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Impacts of climate change, population
growth, and power sector decarbonization
on urban building energy use

Chenghao Wang 1,2,3 , Jiyun Song 4,5,6, Dachuan Shi4, Janet L. Reyna 7,
Henry Horsey7, Sarah Feron8,9, Yuyu Zhou 5,10, ZutaoOuyang 1, Ying Li 11,12 &
Robert B. Jackson 1,13,14

Climate, technologies, and socio-economic changes will influence future
building energy use in cities. However, current low-resolution regional and
state-level analyses are insufficient to reliably assist city-level decision-making.
Here we estimatemid-century hourly building energy consumption in 277 U.S.
urban areas using a bottom-up approach. The projected future climate change
results in heterogeneous changes in energy use intensity (EUI) among urban
areas, particularly under higherwarming scenarios,with on average 10.1–37.7%
increases in the frequency of peak building electricity EUI but over 110%
increases in some cities. For each 1 °C of warming, the mean city-scale space-
conditioning EUI experiences an average increase/decrease of ~14%/ ~ 10% for
space cooling/heating. Heterogeneous city-scale building source energy use
changes are primarily driven by population and power sector changes, on
average ranging from –9% to40%with consistent south–north gradients under
different scenarios. Across the scenarios considered here, the changes in city-
scale building source energy use, when averaged over all urban areas, are as
follows: –2.5% to –2.0% due to climate change, 7.3% to 52.2% due to population
growth, and –17.1% to –8.9% due to power sector decarbonization. Our find-
ings underscore the necessity of considering intercity heterogeneity when
developing sustainable and resilient urban energy systems.

Residential and commercial buildings together are responsible for 39%
of the U.S. energy consumption and 28% of the U.S. greenhouse gas
emissions1. In densely populated urban areas, the share of energy use
and emissions attributable to buildings can be even higher2. With

ongoing climate change, technological innovations, and socio-
economic developments, future urban building energy use in the
U.S. is expected to changeaswell3,4. However, the currentmethods and
data used for predicting future building energy consumption in the
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U.S. suffer from limited resolutions5–7, leading to substantial uncer-
tainties in existing projections. Consequently, these projections often
lack the necessary detail to effectively inform decision-making in
individual cities.

Current understanding of future building energy use mainly
draws upon top-down and bottom-up studies8. Compared with top-
down approaches, bottom-up methods can have finer spatial resolu-
tions that are more suitable for subnational analysis7,9. Statistical
bottom-up models project future building energy demand based on
mathematical relationships between historical energy use andweather
data (usually temperature or temperature-related variables, such as
cooling and heating degree days)5,6. Nevertheless, considering the lack
of high-resolution energy consumption data and/or meteorological
records, statistics-based city-scale studies have been rare10,11. In com-
parison, engineering-based bottom-up approaches can achieve a
higher spatial resolution andmore explicitly account for the impacts of
future changes on specific end-use types8,12. Leveraging hourly or even
sub-hourly physics-based building energy models driven by meteor-
ological data, engineering-based approaches also enable detailed peak
demand analysis, providing a more comprehensive understanding of
energy demand patterns.

Meteorological data are one of the essential factors that deter-
mine building energy consumption and its evolution over time13.
However, bottom-up methods, especially engineering-based ones,
often oversimplify the impacts of future climate changes on meteor-
ological conditions. Due to the high computational cost and lack of
reliable, long-term meteorological data, building energy models have
relied primarily on typical meteorological year (TMY) data that piece
together “typical” historical months of weather observations from
different years. Future weather patterns are then approximated with a
“morphing method”, which imposes monthly or daily changes in
meteorological variables from climate projections onto historical TMY
data12,14. These TMY-based methods cannot capture the interannual
variability of meteorological conditions, particularly during extreme
events, nor can they adequately reflect the interdependence among
changes in meteorological variables under future climate conditions15.

In addition to meteorological conditions, urban building energy
use is influenced by a range of factors, including socio-economic
developments, building technology advancements, possible changes
in individual behavior, and evolutions in the electric power sector. As a
key indicator of socio-economic developments16, urban population
growth directly impacts total floor area and consequently drives
changes in city-scale building energy use4. Household income and
electricity price are additional socio-economic factors that can influ-
ence urban building energy use, especially cooling demand in low- and
middle-income countries with low air conditioning (AC) adoption17,18.
Building energy use can be further affected by shifts in building
technologies, including electrification and energy-efficiencymeasures,
although their impacts are contingent on occupant behavior such as
thermostat setpoints19,20. Moreover, the primary energy consumption
of buildings (source energy), including electricity and fossil fuels
consumed in buildings (final or site energy) and energy losses during
generation, transmission, and distribution, is influenced by electric
power sector evolutions. In particular, the transition from fossil fuels
to renewables in the power sector can substantially reduce energy
losses during electricity generation21. Despite their importance, these
various possible futures and their spatial variability have rarely been
considered in existing bottom-up studies for cities, and their impacts
on urban building energy use have not been well characterized.

In this study,wequantify the city-scale building energy use for 277
urban areas across the contiguous U.S. (CONUS) in the mid-21st cen-
tury, with a focus on assessing the impacts of climate change, popu-
lation growth, and power sector decarbonization.We develop a hybrid
bottom-up modeling approach that integrates extensive hourly
physics-based building energy simulations with statistical models

constructed using a high-quality and high-resolution end-use load
database22. Decadal-scale hourly meteorological data derived from
multiple sources for historical and future periods (the 2010s and
2050s) enable a multiscale, detailed assessment of climate change
impacts on urban building energy use. Specifically, we downscale and
bias-correct climate projections from a set of Coupled Model Inter-
comparison Project Phase 6 (CMIP6) climate models under four
warming scenarios. We maintain building technologies, occupant
behavior, and other socio-economic factors at their current levels,
except for the AC penetration rate, and establish baseline projections
for different future warming scenarios.

For site energy use of buildings (hereafter simply “energy use”,
unless otherwise specified), we focus on energy use intensity (EUI), an
indicator calculated as the final energy consumed in buildings divided
by the total floor area of all buildings in an urban area. The use of
building EUI can effectively isolate the impact of climate change from
that of population change. Based on the types of final energy con-
sumed in buildings, building EUI can be classified as electricity EUI (E-
EUI) and non-electricity EUI (NE-EUI, including natural gas, fuel oil, and
propane EUIs). For source energy use of buildings in each urban area,
we incorporate high-resolution population projections consistent with
different warming scenarios, and further consider the potential impact
of two possible electric power sector trajectories with different levels
of decarbonization.

Results
Impacts of climate change on annual electricity energy use
intensity
Four representative warming scenarios (SSPX-Y; see Methods) are
considered in this study: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5.
These scenarios encompass a diverse set of socio-economic storylines
andglobal radiative forcing levels, representing awide rangeofpossible
future climates. Under different warming scenarios, the mid-century
annual building E-EUI for cooling in U.S. urban areas, on average, is
projected to increaseby 11.9–25.6%when comparedwith the conditions
during the period 2010–2019 (hereafter reference decade) (Supple-
mentary Fig. 1). In comparison, the mean mid-century annual building
E-EUI for space heating is projected to decrease by 13.5–21.2% when
compared with the reference-decade level (Supplementary Fig. 2).
However, the change in annual total E-EUI, which includes space con-
ditioning, water heating, and all other miscellaneous electric end-use
types, varies substantially among urban areas across different warming
scenarios (Fig. 1). The largest increases in annual E-EUI mainly occur in
the South, Southwest, West, and Southeast (see division in Supple-
mentary Fig. 3), with the maximum relative increase ranging from 3.2%
under SSP1-2.6 to 7.2% under SSP5-8.5. Most urban areas with annual
E-EUI declines are in the northern part of the country, especially the
Northwest and Northern Rockies and Plains, with a reduction of up to
4.0% under the high warming scenario SSP5-8.5.

The net change in building E-EUI for each urban area hinges on
whether the projected increase in cooling demand can be partially or
entirely offset by the decline in space heating need in a warmer future.
Therefore, the spatial heterogeneity in the projected changes is driven
not only by regional disparities in future warming, but also by varia-
tions in the share of electricity consumption for cooling and space
heating (Supplementary Figs. 4, 5). The latter factor leads to a diverse
range of directions for annual E-EUI changes among urban areaswithin
the same state and even within the same county (e.g., urban areas in
California and Ohio; Fig. 1), which has been largely overlooked by
previous regional and country-level studies3,5,7,23,24.

Impacts of climate change on seasonal and hourly electricity
energy use intensity
The high-granularity modeling approach developed in this study
(Methods) allows for the examination of mid-century city-scale
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building EUI and its frequency across different temporal scales. Nota-
bly, large seasonal variations are observed in the projected building
E-EUI changes. Compared with the historical reference period, the
decreases and increases in future E-EUI primarily occur in
November–March and May–September, respectively (Supplementary
Fig. 6). These variations combined with the historical load profiles
ultimately determine the net change on the annual scale (Fig. 1). Sub-
stantial increases in E-EUI during the warm season (May–September)
and the top 5%hottest days are projected for all climate regions, and in
both cases, the changes are much larger than the annual average
change (Fig. 2). This is attributable to the rise in AC adoption17

(Methods) as well as the growing demand for cooling in response to
future warming. For example, the projected increase in the future AC
saturation rate for urban areas in the Northwest nearly doubles the
increase in building E-EUI for space cooling under all four warming
scenarios (Supplementary Fig. 3). As a result, urban areas in the
Northwest see an average increase of 13.6% in E-EUI on the hottest days
under SSP5-8.5, which ismore than twice thewarm season counterpart
(6.1%) (Fig. 2).

Over the diurnal cycle, the most substantial decrease in building
E-EUI occurs in the early morning (~5:00–7:00 local time; dependent
on region and scenario), mainly driven by reduced space heating
demand (Supplementary Figs. 7–9). In comparison, the maximum
increase in building E-EUI occurs in the early afternoon (~13:00–15:00
local time), as determined by the elevated space cooling demand. To
examine the change in peak demand frequency, we define peak hours
as hourswith E-EUI higher than the current (the reference decade) 95th
percentile. On average, the spatial pattern of the relative change in
peak demand frequency (number of peak hours) under different
warming scenarios resembles that of the relative annualmean changes
(Supplementary Fig. 10; cf. Fig. 1), but with considerably larger mag-
nitudes. For instance, themaximumcity-scale peak demand frequency
increase ranges from 94% to 170% across different warming scenarios

(i.e., ~2–3 times the number of historical peak hours). In particular,
several coastal urban areas in California are projected to experience
the largest increase in peakdemand frequency (e.g., >110%under SSP5-
8.5). Given that the capacity requirement of the electric grid is largely
determined by the peak demand, these changes suggest a consider-
able demand pressure on the electric grid and an increasing need for
grid resilience, especially during heat waves.

Impacts of climate change on non-electricity energy use
intensity
Fossil fuels, including natural gas, fuel oil, and propane, account for
~40% of the building energy use in CONUS urban areas. These fuels are
utilized for various purposes, including space heating, water heating,
and other miscellaneous end-use categories. Similar to E-EUI for space
heating, NE-EUI for space heating generally diminishes with climate
change, resulting in reduced total NE-EUI under all four warming sce-
narios (Fig. 3 and Supplementary Figs. 11–14). Mid-century changes in
city-scale natural gas EUI (Supplementary Fig. 11) closely align with
those for totalNE-EUI,whereas changes in fuel oil andpropane EUIs are
geographically more heterogeneous (Supplementary Figs. 12, 13). This
difference is caused by themore diverse space-heating share in fuel oil
and propane consumption among urban areas. When averaged for all
urban areas, the changes in mid-century total NE-EUI relative to the
reference-decade level are –7.7% and –11.6% under the low (SSP1-2.6)
and high (SSP5-8.5) warming scenarios, respectively. Note that we do
not explicitly model building technology change other than increased
AC adoption, so this is a product of warming-induced heating demand
change, rather than efficiency improvement or fuel switching.

Space heating dominates building fossil fuel use for urban areas in
the Upper Midwest and Ohio Valley. For example, space heating on
average accounts for 73.3–74.5% of mid-century total natural gas
consumed in buildings across four SSPX-Y scenarios in these two cli-
mate regions (Supplementary Fig. 15; cf. 77.4% during the reference
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Fig. 1 | Change in annual electricity energy use intensity in the 2050s relative to
the reference decade under four illustrative emissions and concentration
scenarios with different global warming levels. a SSP1-2.6 scenario. b SSP2-
4.5 scenario. c SSP3-7.0 scenario. d SSP5-8.5 scenario. Each point represents the

relative change (%) based on the ensemble mean of the simulations driven by 10
CMIP6 models under each SSPX-Y scenario. Sources of base map: U.S. Census
Bureau and Natural Earth. Source data are provided as a Source Data file.
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decade). Therefore, urban areas in these regions are projected to have
the most substantial reduction in annual total NE-EUI in a warmer
future, with the maximum reduction ranging from 15.1% to 19.2%
(Fig. 3). In comparison, urban areas in the southern part of the country
exhibit much smaller changes in total NE-EUI (Fig. 3). For instance,
despite the considerable changes in NE-EUI for space heating (Sup-
plementary Fig. 14), the change in total NE-EUI is expected to be less
than 1.5% for most urban areas in Florida. Overall, non-space heating
fossil fuels are projected to account for an increasing share of city-
scale building fossil fuel consumption in the mid-century, barring
major changes in the fuel demand of non-space heating appliances,
such as through end-use electrification policies.

Impacts of climate change on total energy use intensity
Under all four SSPX-Y scenarios, the total EUI of buildings (the sum of
E-EUI and NE-EUI) is projected to drop in most U.S. urban areas in the
2050s, driven by the reduced space heating demand (Supplementary
Fig. 16). The reduction in building natural gas consumption on average
accounts for ~88% of the reduced NE-EUI. Urban areas with a projected
increase in total EUI are predominantly located in the southern part of
the country, including the Southeast, South, West, and Arizona. The
changes in cooling and space heating demands intensify with future
warming, resulting in greater spatial heterogeneity under warmer
scenarios. For example, city-scale changes in total EUI range from
–10.4% to 2.5% under the low warming scenario SSP1-2.6, but from
–13.0% to 6.1% under the high warming scenario SSP5-8.5.

City-scale response of energy use intensity for space-
conditioning to warming
Unlike the observedmonotonic increase in electricity use and EUI with
global warming levels in end-of-century studies3,25, the conditions
during the mid-century show a high degree of heterogeneity. Specifi-
cally, over 18% of the U.S. urban areas are projected to have non-
monotonic changes in E-EUI with mid-century warming levels. For
example, the smallest changes in annual E-EUI are projected under
SSP2-4.5 for most urban areas in the Northwest (Fig. 2; e.g., Seattle,
Washington). In contrast to these nonmonotonic changes, building
EUIs for cooling and space heating both exhibit statistically significant
linear dependence on mid-century warming levels, as suggested by
linear regression models constructed using a set of 40 projections for
each urban area (Methods).

On average, city-scale building E-EUI for cooling rises by 13.8% for
each 1 °Cofwarming in the urbanarea (Fig. 4a). The greatest sensitivity
to temperature change (up to 34.9%/°C) is projected for urban areas in
the Northwest, coastal California, Upper Midwest, and Northeast,
where the share of electricity for cooling is low. City-scale building
E-EUI for space heating on average drops by 11.0% for each 1 °C of
urban warming (Fig. 4b) and is less influenced by the share of elec-
tricity for heating. The most sensitive urban areas include those in the
Southeast, South, and coastal California. In addition, all three types of
NE-EUIs for space heating exhibit patterns of warming responses that
are fairly similar to their electricity counterpart. The average reduc-
tions per 1 °C of warming in the urban area are 10.5%, 8.7%, and 10.2%
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warmseason (May–September), and the averageof the top 5%hottest days over the

simulated decade, respectively, based on the ensemble mean of the simulations
driven by 10 CMIP6 models under each SSPX-Y scenario. Error bars represent the
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shown in Supplementary Fig. 3. Source data are provided as a Source Data file.
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for natural gas (Supplementary Fig. 17b), fuel oil, and propane,
respectively.

Impacts of future changes on total source energy use
In addition to climate change, mid-century urban building source
energy consumption in the U.S. is also influenced by population
dynamics and electric power sector decarbonization. Urban popu-
lation growth directly affects the total source energy consumption of
buildings through changes in total floor area. The decarbonization
process of the electric power sector mainly impacts primary energy

consumption during electricity generation before delivering to
buildings. On the one hand, switching from coal-based power plants
to renewable energy technologies reduces both greenhouse gas
emissions and primary energy losses (Supplementary Table 9). On
the other hand, the implementation of carbon capture and storage
technologies can result in efficiency reductions and energy
penalties26,27. Here we consider two possible futures of the U.S.
electric power sector, and assess building source energy consump-
tion through a set of site-to-source conversion factors (Meth-
ods; Fig. 5).
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fuels consumed by buildings include natural gas, fuel oil, and propane. Each point
represents the relative change (%) based on the ensemble mean of the simulations

driven by 10 CMIP6 models under each SSPX-Y scenario. Results for changes in
annual natural gas energy use intensity, annual fuel oil energy use intensity, and
annual propane energy use intensity are shown in Supplementary Figs. 11–13.
Sources of base map: U.S. Census Bureau and Natural Earth. Source data are pro-
vided as a Source Data file.
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The business-as-usual power sector scenario represents a con-
tinued evolution of current energy technologies and policies but
assumes no new carbon policies in the future. With the current state
and federal CO2 emission policies and nominal technology cost pro-
jections, the national share of coal-fired generation is expected to
decline from ~26% to ~6% in the 2050s (Supplementary Fig. 18). As a
result, the mean city-scale site-to-source conversion factor for elec-
tricity decreases by 12.4% comparedwith the reference decade (Fig. 5),
suggesting an overall nationwide improvement in electricity genera-
tion efficiency. Different from the business-as-usual scenario, the zero-
carbon scenario assumes rapid decarbonization and net-zero carbon
emissions by the mid-century. This scenario includes more stringent
emission requirements, resulting in a complete phase-out of coal-fired
power plants projected to occur around 2035 (Supplementary Fig. 18).
Meanwhile, the national share of renewables in mid-century electricity
generation is expected to surpass 70% (cf. ~50% under the business-as-
usual scenario). On average, the city-scale site-to-source conversion
factor for electricity in the 2050s under the zero-carbon scenario is
19.0% lower than in the reference decade, with the most substantial
reductions in urban areas located in the Upper Midwest, Northern
Rockies and Plains, Ohio Valley, and Southwest (Fig. 5).

For both power sector decarbonization trajectories, the increase
in source energy consumption for U.S. urban areas is projected to
peak under SSP5-8.5, higher than those under SSP1-2.6 and SSP2-4.5,
as climate change and population growth impacts offset source
energy efficiency gains. The average city-scale source energy con-
sumption changes under SSP5-8.5 are 39.8% and 31.8% forbusiness-as-
usual scenario and zero-carbon scenario, respectively. In contrast,
decreasing source energy use is projected formost urban areas under
SSP3-7.0, with an average change of –3.5% for a business-as-usual
power sector and –9.0% for a zero-carbon power sector (Figs. 6, 7).
Compared with the business-as-usual scenario, a zero-carbon power
sector results in relatively lower building source energy use across all
warming scenarios. For example, with mid-century climate change
under SSP3-7.0, more urban areas are expected to experience
increased building source energy use in the business-as-usual sce-
nario (33.2%) compared with the zero-carbon scenario (7.6%). In
addition, consistent south–north gradients of source energy con-
sumption changes are projected in U.S. urban areas for both power
sector futures (Figs. 6, 7). Furthermore, substantial within-region
variations of city-scale source energy use changes are projected in
several regions, especially for urban areas inMichigan, California, and
Florida under SSP3-7.0. These variations are largely determined by
heterogeneous changes in future population and warming-induced
space-conditioning demand.

Attributions of source energy use change
We employ the logarithmic mean Divisia index method28 to quantify
the relative contributions of climate change, population growth, and
power sector decarbonization to the projectedmid-century changes in
building source energy consumption (Methods). As revealed by the
decomposition, under all SSPX-Y scenarios except SSP3-7.0, popula-
tion growth serves as the primary driver of future source energy use
changes for most urban areas, followed by power sector change and
climate change (Fig. 8 and Supplementary Figs. 19–22). Urban popu-
lation growth, owing to socio-economic developments, contributes to
an average increase of 31.5%, 29.0%, 7.3%, and 52.2% in city-scale source
energy use under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respec-
tively. These relative changes are in general consistent with the pro-
jected city-scale population changes (Supplementary Fig. 23).

With the gradually decreasing share of fossil fuels and rising share
of renewables under the business-as-usual scenario, power sector
decarbonization reduces future source energy use in all urban areas
(Fig. 8a–d and Supplementary Fig. 21). The average reduction in the
2050s attributable to the business-as-usual power sector ranges from
8.9% under SSP3-7.0 to 10.8% under SSP5-8.5. Urban areas in the
Northeast, Southeast, and West are projected to have the smallest
contributions frompower sector changes, primarily due to the already
low share of coal in current electricity generation (Supplementary
Table 1). For example, under the business-as-usual scenario, the mean
reduction in city-scale source energy consumption due to power sec-
tor evolution ranges from 6.7% to 8.1% in theWest (cf. 13.1–15.9% in the
Ohio Valley). Note that the relative change in building source energy
use induced by power sector decarbonization is smaller than the
change in conversion factors for electricity, as source energy also
includes fossil fuels delivered to buildings.

More aggressive power sector decarbonization, with the com-
plete phase-out of coal use, could further compensate for the
population-induced increase in source energy consumption (Fig. 8e–h
and Supplementary Fig. 22). The average reduction of mid-century
source energy use in U.S. urban areas attributable to net-zero power
sector policies varies from 14.2% under SSP3-7.0 to 17.1% under SSP5-
8.5. The contribution of power sector decarbonization varies across
different climate regions, partly resulting from historical dependence
on fossil fuels in electricity generation. For example, many urban areas
in Texas and Florida that heavily rely on fossil fuels to generate elec-
tricity are projected to transition toward renewables-dominant gen-
eration. Meanwhile, the remaining fossil fuel-fired generation under
the business-as-usual scenario is also expected to be largely replaced
by renewables under the zero-carbon scenario (Supplementary
Table 1). Therefore, the contribution of power sector decarbonization
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Fig. 7 | Change in annual source energy consumption in the 2050s relative to
the reference decade under four illustrative emissions and concentration
scenarios influenced by electric power sector decarbonization under the zero-
carbon scenario. a SSP1-2.6 scenario. b SSP2-4.5 scenario. c SSP3-7.0 scenario.
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are provided as a Source Data file.
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the reference decade under four illustrative emissions and concentration
scenarios influenced by electric power sector decarbonization under the
business-as-usual scenario. a SSP1-2.6 scenario. b SSP2-4.5 scenario. c SSP3-
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in a zero-carbon future is approximately twice that in a business-as-
usual future in these regions (Supplementary Figs. 21, 22).

When averaged across all urban areas, climate change is projected
to reduce city-scale building source energy use by 2.5%, 2.1%, 2.0%, and
2.4% under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively
(Supplementary Figs. 19, 20). The relatively smallmean contributionof
climate change, compared with that of population growth or power
sector decarbonization, is partly because global warming causes total
building energy use to increase in some urban areas while decreasing
in others (Fig. 8). In fact, under different warming scenarios, the
maximum climate change-induced increase and decrease in city-scale
source energy consumption are projected to be around 3–8% and
8–11%, respectively. Notably, under SSP3-7.0, the contribution of cli-
mate change is of the same order of magnitude as that of population
change for some urban areas in the Northeast, Upper Midwest, and
Ohio Valley, where the increase in source energy use caused by
population growth can be largely or even completely offset by the
warming-induced reduction.

The south–north contrast of the changes in city-scale building
source energy consumption is jointly determined by the impacts of
climate change and power sector decarbonization (Fig. 8). With the
projected warming, the increase in cooling demand is expected to
control the shift in building source energy use for urban areas in the
southern regions, whereas the declining space heating demand
becomes the dominant factor for those in the northern regions. In
addition, the transition toward renewables proves to bemore effective
in reducing primary energy losses in several northern regions with a
higher share of fossil fuel-fired electricity generation, such as the
Upper Midwest and Ohio Valley. These power sector decarbonization-
induced spatial variations in energy losses further reinforce the
south–north gradient of mid-century changes in city-scale building
source energy consumption.

Discussion
The high spatial resolution of our approach reveals heterogeneous
city-scale building EUI changes in response to future warming

–20 20 400

–20 20 400

25°N

30°N

35°N

40°N

45°N

50°N

–20 20 400

–20 20 400

–20 10 200–10

–20 10 200–10

–20 40 60200

–20 40 60200

25°N

30°N

35°N

40°N

45°N

50°N

Change of annual source energy use (%)

La
tit

ud
e

La
tit

ud
e

Population change

Climate change

Power sector change

Overall

a b c d

e f g h
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the 2050s relative to the reference decade attributed to climate change,
population change, and electric power sector decarbonization. a SSP1-2.6 with
business-as-usual scenario. b SSP2-4.5 with business-as-usual scenario. c SSP3-7.0
with business-as-usual scenario. d SSP5-8.5 with business-as-usual scenario. e SSP1-
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overall effect is the change in annual source energy consumption, which equals the
sum of contributions from three drivers. Here the overall effect averaged across all
urban areas within latitude band is presented, with error bars representing the
variability (±1 standard deviation) among urban areas. Results for the entire U.S.
and nine climate regions are shown in Supplementary Figs. 21, 22. Source data are
provided as a Source Data file.
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(Supplementary Fig. 16). Depending on building stock characteristics,
urban areas in the same state or even the same countymay experience
varying future changes in building EUI under different warming sce-
narios (Figs. 1 and 3). Consequently, the need for future urban energy
infrastructure deployment will differ among urban areas. For instance,
considering population changes alone when making decisions on
electric grid expansion in urban areas with similar population growth
rates but distinct EUI changes (e.g., California) may lead to under-
estimating or overestimating actual electricity demand. Therefore, the
planning of electricity transmission, distribution, and storage infra-
structure for each urban area must factor in these warming-induced
variations. Likewise, the spatial variation in NE-EUI changes implies
potentially varying requirements for pipelines and compressor sta-
tions to supply fossil fuels to buildings. This is especially the case for
SSP3-7.0, under which themagnitude of population-induced change is
similar to warming impacts on building fossil fuel use in many urban
areas (Fig. 3 and Supplementary Fig. 23). These intercity variations
emphasize the location-dependent challenges and opportunities each
urban area will encounter in terms of energy saving and energy effi-
ciency improvement.

The high temporal resolution of our approach enables a detailed
assessment across multiple temporal scales. For instance, urban areas
in the U.S. are projected to experience diurnal and seasonal changes in
total EUI that are much larger than annual mean changes (Fig. 2 and
Supplementary Figs. 6–9). These temporally heterogeneous changes
should be taken into account when planning for regional generation
capacity expansion and energy storage, especially for a future power
grid that relies on variable renewables29. In addition, the substantial
increases in the intensity and frequency of summer peak electricity
demand in U.S. urban areas (e.g., Supplementary Fig. 10) could
necessitate not only a higher grid capacity but also greater resilience
against blackouts during extreme heat waves. Recent studies have
highlighted the rapidly elevated risks of heat-related mortality and
morbidity during compound heat wave and grid failure events in
several U.S. urban areas30,31. Given the anticipated rise in urban cooling
demand across all warming scenarios (Supplementary Fig. 1), enhan-
cing power grid resilience will become increasingly crucial to mitigate
potential health risks and cope with heat extremes.

Previous studies have traditionally used globalmean temperature
changes to assess the linear or near-linear responses of energy use to
future warming3,25. In comparison, here we derive city-scale responses
of space-conditioning EUI to local air temperature changes. These
linear responses are informative for urban planning and policy-making
processes, particularly in the development of strategies for urban heat
mitigation and adaptation. To improve urban sustainability, cities
worldwide are actively developing and implementing measures such
as green infrastructure and cool materials to reduce heat stress and
building energy use during warm seasons32,33. While mesoscale
meteorologicalmodels can reasonably quantify the city-scale cooling
effect of heat mitigation strategies, the evaluation of their effec-
tiveness in reducing building energy use is typically conducted on a
case-by-case basis at the building- or community-scale34–36. Con-
sidering the potential tradeoff between cooling energy savings and
space heating penalties as well as distinct building stock character-
istics across urban areas, the resulting city-scale energy use change is
often uncertain37–39. This is partly reflected in some urban areas along
coastal California, where cooling and space heating are both highly
sensitive to temperature change (Fig. 4). The city-scale responses
quantified in this study (Fig. 4 and Supplementary Fig. 17) provide a
valuable solution to this issue for urban planners and decision-
makers. For instance, when assessing the impact of specific heat
mitigation strategies in an urban area, the quantified linear response
enables convenient estimation of city-scale changes in space-
conditioning building energy use based on predicted temperature
changes (e.g., from meteorological models).

Under all warming scenarios except SSP3-7.0, the warming-
induced change in source energy consumption for urban buildings is
about one order ofmagnitude smaller than the increase governed by
population growth. The projected rise in source energy use under
most warming scenarios (Figs. 6–8) indicates potential changes in
associated CO2 emissions, signaling the great challenges ahead in
achieving decarbonization. Under the business-as-usual scenario,
fossil fuel-based power plants continue to emit CO2 when supplying
electricity to buildings. However, these emissions can be offset
through the implementation of decommissioning and negative
emission technologies, such as carbon capture and storage and
direct air capture, as seen under the zero-carbon scenario. Yet, with
the growing population, direct fossil fuel combustion in buildings is
projected to increase in nearly all urban areas under SSP1-2.6, SSP2-
4.5, and SSP5-8.5, and in one-third of urban areas under SSP3-7.0
(Supplementary Fig. 24). Correspondingly, their associated CO2

emissions remain a key barrier to achieving decarbonization.
Therefore, rapid electrification of future urban buildings is of equal
importance to power sector decarbonization40, particularly under
higher warming/emission scenarios. We note this as an important
area for future study.

Changes in building construction and operation, building codes,
appliance efficiency, and other economic factors such as income and
price can also influence building EUI7,9,24. For example, a recent study41

demonstrated that aggressive improvements in building efficiency,
such as deploying higher efficiency appliances and space-conditioning
equipment, higher performance building envelope, and smart ther-
mostats, can potentially reduce electricity consumption in U.S. build-
ings by up to one quarter in 2050, assuming no changes in climate. The
same study also estimated that full electrification of all buildings in the
U.S. could lead to a one-third increase in annual electricity consump-
tion. Anothermodeling effort19 found that space heating electrification
in Texas can reduce residential building energy use by 0–11%, although
the magnitude depends on the efficiency assumed for heat pumps.
These studies suggest the wide range of possible building energy use
changes resulting from a variety of future building efficiency
assumptions. Similarly, building energy saving also varies (e.g., by
4–30%) with different assumptions regarding occupant behavioral
changes42,43. Despite the important role that income plays in deter-
mining building energy use in low- and middle-income countries17,44,
several studies have suggested very lowhousehold incomeelasticity of
residential building energy use in the U.S. when other building char-
acteristics are controlled45,46.

Nevertheless, here we hold the characteristics of the building
stock in each urbanareafixed3,5,47 at the reference-decade levels. This is
mainly because the current building stock and its occupant behavior
are well understood from extensive survey data. By focusing on the
impacts of climate change, population growth, and power sector
decarbonization, our findings establish a baseline for future research
to delve into the complex socio-economic impacts on city-scale
building energy use under each future scenario. The explicit repre-
sentation of these impacts is possible considering the physics-based
nature of the proposed bottom-up approach, which can incorporate
projected changes in building shells, equipment efficiency, and occu-
pant behavior. Furthermore, our high-granularity approach opens up
new possibilities for high temporal resolution analyses on the intricate
interactions between building energy consumption, building heat
emission, and electricity generation that are sensitive to weather and
climate changes.

Methods
A bottom-up approach for quantifying urban building
energy use
To evaluate the behaviors and responses of city-scale building energy
consumption to climate change in the U.S., we developed a bottom-up
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approach that integrates physics-based building energy models and
statistical methods (Supplementary Fig. 25). At the core of this
approach lies the modeling of representative buildings, or prototype
buildings, in each urban area, which relies on a whole building energy
simulation program (EnergyPlus) driven by hourly weather data (his-
torical reference period: 2010–2019 or the 2010s; future period:
2050–2059 or the 2050s). However, prototype buildings are inade-
quate in describing heterogeneous building characteristics and end-
users’ behaviors across the entire building stock. To address this lim-
itation, we used the high-granularity End-Use Load Profiles (EULP)
database22 to scale up the simulated site energy use (hereafter simply
energy use, unless otherwise specified) from individual building level
to building stock level in each urban area. We then trained location-
specific statistical models based on historical data from the EULP
dataset to calibrate our city-scale results. These statistics-based cali-
bration models aim to minimize discrepancies between the scaled
results and the EULP dataset while capturing usage patterns that are
potentially missing in the prototype models.

Selection of U.S. urban areas
Urban areas in the CONUS in this study are primarily based on the
urbanized areas identified by the U.S. Census Bureau, each with a
population of at least 50,000 people. In comparison, the most gran-
ular level of the EULP dataset used for scaling and calibration is the
Public Use Microdata Area (PUMA) level22. PUMAs are the smallest
geographicunits usedby theU.S. CensusBureau for the tabulation and
dissemination of the American Community Survey (ACS) Public Use
Microdata Sample data. Each PUMA contains at least 100,000 people
(and usually fewer than 200,000 people) and is much smaller in urban
areas than in rural areas. To reconcile the mismatch between urban
areas and PUMAs, we identified one or more PUMAs to represent each
urban area. More specifically, a PUMA is selected if at least 10% of its
spatial extent is within the boundaries of an urban area (hereafter
representative PUMAs). On the one hand, this threshold ensures that
we cover a sufficiently large number of CONUS urban areas. On the
other hand, the selection also covers part of the urban peripherywhich
may undergo future urban development and potential population
growth. In cases where a PUMA spans multiple urban areas, we
assigned it to the urban area that encompasses the largest proportion
of the PUMA’s spatial extent to avoid double counting. Following these
procedures, we excluded urban areas without any representative
PUMAs and retained 277 out of 481 CONUS urban areas in this study.
These 277 urban areas cover 1,540 PUMAs across the country (Sup-
plementary Figs. 26, 27). Approximately 44% of urban areas can be
represented by a single PUMA, while the largest urban area, New York-
Newark in NY-NJ-CT, is represented by 144 PUMAs (Supplemen-
tary Data 1).

Historical hourly weather data
Physics-based building energy consumption modeling in each urban
area requires hourly meteorological forcing data from representative
weather stations. The National Renewable Energy Laboratory (NREL)
identified 936 weather stations over the CONUS in the Typical
Meteorological Year (TMY3) dataset and classified these stations based
on their data uncertainty and completeness of the long-term historical
observations; Class I and Class II stations have lower uncertainty data
and more complete period of record than Class III stations48. In addi-
tion, a previous study49 has demonstrated that using a subset of 216
TMY3 stations is sufficient to capture the granularity of different cli-
mate conditions in the CONUS. Considering the data quality, distance
to urban areas, elevation, and climate types, we further improved the
granularity by selecting 252 urban weather stations to represent 277
CONUS urban areas (Supplementary Fig. 27). More than 97% of the
selected stations are either Class I or Class II stations. This selection
results in 303 unique pairs of urban areas and weather stations, with 17

urban areas having more than one representative station (Supple-
mentary Data 1).

We then compiled hourly meteorological data for the selected
stations covering a 22-year historical period from 1998 to 2019. We
retrieved quality-controlled hourly observations of air temperature,
dewpoint temperature, sea level pressure, wind direction, wind speed,
and accumulated liquid precipitation from the Integrated Surface
Database (ISD)50. Post-processing was performed to correct mis-
matches in weather station identifiers and geographical locations.
Solar radiation-related variables, including global horizontal radiation,
direct normal radiation, diffuse horizontal radiation, and sky cover,
were retrieved from the half-hourly, 4-km National Solar Radiation
Database (NSRDB)51. These variableswere computedusing the Physical
Solar Model (PSM)52, which is a two-step physical model driven by
cloud properties, atmospheric profiles, aerosol properties, and albedo
frommultiple datasets, and are available since 1998. All raw data were
converted from Coordinated Universal Time (UTC) to local time. Sea
level pressure was converted to surface pressure at each station using
the hypsometric equation. A multi-step gap-filling approach was
applied to fill gaps in hourly observations based on data from nearby
stations and reanalysis data from the Modern-Era Retrospective Ana-
lysis for Research and Applications version 2 (MERRA-2)53 (see further
details in Supplementary Method 1).

Future hourly weather data
Future hourly weather data at the locations of representative urban
weather stations were derived from the latest CMIP6 model outputs.
Four emissions and concentration or warming scenarios, SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5, were selected to represent a wide
range of possible future socio-economic developments, land use, and
emission trajectories with different global warming levels (Supple-
mentary Method 2 and Supplementary Tables 2, 3). These four future
scenarios have been prioritized as the Tier 1 scenarios in the CMIP6’s
Scenario Model Intercomparison Project (ScenarioMIP)54 and are also
part of the core set of illustrative scenarios in the Intergovernmental
Panel on Climate Change (IPCC)’s Sixth Assessment Report. Compared
with the commonly used combinations of SSP and Representative
Concentration Pathways (RCPs) in the literature, these SSPX-Y sce-
narios enhance the alignment between the socio-economic back-
grounds and the resulting emissions futures (Supplementary
Method 2). Ten CMIP6 general circulation models and Earth system
models were selected based on data availability, and each model has a
variant with outputs available for both historical simulations (hind-
casts) and future projections under all four SSPX-Y scenarios (Sup-
plementary Table 4). This ensures a consistent set of model variants
across different scenarios.

We retrieved primarily 3-hourly climate model outputs of near-
surface air temperature, near-surface specific humidity, surface pres-
sure, eastward near-surface wind, northward near-surface wind, sur-
face pressure, surface downwelling shortwave radiation, and surface
diffuse downwelling shortwave radiation (Supplementary Method 3).
Additionally, we retrieved daily maximum and minimum near-surface
air temperatures to capturedaily extremes (SupplementaryMethod3).
Raw model outputs were converted from UTC to local time and
interpolated from model grids to station locations using inverse dis-
tance weighting. Linear interpolation was used to downscale tem-
perature, humidity, wind components, and pressure to hourly data,
while hourly solar elevation angle was used to downscale radiation
data55. Relative humidity was derived from air temperature, specific
humidity, and surface pressure. Direct normal radiationwas calculated
using shortwave radiation, diffuse shortwave radiation, and solar
zenith angle.

We then applied the quantile delta mapping (QDM) method56 to
correct biases in the downscaled hourly climate model outputs. This
method has proven effective in correcting systematic biases while
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explicitly preserving the projected changes in each quantile56. Non-
parametric cumulative distribution functions (CDFs) approximated
using kernel density estimates were further adopted to improve the
performance of the original QDM method57, and a 3-month moving
window was used to fit all CDFs. Following previous studies56,58, the
additive form of QDM was used for temperatures and pressure,
whereas the multiplicative form was used for wind, humidity, and
radiation variables. Similar to the treatment of historical weather data,
quality control was carried out to smooth out outliers and ensure that
variables satisfy psychrometric relationships.

Physics-based building energy modeling
We used a state-of-the-art whole building energy simulation model,
EnergyPlus, to produce building-level energy consumption data under
historical and future climate conditions. EnergyPlus simulates the
building and its energy systems based on heat balance principles, and
encompasses various numerical modules capable of solving not only
thermal zone conditions and the dynamics of heating, ventilation, and
air conditioning (HVAC) systems, but also more complex behaviors
such as interzone air mixing and fenestration systems. For each
representative urban weather station, the response of building energy
use to climate change was evaluated using a set of residential and
commercial prototype building models developed by the Pacific
Northwest National Laboratory (see details in Supplementary
Method 4). These prototype buildings cover different building types,
heating system types, and foundation types andhavebeenwidely used
for cost-effectiveness analysis of building codes and climate impact
assessments across the U.S. (e.g., refs. 59–61). Specifically, we used 40
residential prototype buildings (2 building types × 4 foundation types
× 5 heating system types) and 28 commercial prototype buildings (14
building types × 2 heating system types) at each station (Supplemen-
tary Method 4). Because prototype building files are only available at
representative locations, we further updated site information, design
conditions, and water mains temperature to reflect city-specific char-
acteristics. This generated a set of 20,604 prototype building models
(68 archetypes × 303 station–city pairs).

Historical simulations span 10 years from 2010 to 2019 (the
reference decade) to avoid the potential impact of the COVID-19
pandemic on energy use. We performed a total of 206,040 simula-
tions (20,604 archetypes × 10 years) for this decade using Energy-
Plus. Future simulations also last for a decade (2050–2059), but a
decadal run was carried out for each climate model under each
SSPX-Y scenario, resulting in a total of ~8.24 million simulations
(20,604 archetypes × 10 years × 10 climate models × 4 SSPX-Y sce-
narios). All EnergyPlus runs were performed in parallel mode on
the Sherlock cluster at Stanford University. Each simulation was
conducted using 15-min timesteps for zone heat balance model
calculation, and electricity, natural gas, fuel oil, and propane con-
sumption data for different end-use categories were output at an
hourly resolution.

Fine-granularity end-use energy consumption data
Another cornerstone of the bottom-up approach for urban building
energy use is a fine-granularity end-use (site) energy consumption
dataset, the EULP database22, primarily developed by the NREL. Har-
nessing numerous data sources and the two best-in-class building
stock energy models of the U.S. residential and commercial sectors
(ResStock and ComStock), the EULP dataset provides 15-min resolu-
tion load profiles for all major residential and commercial building
types and end uses as well as building stock characteristics for all
locations in the CONUS, and is one of the most comprehensive
building load databases in the U.S. In particular, the two building stock
models are notable for their ability to achieve high temporal and
spatial resolutions. Using statistical distributions of building char-
acteristics, they simulate ~900,000 individual building models to

represent the energy consumption patterns of the entire U.S.
building stock.

Some major data sources used for developing building stock
models include building codes, the U.S. Energy Information Adminis-
tration’s Residential Energy Consumption Survey (RECS) and Com-
mercial Buildings Energy Consumption Survey (CBECS), and the U.S.
Census Bureau’s American Housing Survey (AHS) and ACS. For both
residential and commercial building stocks, the sensitivity of model
parameters was first quantified with trained random forest models.
These input parameters were then adjusted following a region-by-
region calibration approach to improve the consistency between the
results and additional empirical data (e.g., hourly advanced metering
infrastructure data and energy sales data). Extensive and thorough
validation across different spatial and temporal scales has been carried
out using public and private datasets, demonstrating the accuracy of
this dataset in characterizing the U.S. building stock. Further details of
the two building stockmodels and the calibration and validation of the
EULP database are provided in Supplementary Method 5.

It is noteworthy that the physics-based simulations in the EULP
database also rely on EnergyPlus driven by hourly weather data. Given
this inherent similarity, we anticipated that the response of individual
loads (especially weather-dependent ones, i.e., heating and cooling) to
historical weather simulated in our study would align with the EULP
data. In addition, to use the EULP database in our city-scale calibration
models, we aggregated the 15-min, PUMA-level EULP outputs of resi-
dential and commercial building energy consumption to the hourly
scale for each of the 277 U.S. urban areas (Supplementary Table 5).
PUMA-level building stock characteristics were also aggregated to the
city scale. For each urban area, the simulated hourly energy consump-
tion was then scaled and aggregated based on the shares of building
types, foundation types, and primary heating types in the city-scale
building stock, similar to previous national and city-scale studies60,61.

Statistical calibration models
As expected, due to the similarity in simulation algorithm and
meteorological forcing, the patterns of city-scale EnergyPlus-based
hourly building energy consumption for individual end-use categories
(e.g., heating or cooling) are generally consistent with those in the
EULP data (see diurnal and monthly comparisons of example urban
areas in Supplementary Figs. 28, 29). However, the sum of these indi-
vidual end-use categories often exhibits large discrepancies in both
magnitude and load shapes, even on the monthly scale (Supplemen-
tary Fig. 30). This is mainly caused by the lack of diverse building
characteristics, operations, and controls in our prototype-based
simulations.

To reduce these discrepancies and better capture the response of
diverse city-scale building stock to weather conditions, we imple-
mented a post hoc calibration approach using a set of location-specific
statisticalmodels. For eachend-use load category i at time t in anurban
area from the EULP database, Ei,t, following a commonly used
dose–response function form5,17,47, we trained a statistical model using
a yearlong hourly time series (training datasets; see Supplementary
Method 5),

Ei,t =αiE
a
i,t +

X
j

βj,iT j,t +ωh +ψm +ϕw +
X
k

γk,iηk,tE
a
i,t +Ct + ϵi,t ð1Þ

where Ea
i,t is the aggregated result of EnergyPlus-based end-use load

category i at time t;ωh,ψm, andϕw are hour-of-day,month-of-year, and
weekend fixed effects, respectively; ηk,tE

a
i,t denotes the interactions

between the aggregated energy use and hour-of-day dummy variables,
as a correction of diurnal load shape; Ct denotes six-order Chebyshev
polynomials, reflecting the impacts of low-frequency factors62; εi,t is
the error term; and αi, βj,i, and γk,i are regression coefficients. Tj,i is a
dummy variable for the hourly air temperature at time t that falls into a
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temperature bin j, representing the potential nonlinear response of the
relationships to ambient temperature47. Different from previous
studies that used an equal width for all temperature bins (e.g., 3 °C
in ref. 5), we used the 2nd, 5th, 95th, and 98th percentiles as well as
nine deciles of the distribution as the bins’ cutoffs to ensure that each
bin has sufficient data samples.

We then post-calibrated all weather-dependent end-use load
categories (i.e., electricity use for cooling, electricity use for space
heating, natural gas use for space heating, fuel oil use for spacing
heating, and propane use for space heating) with the trained calibra-
tion models separately for residential and commercial buildings in
each urban area. Additionally, we further trained calibration models
for water heating energy consumption in residential buildings due to
the stochastic occupant behavior model used in ResStock22. Then for
each urban area, the hourly time series of residential and commercial
building energy consumption, Et, can be computed as

Et =
X
i

Êi,t +
X
k

Ek,t ð2Þ

where Êi,t is the calibrated end-use load estimated using Eq. (1), and Ek,t
denotes other less- or non-weather-dependent loads from the
validated EULP database, which are nearly identical in different years.
Equations (1) and (2) were used to derive the time series of both
historical (Ei,t,his or Et,his) and future (Ei,t,fut or Et,fut) building energy
uses. Note that the future site energy consumption in Eq. (2) does not
involve any impacts from future population change.

To examine whether the calibration models can be used under
different weather conditions and climate change scenarios, we applied
the trainedmodels to generate newyearlong timeseries of all variables
and compared the results with two independent testing datasets from
the EULP (Supplementary Method 5). The estimated city-scale resi-
dential and commercial building end-use loads demonstrate great
agreement with the EULP data across different temporal scales (from
hourly to annual) forboth training and testingperiods (Supplementary
Figs. 28–32 and Supplementary Tables 6–8). In particular, the Pear-
son’s r values for the comparisons between the calibrated total
building energy use and the EULP data are well above 0.99 (Supple-
mentary Figs. 31, 32).

Response of urban building stock to future population changes
Spatially and temporally varied future urban population changes will
have an impact on the building stock and the associated building
energy consumption. For future population change, we use a 1-km,
decadal population projection dataset, which was downscaled from
global 1/8° projections63 and is quantitatively and qualitatively con-
sistent with SSPX-Y scenarios (Supplementary Method 2). The gridded
population projections were aggregated to the city scale, and popu-
lation counts for the 2010s and 2050s were derived from the average
of 2010 and 2020 data and the average of 2050 and 2060 data,
respectively. Considering that the base year of these projections is
2000, we used the population counts from the EULP and the ratio of
the 2050s population to the 2010s population to derive the corrected
population projections under each of the four SSPX-Y scenarios
(Supplementary Fig. 23).

Early studies have demonstrated that urban building energy
consumption or its proxy (e.g., nightlights) nearly linearly scale with
urban population64,65, i.e., the exponent δ in the following power-law
relationship between population P and an urban property Y (e.g.,
building energy use) at time t roughly equals 1.0,

Y t = λP
δ
t ð3Þ

where λ is a normalization constant. Similar relationships were
observed using the EULP database for the selected 277 urban areas in

the CONUS: δ = 1.013 (R2 = 0.926) for P = population, and δ = 1.012
(R2 = 0.948) if the base in Eq. (3) is the total floor area. This suggests
that building energy consumption linearly scales with both population
and floor area in these urban areas (Supplementary Fig. 33). Therefore,
we assumed that the future building stock and building energy con-
sumption change proportionally with the population in the selected
urban areas3,59,66. Mathematically, the time series of future site energy
consumption in an urban area, ESI,t,fut, can be calculated as

ESI,t,fut = Et,fut
Pfut
Phis

= E
t,fut

Ffut
Fhis

ð4Þ

where Et,fut is the time series of energy consumption with building
stock and population fixed at historical levels but under future climate
conditions computedusing Eq. (2), andF is the totalfloor area, with the
subscripts “his” and “fut” denoting historical and future periods,
respectively. The subscript “SI” represents site energy consumption
that includes impacts from population change.

The above relationship has important implications for changes
in energy use intensity (EUI), an indicator used in this study to
isolate the impact of climate change from that of population
change. The relative change in EUI under future conditions, when
compared with historical conditions, can be calculated as
ðESI,t,fut=Ffut � ESI,t,his=FhisÞ=ðESI,t,his=FhisÞ. Substituting Eq. (4)
into this expression yields

ðESI,t,fut=Ffut � ESI,t,his=FhisÞ=ðESI,t,his=FhisÞ= ðEt,fut � E
t,hisÞ=Et,his ð5Þ

where ESI,t,his = Et,his, as the historical floor area is constant. Equation (5)
suggests that the impact of climate change on EUI, when isolated from
the impact of population change, is equivalent to imposing future
climate conditions onto the current building stock.

Response of urban air conditioning saturation to future
warming
Future warming will also increase the market penetration of air con-
ditioners, especially in regions where the current penetration rate is
relatively low, such as the Northwest (on average ~52% for residential
buildings based on the EULP database). Previous studies8,67 used an
empirical model to determine future saturation based on the current
rate and cooling degree days. However, the empirical model was
trained using data from only 39 U.S. urban areas. Here we used his-
torical residential building data from 277 CONUS urban areas and
developed an exponential saturation function,

S0 =0:948� 0:824e�0:00343CDD0 ð6Þ

where S0 is the AC saturation rate in the 2010s, and CDD0 is the mean
annual cooling degree days during the same period. We then used the
slope of this saturation curve to project the future saturation rate in
the 2050s for each urban area,

St = S0 +0:00282e
�0:00343CDDt ðCDDt � CDD0Þ ð7Þ

whereSt is the futureAC saturation rate during 2050–2059, andCDDt is
the mean annual cooling degree days in the 2050s. We derived St
separately for each climate model projection under each SSPX-Y
scenario. This ensures the diverse response of market penetration in
future CONUS urban areas under different climate projections.

For commercial buildings, a linear saturation curve was fitted
based on historical data from the EULP. However, the regression
function has a very low R2 (0.112), and the change of AC saturation rate
induced by warming estimated using the curve is one order of mag-
nitude smaller than its residential counterpart. In addition, the current
AC penetration rate of commercial buildings in the selected 277 urban
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areas is in general much higher than that in residential buildings. For
commercial buildings, on average 98.9% of 277 urban areas have a
saturation rate higher than 80% (cf. 73.6% of urban areas for residential
buildings). Therefore, we only considered saturation rate change for
the residential sector.

Linear regressions for the response of space-conditioning
energy use intensity to warming
Previous studies have identified statistically significant linear or non-
linear relationships between the relative change in electricity use and
end-of-century global warming extent3,25. However, we did not observe
such relationships in this study, whichmainly results from the spatially
varied compensation between increasing cooling demand and
decreasing space heating demand under mid-century warming con-
ditions. Nevertheless, we observed significant linear dependence of
both building cooling demand and spaceheating demandonwarming.
For each urban area, the projected changes in annual cooling demand,
space heating demand, and air temperature from a wide spectrum of
40 potential trajectories (10 CMIP6 climate models × 4 SSPX-Y sce-
narios) provide a sufficiently large sample size to build linear regres-
sionmodels (Supplementary Fig. 34). Of particular interest is the slope
of the linear regressionmodel, which indicates the city-scale response
of the cooling or space-heating EUI to a local temperature change of
1 °C (for relative change the unit is %/°C).

We fitted linear regression models between the city-scale air
temperature change and mid-century changes in E-EUI for cooling,
E-EUI for space heating, natural gas EUI for space heating, fuel oil EUI
for space heating, and propane EUI for space heating with the ordinary
least squares method. The linear regression models for these five
space-conditioning EUIs are statistically significant for all urban areas
(p value < 10–8). The minimum R2 values for the responses of E-EUI for
cooling, E-EUI for space heating, natural gas EUI for space heating, fuel
oil EUI for space heating, and propane EUI for space heating are 0.757,
0.666, 0.673, 0.716, and 0.596, respectively. In addition, the warming-
response of E-EUI for space cooling with AC saturation rate fixed at the
reference-decade level exhibits a spatial pattern similar to the case
with changing AC saturation rate (Fig. 4a and Supplementary Fig. 17a),
although with a relatively smaller magnitude of response. This sug-
gests the robustness of responses quantified using linear regression
models (e.g., Supplementary Fig. 34).

Conversion to source energy use
It is noteworthy that the end-use energy consumptionof buildings (site
energy consumption) does not account for energy losses during gen-
eration, transmission, and distribution. To assess the actual primary
energy used by buildings (source energy consumption), national-level
site-to-source conversion factors have been commonly used in exist-
ing impact assessments (e.g., ref. 59). However, the use of uniform
conversion factors across the entire country can largely overlook the
substantial regional variability of fuels and resources used in electricity
generation21.

To convert site electricity use to source energy consumption
(Supplementary Fig. 25), we derived spatially varied site-to-source
conversion factors based on the electricity generation data from the
Cambium dataset68 (see Supplementary Method 6 for further details).
The Cambium dataset offers biennial projections of structural evol-
vements in theU.S. electric power sector through 2050under different
scenarios using outputs from the Regional Energy Deployment System
(ReEDS) model, the Distributed Generation Market Demand (dGen)
model, and the commercial production cost model (PLEXOS). For the
evolution of the U.S. electric power sector, we consider two scenarios:
the business-as-usual scenario and the zero-carbon scenario.

For the business-as-usual scenario, we used outputs from theMid-
case projection, which prescribes mid-level demand growth, system
cost, resources, prices, and technology inputs. This business-as-usual

scenario represents the current views of energy technologies. It only
reflects the impacts of existing state, regional, and federal carbon
policies enacted as of June 2021, with nonewcarbonpolicies applied in
the future. The zero-carbon scenario is a variant of the Mid-case pro-
jection, which assumes a drastic decarbonization of the U.S. electric
power sector. Under this scenario, CO2 emissions from the electric
power sector plummet to 95% below 2005 levels by 2035 and even-
tually achieve net zero (100% reduction) by 2050. This zero-carbon
scenario is close to the carbon-pollution-free electricity goal set in the
U.S. long-term strategy. The evolution of the generation mix under
these two scenarios is shown in Supplementary Fig. 18. It is noteworthy
that the two power sector scenarios employed in this study focus
solely on the possible changes in the composition of electricity gen-
eration at the regional scale (the U.S.) rather than at the global scale.
The combination between power sector scenarios and SSPX-Y sce-
narios enables us to probe the sensitivity of building source energy
consumption in U.S. urban areas to global climate change, in which the
regional power sector scenarios are not informed by the global SSPX-Y
scenarios68.

The finest geographic unit of the generation mix data from the
Cambium dataset is the balancing area (BA) (Supplementary Fig. 35),
which acts as the basic node to balance supply and demand. Never-
theless, conversion factors estimated from theBA-level generationmix
overlook the impact of imported and exported energy between bal-
ancing areas. To minimize the mismatch between electricity genera-
tion and consumption, we aggregated these BAs into 20 generation
and emission assessment (GEA) regions. These GEA regions closely
resemble the U.S. Environmental Protection Agency (EPA)’s eGRID
subregions defined to limit electricity imports and exports. We adop-
ted changing heat rates of different primary energy types under
business-as-usual and zero-carbon scenarios to derive source energy
consumption (Supplementary Table 9). For non-combustible renew-
able energy resources, we calculated the equivalent primary energy
consumption following the EPA’s fossil fuel equivalency approach
(Supplementary Method 6). For other site fossil fuel consumption
(natural gas, fuel oil, and propane), we applied a set of national-level
conversion factors (Supplementary Method 7).

Decomposing the drivers of changes in building source
energy use
Source energy consumption of urban buildings under different future
scenarios is collectively influenced by climate change, population
change, and changes in energy sources and technologies used for
electricity generation (generation mix). The total source energy con-
sumption of buildings in an urban area, ESO, can be computed as

ESO =
X
i

EUISI,i × F ×CFi ð8Þ

where i denote site energy type (electricity, natural gas, fuel oil, or
propane), and EUISI, F, and CF are site EUI, total floor area, and the site-
to-source conversion factor, respectively. Here site EUI for energy type
i equals total site energy use for this energy type, ESI,i, divided by the
floor area of the entire building stock. Then the above equation can be
rewritten as

ESO =
X
i

ESI,i
F

× F ×CFi ð9Þ

After substituting Eq. (4) into Eq. (9), the total source energy use
for the future period can be written as,

ESO,fut =
X
i

E
i,fut ×

Ffut
Fhis

×CF
i,fut =

X
i

E
i,fut ×

Pfut
Phis

×CF
i,fut ð10Þ
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where Efut =
P

tEt,fut, the annual site energy consumption of current
building stock under future climate conditions. Renaming the popu-
lation ratio as PR yields

ESO,fut =
X
i

E
i,fut ×PRfut ×CFi,fut ð11Þ

Similarly, for the historical period we have

ESO,his =
X
i

E
i,his ×PRhis ×CFi,his ð12Þ

where PRhis = 1, as the population is constant for the historical period.
Generalizing Eqs. (11) and (12) leads to

ESO =
X
i

Ei ×PR×CFi ð13Þ

with the three terms on the right-hand side involving the impacts of
climate change, population dynamics, and changes in the electric
power sector, respectively. In particular, the climate change compo-
nent here is consistent with Eq. (5).

We then applied the logarithmic mean Divisia index (LMDI)
method28 to decompose the contributions of these three drivers to
total source energy consumption changes. Using an additive decom-
position form, the change in total source energy consumption of
buildings in an urban area can be attributed as

ΔESO =ΔEE +ΔEPR +ΔECF ð14Þ

where

ΔEE =
X
i

ESO,i,fut � ESO,i,his
lnESO,i,fut � lnESO,i,his

ln
E
i,fut

E
i,his

 !
ð15Þ

ΔEPR =
X
i

ESO,i,fut � ESO,i,his
lnESO,i,fut � lnESO,i,his

ln
PR

i,fut
PR

i,his

 !
ð16Þ

ΔECF =
X
i

ESO,i,fut � ESO,i,his
lnESO,i,fut � lnESO,i,his

ln
CF

i,fut
CF

i,his

 !
ð17Þ

We further conducted an uncertainty analysis using a modified
elasticity-based decomposition method69 (see Supplementary
Method 8). Unlike the LMDI method which provides perfect decom-
position, the elasticity-based decomposition leaves an unexplained
residual term after allocating the contributions of drivers. For the
attribution of changes in future source energy use in this study, the
LMDI method and the elasticity-based method yield very similar
results (Supplementary Fig. 36), suggesting the reliability and robust-
ness of the estimated contributions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The boundaries of urban areas and Public Use Microdata Areas
(PUMAs) are extracted from the U.S. Census Bureau’s TIGER/Line
Shapefiles, which are available at https://www.census.gov/
geographies/mapping-files/time-series/geo/tiger-line-file.html.
Station-based hourly weather observations are from the Integrated
Surface Database (ISD) developed by the National Centers for Envir-
onmental Information, which is available at https://www.ncei.noaa.

gov/products/land-based-station/integrated-surface-database. Histor-
ical typical meteorological year data, also derived from the ISD, are
available at https://energyplus.net/weather or https://climate.
onebuilding.org/sources/default.html. Historical radiation data and
MERRA-2 reanalysis data are available from the National Solar Radia-
tion Database (NSRDB) at https://nsrdb.nrel.gov/. The Coupled Model
Intercomparison Project Phase 6 (CMIP6) climate projections used in
this study are available through the CMIP6 Search Interface at https://
esgf-node.llnl.gov/search/cmip6/. The complete dataset of the End-
Use Load Profiles (EULP) for residential and commercial buildings is
available at https://data.openei.org/submissions/4520. The Standard
Scenarios and Cambium datasets are available at https://
scenarioviewer.nrel.gov/. Downscaled high-resolution population
projections are available at https://sedac.ciesin.columbia.edu/data/
set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-
2000-2100-rev01. Source data are provided with this paper.

Code availability
The whole building energy simulation program used in this study,
EnergyPlus version 9.0.1, is available at https://github.com/NREL/
EnergyPlus/releases/tag/v9.0.1. Residential and commercial prototype
building models are available at https://www.energycodes.gov/
prototype-building-models. ComStock and ResStock are available at
https://github.com/NREL/resstock and https://github.com/NREL/
ComStock, respectively. Algorithms for data processing, analysis,
and visualization are based on MATLAB R2020b, R 4.1.2, and R 4.2.2
and are available from the corresponding author upon request.
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