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Original Article

Glycemic Control and Effects of Canagliflozin in
Reducing Albuminuria and eGFR
A Post Hoc Analysis of the CREDENCE Trial

Sjoukje van der Hoek ,1 Niels Jongs,1 Megumi Oshima,2,3 Brendon L. Neuen ,3 Jasper Stevens,1 Vlado Perkovic,4

Adeera Levin,5 Kenneth W. Mahaffey,6 Carol Pollock,7 Tom Greene,8 David C. Wheeler,9 Meg J. Jardine,10 and
Hiddo J.L. Heerspink 1,3

Abstract
Background In the Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical
Evaluation (CREDENCE) trial, the sodium-glucose cotransporter-2 (SGLT2) inhibitor canagliflozin improved
kidney and cardiovascular outcomes and reduced the rate of estimated glomerular filtration decline (eGFR
slope) in patients with type 2 diabetes and CKD. In other clinical trials of patients with CKD or heart failure,
the protective effects of SGLT2 inhibitors on eGFR slope were greater in participants with versus participants
without type 2 diabetes. This post hoc analysis of the CREDENCE trial assessed whether the effects of
canagliflozin on eGFR slope varied according to patient subgroups by baseline glycated hemoglobin A1c
(HbA1c).

Methods CREDENCE (ClinicalTrials.gov [NCT02065791]) was a randomized controlled trial in adults with
type 2 diabetes with an HbA1c of 6.5%–12.0%, an eGFR of 30–90 ml/min per 1.73 m2, and a urinary albumin-
to-creatinine ratio of 300–5000 mg/g. Participants were randomly assigned to canagliflozin 100 mg once daily
or placebo. We studied the effect of canagliflozin on eGFR slope using linear mixed-effects models.

Results The annual difference in total eGFR slope was 1.52 ml/min per 1.73 m2 (95% confidence interval [CI],
1.11 to 1.93) slower in participants randomized to canagliflozin compared with placebo. The rate of eGFR
decline was faster in those with poorer baseline glycemic control. The mean difference in total eGFR slope
between canagliflozin and placebo was greater in participants with poorer baseline glycemic control
(difference in eGFR slope of 0.39, 1.36, 2.60, 1.63 ml/min per 1.73 m2 for HbA1c subgroups 6.5%–7.0%,
7.0%–8.0%, 8.0%–10.0%, 10.0%–12.0%, respectively; Pinteraction 5 0.010). The mean difference in change from
baseline in urinary albumin-to-creatinine ratio between participants randomized to canagliflozin and placebo
was smaller in patients with baseline HbA1c 6.5%–7.0% (217% [95% CI, 228 to 25]) compared with those
with an HbA1c of 7.0%–12% (232% [95% CI, 240 to 228]; Pinteraction 5 0.03).

Conclusions The effect of canagliflozin on eGFR slope in patients with type 2 diabetes and CKD was more
pronounced in patients with higher baseline HbA1c, partly because of the more rapid decline in kidney function
in these individuals.

Clinical Trial registry name and registration number: Evaluation of the Effects of Canagliflozin on Renal and
Cardiovascular Outcomes in Participants With Diabetic Nephropathy (CREDENCE), NCT02065791

CJASN 18: 748–758, 2023. doi: https://doi.org/10.2215/CJN.0000000000000161

Introduction
Sodium-glucose cotransporter-2 (SGLT2) inhibitors
reduce the risk of heart failure and slow progression
of kidney function decline in patients with type 2
diabetes and CKD.1–4 These beneficial effects
seem to be unrelated to improvements in glycemic
control and are likely mediated by reductions in
glomerular hyperfiltration, along with multiple
other direct cellular and metabolic effects. These
glucose-independent effects, which are associated
with long-term preservation of kidney function,

may also explain why SGLT2 inhibitors reduced
the risk of major kidney outcomes in patients
with CKD, irrespective of disease etiology.5–8

Recent large clinical trials have assessed the effect of
interventions on a composite outcome that usually
includes well-established kidney end points, such
as a sustained reduction in estimated glomerular fil-
tration rate (eGFR), kidney failure, or death due to
kidney failure.1,2,9,10 Drug effects on clinical kidney
end points are determined by the number of patients
reaching these end points, that is, in clinical trials of
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CKD progression, the patients with the fastest rate of pro-
gression. The rate of decline in kidney function (determined
from the slope of eGFR over time) and change in albumin-
uria are established surrogate end points for kidney failure
in clinical trials.10–12 Assessing effects based on eGFR slope
provides an estimate of the effect of the intervention in all
patients, including both slow and fast progressors. Statisti-
cal power for subgroup analyses is, therefore, typically
greater for eGFR slope compared with clinical end points.
Recent analyses of large kidney and cardiovascular

outcome trials showed that the effects of SGLT2 inhibitors
on eGFR slope are more pronounced in patients with type
2 diabetes compared with those without diabetes.13–16 In
addition, in patients with CKD without diabetes, the
effect of SGLT2 inhibition on albuminuria is smaller com-
pared with patients with type 2 diabetes,17,18 suggesting
that the degree of glycemic control may modify the effect
of these agents on kidney surrogate end points. Whether
the dependency of these effects on glycated hemoglobin
A1c (HbA1c) can be detected in an exclusively type 2
diabetes population with varying degrees of glycemic
control is unknown.
The Canagliflozin and Renal Events in Diabetes

with Established Nephropathy Clinical Evaluation
(CREDENCE) trial assessed the effects of canagliflozin
on outcomes in a type 2 diabetes population with CKD
and albuminuria and showed significantly lower rates of
kidney failure and cardiovascular events compared with
placebo.1 We performed a post hoc analysis of the CRE-
DENCE trial to investigate whether baseline HbA1c
modifies the effects of canagliflozin compared with pla-
cebo on eGFR slope and changes in urinary albumin-to-
creatinine ratio (UACR).

Methods
Study Design and Participants
CREDENCE was a randomized, double-blinded,

placebo-controlled, multicenter clinical trial; studies de-
scribing the trial design, baseline characteristics, and
primary results have been previously published.19 The
trial was conducted at 690 sites in 34 countries from
March 2014 through 2018. The CREDENCE trial was
conducted according to the principles of the Declaration
of Helsinki and was registered with ClinicalTrials.gov
(NCT02065791). Ethics committees at all participating
centers approved the protocol, and all participants pro-
vided informed consent.

Participants
Adults with type 2 diabetes and an HbA1c of 6.5%–12%,

eGFR 30–90ml/min per 1.73m2, andUACR 300–5000mg/g
were eligible for participation. All participants were re-
quired to be treated with a stable maximally tolerated dose
of an angiotensin-converting enzyme inhibitor or angio-
tensin receptor blocker for $4 weeks unless medically
contraindicated. Key exclusion criteria included documen-
ted diagnosis of type 1 diabetes, treatment with immuno-
suppressive agents for kidney disease, and a history of
dialysis or kidney transplantation. A complete list of in-
clusion and exclusion criteria and the trial protocol have
been previously published.19

Procedures and Measurements
Eligible participants started with a 2-week single-

blinded placebo run-in period to assess adherence to
study medications. Participants who had received at least
80% of study medication were randomly assigned to
canagliflozin 100 mg once daily or matching placebo.
Randomization was stratified by eGFR (30 to ,45 ml,
45 to ,60 ml, or 60 to ,90 ml/min per 1.73 m2). We
calculated eGFR using the Chronic Kidney Disease Epide-
miology Collaboration and incorporated a term for self-
reported race (Black versus non-Black). Participants and all
study personnel (except the Independent Data Monitoring
Committee) were masked to treatment allocation. After
randomization, in-person study visits were performed after
3 weeks, 3 and 6 months, and at 6-month intervals there-
after. At each follow-up visit, study personnel recorded
vital signs; obtained blood and urine samples; and recor-
ded information on potential study end points, adverse
events, concomitant therapies, and study drug adherence.
Clinical chemistry parameters, including HbA1c, urinary
albumin, and creatinine, were measured at baseline and at
6-month intervals thereafter, HbA1c also after 13 weeks,
and serum creatinine additionally after 3 and 13 weeks, in a
central laboratory.

End Points
The primary composite end point for CREDENCE was

time to doubling of serum creatinine (confirmed by a
second serum creatinine measurement after at least
28 days), onset of kidney failure (defined as maintenance
dialysis for at least 28 days, kidney transplantation, or
eGFR ,15 ml/min per 1.73 m2 confirmed by a second
measurement after at least 28 days), or death from a kidney
or cardiovascular cause. Secondary end points included (1)
time to a composite kidney end point of doubling of
creatinine, kidney failure, or death from kidney disease;
(2) a composite cardiovascular end point defined as non-
fatal myocardial infarction, nonfatal stroke, or cardiovas-
cular death; and (3) hospitalization for heart failure or
cardiovascular death. The rate of kidney function decline
(eGFR slope) and albuminuria was a prespecified explor-
atory efficacy end point. All primary and secondary effi-
cacy end points were adjudicated by a masked,
independent events adjudication committee.

Statistical Analyses
Participant characteristics were summarized by baseline

HbA1c (,7; 7%–8%; 8%–10%; .10%). Continuous vari-
ables are reported as mean (SD) or as median (interquartile
range [IQR]) and categorical variables as n (%).
The effect of canagliflozin on the mean on-treatment

eGFR slope was analyzed using a two-slope mixed-
effects linear spline model with a knot at 21 days and
correlated random intercepts and slopes for each partic-
ipant over time (unstructured covariance matrix). eGFR
measurements after treatment discontinuation were ex-
cluded from slope analyses to avoid bias in the eGFR
slope estimates resulting from hemodynamic changes in
eGFR after canagliflozin discontinuation. For the overall
population, the model included fixed effects for treat-
ment, randomization stratification factors (eGFR at
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screening), a two-slope linear spline in follow-up time
as a continuous variable, and interactions for treatment
with the two-slope linear spline terms.
The effect of canagliflozin compared with placebo

on the rate of eGFR decline was also estimated in
subgroups by baseline HbA1c, UACR, and eGFR at
screening. In these analyses, all possible two-way and
three-way interaction terms between the randomized
treatment, the subgroup indicator, and the two-slope
linear spline in follow-up time were added to account
for differences between subgroups in the effect of the
treatment on the mean eGFR trajectory. We removed the
stratification factor in subgroups by baseline eGFR to
avoid redundant terms in our model. The acute change
in eGFR was calculated as the mean change from base-
line at week 3. The chronic eGFR slope was calculated as
the mean rate of change in eGFR from week 3 until the
last on-treatment visit and was expressed as change
per year.
The distribution among individuals in the acute change in

eGFR and chronic slope was graphically represented by
kernel density curves for the best linear unbiased predic-
tions for the acute and chronic eGFR slopes under the two
slope mixed-effects models.
Cox proportional hazard regression was performed to

assess the effect of canagliflozin compared with placebo on
the clinical end points, yielding hazard ratios and 95%
confidence intervals (95% CIs) from model parameter coef-
ficients and standard errors. We evaluated the primary and

secondary efficacy end points in participants stratified by
baseline HbA1c. We tested for heterogeneity of the canagli-
flozin treatment effect by including an interaction term
between the randomized treatment group and baseline
HbA1c. We used R version 4.1.1 for statistical analyses
(R Foundation, Vienna, Austria). P values , 0.05 were
considered to indicate statistical significance.

Results
The CREDENCE trial randomized 4401 patients to re-

ceive either canagliflozin 100 mg daily (n52202) or pla-
cebo (n52199) between March 2014 and May 2017. The
trial was stopped early for efficacy based on a planned
interim analysis with a median follow-up of 2.62 years
(IQR, 2.11–3.09). Efficacy analyses were conducted in 4399
participants because two participants had missing
HbA1c values.
At baseline, in the total trial population, the mean age

was 63 years (SD 9); 34% of participants were women;
mean eGFR was 56 ml/min per 1.73 m2 (SD 18); median
UACR was 927 mg/g (IQR, 463–1833); and mean HbA1c
was 8.3% (SD 1.3). There were 650 participants (15%)
with a baseline HbA1c between 6.5 and 7%, 1406 (32%)
with a HbA1c of 7.0 to ,8.0%, 1849 (42%) with a HbA1c
of 8.0 to ,10.0%, and 494 (11%) with a HbA1c of
10.0%–12.0%. Mean HbA1c levels in the four groups
were 6.6% (SD 0.3), 7.4% (SD 0.3), 8.8% (SD 0.6), and
10.8% (SD 0.8), respectively (Table 1).

Table 1. Patient characteristics according to baseline HbA1c subgroupsa

Characteristic
HbA1c (%)

6.5–7.0 7.0 to ,8.0 8.0 to ,10.0 $10.0 to ,12.0

Nb 650 1406 1849 494
Age, yr 64 (9) 64 (9) 62 (9) 61 (9)
Male, n (%) 475 (73) 966 (69) 1212 (66) 252 (51)
Race, n (%)
Asian 158 (24) 289 (21) 336 (18) 94 (19)
Black 29 (5) 63 (5) 105 (6) 27 (6)
Otherc 56 (9) 104 (7) 160 (9) 49 (10)
White 407 (63) 950 (68) 1248 (68) 324 (66)

Current smoker, n (%) 85 (13) 224 (16) 279 (15) 51 (10)
Duration of diabetes, yr 15 (9) 16 (9) 16 (9) 15 (8)
History of hypertension, n (%) 631 (97) 1353 (96) 1796 (97) 478 (97)
History of heart failure, n (%) 75 (12) 208 (15) 284 (15) 84 (17)
History of cardiovascular disease, n (%) 322 (50) 693 (49) 958 (52) 246 (50)
Diabetic retinopathy, n (%) 240 (37) 590 (42) 844 (46) 208 (42)
Body mass index, kg/m2 30.8 (6.4) 31.1 (6.0) 31.7 (6.1) 31.5 (6.5)
Systolic BP, mm Hg 140 (16) 140 (15) 140 (16) 139 (16)
Diastolic BP, mm Hg 78 (9) 78 (10) 79 (9) 79 (9)
HbA1c, % 6.6 (0.3) 7.4 (0.3) 8.8 (0.6) 10.8 (0.8)
Total cholesterol, mg/dl 174 (46) 174 (46) 182 (50) 201 (58)
Triglycerides, mg/dl 168 (115) 186 (115) 204 (151) 248 (195)
eGFR, ml/min per 1.73 m2d 54 (17) 55 (18) 57 (18) 60 (20)
UACR, mg/g, median (IQR) 860 (438–1790) 937 (469–1778) 927 (474–1837) 967 (452–2058)
Insulin, n (%) 314 (48) 847 (60) 1358 (73) 365 (74)
Diuretic, n (%) 290 (45) 676 (48) 888 (48) 202 (41)

HbA1c, glycated hemoglobin A1c; UACR, urinary albumin-to-creatinine ratio; IQR, interquartile range.
aData are mean (SD) unless otherwise indicated.
bTwo randomized participants had missing baseline HbA1c values and were excluded from the analysis.
cIncludes American Indian or Alaskan Native, Native Hawaiian or other Pacific Islander, multiple, other, unknown, and not reported.
dCalculated using the Chronic Kidney Disease Epidemiology Collaboration equation.
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Effects on eGFR Slope
Canagliflozin caused an acute reduction in eGFR at week 3

with a mean reduction of23.72 ml/min per 1.73 m2 per year
(standard error of the mean [SEM] 0.25) compared
with 20.55 ml/min per 1.73 m2 per year (SEM 0.25) in
the placebo group, resulting in a between-group differ-
ence of23.17 ml/min per 1.73 m2 per year (95% CI,23.87
to 22.47). Thereafter, the eGFR decline was attenuat-
ed in the canagliflozin group with a mean decline
of 21.85 ml/min per 1.73 m2 per year (SEM 0.13) com-
pared with24.59 ml/min per 1.73 m2 per year (SEM 0.14)
in the placebo group, with a between-group difference of
2.74 ml/min per 1.73 m2 per year (95% CI, 2.37 to 3.11).
Combining the acute and chronic effects, the total eGFR
slope from baseline to the end of treatment (week 130) was
smaller in the canagliflozin group with 23.19 ml/min per
1.73 m2 per year (SEM 0.15) compared with 24.71 ml/min
per 1.73 m2 per year (SEM 0.15) in the placebo group, result-
ing in a between-group difference of 1.52 ml/min per 1.73 m2

per year (95% CI, 1.11 to 1.93) (Table 2).
When analyzing the total eGFR slope by baseline

HbA1c subgroups, we observed that in patients with
near-normal glycemic control (HbA1c 6.5%–7.0%), those
randomized to canagliflozin showed a 0.39–ml/min per
1.73 m2 per year (95% CI, 20.56 to 1.33) slower rate of
eGFR decline from baseline when compared with placebo.
This compared with a 1.82–ml/min per 1.73 m2 per year
(95% CI, 1.40 to 2.25) difference in eGFR decline between
treatment groups in those patients with higher baseline
HbA1c values (HbA1c 7.0%–12.0%) (Pinteraction 5 0.007;
Figure 1, A and B). When stratifying the population into
more granular HbA1c categories at baseline, in patient
subgroups with higher HbA1c values, the rate of eGFR
decline during follow-up was faster (Table 2). The effect
of canagliflozin compared with placebo on chronic and
total eGFR slopes was larger in patients with higher base-
line HbA1c (Pinteraction 5 0.02 for chronic slope and
Pinteraction 5 0.01 for total slope; Table 2). In addition,
the between-group differences in eGFR slope expressed as
percentage difference were progressively larger in higher
baseline HbA1c subgroups (Table 2). The decline in kid-
ney function in both the placebo and canagliflozin groups
was larger with increasing baseline UACR. Partly as a
result, the effect of canagliflozin on eGFR slope was
also more pronounced in higher baseline UACR groups
(Pinteraction 5 0.04 for chronic slope and Pinteraction 5 0.008
for total slope) (Table 2). The effects of canagliflozin on
eGFR slope were consistent by diabetes duration and
diabetic retinopathy status at baseline (Supplemental
Table 1).
We compared the distribution of eGFR changes in pa-

tients randomized to canagliflozin and placebo during the
acute and chronic phases. During the first 3 weeks, the
canagliflozin group showed a uniformly larger reduction
in eGFR compared with placebo, with a uniform shift in
the distribution of eGFR changes to the left without a
change in variability (SDs of acute eGFR slopes in the
canagliflozin and placebo groups 5.3 versus 5.1 ml/min
per 1.73 m2 per 3 weeks, respectively; Figure 2A). During
the chronic phase, the annual rate of eGFR change was
slower in the canagliflozin group, and the variability of
eGFR decline was somewhat reduced as indicated by the

smaller SD and by the contraction of the left end of the
distribution toward the right (SDs of the slopes in the
canagliflozin and placebo groups 8.9 versus 9.9 ml/min
per 1.73 m2 per year, respectively; ratio 0.9; F-value 31;
P , 0.001; Figure 2B).

Effects on UACR
Canagliflozin resulted in a lowering of the geometric

mean of the UACR of 31% (95% CI, 27 to 35) compared
with placebo. This effect was less pronounced in patients
with near-normal glycemic control compared with those
with higher HbA1c (Figure 1C). Patients with lower base-
line UACR levels had a larger proportional UACR reduc-
tion (Pinteraction 5 0.04; Figure 3).

Effects on Kidney and Cardiovascular Outcomes by
Baseline HbA1c
Randomization to canagliflozin resulted in similar risk

reductions of the primary composite outcome; composite
outcome of kidney failure; doubling of serum creatinine
or kidney death and kidney failure; composite outcome
of cardiovascular death, myocardial infarction, or stroke;
and composite outcome of cardiovascular death or hos-
pitalization for heart failure, regardless of baseline
HbA1c (all Pinteraction . 0.3; Figure 4).

Discussion
Canagliflozin reduces the risk of kidney failure and

cardiovascular events and slows the decline in eGFR in
patients with type 2 diabetes and CKD who participated
in the CREDENCE trial. In this study, we conducted
additional analyses of the effect of canagliflozin on
eGFR slope and albuminuria according to the degree of
glycemic control at baseline. We found that the beneficial
effect of canagliflozin in attenuating eGFR slope was pre-
sent at all levels of glycemic control, but was more pro-
nounced in patients with higher baseline HbA1c levels
and albuminuria. Moreover, the albuminuria-lowering
effect of canagliflozin was larger in patients with poorer
glycemic control (HbA1c level of 7% or higher) compared
with those with near-normal glycemic control (HbA1c
6.5% to ,7.0%).
The finding that the effect of canagliflozin on eGFR

slope was attenuated in patients with better glycemic
control might be unexpected because canagliflozin con-
sistently reduced kidney and cardiovascular end points,
irrespective of the degree of baseline glycemic control,
and because treatment effects on eGFR slope are strongly
associated with treatment effects on kidney failure.11,20

However, comparison of treatment effects on time to kidney
failure is based on the rates at which patients reach these
end points and have less statistical power to detect sub-
group differences. In clinical trials, with an average follow-
up duration of 2.5–3 years, treatment effect estimates de-
pend primarily on patients with a fast decline of kidney
function who reach the end point during the follow-up
period of the clinical trial. By contrast, comparison of treat-
ment effects on eGFR slope incorporates data on all ran-
domized patients and thus includes both slow and fast
progressors. We demonstrated that canagliflozin showed
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Table 2. Effects of canagliflozin versus placebo on eGFR changes according to baseline participant subgroups

Characteristic

Acute Phase (Baseline to Week 3) eGFR Change (ml/min per 1.73 m2)
Chronic Phase (Week 3 to the Last Available Measurement) Annual eGFR

Change (ml/min per 1.73 m2 per year)
Total Phase (Baseline toWeek 130) Annual eGFR Change (ml/min per 1.73 m2

per year)

Difference (%)Mean (SEM) Difference
(95% CI) SEM

P for
Interaction

Mean (SEM) Difference
(95% CI) SEM

P for Interaction Mean (SEM) Difference
(95% CI) SEM

P for Interaction

Canagliflozin Placebo Canagliflozin Placebo Canagliflozin Placebo

Overall 23.72 (0.3) 20.55 (0.3) 23.17 (23.87 to 22.47) 21.85 (0.1) 24.59 (0.1) 2.74 (2.37 to 3.11) 23.19 (0.2) 24.71 (0.2) 1.52 (1.11 to 1.93) 32
HbA1c, % ,7 23.82 (0.4) 20.50 (0.4) 23.32 (24.52 to 22.12) 0.87 22.21 (0.3) 23.98 (0.3) 1.77 (0.88 to 2.65) 0.02 23.63 (0.3) 24.02 (0.3) 0.39 (20.56 to 1.33) 0.01 9

7 to ,8 23.44 (0.3) 20.65 (0.3) 22.79 (23.64 to 21.95) 21.97 (0.2) 24.38 (0.2) 2.41 (1.78 to 3.04) 23.18 (0.2) 24.54 (0.3) 1.36 (0.69 to 2.04) 30
8 to ,10 23.51 (0.3) 20.66 (0.3) 22.85 (23.62 to 22.08) 21.61 (0.2) 24.91 (0.2) 3.30 (2.74 to 3.86) 22.91 (0.2) 25.14 (0.2) 2.23 (1.63 to 2.83) 43
$10 22.41 (0.6) 0.86 (0.6) 23.27 (24.99 to 21.55) 22.92 (0.5) 25.62 (0.4) 2.69 (1.43 to 3.96) 23.49 (0.5) 25.09 (0.5) 1.60 (0.30 to 2.91) 31

Screening eGFR,
ml/min per
1.73 m2

30 to ,45 22.45 (0.3) 20.41 (0.3) 22.03 (22.73 to 21.34) 0.02 21.72 (0.2) 24.33 (0.2) 2.61 (2.06 to 3.16) 0.65 22.56 (0.2) 24.35 (0.2) 1.79 (1.20 to 2.38) 0.71 41
45 to ,60 24.08 (0.3) 20.64 (0.3) 23.44 (24.32 to 22.57) 21.62 (0.2) 24.58 (0.2) 2.97 (2.32 to 3.61) 23.11 (0.3) 24.76 (0.3) 1.65 (0.96 to 2.34) 35
60 to ,90 23.66 (0.3) 20.39 (0.3) 23.27 (24.17 to 22.37) 22.32 (0.2) 24.92 (0.2) 2.60 (1.97 to 3.32) 23.61 (0.2) 25.03 (0.2) 1.42 (0.75 to 2.09) 28

UACR, mg/g #1000 23.15 (0.4) 0.45 (0.4) 23.60 (24.58 to 22.62) 0.44 20.78 (0.2) 23.09 (0.2) 2.31 (1.88 to 2.73) 0.04 21.88 (0.2) 22.79 (0.2) 0.91 (0.42 to 1.40) 0.008 33
.1000 to ,3000 24.13 (0.4) 21.29 (0.4) 22.84 (23.84 to 21.83) 22.65 (0.2) 25.94 (0.2) 3.29 (2.67 to 3.91) 24.15 (0.2) 26.37 (0.3) 2.23 (1.55 to 2.90) 35
$3000 24.70 (0.8) 22.26 (0.7) 22.44 (24.52 to 20.36) 26.43 (0.6) 28.92 (0.5) 2.49 (1.00 to 3.99) 28.15 (0.6) 29.68 (0.6) 1.53 (20.11 to 3.17) 16

The effects of canagliflozin on on-treatment eGFR slope were analyzed using a piecewise, linear mixed-effects model with a knot at week 3, including the fixed effects of treatment, baseline eGFR, continuous time, and time spline (one knot at week 3), with two-way interactions of treatment by time and
treatment by time spline, and the random effects of intercept, time, and time spline. Compound symmetry was used to fit the covariance structures in the mixed effect models, as the model did not converge when unstructured was used. SEM, standard error of the mean; CI, confidence interval; HbA1c,
glycated hemoglobin A1c; UACR, urinary albumin-to-creatinine ratio.
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a slightly greater treatment effect in fast progressors (as
evidenced by a modest contraction of the left end of the
distribution of the eGFR slopes during chronic treatment).

Thus, the effect of canagliflozin on eGFR slope in all patients
(both fast and slow progressors) is primarily driven by
fast progressors. Thus, the effect modification by baseline

Figure 1. Effects of canagliflozin on eGFR slope and UACR change by baseline glycemic control. Effects of canagliflozin compared with
placebo on eGFR slope in patients with near-normal glycemic control (HbA1c 6.5%–7.0%; A) and poor glycemic control
(HbA1c 7.0%–12%; B). (C) The effect of canagliflozin on least squares mean change from baseline in UACR in patients with near-normal
and poor glycemic control. CI, confidence interval; HbA1c, glycated hemoglobin A1c; UACR, urinary albumin-to-creatinine ratio. Figure 1
can be viewed in color online at www.cjasn.org.
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HbA1c for the eGFR slope end point may be explained at
least partly by a more rapid loss of kidney function in
those with poorer glycemic control as we observed
that patients with near-normal HbA1c values at random-
ization had a lesser eGFR decline during follow-up

compared with patients with higher HbA1c values. These
results may also explain why in patients without diabetes
and normoalbuminuria participating in the EMPA-
KIDNEY trial, empagliflozin did not reduce the rate of
kidney decline and kidney end points.8

Figure 2. Distribution of eGFR changes. In the acute phase (A) and the annual eGFR slope during the chronic treatment phase (B) in the
canagliflozin and placebo groups.
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Decline in kidney function is markedly higher in patients
with moderate-to-severe albuminuria compared with
those with normal albuminuria. This was also observed
in the CREDENCE trial where eGFR decline was at least
three times higher in patients with albuminuria more
than 3000 mg/g versus those less than 1000 mg/g. The
effect of canagliflozin compared with placebo in

reducing eGFR decline was more pronounced in those
with higher albuminuria, these participants being the
faster progressors. As reported before, the proportional
but not absolute reduction in albuminuria was smaller in
patients with higher levels of albuminuria at baseline.21

This finding has not been observed in other trials with
SGLT2 inhibitors.18,22

Figure 3. Effect of canagliflozin on UACR according to baseline participant subgroups.

Figure 4. Effect of canagliflozin on primary and secondary outcomes according to baseline HbA1c. CV, cardiovascular; ESKD, end-stage
kidney disease; HF, heart failure.
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Our slope analyses are in keeping with results from
other clinical trials with SGLT2 inhibitors.13,18 An analysis
in patients with CKD participating in the Dapagliflozin
And Prevention of Adverse Outcomes in Chronic Kidney
Disease (DAPA-CKD) trial reported that the effect of da-
pagliflozin on eGFR slope was greater in the subgroup of
patients with type 2 diabetes (67% of the participants)
compared with those without type 2 diabetes.18 In addi-
tion, the benefit of dapagliflozin in attenuating eGFR
slope was more pronounced in patients with higher
HbA1c and more extensive albuminuria, consistent with
our results from CREDENCE. The results of our post hoc
analysis are also consistent with data from the Empagliflozin
Cardiovascular Outcome Event Trial in Type 2 Diabetes
Mellitus Patients (EMPA-REG OUTCOME) that report-
ed more pronounced effects of the SGLT2 inhibitor
empagliflozin on eGFR slope in patients with type
2 diabetes and established cardiovascular disease.14

Analyses of clinical trials in patients with heart failure
also show similar results.5,6,15 In the Dapagliflozin
and Prevention of Adverse Outcomes in Heart Failure
(DAPA-HF), EMPagliflozin outcomE tRial in Patients
With chrOnic heaRt Failure (EMPEROR)-Reduced, and
EMPEROR-Preserved trials, dapagliflozin and empagli-
flozin improved the chronic eGFR slope with a larger
effect in patients with type 2 diabetes compared with
patients without diabetes.
The smaller albuminuria-lowering effect of canagliflozin

that we observed in patients with near-normal glycemia
has also been noted in other studies in patients with pre-
diabetes or normal glycemia.17,18 In a mechanistic study in
patients without diabetes and CKD, dapagliflozin reduced
UACR by 16% compared with placebo.17 Likewise, in a post
hoc analysis of the DAPA-CKD trial in patients without
diabetes or pre-diabetes, dapagliflozin reduced albumin-
uria by 14% and 15%, respectively, compared with 35% in
patients with type 2 diabetes.18 Why the albuminuria low-
ering effect of SGLT2 inhibitors is attenuated in patients
with near-normal or normal glycemic control is not com-
pletely understood. SGLT2 inhibitors exert a mild diuretic
effect and reduce glomerular filtration, which is reversible
directly after treatment cessation and is often referred to as
the acute eGFR dip.23 This suggests that SGLT2 inhibitors
reduce intraglomerular pressure and thereby hyperfiltra-
tion.24 A previous study demonstrated that the acute eGFR
dip correlates with the reduction in albuminuria and sug-
gested that the reduction in intraglomerular pressure on
initiation of SGLT2 inhibition is attenuated in patients
without type 2 diabetes, resulting in a smaller reduction
in albuminuria.18 However, in the CREDENCE trial, we
did not observe a smaller acute eGFR dip in patients with
near-normal glycemia.
Although the effects of canagliflozin in slowing the de-

cline in eGFR were attenuated in patients with near-normal
glycemia at baseline, it is important to emphasize that the
benefits of canagliflozin on cardiovascular and heart failure
end points was consistent, irrespective of the degree of
glycemic control. Because cardiovascular end points occur
frequently in patients with diabetes and CKD, our data
indicate that despite the effect of canagliflozin on eGFR
decline was more pronounced in patients with higher
HbA1c and albuminuria, those with a slower decline in

kidney function still derive cardiovascular benefit from
canagliflozin.
The limitations of this study include the absence of

eGFR measurements after discontinuation of canagliflozin
to confirm the reversibility in the acute change in eGFR.
However, the CANagliflozin cardioVascular Assessment
Study–Renal (CANVAS-R) trial demonstrated that 4 weeks
after canagliflozin treatment, the initial dip in eGFR was
completely reversible.3 Second, this was a post hoc analysis
and may be prone to chance findings. Finally, the follow-up
period of the CREDENCE trial was much shorter than the
period during which most patients are treated in clinical
practice. The relatively short time frame of the trial pre-
cludes assessment of canagliflozin on kidney function in
slow progressors who may derive benefit during a longer
follow-up.
In conclusion, the effect of canagliflozin in slowing the

decline in kidney function in patients with type 2 diabetes
and CKD is more pronounced in those with poorer base-
line glycemic control and higher degrees of albuminuria,
partly because of more rapid decline in kidney function in
these individuals.
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