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A B S T R A C T

We examine the interaction between equity returns and firms’ financing policies in a stochastic
Ramsey model with heterogeneous firms. Motivated by empirical evidence, firms maintain
stationary financial leverage ratios by issuing debt. We present a novel closed-form solution
to this class of models and, subsequently, use this solution to show that restricting firms’
financing policies can explain various stylized facts of both the dynamic as well as the cross-
sectional behavior of equity returns. Our restrictions induce persistent and countercyclical
heteroskedasticity in returns, predictability by dividend–price ratios, a security market line
that is ‘‘too flat’’, and mean-reverting CAPM betas that correlate with leverage. Our model
explains both established as well as recent empirical evidence, but challenges recent theoretical
macro-finance explanations of the link between capital structure and equity returns.

. Introduction

We develop a stochastic Ramsey model with heterogeneous firms in which we connect firms’ stock returns to their financing
olicies to explain the stylized behavior of asset prices. Motivated by stylized facts, we incorporate two features into our model: the
upply of equity shares is inelastic and the firms’ financial leverage ratios are stationary. We obtain a closed-form solution to this
odel, which we use to study the subsequent implications for asset prices. The model features firms that are heterogeneous in both

heir financing policies and the degree of uncertainty in their future cash flows. The firm heterogeneity allows us to characterize
he asset pricing implications for both the dynamic properties of returns as well as their cross-sectional behavior. We show that
he assumptions of inelastic equity supply and stationary leverage ratios give rise to a set of equations of price dynamics that can
xplain many documented properties of equity returns. The pricing equation for excess returns provides a unifying framework for
he literature on return predictability, the cross-section of expected returns, and volatility clustering.

To investigate the effects of the two main stylized financing decisions, we introduce corporate debt and corporate equity in
n otherwise standard stochastic Ramsey model. Our principle goal is to highlight the qualitative, rather than the quantitative,
mplications of these financing decisions. Therefore, we require a tractable model to scrutinize the consequences of said financing
ecisions and dissect the various mechanisms that elicit the observed behavior of stock returns. On the one hand, we therefore do not
xplicitly model the underlying mechanisms that beget these financing decisions, even though the financing choices we consider can
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be linked to the theoretical corporate finance literature — for example, the pecking order theory, the trade-off theory, and frictions
in financial markets. The motivation of our two main assumptions simply comes from empirical observations, and our goal is to
investigate the consequences, rather than the causes, of these observed decisions. Nevertheless, we argue that our specification of
firms’ financing policies indeed summarizes various identified mechanisms that induce stylized corporate financing decisions.

On the other hand, we make standard assumptions about the structures of preferences, production, and investment. The upshot of
his approach, and one of our main contributions, is that we can identify exactly to what extent the effects of financing decisions on
quity returns are purely mechanical. For example, Choi (2013) documents a correlation between asset betas and financial leverage
n the cross-section, and provides a corporate finance theory explanation for this observation. This correlation arises endogenously
n our model, simply by restricting the capital structure. Since there are no externalities in the real economy of the model, both
odigliani–Miller irrelevance propositions hold; neither the financing decisions nor dividend policy have real effects on the total

alue of the firm and therefore also not on the real side of the economy, i.e. real investments, the real capital stock, and consumption.
owever, these corporate financing decisions do have an effect on both stock price behavior as well as the behavior of financial

atios, such as the dividend–price ratio and earnings–price ratio. For example, the two stylized financing decisions restrict the
lexibility of dividend policies; given an optimal investment level and that equity is inelastic, firms face a trade-off between retaining
arnings and issuing debt in pursuit of the target leverage ratio. This trade-off induces a slow-moving dividend–price ratio, which
s a requisite for replicating return predictability.

We derive explicit solutions for the variables of interest and study both the time-series behavior as well as the cross-sectional
ehavior of returns. The closed-form solution to the model is obtained by a flexible parameter restriction which, to the best of
ur knowledge, has not yet been considered in the literature. Specifically, the parameter restriction allows us to derive explicit
xpressions of firm dynamics in stochastic differential equations. The closed-form solution and continuous-time setting allow us to
horoughly inspect the relevant mechanisms that connect variation in risk premia to the firms’ financing decisions. First, we evaluate
he time series of returns, and find that the variation in the leverage ratio affects both the expected returns and volatility of returns
hen equity supply is inelastic. As a result, we find both a high level of as well as high volatility in excess stock returns. We also

ind variation in expected returns; in particular, low prices (i.e. low price–dividend ratios) predict high expected excess returns. In
ddition, we find persistent time-varying volatility of stock returns, highly persistent dividend–price ratios, and highly persistent
rice–earnings-ratios, as one should expect when expected returns can be predicted by dividend–price ratios (e.g. see Cochrane,
009).

Next, we analyze the cross-section of stock returns. The Capital Asset Pricing Model (CAPM) holds conditionally in our model.
owever, both the drift and diffusion terms of the return processes depend on the inverse of the portfolio weights of the assets.
his mechanism arises endogenously and generates time-varying betas that regress to the mean value of one.1 On the one hand,
his can explain why, with long time series, it is difficult to find variation in unconditional CAPM betas and variation in average
isk premia for particular sorts of test portfolios. On the other hand, these results might explain why Choi (2013), Dam and Qiao
2020), and Doshi et al. (2019) find that ‘‘unlevering’’ returns increases the performance of the CAPM and that this (increase in)
erformance is robust against different sorts of test portfolios.

Our paper is closely related to the theoretical literature on market-clearing effects on asset prices and, in particular, the equity
remium. The market-clearing effects arise when prices have to adjust to make markets clear because asset supply is inelastic.
s pointed out by, amongst others, Rosenberg and Ohlson (1976), Fernholz and Shay (1982), He and Leland (1993), Raimondo

2005), Cochrane et al. (2008), and Martin (2013), independent and identically distributed (i.i.d) returns are not compatible with
(perfectly) inelastic supply of assets. If returns are i.i.d., the two-fund separation principle indicates that the main reason for

nvestors to change their shares of wealth in various assets disappears. Therefore, over time, the investor’s desired shareholdings
emain in fixed proportions. If prices are to change, that must be a result of changes in equity supply. However, when equity supply
s inelastic, investors cannot all rebalance; it follows that returns cannot be i.i.d. and are subject to equilibrium restrictions, except
or the degenerate case when they are perfectly correlated.

Only more recently, the importance of market clearing on the dynamic behavior of asset prices has been analyzed while allowing
or intermediate consumption in an endowment economy with multiple assets. Most notable are the contributions by Cochrane et al.
2008), Branger et al. (2011), Han et al. (2019), Hansen (2015), and Martin (2013), who extend the (Lucas, 1978) tree approach. In
eneral equilibrium models that specify an endowment economy, there are no investments, and therefore the role of how investments
re financed cannot be studied. These models implicitly assume a fixed supply of equity (and usually debt is in zero net supply),
ut as this is implicit, the role of financing is by construction disregarded. We add to this literature by explicitly modeling the
roduction side of the macroeconomy and allowing for real investments. Thereby, we can introduce a clear distinction between
quity financing and debt financing on the firm level and in the aggregate. In our model, the supply of debt adjusts such that the
ebt-equity ratio slowly reverts to a target level. This setup allows us to explain stylized empirical asset price dynamics – such as
eturn predictability and the lack of spread in both average returns of long time series of returns as well as in estimated CAPM betas
and connect these patterns to firms’ financing policies.

Because the market-clearing effects arise due to inelastic equity supply, our paper complements the literature that examines the
mpact of firm-specific financial frictions on corporate investment and asset pricing. Gomes and Schmid (2010) develop a dynamic

1 There is some discussion about whether a conditional CAPM could hold, and the literature is not conclusive. For example, Lewellen and Nagel (2006)
nd Ang and Kristensen (2012) reject the conditional CAPM, however, Ang and Chen (2007) and Adrian and Franzoni (2009) do not reject the conditional
APM. The discussion of whether or not the conditional CAPM holds seems to center around value portfolios, for which the pricing errors are found to be the
2
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investment model to couple equity betas and firms’ financing decisions. They argue why high book-to-market firms tend to be highly
levered and that highly levered firms are also more mature firms, with (relatively safe) book assets. Therefore, Gomes and Schmid
(2010) suggest that ‘‘cross-sectional studies that fail to control for the interdependence of leverage and investment decisions are
unlikely to be very informative’’. Bolton et al. (2013), Bianchi et al. (2017), Belo et al. (2018), and Gomes and Schmid (2021)
endogenize the supply of financial assets by incorporating issuance costs. Bianchi et al. (2017) estimate a business cycle model with
ambiguity-averse investors and show that these, jointly with corporate financing frictions, account for many observed post-war
asset price dynamics. Bolton et al. (2013), Belo et al. (2018), and Gomes and Schmid (2021) calibrate dynamic q-theoretic models
and show that variation in external equity financing costs generate plausible variation in firm’s asset prices. Additionally, Belo
et al. (2018) show that a two-factor model with the market risk premium and a proxy for time-varying equity issuance costs as
the two factors, performs well in the cross-section. In contrast to these papers, our principal focus is on the qualitative, rather than
quantitative, implications of corporate financing decisions in the sense that we would like to identify mechanisms that explain such
relations. Our specification of the firms’ corporate financing policies summarizes many of the financing frictions, among which the
frictions considered by Gomes and Schmid (2010), Bolton et al. (2013), Bianchi et al. (2017), and Belo et al. (2018).

Our paper contributes to the empirical asset pricing literature on leverage and equity premia, in the sense that our model goes
long way in explaining well-established empirical patterns. Choi (2013) finds that variation in leverage drives variation in equity
etas. Moreover, Choi (2013) finds that the effect for value firms is stronger than for other firms, such as growth firms. Choi and
ichardson (2016) find that leverage induces a lot of variation in equity premia as well as volatility in equity risk. They additionally

ind that variation in leverage obfuscates the relationship between the market risk premium and the equity risk premium because
hey show that adjusting for leverage adjusts the cross-sectional fit of the CAPM. Dam and Qiao (2020) and Doshi et al. (2019)
how that adjusting for leverage improves the cross-sectional fit of the CAPM on the firm level as well as for various portfolio sorts.
oreover, they show that adjusting for leverage is robust against various portfolio sorts. Next to that, Dam and Qiao (2020) show

hat leverage explains variation in the cross-section of equity returns beyond the value premium. The exact mechanisms that drive
hese results, however, remain opaque. Our model can explain many of the patterns that are documented by Choi (2013), Choi and
ichardson (2016), Dam and Qiao (2020), and Doshi et al. (2019).

The paper is organized as follows: In the next section we discuss the stylized facts of corporate financing decisions and equity
eturns. We present our model in Section 3 and discuss the implications in Section 4. Section 5 concludes.

. Patterns in financial leverage and stylized facts of equity returns

Because we include and attempt to explain various stylized facts on financial leverage, equity returns, and their interaction, we
ist the relevant observations and stylized facts here. We discuss and present empirical evidence on each stylized fact. In Section 4
e discuss the model’s implications for asset returns, and we refer back to the stylized facts on equity returns we have listed below.

.1. Financial leverage and corporate financing decisions

bservation 1. The supply of equity is highly inelastic both in the aggregate as well as on the firm level, and particularly in tranquil
conomic times.

bservation 2. Firms’ most capital structure relevant decisions are debt issuances and repurchases.

Previous studies suggest that firms primarily resort to debt financing when they seek external financing for new projects or when
hey change their capital structures. Fig. 1 shows the net percentage yearly in- and outflows of corporate equity and corporate debt in
he United States for 1946–2019, and we see that the supply of corporate debt is much more elastic. The yearly change in corporate
quity is −0.6% on average, with a standard deviation of 2%, while the yearly change in corporate debt is 7.9% on average with
standard deviation of 4.3%. This is only anecdotal evidence in the aggregate, but Dichev (2007) shows on the firm level that

he historical net in- and outflows of equity (including both dividends and stock repurchases) are close to zero on average and
ardly ever exceed 5% of total market capitalization. Moreover, Hovakimian et al. (2001) show that seasoned equity issuances
ere widespread in‘‘hot market’’ periods, such as in 1983 and 1991–1996, but rare in other years — this pattern also prevails in
ig. 1. Additionally, Hovakimian et al. (2001) document that long-term straight debt issues are the most frequent way of raising
apital and that debt reductions are far more common than equity repurchases. Welch (2004) shows on the firm level that issuing
ong-term corporate debt is the most capital structure-relevant corporate activity on the firm level, and Collin-Dufresne and Goldstein
2001) argue that firms adjust outstanding debt levels in response to changes in firm value.

bservation 3. Financial leverage ratios are stationary in the aggregate, on the industry level, and on the firm level.

At the same time, studies document that financial leverage ratios are stationary on the aggregate level, the industry level, and
the firm level. Among others, Frank and Goyal (2008) and Wright (2004) show that market leverage ratios are stationary over
long horizons. Collin-Dufresne and Goldstein (2001) show that on the industry level ‘‘leverage ratios have remained within a fairly
narrow band even as equity indices have increased 10-fold over the past 20 years’’, and Hovakimian et al. (2001) and Elsas and
Florysiak (2011) provide empirical support for this using firm-level data. Lemmon et al. (2008) show that firms’ leverage ratios
3

exhibit a similar persistence level as the market. Graham and Harvey (2001) provide survey evidence that 81% of firms actively
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Fig. 1. Annual net in- and outflows of U. S. Corporate Equity and Corporate Debt (%), 1946–2019.
Source: Flow of Funds Accounts, Federal Reserve. The net inflow of debt is computed by dividing the flow Nonfinancial corporate business; debt securities and
loans; liability (Z1.FU104104005 A) by its level (Z1.FL104104005 A). The net inflow of equity is computed by dividing the flow of Nonfinancial corporate business;
corporate equities; liability (Z1.FU103164103 A) by its level (Z1.FL103164103 A). Negative numbers are associated with net outflows.

pursue target leverage ratios. Additionally, Elsas and Florysiak (2011) show that firms’ speed of adjustment to their target ratio is
positively related to default risk, expected bankruptcy costs, and the level of the opportunity costs from deviating from the target.2

Based on these observations, we conclude (i) that firms aim for a target leverage ratio, or at least act in such a way that the ratio
remains within certain bounds, and (ii) that firms primarily reach their targets by issuing debt, rather than equity. Even though
we consider an economy in which the Modigliani-Miller irrelevance theorems hold, target leverage ratios are consistent with firms
following a capital structure to maximize firm value (e.g. see Goldstein et al., 2001). For the sake of model tractability, we assume
that the supply of equity is fixed.

2.2. Equity returns, the Capital Asset Pricing Model, and the leverage effect

Stylized Fact 1. Expected returns and volatilities exhibit a so-called leverage effect; a large price decline accompanies a period of high
expected returns and high volatility. Lagged returns have a negative effect on volatility, implying that volatility goes up after a price drop.

A number of empirical studies have reported that volatility of stock prices increases when prices fall, which is attributed to
the so-called ‘‘leverage effect’’. Black (1976) explains that leverage induces future stock price volatility to vary inversely with
the stock price. Black (1976) and Cheung and Ng (1992) find that this patterns emerges on the firm level and Nelson (1991)
documents evidence for the leverage effect in market indices. However, more recent empirical literature on the leverage effect
is inconclusive. Bekaert and Wu (2000) extend the GARCH-in-mean approach and conclude that the leverage effect is not driven
by financial leverage, and Hasanhodzic and Lo (2019) show that firms without debt also exhibit a leverage effect. For many, the
leverage effect has become a synonym for asymmetric response of volatility to return shocks. Based on this notion, Wu (2001)
estimates a model with asymmetric volatility and allows for both the leverage effect and the volatility feedback effect. Wu (2001)
finds that both effects account for an asymmetric volatility. Based on these observations, Ait-Sahalia et al. (2013) conclude that the
leverage effect appears to be too large to be explained by variations in financial leverage alone. Christensen et al. (2015) finds that
the leverage effect is larger during financial crises compared to NBER recessions. Choi and Richardson (2016) find that leverage and
asset volatility have, respectively, permanent and transitory effects on equity volatility. Additionally, Choi and Richardson (2016)
find that financial leverage, operating leverage, and the volatility feedback effect all contribute to the asymmetry between equity
returns and volatility.

Stylized Fact 2. Financial leverage induces heteroskedasticity in the cross-section of returns.

Doshi et al. (2019) plot monthly returns against leverage and find a diverging pattern; the cross-sectional variance in returns for
highly levered returns is higher than the cross-sectional variance for returns with low leverage. That is, they find evidence for the
fact that leverage induces multiplicative heteroskedasticity. They adjust for leverage using the (Merton, 1974) approach, and show
that this adjustment removes the diverging pattern.

2 Welch (2011) shows, however, that the empirical correlation between equity-issuing activity and capital structure changes is weak. From this observation,
he concludes that the capital issuing literature and capital structure literature are distinct.
4
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Stylized Fact 3. Over long horizons, CAPM betas cluster around one.

Stylized Fact 4 (Conditional). CAPM betas have the tendency to mean revert (to one) over successive time periods.

Keim (1983), Choi (2013), and Dam and Qiao (2020) show that when one uses long horizons, the unconditional estimates for
betas cluster around one. Blume (1975, 1979) shows that an asset with a high (low) beta tends to have a lower (higher) beta in the
subsequent period. In fact, all betas have the tendency to regress to the mean of grand betas, namely one.

Bali et al. (2009) show that conditional betas, however, can vary a lot over time. Bali et al. (2009) adopt several specifications
of conditional betas, and show that these explain the cross-section of expected returns much better than unconditional betas.
Additionally, they find that stocks that have a low (high) beta have on average low (high) expected returns, for each specification
of the conditional betas.

2.3. The interaction between financial leverage and equity returns

Stylized Fact 5. Firms’ asset betas and financial leverage are correlated in the cross-section.

Stylized Fact 6. Firms’ financial leverage goes a long way in explaining the value effect, but the expected return-beta relationship of equity
in unconditional tests of the CAPM is more generally distorted by leverage.

Choi (2013) reports that it indeed may not be unsurprising that leverage explains the value premium. Asset betas are correlated
with leverage ratios in the cross-section. Leverage ratios of highly levered firms rise in bad times, their stocks become riskier and
investors demand higher expected returns. High book-to-market firms tend to be highly levered – because they have low asset risk
– and the equity betas of high book-to-market firms are higher in bad times. Choi and Richardson (2016) show that by decoupling
asset risk and financial leverage, the cross-sectional fit of the CAPM improves. Dam and Qiao (2020) and Doshi et al. (2019)
show that adjusting for leverage improves the cross-sectional fit of the CAPM on the firm level as well as that of portfolio sorts.
Additionally, Dam and Qiao (2020) and Doshi et al. (2019) show that leverage induces additional heteroskedasticity in equity returns
and, subsequently, show that adjusting for leverage lets the book-to-market factor disappear and weakens the size effect.

3. The model

We first characterize the real economy, which is represented by a standard stochastic Ramsey model in continuous time. We
specify optimal consumption, savings, investments and real capital accumulation, and production. Thereafter, we characterize the
financial policies that we have discussed in the introduction; real investments are financed by retained earnings and/or debt, while
making sure that dividend payout policy is such that the leverage of the firm converges to its target level. We propose a closed-form
solution to the model by imposing a highly flexible constraint on the parameters. To the best of our knowledge, this parameter
constraint has not been considered in the literature.

3.1. The real economy

3.1.1. Firms and technology
We consider 𝑁 firms. Our simple setup can also be applied to industries, but we refer to firms for the sake of parsimony. Each firm,

indexed by 𝑖 ∈ {1,… , 𝑁}, uses the same constant returns to scale Cobb–Douglas production technology 𝑌𝑖(𝑡) = 𝐾𝑖(𝑡)𝛼(𝐴(𝑡)𝐿𝑖(𝑡))1−𝛼 ,
sing labor 𝐿𝑖(𝑡) and capital 𝐾𝑖(𝑡), with 0 < 𝛼 < 1, and 𝐴(𝑡) = 𝐴(0) exp(𝜇𝐴𝑡) represents an index of aggregate productivity, with
𝐴 > 0 the growth rate of productivity. The capital stock of firm 𝑖 evolves according to:

𝑑𝐾𝑖(𝑡) = 𝐼𝑖(𝑡)𝑑𝑡 − 𝛿𝑖𝐾𝑖(𝑡)𝑑𝑡 + 𝜎𝑖𝐾𝑖(𝑡)𝑑𝑧𝑖(𝑡). (1)

here the depreciation rate, 𝛿𝑖 ≥ 0, and volatility parameter, 𝜎𝑖 > 0, are constants, and the vector 𝒛(𝑡) ∶= (𝑧1(𝑡),… , 𝑧𝑁 (𝑡))′ is a
ollection of standard Brownian motions defined on

(

𝛺,P,𝑡
)

, where P comprises real (objective) probabilities. A shock 𝑑𝑧𝑖 reflects
hanges in the productivity of a firm’s capital stock, which are learned over time. The stochastic shocks are correlated, and the
orrelation between the stochastic shocks 𝑑𝒛(𝑡) = (𝑑𝑧1(𝑡),… , 𝑑𝑧𝑁 (𝑡))′ are given by 𝜌𝑖𝑗𝑑𝑡 ∶= E

[

𝑑𝑧𝑖(𝑡)𝑑𝑧𝑗 (𝑡)
]

, with 𝜌𝑖𝑖 = 1, −1 < 𝜌𝑖𝑗 < 1
or each 𝑖 ≠ 𝑗, and the matrix {𝜌𝑖𝑗} is positive semi-definite.

The firms’ objectives are to maximize their values. Each period they decide how much labor 𝐿𝑖(𝑡) to hire at wage rate 𝑊 (𝑡) and
ow much to invest, 𝐼𝑖(𝑡), in new real capital, 𝐾𝑖(𝑡). The maximum value of the firm 𝑉 (𝐾𝑖(𝑡)) is given by:

𝑉 (𝐾𝑖(𝑡)) = max
{𝐿𝑖 ,𝐼𝑖}

E𝑡

[

∫

∞

𝑡

𝛬(𝑠)
𝛬(𝑡)

𝐶𝐹𝑖(𝑠)𝑑𝑠
]

, (2)

where E𝑡[⋅] = E[⋅|𝑡], 𝛬(𝑡) is the stochastic discount factor at time 𝑡, and the cash flows 𝐶𝐹𝑖(𝑡) generated during period 𝑡 by firm 𝑖
are given by:

𝐶𝐹 (𝑡) =
[

𝐾 (𝑡)𝛼(𝐿 (𝑡)𝐴(𝑡))1−𝛼 −𝑊 (𝑡)𝐿 (𝑡)
]

− 𝐼 (𝑡). (3)
5
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The stochastic discount factor follows the following dynamics: 𝑑𝛬 = 𝜇𝛬(⋅)𝛬𝑑𝑡+
∑

𝑖 𝜎𝑖𝛬(⋅)𝛬𝑑𝑧𝑖, with 𝜇𝛬, 𝜎𝑖𝛬 to be determined functions.
The firms’ optimal policies are characterized by the following set of Hamilton–Jacobi–Bellman (HJB) equations:

∀𝑖 ∈ {1,… , 𝑁} ∶ 0 = max
𝐿𝑖 ,𝐼𝑖

𝐾𝛼
𝑖 (𝐴𝐿𝑖)1−𝛼 −𝑊𝐿𝑖 − 𝐼𝑖 + 𝑉 𝑖

𝑡 + 𝑉 𝑖𝜇𝛬(⋅)

+𝑉 𝑖
𝑖

(

𝐼𝑖 − 𝛿𝑖𝐾𝑖 +
∑

𝑗
𝜌𝑖𝑗𝜎𝑗𝛬𝜎𝑖𝐾𝑖

)

+ 1
2
𝑉 𝑖
𝑖𝑖𝜎

2
𝑖 𝐾

2
𝑖 , (4)

where we define 𝑉 𝑖 = 𝑉 (𝐾𝑖), 𝑉 𝑖
𝑡 = 𝜕𝑉 𝑖∕𝜕𝑡, 𝑉 𝑖

𝑖 = 𝜕𝑉 𝑖∕𝜕𝐾𝑖, and 𝑉 𝑖
𝑖𝑖 = 𝜕2𝑉 𝑖∕𝜕𝐾2

𝑖 .3 We have dropped the time argument, and we will
continue to do so in instances where no confusion can arise from doing so.

The partial derivatives with respect to 𝐼𝑖 and 𝐿𝑖 yield the following first-order conditions:

𝐼𝑖 ∶ 𝑉 𝑖
𝑖 = 1, (5)

𝐿𝑖 ∶ 𝑊 = (1 − 𝛼)𝐴
(

𝐾𝑖
𝐴𝐿𝑖

)𝛼
. (6)

Since there are no adjustment costs for capital, the value of the firm is equal to its capital stock, i.e. 𝑉 𝑖 = 𝐾𝑖. Substituting the
irst-order conditions into (4) and dividing both sides by 𝐾𝑖 simplifies the HJB equations (4) to:

0 = 𝛼
(

𝐾𝑖
𝐴𝐿𝑖

)𝛼−1
+ 𝜇𝛬(⋅) +

∑

𝑗
𝜌𝑖𝑗𝜎𝑗𝛬(⋅)𝜎𝑖 − 𝛿𝑖. (7)

Because the risk-free rate, 𝑟(𝑡), satisfies 𝑟(𝑡)𝑑𝑡 = −E𝑡
[

𝑑𝛬(𝑡)∕𝛬(𝑡)
]

, we simply have:

𝛼
(

𝐾𝑖
𝐴𝐿𝑖

)𝛼−1
− 𝑟 − 𝛿𝑖 = −

∑

𝑗
𝜌𝑖𝑗𝜎𝑗𝛬(⋅)𝜎𝑖. (8)

This last equation relates the SDF to the optimal capital stock of firm 𝑖. The functional form of these functions will be pinned down
by the equilibrium conditions.

3.1.2. Consumers and preferences
The representative consumer exhibits constant relative risk aversion (CRRA) with risk parameter 𝜏, and wants to maximize

expected lifetime utility 𝑈 (𝑡) at time 𝑡:

𝑈 (𝑡) = E𝑡

[

∫

∞

𝑡
𝑒−𝜌(𝑠−𝑡)

𝑐(𝑠)1−𝜏 − 1
1 − 𝜏

𝑑𝑠
]

, (9)

where 𝑐(𝑡) is the consumption rate at time 𝑡 and 𝜌 denotes the rate of time preference, with 𝑐(𝑡) ≥ 0 and 𝜌 > 0. The dynamics of the
consumption rate are governed by

𝑑𝑐(𝑡)
𝑐(𝑡)

= 𝜇𝑐 (⋅)𝑑𝑡 +
∑

𝑖
𝜎𝑐𝑖(⋅)𝑑𝑧𝑖(𝑡), (10)

where 𝜇𝑐 and {𝜎𝑐𝑖} are to be determined functions of the model’s state variables; log-consumption growth, thus, does not have
to be independently and identically distributed (i.i.d.). Because the representative consumer is the single marginal investor in this
economy, the SDF, 𝛬, obeys 𝛬(𝑡) = 𝑒−𝜌𝑡𝑐(𝑡)−𝜏 . By applying Itô’s lemma, we find that the SDF evolves according to:

𝑑𝛬(𝑡)
𝛬(𝑡)

=

(

−𝜌 − 𝜏𝜇𝑐 (⋅) +
1
2
𝜏(𝜏 + 1)

∑

𝑖,𝑗
𝜌𝑖𝑗𝜎𝑐𝑖(⋅)𝜎𝑐𝑗 (⋅)

)

𝑑𝑡 − 𝜏
∑

𝑖
𝜎𝑐𝑖(⋅)𝑑𝑧𝑖. (11)

The functional forms of 𝜇𝑐 and {𝜎𝑐𝑖} are pinned down by equilibrium conditions, which are discussed next.

3.1.3. Equilibrium
Since we assume that all firms have the same technology and face the same wage rate (which is implied by a frictionless

labor market), the first-order conditions associated with labor imply that all firms use the same capital–effective labor ratio;
∀𝑖, 𝑗 ∶ 𝐾𝑖(𝑡)

𝐴(𝑡)𝐿𝑖(𝑡)
= 𝐾𝑗 (𝑡)

𝐴(𝑡)𝐿𝑗 (𝑡)
. Furthermore, we assume the total supply of labor is fixed and, without loss of generality, we normalize the

ize of the labor force to one, so that in equilibrium ∑

𝑖 𝐿𝑖 = 1 at each point in time. In this case, aggregation is straightforward:

∑

𝑖
𝑌𝑖(𝑡) = 𝐴(𝑡)

(

∑

𝑖
𝐾𝑖(𝑡)

)𝛼

. (12)

3 We have used the Itô product rule:

𝑑(𝑥𝑦) = 𝑦𝑑𝑥 + 𝑥𝑑𝑦 + 𝑑𝑥𝑑𝑦.
6
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We characterize the risk-free rate and consumption dynamics next. The risk-free rate is given by 𝑟(𝑡)𝑑𝑡 = −E𝑡
[

𝑑𝛬(𝑡)∕𝛬(𝑡)
]

. Using
he drift term of (11) we thus have:

𝑟(𝑡) = 𝜌 + 𝜏𝜇𝑐 (⋅) −
1
2
𝜏(𝜏 + 1)

∑

𝑖

∑

𝑗
𝜌𝑖𝑗𝜎𝑐𝑖(⋅)𝜎𝑐𝑗 (⋅). (13)

In equilibrium we must have that the national accounting identity holds, consumption is output minus investment, 𝑐(𝑡) = ∑

𝑖 𝑌𝑖(𝑡) −
∑

𝑖 𝐼𝑖(𝑡). As a result, for the drift term of the capital stocks we have 𝐼𝑖(𝑡) − 𝛿𝑖𝐾𝑖(𝑡) = 𝑌𝑖(𝑡) − 𝐶𝐹𝑖(𝑡) −𝑊 (𝑡)𝐿𝑖(𝑡). We apply Itô’s lemma,
o pin down the drift and diffusion terms of consumption:

𝜇𝑐 =
𝑐𝑡 +

∑

𝑖 𝑐𝑘𝑖
(

𝑌𝑖(𝑡) − 𝐶𝐹𝑖(𝑡) −𝑊 (𝑡)𝐿𝑖(𝑡)
)

𝑐
+ 1

2
∑

𝑖

∑

𝑗

𝑐𝑘𝑖𝑘𝑗
𝑐

𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝑘𝑖𝑘𝑗 , 𝜎𝑐𝑖 =
𝑐𝑘𝑖
𝑐
𝜎𝑖𝑘𝑖. (14)

Finally, we note from (11) that the diffusion term of consumption growth is proportional to the diffusion of the discount factor:
𝜎𝑖𝛬(⋅) = −𝜏𝜎𝑐𝑖(⋅). We obtain a system of second-order partial differential equations by combining Eq. (14) with (13) and (8).

The model does not have an explicit solution in general, but we can get an explicit solution of the system of partial differential
equations if we restrict the parameters (see Appendix). Let 𝜮 be a symmetric and positive definite 𝑁 ×𝑁 matrix whose elements
𝑖, 𝑗 are equal to 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 and 𝜹 be a 𝑁-vector whose elements are equal to 𝛿𝑖. The parameters of the model are 𝜌, 𝜏, 𝛼, {𝛿𝑖}, 𝜇𝐴, {𝜌𝑖𝑗}
and {𝜎𝑖}, and they are constrained by the following equation:

𝜌 = (𝜏𝛼 − 1)𝐵 − 𝜏(1 − 𝛼)𝜇𝐴, (15)

where

𝐵 =
[(

1
𝜏𝛼

𝒉′ − 𝜾′𝜮−1

𝜾′𝜮−1𝜾

)

𝜹 −
(

1
2𝜏𝛼

𝒉′𝜮𝒉 −
𝒉′𝜾 − 𝜏𝛼∕2
𝜾′𝜮−1𝜾

)]

, (16)

𝒉 =
(

𝜮−1𝜹 − 𝜮−1𝜾𝜾′𝜮−1𝜹
𝜾′𝜮−1𝜾

)

, (17)

nd 𝜾 a vector of ones. In this case, the equilibrium consumption rate is a fixed fraction of output:

𝑐(𝑡) = 𝜏 − 1
𝜏

∑

𝑖
𝑌𝑖(𝑡) =

𝜏 − 1
𝜏

𝐴(𝑡)

(

∑

𝑖
𝑘𝑖(𝑡)

)𝛼

. (18)

To ensure that the model is non-degenerate we have the mild restriction that 𝜏 > 1.
We further show in Appendix A that the weights of the relative capital stocks satisfy:

𝑲
𝜾′𝑲

= 𝜮−1𝜾
𝜾′𝜮−1𝜾

− 𝒉
𝜏𝛼

,

here 𝑲 is the vector of capital stocks 𝐾𝑖. The total capital stock of firm 𝑖 should be a fixed fraction of the total capital stock, using
ean–variance efficient portfolio weights. Asset returns are not constant but shift up and down with the interest rate. However,

heir risk premium is constant, and so the optimal portfolio weights of capital stocks are constant.
In equilibrium, we thus have that total wealth 𝐾 =

∑

𝑖 𝐾𝑖, and all capital stocks 𝐾𝑖 evolve according to:

𝑑𝐾
𝐾

=
𝑑𝐾𝑖
𝐾𝑖

=
(

𝑘𝛼−1

𝜏
− 𝛿

)

𝑑𝑡 +
∑

𝑖
𝑤𝑖𝜎𝑖𝑑𝑧𝑖, (19)

ith 𝑘 = 𝐾
𝐿𝐴 = 𝐾𝑖

𝐿𝑖𝐴
,∀𝑖, and 𝑤𝑖 = 𝐾𝑖∕(

∑

𝑖 𝐾𝑖).
To the best of our knowledge, the parameter restriction (15) has not yet been considered in the literature, and we would like

to highlight its flexibility. Most of the literature considers a single representative firm. Then, a linear production function, 𝛼 = 1,
corresponds to a version of the (Merton, 1990) ICAPM, and Chang (2004) and Smith (2007), among others, consider the case
where 𝜏 = 𝛼 to find an explicit solution. Our solution is less restrictive. Let us consider a representative firm set-up by defining
𝛿 = 𝒘′𝜹, 𝜎2 = 𝒘′𝜮𝒘, with 𝒘 the vector of portfolio weights 𝑤𝑖, and 𝑑𝑧(𝑡) =

∑

𝑖 𝑤𝑖(𝜎𝑖∕𝜎)𝑑𝑧𝑖(𝑡). Then, we see that the dynamics
f aggregate production, aggregate consumption, and the aggregate capital stock are identical to a single-asset economy. When
e consider one representative firm, i.e. 𝑁 = 1, this parameter restriction reduces to 𝜌 = (𝛼𝜏 − 1)( 12𝛼𝜏𝜎

2 + 𝛿) − 𝜏(1 − 𝛼)𝜇𝐴. This
articular parametrization is sufficiently flexible to allow for calibration with realistic parameter values.4 We think that the benefits
f explicit solutions outweigh this restriction; in particular for this model since our restriction is flexible and mild. Because we have
closed-form solution, we can explicitly analyze the consequences of the firms’ financing decisions.

We also observe that all capital stocks are perfectly correlated in the cross-section, as in the Cox, Ingersoll, and Ross (1985)
eneral equilibrium model and ICAPM model of Merton (1990). This perfect correlation has been subject to criticism and regarded
s an undesirable feature of these models by, among others, Rosenberg and Ohlson (1976). However, in the next section we introduce
he financial structure of the firm and show that by explicitly modeling the supply side of equity and debt, asset prices are no longer
erfectly correlated in the cross-section.

4 For example, choosing risk aversion 𝜏 = 7, a quarterly rate of depreciation 𝛿 = 0.025, capital share in output 𝛼 = 0.33, average quarterly GDP per capita
7

rowth 𝜇𝐴 = 0.005, and quarterly volatility of the real capital stock 𝜎 = 0.02, imply a quarterly rate time preference of 𝜌 = 0.01.
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3.2. Financial markets

We now introduce the financing decisions. Investments are financed through retained earnings, first, and if needed by debt.
dditionally, firms adopt a target debt-to-equity ratio and adjust their dividend policies and debt issuance accordingly, which implies
tationary leverage ratios.

.2.1. The financing of real investments
We denote the total value of debt of firm 𝑖 at time 𝑡 by 𝐵𝑖(𝑡) and the total value of total equity by 𝑃𝑖(𝑡). Naturally, the total

alue of the firm, 𝑉 𝑖(𝑡) ∶= 𝑉 (𝐾𝑖(𝑡)), is equal to the value of debt plus the value of equity 𝑉 𝑖(𝑡) = 𝐵𝑖(𝑡) + 𝑃𝑖(𝑡). Since there are no
djustments costs of capital, the market value of the firm equals its book value, i.e. 𝑉 𝑖(𝑡) = 𝐾𝑖(𝑡), and so the dynamics of a firm’s
alue are characterized by

𝑑𝐾𝑖
𝐾𝑖

=
𝐵𝑖
𝐾𝑖

𝑑𝐵𝑖
𝐵𝑖

+
𝑃𝑖
𝐾𝑖

𝑑𝑃𝑖
𝑃𝑖

. (20)

We define 𝑃𝐸
𝑖 (𝑡) and 𝑃𝐵

𝑖 (𝑡) as, respectively, the price of a unit of equity and a unit of debt for firm 𝑖 at time 𝑡, and 𝑠𝑖(𝑡) and 𝑚𝑖(𝑡)
s, respectively, the number of shares and the number of debt instruments outstanding. We can decompose the changes in the
otal value of debt and the total value of equity into price changes and quantity changes, and substitute the expression for capital
ccumulation on the left-hand side:

𝐼𝑖(𝑡)𝑑𝑡
𝐾𝑖(𝑡)

− 𝛿𝑖𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Net investments

+ 𝜎𝑖𝑑𝑧𝑖(𝑡)
⏟⏟⏟

Exogenous shock

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑𝑃𝐵
𝑖 (𝑡)

𝑃𝐵
𝑖 (𝑡)

⏟⏟⏟
Price change of debt

+
𝑑𝑚𝑖(𝑡)
𝑚𝑖(𝑡)

(

1 +
𝑑𝑃𝐵

𝑖 (𝑡)

𝑃𝐵
𝑖 (𝑡)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Debt issuances/repurchases

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐵𝑖(𝑡)
𝐾𝑖(𝑡)

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑑𝑃𝐸
𝑖 (𝑡)

𝑃𝐸
𝑖 (𝑡)

⏟⏟⏟
Price change of equity

+
𝑑𝑠𝑖(𝑡)
𝑠𝑖(𝑡)

(

1 +
𝑑𝑃𝐸 (𝑖)
𝑃𝐸
𝑖 (𝑡)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Equity issuances/repurchases

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑃𝑖(𝑡)
𝐾𝑖(𝑡)

. (21)

Since we assume changes in outstanding shares are equal to zero, that is 𝑑𝑠𝑖(𝑡)
𝑠𝑖(𝑡)

= 0, investments are financed by debt or retained
earnings, and debt is risk free, (21) can be simplified to:

𝐼𝑖𝑑𝑡
𝐾𝑖

− 𝛿𝑖𝑑𝑡 + 𝜎𝑖𝑑𝑧𝑖 =
[

𝑟𝑑𝑡 +
𝑑𝑚𝑖
𝑚𝑖

]

𝐵𝑖
𝐾𝑖

+
(

𝜇𝑃 𝑖𝑑𝑡 + 𝜎𝑃 𝑖𝑑𝑧𝑖
) 𝑃𝑖
𝐾𝑖

, (22)

where 𝑑𝑃𝐸
𝑖 (𝑡) = 𝜇𝑃 𝑖(⋅)𝑃𝐸

𝑖 (𝑡)𝑑𝑡 + 𝜎𝑃 𝑖(⋅)𝑃𝐸
𝑖 (𝑡)𝑑𝑧𝑖(𝑡) defines 𝜇𝑃 𝑖(⋅) and 𝜎𝑃 𝑖(⋅).

The functional forms of 𝜇𝑃 𝑖(⋅) and 𝜎𝑃 𝑖(⋅) are characterized next. Because investments are financed with debt, we have 𝐼𝑖𝑑𝑡
𝐾𝑖

−𝛿𝑖𝑑𝑡 =
𝑑𝑚𝑖(𝑡)
𝑚𝑖(𝑡)

𝐵𝑖
𝐾𝑖

. The remaining exogenous shock 𝜎𝑖𝑑𝑧𝑖(𝑡) affects the price of equity, which implies that 𝜎𝑃 𝑖(𝑡) =
𝐾𝑖(𝑡)
𝑃𝑖(𝑡)

𝜎𝑖. From now on we
ssume (without loss of generality) that the number of outstanding shares is equal to one, and so the total value of equity is equal
o the share price; 𝑃𝑖 = 𝑃𝐸

𝑖 . The stochastic discount factor and the price of equity jointly satisfy (e.g. see Cochrane, 2009, p. 74):
(

𝜇𝑃𝑖 +
𝐷𝑖
𝑃𝑖

− 𝑟
)

𝑑𝑡 = −E𝑡

[

𝑑𝛬
𝛬

𝑑𝑃𝑖
𝑃𝑖

]

, (23)

hich, in our case, reduces to

𝜇𝑃 𝑖 = 𝑟 −
𝐷𝑖
𝑃𝑖

+ 𝜏𝛼𝜎2𝑏𝑖
𝐾𝑖
𝑃𝑖

, 𝑏𝑖 =
∑

𝑗 𝜌𝑖𝑗𝑤𝑗𝜎𝑖𝜎𝑗
𝜎2

. (24)

So we find an expression for the excess return process of equity:

𝑑𝑅𝑖 − 𝑟𝑑𝑡 =
𝑑𝑃𝑖
𝑃𝑖

+
𝐷𝑖
𝑃𝑖

𝑑𝑡 − 𝑟𝑑𝑡 = 𝜏𝛼𝜎2𝑏𝑖
𝐾𝑖
𝑃𝑖

𝑑𝑡 +
𝐾𝑖
𝑃𝑖

𝜎𝑖𝑑𝑧𝑖. (25)

The leverage ratio of the firm determines both the equity premium and the volatility. Nonetheless, the key feature of the multiple
asset model is that the portfolio weights of equity are cross-sectionally not perfectly correlated in equilibrium (as the ICAPM implies),
since these only depend on the direct shocks, 𝜎𝑖𝑑𝑧𝑖. See Section 4.2.1 for a more detailed discussion on this. Although the capital
stocks are also perfectly correlated in our model, each firm exhibits idiosyncratic risk in its equity returns. The conditional expected
returns are in line with the CAPM, where the covariance with the market portfolio determines expected returns, but market clearing
with (perfectly) inelastic supply of equity implies that means, covariances, and variances vary over time. The implications of the
8

endogenous time variation in covariances and variances will be discussed in detail in Section 4.
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3.2.2. Target leverage ratio and the dividend policy
We propose how individual firms target a certain leverage ratio by adopting a simple dividend policy. It follows from an

pplication of Itô’s lemma that the dynamics of the leverage ratio, as measured by the equity–total assets ratio, 𝑃𝑖∕𝐾𝑖, are governed
by:

𝑑
(

𝑃𝑖
𝐾𝑖

)

=
[

𝜏𝛼𝜎2𝑏𝑖 − 𝜎2𝑖 −
(

𝐷𝑖
𝑃𝑖

+
𝐼𝑖
𝐾𝑖

− 𝛿𝑖 − 𝑟 − 𝜎2𝑖

)

𝑃𝑖
𝐾𝑖

]

𝑑𝑡 + 𝜎𝑖

(

1 −
𝑃𝑖
𝐾𝑖

)

𝑑𝑧𝑖. (26)

This expression conveys two important points already. First, the equity–total assets ratio is mean reverting if dividends are large
enough, and dividend policy is fairly smooth.5

Second, this leverage ratio reverts to a value that depends on the particular dividend policy. That is, if the firm wants to target
a leverage ratio without issuing or repurchasing equity, the dividend–price ratio needs to be large enough and the dividend–price
ratio needs to be rather stable to ensure that this inequality holds. Put differently, dividend policy is the only instrument left for
the firm if it wants to target a leverage ratio without issuing new equity while financing investments with debt. Thus, a target
leverage ratio and inelastic equity supply predicate dividend smoothing. This result aligns with the finding of Belo et al. (2015) that
stationary (not constant) leverage ratios are inherently associated with dividend smoothing. In this sense, the model generates an
endogenous dividend policy that is linked to financial leverage, similar to the mechanism described in Belo et al. (2015) and Bianchi
et al. (2017).

At this point there is not much more we can deduce about what the specific dividend policy needs to be. Since the Modigliani-
Miller dividend irrelevance theorem holds in our model – in a frictionless market dividends are irrelevant to the value of the firm –
we can simply postulate a dividend policy, such that this specific dividend policy makes the leverage ratio mean reverting. Together
with the considerations above, this leads us to postulate a simple specification, namely that dividends are a linear combination of
total capital and the price of equity. It turns out that such a specification indeed implies a mean-reverting leverage ratio. More
specifically, we postulate the following dividend policy:

𝐷𝑖 =
[

(𝜏𝛼 − 1)𝜎2𝑏𝑖 − 𝜅𝑖𝜙𝑖
]

𝐾𝑖 +
(

𝑟 + 𝛿𝑖
𝜏𝛼

(𝜏𝛼 − 1) + 𝜙𝑖

)

𝑃𝑖. (28)

here, as we will show below, 𝜙𝑖 and 𝜅𝑖 are, respectively, the firm-specific speed of adjustment and target leverage ratio (cf. (27)).
ubstituting this dividend policy in the expression for the dynamic behavior of leverage of the firm, we have:

𝑑
(

𝑃𝑖
𝐾𝑖

)

= 𝜙𝑖

(

𝜅𝑖 −
𝑃𝑖
𝐾𝑖

)

𝑃𝑖
𝐾𝑖

𝑑𝑡 + 𝜎𝑖

(

1 −
𝑃𝑖
𝐾𝑖

)

𝑑𝑧𝑖. (29)

We define the target leverage ratio as the value of 𝑃𝑖∕𝐾𝑖 for which E[𝑑(𝑃𝑖∕𝐾𝑖)] = 0, which happens when 𝑃𝑖∕𝐾𝑖 = 𝜅𝑖. Thus, 𝜅𝑖 is
he target leverage ratio of firm 𝑖. Now, if the leverage ratio is to be stationary, the speed of adjustment 𝜙𝑖 has to be positive and
𝑖 ∈ (0, 1).6 Because 𝑃𝑖∕𝐾𝑖 ≤ 1, leverage is counter-cyclical; we can deduce from (29) that after a sequence of negative productivity
hocks, 𝜎𝑖𝑑𝑧𝑖, the ratio 𝑃𝑖∕𝐾𝑖 falls. We would like to highlight that this process closely resembles the Cox–Ingersoll–Ross specification
f leverage that Dai and Piccotti (2020) adopt to empirically link deviations from the target leverage ratio to stock returns.

We do neither explicitly model adjustment costs of equity nor debt to keep the model tractable, and yet it could be argued
hat our model mimics costly adjustment of the capital structure. Naturally, firms will adjust gradually to target levels if swift and
arge adjustments are costly (e.g. see Belo et al., 2018; Bianchi et al., 2017). That is to say, one can interpret 𝜙𝑖 as a parameter
hat governs adjustment costs of financial capital, where low values of 𝜙𝑖 reflect that capital structure adjustments are costly. We
ummarize the model in Table 1.

. Implications for asset returns

.1. Dynamic properties of asset returns

The process for the excess returns of equity shows that the mean and volatility of excess equity returns depend on the total
ssets–equity ratio, 𝐾∕𝑃 . This result is fairly robust to alternative model assumptions. Using only the identity 𝑉 (𝐾) = 𝑃 + 𝐵 and
mposing that equity 𝑃 bears the risk associated with the shocks in 𝐾 will generate this leverage effect in equity returns for most
ariations of the model. The leverage effect will play a more important role when equity supply is inelastic, as the leverage ratio,
(𝐾)∕𝑃 , is likely to vary more and more persistently when equity supply is inelastic.

5 We consider a process 𝑥(𝑡) to be mean-reverting when its SDE is of the following form:

𝑑𝑥(𝑡) =
[

𝑎1(⋅) − 𝑎2(⋅)𝑥(𝑡)
]

𝑑𝑡 + 𝜎𝑥(⋅)𝑑𝑧𝑥(𝑡), (27)
where 𝑎1 and 𝜎𝑥 are known functions (and possibly constant), 𝑎2 a given function that is strictly positive (and possibly a constant), and 𝑧𝑥(𝑡) a Brownian motion.
Since 𝑎2 is strictly positive, 𝑥(𝑡) has the tendency to revert to 𝑎1(⋅)∕𝑎2(⋅).

6 Note that the process is bounded from above so that it is guaranteed that 𝑃𝑖∕𝐾𝑖 < 1. However, there is a small probability that eventually 𝑃∕𝐾 < 0, because
he diffusion term dominates the drift in 𝑃∕𝐾 = 0.
9
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Table 1
Main model equations.

Variable Dynamics

Financial markets

Excess stock returns 𝑑𝑅𝑒
𝑖 = 𝜏𝛼𝜎2𝑏𝑖

𝐾𝑖

𝑃𝑖
𝑑𝑡 + 𝐾𝑖

𝑃𝑖
𝜎𝑖𝑑𝑧𝑖

𝑏𝑖 = (
∑

𝑗 𝜌𝑖𝑗𝑤𝑗𝜎𝑖𝜎𝑗 )∕𝜎2

Excess return 𝑑𝑅𝑒 = 𝜏𝛼𝜎2 𝐾
𝑃
𝑑𝑡 + 𝐾

𝑃
𝜎𝑑𝑧

Dividends 𝐷𝑖 =
(

(𝜏𝛼 − 1)𝜎2𝑏𝑖 − 𝜅𝑖𝜙𝑖
)

𝐾𝑖 +
(

𝑟+𝛿𝑖
𝜏𝛼

(𝜏𝛼 − 1) + 𝜙𝑖

)

𝑃𝑖

Firm 𝑖 financial leverage 𝑑
(

𝑃𝑖

𝐾𝑖

)

= 𝜙𝑖

(

𝜅𝑖 −
𝑃𝑖

𝐾𝑖

)

𝑑𝑡 + 𝜎𝑖
(

𝐾𝑖

𝑃𝑖
− 1

)

𝑑𝑧𝑖
Interest rate 𝑟 = 𝛼𝑘𝛼−1 − 𝛿 − 𝜏𝛼𝜎2

Real economy

Output 𝑌𝑖 = 𝐾𝛼
𝑖 𝐴

1−𝛼

𝑌 = 𝐴(
∑

𝑖 𝐾𝑖)𝛼

Consumption 𝑐 = 𝜏−1
𝜏
𝑌

𝑑𝑐
𝑐
=
(

𝑟−𝜌
𝜏

+ (𝜏 + 1) (𝛼𝜎)
2

2
+ 𝜇𝐴

)

𝑑𝑡 + 𝛼𝜎𝑑𝑧

Capital 𝑑𝐾
𝐾

= 𝑑𝐾𝑖

𝐾𝑖
=
(

𝑘𝛼−1

𝜏
− 𝛿

)

𝑑𝑡 +
∑

𝑖 𝑤𝑖𝜎𝑖𝑑𝑧𝑖
Wage rate 𝑤 = (1 − 𝛼)𝐴𝑘𝛼

Variables: 𝑐 is consumption, 𝐾𝑖 is the capital stock of firm 𝑖, 𝐴 ≡ 𝐴0 exp(𝜇𝐴𝑡) is an index of productivity, 𝐿 is
labor (in fixed supply; 𝐿 = 1), 𝑓 (𝑘) ≡ 𝑘𝛼 is total output in effective labor units, 𝑟 is the interest rate, 𝑤 is the
wage rate, 𝑃𝑖 is equity, 𝐷𝑖 is dividend, 𝑑𝑅𝑒

𝑖 = 𝑑𝑃𝑖

𝑃𝑖
+ 𝐷𝑖

𝑃𝑖
𝑑𝑡 − 𝑟𝑑𝑡 are excess stock returns, 𝒛 = (𝑧1 ,… , 𝑧𝑁 )′ is a

𝑁-dimensional Brownian motion. Parameters: 𝜏 is relative risk aversion, 𝜇𝐴 is the rate of technological progress,
𝛼 is the share of capital in production, 𝜹 = (𝛿1 ,… , 𝛿𝑁 )′ are the rates of depreciation, 𝝈 =

(

𝜎1 ,… , 𝜎𝑁
)′ are the

firm-specific volatilities of capital productivity, the elements of 𝒛 have correlation 𝜌𝑖𝑗 , 𝛴 has elements 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 , 𝜌
is rate of time preference, 𝜙𝑖 is adjustment speed of leverage ratio of firm 𝑖, 𝜅𝑖 is target leverage ratio of firm
𝑖. To get tractable solutions, the restriction 𝜌 = (𝛼𝜏 − 1)( 1

2
𝛼𝜏𝜎2 + 𝛿) − 𝜏(1 − 𝛼)𝜇𝐴 is imposed. Auxiliary variables:

𝐾 =
∑

𝑖 𝐾𝑖, 𝜎2 = 𝒘′𝛴𝒘, 𝛿 = 𝒘′𝜹, 𝑑𝑧 =
∑

𝑖 𝑤𝑖(𝜎𝑖∕𝜎)𝑑𝑧𝑖, 𝑘 = 𝐾∕(𝐴𝐿).

.1.1. Return predictability
Even though the parameters of the model are fixed over time, our return process exhibits a time-varying equity premium that

rises endogenously. Indeed, other authors have stressed the importance of incorporating a varying equity premium in asset pricing
odels to match the stylized facts of stock returns (e.g. Campbell & Cochrane, 1999), but this variation in the equity premium is
sually exogenous to those models. That is, counter-cyclical leverage increases risk premia in downturns, which are associated with
oncurrent low dividend–price ratios.

The resulting drift term for returns implies that low prices predict high expected returns and vice-versa (SF1). After a negative
hock, the price or supply of the stock should decline correspondingly. However, investors will also want to move away from risky
tocks. Since the average investor should hold the market portfolio and supply is inelastic, the price of the risky stock must decrease
ven further until the expected return has increased to the point where the average investor is willing to hold the risky stock. Market
learing under inelastic equity supply, thus, generates a time-varying equity premium and movements in returns that might be been
nterpreted as ‘‘excess volatility’’. Nonetheless, excess volatility is equivalent to return predictability, because the former implies that
rices inevitably have to recoil. This is exactly what happens in our model.

In addition, our return process exhibits other well-known time-series properties of stock returns. Since the leverage ratio does
ot only predict conditional stock returns but is also a very persistent time series, returns will exhibit ‘‘momentum’’ (Balvers & Wu,
006; Carhart, 1997), in the short run. At the same time, stock returns cannot stay high for an extended period, since a series of
igh returns implies lower values 𝐾∕𝑃 . In time the leverage ratio will then lower the expected return, so we have ‘‘mean reversion’’
n expected returns, but only in the long run as reported by DeBondt and Thaler (1985), Poterba and Summers (1988), Balvers and

u (2006), and Bali et al. (2008).

.1.2. Volatility dynamics of asset returns
Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH) models and other econometric methods have shown that

olatility in stock returns changes over time, and exhibits autocorrelation. Time-varying volatility in these models is taken as
xogenous, whereas in our model it also arises endogenously. Because the diffusion term of expected returns is increasing in the
everage ratio and the leverage ratio is persistent, the model can account for periods of high volatility and low volatility (SF1 and
F2). This is indeed the ‘‘leverage effect’’; a large price decline accompanies a period of high volatility (Nelson, 1991; Schwert,
989)7 Additionally, note that a stationary leverage ratio ensures that dividends are not excessively volatile at short horizons. The
ow elasticity of equity supply, thus, generates prolonged periods of high volatility even when dividends are rather stable.

7 Admittedly, Schwert (1989) mentions that leverage cannot fully account for the variation in stock market volatility. We believe that this is in part because
nder limited liability of equity, leverage has a non-linear effect on volatility. We do not model this feature of equity here, since the non-linear effect only
10

ecomes economically significant when the value of equity is rather low.
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4.2. Cross-sectional properties of asset returns

4.2.1. Distribution of portfolio weights in the market portfolio of equity
Fernholz and Shay (1982) have argued that the distribution of portfolio weights of individual assets in the market portfolio

hould be stable. Their finding reformulates the fundamental issue raised by Rosenberg and Ohlson (1976), that returns cannot be
.i.d when equity supply is fixed. In short, the argument runs as follows. Suppose betas of assets are constant. This implies that
he asset with the highest beta should on average have the highest return. Suppose this asset has a beta larger than one. With a
ufficiently inelastic supply of equity, the growth rate of this asset dominates the other assets, and so in the long run this asset
rows exponentially faster than the other assets. Consequently, it will eventually dominate the portfolio in terms of the portfolio
eight. But if the market portfolio is dominated by one large asset, it implies that the beta of this asset should converge to one.
his result implies a theoretical contradiction, and hence returns cannot be i.i.d. Additionally, this result also violates the empirical
inding by Fernholz et al. (1998) that portfolio weights appear to be stable over time. In light of this result, we present an important
esult regarding the equilibrium distribution of portfolio weights which illustrates how our return process resolves this fundamental
ontradiction.

We analyze the portfolio weights with price processes according to Eq. (25) but, for exposition’s sake, consider a period without
ividend payments. During a dividend-free period, the dynamic process of the market portfolio weight 𝑤𝑃

𝑖 (𝑡) of firm 𝑖’s equity in
the aggregate portfolio of equity 𝑃 (𝑡) =

∑

𝑖 𝑃𝑖(𝑡), 𝑤𝑃
𝑖 (𝑡) = 𝑃𝑖(𝑡)∕𝑃 (𝑡), is given by:

𝑑𝑤𝑃
𝑖 (𝑡) = 𝜎2

(

𝜏𝛼 −
𝐾(𝑡)
𝑃 (𝑡)

)

𝐾(𝑡)
𝑃 (𝑡)

[

𝑤𝑖𝑏𝑖 −𝑤𝑃
𝑖 (𝑡)

]

𝑑𝑡 +𝑤𝑃
𝑖 (𝑡)

(

𝐾𝑖(𝑡)
𝑃𝑖(𝑡)

𝜎𝑖𝑑𝑧𝑖(𝑡) −
𝐾(𝑡)
𝑃 (𝑡)

𝜎𝑑𝑧(𝑡)
)

(30)

n addition, 𝑤𝑃
𝑖 is mean-reverting to 𝑤𝑖𝑏𝑖 if the parameter of risk aversion 𝜏𝛼 > 𝐾

𝑃 .8 In that case, the long-term equilibrium portfolio
weight of firm 𝑖’s equity in the portfolio of equity is given by 𝑤𝑖𝑏𝑖.

Eq. (30) essentially tells us that portfolio weights converge to their ‘‘asset betas’’, 𝑏𝑖𝑤𝑖; the regression coefficient of firm-specific
shocks, 𝜎𝑖𝑑𝑧𝑖, on the portfolio of aggregate shocks, 𝜎𝑑𝑧. It also implies that asset betas are likely to be correlated with leverage ratios
(SF5). This correlation is purely mechanical and does not necessarily require a corporate finance explanation as in Choi (2013). The
rationale is simple. Eq. (25) shows that the drift term of individual equity returns is inversely related to the price of equity. As
the price of the asset increases, its expected return will go down relative to the other assets. This result is driven by the market
clearing mechanism. If there is news about one or more firms (or industries) investors want to rebalance. When the supply of equity
is inelastic, and investors want to collectively rebalance, equity prices will adjust to induce investors to hold all shares to clear the
market in equilibrium. This reversion in betas has imperative implications for mean–variance analysis and the estimation of CAPM
betas, which are discussed next.

4.2.2. Mean-reverting betas and a dynamic security market line
The price process given by (25) can be rewritten in a more familiar form, so that the excess returns of firm-specific equity,

𝑑𝑅𝑒
𝑖 (𝑡) = 𝑑𝑅𝑖(𝑡) − 𝑟(𝑡)𝑑𝑡, are related to the excess returns of the market portfolio of equity, 𝑑𝑅𝑒(𝑡) = 𝑑𝑅(𝑡) − 𝑟(𝑡)𝑑𝑡:

𝑑𝑅𝑒
𝑖 (𝑡) = 𝑏𝑖𝑤𝑖

𝑃 (𝑡)
𝑃𝑖(𝑡)

𝑑𝑅𝑒(𝑡) +
(

𝜎𝑖
𝐾𝑖(𝑡)
𝑃𝑖(𝑡)

𝑑𝑧𝑖(𝑡) − 𝑏𝑖
𝐾(𝑡)
𝑃 (𝑡)

𝜎𝑑𝑧(𝑡)
)

. (31)

We observe that the conventional beta, i.e. the coefficient in front of the excess return of the market portfolio, varies over time and
is given by:

𝛽𝑖(𝑡) = 𝑏𝑖𝑤𝑖
𝑃 (𝑡)
𝑃𝑖(𝑡)

= 𝑏𝑖
𝑤𝑖

𝑤𝑃
𝑖 (𝑡)

. (32)

Stocks thus have periods of low and high betas, depending on their relative market value, i.e. their portfolio weight. We have
shown that the market portfolio weight 𝑃𝑖∕𝑃 will converge to a value of 𝑏𝑖𝑤𝑖 in dividend-free periods, which implies that the
unconditional betas, 𝛽𝑖, have a tendency to converge to a value of one over long horizons (SF3 and SF4). This mean reversion in
betas is well-documented (see e.g. Blume, 1975) and, moreover, individual betas are on average equal to one over longer time
periods (see e.g. Choi & Richardson, 2016). The implication of our results is that when one sorts portfolios on betas and calculates
the average returns for, say, the next twelve months, the betas and the associated returns for these next twelve months will typically
have converged to their equilibrium values, yielding a security market line that is too flat, as is documented by Fama and French
(2004) and Dam and Qiao (2020).

We summarize the results as follows. The conditional ‘‘beta’’, 𝛽𝑖(𝑡), defined as the conditional covariance of the excess return
𝑑𝑅𝑒

𝑖 (𝑡) of firm 𝑖’s equity with the excess return of the market portfolio of equity, 𝑑𝑅𝑒(𝑡); and the conditional expected excess return
f firm 𝑖’s equity are given by:

E𝑡[𝑑𝑅𝑒
𝑖 (𝑡)] = 𝛽𝑖(𝑡)𝜏𝛼𝜎2

𝐾(𝑡)
𝑃 (𝑡)

𝑑𝑡. (33)

e observe that betas and expected returns should be on a straight line conditionally. However, the slope of this line varies over time,
epending on the current market equity risk premium. In turn, this market premium depends on the current aggregate leverage in

8 Based on historical U.S. data (e.g. see Fig. 2) the lower bound for 𝜏𝛼 ≈ 2, and the historical average of 𝐾∕𝑃 ≈ 1.6.
11
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Fig. 2. Leverage ratio of U.S. Total Market Value of Corporate Assets and Total Market Value of Corporate Equity, 1952Q1-2019Q2.
Source: Flow of Funds Accounts, Federal Reserve. The total market value of assets is the sum of the total market value of debt and the total market value of
equity. The market value of debt is calculated by taking Nonfinancial business; debt securities and loans; liability, Level (Z1.FL144104005Q) net of Nonfinancial
business; debt securities and loans; asset, Level (Z1.FL144004005Q) and Nonfinancial business; money market fund shares; asset, Level (Z1.FL143034005Q). The total
market value of equity is calculated by taking Nonfinancial business; equity and investment fund shares excluding mutual fund shares and money market fund shares;
liability (IMA), level (Z1.FL143181105Q) net of Nonfinancial business; other equity; liability (IMA), Level (Z1.FL143181115Q) and Nonfinancial business; mutual fund
and money market fund shares; assets, Level (Z1.FL143081205Q).

the market 𝐾(𝑡)∕𝑃 (𝑡). As said, betas also vary over time and are related to the inverse of the portfolio weight of the asset. If the price
of an asset is relatively low (which happens when the portfolio weight is lower compared to the long-run ‘‘equilibrium’’ portfolio
weight) the beta of this asset will be high, but the expected return can be extraordinarily high, depending on the current slope of
the security market line (SF6). Naturally, this mechanism only has substance if the market leverage ratio is persistent but varies a
lot over longer horizons. Indeed, the market leverage ratio is slow-moving in both our model as well as in the data — as we can
see in Fig. 2 , which exhibits the evolution of the historical leverage ratio, measured as corporate debt to total assets, in the United
States for 1952Q1–2019Q2.

We would like to highlight that both the time-varying betas and the time-varying trade-off between expected returns and beta
arise endogenously since all the fundamental parameters of the model are assumed to be fixed over time. Naturally, our assumption
of fixed equity supply exacerbates the aforementioned effects, since shocks are now fully absorbed by equity prices. Notwithstanding,
with imperfectly inelastic equity supply, the model’s implications for (unconditional) estimation of CAPM betas naturally persist, as
shocks will remain to be largely absorbed by prices and the leverage ratios will remain persistent.

The practical implication is that one needs to account for both time-varying betas as well as varying risk premiums to describe
the beta-return relationship. This issue is also pointed out by Cochrane (2011) and to some extent by Belo et al. (2018). Nonetheless,
our model provides us with guidelines on how one could proceed. Fig. 3 gives a summary of these results and an overview of how
the security market line dynamically behaves according to our model. Fig. 3 shows that the slope of the security market line is
varying over time. In bad times, when prices are low, expected returns are relatively high, for each value of the conditional beta
𝛽𝑖(𝑡). The slope will always converge back to some equilibrium value, which we labeled ‘‘Normal Times’’. Not only the market
portfolio has a beta equal to one but, in principle, all risky assets have an equilibrium value of one for the beta. Stocks that have
relatively low values (that is, a low portfolio weight 𝑤𝑝), will have a higher beta, and hence a higher return. However, in the long
run, the (conditional) betas revert to a value of one, while the fundamental betas, 𝑏𝑖 do not exhibit this mean reversion, and nor do
they have means equal to 1. Since both the slope of the security market line and the position of individual assets on the security
market line vary over time, we may observe various empirical patterns regarding historical betas and historical average returns.

4.2.3. Implications for the estimation of CAPM betas
As mentioned, studies that plot betas of buy-and-hold portfolios find a large cluster around beta equal to one (see e.g. Dam

& Qiao, 2020; Keim, 1983), with usually similar expected returns. This empirical regularity is obviously in line with what our
model predicts. It is common practice to do yearly sorts of portfolios to ensure that sufficient variation in both conditional betas
and average returns is preserved — in line with, for example, the (Fama & French, 1993) sorts on size and book-to-market values.
Indeed, it is not surprising that the Fama–French approach requires constructing the portfolios with an annual frequency, as the
betas and returns will converge in the long run, leaving little cross-sectional variation to explain. Looking at it the other way, our
analysis suggests that sorting on high and low market-to-book values with an annual frequency is actually a good idea, as this will
very likely preserve variation in the average returns and estimated CAPM betas. These so-called ‘‘managed sorts’’, thus, are adequate
to empirically validate an asset pricing model.

Our analysis suggests that one can deal with this clustering of betas and average returns by correcting for time-varying leverage
directly. Since the variation and reversion in returns and betas are partly driven by the time-varying and mean-reverting leverage
12



North American Journal of Economics and Finance 68 (2023) 101992B. Claassen et al.

l
t
a
(

t
a
a
f
u
i

4

h
v
p
t
b

a
𝛿

e

Fig. 3. Dynamic behavior of the security market line.

ratio, the connection between the market risk premium and the firm-specific equity risk premium is obfuscated. Consequently, it is
not necessary to explicitly model corporate financing decisions to estimate the CAPM unconditionally. On the one hand, variation
and reversion in leverage might explain why Belo et al. (2018) find that a two-factor model with the market risk premium and
a proxy for time-varying equity issuance costs as the two factors, performs well in the cross-section. Specifically, they find that
investors require a higher risk premium for holding assets that are highly exposed to equity issuance costs, i.e. assets that do poorly
just when it is more costly to issue equity. In Belo et al. (2018), equity issuance costs go a long way in explaining variation in
leverage, i.e. deviations from the target leverage ratio. Moreover, Belo et al. (2018) document that value firms in particular are
sensitive to the equity issuance costs factor. Choi (2013) shows that value firms ‘‘suffer’’ more from the leverage effect, as value
firms are typically highly levered.9 Given the convexity and the inverse relation of the drift and diffusion terms of excess returns in
everage, deviations from the target leverage ratio for highly levered (value) firms generate more ‘‘excess volatility’’ indeed. Thus,
his leverage effect obfuscates the relation between the market risk premium and the equity risk premium more for leverage firms
nd, hence, accounting for variation in leverage due to variation in equity issuance costs is particularly beneficial for highly levered
value) firms.

On the other hand, this notion might explain why Choi and Richardson (2016), Dam and Qiao (2020), and Doshi et al. (2019) find
hat ‘‘unlevering’’ returns (i.e. dividing a firm’s equity return by its leverage ratio) improves the cross-sectional fit of the CAPM. Dam
nd Qiao (2020) and Doshi et al. (2019) show that unlevered betas provide a better explanation of cross-sectional unlevered returns,
nd they also find that unlevering the returns is robust against various portfolio sorts. Furthermore, Dam and Qiao (2020) find that
irms’ financial leverage goes a long way in explaining the value effect, but that the expected return-beta relationship of equity in
nconditional tests of the CAPM is more generally distorted by leverage. Even more importantly in light of our results, they find
ndeed that unlevering performs well on the firm level.

.3. A comparison of statistics from simulated and historical data

One cannot expect, nor require, the model to match historical data — this is not the purpose of our study. Yet an indication as to
ow far a stylized model can take us can be informative. To this end, we simulate 1000 years of data of a single (representative) firm
ersion of the model to calculate a variety of statistics and compare these to statistics of historical U.S. data. We calibrate the free
arameters of the model such that they match to a large extent the moments of the macro-economic and financial variables. Rather
han trying to match the data perfectly, we choose parameters that are ‘‘reasonable’’, and examine how the moments generated
y the model relate to historical moments. We set the capital share in production to one-fifth, 𝛼 = 0.2. We choose the volatility

parameter, 𝜎 = 11%, so that it will match the volatility of unlevered returns. Economic growth, reflected by 𝜇𝐴, is equal to 2.2%,
nd we set the risk aversion rather high, at 𝜏 = 12.5. Since we have imposed a restriction on the parameters, the range of values for
is limited if we want a positive rate of time preference 𝜌. We therefore choose 𝛿 = 0%.

9 In particular, he finds that in economic downturns (when the risk premium is high), the leverage ratios of value portfolios increase sharply, increasing
13

quity betas. Notwithstanding, he also finds that growth portfolios are both less levered as well as less sensitive to economic conditions.
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Table 2
Moments of simulated and historical data.
Source: NIPA tables for consumption growth (non-durables and services) scaled by population and the consumer price index (CPI). Shiller for aggregate dividends,
aggregate earnings, and stock returns. We take the annualized yield on 3-month T-bills as a proxy for the risk-free rate from the Federal Reserve Economic
Database (FRED). Leverage we have computed by the Flow of Funds accounts, Federal Reserve. The stock returns, risk-free rate, and dividend growth rate have
been deflated by the CPI as well.

US 1952–2019 Simulated data

Mean St.D. A.Cor. Mean St.D. A.Cor.

Consumption Growth (𝑑𝑙𝑛(𝑐)) 1.8% 1.6% 0.22 2.2% 2.2% −0.20
Dividend Growth (𝑑𝑙𝑛(𝐷)) 2.1% 5.8% 0.47 2.2% 8.7% 0.04
Returns (𝑅𝑝) 7.0% 16.8% −0.01 9.1% 19.2% −0.02
Excess Returns (𝑅𝑝 − 𝑟) 6.1% 16.5% −0.04 5.7% 19.3% −0.05
Dividend-Price (𝐷∕𝑃 ) 3.1% 1.2% 0.88 5.3% 2.1% 0.95
Leverage (𝑃∕𝐾) 59.7% 9.2% 0.89 67% 15.2% 0.97
Price-Earnings (𝑃∕𝐸) 20.92 7.0 0.76 14.8 8.1 0.91
Dividend Payout Ratio (𝐷∕𝐸) 49.8% 20% 0.10 64% 4.6% 0.97
Interest Rate (𝑟) 0.9% 2.1% 0.73 3.4% 2.4% 0.97

This table shows means, standard deviations, and autocorrelations for historical and simulated data. Parameter choices: 𝜏 = 12.5, 𝛼 = 0.2, 𝜎 = 0.11, 𝜇𝐴 = 0.022, 𝛿 =
, 𝜙 = 0.01, 𝜅 = 0.52.

The parameters mentioned above affect the macroeconomy, while the remaining two parameters, 𝜙 and 𝜅 do not. We choose
he target level of equity to total assets equal to 𝜅 = 0.52. Estimates of autocorrelation in the leverage ratio of the firm are hard to
easure, but they are usually 0.85 or higher for annual data (e.g. see Welch, 2004). Keeping in mind that these two parameters

lso affect dividend policy, we choose a value of 𝜙 = 0.01 that is rather low, to ensure that dividends stay strictly positive. The
everage ratio will thus be close to a random walk in the short run, while it is mean reverting in the long run, in line with the
esults by Welch (2004).

We compare our simulated data to annual U.S. data for 1952–2019. We proxy consumption growth by taking the sum of
ersonal consumption expenditures of non-durables and services, and we adjust this value for population growth and inflation
y the consumer price index (CPI). The consumption and population data are obtained from the U.S. National Income and Product
ccounts (NIPA) Tables. Aggregate dividends, aggregate earnings, the stock price index, and the CPI are taken from Robert Shiller’s
ebsite. Stock returns are computed by taking the cum-dividend returns on the stock price index. To proxy the risk-free rate, we
ave taken the annualized yield on 3-month U.S. T-bills. Aggregate dividends, aggregate earnings, the stock price index, and the
nterest rate are deflated by the CPI as well. The aggregate leverage is computed by using the Flow of Funds Accounts from the
ederal Reserve. The total market value of assets is the sum of the total market value of debt and the total market value of equity.
he market value of debt is calculated by taking Nonfinancial business; debt securities and loans; liability, Level (Z1.FL144104005Q) net
f Nonfinancial business; debt securities and loans; asset, Level (Z1.FL144004005Q) and Nonfinancial business; money market fund shares;
asset, Level (Z1.FL143034005Q). The total market value of equity is calculated by taking Nonfinancial business; equity and investment
fund shares excluding mutual fund shares and money market fund shares; liability (IMA), level (Z1.FL143181105Q) net of Nonfinancial
business; other equity; liability (IMA), Level (Z1.FL143181115Q) and Nonfinancial business; mutual fund and money market fund shares;
assets, Level (Z1.FL143081205Q).

4.3.1. Means, standard deviations and autocorrelations
We report the means, standard deviations, and autocorrelations of historical and simulated data in Table 2. Comparing historical

and simulated data, we observe that most statistics are in the same ballpark. For the macroeconomic statistics, the biggest concern is
the interest rate. Our macroeconomic set-up is standard so we do not resolve the interest rate puzzle and we need implausible levels
of either the pure time preference and/or risk-aversion. Again, we adopt this tractable model set-up to inspect the mechanisms, not
to resolve the equity premium and interest rate puzzles. Regarding the financial ratios, all values seem reasonable as well. Even
though we choose the parameters in particular to match the average leverage ratio, we observe in the simulated data a persistent
dividend yield of 5.3% with fairly low volatility, a price–earnings ratio of about 14.8, and a dividend payout ratio of 64%. These
values are reasonable. However, the standard deviation for the leverage ratio is somewhat large in the simulated data, while the
standard deviation of the dividend–payout ratio is somewhat low in the simulated data, and all simulated financial variables (except
for the returns) are rather persistent too.

4.3.2. Varying equity premium
In our model, the dependence of equity returns on the leverage ratio shows that low prices should predict high returns; if

leverage as measured by the price–total assets ratio is low, expected returns are high. Various authors have stressed the importance
of incorporating a varying equity premium in asset pricing models to match the stylized facts of stock returns (Campbell & Cochrane,
1999; Cochrane, 2011, e.g. see). The question remains whether the variation in conditional expected returns (and thus the slope of
the conditional security market line) generated by the model matches the data. We check this by regressing returns on our main
predictor variable, the inverse leverage ratio, (𝐾∕𝑃 ). Several other variables that are deflated with the stock price, e.g. dividend–
rice (𝐷∕𝑃 ) ratios, or earnings-price (𝐸∕𝑃 ) ratios have also been shown to predict expected returns, in particular for longer
orizons (e.g. see Campbell & Shiller, 1988; Cochrane, 2008; Fama & French, 1988). These findings are in line with our return
14
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Table 3
Equity premium prediction regressions for various horizons.
Source: NIPA tables for consumption growth (non-durables and services) scaled by population and the consumer price index (CPI). Shiller for aggregate dividends,
aggregate earnings, and stock returns. We take the annualized yield on 3-month T-bills as a proxy for the risk-free rate. Leverage we have computed by the
Flow of Funds accounts, Federal Reserve. The stock returns, risk-free rate, and dividend growth rate have been deflated by the CPI as well.

U.S. 1952–2019
K/P D/P E/P

Horizon (𝑘) Coeff. 𝑅2 Coeff. 𝑅2 Coeff. 𝑅2

1 0.09 0.02 3.33 0.05 1.02 0.03
3 0.17 0.03 7.73 0.08 2.28 0.03
5 0.48 0.09 18.94 0.11 3.67 0.04
7 0.88 0.17 23.45 0.18 6.92 0.08

Simulated Data
K/P D/P E/P

Horizon (𝑘) Coeff. 𝑅2 Coeff. 𝑅2 Coeff. 𝑅2

1 0.08 0.05 1.64 0.03 0.91 0.04
3 0.29 0.15 5.97 0.09 3.31 0.10
5 0.64 0.27 13.26 0.16 7.36 0.17
7 1.10 0.37 23.27 0.23 12.86 0.25

This table shows results for regressions of the form 𝑅𝑡+ℎ = 𝑐0 + 𝑐1𝑋𝑡 + 𝜖𝑡+𝑘, where 𝑅𝑡+ℎ is the cumulative cum-dividend return on equity at time 𝑡 for a horizon of
ℎ years, and 𝑋𝑡 is either the dividend–price ratio (𝐷∕𝑃 ), earnings–price ratio (𝐸∕𝑃 ), or total assets–total equity ratio (𝐾∕𝑃 ) at time 𝑡; 𝑐0 and 𝑐1 are estimated
coefficients and 𝜖𝑡+ℎ is the error term. The table reports the estimated coefficients 𝑐1 and the 𝑅2 ’s of the regression.

process. If 𝐷∕𝑃 or 𝐸∕𝑃 ratios proxy for the total assets–price ratio in our return process, they should predict conditional expected
returns as well.

We run standard return regressions for various horizons, as is common in the return predictability literature, to determine how
much variation there is in the slope of the conditional security market line. We compare the regression results based on simulated
data with those based on historical data. Table 3 reports long-horizon return regressions and shows that all ‘‘deflated price’’ ratios are
able to forecast stock returns, both in the historical and simulated data. Indeed, the estimated coefficients are in the same ballpark
and, more importantly, together with the 𝑅2s they exhibit an upward-sloping term structure.

The model captures the dynamics of the conditional security market line fairly well since the estimated coefficients of the return
predictions and historical moments of the predictors are in the same ballpark. We do indeed replicate an upward-sloping term
structure for both the regression coefficients as well as the 𝑅2s. The 𝑅2s for the simulated data are somewhat higher than in the
real data, especially at the longer horizons. We attribute to the fact that in the simulated data, both the dividend–price ratio as well
as the price–earnings ratio are more persistent (cf. the autocorrelations in Table 2).

5. Conclusion

We present a continuous-time stochastic Ramsey model with firms that are heterogeneous in their target leverage ratio. The model
is able to generate various established patterns in equity returns in both the time series and the cross-section. The main innovation
is that we assume an inelastic supply of equity and a target leverage ratio, and both are motivated by empirical evidence. Our
specification of the firms’ financing policies summarizes various mechanisms that drive the stylized financing decisions. We study
the qualitative implications of the financing decisions by coupling them to the process of excess returns. To that end, we propose a
new parameter restriction that is very flexible. We solve for equilibrium prices and characterize the resulting price processes.

Our model is able to generate various observed patterns in equity returns. Variation in the equity premium arises endogenously
in our model, and our pricing equation for excess returns provides a unifying framework for the literature on return predictability,
the cross-section of average stock returns, and volatility clustering. The model contains only a few time-invariant parameters and
yet is able to endogenously generate phenomena such as a varying risk premium, time-varying CAPM betas, volatility clustering,
and return predictability. We show how the conventional security market line should incorporate changes in the equity-premium
and time-varying betas. Many of these properties can be linked to the role the leverage ratio plays in the conditional mean and
volatility of stock returns. Indeed, the pivotal role of the leverage ratio arises due to market-clearing effects. The model explains
why various researchers find that adjusting for leverage improves the cross-sectional fit of the Capital Asset Pricing Model.

Declaration of competing interest

None.

Appendix A. Derivation of equilibrium

Since there are no frictions and externalities in the model, the first welfare theorem holds and we can calculate the centrally
planned solution. The objective is to maximize the lifetime utility of the representative investor:

𝑈 (𝑡) = E𝑡

[ ∞
𝑒−𝜌(𝑠−𝑡)

𝑐(𝑠)1−𝜏 − 1
𝑑𝑠

]

, (34)
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𝑖 𝑑𝐾𝑖(𝑡) =
[
∑

𝑖
(

𝐹 (𝐾𝑖, 𝐿𝑖) − 𝛿𝑖𝐾𝑖(𝑡)
)

− 𝑐(𝑡)
]

𝑑𝑡+
∑

𝑖 𝜎𝑖𝐾𝑖(𝑡)𝑑𝑧𝑖(𝑡) and ∑

𝑖 𝐿𝑖 = 1. Because every firm faces the same technology
nd there are no dynamics for 𝐿𝑖, each firm adopts the same capital–labor ratio, i.e. ∀𝑖, 𝑗 ∶ 𝐾𝑖

𝐿𝑖
= 𝐾𝑗

𝐿𝑗
. Consequently, we can easily

aggregate individual firm production to aggregate production and write total output, 𝑌 , as follows:

𝑌 =
∑

𝑖
𝑌𝑖 =

(

∑

𝑖
𝐾𝑖

)𝛼

(𝐴(𝑡)
∑

𝑖
𝐿𝑖)1−𝛼 . (35)

e define total wealth 𝐾 =
∑

𝑖 𝐾𝑖, and so we can write aggregate output as 𝑌 = 𝐾𝛼(𝐴(𝑡)
∑

𝑖 𝐿𝑖)1−𝛼 . To remove the time-
ependency of the system, we write all variables in effective labor terms; 𝑘 = 𝐾∕𝐴𝐿, 𝑐 = 𝑐∕𝐴𝐿, and 𝑦 = 𝑌 ∕𝐴𝐿 = 𝑓 (𝑘). Since
𝑖∕𝐴𝐿𝑖 = 𝐾∕𝐴𝐿 = 𝑘,∀𝑖, and 𝐿 =

∑

𝑖 𝐿𝑖 = 1, we have 𝐿𝑖 = 𝐾𝑖∕𝐾. Consequently, we can write total output per effective labor unit as
= 𝑘𝛼 𝐴

∑

𝑖 𝐿𝑖
𝐴𝐿 = 𝒂′𝜾(𝑘)𝛼 , where we have defined portfolio weights 𝒂 = 𝑲∕𝐾, the elements of the vector 𝑲 are 𝐾𝑖, and 𝜾 is a vector of

nes. Since all firms adopt the same capital/labor ratio, we can reduce the system to one state variable, 𝑘, which evolves according
to: 𝑑𝑘 = (𝒂′𝜾(𝑘𝛼 − 𝜇𝐴𝑘) − 𝒂′𝜹𝑘 − 𝑐)𝑑𝑡 + 𝑘𝒂′𝝈𝑑𝒛, where 𝜹 is a vector containing the elements 𝛿𝑖, 𝝈 is a diagonal matrix with the 𝜎𝑖’s
associated with the 𝑑𝑧𝑖’s, and the elements of the vector 𝑑𝒛 are 𝑑𝑧𝑖.

Because maximizing expected utility with respect to 𝑐 is equivalent to maximizing expected utility with respect to 𝑐, though
using a discount factor equal to 𝜌 + (𝜏 − 1)𝜇𝐴, the Hamilton–Jacobi–Bellman (HJB) equation is:

0 = max
𝑐,𝒂

𝑢(𝑐) − (𝜌 + (𝜏 − 1)𝜇𝐴)𝑉 + 𝑉𝑘(𝒂′𝜾(𝑘𝛼 − 𝜇𝐴𝑘) − 𝒂′𝜹𝑘 − 𝑐) + 1
2
𝒂′𝜮𝒂𝑉𝑘𝑘𝑘2, (36)

subject to 𝒂′𝜾 = 1, where 𝜮 is a symmetric matrix whose elements 𝑖, 𝑗 are equal to 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 . The first-order conditions for optimality
are 𝑢′(𝑐) = 𝑉𝑘 and

𝒉 ∶=
(

𝜮−1𝜹 − 𝜮−1𝜾𝜾′𝜮−1𝜹
𝜾′𝜮−1𝜾

)

(37a)

𝒂 ∶=
𝑉𝑘
𝑉𝑘𝑘𝑘

𝒉 + 𝜮−1𝜾
𝜾′𝜮−1𝜾

. (37b)

Substituting the first-order conditions into the HJB equation gives:

0 =
𝜏𝑉

1− 1
𝜏

𝑘
1 − 𝜏

− (𝜌 + (𝜏 − 1)𝜇𝐴)𝑉 + 𝑉𝑘(𝑘𝛼 − 𝜇𝐴𝑘) − 𝒉′𝜹
𝑉 2
𝑘

𝑉𝑘𝑘
− 𝜾′𝜮−1𝜹

𝜾′𝜮1𝜾
𝑉𝑘𝑘

+ 1
2
𝒉′𝜮𝒉

𝑉 2
𝑘

𝑉𝑘𝑘
+ 𝒉′𝜾

𝜾′𝜮−1𝜾
𝑉𝑘𝑘 + 1

2
1

𝜾′𝜮−1𝜾
𝑉𝑘𝑘𝑘

2.

We use the guess-and-verify method to solve the HJB Equation. We propose the solution 𝑉 (𝑘) = 𝐶𝑘1−𝜏𝛼 , with 𝐶 a coefficient to
e determined. Substituting the proposed solution in the HJB gives:

𝜏(𝐶(1 − 𝜏𝛼))1−
1
𝜏 𝑘𝛼−𝜏𝛼

1 − 𝜏
− (𝜌 + (𝜏 − 1)𝜇𝐴)𝐶𝑘1−𝜏𝛼 + 𝐶(1 − 𝜏𝛼)𝑘𝛼−𝜏𝛼

+
[(

1
𝜏𝛼

𝒉′ − 𝜾′𝜮−1

𝜾′𝜮−1𝜾

)

𝜹 −
(

1
2𝜏𝛼

𝒉′𝜮𝒉 −
𝒉′𝜾 − 𝜏𝛼∕2
𝜾′𝜮−1𝜾

)]

𝐶(1 − 𝜏𝛼)𝑘1−𝜏𝛼 = 0. (38)

We rearrange this equation:
(

𝜏(𝐶(1 − 𝜏𝛼))1−
1
𝜏

1 − 𝜏
+ 𝐶(1 − 𝜏𝛼)

)

𝑘𝛼−𝜏𝛼

+𝐶𝑘1−𝜏𝛼
(

−(𝜌 + 𝜏(1 − 𝛼)𝜇𝐴) + (1 − 𝜏𝛼)𝐵
)

= 0, (39)

where

𝐵 =
[(

1
𝜏𝛼

𝒉′ − 𝜾′𝜮−1

𝜾′𝜮−1𝜾

)

𝜹 −
(

1
2𝜏𝛼

𝒉′𝜮𝒉 −
𝒉′𝜾 − 𝜏𝛼∕2
𝜾′𝜮−1𝜾

)]

.

If we impose the restriction 𝜌 = (𝜏𝛼 − 1)𝐵 − 𝜏(1 − 𝛼)𝜇𝐴, we see that the second term is equal to zero.
The HJB is solved by 𝐶 = ((𝜏−1)∕𝜏)−𝜏

𝜏𝛼−1 . Subsequently, the first-order condition of consumption, 𝑢′(𝑐) = 𝑉𝑘, implies that optimal
consumption is equal to 𝑐 = 𝜏−1

𝜏 𝑌 . We note that the solution is sensible if and only if 𝐶 > 0 and ∀𝑡 ∶ 0 < 𝑐(𝑡) < 𝑌 (𝑡). The first
restriction requires that 𝜏 > 1 and 𝜏𝛼−1 > 0, and the second restriction requires that 𝜏 > 1. Since 𝛼 ∈ (0, 1), it is sufficient to impose
hat 𝜏 > 𝛼−1. Substituting the solution for the value function in the first-order condition (37) gives the relative capital stocks 𝒂 in
he text.

ppendix B. Derivation of the evolution of market portfolio weights

By Itô’s lemma, we know that the portfolio weight 𝑤𝑃
𝑖 = 𝑃𝑖∕𝑃 evolves according to:

𝑑𝑤𝑃
𝑖 = 𝑤𝑃

𝑖
𝑑𝑃𝑖 −𝑤𝑃

𝑖
𝑑𝑃 +𝑤𝑃

𝑖

(𝑑𝑃 𝑑𝑃 )

−
(

𝑑𝑃𝑖 𝑑𝑃
)

. (40)
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R

A

A

A

In a dividend-free period, we have
𝑑𝑃𝑖
𝑃𝑖

= 𝑑𝑅𝑒
𝑖 + 𝑟𝑑𝑡 = 𝜏𝛼𝜎2𝑏𝑖

𝐾𝑖
𝑃𝑖

𝑑𝑡 + 𝜎𝑖
𝐾𝑖
𝑃𝑖

𝑑𝑧𝑖 + 𝑟𝑑𝑡, (41)

for individual stocks and
𝑑𝑃
𝑃

= 𝑑𝑅𝑒 + 𝑟𝑑𝑡 = 𝜏𝛼𝜎2𝐾
𝑃
𝑑𝑡 + 𝜎 𝐾

𝑃
𝑑𝑧 + 𝑟𝑑𝑡. (42)

for the market portfolio. Using these last two equations we can write:

𝑑𝑤𝑃
𝑖 = −𝑤𝑃

𝑖 𝜏𝛼𝜎
2
(

𝐾
𝑃

−
𝐾𝑖
𝑃𝑖

𝑏𝑖

)

𝑑𝑡 +𝑤𝑃
𝑖

(𝐾
𝑃

)2
𝜎2𝑑𝑡

−
𝐾𝑖
𝑃

𝐾
𝑃

∑

𝑗
𝑤𝑗𝜌𝑖𝑗𝜎𝑖𝜎𝑗

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑏𝑖𝜎2

𝑑𝑡 +𝑤𝑃
𝑖

(

𝐾𝑖
𝑃𝑖

𝜎𝑖𝑑𝑧𝑖 −
𝐾
𝑃
𝜎𝑑𝑧

)

(43)

= −𝜎2
(

𝜏𝛼
(

𝑤𝑝
𝑖 −𝑤𝑖𝑏𝑖

)

+𝑤𝑖𝑏𝑖
𝐾
𝑃

−𝑤𝑃
𝑖
𝐾
𝑃

) 𝐾
𝑃
𝑑𝑡 +𝑤𝑃

𝑖

(

𝐾𝑖
𝑃𝑖

𝜎𝑖𝑑𝑧𝑖 −
𝐾
𝑃
𝜎𝑑𝑧

)

(44)

= −𝜎2
(

𝜏𝛼 − 𝐾
𝑃

)

(

𝑤𝑃
𝑖 −𝑤𝑖𝑏𝑖

) 𝐾
𝑃
𝑑𝑡 +𝑤𝑃

𝑖

(

𝐾𝑖
𝑃𝑖

𝜎𝑖𝑑𝑧𝑖 −
𝐾
𝑃
𝜎𝑑𝑧

)

. (45)
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