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Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse 

pathophysiological processes. To characterise the genetic contribution to these processes 

across ancestry groups, we aggregate genome-wide association study (GWAS) data from 

2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We 

identify 1,289 independent association signals at genome-wide significance (P<5x10
-8

) that 

map to 611 loci, of which 145 loci are previously unreported. We define eight non-

overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic 

trait associations. These clusters are differentially enriched for cell-type specific regions of 

open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine 

cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 

137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their 

association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more 

strongly associated with coronary artery disease and end-stage diabetic nephropathy than 

an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related 

processes in the development of vascular outcomes. Our findings demonstrate the value 

of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the 

aetiological heterogeneity driving the development and progression of T2D, which may 

offer a route to optimise global access to genetically-informed diabetes care. 

 

Diabetes mellitus is a huge public health burden, with an estimated prevalence of 537 

million adults worldwide in 2021, of whom >90% are affected by type 2 diabetes (T2D)
1
. The 

biological processes through which T2D and its primary disabling complications of vascular 

and renal disease develop are diverse, and include insulin secretion and insulin resistance. 

This aetiological heterogeneity leads to substantial variability in patient phenotypes, 

including age of disease onset, manifestation of disease complications, and response to 

management strategies
2,3

. Whilst environment and lifestyle are well-established risk factors 

for T2D, the disease heritability has been estimated to be 69% amongst individuals in the 

age range of 35 to 60 years
4
. The largest previous genome-wide association studies (GWAS) 

of T2D have identified >500 risk loci
5,6

, which demonstrated variable patterns of association 

with clinical features mediated via effector genes acting through distinct molecular 

mechanisms that are often cell-type specific
7,8

. Through the newly-established Type 2 

Diabetes Global Genomics Initiative, we present findings from the largest T2D GWAS meta-

analysis to date, comprising >2.5 million individuals of diverse ancestry and a near three-fold 

increase in effective sample size over previous efforts
5,6

. We leverage the power afforded by 

this increased sample size with emerging single-cell functional genomics data derived from 

disease-relevant tissues to disentangle the aetiological heterogeneity of T2D. For the first 

time across multiple ancestry groups, we construct partitioned genetic risk scores (GRS)
9
 

and assess their association with T2D-related macrovascular outcomes and progression to 

microvascular complications in individuals with T2D. Taken together, our findings showcase 

the value of analyses conducted in multiple ancestries to understand the pathophysiological 

processes driving development of T2D and risk of vascular complications, and advance 

global opportunities for clinical translation of T2D GWAS findings.  

 

Study overview. We assembled GWAS including 428,452 T2D cases and 2,107,149 controls 

(effective sample size of 1,246,658) (Supplementary Tables 1 and 2). We organised these 

GWAS into five groups representing individuals with similar genetic background and refer to 

these as “ancestry groups”. Specifically, we considered: a European ancestry group (EUR, 
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60.3% of the effective sample size); an East Asian ancestry group (EAS, 19.8%); an African 

ancestry group, including admixed African Americans (AFR, 10.7%); a Hispanic group, who 

share genetic similarity with populations from the Americas, Africa, and Europe (HIS, 5.9%); 

and a South Asian ancestry group (SAS, 3.3%). The GWAS in each ancestry group were 

imputed to reference panels from the Trans-Omics for Precision Medicine Program
10

 (42.1% 

of the effective sample size), Haplotype Reference Consortium
11

 (14.7%), 1000 Genomes 

Project
12,13

 (11.8%), or whole-genome sequence data specific for and genetically similar to 

individuals in the study (31.4%). Subsequent association analyses accounted for study-level 

population stratification and relatedness, and adjusted for age and sex, where appropriate, 

and additional study-specific covariates (Supplementary Table 3, Methods). We analysed 

bi-allelic autosomal single nucleotide variants (SNVs) with minor allele frequency (MAF) 

≥0.5% in at least one of the five ancestry groups from the 1000 Genomes Project
13

. 

 

Discovery of 145 previously-unreported T2D loci. We aggregated association summary 

statistics across GWAS via multi-ancestry meta-regression, implemented in MR-MEGA
14

, 

which allows for allelic effect heterogeneity that is correlated with ancestry. MR-MEGA is 

not restricted to broad continental ancestry categories but represents ancestry as 

multidimensional and continuous axes of genetic variation, which better reflect the 

continuum of human genetic diversity and demographic history
15

. We included three axes of 

genetic variation as covariates that separated GWAS from different ancestry groups, but 

which also revealed finer-scale population differences within ancestry groups 

(Supplementary Figure 1, Methods). Accounting for ancestry-correlated allelic effect 

heterogeneity among GWAS in the meta-regression provided better control for residual 

structure than a fixed-effects meta-analysis, as measured by the genomic control inflation 

factor (λGC=1.120 and λGC=1.396, respectively). At the conventional genome-wide 

significance threshold (P<5x10
-8

), we identified 1,289 distinct T2D association signals that 

were represented by independent index SNVs that were not in linkage disequilibrium (LD), 

defined as r
2
<0.05 in all ancestry groups from the 1000 Genomes Project

13
 (Supplementary 

Figure 2, Supplementary Table 4, Methods). The 1,289 association signals mapped to 611 

loci, of which 145 loci (23.7%) have not been previously reported in T2D GWAS. We 

observed multiple distinct association signals at 235 (38.5%) loci, of which 34 loci were 

represented by more than five index SNVs. At association signals mapping to loci not 

previously reported for T2D, index SNVs were predominantly common (MAF >5% in at least 

one ancestry group) with odds-ratios (ORs) <1.1 (Supplementary Figure 3).  

 

T2D association signals are enriched for ancestry-correlated heterogeneity. Previous multi-

ancestry GWAS have demonstrated widespread heterogeneity in allelic effects at T2D 

association signals across ancestry groups
6,16

. Such heterogeneity is not driven by variation 

in allele frequency between ancestry groups, but may reflect differences in LD structure, or 

interactions with environment or polygenic background. We took advantage of the meta-

regression model to partition heterogeneity into an ancestry-correlated component 

explained by three axes of genetic variation, and a residual component reflecting 

differences in environmental exposures (that are not correlated with ancestry) and/or study 

design (Supplementary Table 5). We observed 127 (9.9%) independent T2D association 

signals with significant evidence for ancestry-correlated heterogeneity (PHET<3.9x10
-5

, 

Bonferroni correction for 1,289 signals). We would expect <1 signal to meet this threshold 

of significance, highlighting that ancestry-correlated heterogeneity is strongly enriched at 
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T2D associations (one-sided binomial test P<2.2x10
-16

). In contrast, we observed significant 

evidence of residual heterogeneity at only 4 (0.3%) association signals (one-side binomial 

test P=0.031). These results therefore suggest that differences in allelic effects at index SNVs 

are more likely correlated with genetic ancestry than due to other factors that vary between 

GWAS. 

 We next sought to understand better the drivers of differences in allelic effects 

between GWAS at the 127 association signals with significant evidence of ancestry-

correlated heterogeneity. To do this, we assessed the contribution of each of the three axes 

of genetic variation to heterogeneity (Methods). For 118 (92.9%) signals, allelic effect sizes 

were most strongly associated with the first two axes of genetic variation, which separate 

AFR, EAS, and EUR GWAS (Supplementary Figure 1, Supplementary Table 6). This may 

simply reflect power to detect heterogeneity because these three ancestry groups make the 

largest contributions to the effective sample size of the multi-ancestry meta-analysis. The 

magnitude and direction of the association of index SNVs with these two axes reflected 

differences in allelic effect size between AFR and EAS GWAS on the AFR-EAS axis, and AFR 

and EUR GWAS on the AFR-EUR axis (Supplementary Figure 4). The most significant 

evidence of ancestry-correlated heterogeneity was observed for the T2D association signal 

at the HNF1A locus indexed by rs1169299 (PHET=4.8x10
-35

). This index SNV was negatively 

associated with the AFR-EAS axis (PHET=2.7x10
-11

), and positively associated with the AFR-

EUR axis (PHET=4.6x10
-9

), corresponding to an AFR allelic effect (OR=1.02) that was 

intermediate between the EAS and EUR allelic effects (OR=0.95 and OR=1.05, respectively). 

In contrast, the association signal indexed by rs2237884, at the locus encompassing INS, 

IGF2, and KCNQ1, was not associated with either the AFR-EAS axis (PHET=0.61) or AFR-EUR 

axis (PHET=0.56), indicating no difference in allelic effects between AFR, EAS, and EUR GWAS 

(OR=1.03 for all three ancestry groups). Instead, the heterogeneity for this signal was driven 

by association with the third axis of genetic variation (PHET=2.8x10
-8

), which separates HIS 

and SAS GWAS (OR=1.01 and OR=0.97, respectively). 

Ancestry-correlated heterogeneity can occur because of interaction between index 

SNVs and environmental/lifestyle factors that vary between ancestry groups, if not 

accounted for in the association analysis
17

. We therefore investigated whether ancestry-

correlated heterogeneity could be explained by differences in the distribution of body mass 

index (BMI) across ancestry groups (Supplementary Figure 5). To do this, we extended the 

MR-MEGA meta-regression model to allow for allelic effect heterogeneity at index SNVs due 

to mean BMI in controls, in addition to variation by ancestry (Methods). Across all index 

SNVs, there was a negative correlation between T2D risk and BMI in controls 

(Supplementary Table 7), where the mean reduction in log-OR per unit of BMI was 0.0016 

(P=9.6x10
-53

). After adjustment for BMI, the number of independent T2D associations with 

significant evidence for ancestry-correlated heterogeneity decreased from 127 (9.9%) to 49 

(3.8%). These results indicate that ancestry-correlated heterogeneity at T2D index SNVs can 

be partly but not fully explained by differences in the distribution of BMI between ancestry 

groups. 

 

The contribution of under-represented populations to evidence for locus discovery. 

Despite the global burden of common complex diseases, including T2D, GWAS are biased 

towards EUR and EAS ancestry groups
18

. Failure to detect T2D association signals that 

contribute to disease risk outside of these ancestry groups limits opportunities for clinical 

translation of GWAS into under-represented ancestries and has the potential to exacerbate 
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health disparities
19

. This multi-ancestry meta-analysis includes 98,060 T2D cases and 

198,020 controls from AFR, HIS, and SAS GWAS (19.9% of the effective sample size), which 

substantially increases sample sizes in these under-represented groups over previous 

efforts
5,6,20

. To assess their contribution to the discovery of T2D association signals, we 

repeated the meta-regression using only EAS and EUR GWAS, including just one axis of 

genetic variation needed to separate these two ancestry groups (Supplementary Figure 1, 

Methods). Of the 1,289 association signals identified in the multi-ancestry meta-analysis, 

589 did not retain genome-wide significance after exclusion of AFR, HIS, and SAS GWAS 

(Supplementary Figure 6, Supplementary Table 8), emphasizing the power of population 

diversity for locus discovery. 

 

Eight mechanistic clusters of T2D index SNVs with distinct cardiometabolic profiles. To 

understand the genetic contribution to phenotypic heterogeneity in T2D, we classified the 

1,289 index SNVs according to their profile of associations (aligned to the T2D risk allele) 

with 37 cardiometabolic phenotypes from the largest available GWAS. These included 

glycaemic traits, anthropometric measures, body fat and adipose tissue volume, blood 

pressure, circulating plasma lipid levels, and biomarkers of liver function and lipid 

metabolism
21-29

 (Supplementary Table 9). We applied an unsupervised “hard clustering” 

approach with imputation of missing phenotype associations, which defines non-

overlapping but exhaustive subsets of index SNVs with similar cardiometabolic profiles 

(Methods). According to the majority rule across 27 indices of cluster performance
30

, eight 

clusters of index SNVs was considered “optimal” (Figure 1, Table 1, Supplementary Figure 7, 

Supplementary Tables 10 and 11). Despite differences in the methods and phenotypes used 

for clustering compared to previous efforts
7,8,31

 (Methods), there is clear overlap in the 

cardiometabolic features and loci of five of the identified clusters with those previously 

reported, representing beta-cell dysfunction with positive or negative association with 

proinsulin (PI), and insulin resistance mediated via obesity, lipodystrophy, and liver/lipid 

metabolism. However, by increasing the number of index SNVs in the clustering by nearly 

four-fold over previous efforts, we provide a more granular view of the biological processes 

through which T2D associations impact disease, and highlight previously-unreported 

clusters of signals with cardiometabolic profiles that are representative of the metabolic 

syndrome, body fat, and residual glycaemic effects. We observed significant differences in 

allelic effects on T2D between the eight clusters (P<2.2x10
-16

), with weaker associations 

observed at index SNVs assigned to the three previously-unreported residual glycaemic, 

body fat, and metabolic syndrome clusters (Supplementary Figure 8, Supplementary Table 

12).  

T2D risk alleles at index SNVs in the two beta-cell dysfunction clusters are associated 

with increased fasting glucose (FG), two-hour glucose, and glycated haemoglobin (HbA1c), 

and with decreased fasting insulin (FI). Index SNVs in both clusters are also associated with 

PI, but with opposite directions of effect for the T2D risk allele. These findings are consistent 

with observed differences in directions of effect of PI-associated SNVs with FG
21

, which 

differentiate signals that reflect defects in the insulin synthesis pathway that occur 

upstream (decreased PI) or downstream (increased PI) of the first enzymatic step of the 

conversion of PI to insulin and C-peptide
32

. The beta-cell +PI cluster, where the T2D risk 

allele is associated with increased PI, comprises 91 index SNVs, which include T2D 

associations that map to loci encompassing genes with established roles in beta-cell 

function (such as TCF7L2 and CDKAL1). The beta-cell -PI cluster, where the T2D risk allele is 
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associated with decreased PI, comprises 89 index SNVs, which include T2D associations that 

map to monogenic diabetes genes that play a role in beta-cell development (such as HNF1A, 

HNF4A, HNF1B, KCNJ11, and ABCC8).  

The clusters reflecting mechanisms of insulin resistance mediated via obesity, 

lipodystrophy, and liver/lipid metabolism, include index SNVs that are associated with 

anthropometric measures and circulating plasma lipid levels. T2D risk alleles at the 233 

index SNVs in the obesity cluster are associated with increased BMI, waist-hip ratio (WHR), 

body fat percentage and basal metabolic rate, and with decreased high-density lipoprotein 

(HDL) cholesterol. The index SNVs assigned to this cluster include T2D associations that map 

to loci previously reported for BMI (such as FTO and MC4R). The lipodystrophy cluster 

comprises 45 index SNVs for which T2D risk alleles are associated with increased FI, WHR, 

blood pressure, and triglycerides, and with decreased body fat percentage, gluteofemoral 

adipose tissue (GFAT) volume, and HDL cholesterol. Index SNVs in this cluster include T2D 

associations that map to loci previously reported for regional adiposity (such as IRS1, GRB14, 

and PPARG). T2D risk alleles at the three index SNVs assigned to the liver/lipid metabolism 

cluster are associated with increased liver fat and liver-related biomarkers, and with 

decreased low-density lipoprotein cholesterol and total cholesterol. These index SNVs map 

to loci that have been previously implicated in non-alcoholic fatty liver disease (such as 

TM6SF2 and PNPLA3). 

The cardiometabolic profiles of the three remaining clusters are less well-defined, 

likely reflecting the weaker T2D associations of index SNVs assigned to them 

(Supplementary Figure 8). T2D risk alleles at the 166 index SNVs assigned to the metabolic 

syndrome cluster are associated with increased FG, WHR, triglycerides, and blood pressure, 

and with decreased HDL cholesterol, which together are used to define the syndrome. T2D 

risk alleles in this cluster are also associated with increased FI, and with accumulations of 

unhealthy fat depots: increased visceral adipose tissue (VAT) volume and liver fat, and with 

decreased GFAT volume. Observationally, individuals with the metabolic syndrome are at 

increased risk of T2D
33

, although Mendelian randomisation studies indicate that a causal 

effect is driven by increased waist circumference and increased FG
34

. T2D risk alleles at the 

273 index SNVs assigned to the body fat cluster are associated with increased abdominal 

subcutaneous adipose tissue volume, VAT volume, and body fat percentage. Whilst the 

profile of associations with cardiometabolic phenotypes share these features in common 

with obesity-mediated insulin resistance, index SNVs in the body fat cluster are not strongly 

associated with BMI, lipid levels, or basal metabolic rate. Previous investigations have 

highlighted that body fat percentage is predictive of abnormal blood glucose in individuals 

with a healthy BMI
35

. Finally, T2D risk alleles at the 389 index SNVs assigned to the residual 

glycaemic cluster are most strongly associated with increased FG and HbA1c, but unlike the 

two beta-cell clusters, are not associated with PI or decreased FI. 

 

Clusters are differentially associated with insulin-related endophenotypes. The clustering 

provides a framework to better understand the diverse physiological processes through 

which T2D develops. We assessed the association of index SNVs with insulin-related 

endophenotypes that were not used for clustering and derived from hyperinsulinemic-

euglycemic clamp assessments and oral glucose tolerance tests (OGTT)
36

, and homeostatic 

model assessment measures of beta-cell function (HOMA-B) and insulin resistance (HOMA-

IR)
37

 (Methods). We observed significant heterogeneity in the effects of T2D risk alleles at 

index SNVs between clusters on HOMA-B (PHET<2.2x10
-16

), HOMA-IR (PHET=4.1x10
-15

), insulin 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23287839doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23287839
http://creativecommons.org/licenses/by-nc/4.0/


secretion (OGTT-derived area under the curve for insulin normalised for glucose from 

baseline to 30 minutes, PHET=0.0026), and insulin sensitivity (clamp-derived glucose infusion 

rate, PHET=0.026). T2D risk alleles at index SNVs showed a gradient of effects on these 

correlated measures across clusters (Supplementary Figure 9, Supplementary Tables 13 

and 14), representing a cline from insulin production and processing in the two beta-cell 

clusters (increased insulin sensitivity; decreased insulin secretion, HOMA-B, and HOMA-IR) 

through to insulin resistance (decreased insulin sensitivity; increased insulin secretion, 

HOMA-B, and HOMA-IR) that was most extreme in the lipodystrophy cluster. 

 

Clusters are differentially associated with insulin resistance-related disorders. T2D is 

genetically correlated with other insulin resistance-related disorders, including gestational 

diabetes mellitus (GDM) and polycystic ovary syndrome (PCOS). To understand the shared 

biological pathways driving these genetic correlations, we extracted association summary 

statistics for each T2D index SNV from the largest available published GWAS for both 

disorders
38,39

 (Methods). We observed significant heterogeneity in the effects of T2D risk 

alleles at index SNVs between clusters for both disorders (Supplementary Figure 10, 

Supplementary Table 15): GDM (PHET=7.0x10
-16

) and PCOS (PHET=0.00022). Index SNVs in the 

beta-cell +PI cluster demonstrated the strongest associations with GDM. This cluster 

includes T2D index SNVs that overlap with association signals previously reported for GDM, 

mapping to/near MTNR1B, CDKAL1, TCF7L2, and CDKN2A-CDKN2B, consistent with 

hyperglycaemia due to beta-cell dysfunction on a background of pregnancy-induced 

physiologic insulin resistance
40

. In contrast, PCOS is most strongly associated with index 

SNVs in the obesity cluster, consistent with previous reports that the genetic correlation 

with T2D is primarily driven by higher BMI
41

.  

 

Clusters are differentially enriched for cell-type specific regions of open chromatin. To gain 

insight into tissue-specific regulatory processes underpinning mechanistic clusters, we 

integrated T2D association signals with Assay for Transposase-Accessible Chromatin using 

sequencing (ATAC-seq) peaks for 222 cell types derived from adult and foetal tissues via 

single-cell atlases of chromatin accessibility (CATLAS and DESCARTES)
42,43

. This expands the 

range of cell types considered over previous efforts to understand cluster-specific 

enrichment for regulatory processes that were conducted only in bulk tissue or single-cell 

data in pancreatic islets
7,8,31

. Index SNVs assigned to six of the eight clusters were 

significantly enriched (P<0.00023, Bonferroni correction for 222 cell types) for regions of 

open chromatin that were specific to 20 cell types when compared to “null” SNVs that were 

not in LD with index SNVs, defined as r
2
<0.05, in any ancestry group (Figure 2, 

Supplementary Table 16, Methods).  

We observed significant enrichment for regions of open chromatin in foetal islets 

and adult neuroendocrine cells in pancreatic islets (alpha, beta, gamma, and delta) in the 

beta-cell +PI, beta-cell -PI, and residual glycaemic clusters. The beta-cell -PI cluster was also 

enriched in adult enterochromaffin cells, a type of enteroendocrine cell that plays an 

essential role in regulating intestinal motility and secretion in the gastrointestinal tract
44

. 

Enterochromaffin cells are a major target for GLP-1 and highly express GLP-1 receptor, 

whose agonists are widely used as medications for T2D
45

. The residual glycaemic cluster was 

also enriched in foetal and adult pancreatic ductal cells.  

Some cell types important in the pathogenesis of obesity, such as the hypothalamus 

in the central nervous system, are not sufficiently covered by CATLAS/DESCARTES, and so 
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were not available for this analysis. However, the obesity cluster was enriched for regions of 

open chromatin in adult pancreatic islets, although not as strongly as the beta-cell clusters. 

Enrichment was observed only for alpha, gamma, and delta cells, suggesting potential 

alternative pathways through which islets impact the development of T2D than through 

insulin secretion from beta cells. The obesity cluster was further enriched in foetal adrenal 

gland (chromaffin cells and adrenal neurons), foetal heart (ventricular cardiomyocytes), and 

foetal kidney (metanephric cells). Previous studies have reported enrichment of BMI 

loci/heritability for epigenomic annotations in pancreatic islets and adrenal gland
46,47

, 

consistent with our findings. 

The remaining four clusters (lipodystrophy, metabolic syndrome, body fat, and 

liver/lipid metabolism) were not significantly enriched for regions of open chromatin in 

pancreatic islets. The lipodystrophy cluster was enriched only in adult adipocytes, which 

confirms previous reports in bulk adipose tissue
8,31

. Consistent with these results, 

association signals for WHR, triglycerides, and HDL cholesterol, which are strongly impacted 

by index SNVs in the lipodystrophy cluster, have been shown to be enriched in candidate 

cis-regulatory elements in adipocytes
43

. The metabolic syndrome cluster was enriched in 

cells that reside in the walls of blood vessels (adult pericytes and foetal endothelial cells), 

foetal kidney (mesangial cells), and foetal fibroblasts. Association signals for systolic and 

diastolic blood pressure, a key component of the metabolic syndrome, have been shown to 

be enriched in candidate cis-regulatory elements in these cell types
43

. Endothelial 

dysfunction is not only a consequence of insulin resistance, but impairs insulin signalling to 

further reduce insulin sensitivity, thereby providing a pathophysiological mechanism that 

links metabolic and cardiovascular components of metabolic syndrome
48

. We observed no 

significant enrichments in the body fat cluster or liver/lipid metabolism cluster. 

 

Ancestry-correlated heterogeneity differs between mechanistic clusters. We next sought 

to investigate whether the observed ancestry-correlated differences in allelic effects on T2D 

between ancestry groups varied across mechanistic clusters. To do this, we compared the 

magnitude and direction of association of index SNVs in each cluster with the first two axes 

of genetic variation that drive ancestry-correlated heterogeneity at T2D association signals 

(Methods). We observed significant differences in mean Z-scores for association between 

clusters for both the AFR-EAS axis (P=5.0x10
-6

) and the AFR-EUR axis (P=1.5x10
-6

). Index 

SNVs in the two beta-cell clusters were most positively associated with the AFR-EAS axis, 

indicating allelic effects on T2D that were greater in EAS than in AFR and EUR GWAS 

(Supplementary Figure 11, Supplementary Table 17). In contrast, index SNVs in the 

lipodystrophy and obesity clusters were most positively associated with the AFR-EUR axis, 

indicating allelic effects on T2D that were greater in EUR than in EAS or AFR GWAS. These 

results indicate that ancestry-correlated heterogeneity varies between mechanistic clusters, 

which may have clinical implications for T2D management across ancestry groups.  

 

Cluster-specific partitioned GRS are associated with vascular outcomes across ancestry 

groups. The major complications in individuals with T2D are macrovascular outcomes 

including coronary artery disease (CAD), ischemic stroke, and peripheral artery disease, and 

progression to severe microvascular complications, including end-stage diabetic 

nephropathy (ESDN) and proliferative diabetic retinopathy. We tested for association of a 

cluster-specific partitioned GRS with these clinical outcomes in up to 137,559 individuals 

(including 10,159 T2D cases) across four ancestry groups (AFR, EAS, EUR, and HIS) from the 
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All of Us Research Program and Biobank Japan (Methods). These individuals were not 

included in the multi-ancestry meta-analysis, and so allowed us to avoid potential inflated 

type I error rates due to overlap between the discovery and testing datasets. To maximise 

sample size, we tested macrovascular outcomes in all individuals, adjusted for T2D status, 

and we tested microvascular complications only in individuals with T2D (Methods, 

Supplementary Table 18). We first conducted GRS association analyses within ancestry 

groups, and subsequently aggregated results across ancestry groups via fixed-effects meta-

analysis (Methods, Supplementary Table 19). We also tested the association of an overall 

GRS, agnostic to cluster membership, to assess the evidence that mechanistic clusters in the 

partitioned GRS are differentially associated with T2D-related clinical outcomes. Figure 3 

provides an overview of the associations of the overall GRS and each cluster-specific 

component of the partitioned GRS with the five T2D-related clinical outcomes across 

ancestry groups. 

 We observed significant positive association (P<0.0063, Bonferroni correction for 

eight clusters) of two components of the partitioned GRS with CAD: the lipodystrophy 

cluster (OR=1.04 per standard deviation of GRS, P=0.00020) and the obesity cluster 

(OR=1.03, P=0.0036). There was no evidence of heterogeneity in the effects of these two 

clusters on CAD across ancestry groups (Supplementary Figure 12, Supplementary Table 

19). Importantly, after adjustment for a CAD GRS derived from a recently-published multi-

ancestry meta-analysis of CAD GWAS
49

, the positive CAD association with both components 

of the GRS remained nominally significant (Supplementary Figure 13, Supplementary Table 

20): lipodystrophy cluster (OR=1.03, P=0.029) and obesity cluster (OR=1.04, P=0.011). These 

results demonstrate that additional information is provided by the partitioned GRS for 

association with CAD in individuals with T2D beyond a more general CAD GRS. CAD 

association signals have been reported to be enriched for annotations (from transcriptomics 

and epigenomics) in bulk tissues including aorta/arteries, heart, adrenal gland, and 

adipose
49-51

. This is in line with the observed enrichment of T2D index SNVs assigned to the 

obesity and lipodystrophy clusters in regions of open chromatin in foetal ventricular 

cardiomyocytes, foetal adrenal neuron and adult chromaffin cells in the adrenal gland, and 

adult adipocytes, providing a clear link to shared biological mechanisms driving 

development of both diseases. Whilst no components of the partitioned GRS were 

significantly associated with the other macrovascular outcomes, the obesity cluster had the 

strongest effect on both ischemic stroke (OR=1.04, P=0.022) and peripheral artery disease 

(OR=1.05, P=0.014). T2D risk alleles at index SNVs in the obesity cluster were strongly 

associated with increased C-Reactive Protein, indicating a potentially more pronounced role 

of inflammation in the development of ischemic stroke and peripheral artery disease than in 

CAD. We observed no significant evidence for association of the overall GRS with CAD 

(P=0.12), ischemic stroke (P=0.16), or peripheral artery disease (P=0.93). These results 

therefore highlight the advantages of the partitioned GRS over an overall GRS for detecting 

association with T2D-related macrovascular outcomes and providing insight into the 

biological processes that lead to these disease complications. 

 We observed significant positive association of the obesity cluster from the 

partitioned GRS with ESDN (OR=1.25, P=0.0022). We also observed a significant negative 

association of the beta-cell +PI cluster with ESDN (OR=0.82, P=0.0048). There was no 

evidence of heterogeneity in the effects of these two clusters on ESDN across ancestry 

groups, (Supplementary Figure 14, Supplementary Table 19), and the overall GRS was not 

associated with ESDN (P=0.97). T2D index SNVs assigned to the obesity cluster are enriched 
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for regions of open chromatin in foetal metanephric cells, which is consistent with the 

observation that association signals for estimated glomerular filtration rate, a measure of 

renal function used to define chronic kidney disease, are enriched for kidney tissue-specific 

regulatory annotations
52

. The obesity cluster from the partitioned GRS was also significantly 

positively associated with proliferative diabetic retinopathy (OR=1.19, P=0.0041), with no 

evidence of heterogeneity in effects across ancestry groups (Supplementary Figure 15, 

Supplementary Table 19). However, in contrast to ESDN, the overall GRS was more 

significantly associated with proliferative diabetic nephropathy (OR=1.32, P=4.3x10
-6

) than 

any component of the partitioned GRS. Taken together, these results suggest that ESDN is 

disproportionately associated with obesity and confirm previous reports that proliferative 

diabetic retinopathy is driven by hyperglycaemia
53

 and therefore more strongly associated 

with the overall burden of T2D risk variants. 

 

DISCUSSION 

 

T2D is a heterogeneous polygenic disease, which is typically diagnosed based solely on 

elevated glucose levels and treated without regard to the diverse pathophysiological 

processes that lead to the development and progression of hyperglycaemia. Instead, 

management strategies involve trial and error following treatment algorithms that are not 

informed by personalised pathways to disease. The complications of T2D have substantial 

morbidity and mortality and thus pose a huge public health burden. A more detailed 

understanding of the biological mechanisms through which the disease develops and 

progresses to T2D complications are therefore urgently needed and eagerly anticipated.  

To better understand the aetiological heterogeneity of T2D across diverse 

populations, we assembled the largest collection of T2D GWAS for five ancestry groups 

through the Type 2 Diabetes Global Genomics Initiative. By increasing the effective sample 

size by almost three-fold compared to previous efforts, we identified a total of 611 loci 

attaining genome-wide association significance, 145 (23.7%) of which have not been 

previously reported. Of the 1,289 signals mapping to these loci, 589 (45.7%) would not have 

been identified without inclusion of GWAS from under-represented ancestry groups. We 

observed a highly significant enrichment of T2D association signals with evidence of 

ancestry-correlated heterogeneity. BMI could not fully explain this enrichment, indicating 

that interactions with other environmental/lifestyle factors that vary with ancestry are also 

likely to contribute to the observed differences in allelic effects between GWAS.  

Within the landscape of the genetic architecture of T2D, we identified eight clusters 

of index SNVs with distinct profiles of associations with 37 cardiometabolic phenotypes, 

which defined pathophysiologic-relevant groupings. The addition of previously-unreported 

T2D signals identified through the multi-ancestry meta-analysis helped define three clusters 

that were not detected in previous clustering efforts
7,8,31

. These three clusters have 

cardiometabolic profiles that are consistent with T2D-related biology: residual glycaemic 

effects, accumulations of body fat, and the metabolic syndrome. Integration of cluster-

specific T2D association signals with single-cell chromatin accessibility data across diverse 

cell types provided new insights into distinct tissue-specific regulatory processes and 

biological pathways through which these mechanistic clusters are likely to lead to disease. 

Finally, we leveraged the information captured by these mechanistic clusters to develop a 

partitioned GRS that was more strongly associated with T2D-related macrovascular 

outcomes and ESDN than an overall T2D GRS. Whilst the effect sizes of the cluster-specific 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23287839doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23287839
http://creativecommons.org/licenses/by-nc/4.0/


components of the partitioned GRS were small, they enhance understanding of key 

biological processes driving heterogeneity in these clinical features of T2D phenotypes, and 

motivate future work to strengthen these effects through identification of additional, 

statistically-compelling T2D associations in larger sample sizes. Previous efforts have 

highlighted associations of cluster-specific components of a partitioned GRS with CAD and 

renal function in EUR populations
54

. For the first time across multiple ancestry groups, we 

demonstrated more significant associations of clinical outcomes with cluster-specific 

components of the partitioned GRS than with the overall GRS, suggesting that development 

of complications may be associated with genetic burden in particular biological pathways 

that is consistent between populations. 

Our findings demonstrate the value of integrating multi-ancestry GWAS of T2D and 

cardiometabolic traits with single-cell epigenomics across diverse tissues to disentangle the 

aetiological heterogeneity driving the development and progression of T2D across 

population groups. Improved understanding of the varied pathophysiological processes that 

link T2D to vascular outcomes may offer a route to genetically-informed diabetes care and 

global opportunities for the clinical translation of T2D GWAS findings. 
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FIGURE LEGENDS 

 

Figure 1. Heatmap of associations of 37 cardiometabolic phenotypes with eight 

mechanistic clusters of index SNVs for T2D association signals. Each column corresponds to 

a cluster. Each row corresponds to a cardiometabolic phenotype. The “temperature” of each 

cell represents the Z-score (aligned to the T2D risk allele) of association of the phenotype 

with index SNVs assigned to the cluster. *Phenotype is adjusted for body mass index. 

 

Figure 2. Heatmap of cluster-specific enrichments of T2D associations for cell type-specific 

regions of open chromatin derived from single-cell ATAC-seq peaks in adult and foetal 

tissue. Each column represents a mechanistic cluster. Each row represents a cell type that 

was significantly enriched (P<0.00023, Bonferroni correction for 222 cell types) for T2D 

associations in at least one cluster (indicated by an asterisk). The temperature of each cell 

defines the magnitude of the log-fold enrichment. The liver/lipid metabolism cluster is not 

presented because it includes only three T2D association signals and the regression model 

did not converge. 

 

Figure 3. Associations of the overall GRS and cluster-specific partitioned GRS with five 

T2D-related vascular outcomes in up to 137,559 individuals from multiple ancestry groups. 

Each of the panels summarise the associations of the overall GRS and each cluster-specific 

component of the partitioned GRS with coronary artery disease (CAD), peripheral artery 

disease (PAD), ischemic stroke (IS), end-stage diabetic nephropathy (ESDN), and 

proliferative diabetic retinopathy (PDR). The height of each bar corresponds to the log-odds 

ratio (beta) per standard deviation of the GRS, and the grey bar shows the 95% confidence 

interval. Analyses of T2D-related macrovascular complications (CAD, PAD, and IS) were 

undertaken in all individuals, with adjustment for T2D status. Analysis of microvascular 

complications were undertaken in individuals with T2D only. *P<0.05, nominal association. 

**P<0.0063, Bonferroni correction for eight clusters. 
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Table 1. Cardiometabolic profile, exemplar loci, and physiological impact of index SNVs at 

T2D association signals allocated to eight mechanistic clusters. 

 

Mechanistic 

cluster 

Cardiometabolic 

profile 

Number of 

T2D 

associations 

Exemplar loci Physiological impact 

Insulin 

secretion 

Insulin 

sensitivity 

Beta-cell +PI +FG*, +2hG*, 

+HbA1c, +PI* 

91 TCF7L2, KCNQ1, 

CDKAL1, 

CDKN2A-

CDKN2B, 

SLC30A8 

- + 

Beta-cell -PI +FG*, +2hG*, 

+HbA1c,  

-PI* 

89 CDC123-

CAMK1D, 

HNF1B, KCNJ11-

ABCC8, HNF4A, 

HNF1A 

- + 

Residual 

glycaemic 

+FG*, +HbA1c 389 GCC1-PAX4-LEP, 

ANKRD55, 

GCKR, UBE2E2 

- - 

Body fat +body fat, +ASAT* 

 

273 ZMIZ1, HMGA2, 

CTBP1 

+ - 

Metabolic 

syndrome 

+FG*, +FI*, 

+WHR, +VAT*,  

-GFAT*, +TG,  

-HDL, +BP 

166 IGF2BP2, 

CCND2, HHEX-

IDE, JAZF1, 

GPSM1 

+ - 

Obesity +BMI, +WHR, 

+body fat, +BMR, 

+TG, -HDL 

233 FTO, MC4R, 

MACF1, 

TMEM18 

+ - 

Lipodystrophy +FI*, +WHR,  

-body fat, 

-GFAT*, +TG,  

-HDL, +BP 

45 IRS1, GRB14-

COBBL1, PPARG 

+ - 

Liver/lipid 

metabolism 

-LDL, -TC,  

+liver fat,  

+liver biomarkers 

3 TOMM40-APOE-

GIPR, TM6SF2, 

PNPLA3 

- - 

 
+/-: T2D risk alleles associated with increased/decreased phenotype values. 

FG: fasting glucose. FI: fasting insulin. 2hG: two-hour glucose. HbA1c: glycated haemoglobin. PI: proinsulin. 

BMI: body mass index. WHR: waist-hip ratio. VAT: visceral adipose tissue volume. ASAT: abdominal 

subcutaneous adipose tissue volume. GFAT: gluteofemoral adipose tissue volume. LDL: low-density lipoprotein 

cholesterol. HDL: high-density lipoprotein cholesterol. TC: total cholesterol. TG: triglycerides. BMR: basal 

metabolic rate. BP: blood pressure. 

*adjusted for BMI.  
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METHODS 

 

Ethics statement. Study-level ethics statements are provided in the Supplementary Note. 

 

Study-level analyses. Within each study, we assigned individuals to one of five ancestry 

groups using self-report and genetic background (Supplementary Tables 1 and 2). Any 

individuals that could not be assigned to a single ancestry group were excluded as 

population outliers. Within each ancestry group-specific GWAS, we conducted quality 

control of genotype data. Subsequently, we pre-phased individuals and imputed up to 

reference panels from the Trans-Omics for Precision Medicine Program
10

, Haplotype 

Reference Consortium
11

, 1000 Genomes Project (phase 1, March 2012 release; phase 3, 

October 2014 release)
12,13

, or population-specific whole-genome sequencing
55-61

 

(Supplementary Table 3). Studies imputed to reference panels mapped to GRCh38/hg38 

were lifted back to hg19 using the UCSC liftOver tool (https://genome.ucsc.edu/cgi-

bin/hgLiftOver). We excluded SNVs with poor imputation quality and/or minor allele count 

(MAC) <5 from downstream association analyses (Supplementary Table 3). 

Within each ancestry group-specific GWAS, we tested for association of each SNV 

with T2D via generalised linear regression, under an additive model in the dosage of the 

minor allele, with adjustment for age and sex (where appropriate), and additional study-

specific covariates (Supplementary Table 3). We employed different strategies to account 

for population stratification and/or kinship: (i) exclude closely related individuals and adjust 

for principal components derived from a genetic relatedness matrix (GRM) as additional 

covariates in the regression model; or (ii) incorporate a random effect for the GRM in a 

mixed model (Supplementary Table 3). Allelic effects and corresponding standard errors 

that were estimated from a linear mixed model were converted to the log-odds scale
62

. We 

corrected study-level association summary statistics for residual structure by the LD-score 

regression intercept
63

 (Supplementary Table 3), which was calculated using an LD reference 

that we derived from ancestry-matched haplotypes from the 1000 Genomes Project (phase 

3, October 2014 release)
13

. 

 

Multi-ancestry meta-analyses. We analysed autosomal bi-allelic SNVs that overlap 

reference panels from the 1000 Genomes Project reference panel (phase 3, October 2014 

release)
13

 and the Haplotype Reference Consortium
11

. We considered only those SNVs with 

MAF > 0.5% in haplotypes in at least one of the five major ancestry groups in the 1000 

Genomes Project (phase 3, October 2014 release)
13

. We excluded SNVs that differed in 

allele frequency by >20% when comparing reference panels in the same subsets of 

haplotypes.  

We used meta-regression, implemented in MR-MEGA
14

, to aggregate association 

summary statistics across GWAS. MR-MEGA models allelic effect heterogeneity that is 

correlated with genetic ancestry by including axes of genetic variation as covariates in the 

meta-regression model to capture population diversity between GWAS. We used SNVs that 

were reported in all studies to construct a distance matrix of mean effect allele frequency 

differences between each pair of GWAS. We implemented multi-dimensional scaling of the 

distance matrix to obtain three principal components that represent axes of genetic 

variation to separate GWAS from the five major ancestry groups (Supplementary Figure 1).  

For each SNV, we aggregated inverse-variance weighted allelic effects across GWAS 

via linear regression, including three axes of genetic variation as covariates. We tested for: 
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(i) association with T2D allowing for ancestry-correlated allelic effect heterogeneity 

between GWAS; (ii) ancestry-correlated allelic effect heterogeneity between GWAS (defined 

by the axes of genetic variation); and (iii) residual allelic effect heterogeneity between 

GWAS (due to differences in environmental exposures and/or study design). We also 

aggregated association summary statistics across GWAS via fixed-effects meta-analysis 

(inverse-variance weighting of allelic effects) using METAL
64

. To assess the extent of residual 

structure between GWAS, we calculated the genomic control inflation factor
65

 for the multi-

ancestry meta-regression and fixed-effects meta-analysis. 

 

Defining T2D signals and loci. We began by identifying all SNVs attaining the traditional 

genome-wide significance threshold (P<5x10
-8

) for association with T2D from the multi-

ancestry meta-regression. Clumps were formed around index variants, which were selected 

using a greedy algorithm in PLINKv1.9
66

, after ranking SNVs by ascending P-value. SNVs 

<5Mb from an index SNV were assigned to the clump if r
2
>0.05 in at least one of the five 

ancestry groups using haplotypes from the 1000 Genomes Project (phase 3, October 2014 

release)
13

. Index SNVs separated by <1Mb were assigned to the same locus. Each locus was 

then defined as mapping 500kb up- and down-stream of index SNVs contained within it. We 

considered the locus to have been previously reported if it contained variants discovered in 

published large-scale T2D GWAS at genome-wide significance. 

 

Ancestry group-specific meta-analyses. We aggregated association summary statistics 

across GWAS from the same ancestry group via fixed-effects meta-analysis based on 

inverse-variance weighting of allelic log-OR to obtain effect size estimates using METAL
64

. 

We estimated the mean effect allele frequency across GWAS from each ancestry group, 

weighted by the effective sample size of the study. We generated forest plots of association 

summary statistics of index SNVs across ancestry groups using the R package meta 

(https://cran.r-project.org/package=meta/). 

 

Contribution of each of axes of genetic variation to ancestry-correlated heterogeneity. For 

each index SNV, we calculated a Z-score (beta/SE) for association with each axis of variation 

by aligning the effect from the meta-regression model to the T2D-risk allele. For each index 

SNV, we identified the axis of genetic variation with the strongest association (greatest 

magnitude Z-score). 

  

Impact of BMI on ancestry-correlated heterogeneity in allelic effects. For each index SNV, 

we aggregated inverse-variance weighted allelic effects across GWAS via linear regression, 

implemented in MR-MEGA
14

, including as covariates: (i) three axes of genetic variation; and 

(ii) mean BMI in controls. We tested for: (i) ancestry-correlated allelic effect heterogeneity 

between GWAS, after adjustment for BMI; and (ii) allelic effect heterogeneity due to BMI, 

after adjustment for ancestry. For the �th index SNV, we estimated the meta-regression 

coefficient and corresponding variance, per unit of BMI, denoted by �� and ��, respectively. 

Across all index SNVs, the mean effect on log-OR per unit of BMI was given by ∑ �� ��⁄� , with 

corresponding variance �∑ 1 ��⁄� �
��

.  

 

European and East Asian ancestry group meta-regression. For each SNV, we aggregated 

inverse-variance weighted allelic effects across EAS and EUR GWAS via linear regression, 

including only the first axis of genetic variation as a covariate, since this was sufficient to 
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separate the two ancestry groups (Supplementary Figure 1). We tested for association with 

T2D allowing for ancestry-correlated allelic effect heterogeneity between GWAS under this 

model. 

 

Defining clusters of T2D index SNVs with distinct cardiometabolic profiles. We considered 

cardiometabolic-related quantitative phenotypes that are used to define T2D status and/or 

are associated with risk of T2D or complications. We excluded phenotypes for which GWAS 

summary statistics were available only after imputation to reference panels from the 

International HapMap Project
67

 because they did not provide sufficient coverage of SNVs 

included in the multi-ancestry meta-analysis. We considered the largest available GWAS 

meta-analysis (ancestry-specific or multi-ancestry) that provided the following association 

summary statistics for each SNV: effect allele, other allele, effect estimate aligned to the 

effect allele, and standard error of the effect estimate. A summary of phenotypes, GWAS 

resources, and references are available in Supplementary Table 9. We re-aligned the effect 

estimate to the T2D risk allele from the fixed-effects multi-ancestry meta-analysis, denoted 

	�� for the �th index SNV and the 
th phenotype. We then calculated a sample size corrected 

Z-score, given by ��� � 	�� �������⁄ , where ���  is the standard error of the effect estimate 

of the �th index SNV and the 
th phenotype, and ��  is the maximum sample size reported 

for the 
th phenotype. Standardisation by sample size enabled a more uniform weighting of 

cardiometabolic phenotypes in the subsequent clustering of index SNVs. Where association 

summary statistics were not reported for the �th index SNV and the 
th phenotype, the Z-

score was set as “missing”. 

Previous efforts to construct partitioned GRS for T2D have implemented “soft 

clustering” approaches, such as Bayesian non-negative matrix factorisation, that generate 

weights for cluster membership for each index SNV
8
. Assignment of index SNVs to clusters is 

then determined given a threshold weight for cluster membership, allowing for the 

possibility that a T2D association signal impacts on disease through multiple 

pathophysiological pathways. In practice, however, the choice of threshold for cluster 

membership is subjective, and some index SNVs remain unassigned. Bayesian non-negative 

matrix factorisation also considers positive and negative associations with the same 

phenotype as independent variables in the clustering, and cannot allow for missing 

phenotype associations, relying instead on the use of proxy SNVs, which can be challenging 

to identify in a multi-ancestry context.  

To address these potential limitations, we conducted K-means clustering of index 

SNVs with imputation of missing Z-scores using the R package ClustImpute (https://cran.r-

project.org/package=ClustImpute). For a pre-defined number of clusters, ClustImpute 

replaces missing Z-scores at random from the marginal distribution for the phenotype in the 

first iteration and performs K-means clustering. In subsequent iterations, missing Z-scores 

are updated, conditional on the current cluster assignment, so that correlations between 

phenotypes are considered. At each iteration, penalizing weights are imposed on imputed 

values and successively decreased (to zero) as the missing data imputation improves. In this 

“hard clustering” approach, each index SNV is assigned to exactly one cluster. Finally, we 

determined the “optimal” number of clusters according to the majority rule across 27 

indices of cluster performance
30

, implemented in the R package NbClust (https://cran.r-

project.org/package=NbClust).  

 We tested for association of the 
th phenotype with index SNVs across clusters in a 

linear regression model, given by ����� � ∑ ������� , where ��� is an indicator variable that 
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takes the value “1” if the �th index SNV was assigned to the �th cluster and “0” otherwise. 

The strength/direction of the association of each phenotype with each cluster was then 

presented in a heatmap, where the “temperature” was defined by the direction of the 

regression coefficient ��� and the corresponding -log10 P-value. Regression models were 

fitted using the glm function in R. 

 

Cluster-specific associations of index SNVs with T2D. We tested for association of T2D with 

index SNVs across clusters in a linear regression model, given by �	�� � ∑ ������ , where 

��� is an indicator variable that takes the value “1” if the �th index SNV was assigned to the 

�th cluster and “0” otherwise, and weighted by the inverse of the variance of the allelic 

effect. We tested for heterogeneity in cluster effects on each endophenotype by comparing 

the deviance of this model with that of �	�� � ��, again weighted by the inverse of the 

variance of the allelic effect. Regression models were fitted using the glm function in R. 

 

Cluster-specific associations of index SNVs with insulin-related endophenotypes and 

insulin resistance-related disorders. We extracted association summary statistics for 

measures of glucose homeostasis derived from hyperinsulinemic-euglycemic clamp 

assessments and oral glucose tolerance tests (OGTT) performed by the GUARDIAN 

Consortium
36

, which were obtained from GWAS undertaken in up to 1,316 Mexican 

American participants without diabetes from the Mexican American Coronary Artery 

Disease (MACAD) study
68

 and the Hypertension and Insulin Resistance (HTN-IR) study
69

. The 

measures used were: insulin sensitivity (clamp-derived glucose infusion rate in 1,316 

participants from MACAD and HTN-IR); insulin clearance (clamp-derived metabolic clearance 

rate of insulin in 1,261 participants from MACAD and HTN-IR); and insulin secretion (OGTT-

derived area under the curve for insulin normalised for glucose from baseline to 30 minutes 

in 513 participants from MACAD). We also extracted association summary statistics for 

homeostatic model assessment measures of beta-cell function (HOMA-B) and insulin 

resistance (HOMA-IR) from published GWAS meta-analyses of up to 36,466 non-diabetic 

individuals of European ancestry from MAGIC
37

. Note that we did not include HOMA 

measures as part of the cardiometabolic phenotype clustering because they were imputed 

only up to reference panels from the International HapMap Consortium
67

, and thus included 

a high proportion of missing Z-scores across index SNVs that we anticipated would introduce 

too much noise with ClustImpute. We also extracted association summary statistics for 

insulin resistance-related disorders from published GWAS meta-analyses of: (i) 5,485 GDM 

cases and 347,856 female controls of diverse ancestry from the GenDIP Consortium
39

; and 

(ii) 10,074 PCOS cases and 103,164 female controls of European ancestry
38

. 

For each endophenotype/disorder, we aligned the effect estimate to the T2D risk 

allele from the fixed-effects multi-ancestry meta-analysis, denoted 	� for the �th index SNV. 

We then calculated the Z-score, given by �� � 	� ��⁄ , where ��  is the standard error of the 

effect estimate of the �th index SNV. We tested for association of each endophenotype with 

index SNVs across clusters in a linear regression model, given by ���� � ∑ ������ , where 

��� is an indicator variable that takes the value “1” if the �th index SNV was assigned to the 

�th cluster and “0” otherwise. We tested for heterogeneity in cluster effects on each 

endophenotype by comparing the deviance of this model with that of ���� � ��. 

Regression models were fitted using the glm function in R. 
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Enrichment of T2D associations for cell type-specific regions of open chromatin within 

clusters. For each T2D association signal, we defined “null” SNVs that mapped within 50kb 

of the index SNV and were not in LD (r
2
>0.05) with the index SNV in any of the five major 

ancestry groups using haplotypes from the 1000 Genomes Project (phase 3, October 2014 

release)
13

. We defined an indicator variable, ��, taking the value “1” if the �th SNV is an 

index SNV and “0” if the �th SNV is a null SNV. We mapped index SNVs and null SNVs to 

genic regions, as defined by the Ensembl Project (release 104)
70

, including protein-coding 

exons, and 3’ UTRs and 5’ UTRs. We defined indicator variables, ��
��	
, ��

���, and ��
���, 

that each take the value “1” if the �th SNV mapped to the respective genic annotation and 

“0” otherwise. We also mapped index SNVs and null SNVs to ATAC-seq peaks for 222 cell 

types derived from adult and foetal tissues via single-cell atlases of chromatin accessibility 

(CATLAS and DESCARTES)
42,43

. We defined an indicator variable, ���, that takes the value “1” 

if the �th SNV mapped to an ATAC-seq peak for the 
th cell type and “0” otherwise.  

Within each cluster, we modelled enrichment of T2D associations for ATAC-seq 

peaks in the 
th cell type, after accounting for genic annotations, in a Firth bias-reduced 

logistic regression, given by 

 

������ � �� � ���	
��
��	
 � ������

��� � ������
��� � �����, 

 

where � is the logit link function. In this expression, �� is an intercept, ����� , ����� , and 

�����  are log-fold enrichments of genic annotations, and ��  is the log-fold enrichment of 

ATAC-seq peaks in the 
th cell type. We conducted a test of enrichment of the 
th cell type 

by comparing the deviances of models in which �� � 0 and ��  is unconstrained. We 

identified cell types with significant evidence of enrichment (P<0.00023, Bonferroni 

correction for 222 cell types). All models were fitted using the R package logistf 

(https://cran.r-project.org/package=logistf).   

 

Difference in ancestry-correlated heterogeneity between mechanistic clusters. We tested 

for differences in Z-scores (beta/SE) for association of index SNVs in each cluster with the 


th axis of genetic variation by comparing two linear models via ANOVA: (i) ������� � ���; 
and (ii) ������� � ∑ ������� . In these expressions: � is the identity link function; ���  is Z-

score for the �th index SNV; ��� is an indicator variable that takes the value “1” if the �th 

index SNV was assigned to the �th cluster and “0” otherwise; and ���  and ��� are regression 

coefficients. Regression models were fitted using the glm function in R. 

 

Cluster-specific partitioned GRS analyses. We tested for association of a cluster-specific 

partitioned GRS and an overall GRS with T2D-related macrovascular outcomes (CAD, 

ischemic stroke, and peripheral artery disease) and microvascular complications (ESDN and 

proliferative diabetic retinopathy) in participants from the All of Us Research Program 

(AoURP, multiple ancestry groups) and Biobank Japan (BBJ, East Asian ancestry). 

AoURP cohort description, sequencing, quality control, and phenotype derivation. We 

considered 78,260 participants with whole-genome sequencing (WGS) and electronic health 

record (EHR) data from the AoURP Controlled Tier Dataset v5
71,72

. Details of the generation 

and quality control of the genomic data can be found in the AoURP Genomic Quality Report 

release C2021Q3R5 (https://support.researchallofus.org/hc/en-

us/article_attachments/7002034709652/All_Of_Us_Beta_Release_Genomic_Quality_Repor
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t__4_.pdf). We used genetic ancestries defined in the AoURP Genomic Quality Report 

release C2021Q3R5. We removed related individuals in the maximal independent set 

(kinship score >0.1) as described in the AoURP Genomic Quality Report release C2021Q3R5. 

To reduce the computational burden of the WGS dataset, we considered only bi-allelic SNVs 

with MAF ≥0.1% across all participants. To correct for population structure, within each 

ancestry, we derived principal components using Hail v0.2.107 

(https://hail.is/docs/0.2/index.html). In these calculations, we excluded SNVs that were not 

present in the 1000 Genomes Project (phase 3, October 2014 release) reference panel
13

. We 

also excluded SNVs with MAF <1% and deviation from Hardy-Weinberg equilibrium (P<10
-6

), 

and subsequently extracted autosomal LD-pruned SNVs (r
2
<0.05). Cases of T2D, T2D-related 

macrovascular outcomes, and microvascular complications were derived from the 

combination of diagnosis codes (ICD-9-CM and ICD-10-CM), drug exposures, and LOINC 

codes for laboratory test results, extracted from EHR data. Full details are provided in the 

Supplementary Methods.  

BBJ cohort description, genotyping, quality control, and phenotype derivation. BBJ is 

a multi-institutional hospital-based registry that comprises DNA and medical records from 

individuals of Japanese ancestry
73,74

. The first BBJ cohort comprises approximately 200,000 

participants with at least one of 47 common diseases collected between 2003 and 2007. The 

second BBJ cohort comprises approximately 67,000 participants with at least one of 38 

common diseases collected between 2013 and 2017. Physicians of 66 cooperating hospitals 

determined the eligibility of cases. Only those individuals who were not included in the 

multi-ancestry meta-analysis were considered for testing of the partitioned GRS. 

Genomic DNA was prepared following standard protocols from peripheral blood 

samples and genotyped using the Illumina Asian Screening Array, following the 

manufacturer’s instructions. We excluded individuals with call rate <98% and outliers from 

the cluster of East Asian populations based on principal component analysis with reference 

individuals from Phase II HapMap
67

. We excluded SNVs with call rate <99%, MAC <5, exact 

Hardy-Weinberg equilibrium P<10
-10

, and >5% difference in MAF when compared with 

Japanese whole-genome sequence data
58,75

 and the Tohoku Medical Megabank Project
76

. 

After quality control, we performed pre-phasing using SHAPEIT4
77

. Phased haplotypes were 

imputed to the combined reference panel of 1000 Genomes Project Phase 3 and Japanese 

whole-genome sequencing data from 1,037 individuals
58,75

 using Minimac4
78

. We 

subsequently excluded individuals with a mismatch between inferred genetic sex and sex 

registered in clinical information, who were not in a set of unrelated individuals defined by 

using PLINK with king-cutoff <0.09375, or were outliers of heterozygosity rates (more than 5 

SD from the mean). To correct for population structure, we derived principal components 

using PLINKv2.0
79

, calculated from a set of autosomal LD-pruned SNVs (r
2
<0.1) with MAF 

≥0.5% after excluding the major histocompatibility complex region. 

We selected participants of at least 18 years of age for GRS analyses. We defined 

T2D cases as participants with a diagnosis of T2D, made by physicians at participating 

hospitals, but not type 1 diabetes, mitochondrial diabetes, maturity-onset diabetes of the 

young, or any other type of diabetes
80

. We extracted cases of microvascular complications 

from medical records in which diagnosis was made by physicians at participating hospitals. 

We defined controls for microvascular complications as T2D cases without any diagnosis of 

diabetic nephropathy or diabetic retinopathy. We defined CAD as a composite of stable 

angina, unstable angina, and myocardial infarction. These conditions, in addition to ischemic 
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stroke and peripheral artery disease, were diagnosed by physicians at collaborating 

hospitals based on general medical practices following relevant guidelines. 

GRS association analyses in AoURP and BBJ. We conducted analyses separately for 

each ancestry group in AoURP (African, American, and European) and BBJ (East Asian). For 

each ancestry, we performed GRS analyses for T2D-related macrovascular outcomes using 

all individuals, irrespective of T2D status, and for microvascular complications in individuals 

with T2D only. For each analysis, we calculated overall and cluster-specific GRS for each 

individual, with each index SNV weighted by the allelic log-OR from the ancestry-specific 

meta-analyses. We did not include index SNVs with MAF <1% in the GRS. We also excluded 

index SNVs with poor imputation quality (r
2
<0.7) in BBJ, and those with extreme deviation 

from Hardy-Weinberg equilibrium (P<10
-6

) in AoURP. We standardised overall and cluster-

specific GRS to have mean zero and unit variance. We tested for association with each 

outcome/complication via generalised linear regression, under a joint model including all 

eight cluster-specific GRS, and a model including only the overall GRS. We adjusted 

association analyses with macrovascular outcomes, conducted in all individuals, for T2D 

status. We adjusted association analyses with microvascular complications for duration of 

T2D. In AoURP and BBJ, we adjusted analyses for age, sex, and the first 20 principal 

components. In AoURP, we defined age as age at last hospital visit. In BBJ, we defined age as 

age at first record. In BBJ, we also adjusted for recruitment phase and status of the 

registered common diseases (other than T2D) to account for ascertainment. For CAD, we 

also conducted sensitivity analyses by including, as an additional covariate, a CAD GRS from 

the largest published multi-ancestry CAD GWAS
49

. The GRS was constructed from index 

SNVs for 241 conditionally independent CAD associations, weighted by the multi-ancestry 

allelic log-OR (ancestry-specific effects were not available), and standardised to have mean 

zero and unit variance. All association analyses were conducted using the glm function in R.

 GRS multi-ancestry meta-analyses. For each outcome, we aggregated association 

summary statistics from the partitioned GRS model and the overall GRS model across 

ancestries via multivariate fixed-effects meta-analysis (weighting by the inverse covariance 

matrix)
81

. We also tested for heterogeneity using the multivariate Cochran Q statistic
81

. All 

meta-analyses were conducted using the R package mvmeta (https://cran.r-

project.org/package=mvmeta). 

 

Data availability. Genome-wide association summary statistics from the multi-ancestry 

meta-analysis reported in this study will be made available through the DIAGRAM 

Consortium website (http://www.diagram-consortium.org/downloads.html) an acceptance 

of the manuscript. 

 

Code availability. Analyses were conducted using publicly available software: UCSC liftOver 

tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), MR-MEGA 

(https://genomics.ut.ee/en/tools), METAL (https://genome.sph.umich.edu/wiki/METAL), 

PLINKv1.9
 
(https://www.cog-genomics.org/plink/1.9/), Hail v0.2.107 

(https://hail.is/docs/0.2/index.html), SHAPEIT4 (https://odelaneau.github.io/shapeit4/), 

Minimac4 (https://genome.sph.umich.edu/wiki/Minimac4), PLINKv2.0 (https://www.cog-

genomics.org/plink/2.0/). Analyses were also conducted using the following R packages: 

meta (https://cran.r-project.org/package=meta), ClustImpute (https://cran.r-

project.org/package=ClustImpute), NbClust (https://cran.r-project.org/package=NbClust), 
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logistf (https://cran.r-project.org/package=logistf), and mvmeta (https://cran.r-

project.org/package=mvmeta). 
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