

University of Groningen

Correction

de Heer, E C; Zois, C E; Bridges, E; van der Vegt, B; Sheldon, H; Veldman, W A; Zwager, M C; van der Sluis, T; Haider, S; Morita, T

Published in: Journal of experimental & clinical cancer research

DOI: 10.1186/s13046-023-02800-3

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2023

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

de Heer, E. C., Zois, C. E., Bridges, E., van der Vegt, B., Sheldon, H., Veldman, W. A., Zwager, M. C., van der Sluis, T., Haider, S., Morita, T., Baba, O., Schröder, C. P., de Jong, S., Harris, A. L., & Jalving, M. (2023). Correction: Glycogen synthase 1 targeting reveals a metabolic vulnerability in triple-negative breast cancer. Journal of experimental & clinical cancer research, 42, Article 220. https://doi.org/10.1186/s13046-023-02800-3

Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

CORRECTION

Open Access

Correction: Glycogen synthase 1 targeting reveals a metabolic vulnerability in triplenegative breast cancer

E. C. de Heer^{1†}, C. E. Zois^{2,3,4*†}, E. Bridges^{2†}, B. van der Vegt⁵, H. Sheldon², W. A. Veldman¹, M. C. Zwager⁵, T. van der Sluis⁵, S. Haider⁶, T. Morita⁷, O. Baba⁷, C. P. Schröder^{1,8}, S. de Jong¹, A. L. Harris² and M. Jalving^{1*}

Correction: *J Exp Clin Cancer Res*42, 143 (2023) https://doi.org/10.1186/s13046-023-02715-z

Following publication of the original article [1], an error was identified in Additional File 8: Fig. 6c. HCC1806 should have been U87MG. The correct Additional File 8: Fig. 6c caption should be:

(c) Well confluency of U87MG-shCtrl and -shGYS1 cells treated with different concentrations of GTPP,

⁺E.C. de Heer, C.E. Zois, E. Bridges contributed equally to this work.

The online version of the original article can be found at https://doi.org/10.1186/s13046-023-02715-z.

*Correspondence: C. E. Zois christos.zois@oncology.ox.ac.uk M. Jalving m.jalving@umcg.nl ¹Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, Groningen 9700 RB, The Netherlands ²Department of Oncology, Weatherall Institute of Molecular Medicine, Hypoxia and Angiogenesis Group, Cancer Research UK Molecular Oncology Laboratories, University of Oxford, Oxford OX3 9DS, UK ³Department of Radiotherapy and Oncology, School of Health, Democritus University of Thrace, Alexandroupolis, Greece ⁴Department of Oncology, MRC Weatherall Institute of Molecular Medicine, Molecular Oncology Laboratories, John Radclife Hospital, Oxford University, Oxford OX3 9DS, UK ⁵Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands ⁶The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK ⁷Tokushima University Graduate School, 3-18-15,

Tokushima University Graduate School, 5-18-

Kuramoto-Cho, Tokushima 770-8504, Japan

⁸Department of Medical Oncology, Antoni Van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, The Netherlands cultured in 5.6 mM glucose complete DMEM, was measured by Incucyte every 3 h.

The correction does not affect the overall Conclusion of the article. The original article has been corrected.

Published online: 28 August 2023

References

 de Heer EC, Zois CE, Bridges E, et al. Glycogen synthase 1 targeting reveals a metabolic vulnerability in triple-negative breast cancer. J Exp Clin Cancer Res. 2023;42:143. https://doi.org/10.1186/s13046-023-02715-z.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.