between the corresponding 𝑇𝑇𝑃 and the mean
value 𝑀𝑉 of 𝑌 :

𝐹𝑟 = 𝑉 𝐷(𝑀𝑉 , 𝑡𝑡𝑝𝑟), 𝑟 = 1, 2,… , 𝑍, (2)

where 𝑉 𝐷(⋅) denotes the vertical distance, and

𝑀𝑉 = 1
𝑀

𝑀
∑

𝑖=1
𝑦𝑖. (3)

Fig. 3 shows an example of a subsequence with 𝑇𝑇𝑃𝑠 =
{

𝑡𝑡𝑝1, 𝑡𝑡𝑝2,
𝑡𝑡𝑝3, 𝑡𝑡𝑝4, 𝑡𝑡𝑝5, 𝑡𝑡𝑝6, 𝑡𝑡𝑝7, 𝑡𝑡𝑝8

}

.

Definition 5 (BPLR of 𝑌 ). Given a subsequence 𝑌 , BPLR is dedicated
to identifying segmentation points in places where the behavior of the
sequence changes significantly. Then, by connecting all segmentation
points, the BPLR of 𝑌 can be defined as a group of linear segments, as
shown in Fig. 4. It is notable that the first and last elements in 𝑌 are
considered segmentation points by default.
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Fig. 3. An example of a subsequence with indicated trend turning points.

Fig. 4. BPLR of a subsequence. The red markers indicate the segmentation points.

Definition 6 (Maximum Deviation). We denote by 𝛿𝛽 the maximum
deviation of the segments in 𝑌 , that we use as a measure of segment
uality. Within a segment, the vertical distances from all data points to
he fitting line representing the segment must be less than or equal to
𝛽 , otherwise the segment is considered invalid.

𝛽 = |max(𝑌 ) − min(𝑌 ) | ⋅ 𝛽, (4)

where 𝛽 denotes the deviation tolerance factor, which we set as a
hyperparameter.

4. Methodology

Anomaly detection based on the proposed BPLR method contains
two stages on which we elaborate below: (1) time series representation,
and (2) similarity measurement.

4.1. Time-series representation based on BPLR

To complete the representation task, we need to find several sets
of segmentation points in each subsequence, and then transform the
original subsequence into a set of linear segments, as mentioned in
Definition 5. In what follows, we give a specific description of the linear
representation process for subsequence 𝑌 .

4.1.1. Determination of an ordered TPP list
Given a time series 𝑇 =

{

(𝑡1, 𝑥1), (𝑡2, 𝑥2),… , (𝑡𝑁 , 𝑥𝑁 )
}

, firstly, it is
divided into non-overlapping segments of equal width; 𝑇 =

{

𝑌1, 𝑌2,… ,
𝑌𝑝
}

. The width can be either given or determined automatically, such
as using auto cross-correlation [45]. To be specific, we begin by iden-
tifying peaks in the autocorrelation function of 𝑇 and determining
their corresponding lags. Following this, we calculate the differences
between the lags of adjacent peaks, which represent the potential
periods of the signal. Finally, we select the mode of these differences
to define the width of the subsequences, denoted as 𝑀 . Fig. 5 presents
an example for calculating the value of 𝑀 . In this particular instance,
4

Fig. 5. Calculation process of 𝑀 . (a) Time series. (b) Autocorrelation of the time series.
In this example, M = 50.

we set 𝑀 = 50 based on the differences between the lags of adjacent
peaks.

Secondly, considering a subsequence 𝑌 =
{

(𝑡1, 𝑦1), (𝑡2, 𝑦2),… ,
(𝑡𝑀 , 𝑦𝑀 )

}

in 𝑇 , all 𝑇𝑇𝑃𝑠 in 𝑌 can be obtained according to Eq. (1).
hen, we denote by 𝑇𝑇𝑃𝑜 the list of 𝑇𝑇𝑃𝑠 sorted in descending order
f their importance factor 𝐹 . Algorithm 1 shows the calculation process
f 𝑇𝑇𝑃𝑜.

Algorithm 1 Pseudocode for the determination of an ordered TPP list

Input: A subsequence 𝑌 =
{

(𝑦1, 𝑡1),… , (𝑦𝑀 , 𝑡𝑀 )
}

Output: 𝑇𝑇𝑃𝑜
Process:
1: function F_evaluation(𝑌𝑘)
2: 𝑖 ← 1;
3: 𝑆 ← 0;
4: 𝑇𝑇𝑃𝑠 ← [];
5: 𝑇𝑇𝑃𝑙𝑖𝑠𝑡 ← [];
6: while 𝑖 ≤ 𝑀 do
7: Set 𝑆 ← 𝑆 + 𝑦𝑖;
8: if (𝑡𝑖, 𝑦𝑖) is a 𝑇𝑇𝑃 then
9: Set 𝑇𝑇𝑃𝑠 ← [𝑇𝑇𝑃𝑠 , (𝑦𝑖, 𝑡𝑖)];
0: end if
1: Set 𝑖 ← 𝑖 + 1;
2: end while
3: 𝑀𝑉 ← 𝑆∕𝑀 ;
4: for 𝑟 ← 1 ∶ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑇𝑃𝑠) do
5: 𝑡𝑡𝑝𝑟 ← 𝑇𝑇𝑃𝑠𝑟;
6: 𝐹𝑟 ← 𝑉 𝐷(𝑀𝑉 , 𝑡𝑡𝑝𝑟);
7: Insert 𝑡𝑡𝑝𝑟 into 𝑇𝑇𝑃𝑜 in descending order according to the

value of 𝐹𝑟;
8: end for
9: return 𝑇𝑇𝑃𝑜;
0: end function

4.1.2. Determination of linear segments
We use the ordered 𝑇𝑇𝑃 list 𝑇𝑇𝑃𝑜 to transform a given subsequence

of raw values into a set of linear segments. This is achieved as follows.
We start with the first 𝑇𝑇𝑃 item in 𝑇𝑇𝑃𝑜, i.e. 𝑇𝑇𝑃 1 and use it as a
starting position of the first two linear segments, one on the left-hand
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side and one on the right-hand side. The endpoint of the first linear
segment 𝐵𝑃𝐿𝑅1 is determined by scanning backward sequentially all
he raw data points preceding 𝑇𝑇𝑃 1 and choose the last raw data point
(𝑡𝑗 , 𝑦𝑗 ) such that all points between (𝑡𝑗 , 𝑦𝑗 ) and 𝑇𝑇𝑃 1 have a vertical
distance less than 𝛿𝛽 (see Definition 6). If any of the elements in 𝑇𝑇𝑃𝑜
are members of the set of raw points between (𝑡𝑗 , 𝑦𝑗 ) and 𝑇𝑇𝑃 1 then
they are removed from 𝑇𝑇𝑃𝑜. Similarly, we determine the endpoint of
the second linear segment 𝐵𝑃𝐿𝑅2 by scanning forward all raw data
points succeeding 𝑇𝑇𝑃 1. We keep repeating this process by taking the
next element in 𝑇𝑇𝑃𝑜 to be the starting position of the next pair of
linear segments, until 𝑇𝑇𝑃𝑜 is empty. The pseudocode of this procedure
is given in Algorithm 2.

Algorithm 2 Transform a subsequence of raw values into a set of linear
segments
Require: A subsequence of raw values 𝑌 , an ordered TTP list 𝑇𝑇𝑃𝑜,

and 𝛽
nsure: A set of linear segments {𝐵𝑃𝐿𝑅}
1: 𝑖 ← 1;
2: 𝐵𝑃𝐿𝑅 ← [];
3: while 𝑇𝑇𝑃𝑜 is not empty do
4: Let (𝑡∗𝑖 , 𝑦

∗
𝑖 ) be the 𝑖-th element of 𝑇𝑇𝑃𝑜;

5: Find the last raw data point (𝑡𝑗 , 𝑦𝑗 ) by moving backwards from
(𝑡∗𝑖 , 𝑦

∗
𝑖 ) such that ∀ (𝑡𝑚, 𝑦𝑚) ∈ 𝑌 with 𝑡𝑗 ≤ 𝑡𝑚 ≤ 𝑡∗𝑖 , |(𝑡𝑚 − 𝑡𝑗 )(𝑦𝑗 −

𝑦∗𝑖 )∕(𝑡𝑗 − 𝑡∗𝑖 ) + 𝑦𝑗 − 𝑦𝑚| < 𝛿𝛽 ;
6: Set 𝐵𝑃𝐿𝑅1 ← {(𝑡𝑗 , 𝑦𝑗 ), (𝑦∗𝑖 , 𝑡

∗
𝑖 )};

7: Remove any elements in 𝑇𝑇𝑃𝑜 that are members of the set of
raw points between 𝑡𝑗 and 𝑡∗𝑖 ;

8: Find the last raw data point (𝑡𝑘, 𝑦𝑘) by moving forward from
(𝑡∗𝑖 , 𝑦

∗
𝑖 ) such that ∀ (𝑡𝑚, 𝑦𝑚) ∈ 𝑌 with 𝑡∗𝑖 ≤ 𝑡𝑚 ≤ 𝑡𝑘, |(𝑡𝑚 − 𝑡𝑘)(𝑦𝑘 −

𝑦∗𝑖 )∕(𝑡𝑘 − 𝑡∗𝑖 ) + 𝑦𝑘 − 𝑦𝑚| < 𝛿𝛽 ;
9: Set 𝐵𝑃𝐿𝑅2 ← {(𝑡∗𝑖 , 𝑦

∗
𝑖 ), (𝑡𝑘, 𝑦𝑘)};

10: Remove any elements in 𝑇𝑇𝑃𝑜 that are members of the set of
raw points between 𝑡∗𝑖 and 𝑡𝑘;

11: 𝐵𝑃𝐿𝑅 = {𝐵𝑃𝐿𝑅, 𝐵𝑃𝐿𝑅1, 𝐵𝑃𝐿𝑅2};
12: Set 𝑖 ← 𝑖 + 1;
13: end while
14: return {𝐵𝑃𝐿𝑅}

The value of the parameter 𝛽 is directly related to the dimensionality
eduction of the time series. Dimensionality reduction increases and
itting imprecision decreases with an increasing value of 𝛽. Fig. 6 shows

an example of linear segments with different values of 𝛽, where 𝛽1 > 𝛽2.

.2. Distance measure between two subsequences

For a given time series 𝑇 =
{

𝑌1, 𝑌2,… , 𝑌𝑝
}

, we denote by BPLR(T)
its BPLR representation of a set of linear segments.

We denote by 𝑑𝑖,𝑗 (𝑇 ) the distance measure between two subse-
quences 𝐵𝑃𝐿𝑅𝑖(𝑇 ) and 𝐵𝑃𝐿𝑅𝑗 (𝑇 ), which we define as the area be-
tween the two subsequences, Fig. 7. In practice, we compute this
similarity by taking the absolute difference between the areas under
𝐵𝑃𝐿𝑅𝑖(𝑇 ) and 𝐵𝑃𝐿𝑅𝑗 (𝑇 ):

𝑑𝑖,𝑗 (𝑇 ) =
|

|

|

|

|

∫ 𝐵𝑃𝐿𝑅𝑖(𝑇 ) − ∫ 𝐵𝑃𝐿𝑅𝑗 (𝑇 )
|

|

|

|

|

, (5)

where the piecewise integration of 𝐵𝑃𝐿𝑅𝑘(𝑇 ) is defined as:

∫ 𝐵𝑃𝐿𝑅𝑘(𝑇 ) =
#𝐵𝑃𝐿𝑅𝑘(𝑇 )

∑

𝑎 = 1
∫ 𝐵𝑃𝐿𝑅𝑎

𝑘(𝑇 ), (6)

where 𝐵𝑃𝐿𝑅𝑎
𝑘(𝑇 ) refers to the 𝑎th linear segment in 𝐵𝑃𝐿𝑅𝑘(𝑇 ), and

#𝐵𝑃𝐿𝑅𝑘(𝑇 ) denotes the cardinality of the set 𝐵𝑃𝐿𝑅𝑘(𝑇 ); i.e. the
5

number of linear segments in 𝐵𝑃𝐿𝑅𝑘(𝑇 ). q
Fig. 6. Linear segments with different values of 𝛽. Red markers indicate the
segmentation points.

Fig. 7. Data representation of 𝑌𝑖 and 𝑌𝑗 .

4.3. Anomaly detection

Upon evaluating the pairwise distances between any two subse-
quences within the set 𝐵𝑃𝐿𝑅(𝑇 ), a distance matrix denoted by 𝑀𝑑𝑖𝑠𝑡
can be obtained:

M𝑑𝑖𝑠𝑡 =

|

|

|

|

|

|

|

|

|

𝑑1,1 𝑑1,2 ⋯ 𝑑1,𝑝
𝑑2,1 𝑑2,2 ⋯ 𝑑2,𝑝
⋮ ⋮ ⋱ ⋮

𝑑𝑝,1 𝑑𝑝,2 ⋯ 𝑑𝑝,𝑝

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

|

0 𝑑1,2 ⋯ 𝑑1,𝑝
𝑑2,1 0 ⋯ 𝑑2,𝑝
⋮ ⋮ ⋱ ⋮

𝑑𝑝,1 𝑑𝑝,2 ⋯ 0

|

|

|

|

|

|

|

|

|

.

(7)

By applying Eq. (8), the total distance 𝐷𝑖 can be computed as
he summation of the distances between 𝐵𝑃𝐿𝑅𝑖 and the other subse-

uences. In essence, 𝐷𝑖 represents the sum of elements in the 𝑖th row



Advanced Engineering Informatics 58 (2023) 102155W. Shi et al.

e

5

5

a

r
…

w
a

𝐶

w
n
s
l
s
n
D
b
p

w
a
t
𝑒

𝑒

𝑒

H
s
p
d
B
𝐴

6

o

o
l
p
a
d
a
t
c
r
c
s
b
t
c
s
o
c
E
w

of 𝑀𝑑𝑖𝑠𝑡. In this study, we define the anomaly score 𝐴𝑖 based on 𝐷𝑖, as
shown in Eq. (9):

𝐷𝑖 =
𝑝
∑

𝑗=1,𝑖≠𝑗
𝑑𝑖,𝑗 , (8)

𝐴𝑖 =
𝐷𝑖 ⋅ 𝑝

∑𝑝
𝑖=1 𝐷𝑖

, (9)

where 𝑝 represents the number of subsequences. If the value of 𝐴𝑖
xceeds a predetermined threshold 𝐴∗, we identify 𝐴𝑖 as an anomaly.

. Analysis of the proposed approach

.1. Computational complexity

When considering the computational complexity of the proposed
pproach, it is important to analyze the following three phases:

(1) Data representation based on the bidirectional piecewise linear
epresentation (BPLR) method: Given a time series 𝑇 = {(𝑡1, 𝑥1), (𝑡2, 𝑥2),
, (𝑡𝑁 , 𝑥𝑁 )}, it is divided into subsequences 𝑇 = {𝑌1, 𝑌2,… , 𝑌𝑝}, where

𝑝 = ⌊𝑁∕𝑀⌋. In this phase, the algorithm calculates all the trend
turning points in each subsequence to obtain 𝑇𝑇𝑃𝑜, which requires
𝑂(𝑝𝑀 log𝑀) operations. Additionally, the BPLR method determines
all the segmentation points using the proposed segmentation criterion,
taking 𝑂(𝑝𝑀𝐾) operations, 𝐾 denotes the average number of the trend
turning points in each subsequence, and 𝐾 ≪ 𝑀 generally. Hence, the
first phase has a computational complexity of 𝑂(𝑝𝑀 log𝑀) +𝑂(𝑝𝑀𝐾),
equivalent to 𝑂(𝑁 log𝑀) + 𝑂(𝑁𝐾).

(2) Similarity measurement based on Piecewise Integration (PI): To
compute the anomaly score 𝐴𝑖, the distances between 𝑃𝑖 and the other
PLR representations 𝑃𝑗 (where 𝑗 ≠ 𝑖) must be calculated. This process
has a complexity of 𝑂(𝑝2).

(3) Anomaly detection based on the anomaly score: Comparing all 𝑝
anomaly scores with the threshold 𝐴∗ allows us to obtain the detection
results, with a complexity 𝑂(𝑝).

In summary, the computational complexity of the proposed ap-
proach can be expressed as:

𝐶 = 𝑂(𝑁 log𝑀) + 𝑂(𝑁𝐾) + 𝑂(𝑝2) + 𝑂(𝑝) (10)

This indicates that the overall computational complexity is dom-
inated by the terms 𝑂(𝑁 log𝑀), 𝑂(𝑁𝐾) and 𝑂(𝑝2). Considering the
data representation step, the computational complexity of our proposed
BPLR method is 𝑂(𝑁 log𝑀) + 𝑂(𝑁𝐾). However, the computational
complexity of the most common segmentation criteria for PLR, such
as bottom-up approach [32] and top-down [33], is 𝑂(𝑁) + 𝑂(𝑁2). In
comparison, the BPLR method has a lower computational cost.

5.2. Evaluation criteria

Considering the validity evaluation of the proposed anomaly de-
tection approach, we employ anomaly accuracy rate 𝐴𝑅 [5,13], and
confidence index 𝐶𝐼 [13] to complete the evaluation task:

𝐴𝑅 =
𝑚𝑘
𝑑𝑘

, (11)

here 𝑚𝑘 denotes the number of anomalies that are correctly detected,
nd 𝑑𝑘 denotes the number of all known anomalies, and

𝐼 =
mean

{

𝐴𝑎𝑛𝑜𝑚𝑎𝑙𝑦
}

mean
{

𝐴𝑎𝑙𝑙
} , (12)

here mean
{

𝐴𝑎𝑛𝑜𝑚𝑎𝑙𝑦
}

represents the mean of anomaly scores for all ab-
ormal subsequences, and mean

{

𝐴𝑎𝑙𝑙
}

represents the mean of anomaly
cores for all subsequences. According to Section 4.3, we need to calcu-
ate the anomaly score for each subsequence. The larger the anomaly
core for anomaly patterns and the smaller the anomaly score for
ormal patterns, the better the performance of data anomaly resolution.
ata anomaly resolution is the ability of the method to distinguish
etween normal and abnormal data, which is evaluated by 𝐶𝐼 in this
aper.

Larger values of the two indicators imply better performance.
6

6. Experiments, results, and discussion

In this section, we present the framework of the proposed BPLR-
based method and introduce the evaluation criteria. We proceed to
demonstrate the performance of our approach in comparison with other
major existing methods. For all datasets in this section, we generate
receiver operating characteristic (ROC) curves [46] using different
thresholds (in the range of 1 to 2 with a step size of 0.1) for the anomaly
score and identify the optimal threshold based on the area under the
curve (AUC). Following the steps mentioned above, the threshold is set
as 𝐴∗ = 1.5 in our method. The deviation tolerance factor in Eq. (4) is
defined as 𝛽 = 5%. Figs. 8 to 16 display the original data, the BPLR
representation of the original data, the BPLR representation of each
subsequence, and the anomaly scores of each subsequence for the seven
datasets. Anomalies in these datasets are highlighted in red.

6.1. Synthetic data

To start, we analyze a set of synthetic data generated using the
following procedure [47]:

𝑋(𝑡) = sin
(

40𝜋𝑡
𝐾

)

+ 𝑛(𝑡) + 𝑒1(𝑡) + 𝑒2(𝑡), 𝑡 ∈ [0, 1000], (13)

here 𝑋(𝑡) represents the time series data with two manually added
nomalies, denoted as 𝑒1(𝑡) and 𝑒2(𝑡), and 𝐾 = 1000. Here, 𝑛(𝑡) refers
o Gaussian noise with a standard deviation of 0.1. The expressions for
1(𝑡) and 𝑒2(𝑡) are given as follows:

1(𝑡) =
{

−0.8𝑋(𝑡) + 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 0.2), 𝑡 ∈ [150, 189]
0, otherwise , (14)

2(𝑡) =
{

𝑛𝑜𝑟𝑚𝑟𝑛𝑑(0, 0.8), 𝑡 ∈ [900, 949]
0, otherwise . (15)

ere, 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(⋅) represents a normal distribution function. In this
tudy, the length of the sliding window is determined based on the
eriod of the time series. Fig. 8 illustrates the BPLR representation and
etection result of 𝑋(𝑡), with the sliding window size set to 𝑀 = 50.
ased on Fig. 8d, the evaluation indicators can be obtained, namely
𝑅 = 2∕2 and 𝐶𝐼 = 2.1349.

.2. Publicly available data

In this subsection, we conduct experiments using real-world data
btained from the UCR time series database1 [48].

Figs. 9 to 12 display the BPLR representations and detection results
f four electrocardiogram (ECG) datasets. The anomalies are high-
ighted in red. It can be observed in Figs. 9b, 10b, 11b, and 12b that the
roposed BPLR method accurately captures the morphological details
nd trend variations of the original data. Furthermore, all anomalies are
etected by the proposed approach, as depicted in Figs. 9d, 10d, 11d,
nd 12d. In the case of the anomalous subsequences in Figs. 9 to 11,
hese anomalies show clear numerical deviations or trend changes
ompared to the normal subsequences. Therefore, such anomalies are
elatively easier to detect. However, the situation becomes much more
omplex with the anomalous subsequence in Fig. 12. Upon initial ob-
ervation, this anomaly seems very similar to the normal subsequences,
ut the crucial difference lies in that their two peaks appear earlier
han those in the normal subsequences. This type of anomaly is more
hallenging to capture compared to the previous types, as it involves
ubtler time series analysis, specifically recognizing the change in the
rder of peak occurrence. Nonetheless, our method can still accurately
apture this type of anomaly. The evaluation indicators for the four
CG datasets are presented in Table 2, where 𝑚 represents the sliding
indow size.

1 https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
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Fig. 8. Anomaly detection results (indicated in red) on synthetic data. (a) Original data. (b) BPLR of original data. (c) Superposition of the BPLRs of all subsequences. (d) Anomaly
scores of all subsequences.

Fig. 9. Anomaly detection results (indicated in red) on ECG data. (a) Original ECG data. (b) BPLR of ECG data. (c) Superposition of the BPLRs of all subsequences. (d) Anomaly
scores of all subsequences.

Fig. 10. Anomaly detection results (indicated in red) on ECG data. (a) Original ECG data. (b) BPLR of ECG data. (c) Superposition of the BPLRs of all subsequences. (d) Anomaly
scores of all subsequences.
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Fig. 11. Detection result on ECG data. (a) Original ECG data. (b) BPLR of ECG data. (c) BPLR of each subsequence. (d) Anomaly scores of all subsequences.

Fig. 12. Detection result on ECG data. (a) Original ECG data. (b) BPLR of ECG data. (c) BPLR of each subsequence. (d) Anomaly scores of all subsequences.

Fig. 13. Anomaly detection results (indicated in red) on video data. (a) Original video data. (b) BPLR of video data. (c) Superposition of the BPLRs of all subsequences. (d)
Anomaly scores of all subsequences.
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Fig. 14. Anomaly detection results (indicated in red) on video data. (a) Original video data. (b) BPLR of video data. (c) Superposition of the BPLRs of all subsequences. (d)
nomaly scores of all subsequences.
Table 2
Detection results on ECG data.

Dataset Length 𝑀 𝐴𝑅 𝐶𝐼

𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓01_275(1) 3750 230 1/1 2.806
𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓01_275(2) 3750 230 1/1 1.812
𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓13_45590_1 3750 143 2/2 1.829
𝑠𝑡𝑑𝑏_308_0_1 5400 390 1/1 2.135

Table 3
Detection results on video data.

Dataset Length 𝑀 𝐴𝑅 𝐶𝐼

𝑎𝑛𝑛_𝑔𝑢𝑛_𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴_2(1) 3900 150 4/4 1.683
𝑎𝑛𝑛_𝑔𝑢𝑛_𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴_2(2) 3900 150 3/4 1.702

Figs. 13 and 14 show the data extracted from a video, which is more
omplex compared to ECG data. In Figs. 13a and 14a, it can be observed
hat these data contain anomalies caused by amplitude and shape varia-
ions. Fig. 13d displays the detection results of 𝑎𝑛𝑛_𝑔𝑢𝑛_𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝐴_2(1),

where all the anomalies are detected by the proposed approach. In
Fig. 14d, one amplitude anomaly is missed, but its anomaly score is
very close to 𝐴∗. Table 3 presents the evaluation indicators for these
two video datasets.

Fig. 15 displays the BPLR representations and detection results on
a spacecraft dataset. It is observed in Fig. 15a that the anomalous
subsequence seems very similar to the normal ones in terms of their
numerical values and trends. Specifically, the key characteristic of the
anomalous subsequence lies in its narrower shape compared to the
normal ones, a feature vividly depicted in Fig. 15c. Although such a
difference might be challenging to highlight using common statistical
features, our method uniquely equips us to identify and capture this
type of anomaly accurately.

Fig. 16a illustrates a dataset representing arterial blood pressure of
a man. As depicted in Fig. 16b, the morphology of the original data is
well preserved. It can be observed that there is a shape anomaly in this
dataset, which is accurately detected by the proposed approach.

In summary, the proposed BPLR method effectively reduces data
dimensionality while precisely capturing the dynamic characteristics
of the original data. The proposed PI-based similarity measurement
method demonstrates good performance on the seven datasets men-
tioned above. Although one anomaly is missed in Fig. 14d, ranking the
abnormal scores in descending order reveals that the top four scores
9

correspond to the known anomalies. Therefore, it is crucial to develop
a strategy that allows flexible adjustment of the threshold 𝐴∗, which is
the focus of our future work.

Next, we conduct further comparative experiments with existing
prominent representation methods. Specifically, we employ the PLR
method [25] and PAA method [21] for data representation, and the
DTW distance [34,37] for similarity measurement. These three meth-
ods are combined with the proposed method to perform comparative
experiments, namely BPLR_PI (proposed method), PLR_PI, PAA_DTW,
and PAA_PI. Additionally, three anomaly detection methods proposed
in [5,13], and [36] are compared with our study. These three methods,
as well as our BPLR_PI approach, are representation-based anomaly de-
tection techniques. They identify anomalies by measuring the similarity
among subsequences of time series data and allocating an anomaly
score to each subsequence. The detection results of the comparative
experiments are presented in Tables 4 and 5. The results detected by the
proposed method are highlighted in bold. From Table 4, it can be ob-
served that BPLR_PI achieves an improvement of 7.9 percentage points
with respect to PLR_PI, and an improvement of 25.5 percentage points
over PAA_DTW, and PAA_PI. From Table 5, it can be seen that our
newly proposed BPLR_PI method demonstrates superior performance
in terms of detection accuracy when contrasted with the methods
outlined in [5,13], and [36]. BPLR_PI achieves an improvement of 6
percentage points over both methods in [5,13], and an improvement of
3.9 percentage points with respect to [36]. Furthermore, the 𝐶𝐼 value
for BPLR_PI is observed to be larger than that of the methods proposed
in [13,36].

The superior performance of BPLR_PI can be attributed to two
main factors: (1) The BPLR-based data representation method fully
considers the volatility of the original time series, resulting in a rep-
resentation space that accurately reflects the dynamic characteristics
of the original data. (2) The PI-based similarity measurement method
is more stable and effective in detecting anomalies. Next, we conduct
further comparative experiments with existing prominent representa-
tion methods. Specifically, we employ the PLR method [25] and PAA
method [21] for data representation, and the DTW distance [34,37] for
similarity measurement. These three methods are combined with the
proposed method to perform comparative experiments, namely BPLR_PI
(proposed method), PLR_PI, PAA_DTW, and PAA_PI.

The superior performance of BPLR_PI can be attributed to two main
factors: (1) The BPLR-based data representation method fully considers
the volatility of the original time series, resulting in a representation
space that accurately reflects the dynamic characteristics of the original
data. (2) The PI-based similarity measurement method is more stable
and effective in detecting anomalies.
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Fig. 15. Anomaly detection results (indicated in red) on spacecraft data. (a) Original spacecraft data. (b) BPLR of spacecraft data. (c) Superposition of the BPLRs of all subsequences.
(d) Anomaly scores of all subsequences.
Fig. 16. Anomaly detection results (indicated in red) on blood pressure data. (a) Original blood pressure data. (b) BPLR of blood pressure data. (c) Superposition of the BPLRs
of all subsequences. (d) Anomaly scores of all subsequences.
Table 4
Comparison experiment results with different representation methods.

Index Dataset Length 𝑀 BPLR_PI PLR_PI PAA_DTW PAA_PI

𝐴𝑅 𝐶𝐼 𝐴𝑅 𝐶𝐼 𝐴𝑅 𝐶𝐼 𝐴𝑅 𝐶𝐼

D1 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓01_275_2 3750 230 2/2 2.693 2/2 2.406 1/2 1.781 1/2 1.834
D2 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓01_275_3 3750 230 2/2 2.309 2/2 2.069 2/2 1.950 1/2 1.616
D3 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓13_45590_1 3750 143 2/2 1.829 1/2 1.957 2/2 1.774 1/2 1.654
D4 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓13_45590_2 3750 143 2/2 2.101 2/2 1.611 1/2 1.610 1/2 1.742
D5 𝑥𝑚𝑖𝑡𝑑𝑏_𝑥108_0_2 5400 350 2/2 1.714 2/2 1.721 1/2 1.781 1/2 1.812
D6 𝑥𝑚𝑖𝑡𝑑𝑏_𝑥108_0_3 5400 350 2/3 1.857 2/3 1.676 2/3 1.905 2/3 1.599
D7 𝑚𝑖𝑡𝑑𝑏_100_180 5400 120 3/3 2.115 2/3 1.732 2/3 1.565 2/3 1.851
D8 𝑚𝑖𝑡𝑑𝑏𝑥108_1 12 000 330 3/3 2.812 3/3 2.105 2/3 1.975 2/3 1.469
D9 𝑚𝑖𝑡𝑑𝑏𝑥108_2 12 000 330 2/3 2.152 2/3 1.671 2/3 1.460 2/3 1.573
D10 𝑞𝑡𝑑𝑏𝑠𝑒𝑙𝑒0606_1 15 000 143 5/6 2.725 5/6 1.373 4/6 1.358 4/6 1.401
D11 𝑞𝑡𝑑𝑏𝑠𝑒𝑙𝑒0606_2 15 000 143 3/3 1.726 2/3 2.215 1/3 1.498 2/3 1.676
D12 𝑞𝑡𝑑𝑏𝑠𝑒𝑙102_1 15 000 143 1/1 2.928 1/1 1.826 1/1 2.976 1/1 2.033
D13 𝑞𝑡𝑑𝑏𝑠𝑒𝑙102_2 15 000 143 1/1 1.615 1/1 1.699 1/1 1.951 1/1 1.617
D14 𝑐ℎ𝑓𝑑𝑏𝑐ℎ𝑓15 15 000 250 4/5 1.693 3/5 1.885 2/5 1.502 3/5 1.379
D15 𝑚𝑖𝑡𝑑𝑏𝑥_𝑚𝑖𝑡𝑑𝑏𝑥_108 20 000 340 11/13 2.812 10/13 1.448 7/13 1.532 7/13 1.139

Total 44/51 33.081 40/51 27.394 31/51 26.618 31/51 24.395
Average 86.3% 2.205 78.4% 1.826 60.8% 1.775 60.8% 1.626
Threshold 𝐴∗ 1.5 1.4 1.4 1.4
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Table 5
Comparison experiment results with different anomaly detection methods.

Index Dataset Length 𝑀 BPLR_PI [5] [13] [36]

𝐴𝑅 𝐶𝐼 𝐴𝑅 𝐶𝐼 𝐴𝑅 𝐶𝐼 𝐴𝑅 𝐶𝐼

D1 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓01_275_2 3750 230 2/2 2.693 1/2 / 1/2 2.031 1/2 2.179
D2 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓01_275_3 3750 230 2/2 2.309 2/2 / 2/2 2.519 2/2 2.510
D3 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓13_45590_1 3750 143 2/2 1.829 2/2 / 2/2 1.670 2/2 2.016
D4 𝑐ℎ𝑓𝑑𝑏_𝑐ℎ𝑓13_45590_2 3750 143 2/2 2.101 2/2 / 2/2 1.972 2/2 1.621
D5 𝑥𝑚𝑖𝑡𝑑𝑏_𝑥108_0_2 5400 350 2/2 1.714 2/2 / 2/2 1.854 2/2 1.792
D6 𝑥𝑚𝑖𝑡𝑑𝑏_𝑥108_0_3 5400 350 2/3 1.857 1/3 / 2/3 1.518 3/3 1.633
D7 𝑚𝑖𝑡𝑑𝑏_100_180 5400 120 3/3 2.115 2/3 / 2/3 2.507 2/3 2.257
D8 𝑚𝑖𝑡𝑑𝑏𝑥108_1 12 000 330 3/3 2.812 3/3 / 2/3 1.836 2/3 2.098
D9 𝑚𝑖𝑡𝑑𝑏𝑥108_2 12 000 330 2/3 2.152 2/3 / 2/3 2.335 2/3 1.993
D10 𝑞𝑡𝑑𝑏𝑠𝑒𝑙𝑒0606_1 15 000 143 5/6 2.725 5/6 / 5/6 2.575 5/6 2.558
D11 𝑞𝑡𝑑𝑏𝑠𝑒𝑙𝑒0606_2 15 000 143 3/3 1.726 2/3 / 2/3 1.593 2/3 1.625
D12 𝑞𝑡𝑑𝑏𝑠𝑒𝑙102_1 15 000 143 1/1 2.928 1/1 / 1/1 2.148 1/1 2.362
D13 𝑞𝑡𝑑𝑏𝑠𝑒𝑙102_2 15 000 143 1/1 1.615 1/1 / 1/1 1.958 1/1 1.735
D14 𝑐ℎ𝑓𝑑𝑏𝑐ℎ𝑓15 15 000 250 4/5 1.693 4/5 / 4/5 1.522 4/5 1.713
D15 𝑚𝑖𝑡𝑑𝑏𝑥_𝑚𝑖𝑡𝑑𝑏𝑥_108 20 000 340 11/13 2.812 11/13 / 11/13 2.096 11/13 2.682

Total 44/51 33.081 41/51 / 41/51 30.134 42/51 30.774
Average 86.3% 2.205 80.3% / 80.3% 2.009 82.4% 2.052
Threshold 𝐴∗ 1.5 / 1.5 1.5
Fig. 17. Running time for different segmentation criteria of PLR. The vertical lines
denote transitions in dataset lengths in terms of time points: 3750 for D1-D4, 5400 for
D5-D7, 12 000 for D8-D9, 15 000 for D10-D14, and 20 000 for D15.

6.3. Time complexity comparison

In order to compare the running time of various segmentation crite-
ria within PLR, specifically BPLR, bottom-up [32], top-down [33,34],
and optimal partitioning [2], an experiment was conducted. The ex-
periments involved 100 random validations across 15 different datasets
from the UCR database, namely D1 to D15, as shown in Tables 4 and 5.
The lengths of these datasets vary, ranging from 3750 to 20,000 data
points.

Fig. 17 illustrates the average running time for each of the four
segmentation criteria, providing insight into their comparative perfor-
mance. It can be observed that as the length of the time series increases,
the running time also generally increases. Among these four segmenta-
tion methods, the proposed BPLR method has the least running time
across all 15 datasets. Bottom-up and optimal partitioning are approx-
imately twice and three times the running time of BPLR, respectively,
while top-down has the highest running time, far exceeding the other
three methods.

7. Conclusion

In this paper, we introduce a novel data representation method
for time series and evaluated its effectiveness in the task of collective
11
anomaly detection. The proposed method, called BPLR, represents
the original time series using a collection of linear fitting functions.
This approach enables dimensionality reduction while preserving the
dynamic characteristics of the data by capturing its volatility. Further-
more, we have employed the idea of PI-based similarity measurement,
which achieves excellent detection performance with a relatively low
computational overhead.

Experimental results from both synthetic and real-world datasets
emphasize the efficacy and precision of our technique. Notably, in real-
world datasets, our method showcases its unique capability to detect
intricate anomalies, even those without overt numerical deviations or
distinct trend shifts. When compared to major existing methods, our
approach consistently achieves higher detection accuracy.

In future research, we will focus on exploring alternative repre-
sentation forms for time series data, aiming to extract more essential
information for data representation. Additionally, we intend to ex-
tend our approach to analyze multivariate time series, broadening its
applicability in various domains.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

I have shared the link to my data in Section 6.2 of the attached
manuscript.

Acknowledgments

This work was supported in part by the China Scholarship Council
under Grant 20220609190, in part by the Natural Science Foundation
of Jiangsu Province China under Grant BK20220332, and in part by
the Key Research and Development Program of Jiangsu Province under
Grant BE2022154.

References

[1] G. Zhang, C.-H. Chen, X. Cao, R.Y. Zhong, X. Duan, P. Li, Industrial internet
of things-enabled monitoring and maintenance mechanism for fully mechanized
mining equipment, Adv. Eng. Inform. 54 (2022) http://dx.doi.org/10.1016/j.aei.
2022.101782.

[2] X. Liu, Z. Lin, H. Wang, Novel online methods for time series segmentation, IEEE
Trans. Knowl. Data Eng. 20 (12) (2008) 1616–1626.

http://dx.doi.org/10.1016/j.aei.2022.101782
http://dx.doi.org/10.1016/j.aei.2022.101782
http://dx.doi.org/10.1016/j.aei.2022.101782
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb2
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb2
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb2


Advanced Engineering Informatics 58 (2023) 102155W. Shi et al.
[3] H. Li, Z. Liu, Multivariate time series clustering based on complex network,
Pattern Recognit. 115 (2021) 107919.

[4] B.D. Fulcher, N.S. Jones, Highly comparative feature-based time-series classifi-
cation, IEEE Trans. Knowl. Data Eng. 26 (12) (2014) 3026–3037, http://dx.doi.
org/10.1109/TKDE.2014.2316504.

[5] Y. Zhou, H. Ren, Z. Li, et al., An anomaly detection framework for time series
data: An interval-based approach, Knowl.-Based Syst. 228 (2021) 107153.

[6] H. Guo, M. Wan, L. Wang, X. Liu, W. Pedrycz, Weighted fuzzy clustering for time
series with trend-based information granulation, IEEE Trans. Cybern. (2022)
1–12, http://dx.doi.org/10.1109/TCYB.2022.3190705.

[7] M. Ma, L. Han, C. Zhou, BTAD: A binary transformer deep neural network model
for anomaly detection in multivariate time series data, Adv. Eng. Inform. 56
(2023) http://dx.doi.org/10.1016/j.aei.2023.101949.

[8] Z. Yang, X. Liu, T. Li, et al., A systematic literature review of methods and
datasets for anomaly-based network intrusion detection, Comput. Secur. 116
(2022) 102675.

[9] D.J. Hill, B.S. Minsker, Anomaly detection in streaming environmental sensor
data: A data-driven modeling approach, Environ. Model. Softw. 25 (9) (2010)
1014–1022.

[10] W. Fang, Y. Shao, P.E.D. Love, T. Hartmann, W. Liu, Detecting anomalies and de-
noising monitoring data from sensors: A smart data approach, Adv. Eng. Inform.
55 (2023) http://dx.doi.org/10.1016/j.aei.2022.101870.

[11] C. Rohitash, C. Shelvin, Evaluation of co-evolutionary neural network architec-
tures for time series prediction with mobile application in finance, Appl. Soft
Comput. 49 (2016) 462–473.

[12] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection for discrete sequences:
A survey, IEEE Trans. Knowl. Data Eng. 24 (5) (2012) 823–839.

[13] X. Kong, Y. Bi, D.H. Glass, Detecting anomalies in sequential data augmented
with new features, Artif. Intell. Rev. 53 (2020) 625–652.

[14] M. Li, Y. Shen, Q. Ren, H. Li, A new distributed time series evolution prediction
model for dam deformation based on constituent elements, Adv. Eng. Inform. 39
(2019) 41–52, http://dx.doi.org/10.1016/j.aei.2018.11.006.

[15] Y. Yao, J. Ma, Y. Ye, KfreqGAN: Unsupervised detection of sequence anomaly
with adversarial learning and frequency domain information, Knowl.-Based Syst.
236 (2022) 107757.

[16] X. Jin, Y. Guo, S. Sarkar, et al., Anomaly detection in nuclear power plants
via symbolic dynamic filtering, IEEE Trans. Nucl. Sci. 58 (1 PART 2) (2011)
277–288.

[17] B. Lu, D. Xu, B. Huang, Deep-learning-based anomaly detection for lace defect
inspection employing videos in production line, Adv. Eng. Inform. 51 (2022)
http://dx.doi.org/10.1016/j.aei.2021.101471.

[18] H. Ren, M. Liu, X. Liao, et al., Anomaly detection in time series based on interval
sets, IEEJ Trans. Electr. Electron. Eng. 13 (5) (2018) 757–762.

[19] M.A. Pimentel, D.A. Clifton, L. Clifton, et al., A review of novelty detection,
Signal Process. 99 (2014) 215–249.

[20] F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 Eighth IEEE
International Conference on Data Mining, 2008, pp. 413–422.

[21] E. Keogh, K. Chakrabarti, M. Pazzani, et al., Dimensionality reduction for fast
similarity search in large time series databases, Knowl. Inf. Syst. 3 (3) (2001)
915–937.

[22] E. Keogh, J. Lin, A. Fu, HOT sax: efficiently finding the most unusual time series
subsequence, in: Fifth IEEE International Conference on Data Mining (ICDM’05),
2005, pp. 226–233.

[23] Y. Wan, X. Gong, Y.-W. Si, Effect of segmentation on financial time series pattern
matching, Appl. Soft Comput. 38 (2016) 346–359.

[24] W. Pedrycz, W. Homenda, Building the fundamentals of granular computing:
A principle of justifiable granularity, Appl. Soft Comput. 13 (10) (2013)
4209–4218.

[25] D. Yankov, E. Keogh, U. Rebbapragada, Disk aware discord discovery: finding
unusual time series in terabyte sized datasets, Knowl. Inf. Syst. 17 (2008)
241–262.
12
[26] Q. Xie, C. Pang, X. Zhou, et al., Maximum error-bounded piecewise linear
representation for online stream approximation, VLDB J. 23 (6) (2014) 915–937.

[27] H. Park, J.-Y. Jung, SAX-ARM: Deviant event pattern discovery from multivariate
time series using symbolic aggregate approximation and association rule mining,
Expert Syst. Appl. 141 (2020) 112950.

[28] L. Duan, F. Yu, W. Pedrycz, X. Wang, X. Yang, Time-series clustering based on
linear fuzzy information granules, Appl. Soft Comput. 73 (2018) 1053–1067,
http://dx.doi.org/10.1016/j.asoc.2018.09.032.

[29] H. Guo, L. Wang, X. Liu, W. Pedrycz, Trend-based granular representation of
time series and its application in clustering, IEEE Trans. Cybern. 52 (9) (2022)
9101–9110, http://dx.doi.org/10.1109/TCYB.2021.3054593.

[30] J. Lin, E. Keogh, L. Wei, S. Lonardi, Experiencing SAX: a novel symbolic
representation of time series, Data Min. Knowl. Discov. 15 (2) (2007) 107–144.

[31] X. Wang, A. Mueen, H. Ding, et al., Experimental comparison of representation
methods and distance measures for time series data, Data Min. Knowl. Discov.
26 (2013) 275–309.

[32] E. Keogh, S. Kasetty, On the need for time series data mining benchmarks: A
survey and empirical demonstration, Data Min. Knowl. Discov. 7 (4) (2003)
349–371.

[33] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, et al., Addressing big data
time series: Mining trillions of time series subsequences under dynamic time
warping, ACM Trans. Knowl. Discov. Data 7 (3) (2013) 1–31, http://dx.doi.org/
10.1145/2500489.

[34] H. Guo, L. Wang, X. Liu, et al., Information granulation-based fuzzy clustering
of time series, IEEE Trans. Cybern. 51 (12) (2021) 6253–6261.

[35] M. Vlachos, G. Kollios, D. Gunopulos, Discovering similar multidimensional
trajectories, in: Proceedings 18th International Conference on Data Engineering,
2002, pp. 673–684, http://dx.doi.org/10.1109/ICDE.2002.994784.

[36] T. Nguyen, P. Phuc, C. Yang, et al., Time-series anomaly detection using dynamic
programming based longest common subsequence on sensor data, Expert Syst.
Appl. 213 (2023) 118902.

[37] H. Izakian, W. Pedrycz, I. Jamal, Fuzzy clustering of time series data using
dynamic time warping distance, Eng. Appl. Artif. Intell. 39 (2015) 235–244.

[38] M. Breunig, H. Kriegel, R. Ng, et al., LOF: Identifying density-based local outliers,
Sigmod Record 29 (2) (2000) 93–104.

[39] X. Zhou, L. Chen, P. Li, J. Luo, X. Xiao, F. Lin, A novel symbolic rep-
resentation for heart disease classification with lightgbm, in: 2016 IEEE
International Conference on Bioinformatics and Biomedicine, BIBM, IEEE, 2016,
pp. 1200–1205.

[40] W. Choi, J. Cho, S. Lee, Y. Jung, Fast constrained dynamic time warping for
similarity measure of time series data, IEEE Access 8 (2020) 222841–222858,
http://dx.doi.org/10.1109/ACCESS.2020.3043839.

[41] Q. Zhang, C. Zhang, L. Cui, X. Han, Y. Jin, G. Xiang, Y. Shi, A method for
measuring similarity of time series based on series decomposition and dynamic
time warping, Appl. Intell. 53 (2023) 6448–6463.

[42] F. Liu, Y. Yu, P. Song, Y. Fan, X. Tong, Scalable KDE-based top-n local outlier
detection over large-scale data streams, Knowl.-Based Syst. 204 (2020) http:
//dx.doi.org/10.1016/j.knosys.2020.106186.

[43] Y. Yu, D. Zhu, J. Wang, Y. Zhao, Abnormal data detection for multivariate alarm
systems based on correlation directions, J. Loss Prev. Process Ind. 45 (2017)
43–55, http://dx.doi.org/10.1016/j.jlp.2016.11.011.

[44] D. Yankov, E. Keogh, U. Rebbapragada, Disk aware discord discovery: Finding
unusual time series in terabyte sized datasets, in: Seventh IEEE International
Conference on Data Mining (ICDM 2007), 2007, pp. 381–390.

[45] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, third ed.,
Prentice Hall, Upper Saddle River, NJ, 2010.

[46] T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (8) (2006)
861–874.

[47] Y. Qiu, X. Shi, W. Kai, Probabilistic distance based abnormal pattern detection
in uncertain series data, Knowl.-Based Syst. 36 (2012) 182–190.

[48] H.A. Dau, A. Bagnall, K. Kamgar, et al., The UCR time series archive, IEEE/CAA
J. Autom. Sin. 6 (6) (2019) 1293–1305.

http://refhub.elsevier.com/S1474-0346(23)00283-5/sb3
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb3
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb3
http://dx.doi.org/10.1109/TKDE.2014.2316504
http://dx.doi.org/10.1109/TKDE.2014.2316504
http://dx.doi.org/10.1109/TKDE.2014.2316504
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb5
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb5
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb5
http://dx.doi.org/10.1109/TCYB.2022.3190705
http://dx.doi.org/10.1016/j.aei.2023.101949
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb8
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb8
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb8
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb8
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb8
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb9
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb9
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb9
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb9
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb9
http://dx.doi.org/10.1016/j.aei.2022.101870
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb11
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb11
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb11
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb11
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb11
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb12
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb12
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb12
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb13
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb13
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb13
http://dx.doi.org/10.1016/j.aei.2018.11.006
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb15
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb15
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb15
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb15
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb15
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb16
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb16
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb16
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb16
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb16
http://dx.doi.org/10.1016/j.aei.2021.101471
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb18
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb18
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb18
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb19
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb19
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb19
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb20
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb20
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb20
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb21
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb21
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb21
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb21
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb21
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb22
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb22
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb22
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb22
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb22
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb23
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb23
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb23
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb24
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb24
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb24
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb24
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb24
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb25
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb25
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb25
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb25
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb25
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb26
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb26
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb26
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb27
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb27
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb27
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb27
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb27
http://dx.doi.org/10.1016/j.asoc.2018.09.032
http://dx.doi.org/10.1109/TCYB.2021.3054593
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb30
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb30
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb30
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb31
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb31
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb31
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb31
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb31
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb32
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb32
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb32
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb32
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb32
http://dx.doi.org/10.1145/2500489
http://dx.doi.org/10.1145/2500489
http://dx.doi.org/10.1145/2500489
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb34
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb34
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb34
http://dx.doi.org/10.1109/ICDE.2002.994784
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb36
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb36
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb36
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb36
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb36
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb37
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb37
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb37
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb38
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb38
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb38
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb39
http://dx.doi.org/10.1109/ACCESS.2020.3043839
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb41
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb41
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb41
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb41
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb41
http://dx.doi.org/10.1016/j.knosys.2020.106186
http://dx.doi.org/10.1016/j.knosys.2020.106186
http://dx.doi.org/10.1016/j.knosys.2020.106186
http://dx.doi.org/10.1016/j.jlp.2016.11.011
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb44
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb44
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb44
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb44
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb44
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb45
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb45
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb45
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb46
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb46
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb46
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb47
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb47
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb47
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb48
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb48
http://refhub.elsevier.com/S1474-0346(23)00283-5/sb48

	Bidirectional piecewise linear representation of time series with application to collective anomaly detection
	Introduction
	Related Works
	Prediction- and classification-based methods
	Representation-based methods
	Data representation
	Similarity measurement


	Preliminary
	Time Series and Subsequences
	Definitions of Terms within a Subsequence

	Methodology
	Time-Series Representation based on BPLR
	Determination of an ordered TPP list
	Determination of linear segments

	Distance measure between two subsequences
	Anomaly detection

	Analysis of the proposed approach
	Computational Complexity
	Evaluation criteria

	Experiments, Results, and Discussion
	Synthetic data
	Publicly available data
	Time complexity comparison

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


