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A B S T R A C T

Context: Although Technical Debt (TD) has increasingly gained attention in recent years, most studies
exploring TD are based on a single source (e.g., source code, code comments or issue trackers).
Objective: Investigating information combined from different sources may yield insight that is more than the
sum of its parts. In particular, we argue that exploring how TD items are managed in both issue trackers
and software repositories (including source code and commit messages) can shed some light on what happens
between the commits that incur TD and those that pay it back.
Method: To this end, we randomly selected 3,000 issues from the trackers of five projects, manually analyzed
300 issues that contained TD information, and identified and investigated the lifecycle of 312 TD items.
Results: The results indicate that most of the TD items marked as resolved in issue trackers are also paid back
in source code, although many are not discussed after being identified in the issue tracker. Test Debt items
are the least likely to be paid back in source code. We also learned that although TD items may be resolved
a few days after being identified, it often takes a long time to be identified (around one year). In general,
time is reduced if the same developer is involved in consecutive moments (i.e., introduction, identification,
repayment decision-making and remediation), but whether the developer who paid back the item is involved
in discussing the TD item does not seem to affect how quickly it is resolved.
Conclusions: Investigating how developers manage TD across both source code repositories and issue trackers
can lead to a more comprehensive oversight of this activity and support efforts to shorten the lifecycle of
undesirable debt.
. Introduction

The Technical Debt (TD) metaphor refers to the trade-off between
he short-term benefits of ‘‘cutting corners’’ in software development
nd the long-term sustainability of the software being developed [1].
D can manifest in different artifacts, from requirements to architecture
nd from source code to documentation [1]; in this study we focus on
D that manifests in source code. While source code TD is ultimately
aid back also in source code [2,3], it is often recorded in other
ources as well; for example, it may be identified and discussed in issue
rackers [4], while its repayment may be additionally recorded in the
ommit messages of version control systems [5].

Most of the research work on source code TD has focused solely
n a single source (e.g., source code comments or issues), while few
tudies have looked at a combination of sources [6–8]. However, to
he best of our knowledge, none of the existing studies has combined
ifferent sources to study the complete lifecycle of TD items, from
heir introduction to their repayment. This one-sided perspective often

∗ Corresponding author.
E-mail addresses: j.tanjie@outlook.com (J. Tan), d.feitosa@rug.nl (D. Feitosa), p.avgeriou@rug.nl (P. Avgeriou).

results in misleading findings and an incomplete understanding of
this lifecycle; to explain this problem in more detail, we provide two
examples.

First, while previous studies have shown that the repayment of a
large percentage of TD is documented in issue trackers [4,8], it is not
always true that the TD is paid back. For example, if the remediation
of a TD item is added to a patch, and the patch is rejected, the item
is not actually fixed in the project. Thus, the issue has been seemingly
resolved in the issue tracker, while the code still remains unchanged.
In such cases, it is unclear whether it was unnecessary to fix the TD
item in the code or there was a decision to keep the code unchanged.

Second, if one focuses only on TD in source code comments (so-
called Self-Admitted Technical Debt), one may also get false posi-
tives [5,9]. For example, the deletion of comments does not necessarily
imply the remediation of the debt. Also, comments can be removed
accidentally when entire classes or methods are deleted [6]. Finally,
vailable online 5 April 2023
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Fig. 1. Lifecycle of TD items that manifest in both issue trackers and source code.
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remediation can also happen as a ripple effect of maintenance, e.g. as
part of a bug fix, instead of directly intending to rectify sub-optimal
code. By just looking at the code and accompanying comments, we are
often unaware of developers’ intent and to what extent and how they
prioritize TD remediation.

To address such incorrect interpretations of the lifecycle of TD
items, we combine information from two sources: source code repos-
itories and issue trackers. Specifically, we consider that this lifecycle
begins with TD items incurred in source code, then reported and
discussed in issue trackers and finally paid back in source code (for
more details, see Section 2). To study this lifecycle, we examine the
percentage of issues resolved in issues trackers also being resolved in
source code, the length of the intervals between the various moments
in the lifecycle, and how the number and involvement of developers
are related to the lifecycle.

The results show that most (but not all) TD items identified and
mentioned as resolved in issue trackers are also paid back in source
code, while only about one-third are discussed amongst developers
in the issue tracker after being identified. TD items commonly stay
dormant for a long time after being introduced, but they do get re-
solved within only a few days after their identification. Some types of
debt (e.g., Design Debt) are more likely to be paid back than others
(e.g., Test Debt). Finally, the involvement of the same developer in
introduction and identification, or identification and repayment tends
to lead to quicker turnarounds (i.e., faster identification or repayment
respectively). However, we did not observe any significant changes to
the length of the discussion period associated with the number or kind
of developers involved in the conversation.

Investigating how developers manage TD across both source code
repositories and issue trackers can lead to a more comprehensive
oversight of this activity and support efforts to shorten the lifecycle of
undesirable debt. For example, learning that TD items commonly stay
dormant for most of their lifecycle is an indicator that more research
into early TD detection and reporting is needed, and that practitioners
are advised to (continue to) report it and encourage others to do
the same. Also, not many of the reported and successfully resolved
TD items are discussed in issue trackers. However, as these TD items
survive longer than other TD items in average, further research can
help in expediting the remediation of these items; one way is to mine
discussions from other issues addressing similar TD-related topics, and
subsequently provide suggestions for repayment.

The remaining sections are organized as follows. The paper starts
by characterizing the lifecycle of TD items (as considered in this work)
in Section 2. The study objectives, the research questions, and details
regarding the data collection and analysis are reported in Section 3.
Section 4 presents the results of our study and Section 5 interprets
the results, discusses their implications, and reports the threats to the
validity of our study. Section 6 summarizes related work and further
contextualizes our study. Our final thoughts are shared in Section 7.

2. Technical debt item lifecycle

To keep TD under control, practitioners may adopt different strate-
2

gies [10,11], and apply various frameworks especially designed for
this purpose [12–14]. These approaches support a number of Technical
Debt Management (TDM) activities, which range from the identification
of an item to its remediation [1]. This range represents the lifecycle of
a TD item, spanning the time period from the introduction of the debt
to its remediation.

The lifecycle of a TD item may be modeled in various ways depend-
ing on the sources (i.e., the information taken into account) [15–17].
For example, it may span from the moment an item is self-admitted
in a code comment, to the moment the comment is removed. Or, it
may span from the moment it is documented in a backlog, creating a
ticket, to the moment the ticket is resolved. In this study, we consider a
typical lifecycle for TD items that manifest in both the source code and
issue trackers, as depicted in Fig. 1. It starts with the introduction of TD
and continues with three TDM activities: identification, assessment and
remediation [1,18]. The white circles represent the four key moments
in the lifecycle of each TD item, while the icons in those circles
indicate the data source where TD is managed during these moments,
i.e., source code repository or issue tracker. The spaces between the
circles represent intervals between the four moments in the TD item
lifecycle.

TD introduction and remediation are the moments when TD items
re introduced and paid back in source code, respectively [1]. Both
ctions are represented by a change to the source code base, e.g., a
ommit to a Git1 repository. A change can lead to the introduction of
D if e.g. the new code contains a workaround, or a new component
e.g., a function or class) is added without proper documentation or
nit tests [2]. Conversely, a commit that removes the workaround or
dds the missing elements would pay back the debt. We note that the
ntroduction of TD can be deliberate or inadvertent and making such a
istinction is out of the scope of this study (see Section 3.1).
TD identification refers to the moment when TD items are first

dentified in issue trackers (e.g., Jira2 or Github issues3) [1]. Issues
re created independently of the codebase evolution and, thus, can be
eported by those who introduced the TD item or others that noticed
t. Moreover, issue trackers offer several features to allow monitoring
he TD item, e.g., denoting issue status as ‘open’, ‘closed’ and ‘re-
olved’, adding user comments to enable discussions, and smart links
o codebase elements such as individual commits and files to point out
roblems and solutions. Typically, after identifying TD items, develop-
rs have several discussions to determine if and how to pay them back
n source code. When such discussions conclude, TD repayment decision
efers to the moment when developers have determined how to pay
ack the TD and subsequently mentioned their decision in the issue
racker [19].

Regarding the intervals, identification latency refers to how long it
akes to identify (and thus document in an issue) the technical debt
fter introducing it in source code. Next, the discussion period refers
o how long developers take to discuss and decide how to resolve
he technical debt after being identified in the issue tracker. Finally,

1 https://git-scm.com/.
2 https://www.atlassian.com/software/jira.
3
 https://docs.github.com/en/issues.

https://git-scm.com/
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with a decision made, developers take action and refactor the code
accordingly. In the best case scenario, developers will apply changes
in a short time. However, developers may also resolve it later in some
cases, e.g., when the TD item is not urgent or needs to be resolved
by a specific developer. Thus, remediation latency refers to how long
evelopers take to pay back technical debt in source code after a
olution is decided.

. Study design

In this work, we designed a case study since we seek to inves-
igate a phenomenon in its natural settings [20], i.e., the lifecycle
f technical debt items that are managed in both issue trackers and
oftware repositories. As is typical for case studies, we employ multiple
ethods of data collection to gather information from a variety of

ources. Moreover, we consider a quantitative approach as the research
rocess since we use metrics and statistical analysis. The case study was
esigned based on the guidelines of Runeson et al. [21] and is reported
ccording to the Linear Analytic Structure [21].

.1. Objectives and research questions

The goal of our study, described according to the Goal-Question-
etrics (GQM) approach [22], is to ‘‘analyze software repositories
or the purpose of investigating the lifecycle of technical debt items
ith respect to the consistency between the repayment decision and

emediation moments, the length between the various moments in
he lifecycle, and how the number and involvement of developers are
elated to the lifecycle from the point of view of software developers in
the context of open source software’’. This objective is further refined
in terms of the following research questions.
RQ1: To what extent technical debt items identified and tagged as
‘resolved’ in issue trackers are actually paid back in source code?

Specifically we focus on investigating to what extent TD items that
are tagged as ‘resolved’ in issues can be mapped to the commits that
address them. To this end, we first match each ‘resolved’ issue with the
corresponding commit(s), by looking at the messages in the commits.
Then, we manually check if TD-related problems reported in the issue
documentation (i.e., summary, description, and comments) are actually
resolved in the associated commits (for details, see Sections 3.3.4 and
3.3.5). We clarify that we do not make a distinction between TD
that is introduced deliberately or inadvertently since it would require
asking the developers (see also RQ2); a TD item that is only later
reported in an issue tracker, can be incurred both deliberately and
inadvertently. Investigating this research question provides an insight
into the likelihood of the TD-related issues marked as resolved in issue
trackers actually being repaid in the code. This gives a more accurate
view of TD remediation and can help software engineers to further
monitor TD management activities and review issue documentation
practices. It can also help researchers design and refine tools to support
TD monitoring in issue trackers.
RQ2: How long are the intervals between introducing, identifying,
deciding to repay and actually repaying TD items?

This research question focuses on investigating the intervals be-
tween the various moments in a TD item lifecycle. Specifically, we
consider the three intervals depicted in Fig. 1, i.e., identification la-
tency, discussion period and remediation latency. Such an investigation
provides a more complete picture of how and when developers manage
technical debt items by analyzing their introduction and remediation
in the source code, together with their identification, discussion and
repayment decision-making in the issue trackers. Moreover, software
engineers and project managers can use this information by paying
more attention to intervals that grow relatively long.

We note that by looking into identification latency, we do not im-
3

ply that the underlying TD item is introduced inadvertently. Without
developers’ involvement in the study, we cannot make an accurate dis-
tinction. For example, the introduction may be deliberate but then only
reported as an issue later for various reasons (e.g., the consequences of
the corner-cutting grew, or the developer simply decided to do so later).
RQ3: How is developer involvement associated with the length of
each interval?

RQ3.1: Does the identification latency change when the identifying
developer also introduced the TD item?
RQ3.2: Does the discussion period change according to the number
of participating developers?
RQ3.3: Does the remediation latency change when the decision-
making developer or the identifying developer also paid back the
TD item?

In this research question, we seek to identify how particular devel-
opment team dynamics may influence the length of the three investi-
gated intervals. In particular, we explore if the duration of an interval
changes when the same developer is involved in two distinct mo-
ments (i.e., introduction and identification for RQ3.1, and repayment
decision-making and remediation, or identification and remediation
for RQ3.3). We also explore if the number of developers participating
in the discussion of a TD item is related to its duration (RQ3.2).
Such findings can help developers understand how to more effectively
participate in TD management and particularly improve the efficiency
of TD remediation. For example, if more developers participating in a
tracked issue can speed up the decision of TD remediation, then project
managers can identify potentially relevant developers and encourage
them to engage in the discussions.

3.2. Projects for data extraction

To perform this study, we focused on the Apache Software Founda-
tion (ASF), given the reputation of Apache projects for high quality and
long-term stability.4 Apache projects are developed and maintained by
technical experts following Apache-wide meritocratic rules. In addition,
the ASF is the world’s largest open source foundation and contains more
than 300 top-level projects5; consequently it covers a wide range of lan-
guages, sizes and number of contributors. Furthermore, Apache projects
are commonly selected in technical debt studies (see e.g. [4,9,23]). The
project selection process followed five inclusion criteria:

1. The project must be publicly available (including both the repos-
itory and the issue tracker), and it must also use Git as the
version control system and Jira6 as the issue tracker. We se-
lected Git and Jira since these are well-established and popular
tools among practitioners and allow us to standardize the data
collection and analysis.

2. The project must be under development for at least five years
and have more than 1000 commits. A long history enables de-
velopers to observe the consequences of TD and fix it. Moreover,
this number of revisions provides a sufficient set of repeated
measures for statistical analysis [3].

3. The project must have at least 150,000 source lines of code
(SLOC), and 5000 issues in the issue tracker. Larger projects
typically cover more TD types, and enough issues indicate that
developers are using the issue tracker frequently and actively.

4. The project must involve at least 100 developers. This ensures
some diversity among developers (e.g., seniority level).

4 http://www.apache.org/foundation/how-it-works.html, visited February
021.

5 https://www.apache.org/index.html#projects-list, visited February 2021.
6
 https://jira.apache.org/.

http://www.apache.org/foundation/how-it-works.html
https://www.apache.org/index.html#projects-list
https://jira.apache.org/
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Table 1
Details of the five selected projects.

Camel Hadoop Hbase Impala Thrift

SLOCa 1580k 1858k 839k 607k 152k
Source filesa 20,252 11,602 4800 3039 741
Commits 50,380 24,612 18,340 9661 6197
PMC membersb 43 124 58 37 21
Committersb 85 242 101 65 41
Developersb 722 22,954 2992 149 353
Issues 14,411 16,808 24,342 9733 5196
Languages Java Java Java C++, Java, and Python C++, Java, and C
Categoriesc Integration, cloud, java, library Big-data, hadoop, cloud Database Hadoop, sql http, library, network-client, network-server

aOf the main languages only.
bRoles clarified at https://www.apache.org/foundation/how-it-works.html#roles.
cBased on Apache’s categories (https://projects.apache.org/projects.html?category).
5. The project must require developers to include Jira ticket num-
bers in the commit messages when providing code patches
(e.g., Apache Camel7). This is necessary to support linking the
issues (in the issue tracker) to the commits (in the source code
repository).

To enhance the representativeness of the sample (and mitigate
hreats to external validity), we randomly selected five projects out
f over 200 projects that fulfill the aforementioned criteria. Table 1
resents the details of each project, including information on the
omain (i.e., categories), source code (i.e., main languages, files and
LOC), contributors (i.e., developers, committers and Project Manage-
ent Committee—PMC—members) and issues. We analyzed the latest

eleased versions on February, 2021.
Looking at the management structure of the projects, all follow

SF’s contribution guidelines.8 ASF adopts a role-based structure rather
han a hierarchical one but projects have the freedom to further or-
anize themselves. We inspected the contribution guidelines of each
roject and found no evidence of any deviation from the following
efault structure. ASF defines roles that have different rights and
esponsibilities in the project.

A developer (or contributor) is a person who contributes to the
odebase or discussions (incl. reporting issues). Code changes are based
n patches, which are commonly submitted as pull requests (PRs). We
ound a few PRs that contain multiple commits to address a single issue,
ut these are exceptions in the studied projects. Also single-commit PRs
eem a common practice, as supported by the Thrift guidelines9: ‘‘All
ull requests should contain a single commit per issue’’.
Committers are developers with repository write permission. We

ote that non-committer developers still appear as authors in repository
ommits. In practice, they allow short-term decisions since they signed
Contributor License Agreement.10

Neither developers nor committers make decisions, e.g., of what
hanges are accepted into the codebase. These decisions lie with PMC
embers. They are elected based on merit and, among other rights,

an propose the promotion of developers to committers. The PMC
ontrols the project (incl. acceptance of fixes to issues) via a lazy
onsensus approach,11 i.e., a few positive votes with no negative votes
re enough to apply a change.

7 https://camel.apache.org/manual/latest/contributing.html, visited Febru-
ry 2021.

8 https://www.apache.org/foundation/how-it-works.html.
9 https://thrift.apache.org/docs/HowToContribute.

10 https://www.apache.org/foundation/how-it-works.html#committers.
11 https://www.apache.org/foundation/how-it-works.html#decision-
4

aking.
3.3. Variables and data collection

This section presents the set of variables necessary to answer the
research questions and the major steps of the data collection process.
In particular, each unit of analysis represents the lifecycle of a single
TD item, which encompasses: (a) the commit(s) that introduced the
debt; (b) the issue documenting the identification and discussion of the
debt item; and (c) the commit(s) that pay back the debt. The issue
(b) includes the issue key, issue sections (i.e., summary, description
and comments), resolution status, developers who reported, discussed
and resolved the issues, creation timestamp, resolution timestamp and
the types of technical debt. The commits (a) and (c) correspond to the
analyzed issue, and include repository name, commit hashcode, commit
date, author’s name, author’s email and commit message. We note that, for
privacy reasons, the names and emails of developers were anonymized
in the extraction and not stored at any moment.

Data collection is comprised of four main steps, as shown in Fig. 2:
(i) extracting and filtering issues, (ii) manually identifying and classify-
ing technical debt, (iii) matching the analyzed issues to the commit(s)
that pay back the TD item, and (iv) determining the commits that
introduced the identified TD item. These steps are elaborated in the
following paragraphs.

3.3.1. Step I: Selecting and filtering issues
In order to investigate TD items that exist in both source code

repository and issue trackers, we begin by collecting all issue reports
(i.e., metadata and issue sections) and selecting those that are re-
solved, i.e., marked with status ‘resolved’ or ‘closed’. This is because
all resolved issues are potential candidates for containing TD items.
To confirm whether they indeed comprise TD, we need to manually
analyze them in the following step. Since manual analysis of the issues
is extremely time-consuming, we can only analyze a subset. Thus, we
randomly select 600 issues from each project, totaling 3000 issues from
the five projects.

3.3.2. Step II: Manually identifying and classifying TD
Similarly to Li et al. [4], we extract the sections of tracked issues

(i.e., summaries, description, and comments) and analyze them at the
sentence level. In particular, we search for sentences that indicate
technical debt, and tag the debt status in each one (i.e., paid back
or not). To classify TD, we use the classification framework from Li
et al. [4], who also used it to classify the types of TD contained in
issues; the framework itself, is based on a well-known TD classification
framework provided by Alves et al. [24]. We label the TD sections
according to these types. The dataset with the classification information
for the 3000 issues is available in our replication package [25].

Given the labor-intensive nature of the analysis, we want to aug-
ment the chances of finding relevant data (i.e., related to code changes).
Thus, we discard sections from the classification framework from Li

et al. [4] that are not closely related to the source code (e.g., classified

https://www.apache.org/foundation/how-it-works.html#roles
https://projects.apache.org/projects.html?category
https://camel.apache.org/manual/latest/contributing.html
https://www.apache.org/foundation/how-it-works.html
https://thrift.apache.org/docs/HowToContribute
https://www.apache.org/foundation/how-it-works.html#committers
https://www.apache.org/foundation/how-it-works.html#decision-making
https://www.apache.org/foundation/how-it-works.html#decision-making
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Fig. 2. An overview of the data collection.
Table 2
TD types that are detected in issue trackers.
Types Indicator Definition

Architecture debt

Violation of modularity (VioMod) Because shortcuts were taken, multiple modules became
inter-dependent, while they should be independent.

Using obsolete technology
(ObsTech)

Architecturally-significant technology has become obsolete.

Code debt

Complex code (CpxCd) Code has accidental complexity and requires extra refactoring
action to reduce this complexity.

Dead code (DedCd) Code is no longer used and needs to be removed.

Duplicated code (DupCd) Code that occurs more than once instead of as a single reusable
function.

Low-quality code (LQualCd) Code quality is low, for example because it is unreadable,
inconsistent, or violating coding conventions.

Multi-thread incorrectness
(MTCor)

Thread-safe code is not correct and may potentially result in
synchronization problems or efficiency problems.

Slow algorithm (SlAlg) A non-optimal algorithm is utilized that runs slowly.

Defect debt Uncorrected known defects (Def) Defects are found by developers but ignored or deferred to be fixed.

Design debt Non-optimal defects (Des) Non-optimal design decisions are adopted.

Test Debt

Expensive tests (ExpTst) Tests are expensive, resulting in slowing down testing activities.
Extra refactoring actions are needed to simplify tests.

Flaky tests (FlaskTst) Tests fail or pass intermittently for the same configuration.

Lack of tests (LacTst) A function is added, but no tests are added to cover the new
function.

Low coverage (LCvg) Only part of the source code is executed during testing.
Table 3
Number of issues per TD type.

Debt type Number of issues

Camel Hadoop Hbase Impala Thrift Sum

Architecture 10 (6) 12 (6) 6 (7) 5 (2) 9 (9) 42 (30)
Code 52 (10) 122 (90) 109 (50) 55 (26) 130 (34) 468 (210)
Defect 1 (1) 2 (4) 0 (1) 0 (1) 1 (2) 4 (9)
Design 61 (17) 35 (73) 82 (50) 73 (43) 74 (27) 325 (210)
Test 25 (7) 36 (26) 46 (15) 25 (7) 28 (8) 160 (63)

Total 149 (41) 207 (199) 243 (123) 158 (79) 242 (80) 999 (522)
Selected 61 63 63 52 61 300
as Requirement Debt). The definitions of the different selected types
and indicators of TD are shown in Table 2.

Table 1 also reports the filtered issue details for each project. We
first present the number of issues that contained TD (see column ‘TD
Issues’). We note that in an issue where TD is discussed, other (non-TD)
problems may also be addressed. Thus, we also present the number of
sections that contained TD and its percentage compared to the total
amount of sections in the filtered issues (see column ‘TD Sections’).
5

3.3.3. Step III: Filtering issues with potential remediation commits
First, we clone the git repository of each project, and use git log

to extract the code commits together with the corresponding commit
messages. According to the project selection criteria (see Section 3.2),
all five projects require developers to add the Jira issue key when
providing code patches. Thus, we expect the commit messages to
contain the issue ID, indicating the issue that each commit addresses;
taking advantage of this, we use the regular expression-based approach
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provided by Fischer et al. [26] to match the issue key in the commit
message and thus extract those messages, whose corresponding issues
are labeled as any type of TD.

Table 3 shows the number of issues per TD type. We present two
numbers per project and TD type. On the left of each column is the
number of issues with ID appearing in commit messages, and on the
right (between parentheses) is the number of remaining issues. Overall,
we were not able to find the ID for 34% of the issues and cannot
determine whether and when they were resolved in the source code.
Also, since there are only four Defect Debt items in total, we will not
consider that debt type. Thus, the remaining 65% of the issues are
relevant for this study.

Manually reviewing the code that resolved the TD item and further
tracing back to the code that introduced the same item is fairly time-
consuming. Thus, we decided to limit the analysis to 300 issues spread
over the five projects. By investigating the total number of issues per
project (second to last row of Table 3), these are unequally distributed
across the projects. Thus, we randomly selected issues by using stratified
andom sampling [27], which is used to estimate population parameters
fficiently when subpopulations have substantial variability [28]. For
ach project, we randomly selected a number of issues based on the
otal number of issues it contains (see Table 1).

Developers can identify TD in issue trackers in three cases: before
reating an issue, during code review and after a patch is commit-
ed [4]. Since this study considers a lifecycle starting with the TD
ntroduction in the source code, we only consider the first case (i.e., TD
s the reason for creating the issue), and manually filter out the others.
ased on the above criteria, we finally selected 61, 63, 63, 52, 61 issues
espectively for the five projects (as shown in the last row of Table 3).

.3.4. Step IV: Matching TD items to remediation commits
For each issue that has at least one commit mentioning its key in

he message, we extract the TD items discussed in it. The TD items are
dentified based on context. We note that we consider the entire issue
or analyzing the context, including parts that were not classified as TD.
f the discussion revolves around the same problem, then one TD item
s extracted. This is the common case since issues are naturally meant
o discuss individual problems. In the rare cases where a different (TD-
elated) problem is brought as a consequence of the discussion, multiple
D items are extracted.

Once those TD items are identified, we investigated whether each
D item was actually resolved in the codebase. For that, we start by
xtending the set of related commits. From each commit that contains
he issue key, we also get the commits in the pull request that the
riginal one is part of. Then, with this set of potentially fixing commits,
e inspect all changes at the code level to identify if the problem

eported by the item is solved. If a solution had been proposed or
irectly reported in the issue sections, our search would start from this
olution.

Finally, if we identify a fix, the respective commit is recorded. When
ultiple commits contribute to the fix, all are recorded. We found only

even instances of such case. The details of the selected issues, including
he classification of the contained technical debt and the hashcode
f the corresponding commit resolving the issue are available in our
eplication package [25].

.3.5. Step V: Determining TD introduction commits
For the TD items that we established being fixed, we then proceed

o identify the commit(s) that introduced the problem in the first place.
ased on the identified commit at the code level, we use git blame to
race the modification history of these pieces of code and record the
ommit(s) that created those pieces of code.

Here we distinguish between introducing debt and accumulating
ebt. The former refers to commits that comprise a patch that passed
uality control, but introduced a TD item; the latter refers to later
6

ommits that worsen or spread the problem of an existing TD item. A
simple example in the dataset is ‘‘THRIFT-2768|0’’,12 in which spacing
was inconsistent (and fixed). In this case, we only record the first
commit containing inconsistent spacing. In the case where we deem
multiple commits to comprise a patch (e.g., ‘‘IMPALA-5273|0’’), all
were recorded.

3.4. Data analysis

For RQ1, to investigate to what extent technical debt items resolved
in issue trackers are actually paid back in source code, we use the
data collected as described in Section 3.3: specifically we look at the
selected issues that contain TD items and the corresponding commits.
Subsequently, we manually check if TD-related problems in the issue
documentation (i.e., summary, description, and comments) are resolved
in the corresponding commits.

To answer RQ2, we need to determine the four moments in the
TD item lifecycle and then calculate the three time intervals between
them (see Fig. 1). Regarding the moment of TD introduction, we first
use git blame to trace the first commit in which developers introduced
the pieces of code incurring TD. The commit date of that commit is
the TD introduction moment. Regarding the TD identification moment
in issue trackers, we use the date in the issue documentation where
TD-related problems are first mentioned. Consequently, identification
latency is the time difference between the moments of TD identification
and TD introduction.

After TD-related problems are identified and flagged in issue track-
ers, developers may have several discussions about TD before they
decide to resolve it. To represent the moment of TD repayment de-
cision, we use the date in the issue documentation when developers
mentioned their final decision about the remediation of the TD items.
Consequently, the discussion period is the time difference between the
moments of repayment decision and identification.

After developers decide how to resolve TD in issue trackers, the next
step for them is to resolve the corresponding TD-related problems in
the source code. To define the moment of TD remediation, we use the
date of the last commit that has been determined to address the tracked
issue. Consequently, remediation latency is the time difference between
the moments of TD remediation and repayment decision.

To compare intervals, we turn to the Kruskal–Wallis test [29], which
is a non-parametric method for testing whether samples originate from
the same distribution. Kruskal–Wallis is used for comparing two or
more independent samples of equal or different sample sizes. A signifi-
cant Kruskal–Wallis test indicates that at least one sample stochastically
dominates one other sample. However, the Kruskal–Wallis test does
not identify where stochastic dominance occurs or for how many
pairs of groups. For analyzing the specific sample pairs for stochastic
dominance, we used Dunn’s test [30] with Bonferroni correction.

For RQ3, we identify how the involvement of developers is associ-
ted with the length of the three intervals in the lifecycle, i.e., identi-
ication latency, discussion period and remediation latency. To this end,

we first consider which developers were involved in the four moments.
Especially, we create unique, anonymous ID’s for each developer in-
volved in relevant commits (i.e., introducing or paying back TD) based
on their name and email.

Next, we focus on identification latency and use the Kaplan–Meier
(K-M) method [31] to investigate whether the length of this timespan
is related to whether the developer identifying the debt item (in the
issue tracker) also authored a commit that introduced (part of) the debt
item. The Kaplan–Meier method is a non-parametric statistic that can
estimate the survival function from lifetime data. This method is also
known as ‘product limit estimator’ and is commonly used to compare
the longevity of products (in our case, TD items) under different

12 In our dataset, TD item IDs follow the format <issue-key>|<item-
number>. Thus, this examples refers to item #0 of the issue ‘‘THRIFT-2768’’.
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Table 4
Numbers and percentages of TD items resolved in Issue Trackers (IT) are paid back in Source Code (SC).
Types Indicator IT SC % IT SC %

Architecture debt Using obsolete technology (ObsTech) 8 8 100.0 18 16 88.9Violation of modularity (VioMod) 10 8 80.0

Code debt

Complex code (CpxCd) 2 0 0.0

175 154 88.0

Dead code (DedCd) 24 20 83.3
Duplicated code (DupCd) 1 1 100.0
Low-quality code (LQualCd) 126 115 91.3
Multi-thread incorrectness (MTCor) 10 9 0.0
Slow algorithm (SlAlg) 17 14 82.4

Design debt Non-optimal defects (Des) 123 113 91.9 123 113 91.9

Test debt

Expensive tests (ExpTst) 3 3 100.0

47 35 74.5Flaky tests (FlaskTst) 11 7 63.6
Lack of tests (LacTst) 21 15 71.4
Low coverage (LCvg) 12 10 83.3

Total 357 312 87.4
circumstances (e.g., various ways that developers are involved in the
items’ lifecycle).

We then look into the discussion period and build a generalized linear
model [32] (GLM) to examine the relation between this period and two
factors: the total number of developers involved in the issue tracker
discussions, and whether or not the discussion involves authors of com-
mits that introduced (part of) the debt. GLM is a multivariate analysis
method that allows modeling data that is not normally distributed. In
this case, the discussion period follows a Poisson distribution.

Finally, for remediation latency, we use the Kaplan–Meier method
once more. In this case, we compare the remediation latency of TD
items in pairs of scenarios related to kinds of developers involved in
the remediation (i.e., the decision-making developer or the identifying
developer).

4. Results

4.1. To what extent technical debt items identified and tagged as ‘resolved’
in issue trackers are actually paid back in source code? (RQ1)

There are 534 TD sections (i.e., summary, description and com-
ents) involved in the selected 300 issues, of which 26 sections

oncern TD introduced in patches during the discussion, and then
esolved in the final commits. Thus, we filtered out these TD items
ince they were not introduced in the source code. The remaining 508
D sections from the selected 300 issues (no issue had all its sections
emoved in the previous step) can be mapped into 357 TD items. The
ajority of these TD items corresponded to a single TD type, and only

ix corresponded to more than one types.
To exemplify how multiple TD types may appear in a single item, we

resent one such item. In the issue HBASE-1655 ‘‘Usability improvements
o HTablePool’’, the summary indicates Design Debt, but the description
nd the comments are related to both Design Debt and Code Debt;
he latter includes the indicators Low-quality code (LQualCd) and Dead
ode (DedCd). From the description:

• ‘‘Remove constructors that were not used.’’ - [Code-DedCd]
• ‘‘Change internal map from TreeMap to HashMap because I could not
see any reason it needed to be sorted.’’ - [Design-Des]

And from the comments of issue HBASE-1655:

• ‘‘... The default getTable also requires instantiating a new HBaseCon-
figuration() each time internally, even if we are reusing an existing
HTable... Whether there is a significant overhead or not to that, we
should avoid it when unnecessary.’’ - [Code-LQualCd]

• ‘‘...only issues there are the tab issues, reordering, and whether to
expose the pools or not.’’ - [Code-LQualCd]

• ‘‘Sorry about the tab/spaces issue. I did not clean it up carefully
7

enough.’’ - [Code-LQualCd]
Table 5
Fisher’s exact test comparison of issue fixing between debt types.

Comparison Statistica

Architecture debt x Test debt 2.74
Architecture debt x Design debt 0.64
Architecture debt x Code debt 1.09
Code debt x Test debt 2.51*
Code debt x Design debt 0.58
Design debt x Test debt 4.30*

*Statistically significant (𝑝-value < 0.05).
aAlso represents the effect size based on odds ratio.

• ‘‘Even though TreeMap uses the comparator rather than the equals
method to compare keys, using a byte[] as the key seems to break the
contract of a java.util.Map...’’ - [Design-Des]

• ‘‘...Seems better to just use String and HashMap which works well and
satisfies the Map contract.’’ - [Design-Des]

• ‘‘While we lose the convenience of calling static methods...’’ - [Design-
Des]

Table 4 presents the results of the remaining 357 TD items (each
of them only belonging to one TD indicator), including their types
and indicators, and the numbers and percentages that are paid back in
source code. The result shows that most of the TD items (i.e., 87.4%)
identified and mentioned as resolved in issue trackers are indeed
paid back in source code.

Regarding different types of TD, we conducted pairwise Fisher’s
exact tests [33] on the percentages of TD items that are paid back in
source code from the different types. The results in Table 5 show that
the percentage of Design Debt and Code Debt items that are also paid
back in source code differs significantly from Test Debt. In particular,
Test Debt items are four and two times less likely to be fixed than
Design Debt and Code Debt items respectively. Altogether, we notice
that debt of all types has similarly high chance of being paid back
in source code, although Test Debt’s is statistically lower.

We also compared projects and, for most cases, found no significant
differences in the likelihood of issues being actually fixed in source code
(see Table 6). The only exception is Hadoop (fixing ratio ≈77%), for
which issues are three times and seven times less likely to be fixed in
source code than issues in Camel (fixing ratio ≈93%) and Impala (fixing
ratio ≈96%) respectively.

4.2. How long are the time intervals in TD items’ lifecycle? (RQ2)

During the data analysis, we found that developers often identified
a TD item from the source code and reported it in the issue tracker,
but subsequently no discussion was held. Thus, it is hard or even

impossible to establish when exactly developers decided to resolve
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Table 6
Fisher’s exact test comparison of issue fixing between projects.

Comparison Statistica

Camel x Impala 0.48
Camel x Hadoop 3.66*
Camel x Hbase 1.95
Camel x Thrift 1.48
Impala x Hadoop 7.67*
Impala x Hbase 4.09
Impala x Thrift 3.10
Hadoop x Hbase 0.53
Hadoop x Thrift 0.40
Hbase x Thrift 0.76

*Statistically significant (𝑝-value < 0.05).
aAlso represents the effect size based on odds ratio.

that TD item, i.e., the moment of the repayment decision is unknown.
Consequently, we consider an alternative lifecycle for those TD items
with an unknown repayment decision, as illustrated in Fig. 3; Remedi-
ation latency without discussion refers to the time interval between the

oment of TD introduction and TD remediation for those TD items.
aking into account both the original and the alternative lifecycle, we
ivided all identified TD items into two groups according to whether
he Repayment decision moment could be determined or not.

Among all 312 TD items that have been resolved in source code
as shown in RQ1), the moment of the repayment decision can be
onfirmed for 116 of them. Taking all 312 TD items into account,
ig. 4 shows the box plots of the distribution of the number of days
or intervals identification latency, discussion period, remediation latency

and remediation latency without discussion. One can notice considerable
differences in the descriptive statistics of the four intervals. In particu-
lar, the median values are 326, 1, 1 and 4 days for the four intervals,
respectively.

To further evaluate the significance of such difference, we calcu-
lated the Kruskal–Wallis test [29] based on the number of days for the
four intervals and followed it with Dunn’s tests for pairwise compar-
isons, since we cannot assume the intervals are normally distributed.

2

8

The results of the Kruskal–Wallis test (H: 334.66, 𝑝-value < 0.01, 𝜖 : K
0.45) reveal that the difference between the four intervals is significant
with a moderate effect size (𝜖2). In addition, the results of the Dunn’s
test show that only identification latency has significant differences from
the other three intervals (𝑝-value < 0.01), while there is no significant
difference between Discussion period, Remediation latency and Remedi-
ation latency without discussion. This finding indicates that although
TD items take a long time to be identified (around one year), the
decision to repay them and their actual repayment in source code
takes place within a few days after being identified.

Subsequently, we performed a separate analysis related to the four
considered TD types, i.e., Architecture Debt, Code Debt, Design Debt
and Test Debt. Fig. 5 shows the box plots of the distribution of the
number of days needed to manage the different types of TD for the
four intervals. For each interval, we conducted the Kruskal–Wallis
test to evaluate the significance of the difference between TD types.
The results reveal no significant difference between different types of
TD within the same time interval (i.e., 𝑝-value > 0.05). This finding
suggests that, while the number of days varies widely between
time intervals, there is no significant difference in how developers
manage different types of debt within the same time interval.

Finally, we also investigated whether the intervals were statically
different between the studied projects. We found a significant differ-
ence for the identification latency (H: 12.44, 𝑝-value: 0.014, 𝜖2: 0.04)
and the remediation latency without discussion (H: 21.98, 𝑝-value < 0.01,
2: 0.11). However, the effect size in these two cases is weak and, thus,
ost-hoc Dunn’s tests would not be meaningful. Altogether, we notice
hat there is no strong difference regarding the intervals between
he studied projects.

.3. How are developers associated with the management of technical debt
tems documented in issue trackers? (RQ3)

Regarding identification latency, we investigated whether the length
f this timespan is related to whether the developer identifying the
ebt item (in the issue tracker) also authored a commit that introduced
part of) that item (RQ3.1). To answer this question, we used the
aplan–Meier (K-M) method [31], which is a non-parametric statistic,
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Fig. 5. Distribution of Time Intervals between Introducing, Identifying, Deciding to Repay and Paying Back Different Types of TD Items.
Fig. 6. Results of Kaplan–Meier method for the identification latency of all the 312
D items.

o analyze the identification latency of all the 312 TD items. Fig. 6 shows
he Kaplan–Meier plot depicting the cumulative percentage of TD items
y-axis) that have been identified within a specified number of days (x-
xis). The red and blue areas represent the 95% confidence intervals of
he survival curves.

In Fig. 6, if one item was identified and marked in the issue tracker
y the same developer who introduced it in the source code, we call
t a ‘self-identified’ item; otherwise, it is a ‘non-self-identified’ item.

e find that there are 26 self-identified and 193 non-self-identified
tems from all the 312 TD items. In addition, the dotted lines in Fig. 6
how the median identification latency for both self-identified and non-
elf-identified TD items. From Fig. 6, we observe that self-identified
tems were identified in a shorter period of time than non-self-identified
tems. To evaluate whether such a difference is significant, we con-
ucted a log-rank test [34] on the length of the identification latency

of self-identified and non-self-identified items. R2.5, R2.9To estimate
the effect size, we use the hazard ratio (HR) of the Cox Proportional
Hazards model [35]. The log-rank test (𝑝-value < 0.01) and hazard ratio
(HR = 2.42)13 shows that the difference is significant and pronounced,
which indicates that TD items are identified faster in the issue
tracker by the developers who introduced them in the source code.

Next, we focused on the discussion period (RQ3.2) and examined
the relation between this period and two different factors: (a) the
total number of developers involved in the issue tracker discussions
(developer_discussion); and (b) whether or not the discussion
involve developers who have also authored commit(s) that introduced

13 HR = 1: no effect; HR < 1: reduction in the hazard; and HR > 1: increase
in hazard.
9

Table 7
Results of the generalized linear model.

Deviance residuals

Min 1Q Median 3Q Max
−13.186 −7.718 −5.478 −2.795 46.981

Coefficients:
Estimate Std.Error z-value 𝑝-value Effect size

(Intercept) 2.545 0.046 54.90 <0.001
developers_in_discussion 0.330 0.011 30.79 <0.001 39.93%
introducer_in_discussion −0.732 0.036 −20.49 <0.001 −51.61%

(part of) the debt (introducer_in_discussion). Subsequently,
we built a generalized linear model [32] (GLM) to analyze whether
the length of the discussion period correlates with these factors. Since
the period data follows a Poisson distribution, we built the regression
model using the Poisson family estimator.

Table 7 reports the results of the regression model; it shows that
both factors have a statistically significant effect on the length of the
discussion period (i.e., 𝑝-values < 0.01). From the results, we also
learn that the presence of more developers in a discussion may
increase its length, in the case of our population by an average of
40%, while the involvement of developers who introduced the debt
may reduce the length, in this case by an average of 50%.

For remediation latency (RQ3.3), following our findings in RQ2,
we distinguish between two cases: the regular remediation latency (see
Fig. 1), i.e., the time difference between the moment of remediation
and (known) repayment decision; and the remediation latency without
discussion (see Fig. 3), i.e., the time interval between the moment
of TD identification and TD remediation for the TD items with an
unknown repayment decision. Regarding the first case (116 TD items),
we investigated if the length of the timespan is related to whether the
developer(s) paying back the debt in source code were also involved in
the issue tracker discussion. For the second case (196 TD items), we
investigated whether the length of the timespan is related to whether
the developer(s) paying back the debt in source code also identified it
in the issue tracker.

Starting with the first case, Fig. 7 shows the Kaplan–Meier plot
to visualize the timespan curves of the 116 TD items for which the
moment of the repayment decision can be confirmed. The plot depicts
the cumulative percentage of TD items that have been paid back after
the decision of being resolved (y-axis) within a specified number of
days (x-axis). In Fig. 7, if one item was paid back in the source code by
the same developer who was involved in the issue tracker discussion,
we mark it as an ‘involved’ item; otherwise, it is a ‘non-involved’ item.

As shown in Fig. 7, the curves of involved and non-involved items
almost overlap at the beginning: half of all items are paid back within
a couple of days. Then, although around 90% of the ‘involved’ items
are paid back within one month, the remaining ones took up to four

months. The ‘non-involved’ items display a similar, less steep scale, but
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Fig. 7. Results of Kaplan–Meier method for the remediation latency of the 116 TD
items.

are all paid back within three months. To evaluate the significance of
the observed differences, we conducted a log-rank test on the length of
the interval remediation latency of involved and non-involved items. The
esult shows no significant difference between the involved and non-
nvolved TD items (𝑝-value = 0.13 ). This result indicates that whether
he developer who paid back the item also participated in the issue
racker discussion has no significant effect on how long it takes to
esolve the item.

For the second case, Fig. 8 shows the Kaplan–Meier plot to visualize
imespan curves of remediation latency without discussion for the 196 TD
tems, depicting the cumulative percentage of TD items that have been
aid back after being identified (y-axis) within a specified number of
ays (x-axis). In Fig. 8, if one item was paid back in the source code by
he same developer who identified it, we marked it as a ‘self-resolved’
tem; otherwise, it is a ‘non-self-resolved’ item.

As shown in Fig. 8, the majority of the self-resolved items and the
on-self-resolved items were fixed quickly, and the curves of those
wo kinds of items almost overlap at the beginning. However, the
esult from a log-rank test shows that the difference between the
ength of the remediation latency without discussion of self-resolved and

non-self-resolved items is statistically significant (𝑝-value < 0.0001).
oreover, the hazard ratio suggests a moderate effect (HR = 1.71).14

hus, TD items seem to be resolved faster in the source code by the
evelopers who identified them and subsequently marked them in
he issue tracker.

. Discussion

In this section, we first elaborate on the interpretation of our results,
hen discuss the implications for researchers and practitioners, and
inally present the threats to the validity of our study.

.1. Interpretation of results

.1.1. RQ1 - the likelihood of TD repayment in code
If technical debt items are identified in issue trackers and subse-

uently mentioned as resolved, they are most likely resolved in the
ource code as well; we observed this for 87.4% of our data. This means
hat there still remains a percentage of false positives: 12.6% of TD
tems marked as resolved in issues trackers are in fact not resolved in
ode. A related study found that only less than one third of resolved
D items that are reported in issue trackers can also be traced to

14 HR = 1: no effect; HR < 1: reduction in the hazard; and HR > 1: increase
in hazard.
10
Fig. 8. Results of Kaplan–Meier method for the remediation latency without discussion
of the 196 TD items.

source code comments [8]. The take-away here is that using a single
source (e.g., code comments or issues) to investigate TD repayment
may lead to false conclusions about how much TD is paid back. In
contrast, combining at least two data sources, as we did in this study,
allows for more certainty about the real rate of repayment for TD
items reported in issue trackers. Nevertheless, we acknowledge that the
identified traces were not confirmed by the developers themselves (see
Section 5.3).

Furthermore, the observed rate of remediation may differ depending
on the frame of reference. For example, Zabardast et al. [36] observed
that 22.9% of refactoring commits paid back TD. While the starting
point of our data collection are issues, Zabardast et al. [36] start
from commits. Issues represent more prominent problems, as someone
bothered to create a ticket for them; this might partially explain why
we observed a higher fixing rate. Another relevant fact is that we could
not find related commits for 34% of the issues classified as TD (in our
dataset). Thus, they might as well not be fixed in the source code.
However, since we cannot be sure of that, we did not consider them
in our statistics.

The structure and size of the team may also play a role. We note that
although the projects display similar fixing rates, we found that one
project, namely Hadoop, displayed a statically significant lower fixing
ratio compared to the two projects with the highest ones (i.e., Camel
and Impala). We compared the characteristics of all five projects and
Hadoop seems average across the board, except for two points: it is
the largest project in SLOC (although not the largest SLOC/file), and
it has the largest developer base. More importantly, we found that
Hadoop has the lowest ratio of PMC members+Committers

Developers (0.016), which is

three times smaller than the second lowest (Hbase: 0.053) and 42 times
smaller than the highest ratio (Impala: 0.685). Moreover, we found a
perfect rank correlation (i.e., same order) between the fixing ratio and
ratio of PMC members+Committers

Developers . Altogether, we conjecture that lack of
enough oversight (in this case, people that can review code and apply
changes, i.e., PMC members and Committers) impact the quality of TD
management (in this case, the ratio of successfully fixed TD items).

Finally, the likelihood of the resolved TD items (in issue trackers)
to be paid back in source code varies widely among different types. For
example, we found that Design Debt items have a significantly higher
chance to be paid back in source code, while Test Debt items are less
likely. This finding is consistent with our previous study [2], where we
established that Design Debt has a high fixing rate in both Python and
Java projects. One possible reason might be that developers realize the
impact of Design Debt on software maintenance and try to address it,
to avoid paying high technical debt interest. Moreover, Design Debt

seems to be a prominent concern among developers. Xavier et al. [8]



Information and Software Technology 159 (2023) 107216J. Tan et al.
found that almost 60% of the studied TD items documented in issues
turned out to be related to Design Debt, and Liu et al. [37] found that
Design Debt is removed the fastest in source code comments along the
development process.

5.1.2. RQ2 - intervals in the lifecycle
We found out that, although TD items take a long time (around

one year) to be identified in the issue tracker, they are likely to be
resolved in source code within a few days after being identified. We
acknowledge that there is room for variation in the measurement of
these results (see Section 5.3. That said, another study that focused on
investigating the remediation of TD in issue trackers also found that
after TD items are reported in an issue, most of the fixes happened in
a short time compared to the average (i.e., 67% of TD is repaid in the
first 100 h) [4]. A possible reason could be that TD items in source code
remain hidden when they do not cause trouble. As soon as they start
causing trouble during maintenance (e.g. they make parts of the code
harder and harder to change), developers record them as issues. Once
recorded, they are visible and action is swiftly taken.

We also found no significant difference in how developers prioritize
the different types of debt within the same lifecycle interval. This
observation could also be explained by the reason mentioned in the
previous paragraph: any maintenance issue troubling developers to the
point of being reported, would likely be of similar importance to the
development team.

Finally, although we observed a difference in the length of the
various intervals across the studied projects, the effect size is weak,
suggesting a similar treatment of issues across them. This is not sur-
prising given that all projects follow ASF practices and contribution
guidelines. Notice that this observation is not related to the efficacy of
the fix (i.e., the projects’ fixing rate), for which we found a difference,
as explained in Section 5.1.1.

5.1.3. RQ3 - developer involvement
We found that TD items seem to be more quickly identified in

the issue tracker by the same developers who introduced them in the
source code. The same holds for the subsequent moments, e.g., when
the same developer is involved in both identification and repayment,
the corresponding TD items seen to be resolved faster. These findings
are consistent with the results of our previous study [38], where we
discovered that developers are often willing to address their own TD,
and they identify and fix it quicker than TD incurred by others. One
possible reason might be that developers are more familiar with the
TD items introduced or identified by themselves. Another is the sense of
responsibility that developers may have in cleaning up their own code.
Nevertheless, we acknowledge that such hypotheses would require
validation with developers (see Section 5.3).

However, whether developers discuss the TD items after being iden-
tified in the issue tracker seems to have no bearing on TD remediation,
i.e., there is no significant effect on how long it takes to resolve the
item. That said, the way developers are involved in the issue tracker dis-
cussions seems to be associated with significant changes in the length
of intervals. While a larger numbers of developers participating in the
discussion can increase its duration, the participation of developers
who introduced the debt can reduce it. This finding shows empirical
evidence of a behavior that is mainly discussed anecdotally: long-term
involvement of developers in particular modules/files can support a
more rapid response to the accumulation of TD beyond acceptable
levels; in this case by reporting the problem in issue trackers sooner
rather than later.

Altogether, the above observations seem to imply that developers,
being the most knowledgeable of the software’s technical issues (and
debt), share the role of spearheading TD management together with the
project leaders. In the same vein, only about one-third (i.e., 116/312)
of TD items are discussed and then mentioned to be solved in issues;
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this means that the majority of TD items are acknowledged and then
paid back without the apparent need to debate regarding their solution
or repayment relevance. We thus conjecture that, in most cases, the
expertise and knowledge of the developers affords them the authority
to repay TD items without the need of technical discourse.

We note, however, that these findings may not fully translate to
other contexts such as teams maintaining an industrial codebase. Al-
though the teams investigated in this study have an established and
long-standing organizational setting, these kinds of OSS structures are
not often met in industry, e.g. developers vs. committers and PMC
members with the right of accepting changes to the codebase. Teams
in industry are more independent and most people have the right to
commit and merge.

5.2. Lessons and implications

From the three research questions in this study, we have learned two
main lessons. First, the most relevant technical debt items, which some-
one finds important enough to report as an issue, are addressed swiftly.
This suggests that keeping technical debt under control is feasible if
teams strive to report the harmful debt items in issue trackers. Second,
the original author of a TD-incurring code does a better job of spotting
issues and addressing them than other developers. Thus, keeping the
original author involved in future changes of the same code, can help
significantly to identify and remove TD items swiftly.

Reflecting on the results, we believe that investigating how de-
velopers manage TD across both source code repositories and issue
trackers can help researchers better understand developers’ actions and
provide insights into how to improve the state of the practice. We have
established that using two data sources for tracking the lifecycle of TD
items provides a more complete picture and particularly reveals false
positives on their repayment; we encourage researchers to combine two
data sources or more when investigating similar topics, e.g., TD prior-
itization, and software maintenance workflows in general. Moreover,
we found that TD items usually take a long time to be identified in
issue trackers. However, once they are identified, they are likely to be
resolved in the source code within a few days. Thus, the investment of
research effort into developing tools to help developers identify and,
more importantly, report TD items can yield noticeable improvement
in debt repayment. We do not advocate flooding developers with more
automatically generated information, but we emphasize the role that
TD identification and prioritization can play in supporting TD manage-
ment. The developers are ultimately responsible for reporting issues,
and tools should be designed carefully to integrate into the developer
workflow organically.

Furthermore, although our work sheds light on the dynamics of
TD management, there is limited knowledge of what leads certain
TD items to be discussed. Further research of such TD items may
give rise to: a) methods for early detection of more challenging TD
items (i.e., that require discussion); (b) the identification of recurrent
solutions (e.g. design patterns or refactorings) for such items; and (c)
strategies for mining expert opinions among similar TD items, which
may aid their faster resolution.

Our results also offer to practitioners, a broader view of technical
debt repayment in source code. First, we advocate the documentation
of issue resolution in code repositories (e.g., linking issue ID in commit
messages). We also encourage practitioners to report TD items found
in the source code (as issues or source code comments, depending on
the team’s practices and preferences), even if there is no plan to address
them immediately. However, we also advise to tag these ‘lower-priority’
TD items as such. We believe this practice would empower (automa-
tion) tools while causing little to no disturbance in the ongoing issue
management practices. The explicit link between issues and resolving
commits and the additional documented TD items generate traces that
can provide greater analytical power to existing (and future) tools. That

is, it will enable research like that mentioned in the previous paragraph.
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Then researchers can feed the developed theory and methods back into
practitioner tools.

Finally, our findings related to team dynamics can directly support
practitioners to re-allocate suitable developers to projects. For example,
we see the opportunity for a cultural change. In a previous study, we
found that some developers seek to review code and identify their TD
before they leave a team [38]. The results of this work show that the
developers who initially incurred the debt may spot issues more easily.
Thus, formalizing such an end-of-cycle activity and transform it from
the ‘action of individuals’ into ‘team actions’ can bear benefits.

5.3. Threats to validity

Construct validity is related to the connection between what we
ntend to measure and what we are ultimately measuring. In this
espect, we aimed to study TD items managed in both code repository
nd issue tracker. Although the data extraction process ensures that
he items are managed as intended, the identification of TD items
s subject to validity threats. The items are identified and classified
ased on textual description in the issue tracker sections. The items
ere not confirmed by the practitioners who documented them, but

he identification/classification tasks were performed using established
rameworks. Another threat concerns the survival time measured for
ach TD item. The measurement process (using the code repository
nd issue tracker) is deterministic. However, as our intention was to
bserve the items’ three intervals, the measurement may be slightly off
ue to potential missing sources (i.e. sources other than source code and
ssue trackers). For example, a TD item may have been first identified
n mailing lists or Discord/Slack channels, and only then reported in
ssue trackers.
External validity concerns threats to the generalizability of our

indings. Given the population of our study, one cannot expect the
esults to apply to every development team. Potential differences in
D (and issue) management among the investigated projects and team
ractices (or lack thereof) can influence the introduction and survival
ime of TD items. We analyzed issues from five large open source
rojects with different programming languages and sizes, which all use
ira as the issue tracker. Although a replication with more projects may
urther confirm the conclusions we reached, we believe our findings
an be relevant to other large, open-source projects that use Jira. To
itigate this threat, we also refrain from making conclusions in terms of

rder of magnitude, and stick to statistical differences between groups.
lso, to avoid biases from investigating a limited sample size, we
andomly selected the analyzed sample from all the collected issues.
urthermore, any tool can influence practices. Thus, a replication study
hat analyzes projects using other issue trackers (e.g., from GitHub)
ay refine some of the conclusions. Nevertheless, the main workflow

nd features of issue trackers are common among such tools, so we
onsider this threat partially mitigated.
Reliability considers the bias from the researchers in data collec-

tion or data analysis. To address these threats, two researchers were
involved in the data collection and analysis. Moreover, the first and
second authors classified the TD items contained in the issues indepen-
dently into the different TD categories, using the description of the rules
and the definition of the categories. To assess the disagreements nu-
merically, we estimated the inter-rater agreement using Krippendorff’s
alpha [39] (𝛼 = 0.82).15 The confirmation of TD items’ removal in the
odebase is also subject to threats. Thus, in addition to the involvement
f multiple researchers, we also describe the followed process in as
uch detail as possible. Finally, to support the replication of our study,
e created an online repository with the necessary instructions and
ataset [25], which helps researchers use and extend our dataset and
eplicate our analyses.

15 Krippendorff’s inspection of the tradeoffs between statistical techniques
stablishes that it is customary to require 𝛼 ≥ 0.80 [40].
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6. Related work

In this paper, we combine two data sources (i.e., source code
repository and issue tracker) to investigate the lifecycle of TD items
(introduction, identification, discussion and repayment), and how de-
veloper involvement influences this lifecycle. In this section we discuss
the state of the art regarding TD management based on one or multiple
data sources, and the influence of developer-related factors on TD
management.

6.1. TD management based on one or more sources

Most of the current studies focused on investigating TD introduc-
tion and remediation based on source code artifacts. In this context,
several relevant findings have been reported. First, a large percentage
of TD is indeed paid back during software evolution [41–43]. With
the evolution of Java and Python projects, the number of TD items
shows a significant growth trend, while a large number of TD is paid
back [2,44]. Moreover, most TD items are paid back within one year
of being introduced by the developers, and only a few can remain in
the systems for several years [2,45,46].

More recently, a few studies focused on investigating the identi-
fication and repayment of TD based on issue tracker artifacts. For
example, Bellomo et al. [19] and Dai et al. [47] analyzed the summary
and description of issues in multiple trackers and found that between
4% and 9% of them discussed TD, indicating that developers indeed
declare and discuss TD in the issue trackers. However, these studies
did not include detailed issue information (e.g., discussion messages)
and focused on identification. Subsequently, Li et al. [4] investigated
the identification and remediation of TD (in particular, self-admitted
technical debt or SATD) in 500 issues from two large open source
projects and found that on average, 71.7% of identified TD is paid back.

The aforementioned studies that analyzed TD using a single data
source have limitations. For example, Tufano et al. [46] suggest that the
main reason for SATD removal is because the code is simply no longer
there, instead of developers intentionally managing them. Zampetti
et al. [6] looked into the question of removal ‘‘by accident’’ and found
that 20%–50% of SATD comments are accidentally removed when
entire classes or methods are dropped. Another study analyzed commit
messages of Apache Java projects and found that empty commit mes-
sages are potential indicators of TD, while detailed commit messages
have a negative association with the presence of TD [48].

The investigation of multiple data sources for TD research is still in
its infancy. The most notorious example is a study by Xavier et al. [8],
who focused on the payment of SATD items in issue tracker systems (re-
ferred to as SATD-I) and checked whether they were also documented
in code comments. The results show that only 29% of the studied SATD-
I items can be tracked to source code comments. Xavier et al. also
found that most developers paid SATD-I to reduce interest and promote
clean code. However, there is still a lack of research investigating TD
repayment based on both issue tracker and source code.

Compared to this work, our study advances the state of the art by:
(a) combining two data sources to investigate the entire lifecycle of TD
items (i.e., introduction, reporting, discussion and remediation); and
(b) performing a more in-depth analysis of issue tracker information
(i.e., including summaries, description, and discussion comments), also
tailored to allow the identification of TD remediation and the link
between source code and issue tracker artifacts.

6.2. Developer-related factors and TD management

Technical debt management is an essential part of software devel-
opment and maintenance, and commonly involves the collaboration of
multiple project team members, especially for large software systems.

However, some factors related to the development team can have an
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impact on software quality. For example, a strong sense of respon-
sibility among developers helps to deliver higher quality code with
fewer defects [49]. Currently, only a few studies have investigated the
relationship between developer-related factors and TD [50,51]. Such
work can further explain the reasons why developers introduce or pay
back technical debt in different ways.

In our previous work, we had introduced the concept of self-fixed
technical debt [52], investigating how TD is managed when developers
pay back the debt that they introduced themselves. Our results show
that: (a) most TD items in the source code are eventually paid back
by the developers who introduced them; and (b) self-fixed TD has a
shorter survival time. Some studies have also found that the majority
of the SATD removals are made by the same developers who introduced
them [5,9] and that TD in issue trackers is also likely to be paid
back by TD identifiers and creators [4]. These studies suggest that the
phenomenon of self-fixed TD is prevalent across different data sources
and that self-fixing may influence the lifecycle of TD items.

Since developers may have different motives to pay back TD, we
also explored the impact of some developer-related factors on the extent
to which TD is paid back [53]. The findings show that the more
developers maintain the same software module, the lower the chance
of technical debt being self-fixed in that module, and that developers
who contribute more in the software development process are more
likely to repay their technical debt. These may be due to the fact that
developers who are more involved in the software development process
can accumulate more experience and have a better understanding of
the source code. Such an explanation is consistent with the findings of
Alfayez et al. [51] and Amanatidis et al. [50] that developers with more
experience in software projects have a lower chance of introducing TD
in the source code. However, developers with more experience tend to
identify more SATD in code comments [23]. This difference may be due
to the nature of SATD, i.e., more experienced developers find it easier
to identify TD and, thus, document it in the code comments.

In summary, the aforementioned studies suggest that developer-
related factors may influence decisions to introduce and pay back
TD. However, it is not clear to what extent such factors play a role
throughout the complete lifecycle of TD items. This paper addresses
this aspect by focusing on the developers’ involvement between TD
introduction, identification, repayment decision and remediation.

7. Conclusions

This paper reports on an case study that investigated the lifecycle
of technical debt items resolved in issue trackers. Specifically, we
investigate the likelihood of TD items being also resolved in source
code, the length between the various moments in the lifecycle, and
how the number and involvement of developers are related to the
lifecycle. We randomly selected 600 issues from each project, totaling
3000 issues from the five projects. Then, we manually analyzed 300
issues that contained technical debt items and used git log to extract
the related code commits. Finally, we extracted 357 TD items from
the analyzed 300 issues.

We found that most of the TD items identified and mentioned as
resolved in issue trackers (i.e., 87.4%) are also paid back in source code,
while about one-third (i.e., 116/312) are further discussed after being
identified in the issue tracker. By looking at the timespan between the
various moments in the lifecycle of a TD item, results showed that items
stay dormant for most of their existence and are often resolved quickly
(within a few days) after identification in the issue tracker.

Regarding the different types of TD, items of all types have a
similarly high chance of being paid back in source code, although
Test Debt’s is lower to some degree but statistically significant. Still,
we found no significant difference in how developers prioritize the
different types of debt within the same lifecycle moment.

Finally, TD items seem to be reported faster when the developer
who introduced them is the reporter; they are also resolved quicker
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when the developer who identified the items is the committer. Further-
more, the presence of more developers in a discussion may increase its
duration, while the presence of developers who introduced the item in
the issue tracker discussions can reduce the duration.
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