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A B S T R A C T

Modern radio telescopes will generate, on a daily basis, data sets on the scale of exabytes for systems like the
Square Kilometre Array (SKA). Massive data sets are a source of unknown and rare astrophysical phenomena
that lead to discoveries. Nonetheless, this is only plausible with the exploitation of machine learning to
complement human-aided and traditional statistical techniques. Recently, there has been a surge in scientific
publications focusing on the use of machine/deep learning in radio astronomy, addressing challenges such as
source extraction, morphological classification, and anomaly detection. This study provides a comprehensive
and concise overview of the use of machine learning techniques for the morphological classification of radio
galaxies. It summarizes the recent literature on this topic, highlighting the main challenges, achievements,
state-of-the-art methods, and the future research directions in the field. The application of machine learning
in radio astronomy has led to a new paradigm shift and a revolution in the automation of complex data
processes. However, the optimal exploitation of machine/deep learning in radio astronomy, calls for continued
collaborative efforts in the creation of high-resolution annotated data sets. This is especially true in the case
of modern telescopes like MeerKAT and the LOw-Frequency ARray (LOFAR). Additionally, it is important to
consider the potential benefits of utilizing multi-channel data cubes and algorithms that can leverage massive
datasets without relying solely on annotated datasets for radio galaxy classification.
1. Introduction

Radio astronomy has seen an accelerated and exponential data
eruption in the last two decades. Future radio telescopes like the
Square Kilometre Array (SKA) will generate data sets on the scale of
Exabytes. This will be one of the largest known big data projects in the
world (Farnes et al., 2018). The low-frequency instrument SKA-LOW
will be located in Australia while the mid-frequency instrument SKA-
MID will be located in South Africa. SKA-LOW will have a peak real-
time data rate of 10 TB/s (Labate et al., 2022), while SKA-MID will have
a peak real-time data rate of 19 TB/s (Swart et al., 2022). Other similar
projects currently contributing to data-intensive research in astronomy
that form the baseline/pathfinder to SKA include MeerKAT,1 which
generates raw data at 2.2 TB/s (Booth and Jonas, 2012), the Murchison
Widefield Array (MWA)2 with a data rate of ∼300 GB/s (Lonsdale
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1 https://www.sarao.ac.za/gallery/meerkat/.
2 https://www.mwatelescope.org.

et al., 2009) and the LOw-Frequency ARray (LOFAR) generating raw
data at the rate of 13 TB/s (van Haarlem et al., 2013). Astronomy
has thus become a very data-intensive field with multi-wavelength and
multi-messenger capabilities (An, 2019).

With the Evolutionary Map of the Universe (EMU) generating up
to ∼70 million radio sources (Norris et al., 2011) and with the SKA
expected to discover more than 500 million radio sources (Norris
et al., 2014), computer-aided applications are unavoidable. Since the
first publication on using deep learning for classifying radio sources
by Aniyan and Thorat (2017), various machine/deep learning tech-
niques have been explored and applied in many scientific publications.
Hence, there is a need to take stock of published papers to get an
up-to-date snapshot of the progress achieved and the current state-of-
the-art in this field. This survey provides a comprehensive review of the
existing approaches for radio galaxy classification, identifies the key
vailable online 12 October 2023
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Fig. 1. An astronomical image as obtained from an optical and a radio telescope:
(a) the Legacy telescope (optical) 𝑅-band intensity, and (b) the LoTSS-DR2 stokes 𝐼
intensity. Source: Public LOFAR Galaxy Zoo: LOFAR. This is a typical example of a
bent type galaxy.

challenges, and suggests future research directions (research gaps) in
this rapidly evolving field.

Morphological classification is a crucial aspect of radio astron-
omy, as it allows scientists to understand the physical properties and
characteristics of celestial objects based on their form and structure. Ad-
ditionally, automated morphological analysis of large radio images can
be a source of rare astrophysical phenomena, leading to serendipitous
discoveries (Ray, 2016). Moreover, radio astronomy has played a very
fundamental role in stimulating and spurring discoveries in the fields of
cosmology, astrophysics, and telecommunications (Burke et al., 2019).
Radio astronomy allows us to study celestial objects and phenomena
at wavelengths that are not visible in the optical spectrum, providing
unique insights into the Universe. For instance, radio image cubes are
supplemented by data obtained from other portions of the electro-
magnetic spectrum for cross-identification to help tackle fundamental
scientific challenges. Fig. 1, obtained from the public LOFAR Galaxy
Zoo: LOFAR project,3 illustrates this cross-identification process on an
optical and a radio image of the same celestial object. These studies can
help us better understand the physical processes at work in the Universe
and the diverse objects it contains (Burke et al., 2019).

1.1. Key challenges in radio astronomy

In recent years, artificial intelligence has been extensively applied
to automate daunting manual and challenging tasks in radio astron-
omy. Some of the main areas that have experienced revolution and
notable progress are telescope performance monitoring and the pro-
cessing/transformation of visibility and image cube data. In modern
telescopes, the demand for high-resolution observations and efficiency
is very high, hence, the necessity of real-time system health checks.
To achieve this, machine learning algorithms are exploited (Hu et al.,
2020). In Mesarcik et al. (2020), machine learning algorithms have
demonstrated the capability to reliably detect, flag, and report system
issues with above 95% accuracy. This substantially mitigates the risk
of failures while at the same time maintaining the peak performance
of the telescopes. During the data curation stage in the visibility do-
main, machine learning techniques are used to automate the process of
detection and correction of errors occurring in recorded data, while si-
multaneously removing outliers in the data sets (Yatawatta and Avruch,
2021). Furthermore, they are applied in the identification and removal
of radio frequency interference (RFI) - unwanted (noise) signals - which

3 https://www.zooniverse.org/projects/chrismrp/radio-galaxy-zoo-lofar.
2

are produced by telecommunication technologies and other man-made
equipment (Kerrigan et al., 2019; Vafaei Sadr et al., 2020; Sun et al.,
2022). These kinds of signals and errors would degrade the quality of
the data if not flagged.

In the image domain, the process of calibration relies heavily on the
optimal fine-tuning of calibration parameters in the raw data processing
pipelines. Reinforcement learning is applied to automate the process of
selecting and updating calibration parameters (Yatawatta and Avruch,
2021). This process is a tedious task due to the high number of cali-
bration parameters that must be tuned for telescopes with large fields
of view (Wijnholds et al., 2010). Moreover, astronomy has experienced
a proliferation in the application of machine/deep learning in astro-
nomical radio images to explore and address fundamental scientific
challenges. The major areas of research in radio astronomy include:
extraction and finding of radio sources such as point-like sources and
extended sources (Pino et al., 2021); classification of the celestial
objects based on their morphological features (Lukic et al., 2018; Wu
et al., 2018); the study and detection of rare celestial objects and
phenomena such as pulsars, supernovas, quasars, Fast Radio Bursts, the
21 cm cosmological signal, and galaxies with unique and extraordinary
morphologies (Bethapudi and Desai, 2018; Agarwal et al., 2020; Galvin
et al., 2020; Mangena et al., 2020; Mostert et al., 2021; Bianco et al.,
2021; Ni et al., 2022; Hartley et al., 2023); and the retrieval of galaxies
with similar morphological characteristics (Abd El Aziz et al., 2017;
Ndung’u et al., 2023).

Generally, computer-aided systems have resulted in a paradigm shift
in the capacity, capability, and rate at which immense and complex
astronomical data is exploited relative to traditional methods. This
has been further boosted by high computing, software, and hardware
improvements — playing a critical role in the automation of the re-
search processes in modern astronomy. Big data, however, still presents
challenges due to its complexity, and the computational resources and
execution times that are required by such data sets.

The rest of the paper is structured as follows: Section 2, provides a
brief background on radio astronomy. Section 3 presents the approach
followed to retrieve the relevant papers for this review. Section 4
provides a detailed review of the adoption of machine/deep learning
algorithms in morphological classification. Section 5 highlights the
opportunities, challenges and future trends foreseen in the field of radio
astronomy and finally, Section 6 presents a summary of the paper,
highlighting the major insights from the review paper.

2. Background

2.1. Radio telescopes

Radio telescopes are specialized astronomical instruments that de-
tect and receive very weak radio emissions radiated by extraterrestrial
sources, for example, galaxies, planets, nebula, stars, and quasars.
Radio telescopes can either be single parabolic dishes, such as the
Five hundred meter Aperture Spherical Telescope (FAST) in China or
a number of inter-connected telescopes/antennas; of which the Giant
Metrewave Radio Telescope (GMRT) and LOFAR are prime examples
(Table 1 and Fig. 2).

Angular resolution and sensitivity are fundamental aspects to con-
sider in a telescope. While angular resolution refers to the ability of
a telescope to clearly differentiate radio sources observed in the sky,
sensitivity is the measure of the weakest radio source emissions de-
tected over the random background noise (the flux density of celestial
objects). Sensitivity is a product of several factors, namely signal co-
herence and processing efficiency, collecting aperture/dish area, along
with receiver noise levels (Swart et al., 2022). With high resolution and
sensitivity, astronomers are able to clearly resolve between celestial

https://www.zooniverse.org/projects/chrismrp/radio-galaxy-zoo-lofar
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Table 1
Type and major radio telescopes of both the parabolic dishes and aperture arrays.

Type Description Major telescopes

Parabolic dishes Single dish radio telescopes which have a parabolic reflector that receives incoming radio waves and
focuses them onto a central radio antenna. The antenna receives and amplifies signals to generate
radio images.

FAST
Effelsberg Green
Bank

Aperture/
Interferometric
arrays

Large numbers of small connected antennas (radio wave receivers) on the ground in a certain order
so as to capture multiple beams and a wide field of view of the sky. Interferometry principles are
used to synthesize all signals from every antenna in the array and produce radio images with the
same resolution as an image that was produced by a single dish. The interferometric array produces
the same resolution as a single-dish instrument with the same size as the longest baseline in the
aforementioned array.

LOFAR
MWA

Interferometry array or telescopes have a similar configuration to the aperture array telescope
configuration. These are a series of connected parabolic dish telescopes. Radio interferometry
principles are used to synthesize all the signals from all the constituent telescopes in the array.

MeerKAT
GMRT
VLA
Fig. 2. Radio telescopes: (a) Effelsberg radio telescope single parabolic dish, (b) LOFAR
antennas, and (c) the Karl G. Jansky Very Large Array (VLA) telescope array.

objects and in doing so reveal more details of far faint stars and
galaxies. The high angular resolution and sensitivity of radio telescopes
have greatly boosted the acquisition of high resolution images through
the next generation of wide-field radio surveys. For instance, LOFAR
achieves a sensitivity of ∼100 μJy/beam and a resolution of ∼6′′ which
enables it to detect sources that are faint and have small angular scales
with a high resolution (Shimwell et al., 2022a).

2.2. Radio galaxies

Radio galaxies are extensive astrophysical objects of radio emis-
sions created by active supermassive black holes which form extended
structures called jets and lobes. Fanaroff and Riley (1974) proposed
to classify radio galaxies into two major families characterized by the
distribution of luminosity of their extended radio emission. The first
family is composed of centre-brightened (bright core) with one or two
lobes. They have brightened cores extending to the lobes; exuding a
decaying luminosity from the core. They are called Fanaroff & Riley
I (FRI) galaxies. The second family is composed of edge-brightened
lobes separated by a core at the center (the luminosity of the lobes
decays as you move towards the center). They are referred to as
Fanaroff & Riley II (FRII) galaxies (Fig. 3). Further examination of
the morphological characteristics of FRI and FRII galaxies resulted in
the identification of the narrow-angled tail (NAT) and wide-angled
tail (WAT) (Rudnick and Owen, 1976) radio source populations with
bent jets. In recent years, Fanaroff & Riley 0 (FR0) galaxies, which are
compact point-like sources, were added to the radio galaxy classifica-
tion (Baldi et al., 2015). They are approximately five times as numerous
as the total number of FRI and FRII sources and therefore constitute
the largest population of radio galaxies (Baldi et al., 2018). Other
rare and minority classes of sources include Ring-shape, X-shape, W-
shape, S-shape or Z-shape, Double Double, Tri-axial, and other Hybrid
morphologies (Proctor, 2011).
3

Fig. 3. A typical Fanaroff Riley I & II classification of radio galaxies.

2.3. Data management

In data-centric fields such as astronomy, data management stan-
dards of the archived data are essential in conduit of knowledge dis-
covery and innovation. They increase the rate of adoption of scientific
discovery, knowledge integration and reuse in the wider community of
researchers. The data management practices adopted must by design
and implementation follow the FAIR (Findable, Accessible, Interop-
erable and Reusable) principles (Wilkinson et al., 2016). The system
should allow easy data access, search, tagging, retrieval, and replication
in an efficient and transparent way. This leads to seamless integration
and will allow global collaborations with other projects with similar
data programs/systems.

Large radio astronomy facilities in the world store their data in
either raw, calibrated/intermediate (for instance, VLA and LOFAR) or
science-ready archives (for instance, ASKAP4 and MeerKAT) (Louys
et al., 2022). Some projects share their visibility data publicly via
project-specific web interfaces.5 Additionally, over the last few years,
commendable progress in implementing FAIR principles in the field
of astronomy has occurred due to the International Virtual Observa-
tory Alliance (IVOA). It has been at the forefront of coordinating the
integration of all the world’s astronomy data into a federated system
and has developed a standard set of protocols and specifications to
be followed in astronomical data management (Louys et al., 2022).
IVOA enhances data interoperability across global astronomical data
providers. Moreover, a case study conducted by the Australian All-
Sky Virtual Observatory demonstrated that the implementation of the
recommended IVOA standards and protocols results in almost FAIR
data (O’Toole and Tocknell, 2022).

4 https://www.atnf.csiro.au/projects/askap/index.html.
5 http://tdc-www.harvard.edu/astro.data.html.

https://www.atnf.csiro.au/projects/askap/index.html
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Fig. 4. The main steps illustrating the process of characterization and source extraction using PyBDSF.
2.3.1. Source extraction
Finding, extracting or characterizing whether radio sources are

galaxies containing AGN or whether they are star-forming galaxies form
the basis of the exploitation of radio surveys for scientific purposes.
The data annotation mainly entails recovering the radio sources’ delin-
eation, position, estimated size, peak surface luminosity brightness, and
providing labels and descriptions as per their morphological structure.
The most reliable and accurate approach to annotating radio sources
is a manual visual inspection of the images by radio astronomers.
However, manual inspection by astronomers is limited due to the
number of experienced astronomers dedicated to this task and also
considering the size of the data.

Inspecting and characterizing radio sources is a difficult, costly, and
time-consuming process. This has led to extensive development of sta-
tistical rule-based algorithms and methodologies for source extraction
which are based on Cartesian shapelets, computer vision, Bayesian,
and Gaussian methods. It has resulted in tools such as the Python
Blob Detector and Source-Finder (PyBDSF) (Mohan and Rafferty, 2015),
BLOBCAT, Hales et al. (2012) and Aegean (Hancock et al., 2012).
PyBDSF, for instance, is based on the following algorithm, which is
summarized in Fig. 4: (i) perform image pre-processing procedures and
obtain image statistics, (ii) determine a threshold value that separates
the radio sources and the background noise pixels in the image, (iii)
with the background root mean square and mean values of the im-
ages, neighboring islands of radio source emissions are identified, (iv)
the identified islands are fitted with multiple Cartesian shapelets or
Gaussians to check if they are acceptable, and finally (v) the Gaussians
fitted within an identified/detected island are labeled and grouped
into discrete sources. Additionally, Fig. 5 shows an example of a
two-component extended source extracted using PyBDSF.

The study in Hopkins et al. (2015) finds that while these source
finders are excellent for detecting compact sources, they suffer from
insufficient robustness in the extraction of extended or diffuse sources.
Therefore, to address this challenge, researchers are exploring deep
learning-based techniques for the detection and extraction of radio
sources. COSMODEEP (Gheller et al., 2018), DEEPSOURCE (Vafaei Sadr
et al., 2019), ConvoSource (Lukic et al., 2019a), Mask R-CNN (He
et al., 2017) in Astro R-CNN, and Tiramisu (Pino et al., 2021) - recent
semantic segmentation based on U-Net (Ronneberger et al., 2015)
are some examples. These methods have shown that the use of deep
learning methodologies in the automatic detection and extraction of
radio sources is robust and achieves high accuracies of above 90%.
They offer promising alternatives for the extraction of diffuse sources
that are known to be difficult to extract.

2.3.2. Commonly used catalogs
The compilation of annotated data catalogs that are publicly avail-

able and accessible is an important contribution to the promotion of
4

Fig. 5. (a) Original input image (with sources to be extracted) and (b) two-component
compact sources output as identified and extracted by the PyBDSF software.

the development of research in morphological classification of radio
galaxies. Catalogs were compiled with different objectives such as de-
tailed exploration, comparison and examination of a given population
of galaxies (Baldi et al., 2018; Miraghaei and Best, 2017), provision
of large and comprehensive labeled data sets for mining radio galaxy
morphologies (Gendre et al., 2010; Proctor, 2011; Griese et al., 2023)
and the creation of representative and balanced catalogs encompassing
different classes of radio galaxies (Aniyan and Thorat, 2017; Ma et al.,
2019a). Owing to the varied aims and different procedures of sample
selection in developing the catalogs, the number of radio morphological
classes per data set is different. For example, some catalogs contain
a single class (Baldi et al., 2018; Capetti et al., 2017a; Capetti et al.,
2017b), two classes (Best and Heckman, 2012; Gendre and Wall, 2008;
Gendre et al., 2010), or more (Miraghaei and Best, 2017; Ma et al.,
2019a; Proctor, 2011). Additionally, the catalogs are derived from
various radio telescope surveys with different levels of luminosity.
Table 2 summarizes the commonly used data sets in machine/deep
learning applications of radio astronomy.

2.4. Anomaly detection

Besides the classification of known radio galaxies, recent studies
aim to discover and characterize galaxies with unexpected properties
(anomalies) (Giles and Walkowicz, 2018; Lochner and Bassett, 2021;
Lochner et al., 2023; Mesarcik et al., 2023). With large data sets
generated by radio telescopes, such as the EMU generating ∼70 million
radio sources (Norris et al., 2011), the SKA1 All-Sky continuum survey
(SASS1), which is expected to generate ∼500 million radio sources,
or the SKA2 All-Sky continuum Survey (SASS2), which is expected to
increase to ∼3500 million radio sources (Norris et al., 2014), the odds
of discovering unknown unique objects are beyond doubt.

Anomaly detection is mainly an unsupervised task where no labeled
data is required. In radio astronomy, there are few anomaly detection
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Table 2
Commonly used data sets for morphological and anomaly detection. Abbreviations are defined in Table A.5 in the Appendix.

Dataset description Galaxy groups Year Reference Cited in

FRGMRC (n = 960) comprises
1. FR0CAT catalog
2. FRICAT catalog
3. FRIICAT catalog
4. Proctor catalog
5. CoNFIG 1–4 catalog

Compact, FRI, FRII, Bent 2023 Brand et al. (2023) Brand et al. (2023)

FIRST radio galaxy data set: Samples selected
from FIRST survey, 1995

Compact, FRI, FRII, Bent 2023 Griese et al. (2023)

LoTSS (DR1 & DR2) S, C and M 2019,
2022

Shimwell et al. (2019,
2022b)

Ntwaetsile and Geach (2021),
Mingo et al. (2019), Lukic
et al. (2019b) and Mostert
et al. (2021)

LRG catalog (n = 1442) comprises
1. FR0CAT catalog
2. FRICAT catalog
3. FRIICAT catalog
4. Cheung catalog
5. Proctor catalog
6. CoNFIG 1–4 catalog

FR0, FRI, FRII, BT, XRG, RRG 2019 Baldi et al. (2018), Capetti
et al. (2017a), Capetti
et al. (2017b), Proctor
(2011), Cheung (2007),
Gendre et al. (2010) and
Ma et al. (2019a)

Becker et al. (2021) and Ma
et al. (2019a)

The unLRG catalog (14 245 samples): Samples
selected from Best and Heckman samples
(BH12)

Ma et al. (2019a) Becker et al. (2021) and Ma
et al. (2019a)

FR0CAT: Compact sources were extracted from
BH12 sample

FR0 2018 Baldi et al. (2018) Aniyan and Thorat (2017),
Alhassan et al. (2018) and
Rustige et al. (2023)

MiraBest (n = 1256) comprises
1. SDSS-DR7
2. FIRST survey, 1995
3. NVSS survey, 1998

FRI, FRII, Double–double,
Head–tail, Wide-angle-tailed,
Hybrid, Unclassified

2017 Miraghaei and Best (2017) Scaife and Porter (2021),
Sadeghi et al. (2021) and
Slijepcevic et al. (2022)

FRICAT: Composed from
1. SDSS-DR7
2. FIRST survey, 1995
3. NVSS survey, 1998

FRI Capetti et al. (2017a) Aniyan and Thorat (2017),
Alhassan et al. (2018),
Samudre et al. (2022) and
Maslej-Krešňáková et al.
(2021)

FRIICAT: Composed from
1. SDSS-DR7
2. FIRST survey, 1995
3. NVSS survey, 1998

FRII Capetti et al. (2017b) Aniyan and Thorat (2017),
Alhassan et al. (2018),
Samudre et al. (2022) and
Maslej-Krešňáková et al.
(2021)

Radio Galaxy Zoo: Composed from
1. FIRST data release of 2004.
2. ATLAS-DR3.
3. WISE 2012 data release.
4. Spitzer Space Telescope data

S, C and M 2015 Banfield et al. (2015) Tang et al. (2022), Wu et al.
(2018), Ralph et al. (2019)
and Lukic et al. (2018)

BH12: Composed from
1. SDSS-DR7
2. FIRST survey, 1995
3. NVSS survey, 1998

LERG, HERG 2012 Best and Heckman (2012) Baldi et al. (2018) and Ma
et al. (2019a)

Proctor catalog: Composed from the FIRST
survey released in 2003.

X-shape, W-shape, Ring-shape,
S-shape or Z-shape, Double
Double, Wide-angle tail,
Narrow-angle tail, Giant radio
sources, Hybrid morphology,
Tri-axial morphology

2011 Proctor (2011) Ma et al. (2019b), Rustige
et al. (2023),
Maslej-Krešňáková et al.
(2021) and Samudre et al.
(2022)

CoNFIG 1–4: Composed from,
1. FIRST survey, 1995
2. NVSS survey, 1998

FRI, FRII 2008,
2010

Gendre and Wall (2008)
and Gendre et al. (2010)

Aniyan and Thorat (2017),
Alhassan et al. (2018) and
Rustige et al. (2023)
a
e

applications that can be referenced. Galvin et al. (2019a), Galvin et al.
(2020), and Mostert et al. (2021) investigated self-organizing maps
to identify categories of radio galaxies using the Radio Galaxy Zoo
Citizen project, Faint Images of the Radio-Sky at Twenty centimeters
(FIRST) and Wide-field Infrared Survey Explorer (WISE) surveys, and
LoTSS data, respectively. The identified objects that did not fall in
any category of the known galaxies were annotated as outliers. In
5

addition, Lochner and Bassett (2021) developed an active anomaly e
detection algorithm6 that uses isolation forest and local outlier fac-
tor algorithms. In their paper, the anomaly detector is coupled with
user feedback (based on interest). The algorithm detects and flags

6 Active anomaly detection is an anomaly detection approach based on
ctive learning. Active learning involves leveraging the expertise of a domain
xpert and the computational power of machine learning to improve the
fficiency and effectiveness of the learning process.
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outliers and the user scores the results, which are then used to suppress
dissimilar objects and display similar ones.

Anomaly detection is challenging mainly because some identified
anomalies may be artifacts introduced during data recording, calibra-
tion, and reduction procedures. Further to Lochner and Bassett (2021),
some flagged anomalies may not be of interest to the research ob-
jectives of the astronomer. Therefore, the identified anomalies largely
depend on the focus area of the astronomer and hence the relevance of
the anomalies to a study may not be easily captured by machine/deep
learning algorithms. Despite the progress achieved in the exploitation
of machine intelligence, anomaly detection remains a challenging field
of research.

3. Survey methodology

As already mentioned, the motivation of this survey paper is to
give an account of the recent progress of computer intelligence in
morphological classification in radio image data, with a focus on the
last seven years that have seen substantial progress in deep learning
paradigms.

Web of Science (WoS)7 and NASA’s Astrophysics Data System
(NASA/ADS)8 databases were used to retrieve relevant literature papers
for the study. These databases offer advanced search capabilities and
comprehensive coverage of high-quality journal articles across various
disciplines, particularly in the areas of Computer Science and Astron-
omy, which are the focus of our research. Also, WoS indexes only
published papers, while NASA/ADS indexes a wider pool of articles
from conference announcements, pre-publication platforms (such as
arXiv), along with published papers.

We sought to obtain a fair and representative sample of papers
from the large pool of pre-published papers9 and peer-reviewed articles
written over the last seven years (2017–2023). The search strategy
protocol illustrating the inclusion and exclusion criteria adopted is
shown in Fig. 6 We conducted a literature search using the queries
shown in Table 3 and retrieved (173+52 =) 225 papers. We then applied
an exclusion criterion to filter out papers that were not relevant to
our review topic. Specifically, we excluded papers dealing with solar,
quasar, stellar, and spectrometry research, as these research topics are
beyond the scope of our review. This filtering process reduced the
number of papers to 75.

Out of the 75 papers retrieved from the two databases, 32 were
duplicates or conference announcements, which we omitted, leaving
us with 43 unique papers. After carefully reviewing these remaining
43 papers, we identified 25 that fit within the scope of our review. The
18 papers excluded during this last phase had various reasons: some
covered data catalogs, source extraction and the like; some focused on
the classification of data in other wavelengths such as 𝛾-rays; some were
about RFI detection, while others concentrated on other noteworthy
celestial objects and phenomenon within the field of radio astronomy
like pulsars, the 21 cm cosmological signal and Fast Radio Bursts. We
did not include keywords such as ‘rfi’ and ‘pulsar’ in the exclusion
criteria in Table 3, even though they were not relevant to our review.
This is because including the keywords caused a significant drop in the
number of relevant papers within our scope.

Additionally, based on recommendations from our peers, we in-
cluded seven recently published papers that were deemed relevant
and useful for our topic. Consequently, our final set of papers for
the literature review consists of 32 articles. Notably, from the final

7 https://www.webofscience.com/.
8 https://ui.adsabs.harvard.edu/.
9
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These papers include journal, conference, and pre-print papers.
Table 3
Search queries used in Web of Science and NASA ADS for the retrieval of relevant
review papers. TS = Topic sentence and PY = Publication year. Quotation marks are
used for exact matching. The text in italics indicates the exclusion criteria in both
queries.

Database Query

WOS TS = (‘‘radio galax*’’ AND ‘‘classif*’’ AND (‘‘*learning’’
OR ‘‘convolutional neural network*’’ OR ‘‘features’’))
NOT TS = (‘‘quasar*’’ OR ‘‘spect*’’ OR ‘‘blaza*’’ OR
‘‘redshift*’’ OR ‘‘burst’’ OR ‘‘stell*’’ OR ‘‘solar’’ OR
‘‘x-ray’’) AND PY = (2017–2023)

NASA/ADS (‘‘radio galax*’’ AND ‘‘classif*’’ AND (‘‘learning’’ OR
‘‘convolutional neural network’’ OR ‘‘features’’)) NOT
(‘‘quasar*’’ OR ‘‘spect*’’ OR ‘‘blaza*’’ OR ‘‘redshift’’ OR
‘‘burst’’ OR ‘‘stell*’’ OR ‘‘solar’’ OR ‘‘x-ray’’) AND
year:2017–2023

selection of papers extracted, there was no review paper covering the
scope of radio astronomy thus reinforcing the need for this work. The
few available review papers that we identified were in the wider field
of astronomy, assessing the adoption and maturity of machine learning
and deep learning in the field (Fluke and Jacobs, 2020; Wang et al.,
2018).

Table 4 presents a high-level summary of the surveyed papers. The
papers provide a wide range of machine/deep learning-based methods
applied in the field of radio astronomy. In the Coxcomb chart (similar
to a pie chart) shown in Fig. 7, the radius of each circle segment
is proportional to the number of papers it represents. Therefore, the
radius is determined by the frequency of the methodology in the papers
surveyed. It can be observed that the majority of the methodologies
used are based on shallow and deep convolutional neural networks
(CNNs). Radio astronomy has indeed adopted and adapted the latest
innovative and novel methodologies such as deep CNNs and Transform-
ers from the larger science community. This has consequently led to the
development of massive data-driven intelligent pipelines, which have
automated the rather inefficient historically manual process.

4. Adoption of computer intelligence in radio astronomy

The adoption of machine/deep learning in radio astronomy has led
to a plethora of machine and deep learning applications in classification
and segmentation tasks. This can to a large extent be attributed to the
resurgence of machine/deep learning, resulting in the development of
innovative and novel deep learning architectures such as CNNs (also
known as ConvNets) due to the exploitation of high-resolution images.
ConvNets are to some extent inspired by the biological functionality
of the human visual cortex. They have become the de facto choice for
many computer vision tasks.

A simple ConvNet is generally composed of a set of convolutional
(multiple building blocks), and subsampling (pooling) layers followed
by a fully connected layer as shown in Fig. 8. In addition, various linear
and non-linear mapping functions and regulatory units are embedded
in the structure (e.g activation functions, batch normalization, and
dropout) to optimize its performance. CNN models are designed to
automatically and adaptively learn spatial features during training.
The convolution and subsampling layers are focused on feature extrac-
tion while the fully connected layer maps the extracted features onto
outputs. In the early layers of a CNN, simple features like edges are
identified. Then, as the data progresses through the layers, more so-
phisticated features are determined. Notably, ConvNets classify images
based on learned weights in the form of convolutional kernels obtained
through the training process.

In the next section, we delve into a synthesis of the papers listed in

Table 4.

https://www.webofscience.com/
https://ui.adsabs.harvard.edu/
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Fig. 6. A schematic study design process of exclusion and inclusion criteria adopted for the retrieval of the relevant articles considered in this survey. The flowchart shows the
number of papers based on the query executed on 04/09/2023.
Table 4
Summary of the literature reviewed in this paper with a focus on classification problems. Abbreviations are defined in Table A.5 in the Appendix.

Number Method name Learning strategy Catalog/Dataset Data Aug. Year Citation

1 WSSS SU ASKAP & EMU ✓ 2023 Gupta et al. (2023)
2 CNN SU ASKAP, Radio Galaxy Zoo

& ATCA
✓ Sortino et al. (2023)

3 SSGEC SSL VLA FIRST survey & MiraBest ✓ Hossain et al. (2023)
4 Gradient Boost SU Best and Heckman sample × Darya et al. (2023)
5 CNN SU FRGMRC ✓ Brand et al. (2023)
6 BYOL SSL MiraBest & Radio Galaxy

Zoo-DR1
✓ Slijepcevic et al. (2023)

7 wGAN SU FROCAT, FRICAT,
FRIICAT, CoNFIG I & II,
MiraBest, Proctor

✓ Rustige et al. (2023)

8 HeTu-v2 SU VLA FIRST, 1995 ✓ Lao et al. (2023)
9 CAESAR-MRCNN SU ASKAP & EMU ✓ Riggi et al. (2023)
10 FixMatch SSL Radio Galaxy Zoo ✓ 2022 Slijepcevic et al. (2022)
11 CNN SU Radio Galaxy Zoo ✓ Tang et al. (2022)
12 YOLO SU FR0CAT, FRICAT, & FRIICAT ✓ Zhang et al. (2022)
13 FSL/DCNN SU FRICAT, FRIICAT, CoNFIG,

Proctor
✓ Samudre et al. (2022)

14 CNN SU FRICAT, FRIICAT, CoNFIG
& Proctor

✓ 2021 Maslej-Krešňáková et al. (2021)

15 YOLO SU FRICAT & FRIICAT ✓ Wang et al. (2021)
16 E2CNN SU MiraBest ✓ Scaife and Porter (2021)
17 CONVXPRESS SU LRG & URG ✓ Becker et al. (2021)
18 HDBSCAN US LoTSS-DR1 × Ntwaetsile and Geach (2021)
19 SVM and TWSVM SU MiraBest × Sadeghi et al. (2021)
20 CNN Simulated SKA-like data × 2020 Bonaldi et al. (2020)
21 Attention Gate CNN SU MiraBest & FR-DEEP ✓ Bowles et al. (2021)
22 CML SU Toothless Data × 2019 Becker and Grobler (2019)
23 SOM & CAE US Radio Galaxy Zoo ✓ Ralph et al. (2019)
24 SOM US Radio Galaxy Zoo × Galvin et al. (2019b)
25 CNN SSL FRICAT, FRIICAT, Proctor ✓ Ma et al. (2019b)
26 DCNN SU CoNFIG, FRICAT, 2MASS,

NVSS 1998 & FIRST 1995
✓ Tang et al. (2019)

27 SIMPLENET SU LoTSS DR1 ✓ Lukic et al. (2019b)
28 PINK US Radio Galaxy Zoo ✓ Galvin et al. (2019a)
29 MCRGNet SU Best and Heckman sample ✓ Ma et al. (2019a)
30 FIRST Classifier SU CoNFIG, FRICAT, FRIICAT

Proctor
✓ 2018 Alhassan et al. (2018)

31 CLARAN S Radio Galaxy Zoo × 2018 Wu et al. (2018)
32 Toothless SU CoNFIG, FRICAT, FRIICAT &

Proctor
✓ 2017 Aniyan and Thorat (2017)
7
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Fig. 7. A Coxcomb chart illustrating the top seven most commonly used machine
learning methodologies in radio astronomy in recent years. The quantity of papers
belonging to each of the seven categories is equal to the number of concentric circles
that overlap the respective segment.

4.1. Morphological classification

The generation of science-ready survey catalogs requires the classifi-
cation of processed calibrated radio images into various physical source
categories such as galactic, extragalactic, AGN, and SF galaxies. The
process of identifying and annotating such phenomena is very crucial in
the preparation and release of science-ready products to the public for
further scientific exploitation. Additionally, the process helps scientists
to have a better comprehension of the Universe through exploring
the fundamental laws of physics. Therefore, automating the process of
visualization and the labeling of sources based on their morphological
features is, therefore, critical in astronomy.

Broadly, morphological classification in radio astronomy entails
grouping populations of Fanaroff–Riley (FR) radio galaxies into com-
pact (point-like) and extended sources (FRI, FRII, WAT, NAT, XRG —
X-shaped radio galaxies, RRG — ringlike radio galaxies, along with
others); the extended sources contain complex morphological structures
with two or more components in a galaxy. The developed FR clas-
sification approaches utilize either unsupervised, semi-supervised or
supervised machine learning. Fig. 9 illustrates the general taxonomical
categorization of classification methods reviewed.

Using supervised learning, Aniyan and Thorat (2017) developed the
first ConvNet model based on Alexnet CNN architecture (Toothless10).
Their model was evaluated on the Toothless11 data set achieving accu-
racies of 95%, 91% and 75% for Bent-tailed, FRI and FRII, respectively.
Their work provided a baseline that clearly demonstrates the potential
of deep learning in classifying radio galaxies. Moreover, the VGG-16
architecture (Liu and Deng, 2015)∗12 was used in a semi-supervised way

10 https://github.com/ratt-ru/toothless.
11 Toothless is a three-class radio galaxy data set composed of selected well-
esolved FRI (178 samples), FRII (284 samples), and Bent-tailed (254 samples)
ources.
12 The symbol ∗ is used on citations that are not part of the papers under
8

review.
to classify radio galaxies and as such it leverages the large unlabeled
data sets that are available (Ma et al., 2019b).

Unsupervised learning using methodologies like self-organizing
maps were used by Galvin et al. (2019a), to construct radio morpholo-
gies based on similar/dissimilar characteristics of the Radio Galaxy Zoo
project data (Banfield et al., 2015). The authors proposed the Paral-
lelized rotation and flipping INvariant Kohonen maps (PINK) approach,
which does not require training data labels, and hence avoids any
potential bias by inexperienced practitioners in the Radio Galaxy Zoo
project (Banfield et al., 2015). It only required human inspection and
profiling of the resulting prototypes into known FR galaxy categories.

While deep learning methodologies are seen to be dominant in
the classification task as seen in Table 4, conventional machine learn-
ing techniques have also been explored in the classification of FR
galaxies. Becker and Grobler (2019) compared the following method-
ologies: Nearest Neighbors (Peterson, 2009)∗, Support Vector Machine
(SVM) (Cortes and Vapnik, 1995)∗, Radial Basis Function SVM (Ding
et al., 2021)∗, Gaussian Process Regression (Banerjee et al., 2013)∗,
AdaBoosted Decision Tree (Freund and Schapire, 1997)∗, Random For-
est (Breiman, 2001)∗, Naive Bayes (Rish et al., 2001)∗, Multi-layered
Perceptron (Piramuthu et al., 1994)∗ and Quadratic Discriminant Anal-
ysis (Bose et al., 2015)∗ in the classification of Fanaroff–Riley Ra-
dio Galaxies. Becker and Grobler (2019) used the Toothless data set
excluding the bent-tailed radio sources in their implementation. A
comparative analysis was performed between different conventional
machine-learning algorithms on radio images. The Random Forest clas-
sifier was found to have the highest performance with an accuracy
of 94.66% (Becker and Grobler, 2019). The study demonstrated that
the derived morphological features from radio images are distinct
and unique to radio galaxy classes. Additionally, Darya et al. (2023)
demonstrated that gradient boosting methods (Friedman, 2002), such
as XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Dorogush et al., 2018), could perform competitively to
CNN-based models.

In order to comprehensively discuss the papers under review, we
consider data processing pipelines and model architectures used in
the research papers. Specifically, the methodological applications cov-
ered in this review are categorized into three major groups: model-
centric approaches, data-centric approaches, and weakly supervised
approaches.

4.2. Model-centric approach

Research in computer intelligence predominantly dedicates
resources and time to improving and optimizing machine learning
algorithms. The development of novel model architectures has been
witnessed in the space of deep learning. This has gradually been
transferred to the field of radio astronomy given it is a data-driven field.

4.2.1. CNN architectures
Model architectures have been shown to play a significant role in

improving and increasing the generalization of deep learning algo-
rithms in classification problems. Therefore, we have seen progres-
sive breakthroughs and applications of more complex architectures
such as AlexNet (Krizhevsky et al., 2017)∗(Aniyan and Thorat, 2017),
VGG-16 (Ma et al., 2019b; Wu et al., 2018), and DenseNet (Huang
et al., 2017)∗ (Samudre et al., 2022) in radio astronomy. The depth
of the CNN architecture models are varied across different appli-
cations, depending on the required complexity. For instance, Lukic
et al. (2019b) constructed four-layer (CONVNET4) and eight-layer
(CONVNET8) convolutional networks, Becker et al. (2021) constructed
eleven layers, Aniyan and Thorat (2017) constructed twelve layers,

and Tang et al. (2019) constructed thirteen layers for classification of

https://github.com/ratt-ru/toothless
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Fig. 8. The fundamental building blocks of a standard ConvNet.
Fig. 9. Computer intelligence methodologies applied in the classification of radio galaxies.
radio galaxies. According to a comparative analysis done with a capsule
network, CONVNET4 and CONVNET8 on the LoTSS DR1 data set, it
was observed that CONVNET8 outperformed CONVNET4 and a capsule
network, though with a marginal difference (Lukic et al., 2019b).
The eight- and four-layer CNNs and the capsule network attained
average precision scores of 94.3%, 93.3% and 89.7%, respectively.
The secret behind the increase in depth of the convolutional layers
is that it augments the number of nonlinear functions and introduces
additional feature hierarchies that optimize the classification function.
Consequently, the deep networks tend to achieve higher performance
compared to more shallow networks (Tang et al., 2019).

4.2.2. Regularization techniques
Overfitting has been one of the central challenges affecting the

robustness of radio galaxy classification models. The availability of
small labeled astronomical data sets for building the models remains
to be a major contributor to the challenge. To address this, researchers
have adopted regularization techniques during model building. This
is aimed at allowing the models to maximally learn from the limited
training data and achieve better generalization. One technique used
is the random dropping out of weakly connected units (neurons) of
CNN connections during training (Tang et al., 2019, 2022). This ap-
proach is commonly referred to as dropout. Dropout helps to reduce
parameter saturation during the training process preventing excessive
co-adapting of the units. Moreover, to reduce covariance shift in the
input data, the batch normalization technique is applied during model
training (Tang et al., 2019, 2022). This involves standardizing the
feature maps such that the values are transformed to follow a Gaussian
distribution (regularize the network). These regularization approaches
9

reduce the chances that the network will succumb to the vanishing
gradient problem and reduce the time that the network requires to
converge.

4.2.3. Specialized convolutional blocks
The key thrust in the performance of ConvNets compared to other

models is the continued construction and integration of innovative pro-
cessing units and the embedding of newly designed novel convolutional
blocks. In radio astronomy, there are several novel research efforts in
this direction.

Attention gates are convolutional blocks, that are analogous to the
visual system of humans, that efficiently prioritize localized salient fea-
tures in an object in order to contextualize and identify it. Bowles et al.
(2021) implemented novel convolutional filters that localize salient
features while suppressing irrelevant information on the provided im-
ages, thus, resulting in predictions obtained directly from pertinent and
contextualized feature maps. The attention-gate layers are integrated
in the CNN architectural backbone. This approach was found to reduce
the CNN model training parameters by 50% and improves the inter-
pretability of CNN models. It promotes explainable deep learning by
using attention maps that can be investigated to trace the root cause of
misclassification in a model. Despite the notable reduction in training
parameters, the performance of the CNN architecture developed was
equivalent to the state-of-the-art CNN applications in the literature.

Group equivariant Convolutional Neural Networks (G-CNNs) are
convolution kernel filters that are embedded in a conventional CNN
(Cohen and Welling, 2016)∗. G-CNNs are aimed at supporting equiv-
ariance translation for a wider set of isometries (for example rotation
and reflections) on the training data. By design, CNNs are constructed
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to be translation-equivariant of their feature maps, but this does not
apply to other isometries such as rotation. This implies that G-CNNs
allow preservation of group equivariance on augmented data - a com-
mon data-centric approach in deep learning model building. Thus, the
increased data samples via rotational augmentations result in the same
kernel (weight sharing) as they pass through the convolutional layers.
This approach has been demonstrated to improve CNN architecture
performance in the galaxy classification task using the MiraBest data
set (Scaife and Porter, 2021).

Another innovative idea introduced to the standard convolutional
architectures in radio astronomy is that of multidomain multibranch
CNNs, which allow the models to take multiple data inputs as opposed
to single source images (Tang et al., 2022).

4.3. Data-centric approaches

The quality and robustness of machine and deep learning algorithms
are highly dependent on the quality of data. Quality entails the consis-
tency, accuracy, completeness, relevance, and timeliness of the data.
Principally, in order to improve the performance of the algorithms,
data-centered approaches are paramount. The data (radio images) must
be free from RFI noise and artifacts before calibration and processing.
The data should not be ambiguous and each sample should belong to
a definite radio galaxy class. Ideally, data must be highly curated.

In addition, to circumvent overfitting and simultaneously achieve
high generalization accuracies, adequate data diversity on the training
data set is a prerequisite. This aids in avoiding poor model performance
when tested with real-world out-of-distribution data or covariate-
shifted data.

4.3.1. Data augmentation
Data augmentation aims to increase the size and diversity of the

training set. It is applied on the assumption that additional important
information can be extracted from the insufficient data set available
via augmentations. It has been widely espoused in radio galaxy clas-
sification to mitigate overfitting (Aniyan and Thorat, 2017; Alhassan
et al., 2018; Lukic et al., 2018), to improve the performance of machine
and deep learning models (Maslej-Krešňáková et al., 2021; Rustige
et al., 2023; Lukic et al., 2018), to address rotational invariance (Becker
et al., 2021), to increase the size and the diversity of the training
data (Aniyan and Thorat, 2017; Alhassan et al., 2018; Becker et al.,
2021; Ma et al., 2019a; Hossain et al., 2023), and to address the
class imbalance, especially for the minority classes among the radio
galaxy population groups in the training data (Lukic et al., 2018). There
are different kinds of augmentation strategies. Two of these strategies
are positional augmentation and color augmentation. Examples of the
former include scaling, flipping, rotation, and affine transformation.
Examples of the latter include brightness, contrast, and saturation (Best
and Heckman, 2012; Becker et al., 2021; Scaife and Porter, 2021;
Slijepcevic et al., 2022). Other augmentation approaches include up-
sampling or oversampling of the minority class and the utilization
of generative adversarial networks (GANs) to generate new class in-
stances (Rustige et al., 2023). The literature attests to the fact that data
augmentation is a data-centered strategy that can significantly improve
model performance and result in models with improved generalization
ability (Maslej-Krešňáková et al., 2021).

Maslej-Krešňáková et al. (2021) found that improvement of model
performance and capacity to generalize on out-of-distribution data was
highly dependent on the augmentation strategy that was employed.
They found that brightness increase, vertical or horizontal flips, and
rotations led to better performance while zoom, shifts, and decrease in
the brightness of the images degraded model performance. Therefore,
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the process of finding an optimal data augmentation strategy in a
project is non-trivial. A downside of data augmentation is that any
inherent bias or data errors will be inherited by the augmented data.
Nevertheless, this does not rule out the fact that data augmentation
is an important data-centric approach for both increasing minority
data classes and improving model performance in the computer vision
paradigm.

4.3.2. Rotation-invariance
Radio galaxies display diverse observational morphological shapes

contingent upon the orientation of their jets relative to the line-of-
sight of the telescope. Models must be robust enough to classify a
test image even when presented in a different orientation, assigning
it to the correct class. However, this is not always the case, resulting
in low generalization of models in radio galaxy classification. Several
methods can be used to deal with the problem of varying rotations in
radio sources. One method, as already discussed, is to apply G-CNNs,
which are specially designed to encode the orientation information
of input galaxy images (Scaife and Porter, 2021). Another way is to
augment the training data by adding rotations to the samples, enabling
the CNNs to learn different orientations of the classes (Becker et al.,
2021). Additionally, a pre-processing step can be done to standardize
the rotation of all radio sources. This can be done by using principal
component analysis (PCA) to align the principal components of the
galaxies with the axes of the coordinate system, effectively normalizing
their orientations (Brand et al., 2023). Similarly, Polsterer et al. (2019),
perform a pre-processing step on the images by aligning them with the
principal axis of their main component using a rotation and flipping
invariant similarity measure. Therefore, in the pre-processing step, all
images are adjusted through centering and scaling to ensure their
invariance against this type of variation.

4.3.3. Feature engineering
Feature engineering is aimed at improving model accuracy in ma-

chine learning. It involves the process of careful selection based on
domain knowledge, feature extraction, creation, manipulation, and
transformation of the training data. The engineered features are tar-
geted at providing the ‘precise physical properties’ of the image data
for model development. In radio galaxy morphological classification,
example morphological features include peak brightness, lobe size,
and number of lobes (Becker and Grobler, 2019). Moreover, feature
descriptors that represent the texture of radio images via Haralick
features13 (Ntwaetsile and Geach, 2021) and the use of Radial Zernike
polynomials to extract image moments such as translation, rotation,
that are scale-invariant are more examples of features that can be
utilized (Sadeghi et al., 2021). In some cases, the principal component
analysis (PCA) method is used to extract and reduce features from
the images. PCA finds the components with the most variance in the
data, which helps to reduce the data size and memory usage during
training (Darya et al., 2023; Brand et al., 2023).

Machine learning algorithms are applied on the features engineered
(compact representations of the radio images) for classification of radio
galaxies. In this case, either supervised or unsupervised approaches
are used, for example, Hierarchical Density Based Spatial Clustering
of Applications with Noise (HDBSCAN) (Ntwaetsile and Geach, 2021),
Random Forest (RF) (Becker and Grobler, 2019), gradient boosting
methods (Darya et al., 2023) and SVM (Sadeghi et al., 2021). Feature
engineering has been shown to provide machine learning algorithms
with features of high importance resulting in high recognition perfor-
mance, with accuracies above 95% (Sadeghi et al., 2021). However, the
main drawback is that it requires domain expertise to design feature
descriptors. Therefore, they may be unable to capture all the relevant
information in the data.

13 Haralick features are a set of thirteen non-parametric measures which are
derived from the radio images based on the Grey Level Co-occurrence Matrix.
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4.4. Weak supervision approaches

In radio astronomy, most publicly available catalogs contain 103

radio galaxies. Moreover, the cost of labeling sufficiently large (in
deep learning terms) radio astronomical data sets is very high. On the
contrary, unlabeled catalogs consist of Petabytes of data (from a single
survey). Hence, the essence of exploring algorithms and strategies with
the capacity of leveraging the massive unlabeled public catalogs and/or
exploiting the small annotated data sets available are paramount.

Three weakly supervised methods, namely transfer learning, semi-
supervised learning, and N-shot learning are discussed.

4.4.1. Transfer learning
Transfer learning is a paradigm that reuses knowledge gained from

pre-trained models on massive data sets to fine-tune them on other
tasks, making it effective if the training set is small. In the context of
classification of radio galaxies, transfer learning has been investigated
and has contributed to improved accuracies compared to other meth-
ods, such as few-shot learning (Samudre et al., 2022). The pre-trained
model’s weights and biases provide the generic feature representations
essential to the model for identifying low-level features (i.e, shapes
and edges) of the objects. Then, the complementary complex features
specific to the classification task at hand are learned by fine-tuning the
last layers of the model using the available small labeled data set. The
study by Tang et al. (2019) investigated whether it was possible to
develop robust cross-survey identification machine learning algorithms
that made use of the transfer learning paradigm. In their research,
they used FIRST and NVSS survey data, which are characterized by
high- and low-resolution images, respectively. They found that models
pre-trained on high-resolution surveys (FIRST) can be effectively trans-
ferred with high accuracies of about 94% (a case of 2 classes: FRI and
FRII), to lower-resolution surveys (NVSS). However, the converse was
observed not to be true.

Similarly, transfer learning on radio galaxy classification has been
shown to achieve high performance even after extending the number
of classes to more than two: FRI and FRII. Lukic et al. (2019b) used
Inception ResNet model v2 (Szegedy et al., 2017) to classify three
classes (FRI, FRII, and Unresolved) from the LoTSS-DR1 data. Inception
ResNet model v2 achieved an average accuracy of 96.8%; the best
performance compared to ConvNet-4, ConvNet-8 and Capsule Networks
model architectures that they experimented with on the same data
set. Additionally, a transfer learning method based on the Dense-
net architecture (Huang et al., 2017)∗ was tested by Samudre et al.
(2022). They obtained a precision of 91.9%, a recall of 91.8% and
an F1 score of 91.8% for the classification of compact, FRI, FRII,
and Bent radio galaxies with less than 3000 test samples (Samudre
et al., 2022). Notably, transfer learning was observed to converge faster
compared to conventional CNN architectures. For instance, the model
converged faster (10 fewer epochs on average) than other models such
as ConvNet-4 (Lukic et al., 2019b).

4.4.2. Semi-supervised learning
Semi-supervised learning (SSL) involves self-supervised learning fol-

lowed by supervised fine-tuning. Thus, it utilizes both annotated data
samples and a large amount of unannotated data during training.
Employing semi-supervised techniques for the radio galaxy morpho-
logical classification task has recently been gaining traction within the
literature. The reason for this can be ascribed to the fact that there are
large publicly available unannotated data sets that are available for use
within the field of radio astronomy.

Concerted efforts have been dedicated to investigating the possi-
bility of exploiting these algorithms and conducting a comparative
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analysis of the performance with supervised machine learning (Ma
et al., 2019b,a; Slijepcevic et al., 2022). Ma et al. (2019b) trained
a semi-supervised model where they constructed a radio galaxy mor-
phology classifier (autoencoder) from the VGG-16 architecture. The
autoencoder was pre-trained on a large unannotated data set of 18,000
radio galaxies from the BH12 catalog (Best and Heckman, 2012). The
pre-training of the modified VGG-16 architecture was aimed at updat-
ing its weight and bias parameters — allowing the model to learn the
low-level morphological features of the radio galaxies (such as shapes
and outlines). The pre-trained model was then fine-tuned with a small
annotated data set of about 600 radio galaxies only. It was observed
that the SSL strategy achieved high average precision and recall (of
91% and 90%, respectively). Similarly, the MCRGNet classifier (SSL
model) was pre-trained on the unLRG (unlabeled radio galaxy) (14,245
samples) and fine-tuned on the LRG (labeled radio galaxy) (1442
samples) data sets (Ma et al., 2019a). The MCRGNet’s average classifi-
cation precision was 93%. This was a better precision compared to the
competing methods at the time. Hossain et al. (2023) and Slijepcevic
et al. (2023) use self-supervised methods BYOL (Bootstrap Your Own
Latent) model (Grill et al., 2020)∗ and SimCLR (A Simple Framework
for Contrastive Learning of Visual Representations) (Chen et al., 2020)∗
and later fine-tune the model for classification and achieve competitive
results compared to classical supervised learning. For instance, Hossain
et al. (2023) achieve a classification accuracy of 97.12% using a fine-
tuned BYOL encoder, surpassing the state-of-the-art performance of
94.80% which was achieved by a supervised approach on the same
dataset.

Another methodological approach used in SSL for radio galaxy
classification is presented by Slijepcevic et al. (2022), which used the
FixMatch algorithm (Sohn et al., 2020)∗. In the FixMatch framework,
a weakly augmented (for instance, shift or flip data augmentation
methods) unannotated image is first fed into a model and then used to
generate a pseudo-label. Then, in a concurrent fashion, the same unan-
notated image under strong augmentations (for instance, brightness,
translation, or contrast) is fed into a model to generate a prediction.
Thirdly, using cross-entropy or a distance measure, such as Fréchet
inception distance, the model is trained to make the best prediction by
matching the predictions of the pseudo-label14 with the ones generated
under the strongly augmented image (Sohn et al., 2020; Slijepcevic
et al., 2022). Slijepcevic et al. (2022) used Tang’s architecture classifier,
in an SSL manner. They used MiraBest data (labeled) and the Radio
Galaxy Zoo data release 1 (unlabeled). It was shown that the SSL
strategy was able to extract knowledge from the unlabeled data thus
achieving higher accuracy compared to the classifier based on Tang’s
architecture when applied to the MiraBest data (baseline).

4.4.3. N-shot learning
N-shot learning algorithms are designed to leverage the limited

supervised information that is available (labeled data set) to make accu-
rate predictions while avoiding overfitting challenges. There are differ-
ent types of N-shot learning, namely Few-Shot Learning (FSL), One-Shot
Learning (OSL), and Zero-Shot Learning (ZSL). Samudre et al. (2022)
applied an FSL approach based on a Siamese neural network (Koch
et al., 2015)∗. The twin network model achieved an average preci-
sion of 74.2%, a recall of 74.0%, and an F1 score of 74.1% for the
classification of compact, FRI, FRII, and Bent radio galaxies (Samudre
et al., 2022). In their experiment, a sample size of 2708 radio galaxies
was used. The samples were composed of selections from the FRICAT,
FRIICAT, CoNFIG, and Proctor data catalogs. While this approach
has shown excellent performance on standard benchmark data sets,
the twin network was found to yield relatively poor performance in
comparison to state-of-the-art supervised machine learning approaches
applied to real datasets.

14 A pseudo-label is a label that is generated by a model’s prediction rather
than being manually assigned by a human annotator.
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4.5. Beyond classification

In this section, we focus on a new emerging paradigm of galaxy
detection, which goes beyond classification. Galaxy detection models
not only classify the galaxies but also localize them. This is an innova-
tive approach that addresses the limitations of traditional classification
methods by incorporating an additional spatial component similar to
source extraction (Section 2.3.1). Thus, the models can determine the
precise locations and class labels of the detected galaxies. The first
work on galaxy detection was conducted by Wu et al. (2018) using
the Faster Region-based Convolutional Neural Networks (Faster R-
CNN) method. They called their approach Classifying Radio sources
Automatically with Neural networks (CLARAN). They trained CLARAN
on the Radio Galaxy Zoo dataset to automatically detect and label
diverse radio galaxies (galaxies with multiple components and peaks)
into separate classes. This approach achieved an empirical plausibil-
ity accuracy of above 90% and a mean average precision (mAP) of
83.6%. Similarly, Wang et al. (2021) and Zhang et al. (2022) used
YOLOv515 (Redmon et al., 2016)∗ for localization and recognition of
adio galaxies. Both papers introduced novelty to the original YOLOv5
odel. Wang et al. (2021) introduced a customized loss function and

dded an attention mechanism, the SKnet module (Li et al., 2019)∗, to
he architecture with the intention of making the model focus more
n the salient radio source features in radio images. On the other
and, Zhang et al. (2022) introduced an attention mechanism dubbed
E Net (Hu et al., 2018)∗ to achieve the same end goal. The best
OLOv5 model achieved an mAP of 89.4% to locate FRI, FRII, and
ompact radio galaxies. Alternatively, radio galaxy detection can be
chieved by first performing segmentation and then classification (Lao
t al., 2023). Lao et al. (2023) used Mask R-CNN achieving an mAP
f 77.8% to locate Compact, FRI, FRII, Core-Jet (CJ), and Head-Tail
HT) sources. Similarly, Riggi et al. (2023) used Mask R-CNN, but this
pproach is noted to perform poorly on diffuse sources.

Gupta et al. (2023) proposed a weakly-supervised semantic seg-
entation approach for source segmentation and classification. Their
ethod uses image-level class labels for training. They train the model

o extract class activation maps (CAMs) and use them as pseudo la-
els to learn how to segment diffuse galaxies (with multiple compo-
ents). Importantly, an inter-pixel relations network (IRNet) (Ahn et al.,
019)∗ is used to improve the CAMs and obtain instance segmentation
asks over radio galaxies. Using ASKAP and EMU survey data their
odel achieved mAP50 of 67.5% for the radio masks across multiple

lasses16. Overall, Sortino et al. (2023), provides a comparison of
otable semantic segmentation models in regards to how well they
an perform source extraction, detection, localization and classification.
heir findings show that Tiramisu (Pino et al., 2021) achieves the best
erformance without sacrificing much computational speed.

Additionally, novel deep learning approaches have been proposed
or denoising and extracting complex faint radio emission from as-
ronomical images (Gheller and Vazza, 2021) and to perform source
ocalization directly in the visibility domain (Taran et al., 2023).

The Square Kilometre Array Observatory, through the Science Data
hallenge series (1 and 2) (Bonaldi et al., 2020; Hartley et al., 2023),

s also promoting the development of efficient and accurate analysis
ethods in the radio astronomy and scientific community. For instance,

he Science Data Challenge 1 focused on source characterization, de-
ection and classification methods. These methods were to be applied

15 YOLO stands for You Only Look Once: Unified, Real-Time Object
etection.
16 328 FR-I, 128 FR-II, 110 FR-X, and 196 R radio sources (Gupta et al.,
023).
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on simulated data (SKA-like data). Bonaldi et al. (2020) discusses the
main challenges of source detection, classification, and characterization
on simulated SKA continuum images: the high spatial density of the
sources, the complex source morphologies, and the large data size. The
paper also emphasizes the importance of applying multiple pipelines to
the data to capture the diversity and complexity of the sources.

4.6. Strengths and weaknesses of morphological classification algorithms
proposed

Machine and deep learning algorithms have automation capabilities
that significantly reduce the reliance on astronomers as astronomi-
cal data increase exponentially. These algorithms generally excel at
uncovering intricate salient patterns and hidden features within vast
amounts of data, surpassing the limitations of human perception. Novel
algorithms have been proposed for radio galaxy classification, signifi-
cantly contributing to the automation and improvement of accuracy,
robustness, and efficiency in classification models. For instance, mod-
els that are robust to rotations have been developed (e.g G-CNNs),
ensuring accurate classification regardless of galaxy orientation. More-
over, researchers are exploring ways to achieve generalization inspite
of the availability of limited annotated datasets (e.g., via Transfer
Learning). Also, conventional machine learning algorithms, such as
gradient boosting, which require less computational resources and are
easier to interpret, have shown similar performance to deep learning
algorithms. These advancements not only enhance model performance
but also provide valuable insights for further research and development
in the field, paving the way for discoveries and breakthroughs in our
understanding of the Universe.

While machine learning and deep learning algorithms offer pow-
erful capabilities, it is important to acknowledge their limitations and
challenges. Firstly, these algorithms often demand significant compu-
tational resources and time to train and test, making them compu-
tationally expensive. Secondly, they can be susceptible to overfitting
or underfitting if the dataset used for training is unrepresentative
or imbalanced. Thirdly, the performance of these algorithms can be
influenced by the choice of hyperparameters, architectures, and opti-
mization methods, requiring careful tuning. Lastly, the main drawback
of deep learning algorithms is the lack of interpretability or explainabil-
ity of their results and decision-making process, which can hinder the
understanding of how and why certain predictions are made. Recog-
nizing these limitations encourages ongoing research and development
to address these challenges and further enhance the applicability and
reliability of machine learning and deep learning algorithms.

5. Opportunities, challenges, and outlook

Computer intelligence is having a remarkable impact on radio as-
tronomy. A plethora of new insightful scientific work is published
every year, resulting in even better and more accurate models that
generalize well. As a result, it seems likely that robust models are
soon to be developed that are capable of generating predictions across
surveys from different yet related next-generation telescopes (such as
LOFAR, MeerKAT, and SKA). Furthermore, these models would require
slight to no modification once a new data release is made available.
This highlights the potential for further scientific progress in utilizing
raw radio image cubes generated by modern telescopes, through the
incorporation of computer intelligence.

Despite the prevalence of massive high-resolution data sets from
modern telescopes, only small sample-size annotated datasets have
been catalogued over the past two decades. The limited size of the

data can be attributed to the high cost of the labeling thereof. Also,
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the limited data available is subject to selection bias, since only well-
resolved radio sources are hand-picked when creating the catalogs. This
challenge, of limited data sets, hinders the ability to fully utilize and
exploit the potential of machine/deep learning in the classification of
radio galaxies in this data-rich field. While there are strategies (such
as data augmentation, semi-supervised learning and weakly supervised
approaches) leveraging small data samples (Tang et al., 2019; Slijepce-
vic et al., 2022), such techniques cannot match the diverse and unique
astrophysical phenomena embedded in massive radio surveys. There-
fore, this calls for continued collaborative efforts in the generation of
annotated machine/deep learning-ready data sets.

It is evident that the current machine/deep learning models strug-
gle to achieve satisfactory performance when applied to the latest
high-resolution images from radio telescopes, such as LOFAR and
MeerKAT (Tang et al., 2019). This limitation primarily arises from the
fact that the training and testing datasets are drawn from different
underlying distributions. As clearly seen in Table 2, most existing
models are trained on radio galaxy images from surveys conducted
two decades ago, such as the FIRST survey in 1995 and NVSS survey
in 1998. These older images have lower resolution and higher noise
levels compared to the recently surveyed data sets. Consequently, the
models trained on such images fail to generalize to the new data
sets from modern telescopes, resulting in the inaccurate detection and
classification of radio sources.

The original images of radio galaxies are in 3D data cubes, but they
are reduced to 2D data images for classification purposes using conven-
tional algorithms. Data cubes (3D) contain additional information on
the polarization of radio waves and are also provided at different radio
frequencies/wavelengths which reveal different aspects of astronomical
sources. The reduction of 3D data cubes to 2D images at the selected
frequency results in the loss of important information that would be
critical in training robust machine/learning models.

Radio astronomy is a data-rich and compute-intensive field, hence
exploitation of scalable platforms and software is paramount. In or-
der to train a model using techniques such as SOM (Galvin et al.,
2019b), SVM (Sadeghi et al., 2021) and DCNN (Tang et al., 2019), a
significant amount of computing resources are required. For instance,
DCNNs typically require large amounts of images in order to learn
over a million model parameters. Therefore, as the available data in
astronomy increases exponentially, and more specialized machine/deep
learning algorithms are developed, the demand for highly scalable com-
puting performance is inevitable. High-performance computing (HPC),
graphical processing units (GPUs) and distributed computing are often
used to run such algorithms. In particular, big data (radio astronomical
data) requires sophisticated methodologies to efficiently query and
process large volumes of data. Despite the availability of numerous
studies, as discussed in this review paper, there is still a wide gap
in the utilization of scalable pipelines that allow for more efficient
parallel and distributed machine/deep learning computations. Pipelines
that would take advantage of some of the storage formats of the
radio astronomical survey data. For instance, LOFAR uses H5parm,
a Hierarchical Data Format version 5 (HDF5) compliant file format,
which provides an excellent basis for applying Apache Spark,17 a Big
ata processing ecosystem.

Radio sources are complex objects that consist of multiple spatially
eparated components. When these components are correctly grouped,
hey can be classified into respective galaxy groups; this process is re-
erred to as radio source-component association. One of the promising
irections for advancing research on machine/deep learning models for
adio astronomy is to develop a multi-domain and multi-task model

17 https://spark.apache.org/.
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that can perform localization, radio source-component association, and
classification in a given image. This multi-purpose model would thus
encompass source extraction, which is a crucial step for data annota-
tion. This would be beneficial for astronomers and researchers who
need to create catalogs of massive datasets from radio surveys that
will utilize reliable models (for instance, source extraction and classi-
fication models). Importantly, to make the models robust and reliable,
especially in the case of diffuse emission, high-resolution data cubes at
various wavelengths will have to be employed.

The inclusion of uncertainty quantification techniques in deep learn-
ing models is useful for enhancing the interpretability and general-
ization of radio galaxy classification models (Mohan et al., 2022).
Uncertainty estimation plays a crucial role in understanding the reli-
ability and confidence of the model’s predictions, while also helping to
identify sources of uncertainty such as noise, outliers, augmentation,
or data curation. By quantifying the degree of uncertainty in the
predictions of deep learning models for radio galaxy classification,
researchers can gain valuable insights into the limitations and potential
errors associated with these models. This information enables them to
make informed decisions about the reliability of classifications and take
appropriate measures to address any identified uncertainties.

Indexing radio galaxies beyond classification is a critical area of
research. Indexing of identified radio sources is a prerequisite for
fast retrieval of radio galaxies of similar/dissimilar morphological at-
tributes. However, as this topic is hardly addressed in the literature
covered, it highlights the existing research gap in radio astronomy that
needs to be filled. Image indexing and/or retrieval is the process of
finding objects (images) that have similar characteristics with varied
shapes and sizes. Having developed a database of known and unknown
(anomalous) radio astronomical structures, it is of great importance to
develop a system that would aid in the quick retrieval of galaxies with
similar morphological characteristics (Abd El Aziz et al., 2017). Ideally,
identified objects are indexed with a hashing function that minimizes
the distances between perceptually similar objects and maximizes those
of dissimilar objects. This is a paradigm that has seen a lot of progress
in recent years with the development of deep hashing methods (Luo
et al., 2020), a paradigm that to our knowledge is yet to be leveraged
in radio astronomy.

6. Conclusion

Radio astronomy is in the era of Big Data, presenting ubiquitous
opportunities that necessitate extensive automation of data processing,
exploration, and scientific exploitation. This will unravel cosmology,
if modern telescopes reach their scientific goals. In this regard, as-
tronomers have taken advantage of the deep neural network revolution
in computer vision with notable success.

In this survey paper, we have presented a detailed literature
overview of the data and algorithmic advances in data curation
pipelines, data preprocessing strategies, and cutting-edge machine in-
telligence methods. New scientific works that involve the development
of robust and accurate novel models have emerged in the field of
radio astronomy. These models can capture the diverse and unique
astrophysical phenomena found in large radio images through the use
of techniques like data augmentation, semi-supervised learning, and
weakly supervised approaches. This has opened up the possibility of
creating models that can accurately predict the labels of sources from
surveys (like LOFAR and SKA). Moreover, these models would not have
to be significantly modified once new data becomes available.

This survey highlights some important and promising areas of re-
search for studying radio galaxy morphologies. These include develop-
ing multi-domain and multi-task classification models that can perform

localization and radio source-component association on radio image

https://spark.apache.org/
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cubes; utilizing and leveraging on the 3D multi-channel data cubes and
algorithms to perform radio galaxy classification; and the investiga-
tion of image indexing and retrieval algorithms for use within radio
astronomy.
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Appendix

Table A.5
The abbreviations are categorized into three sections, with the top section representing
algorithm keywords, the middle section representing galaxies, and the bottom section
representing astronomical surveys.

Acronym Description

CAE Convolutional Autoencoder
CML Conventional Machine Learning
CNN Convolutional Neural Network
BYOL Boostrap Your Own Latent
DCNN Deep Convolutional Neural Network
FCNN Fully connected neural networks
FSL Few-shot learning
HDBSCAN Hierarchical Density-Based Spatial Clustering of

Applications with Noise
PINK The Parallelized rotation and flipping INvariant

Kohonen-maps
SOM Self-organizing Maps
SU Supervised Learning
SSGEC Semi-Supervised Group Equivariant CNNs
SSL Semi-supervised Learning
SSUL Self-supervised learning
US Unsupervised Learning
WSSS Weakly-supervised semantic segmentation

FR0 Fanaroff–Riley Class 0
FRI Fanaroff–Riley Class I
FRII Fanaroff–Riley Class II
XRG X Radio Galaxy
RRG Ring Radio Galaxy
S Isolated source which is fitted with a single Gaussian
C Sources that are fitted by a single Gaussian but are

within an island of emission that also contains other
sources

M Sources which are extended and fitted with multiple
Gaussians

LERG Low-excitation radio sources
HERG High-excitation radio sources
LRG Labeled radio galaxy
unLRG Unlabeled radio galaxy

ATCA The Australian Telescope Compact Array
ATLAS-DR3 Australia Telescope Large Area Survey Data Release 3
CoNFIG Combined NVSS-FIRST Galaxies
FRGMRC FIRST Radio Galaxy Morphology Reference Catalogue
NVSS NRAO-VLA Sky Survey
SDSS-DR7 The Sloan Digital Sky Survey Data Release 7
WISE Wide-field Infrared Survey Explorer
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