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Curvature-enhanced Neural Subdivision

Sjoerd Bruin Steffen D. Frey
University of Groningen

Jiřı́ Kosinka

Abstract
Subdivision is an important and widely used
technique for obtaining dense meshes from
coarse control (triangular) meshes for modelling
and animation purposes. Most subdivision
algorithms use engineered features (subdivision
rules). Recently, neural subdivision successfully
applied machine learning to the subdivision
of a triangular mesh. It uses a simple neural
network to learn an optimal vertex positioning
during a subdivision step. We propose an
extension to the neural subdivision algorithm
that introduces explicit curvature information
into the network. This makes a larger amount of
relevant information accessible which allows the
network to yield better results. We demonstrate
that this modification yields significant improve-
ment over the original algorithm, in terms of
both Hausdorff distance and mean squared error.

Keywords: Subdivision, Machine Learn-
ing, Geometric Modelling

1 Introduction

One of the main areas of research in com-
puter graphics and geometric modelling concerns
the refinement of triangular meshes. Such ap-
proaches are used to create higher quality meshes
from coarse ones, with applications in, among
others, video games and animated films. Mesh
refinement is used to produce smooth surfaces
by recursively refining angular parts of the con-
trol mesh into smoother approximations, typi-
cally by introducing new triangles and by mov-
ing vertices into new positions that lead to better
smoothness properties. The rules guiding this
process are carefully designed to lead to well-
behaved and smooth surfaces in the limit of the
subdivision process, such as in the Loop subdivi-

sion scheme [1]. In a recent development, neural
subdivision [2] was introduced to mimic Loop
subdivision, but to improve on it using learned
subdivision rules.

We expand the neural network used in neural
subdivision to include explicit curvature informa-
tion. This provides additional information about
the shape of the mesh around a vertex, and has
the potential to reintroduce specific detail into
the subdivided mesh. We extract this curvature
information from the intermediate meshes pro-
duced during the decimation process to create
coarse mesh approximations of a ground truth
mesh. We demonstrate that this addition leads
to an improvement in the subdivision result both
via objective metrics (Hausdorff distance (HD)
and mean squared error (MSE)) and visual com-
parisons. Our main contributions are:

• We enhance neural subdivision by adding
curvature information to the network.

• We conduct a detailed evaluation study (con-
sidering parameter settings, network sizes,
and various meshes) and demonstrate that
our extension is able to significantly im-
prove results for challenging cases.

The remainder of the paper has the follow-
ing structure. Section 2 gives an overview of
the different approaches to mesh refinement and
focuses on methods using machine learning. Sec-
tion 3 discusses the neural subdivision algorithm
in detail, and introduces several discrete curva-
ture approximation schemes used in our method
as well as a quality evaluation metric. Section 4
describes our curvature enhancement with re-
spect to the original neural subdivision scheme
and Section 5 covers the data used for training
and evaluation. Section 6 discusses the results
achieved with our curvature-enhanced neural sub-
division algorithm. Section 7 concludes this pa-
per and outlines directions for future work.



2 Related Work

Constructing smooth surfaces of arbitrary mani-
fold topology is a difficult and well-studied prob-
lem. Such surfaces are typically controlled by
a coarse mesh which guides the shape of the
final surface. While methods tailored to con-
trol quad/hexagonal meshes exist [3, 4], sparse
triangular meshes are among the most popular
control structures. However, going from such
a mesh to a smooth surface is non-trivial. One
could use a single Bézier triangle [5] per mesh
face, but it is difficult to achieve global G1 con-
tinuity while keeping the patch degrees low or
without resorting to rational patches (such as Gre-
gory triangles [6–8]) or macro patches [9, 10].
When the control mesh is regular (all vertices
have valency six), box-splines [11] can be used,
for example the C2 quartic box-spline. In the
case of triangular meshes, Loop subdivision [1]
extends the regular setting to provide globally
smooth limit surfaces which are C2 everywhere,
except at points corresponding to extraordinary
vertices where they are (only) G1 (i.e., tangent-
plane) continuous. Several methods based on
Bézier triangles were later introduced to approxi-
mate Loop subdivision surfaces [12–14].

All the methods mentioned so far use carefully
designed patches, or tailored and fixed subdivi-
sion rules. This has the obvious advantages of
being simple and uniform, in the sense that the
same patch type with fixed evaluation rules is
used everywhere and the subdivision rules do
not depend on the geometry of the control mesh.
At the same time, this is a significantly limiting
factor. To address this, one could look in the di-
rection of non-linear subdivision schemes, such
as that of [15]. While this offers greater free-
dom, complex rules need to be engineered by
hand which introduces concerns regarding the
effectiveness of the determined solution.

Machine learning-based techniques potentially
address this issue, yet they have not been used
extensively for subdivision so far. Most research
has focused on point clouds [16–18], which—
in contrast to the mesh data we work with—
lacks connectivity information. Applying point
cloud techniques to our scenario would therefore
omit available information and make the prob-
lem more difficult. Additionally, the point cloud
data would eventually need to be converted back

to a triangular mesh (using for instance Poisson
surface reconstruction [19]) for further process-
ing. Other neural mesh generation techniques
manipulate templates [20–23]. These template
methods are either too general to produce good
results or too restrictive to be generalisable to
more complex shapes.

Neural subdivision [2] addresses this problem
by defining a neural network that learns on the
triangular mesh itself, which allows for direct
and efficient triangle-for-triangle comparison be-
tween the subdivided mesh and a ground truth
mesh. Neural subdivision can be considered as
a form of non-linear subdivision, where the non-
linear function is approximated using a neural
network. We show that further improvements
can be achieved by considering curvature infor-
mation in the training process.

3 Background

In this section, we discuss the original neural
subdivision network [2] along with the data gen-
eration method (Section 3.1), and the different
discrete curvature approximations (Section 3.2)
that we use to enrich neural subdivision.

3.1 Neural Subdivision

The neural subdivision algorithm uses machine
learning to learn the optimal positions of ver-
tex and edge points based on surrounding ver-
tices [2], using similar stencil shapes as those
used in Loop subdivision. The learning approach
used in neural subdivision [2] necessitates the
use of local coordinates to ensure orientation in-
variance, achieved by using half flaps. A half flap
comprises a half edge, along with its associated
face and the opposite face. The half flap has a
canonical ordering of its vertices, allowing us to
associate a unique half flap with each half edge.

Neural subdivision [2] learns subdivision rules
which consider the local region to determine how
the current vertex point should be moved, or
where the new edge point should be positioned.
In addition to positional information, the net-
work also produces an intermediate high-level
feature vector that later stages of the network use
to guide the process of positioning the vertices.
The network uses three modules: an initialisa-



Figure 1: The structure of our curvature-enhanced neural subdivision network. Our network introduces
two new modules (C and CI ) that produce position offsets that model the additional curvature
information that the network is learning with.

tion module I , which is only applied at the first
subdivision step; a vertex module V for manipu-
lating vertex points; and an edge module E for
edge points. Each module applies to a half flap
associated with adjacent half edges, and average
pooling is used to combine the updated features
computed for each half flap into a single update
for an existing vertex point or a new edge point.
In addition to being applied to positions, average
pooling is also applied to the high-level features;
see Figure 1. The loss function is defined by map-
ping points from the coarse mesh into the ground
truth mesh using a bijective mapping (see [2] for
details) and subsequently calculating the mean
squared error (MSE) loss between the subdivided
mesh vertices and their corresponding ground-
truth positions.

We need to produce a set of coarse meshes
from a given fine mesh for training the network.
We use a general scheme for generating coarse
meshes by use of an edge decimation algorithm
as in [2]. The decimation process removes an
edge and reconnects the vertices both in 3D and
in a UV-mapped space, as shown in Figure 2.
Subsequently, [2] perform a number of checks
to assess the quality of the resulting mesh. If the
checks succeed, then the decimation step has suc-
ceeded. If not, then a different edge is chosen for
decimation. We follow the procedure described
in [24] for the selection of a suitable edge for
the collapse. During the decimation process, we
simultaneously construct the bijective mapping
between the fine mesh and the coarse mesh.

3D space

UV space

u

v w

u v w

3D to UV UV to 3D

Edge collapse

Edge collapse

M l
M l−1

Figure 2: Edge decimation: the edge connecting
u and v is collapsed into w (from left
to right). Each edge collapse is applied
both in 3D and in UV space (top and
bottom row), and quality metrics are
evaluated in each of them.

3.2 Discrete Curvature

We use three types of discrete curvature to anal-
yse our addition: area-adjusted angle deficit, vec-
tor mean curvature, and scalar mean curvature.

The area-adjusted angle deficit computes the
sum of the angles of the triangles around a given
vertex, computes its deviation from 2π radians,
and weighs the measure by the summed area of
the triangles around the vertex. The area-adjusted
angle deficit is given by (see Figure 3, left)

K =
4
A

(
2π−

ν

∑
j=1

θ j

)
, (1)

where ν denotes the valency of u and A is the
summed area of the triangles incident with u. It
approximates (Gauss) curvature by the deviation
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Figure 3: A graphical representation of the ver-
tices and angles used in the discrete
curvature metrics: angle deficit (left)
and discrete mean curvature (right).

of the angle from a flat disk, and weights this
by the size of the incident triangles, such that a
given angle deficit implies higher curvature when
the associated triangles are smaller.

The vector mean curvature [25] computes
cotangent weights based on the angles that are
located opposite a given edge for each edge con-
nected to a given vertex. The vector mean curva-
ture is given by (see Figure 3, right)

2HN =
1
A

ν

∑
j=1

cot(α j)+ cot(β j)

2
(v j −u) . (2)

The vector mean curvature specifies a direction
and magnitude to the (mean) curvature. The
scalar mean curvature value is given by H.

4 Curvature-Enhanced Neural
Subdivision

Our extension of the basic approach (described in
Section 3.1) explicitly represents the curvature of
the input data. The architecture of our extended
network is shown in Figure 1. The curvature
extension has two modules. First, the curvature
initialisation module CI sets up a curvature fea-
ture vector in an analogous fashion to the way
module I initialises a feature vector. Module CI
takes as input the positions of the vertices of the
half flap and the curvature calculated at those ver-
tices. The output is a 31-element feature vector,
where the first three elements record the position
update from the initial vertex position, and the re-
maining 28 elements encode additional features.
Module CI is applied only during the first sub-
division step in order to initialise the curvature
feature vector.

The second module is the curvature module
C itself. It takes as input a 31-element feature

vector and the curvatures at the half flap vertices
(potentially recomputed after applying the CI
module). The output consists of a 31-element
feature vector, of which the first three elements
encode the position update of the vertices. Mod-
ule C is applied at each subdivision step.

Similar to the I and V modules, CI and C
use average pooling to combine the half flaps
associated with a given vertex into a single up-
date. The main novelty in these new modules is
the use of curvature as input. A consequence of
using curvature information across the half flaps
is that instead of considering the one-ring neigh-
bourhood around the central vertex or the central
edge, a two-ring neighbourhood is used for the
curvature information. The reason for this is that
the curvature is evaluated at each vertex in the
half flap, and evaluating the curvature at a vertex
requires the one-ring neighbourhood of vertices
there. Due to this, a two-ring neighbourhood is
used for gathering information, and furthermore
two different types of information are extracted.
This leads to a larger amount and variety of in-
formation for use in the learning process.

In order to guide the learning process towards
incorporating the curvature information, we use
a loss function based on the MSE for the position
loss and the L1 loss for the curvature loss. We
opted for the L1 loss for the latter because local
curvature can vary significantly, and therefore the
robustness of the L1 loss against outlier values
helps to keep the update stable. With N the num-
ber of vertices in the mesh under consideration,
the curvature loss is defined as

Lcurv =
1
N

N

∑
i=1

∣∣∣κsub
i −κ

target
i

∣∣∣ , (3)

where κsub
i is the curvature computed on the sub-

divided mesh, and κ
target
i is the target curvature

at vi. The original position-based loss [2] reads

Lpos =
1
N

N

∑
i=1

(
vsub

i −vfine
i
)2
, (4)

where vsub
i is the position of a vertex in the subdi-

vided mesh, vfine
i is the corresponding position in

the fine mesh determined via the bijective map-
ping. Finally, the full loss function L for the
curvature network is given by

L = Lpos + γ Lcurv, (5)



where γ is a hyperparameter that controls the im-
pact of curvature loss. The value of γ determines
how strongly the curvature loss defined in Equa-
tion 3 contributes to the repositioning of the ver-
tices in the subdivision step. In Section 6.1.1 we
perform a hyperparameter grid search to identify
the best configuration of γ.

We use target curvature information from the
intermediate decimation steps (using linear inter-
polation after mapping a position into an interme-
diate step of the decimation process), such that
the number of vertices in the subdivision step
and the decimation step from which we extract
curvature information match. During the learn-
ing process, the curvature updates are applied to
a large number of meshes. This way, individual
skews introduced by the intermediate decimation
steps are averaged out. The consideration of inter-
mediate meshes gives the network an additional
chance to reintroduce curvature information into
the subdivision process.

5 Evaluation Dataset

In order to compare with [2], we have made use
of the same mesh dataset, namely the TOSCA
dataset [26], which contains a number of high-
resolution meshes, typically with several tens of
thousands of vertices per mesh. The wolf mesh
was employed for training the base neural net-
work and the curvature-enhanced neural network.
To this end, we have created 230 coarse meshes
using the decimation process discussed in [2], of
which 200 meshes are used for training and 30
are used for testing purposes. Figure 4 shows
the original fine wolf mesh and a coarse version
of the mesh. The decimated meshes from other
meshes in the TOSCA dataset serve the role of
holdout datasets, since they can be used as an
extra test of the generalisability of the network,
which has been fine-tuned for the set of 30 test
wolf meshes.

Figure 5 shows the other meshes that we have
used to analyse the behaviour of the network.
The cat, centaur, and horse meshes are again from
TOSCA. We have had to slightly manipulate the
meshes in order to make them suitable for the
decimation process. This includes reducing the
number of initial vertices as well as changing the
triangulation of the meshes to reduce the number

Figure 4: A coarse mesh (left) and the original
mesh (right) from the TOSCA dataset.

Figure 5: The fine meshes used for analysis in
addition to the wolf mesh. The cen-
taur, horse, and cat meshes are from the
TOSCA dataset, whereas the sphere
has been generated procedurally.

of triangles that have a poor aspect ratio. We
have performed these changes using MeshLab
[27]. The applied steps included the application
of Loop subdivision on local patches surrounding
triangles with poor aspect ratios, and applying
MeshLab’s isotropic explicit remeshing (based
on [28]) in order to improve the connectivity of
the mesh.

We have generated the sphere mesh in Figure 5
by constructing one hemisphere in a regular fash-
ion and applying a sinusoidal displacement to
the other hemisphere. The triangular mesh was
created from a point cloud using the PyVista li-
brary [29] and post-processed using MeshLab.

6 Results & Discussion

In this section, we discuss the results of our
curvature-enhanced extension and compare it
to original neural subdivision. Section 6.1 de-
scribes our parameter and network size studies,
Section 6.2 compares the visual characteristics
of our extension against the baseline, and Sec-
tion 6.3 demonstrates results achieved when the
curvature network uses reference curvatures that
were mapped to the ground truth rather than to
an intermediate step of the mesh. In our experi-



Objective metrics for varying γ

γ

Figure 6: The MSE and HD test losses for the angle deficit, scalar mean, and vector mean curvature
approximations for a range of different values of γ using 200 wolf meshes for training and 30
wolf meshes for testing. It becomes clear that each method can improve on the base network,
but the vector mean curvature method has the best improvement for the HD.

ments, subdivision has been applied two times.

6.1 Study with Objective Measures

We now discuss the impact on objective measures
when varying the parameter γ from Equation 5
(Section 6.1.1), the network size (Section 6.1.2),
as well as the mesh (Section 6.1.3). During the
training of the network, we saw similar conver-
gence properties as those reported in [2].

6.1.1 Parameter Study

First, we apply a parameter search on the value
of γ in Equation 5 for all three discrete curvature
approximation methods mentioned in Section 3.2.
Figure 6 shows the objective measure scores pro-
duced by different values of γ. All of the curva-
ture methods produce an improvement over the
base model. More interestingly, each curvature
method also produces an improvement over the
curvature network model trained with γ = 0.0,
that is, without the curvature loss. This makes
sense since the introduction of curvature adds
new information to the network, and the network
is able to learn based on the additional informa-
tion. When γ = 0.0, this advantage disappears
since the curvature loss is not used.

Each curvature method performs quite well,
outperforming the base network. The angle
deficit networks produce the worst upgrade over
the base network, bottoming out at a Hausdorff
distance of 0.03097. The scalar mean curvature
network produces the lowest Hausdorff distance
of 0.03078. The vector mean curvature network
improves on this, reaching the lowest Hausdorff
distance of 0.03046. This represents a Hausdorff
distance improvement of 6.3% over the base net-
work. The corresponding mean squared error
of 1.175 · 10−5 represents an improvement of
8.1% over the base network, which is a relatively
modest improvement compared to the 38.1% de-
crease in Hausdorff distance and an 88.8% de-
crease in MSE from Loop subdivision to neural
subdivision. This makes sense since our aim has
been to improve details rather than comprehen-
sively improve the subdivision scheme.

It should be noted that both metrics repre-
sent a different deviation from the ground truth
mesh: the mean squared error represents how
close a vertex-to-vertex correspondence between
two sets of vertices is. This correspondence fixes
which vertex should be compared to which other
vertex, and therefore it does not take into account
that the vertices might represent the ground truth
better collectively than as a one-to-one corre-



spondence. The Hausdorff distance accounts for
this by computing the maximum distance that
one needs to travel from any vertex to its nearest
vertex in the other set, yielding an upper bound
on the deviation from the ground truth across
the entire collection of vertices. Therefore, we
have chosen to use Hausdorff distance as the
primary metric for comparing the objective mea-
sures. Based on this, the vector mean curvature
network with γ = 0.0001 produces the best result
and we use it in the remainder of this work.

6.1.2 Network Size Study

We now demonstrate that increasing the network
size from the standard setting has only negligible
impact on performance for both the original as
well as our extended model (using the best per-
forming model from Section 6.1.1). To this end,
we have increased the size of the base (original)
network both in terms of hidden layer size and
feature vector size (from 32 first to 64 and then to
128). For the network size of 64, the network pro-
duced a test result with MSE = 1.281 ·10−5 and
HD = 0.03248, and for the network size equal
to 128, the test result was MSE = 1.275 · 10−5

and HD = 0.03241. For the curvature-enhanced
network, this also did not produce a significant
change in performance: for γ = 0.0001, the new
performance result for network size equal to 64
was MSE = 1.182 ·10−5 and HD = 0.03051, and
for network size equal to 128 the result was MSE
= 1.186 ·10−5 and HD = 0.03053.

These results suggest that the improvements
seen in Section 6.1.1 cannot be achieved by sim-
ply increasing the size of the base network, at
least not without fundamentally changing the ar-
chitecture (which is outside of the scope of this
research). Similarly, the curvature enhancement
does not appear to improve in any significant
manner when the network size is increased.

6.1.3 Mesh Study

Table 1 shows the test error of the other meshes
discussed in Section 5 across 30 coarse meshes
for the curvature network and the base network.
From the table, it becomes clear that some
meshes are significantly improved by the curva-
ture application, whereas others see less of an im-
pact or the metrics might even be slightly worse

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 7: The meshes of the ground truth (a), cur-
vature network (b), base network (c),
and the coarse mesh (d). The results
of the curvature and base networks are
similar, but differences can be seen in
the ears and in the cheek.

according to the metric. In general, note that our
approach particularly improves the accuracy in
challenging parts of the mesh and might exhibit
similar or even slightly worse performance in
other parts. Below, we now have a closer look
by means of visual inspection and discuss the
results in detail (Section 6.2).

6.2 Visual Comparison

We now discuss the visual quality of the curva-
ture network results for different meshes.

Wolf In general, Figure 7 indicates that the cur-
vature network and the base network produce
similar results, which is in line with the results in
Section 6.1. Despite the high structural similar-
ity, Figure 7 shows a few noticeable differences.
One difference can be seen in the ears: the left
ear (on the right side for the viewer) in the subdi-
vided mesh from the curvature network does not
have the fold that is visible in the base network.
This fold does not correspond to any structure
in the ground truth mesh, but is present in the
coarse mesh. Additionally, the ear of the curva-
ture network mesh is more pointed like the ear of
the ground truth mesh, whereas the base network
mesh has the flat top that the coarse mesh has.

Further differences between the two networks
can be observed. First, the shading on the cheek
near the mane is lighter in the curvature network
mesh and darker in the base network mesh, which
is more in line with the ground truth mesh. Sec-
ondly, the base network has reproduced a fold at
the bottom of the brow more strongly than the
curvature network. We believe that this fold is



Mesh Base MSE Base HD Curv. MSE Curv. HD
Centaur 3.897 ·10−5 0.06224 2.920 ·10−5 0.04327
Horse 1.633 ·10−5 0.03868 1.577 ·10−5 0.03893
Cat 7.282 ·10−6 0.02072 7.742 ·10−6 0.02557
Sphere 7.158 ·10−6 0.02337 6.151 ·10−6 0.02118

Table 1: Test errors for the meshes discussed in Section 5. The results for the centaur and sphere are
better, the result for the horse is roughly the same and the result for the cat is slightly worse.

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 8: The meshes of the ground truth (a), cur-
vature network (b), base network (c),
and the coarse mesh (d). Differences
are visible in the shape of the nose and
the eye socket.

supposed to represent the remainder of an eye
in the coarse mesh, but the reconstruction of the
fold is in the wrong location. Due to this, the
base network is very partially reconstructing an
erroneously positioned feature, which is an error
that the curvature network has managed to avoid.

Figure 8 shows a side view of the meshes. A
difference can be seen in that the nose of the
curvature network mesh points slightly more up-
ward, which is more in line with the ground truth
mesh. Another noticeable difference is the eye
socket, since the base network mesh has an eye
socket that stretches slightly further backward
than the eye socket of the curvature network. The
results of the curvature network matches more
closely with the ground truth for this feature.

Figure 9 shows another small difference. The
tongue of the curvature network has a slightly
clearer separation from the jaw than the base
network and the tongue tip is positioned slightly
higher. The curvature network results are closer
to those of the ground truth mesh.

Centaur Figure 10 shows the centaur mesh.
The overall shape between the two networks is
similar, but some parts are significantly differ-
ent. Most importantly, the back of the horse part

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 9: The meshes of the ground truth (a), cur-
vature network (b), base network (c),
and the coarse mesh (d). The tongue
shape is different between (b) and (c).

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)
Figure 10: The meshes of the ground truth (a),

curvature network (b), base network
(c), and the coarse mesh (d). The
shape of the centaur mesh along the
back of the horse and human part
is more accurately reconstructed, but
there are some artifacts at the fingers.

of the centaur is positioned lower in the base
network than in the curvature network. The cur-
vature network is closer to the ground truth in
this region. The difference in elevation is quite
noticeable, and will have a significant impact on
the objective measures. This could be one of the
explanations why the objective measures are sig-
nificantly better for the curvature network. The
hooves of the curvature network mesh are also
larger, which matches the hooves of the ground



(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 11: The meshes of the ground truth (a),
curvature network (b), base network
(c), and the coarse mesh (d). The cur-
vature network produces slightly bet-
ter results for the left ear than the base
network, but there are small artifacts
on the right ear.

truth mesh more closely. The contour of the latis-
simus dorsi muscle is also wider in the curvature
network than in the base network, and is closer
to that of the ground truth mesh. The curvature
network appears more able to reconstruct the
contour of the centaur mesh.

One issue with the centaur mesh can be seen
in the fingers where small self-intersections oc-
cur. This appears to happen for long and narrow
features such as fingers. An explanation for this
could be that the curvature varies very rapidly at
the tip of these constructs, leading to instabilities
in the curvature network.

Horse Figure 11 shows an interesting result for
the horse mesh: the height of the left ear has
been reduced by the subdivision results, both for
the base network and for the curvature network.
Also, the ear looks somewhat similar to the ear
of the wolf mesh. The style transfer of the neural
subdivision, which was reported by [2], might ex-
plain why the ear takes on a rounder and shorter
shape. Comparing the base and curvature net-
works for this ear, the curvature network retains
the shape of the horse ear a little bit better.

The right ear, which is also a long and narrow
feature, shows some of the same artifacts that
the centaur mesh did for the fingers. A similar
phenomenon appears at the nostrils.

Cat The results for the cat mesh in Figure 12
look quite similar overall, but one clear advan-

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)Figure 12: The meshes of the ground truth (a),
curvature network (b), base network
(c), and the coarse mesh (d). The left
ear has a better rounding for the cur-
vature network mesh than for the base
network mesh, but some artifacts ap-
pear on the right ear.

(a) (b) (c) (d)

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 13: The meshes of the ground truth (a),
curvature network (b), base network
(c), and the coarse mesh (d). The re-
sults in (b) and (c) are similar; only
a few subtle lighting changes can be
seen, showing a slightly better recon-
struction from the curvature network.

tage that the curvature network mesh exhibits is
that the left ear has a more rounded appearance
than the base network mesh. This is more in line
with the ground truth mesh, which has rounder
ears than either subdivision result. Another ad-
vantage is seen at the jawline: the base network
mesh has a highlight that stretches further back
than the curvature network mesh, which in turn
stretches further back than the ground truth mesh.

It can further be seen that the right ear shows
spikes. The right ear is more pointed than the
left ear of the mesh, which could explain why the
right ear suffers from these spikes while the left
ear does not.

Sphere We use the sphere mesh (Figure 13) to
check whether the curvature network hallucinates
inappropriate detail in the hemisphere that does



not have the sinusoidal displacement applied to it.
The curvature network result shows that the non-
sinusoidal hemisphere does not introduce any
undue curvature. This implies that the network is
able to correctly distinguish between areas with
and without sinusoidal patterns.

6.3 Using Ground Truth Curvature

In addition to assessing the network when train-
ing with curvatures extracted from the decima-
tion process, we have also experimented with cur-
vatures mapped back to the ground truth. When
considering this change, it would make sense that
the network is able to extract extra information
from the curvature, since the curvature encodes
explicit information that is more difficult to en-
code when only considering half flaps. This way
ground truth curvature should also introduce new
information to the learning process. Figure 14
shows that new detail has been introduced in the
features of the mesh, for example on the nose
and the toes of the wolf. However, the mesh also
displays noticeable artifacts, especially around
the ear of the wolf.

One explanation for these results is that the
learning process has overfitted on the wolf mesh.
Curvature can vary significantly across the mesh,
which makes it sensitive to the exact mapping
that is being used. When the reference curvatures
are located in a single fixed ground truth mesh,
then the mapping from coarse objects allows for
overfitting on these exact curvatures, and small
deviations from these curvatures will lead to the
introduction of artifacts. On the other hand, when
the network uses curvatures from the decimation
process, then a level of stochastic variation in
the curvature has been introduced. This prevents
the mesh from overfitting curvature while still
learning additional information.

7 Conclusion

In this paper, we propose an extension to neural
subdivision [2] that yields significantly improved
mesh quality. In particular, we introduce curva-
ture information into the learning process via two
curvature modules. We found intermediate cur-
vature value representations using the same map-
ping procedure as in [2] to find corresponding

(a) (b) (c) (d)(a) (b) (c) (d)(a) (b) (c) (d)
Figure 14: The meshes of the ground truth (a),

curvature network (b), base network
(c), and the coarse mesh (d). The cur-
vature network introduces more detail
into the tip of the nose and into the
toes for the wolf mesh than the base
network does, but also shows artifacts
in the reconstruction of the ear.

curvatures. We subsequently added a curvature
loss term to the loss function and used the new
loss function to train the network.

Our extended network in many cases produces
a better result than the original version both visu-
ally and in performance metrics, e.g. with a 6.3%
improvement in the Hausdorff distance and an
8.1% improvement in the mean squared error for
the wolf mesh. Note that we aimed to manipulate
the detail representation rather than significantly
change the overall positioning of the vertices. We
also demonstrated that our performance improve-
ment is due to the introduction of the curvature
information, rather than the increase in size of
the network itself.

While our extension succeeds in providing
better mesh quality overall, our evaluation also
showed that there are still open challenges to ad-
dress in future work. In particular, our approach
could be improved to address the instabilities
occurring at long and narrow features. For this,
we plan to consider other interpolation schemes
for interpolating the curvature across the trian-
gles, improved curvature approximations such
as by employing the full curvature tensor, and
other more sophisticated approaches to extract-
ing curvature information from the ground truth
mesh. Using other network types could also be
a promising way of improving the performance
of the network, especially sequential network
architectures such as recurrent neural networks.
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[11] C De Boor, K Höllig, and S Riemenschnei-
der. Box splines, volume 98 of Applied
Mathematical Sciences. Springer-Verlag,
New York, 1993.

[12] A. Vlachos, J. Peters, C. Boyd, and J. L.
Mitchell. Curved PN triangles. In Proceed-
ings of the 2001 symposium on interactive
3D graphics, pages 159–166. ACM, 2001.

[13] T Boubekeur and C. Schlick. QAS: Real-
time quadratic approximation of subdivi-
sion surfaces. In 15th Pacific Conference
on Computer Graphics and Applications,
pages 453–456. IEEE, 2007.

[14] T. Boubekeur and M. Alexa. Phong tessel-
lation. In ACM Transactions on Graphics,
volume 27, 2008.

[15] S. Schaefer, Vouga. E., and R. Goldman.
Nonlinear subdivision through nonlinear
averaging. Computer Aided Geometric De-
sign, 25(3):162–180, 2008.

[16] L. Yu et al. PU-Net: Point cloud upsam-
pling network. In IEEE Conference on
Computer Vision and Pattern Recognition,
pages 2790–2799. IEEE Computer Society,
2018.

[17] Y. Wang et al. Patch-based progressive 3D
point set upsampling. In Conference on
Computer Vision and Pattern Recognition,
2019.

[18] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-
A. Heng. PU-GAN: A point cloud upsam-
pling adversarial network. In IEEE/CVF
International Conference on Computer Vi-
sion, pages 7207–7211. IEEE, 2019.

[19] M. M. Kazhdan and H. Hoppe. Screened
poisson surface reconstruction. ACM Trans-
actions on Graphics, 32(3):29:1–29:13,
2013.

[20] A. Ranjan, T. Bolkart, S. Sanyal, and M. J.
Black. Generating 3D faces using convo-
lutional mesh autoencoders. In Proceed-
ings of the 15th European Conference on
Computer Vision Part III: Lecture notes in
Computer Science, volume 11207, pages
725–741, 2018.



[21] Q. Tan, L. Gao, Y.-K. Lai, and S. Xia.
Variational autoencoders for deforming 3D
mesh models. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages
5841–5850. IEEE Computer Society, 2018.

[22] N. Wang et al. Pixel2Mesh: Generating 3D
mesh models from single RGB images. In
Proceedings of the 14th European Confer-
ence on Computer Vision Part XI: Lecture
Notes in Computer Science, volume 11215,
pages 55–71, 2018.

[23] C. Wen et al. Pixel2Mesh++: Multi-view
3D mesh generation via deformation. In
IEEE/CVF International Conference on
Computer Vision, pages 1042–1051. IEEE,
2019.

[24] M. Garland and P. S. Heckbert. Surface
simplification using quadric error metrics.
In Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive
Techniques, pages 209–216. Association for
Computing Machinery (ACM), 1997.

[25] E. Vouga. Lectures in discrete differ-
ential geometry 3 – discrete surfaces.
https://www.cs.utexas.edu/users/
evouga/uploads/4/5/6/8/45689883/
notes3.pdf, 2014. Accessed: 17-03-
2022.

[26] M. Bronstein et al. Geometric deep learn-
ing: Going beyond Euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42,
2017.

[27] Paolo Cignoni, Marco Callieri, Massim-
iliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. MeshLab:
an Open-Source Mesh Processing Tool. In
Vittorio Scarano, Rosario De Chiara, and
Ugo Erra, editors, Eurographics Italian
Chapter Conference. The Eurographics As-
sociation, 2008.

[28] H. Hoppe et al. Mesh optimization. In SIG-
GRAPH ’93: Proceedings of the 20th an-
nual conference on Computer graphics and
interactive techniques, pages 10–26. Asso-
ciation for Computer Machinery, 1993.

[29] C. Bane Sullivan and Alexander A. Kaszyn-
ski. PyVista: 3D plotting and mesh analysis
through a streamlined interface for the Visu-
alization Toolkit (VTK). Journal of Open
Source Software, 4(37):1450, 2019.

https://www.cs.utexas.edu/users/evouga/uploads/4/5/6/8/45689883/notes3.pdf
https://www.cs.utexas.edu/users/evouga/uploads/4/5/6/8/45689883/notes3.pdf
https://www.cs.utexas.edu/users/evouga/uploads/4/5/6/8/45689883/notes3.pdf

	Introduction
	Related Work
	Background
	Neural Subdivision
	Discrete Curvature

	Curvature-Enhanced Neural Subdivision
	Evaluation Dataset
	Results & Discussion
	Study with Objective Measures
	Parameter Study
	Network Size Study
	Mesh Study

	Visual Comparison
	Using Ground Truth Curvature

	Conclusion

