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In brief

In this study, Andreu-Sánchez et al. utilize

phage-displayed immunoprecipitation

sequencing to investigate the

environmental and genetic determinants

shaping human adaptive immunity. The

results suggest that both genetics and

environmental exposures shape human

antibody epitope repertoires, with

specific signatures of distinct

phenotypes and genotypes. Furthermore,

co-occurring antibody responses

suggest a link between bacterial

immunity and the development of

allergies or autoimmunity.
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SUMMARY
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of
human antibody repertoires. However, a comprehensive overview of environmental and genetic determi-
nants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic,
environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized
serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range
of microbial and environmental antigens in 1,443 participants from a population cohort. We detected
individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires.
Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-
bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors
(including age, cell counts, sex, smoking behavior, and allergies, among others) and particular anti-
body-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by
both genetics and environmental exposures and highlight specific signatures of distinct phenotypes
and genotypes.
INTRODUCTION

The adaptive immune system encompasses an extremely com-

plex group of biological processes that orchestrate responses

to invading pathogens in all jawed vertebrates (gnathostomes),

including humans.1 Its ability to recognize, adapt to, and

remember threats relies on polymorphic genetic structures

that encode receptors for antigens, which are typically amino

acid sequences.1 Antibodies are the primary effector molecules

responsible for humoral immunity and are highly adaptable

and influenced by individual’s genetics and environmental fac-

tors. Antibody repertoires determine the fate of the immune
1376 Immunity 56, 1376–1392, June 13, 2023 ª 2023 Elsevier Inc.
response against pathogens and the development of autoim-

munity or allergies, and they have garnered special attention

because they can be used to study herd immunity acquisition.2

In an adult human, there are around 1010–1011 B-lymphocytes,

each expressing a unique B cell receptor (BCR) (a non-soluble

antibody form) that identifies a molecular pattern.3 The diversity

of BCRs results from somatic rearrangements of gene seg-

ments, insertion and deletion of nucleotides, and somatic

hypermutation.4

To gain more insights into antibody-antigen interaction, efforts

have been made to directly sequence the BCR5,6 and to directly

infer it from single-cell transcriptomic sequencing.7 Although this
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Figure 1. PhIP-seq antibody-bound peptide profiles of 1,443 individuals representative of the Dutch population show temporal stability and
family similarity

(A) Cohort characteristics. Lifelines-Deep (LLD) is a population cohort from Northern Netherlands. In this work, we performed PhIP-seq in 1,443 participants

(including 26 trio families), 322 of whom have data from a second time point after 4 years. Other data layers include phenotypes (questionnaires and clinical

(legend continued on next page)
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methodology provides information on the potential for genera-

tion of immune responses against yet unknown antigens, it

does not directly link BCR sequences to the exact nature of anti-

genic epitopes. In addition, in terms of scaling, it is limited to

just a small proportion of the immense number of these recep-

tors.8 On the other hand, antibody-binding analysis, such as

peptide microarrays9,10 or enzyme-linked immunosorbent assay

(ELISA), enables the determination of antibody seroprevalence

against selected antigens. Although easily implemented for a

limited set of antigens, these methodologies have been difficult

to scale up to thousands of antigens in a large population.

Phage-displayed immunoprecipitation sequencing (PhIP-seq)

allows for the comprehensive determination of the interactions

of the human antibody epitope repertoire with rich libraries of po-

tential antigens. Briefly, a group of antigenic peptides is inte-

grated and displayed on bacteriophages that are incubated

with blood samples. Subsequently, all the reactive antibodies

present in a sample will bind to their corresponding antigens,

with bound phages then extracted by immunoprecipitation

and sequenced to obtain an ‘‘immunological fingerprint’’ of the

individual’s antibody repertoire. PhIP-seq has been described

previously11,12 and successfully applied to characterize autoim-

mune antibody prevalence in patients with multiple sclerosis,

type 1 diabetes, and rheumatoid arthritis,13,14 the human vi-

rome,15–19 and the widespread presence of antibodies against

virulence factors20,21 and the gut microbiome.21 In addition,

previous studies characterized environmental and genetic con-

tributors to immunological traits other than PhIP-seq, such as

cytokine responses,22 blood cell composition,23 T cell receptor

repertoire,24 and BCRs.25,26 However, to date, no comprehen-

sive study has been carried out that identifies the environmental,

intrinsic, lifestyle, and genetic factors associated with antibody

generation against a wide array of antigen exposures in the gen-

eral population.

In this work, we set out to uncover the antibody epitope reper-

toire in a deeply phenotyped population cohort from the northern

part of the Netherlands, Lifelines-DEEP (LLD).27 We used two

PhIP-seq libraries previously described21,28 to characterize

344,000 peptide antigens related to: (1) microbes (including

human gut microbiota, probiotic strains, pathobionts, anti-

body-coated species, and virulence factors from the virulence

factors database [VFDB]), (2) the Immune Epitope Database

(IEDB),29 (3) proteins from allergen databases, and (4) bacterio-

phages. Leveraging the rich metadata available for this deeply

phenotyped cohort (including imputed genotypes, gut micro-

biota shotgun sequencing, clinical blood tests [immune, meta-

bolic, and autoimmune markers], family information, lifestyle

and self-reported diseases, and allergy questionnaires) along-

side the PhIP-seq data allowed us to establish key genetic and

environmental factors shaping the human antibody epitope

repertoires.
measurements), genetics (imputed microarrays), and microbiome (bacterial taxo

ticipants (57%). The age distribution is slightly left skewed, with a mean of 44.5 y

(B) Prevalence of antibody-bound peptides in the population. x axis depicts se

seroprevalence.

(C) Principal component analysis identified two clusters (color represents cluster

(D) Jaccard distance between antibody repertories of 322 samples longitudinally

(E) Jaccard distance between antibody repertories of 26 family trios and betwee

1378 Immunity 56, 1376–1392, June 13, 2023
RESULTS

Antibody-bound peptide repertoires are personalized,
linked to shared environments (co-housing) and time-
dependent
We interrogated a total of 344,000 peptides in 1,778 samples

from 1,437 individuals (for 341 of whom we had data at two

time points 4 years apart) from a northern Dutch population

cohort (LLD) (Figure 1A).

After immunoprecipitation with protein A/G, binding primarily

IgG antibodies,21 and sequencing, we detected an enrichment

of sequenced reads (see STAR Methods) of 175,242 (antibody-

bound) peptides in at least one participant (average number

of peptides bound per person = 1,168, range = 3–3,161) (see

STAR Methods). Peptide seropositivity was defined as a pres-

ence/absence binary score (enriched/not enriched) that was

used for all subsequent analyses. Most antibody-bound pep-

tides showed low seroprevalence, indicating the individual-

specificity of the antibody epitope repertoire (Figure 1B). Based

on peptide sequence identity and prevalence (see STAR

Methods for details), we chose 2,815 peptides for further ana-

lyses (Table S1.1).

The large variability in the antibody-bound peptide enrichment

profile could be seen through a principal component analysis

(PCA), where the amount of variability recovered by the first 10

principal components (PCs) was just 15.5% and 709 compo-

nents were needed to retrieve 90% of the total antibody-bound

peptide variability (Figure 1C). Despite the relatively low vari-

ability accounted for by the first two PCs (6.3%), we observed

two clusters of samples in PC2 that were driven by cytomegalo-

virus (CMV)-related antibody-bound peptides (K-medoids, k = 2)

(Figure 1A). Removal of these peptides resolved PC2 clustering

(Figure S1A), although the effect of CMV could still be detected

shaping interindividual antibody differences. This is consistent

with a previous observation that nearly 50% of the Dutch adult

population are seropositive for this herpesvirus.30 These CMV-

related antibody-bound peptides tended to increase with age,

suggesting a gain in antibodies against this virus with viral reac-

tivations over the course of life (Figure S1B). On the other hand,

PC1 was highly related to the number of seropositive peptides

(affine linear model R2 = 0.72). In a permutational multivariate

analysis of variance (PERMANOVA) (adjusted for age, sex, and

sequencing plate), person-to-person antibody-bound peptide

repertoire dissimilarity showed effects (2,000 permutations,

p < 5 3 10�4) of age (R2 = 0.14), smoking (R2 = 0.018), blood

measurements (e.g., cholesterol R2 = 0.012), and blood cell

counts (lymphocyte relative abundance, R2 = 0.016), among

many other phenotypes (Table S2.1).

In agreement with previous reports, we observed temporal

consistency in the antibody-bound peptide repertoire20,21 for

the 322 participants who were followed up after 4 years. We
nomic quantification). There is a higher proportion of females within the par-

ears (female effect on age = �1, p = 0.16).

roprevalence. y axis is the number of antibody-bound peptides with a given

labels after 2-medoids clustering).

followed 4 years apart and between unrelated samples.

n unrelated participants.
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Figure 2. Peptide co-occurrence highlights the presence of motifs driving antibody cross-reactivity

(A) Correlation heatmap between peptides that belonged to co-occurrence modules of at least 10 peptides using 1,443 individuals. Annotation displays the

taxonomic origin of each peptide and the cluster assigned by WGCNA. Module 5 is highlighted.

(legend continued on next page)
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observed that the distance between samples taken from the

same individuals 4 years apart was on average lower than the

distance of unrelated individuals (p < 5 3 10�4; 2,000 label

permutations) (Figure 1D), and this was independent of the anti-

body-bound peptides used for calculating the distance, as

similar results were observed using subsets of 20%, 40%,

60%, or 80% of the antibody-bound peptides. Overall, the dis-

tance between baseline and follow-up was not associated with

baseline age or sex. The temporal consistency of antibody-

bound peptides showed a bimodal distribution, with most pep-

tides consistent between time points and only a subset that

tended to change (Figure S1D; Table S1.1). This change was

more often a loss of enrichment rather than a gain, and this

difference could not be directly attributed to a batch effect

(Wilcoxon test, p = 0.45). This highlights that the time elapsed

since antigen encounter might be a determining factor for the

detection of antibody-bound peptide enrichment, which agrees

with humoral studies showing that the prevalence of antibodies

fades over time.31–33

Next, we studied whether genetically related individuals or

those living in similar environments (co-housing) would show

more similarity in antibody-bound peptide enrichment compared

with unrelated individuals. To explore this, we used 26 family

trios from the LLD population34 (note that most offspring are

unlikely to currently cohouse with their parents as their average

age was 37 ± 10.1 years old). Mother-offspring, father-offspring,

and father-mother antibody-bound peptide distances were

significantly lower than those between unrelated individuals

(p < 5 3 10�4, p = 0.013, and p < 5 3 10�4, respectively; 2,000

label permutations). However, no significant differences were

found between pairs of family members, although father-

offspring pairs were, on average, more distant (Figure 1D). The

role of the common environment in shaping antibody repertoires

is supported by the decreased father-mother distance, whereas

offspring associations could indicate an important role of the

environment during early life, a common lifestyle, the effect of

genetics, or all, to some degree.

Co-occurrence of peptides identifies multiple epitopes
for the same antigen, antibody cross-reactivity in
related structures, and co-occurrence of antibodies
against unrelated proteins
To understand the relation between antibody-bound peptides, we

computed their correlation and built a network using weighted

gene co-expression network analysis (WGCNA) by computing

correlation coefficients from the binary profile of all selected pep-

tides without missing values. 435 peptides could be assigned to

22 modules of at least 10 highly correlated peptides (denoted by

the number of peptides per module, 1–22) (Figures 2A and S2;

Table S1.1). A bootstrapping consistency analysis identified high

consistency in all but one module (module 17). After assessment

of the antibody-bound peptides within each of the modules and
(B) Module 5 motif discovery. At left, a hierarchical clustering (average method) b

right, their multiple sequence alignment (each colored line represents an amino

taxonomic origin.

(C) Logo of the most significant motif from the module 5 sequences (MEME, E v

amino acid.

(B and C) Amino acid residues are colored according to their chemical propertie

1380 Immunity 56, 1376–1392, June 13, 2023
the sequence similarity between them, we identified three main

types of modules: class I—modules driven by antigens from the

same biological source, class II—modules driven by homologous

antigenic sequences, and class III—modules that include pep-

tides that are not taxonomically or structurally related but do

correlate strongly with each other (Table S1.3).

We observed five category Imodules (Figure S2). For example,

module 16 was composed of two different Epstein-Barr virus

(EBV) proteins, including capsid protein VP26 and nuclear anti-

gen 1 (EBNA-1); module 20 was composed of high-identity pep-

tides belonging to different strains of influenza B viruses, and

module 1 was mainly driven by CMV peptides, although also

including some EBV and other peptides. Category II modules,

driven by similar sequences in different peptides, highlight

the cross-reactivity of the antibody response (Figure S2). For

example, module 21was composed of plant thionins, small cyto-

toxic plant compounds produced by many species, but here

mainly derived from common wheat (Triticum aestivum), barley

(Hordeum vulgare), and rye (Secale cereale). Module 9 contained

related antigens fromwheat, Asian rice (Oryza sativa), rye, barley,

and grass (Setaria italica) that represent plant granule-bound

starch synthase peptides. Modules 14, 17, and 18 were charac-

terized by antibody-bound peptides representing genome poly-

proteins from a series of viruses, including Enterovirus A71, B,

and C; rhinovirus B and serotype 2; coxsackievirus (type A9),

and poliovirus. Module 3 was dominated by allergen peptides,

including antigens involved in common insect and seafood

allergies, e.g., Artemia franciscana (shrimp), Octopus vulgaris

(octopus), Blattella germanica (German cockroach), Dermato-

phagoides farinae (house dust mite), Portunus trituberculatus

(gazami crab), Bombus hypocrita (bumble bee), and Ctenoce-

phalides felis (cat flea).

Examples from category III, where no structural or taxonomic

relation is seen, were harder to interpret (Figure S2). Although

some members in this category had a majority of peptides

belonging to category I or II, others did not showmajor structural

relations and were mainly composed of bacterial peptides or

bacterial and autoimmune peptides that clustered together.

Although no overall homology was observed in these modules,

a detailed analysis of their sequence similarity identified com-

mon motifs that appeared in most modules (4, 5, 11, 13, 15,

19, and 22) (Table S1.2). The presence of these common motifs

could imply recognition by a common antibody, causing cross-

reactivity. One such module (module 5) (Figure 2B) linked the

presence of a common motif (TWNTIITRESNW, E value =

7.10 3 10�60) in different bacterial proteins (from Lactobacillus,

Prevotella, or Dorea), peptides belonging to Lactobacillus

phages and human idursulfase. Human idursulfase is commonly

used during enzyme replacement therapy in patients with Hunter

syndrome. Allergic reactions to idursulfase have been reported

in some patients, but no clear risk factors or sequence similarity

to common allergens have been reported.35 Our result might
ased on sequence similarity between the peptides belonging to module 5. At

acid, and gray indicates an alignment gap). Peptides’ colors indicate their

alue 7.1 3 10�60). y axis represents bits of information for each position and

s represented in the same legend.
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point to a role for the gut microbiome in sensitization against this

drug through bacterial mimicry.

In addition, we built a second network using logistic regression

coefficients instead of correlation values (STAR Methods). This

second network identified a total of 12 modules (with at least

10 peptides each). Of those, eight were homologous to the find-

ings in the correlation-based network (modules 9, 11, 15, 16, 19,

20, 21, and 22). The four additional modules mainly belonged to

bacterial proteins, and we found common sequence motifs in

two of them (Table S1.2).

Peptide enrichment is associated to HLA, FUT2, and
IGHV genetic regions
Our observation that both common environments and genetic

relations within families affect the antibody-bound peptide

repertoire (Figure 1E) made us wonder about the specific drivers

of repertoire variability. Genetics are known to influence anti-

body repertoires,36–39 but the exact contribution of genetic and

environmental factors to bacterial and, especially, commensal

gut microbiota immune-reactivity is incompletely characterized.

We estimated the proportion of antibody-bound peptide pres-

ence/absence variability accounted for by common genetic vari-

ation, i.e., its heritability (H2), using common genetic variants in

1,255 unrelated individuals. We saw an overall moderate genetic

contribution to the variability of antibody-bound peptide enrich-

ment (mean H2 = 0.1, median = 0.06, min = 0, and max = 0.96)

(Table S1.1). A total of 35/2,814 antibody-bound peptides

showed very high heritability (H2 R 0.5), whereas a substantial

number (597/2,814) had a relatively high heritability (H2 R 0.2).

Using the highly heritable antibody-bound peptides (H2 R 0.5),

we then computed genetic correlations to determine similar

genetic signals across antibody-bound peptide presence. We

found a correlation of 0.47 between the matrices of presence/

absence and genetic correlations (Mantel test, p < 1 3 10�4,

999 permutations) (Figure S1E). We also observed hubs of highly

genetically correlated groups of peptides in which the genetic

signatures are more correlated than antibody-bound peptide

presence itself (Figure S1E). This indicates the existence of a

common genetic architecture explaining the presence of anti-

body-bound peptides.

Next, we set out to uncover specific loci contributing to the

observed heritability. We ran a genome-wide association study

(GWAS) on 4,546,708 genotyped and imputed SNPs in 2,815

peptides. To reduce the false discovery rate (FDR) and increase

the power of the analysis, we meta-analyzed the results of our

LLD GWAS with those of a dataset that used the same PhIP-

seq libraries in the context of inflammatory bowel disease

(IBD) (490 participants),40 bringing us up to a total of 1,745 indi-

viduals (Table S2.2). At the study-wide significance threshold
Figure 3. Genetics contribute to antibody-bound peptide variability

(A) Manhattan plot from genome-wide association study meta-analysis of 2,798

sociation threshold (5 3 10�8, blue) and study-wide significance (7 3 10�11, red

Colored dots represent a recessive model. Gray dots represent additive models

(B) Peptide motif deconvolution maps of DR3, DQ2.5, and DR14 (amino acids co

hydrophobic, black) comparedwith theStreptococcus agalactiaeC5a peptidase p

weak binding 2.0–10.0, no binding > 10) predicted byNetMHCIIpan-4.0.41 Predicte

and salt bridges: yellow), binding energy, and dissociation constant (KD) of the Stre

HLA-II receptors (chain A in green and chain B in blue).
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(p < 5.673 10�11), we identified multiple signals in three genetic

loci associated with 149 antibody-bound peptides. These were

located in chromosome 6 (human leukocyte antigen [HLA]

locus), chromosome 14 (Immunoglobulin heavy-chain variable

[IGHV] region), and chromosome 19 (fucosyltransferase 2

[FUT2] gene) (Figure 3A).

The strongest genetic signal belonged to the HLA-class II re-

gion in chromosome 6, where we found 130 peptides associ-

ated with 134 different leading SNPs. Most of the associated

peptides belonged to Streptococcus and Staphylococcus

species, but we also found several peptides belonging to hu-

man viruses (adenoviruses or herpesviruses) and phages, as

well as some related to allergens (ovomucoid, barley, casein,

and wheat, among others) and gut microbiota. Focusing on

this genomic region, we conducted a specific imputation of

HLA SNPs, indels, amino acids, and gene isoforms and per-

formed an association analysis with all peptides (see STAR

Methods and Table S2.4). This analysis substantially increased

the number of associated peptides. We discovered that a large

number of peptides (530/2,813) had at least one significant

(p < 1 3 10�6, after correction for the number of independent

tests; see STAR Methods) association with HLA variants (amino

acids, insertions, SNPs, or genes). At the HLA gene level, we

identified 1,192 statistically significant peptide-gene associa-

tions with 276 different peptides. Most of those associations

(and the strongest) belonged to allelic variants of HLA-II (1,070

associations to 271 different peptides) in comparison to variants

of HLA-I (122 associations to 41 different peptides). Within the

HLA-II variations, most associations were observed for various

alleles in DQ and DR beta chain genes.

To determine whether these associations were due to the

capacity of a specific HLA complex to present the peptide, we

performed computational modeling of the HLA-peptide complex

using some of our top associations. This modeling was done for:

(1) streptococcal C5A peptidase and DR3, which was the top as-

sociation for the DR3/DQ2 haplotype relevant for several autoim-

mune diseases,42,43 (2) Lactobacillus phage hypothetical protein

LfeINF_097 and DR15, which was the strongest association

observed in our association analysis with HLA genes (odds ratio

[OR] = 13.3, p = 1.44 3 10�47), and (3) Human mastadenovirus

minor core protein and DR4/DQ8 haplotype, which is also linked

to autoimmunity.

Here, we identified that the predicted residues that are recog-

nized from the peptide by a specific HLA complex41 can form

stable structures with their associated HLA complexes.

The streptococcal C5a peptidase (TPSDAGETVADDANDL

APQAPAKTADTPATSKATIRDLNDPSQVKTLQEKAGKGAGTVV

AVIDA) is highly associated with DRB1*0301 (always bound

to the alpha chain DRA*01, DR3 haplotype) (OR = 3.78,
antibody-bound peptides in 1,745 participants (490 IBD). Genome-wide as-

) are shown as horizontal lines. Labels indicate the three major loci identified.

.

de: negatively charged, red; positively charged, blue; polar uncharged, green;

eptide core and percentage of elution score (%Rank_EL: strong binding% 2.0,

d bindingmode, polar molecular interactions (dashes, hydrogen bonds: green,

ptococcus agalactiaeC5a peptidase peptide core (red cartoon and sticks) into
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p = 1.65 3 10�31) and with DQB1*0201 (OR = 3.75, p = 5.16 3

10�31) and the alpha chain DQA1*0501 (OR = 1.91, p = 4.80 3

10�13), which together form the haplotype DQ2.5 that is highly

linked to DR3. The predicted core recognized by the HLA com-

plex (STAR Methods) was nearly identical for both DR3 and

DQ2.5 (VADDANDL) and has a high similarity to the amino acid

composition identified from HLA ligand elution experiments.44

Additionally, we employed the predicted binding metric (per-

centage of elution score, %Rank_EL; STAR Methods) to assess

the binding of the core peptide to the selected alleles. This anal-

ysis found a favorable binding prediction of the core to DR3 and

DQ2.5 complexes, with a higher binding for DQ2.5 (%Rank_EL

2.39 and 0.65, respectively). We further compared the binding

prediction for this epitope with a non-associated negative

control (DR14), which was predicted to be non-binding

(%Rank_EL 14.77). Additionally, structural modeling and anal-

ysis of binding mode showed that the computed dissociation

constant (KD) had an order of magnitude less affinity for the

non-associated allele (2.3 3 10�6 M) compared with DR3

(3.73 10�8 M) and DQ2.5 (1.73 10�7 M) (Figure 3B). As a result,

the peptide core exhibited similar behavior and key stabilizing

polar interactions when binding into the binding sites of DR3

and DQ2.5. For example, the hydrogen bonds occurring be-

tween the Tyrosine 60 (Tyr60) and Tryptophan 61 (Trp61) present

in the beta chain of both DR3 and DQ2.5 interact with glutamic

acid (Glu) and threonine (Thr) in the peptide core. By contrast,

although we could model the peptide binding into the negative

control DR14, the majority of the peptide’s amino acids are

located outside of the binding site and in the opposite direction

compared with DR3 and DQ2 (Figure 3B).

Next, we focused on the other two highly associated HLA-

peptide complexes: (1) the combination of the peptide Lactococ-

cus phage (YP_009222335.1 hypothetical protein LfeInf_097)

with the DR15 haplotype (DRB1*0301), which showed the stron-

gest study-wide association (OR = 13.3, p = 1.44 3 10�47) (Fig-

ure S3A), and (2) a combination of a peptide from the Human

mastadenovirus minor core protein with the associated DR4-

DQ8 haplotype (encoded by the DRB1*0401 and DQA1*0301-

DQB1*0302 genes) (DRB1*0401, OR = 5.69, p = 4.45 3 10�15;

DQA1*0301, OR = 2.55, p = 2.12 3 10�18; and DQB1*0302,

OR = 3.14, p = 4.17 3 10�20) (Figure S3B). We observed a pos-

itive identification of the peptide core matching known deconvo-

lution motifs, as well as a favorable binding prediction for the

Lactococcus phage peptide to DR15 and the Human mastade-

novirus peptide to DR4-DQ8 haplotypes. Similarly, the binding

modemodeling of the peptide cores to the HLA-II complexes re-

sulted in energetically favorable binding energy calculations and

KD in the nanomolar range (Lactococcus phage-DR15, 1.6 3

10�7 M; Human mastadenovirus-DR4/DQ8, 1.2 3 10�7 and

1.33 10�7 M, respectively). These results suggest that the iden-

tified HLA-peptide associations point to biologically relevant

processes in which a specific HLA complex can preferentially

bind and display the specific peptide sequence.

A second study-wide significant signal in our GWAS pointed to

the IGHV region in chromosome 14 that encodes the IGHV

domain. Here, we found 16 associated peptides in 11 leading

loci within the region. The majority of SNPs (11/16) were located

in non-coding regions around the IGHV gene, whereasOvis aries

casein protein (representing the primary sheep’s milk allergy
food allergen) was associated with a missense variant that

changes glycine, a non-polar amino acid, for arginine, a posi-

tively charged amino acid. Next to the Ovis aries casein peptide,

the top peptides associated with this region are bacteria-related

(Bacteroides uniformis,Blautia producta, and Lactobacillus plan-

tarum) or viral (influenza A, Lactobacillus phage, and Norwalk vi-

rus). The strongest association was observed in Lactobacillus

plantarum (aggregation-promoting factor) and Lactobacillus

phage (endolysin).

We found a third study-wide significant signal in the FUT2

gene in chromosome 19. This gene status controls the secretion

or non-secretion (homozygous for loss of function) of the

H-antigen, an oligosaccharide. Thus, we subsequently ran the

analysis in a dominant/recessive model to increase power and

detected three study-wide significant peptides, all of which orig-

inally belonged to Norwalk virus polyproteins and were nega-

tively associated with the same leading variant, rs2251034

(A>G, 30 UTR). This variant is in high linkage with an early-stop

variant in FUT2 that is known to stop the secretion of the

H-antigen, rs601338 (A>G, R2 = 0.85, 1000G, CEU population).

FUT2 secretor status has been previously associated with multi-

ple phenotypes, including infection susceptibility,45 gut micro-

biome,46,47 human milk oligosaccharides,48 and cardiovascular

traits.49 Our finding supports the previously reported association

between Norwalk virus susceptibility and FUT2 secretor sta-

tus,50 since this virus requires the H type 1 oligosaccharide

ligand for successful attachment in the cell surface.

Although not reaching study-wide statistical significance,

many other loci reached genome-wide significance (5 3

10�8 > p > 5.67 3 10�11). We identified a total of 158 clumped

variants associated with antibody-bound peptide profiles.

From those, most polymorphisms were in intergenic regions

(91), whereas 67 were annotated to their closest gene. Although

no polymorphism was present in exons, they were present up-

stream, downstream, and in UTR and intronic regions. All 67

genes were uniquely associated with a single antibody-bound

peptide. Some of the top associations include MAML2 gene as-

sociation to aRuminococcus unknown protein (p = 7.823 10�10)

andANKRD13C association toBlautia producta ABC transporter

(p = 9.793 10�10) or Lactobacillus plantarumWCFS1 and TIGAR

(p = 1.64 3 10�9).

Similarly, we performed a GWAS meta-analysis at the co-

occurrence module level (Table S2.4). As seen at the antibody-

bound peptide level, two major GWAS signals were identified.

IGHV was strongly associated with module 5, a class III module

with a common motif in all peptides. Meanwhile, HLA-II was

found to be associated with module 21 (a high similarity module

of plant allergens), module 19 (a category III module with a highly

conserved module), and module 5. Other genome-wide results

that did not reach study-wide significance (p > 2.27 3 10�9)

include associations between module 10 (characterized for

bacterial flagellins) and the GALNT13 gene (p = 2.629 3 10�8).

This gene codes for a galactosyltransferase linked to host adap-

tation to pathogenic interactions.51 In addition, module 9 (char-

acterized by pollen allergens) was associated with ESRP1

(p = 4.03 3 10�8), a gene implicated in proper skin barrier func-

tion, where defects have been linked with allergen response in

respiratory tracts.52 A subsequent HLA-imputed analysis not

only supported the strong association of specific HLA variants
Immunity 56, 1376–1392, June 13, 2023 1383
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and module 21 (p = 1.12 3 10�16) but also showed (Bonferroni)

significant (p < 3.6 3 10�6) associations to modules 13 (top

p = 2.17 3 10�10), 14 (top p = 2.05 3 10�6), 19 (top

p = 8.41 3 10�10), and 5 (top p = 2.07 3 10�10) (Table S2.5).

Of these modules, 13, 19, and 5 all present a common sequence

motif, whereas modules 21 and 14 are composed of highly

conserved homologous sequences. This highlights that the

presence of common motifs allows the binding of co-occurring

proteins to the same HLA and IGHV variants.

Phenotypic and environmental effects on antibody-
bound peptide enrichment
More than 200,000 bacterial antigens, including proteins

originating from pathogenic, probiotic, and commensal gut

microbiota species, were included in the peptide libraries. We

therefore explored the relations between gut microbiome

composition, analyzed by metagenomics sequencing, and the

presence of antibody responses. To increase the power of the

study, we performed taxonomic abundance-peptide associa-

tions in 1,051 LLD participants and then ran the meta-analysis

including 137 IBD participants.40 Neither the cohort-specific

analysis nor the meta-analysis strongly supported taxonomy

metagenomic associations with antibody-bound peptides (min-

imum FDR 0.52) (Table S2.6). These results were also in line

with previous observations.21 In addition, we quantified the

abundance of a subset of 647 microbiome-derived peptides

included in our PhIP-seq library in the available metagenomes

(STAR Methods), we again did not find any strong association

between the microbial abundance of those peptides and the

presence or absence of the antibody-bound peptide.

To uncover the relationships of lifestyle and environmental fac-

tors with the antibody-bound peptide repertoire, we associated

84 available phenotypes (Table S1.2) with the presence/absence

of antibody-bound peptide profiles in 1,437 LLD participants.

Here, we uncovered 837 strongly supported associations be-

tween the presence of antibody-bound peptides and lifestyle

and environmental factors (FDR < 0.05), covering 544 peptides

and 48 different phenotypes (Figure 4A; Table S2.7). Phenotypic

factors that were associated (after age, sex, and sequencing

plate adjustment) with antibody-bound peptides included age

(386 associations and not controlled for age), lymphocyte counts

(101 associations and both absolute counts and cell propor-

tions), neutrophil counts (86 associations and absolute counts

and cell proportions), smoking (84 associations and both former

and current smoking), sex (43 associations and not controlled for

sex), allergies (35 associations, including any pollen, dust, or an-

imals), autoantibodies (40 associations), and blood cholesterol

concentrations (13 associations and both total cholesterol and

LDL-cholesterol).

Of the 386 significant associations with age, 199 were positive

and 187 were negative. Older age was associated with a higher

prevalence of antibody-bound peptides from several herpes vi-

ruses (including CMV, EBV, and herpes simplex virus [HSV] 1

and 2), Streptococcus bacteria (in particular S. pyogenes and

S. dysgalactiae), and several pathogenic bacteria (including

Shigella flexneri, Yersinia enterocolitica, Campylobacter genus,

and Helicobacter pylori). Younger individuals had higher fre-

quencies of antibody-bound peptides related to particular vi-

ruses (including human rhinovirus serotype 2, influenza A virus,
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and enteroviruses), and bacteria, mainly Streptococcus pneu-

moniae, Staphylococcus aureus, Mycoplasma pneumoniae,

Haemophilus influenzae, and Escherichia coli (particularly anti-

gens from the type III secretion system [T3SS] of serotype

O157:H7). Younger individuals also showed more frequent anti-

body responses against alpha S1 casein proteins.

Sex demonstrated 43 significant enrichments (24 for males

and 19 for females). Females exhibited more frequent anti-

body-bound peptides from Lactobacillus acidophilus and

Lactobacillus johnsonii, both known inhabitants of the vaginal

microbiome.53,54 Antibody-bound peptide responses were

particularly directed against Lactobacillus surface proteins,

including S-layer proteins (SLPs, e.g., SIpA and SIpX proteins)

and the peptidoglycan lysozyme N-acetylmuramidase, repro-

ducing previous findings.21 Females also demonstrated

increased enrichment of EBV and CMV peptides. Males showed

a higher prevalence of antibody-bound peptides from Haemo-

philus influenzae bacteria (e.g., serotype Rd KW20 or strain

3179B), also as previously described,55,56 and of several pep-

tides derived from Streptococcus, Staphylococcus, Bacter-

oides, and alphaherpesviruses (including HSV-1 and varicella

zoster virus).

Associations between antibody-bound peptides and labora-

tory cell counts included both cell proportions and absolute

cell quantifications, both of which appeared to be largely driven

by antibody-bound peptides from CMV. Lymphocyte counts not

only showed almost exclusively positive associations with CMV

but also some with EBV, whereas the same antibody-bound

peptides demonstrated many negative associations with neutro-

phil counts.

Smoking associations included associations to the current

smoking status (41) (Figure 4B), ever smoking for at least a

year (43), and parental smoking (7). Most associations were

related to the higher prevalence of peptides belonging to

enteroviruses, both rhinovirus and poliovirus. The relationship

between smoking and rhinovirus infection has been previously

described,57 and thus, associations to other viral peptides

belonging to enteroviruses could be due to cross-reactivity to

homologous proteins. We also observed a consistently higher

seroprevalence of EBV in smokers, which might be reactivated

by smoking, as shown by an in vitro model.58 In addition, there

were increased antibody responses against miscellaneous res-

piratory pathogens, including several Streptococcus spp. On

the other hand, flagellin antibody-bound peptides (Roseburia,

Lachnospiraceae, Eubacterium, and Clostridiales) show a lower

prevalence in smokers, as do Escherichia virulence factors

(Figure 3B).

We used serological information about the presence of auto-

antibodies to identify bacterial and allergen peptides linked to

the presence of these autoimmune antibodies (Figure 4C).

Anti-cyclic citrullinated peptide (anti-CCP) antibody U/mL, a

marker for rheumatoid arthritis, was positively associated with

23 antibody-bound peptides, including peptides derived

from Bacteroides, Parabacteroides, Prevotella, Streptococcus,

Lactobacilli, and Porphyromonas gingivalis bacteria. These

findings correspond well with bacterial genera that are known

to be altered in the microbiome of patients with anti-CCP-

positive rheumatoid arthritis.59 For instance, Prevotella might

mimic autoantigens typical of rheumatoid arthritis,60 an oral
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Figure 4. Phenotype-antibody-bound peptide associations

(A) Bar plot displaying the number of associations per phenotype (FDR < 0.05). Phenotypes are grouped in categories. Peptides associated with >5 phenotypes

are grouped. Peptides associated with < 5 phenotypes are labeled ‘‘other.’’

(B) Smoking-linked antibody-bound peptide prevalence. x axis shows prevalence of peptides in smokers. y axis shows the prevalence in non-smokers. Colors of

dots depict peptide taxonomy.

(C and D) Autoimmune- and allergy-specific association counts of antibody-bound peptides, per category. Bacterial peptides are binned as ‘‘bacteria.’’ Viral

peptides are binned as ‘‘virus.’’ Autoantigens or antigens to casein are binned as ‘‘mammal.’’ Plant peptides are binned as ‘‘plant.’’ Anti-SSA, anti-Sjögren’s-

syndrome-related antigen A autoantibodies; anti-CTD, anti-connective tissue diseases screening ratio; anti-CCP, anti-cyclic citrullinated peptide.
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Streptococcus bacteria isolate was seen to induce arthritis in

arthritis-prone mice,61 gut Lactobacilli are associated with rheu-

matoid arthritis dysbiosis,62 and P. gingivalis can catalyze citrul-

lination.63 On the other hand, the connective tissue disease

(CTD) screen panel, in which the total reactivity to a mixture of

antigens associated with several autoimmune diseases is

measured, was almost exclusively associated with increased

antibody-bound peptide frequencies of alpha-S1-casein or

kappa casein belonging to Bos taurus (cow), Ovis aries (sheep),

Bubalus bubalis (buffalo), and Capra hircus (goat). Indeed,

several autoimmune diseases such as celiac disease, juvenile

idiopathic arthritis, and Ehlers-Danlos syndrome have been
associated with mucosal reactivity against milk allergy, where

the casein protein seems to be a regulator of the inflammatory

response.64,65 Anti-Sjögren’s-syndrome-related antigen A anti-

bodies (anti-SSA/anti-Ro), which are typical anti-nuclear anti-

bodies associated to autoimmunity, were positively associated

with an antibody-bound peptide representing thymidine kinase

of EBV. This association has previously been described in the

context of Sjögren’s syndrome, in which anti-SSA autoanti-

bodies and higher frequencies of serological EBV reactivation66

are more frequently observed.

Thestrongest association to total cholesterol (mmol/L)waswith

an antibody-bound peptide ofHaemophilus parainfluenzae strain
Immunity 56, 1376–1392, June 13, 2023 1385
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T3T1. Other bacterial peptides are also enriched with higher

cholesterol concentrations, including Streptococcus or Pseudo-

monadaceae. We also observed an enrichment of viral peptides,

such as rubeola, Pneumoviridae, HSV, and EBV. Many intracel-

lular pathogens are known to use cholesterol drafts to success-

fully infect cells and to impair the regular cholesterol metabolism

and the immune system.67 We observed three associations be-

tween body-mass index (BMI) and antibody-bound peptides, all

of which represented glycoprotein D of human alphaherpesvi-

ruses (HSV-1/HSV-2). Indeed, obesity has previously been asso-

ciatedwithahigherprevalenceof herpesvirus infections, inpartic-

ular HSV-1, by promoting human adipogenesis.68

Finally, participants having any allergy (44.5% of participants)

showed associations with six different antibody-bound peptides

(Figure 4D). Usingmore-detailed questionnaires with information

about different allergies such as dust, pollen, food, and others

(Table S1.3), we identified 13 different peptides associated

with at least one phenotype. As expected, the strongest associ-

ation was observed for dust allergy, showing associations with

antibody-bound peptides from the house dust mite Dermato-

phagoides pteronyssinus (p = 2.93 3 10�8). In addition, the

most common associations were observed between casein pro-

teins derived from cow, sheep, and buffalo milk, which were

linked not only with food allergies but with almost all allergy

types. Wheat allergens were linked with self-reported dust and

pollen allergies. Additionally, we identified a couple of associa-

tions with influenza (higher prevalence with pollen allergy), bac-

terial flagellin associations with animal allergies, and Shigella

flexneri with dust allergy. Previous analyses have linked dust

mites with bacterial sensitization, although not for these specific

lineages.69 Importantly, several of these significant associations

represent a linkage between common aeroallergens (e.g., pollen

and dust) and food allergy (e.g., Triticum aestivum [wheat] and

casein), recapitulating the frequent co-occurrence of allergen

cross-reactivity.70

In addition to this analysis, and given the complexity of the

data, we also used the PCs of the antibody-bound peptides as

summaries of common antibody trends in the population. Look-

ing at the top 100 antibody-bound peptide PCs, we identified 28

significant associations (FDR < 0.05) (Table S2.8). Cholesterol

(both total and LDL concentrations) was positively associated

with PC1, which is negatively loaded by many bacterial patho-

gens. Anti-CCP (U/mL) was positively associated with PC6

(loaded by several bacteria). Anti-CTD (U/mL) was negatively

associated with PC12 (negatively loaded by casein) and PC45

(loaded by influenza and H. pylori). Several allergies were nega-

tively associated with PC12 (negatively loaded by casein). Pet

history was negatively associated with PC75 (negatively loaded

by enteroviruses and positively loaded by N. meningitidis).

Smoking was associated with enterovirus-loaded PCs and with

PC33, loaded by the airway pathogen P. aeruginosa. The latter

associations confirm the observed smoking-enterovirus relation

and highlight another known association between P. aeruginosa

and smokers.71 Similarly, we also again saw associations of

cell counts with CMV and allergies with casein. In addition, we

observed a negative relation between bacterial infections and

cholesterol concentrations, in line with a previous report.72

Common lifestyle and anthropometric parameters might help

explain the co-occurrence of antibody-bound peptides. Thus,
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we additionally associated the co-occurrence modules (repre-

sented as eigengenes, see STAR Methods) with phenotypic in-

formation available for study participants (Table S2.9). This iden-

tified 21 significant associations (FDR < 0.05). The strongest

positive associations were between smoking phenotypes and

module 14 (characterized for enterovirus proteins), although

other positive smoking associations were found with module

16 (EBV), as were negative associations with the flagellin module

2. Cell counts were associated with module 1, which is mainly

enriched in CMV proteins, as expected. The presence of anti-

CCP was positively associated with the presence of module 7,

which is characterized by uncharacterized bacterial proteins

with high similarity, whereas the CTD ratio was negatively asso-

ciated with this module. Plant allergens from module 21 were

associated with self-reported pollen allergy. C-reactive protein

(CRP) concentration, a marker of inflammation, was positively

linked with the presence of the herpes-enriched module 8. Fe-

male sex was associated with the EBV module 16. Finally, age

was positively associated with modules 1, 8, and 16 (CMV, her-

pes simplex, and EBV, respectively), module 12 (H. pylori), and

module 4 (mix of bacteria and self-antigens with the same motif)

and negatively associated with module 14 (enteroviruses).

DISCUSSION

In this study, we aimed to characterize the antibody repertoire in

the blood of a Dutch population and reveal which factors

contribute to its variation. In particular, the factors that contribute

to the generation of antibodies against microbiota and different

allergens remain elusive. Here, we combined phenotypic and ge-

netic information together with the immune interrogation of 2,815

common peptides from microbes, viruses, allergens, and self-

peptides to study this variability. Using population, family, and

longitudinal samples, we identified the antibody profile in the

general population, assessed the stability of antibodies after 4

years, and investigated the effect of genetic and environmental

factors on individual immune profiles.

The relation between genetics and antibody repertoire has

been extensively described36–39 but has been limited to a rela-

tively small number of antibodies until now. PhIP-seq has

enabled the investigation of the genetic contribution to antibody

variability on a much broader scale, although it has so far mainly

been investigated for viruses, toxins, and virulence factors20,39

and not for other antigens such as allergens and gut micro-

biota-derived proteins. Here, we identified three genomic re-

gions highly associated with the variability of antibody-bound

peptide repertoires. As expected, we replicated the relation

between HLA loci and antibody-bound peptide preva-

lence.20,39,73,74 Through imputation of HLA alleles, amino acids,

and structural variants, we also set out to uncover the specific

HLA variations that allow the peptide to be displayed. Our struc-

tural simulations of the HLA alleles agree with the observed as-

sociation patterns, supporting the hypothesis that the strong as-

sociations are due to HLA-display capabilities. We report

specific HLA associations to more than 500 peptides at a high

confidence level. These association data will be used in the

future to further understand HLA-peptide interactions by

modeling possible residue interactions. Similar to our findings,

TCR variants have also been postulated to be selected by HLA
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haplotypes.75 Our findings also support previous observations,

such as the association of FUT2 and Norwalk virus peptides50

that is explained by the attachment of the viral particle to the

epithelia of FUT2-secretor cells.76 We also observed association

in the IGHV locus that was not previously reported in relation to

antibody profiles. This association is in a complex genetic region

as several genes with multiple isoforms coexist in the genome

that are hard to address with microarrays.77 In addition, we

lack information about the rearrangements that this gene un-

dergoes during B cell maturation. Nevertheless, although we

cannot directly interpret the relation between variation and pep-

tide recognition, this is a genetic region that is expected to

contribute to antibody-bound peptide variability. However, our

study did not identify the previously reported association of the

nucleoredoxin gene (NXN) with S. pyogenes’ M3 Streptolysin O

(SLO) protein,20 although we do find a weak positive association

between rs4968063 and the prevalence of this antibody-bound

peptide in the combined LLD and IBD cohort (p = 0.01).

In the present study, we observe a lack of concordance be-

tween fecal microbial composition and PhIP-seq-based epitope

repertoires, which is in line with findings from studies using the

exact same library of antigens in a healthy population-based Is-

raeli cohort and a disease-cohort consisting of patients with

IBD.21,40 The top associations do not present clear relationships

between specific microbial taxa and antibody-bound peptides,

which could be explained in various ways. First, this apparent

lack of association might point to past events, such as microbial

translocation, that may have triggered long-lasting immunity that

was captured by PhIP-seq profiling,78 whereas the respective

bacteria have been cleared from the gut. This agrees with previ-

ous observations,75 where IgG responses have been seen to

occur predominantly for translocating bacteria, whereas IgA

governs mucosal bacterial homeostasis. Second, there may

have been a lack of resolution in the microbiome data. For

example, some bacterial species commonly detected by meta-

genomics may have been accompanied by higher detection

thresholds in PhIP-seq, whereas highly immunogenic antigen

peptides may not be frequently detected by metagenomics

sequencing.21 In addition, the use of fecal microbiota as a proxy

for the gutmicrobiota limits the characterization of local immune-

microbiota interactions. Profiling mucosa-attached microbiota

rather than fecal microbiome could have improved the anti-

body-bacteria concordance as locally residing (mucosal) micro-

bial communitiesmay elicit stronger immune responses thatmay

also depend on the anatomical location within the intestines.79

The coexistence of bacterial communities in different niches

(luminal and mucosal) has been previously reported,80 and it

has been suggested that mucosal-associated bacteria might

be a reservoir of bacteria that evolve to acquire translocating

capabilities.

We also explored the relationship between peptide prevalence

and various morphological, biochemical, and lifestyle factors.

We observed that EBV and CMV were associated with lympho-

cyte and neutrophil counts. These findings are in accordance

with observations of absolute lymphocytosis and neutropenia

that constitute characteristic laboratory findings in individuals

affected by EBV (infectious mononucleosis)81,82 or CMV infec-

tions,83,84 which may translate into altered immune cell propor-

tions in the longer term. Antibody-bound peptides from EBV
and a group of peptides identified to co-occur with EBV were

also seen to be more prevalent in females than in males, which

might be attributed to higher disease prevalence85–87 or higher

antibody titers.88We also identified a series of associations of al-

lergies and allergens. Allergies are normally triggered by the

epitope interaction with IgE antibodies. However, in this study,

we mainly used IgG for immunoprecipitation since IgE are found

in small amounts in serum and bind with relatively low affinity to

the protein A/G coated magnetic beads employed for the immu-

noprecipitation. Previous studies have shown that allergens

have the chance to bind both to IgG and IgE, although theymight

have different epitope preferences.89 Thus, the allergen associ-

ations presented here should be interpreted with caution as

they may differ from the classical pathway involved in allergy.

Using co-occurrence networks, we identified different peptide

groups that normally belonged to the same taxa or orthologous

structures in different taxa. In the context of the gut microbiome,

a recent study highlights that T cell interactions with gut bacteria

are largely strain-specific and that common epitopes tend to be

recognized in multiple strains, which might be seen in our anal-

ysis through the lens of antibody-bound peptide co-occur-

rence.90 However, the existence of modules with apparently un-

related peptides may indicate either a biological phenomenon or

technical factors that we are not accounting for. Most of these

co-occurrences of unrelated peptides could be attributed to

the presence of common sequence motifs that might be recog-

nized by the immune system. In modules including peptides

belonging to bacteria, humans, and allergens, this might indicate

amechanism linking bacterial infections with the development of

immune disorders through bacterial mimicry. We saw some ex-

amples of this in module 15, where a common motif is found in a

human Chromodomain helicase DNA-binding protein, Ribo-

somal RNA-processing protein 8, and pollen allergens; in mod-

ule 4, where a consistent motif is seen in bacteria and human

junctional protein associated with coronary artery disease; and

in module 5, where it links the presence of antibodies against

idursulfase, a drug used in the treatment of Hunter syndrome,

with bacteria and phages. Module 5 was also associated with

variants in the IGHV gene, which might predispose carriers to

the recognition of this motif and idursulfase allergy. On the other

hand, phenotypic associations also allow us to conjecture about

observed cryptic peptide co-occurrence. For instance, CMV

peptides were seen to co-occur with several bacterial and plant

peptides. Most of those peptides were associated with the same

phenotypes, mainly blood cell leukocyte and granulocyte

counts, age, and sex, meaning that the co-occurrence could

be driven by those factors or that those phenotypesmaymediate

their co-occurrence.

All in all, although earlier individual studies found some of the

associations we report, our large, widespread analysis repre-

sents a valuable resource for subsequent studies. MHC-peptide

associations might clear up the complex HLA-peptide interac-

tions for thousands of different peptides. Associations between

phenotypes and antibody-bound peptides range from the ex-

pected (smoking with rhinovirus infection) to potentially relevant

but unknown associations that warrant future studies (bacterial

associations with autoimmunity markers or cholesterol associa-

tions with bacterial infections). Finally, the co-occurrence of,

to all appearances, unrelated peptides comprising allergens,
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pathogens, self-antigens, and commensal microbiota, and the

ostensibly shared motifs among them, are findings that require

further investigation and validation and might help elucidate

the development of allergies91 and autoimmunity.92

Limitations of the study
PhIP-seq is currently limited to linear epitopes and lacks post-

translational modification information, and thus, new technolo-

gies or improvements of the current method (e.g., as previously

shown14) are still to be developed. Similarly, the nature of the

assay will also miss tridimensional structure information from

the antigens that might be recognized by the antibodies. In

addition to these technological issues, our relatively small sam-

ple size for genetic studies hampers an accurate estimation of

antibody-bound peptide heritability and genetic correlation. It

is also important to acknowledge that the antibody-bound pep-

tides we identified mainly correspond to circulating IgG and may

overlook other types of immunoglobulins or immunoglobulins

not in systemic circulation. Finally, due to the mostly cross-

sectional nature of the experimental design, it is hard to draw

causal links from the associations we present, and further

studies are needed to establish causality and dependence.

We could not attempt to replicate most of the phenotypic asso-

ciations here presented, since other cohorts lack the pheno-

typic breadth and antibody panels tested in this study. Valida-

tion of peptide presence with ELISA showed significant but

imperfect correlations with antibody presence defined with

PhIP-seq. Orthogonal assays are necessary to further support

the observed correlations.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HRP conjugated anti human IgG antibody Southern Biotech Cat#2042-05; AB_2795660

anti human IgE antibody Southern Biotech Cat#9250-05; AB_2796719

mouse anti-human IgG Fc-BIOT Southern Biotech Cat#9040-08; AB_2796600

goat anti-human IgA-BIOT Southern Biotech Cat# 2050-08; AB_2795706

Bacterial and Virus Strains

T7Select 10-3 cloning kit Merck Cat#70550-3

Biological Samples

1,778 serum samples of 1,437 individuals Tigchelaar et al.27 N/A

Chemicals, Peptides, and Recombinant Proteins

IPEGAL CA 630 Sigma-Aldrich Cat#I3021

Protein A magnetic beads Thermo Fisher Scientific Cat#10008D

Protein G magnetic beads Thermo Fisher Scientific Cat#10009D

1-Step� Turbo TMB-ELISA Substrate Solution Rhenium Cat#TS-34022

Q5 polymerase New England Biolabs Cat#M0493L

Bovine Serum Albumin, heat shock fraction, pH 7, R98% Sigma-Aldrich / Merck Cat#A7906-100G

Pierce Streptavidin Magnetic Beads ThermoFisher Cat#88817

Critical Commercial Assays

QIAquick gel extraction kit Qiagen Cat#28704

QIAquick PCR purification kit Qiagen Cat#28104

Deposited Data

Raw data for the PhIP-Seq experiments This paper EGA: EGAS00001006999

Raw data for PhIP-Seq experiment in IBD Bourgonje et al.40 EGA: EGAD00001010118

Fecal shot-gun sequencing Zhernakova et al.93 EGA: EGAD00001001991

Fecal shot-gun sequencing IBD Imhann et al.94 EGA: EGAD00001004194

Genetics IBD Hu et al.95 EGA: EGAD00010001495

Oligonucleotides

library amplification primer fwd GATGCGCCGTGGGAATTCT N/A

library amplification primer rev GTCGGGTGGCAAGCTTTCA N/A

Recombinant DNA

Oligo pool (200 mers) Twist Bioscience N/A

Oligo pool (230 mers) Agilent Technologies N/A

Software and Algorithms

Peptide quantification and enrichment determination Vogl et al.21 and Leviatan et al.28 https://zenodo.org/record/7307894

Descriptive stats, GWAS, network and assocations This paper https://zenodo.org/record/7773433

Other

Nunc� Immobilizer� Streptavidin Plates Thermo Scientific Cat#436014

BioTides� Peptides JPT Peptide Technologies (Berlin, Germany) N/A

Freedom Evo liquid handling robot Tecan N/A

MASTERBLOCK, 96w, PP, 2ml, Natural, 50/case Danyel biotech Cat#60-780270
Corning Axygen� AM-2ML-SQ AxyMat� Biolab Ltd Cat#AXY-AM-2ML-SQ
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Alexandra Zhernakova (a.zhernakova@

umcg.nl).

Materials availability
Antibody-bound peptides generated for this study are available in the European Genome-Phenome Archive (EGA) and are publicly

available from the date of publication. Accession number is listed in the key resources table.

Data and code availability
d The data presented here belongs to Lifelines. Lifelines is specifically organized tomake assessment results available for (re)use

by third parties genetics and phenotypic data can be requested through Lifelines. A research proposal must be submitted for

evaluation by the Lifelines Research Office.
e2 Im
o LLD PhIP-Seq: Raw and processed PhIP-Seq data generated for this study are available in the European Genome-Phenome

Archive (EGA) and are publicly available from the date of publication. Accession number is listed in the key resources table.

o LLD Phenotypic data: Researchers must submit a data order (i.e. a selection of variables) and research proposal in the Life-

lines online catalog.

o LLD Genetics used for GWAS: Genotyping data is not publicly available to protect participants’ privacy, and neither can be

deposited in public repositories to respect the research agreements in the informed consent. The data can be accessed by

all bona-fide researchers with a scientific proposal by contacting the LifeLines Biobank (instructions at https://www.lifelines.

nl/researcher/how-to-apply). Researchers will need to fill in an application form that will be reviewed within 2 weeks. If the

proposed research complies with LifeLines regulations, such as noncommercial use and warranty of participants’ privacy,

then researchers will receive a financial offer and a data and material transfer agreement to sign.

o LLD raw fecal metagenomics can be accessed from EGA and are publicly available from the date of publication. Accession

number is listed in the key resources table.

In addition to Lifelines data, we used data belonging to the 1000IBD cohort study for meta-analysis.

o IBD PhIP-Seq data from the IBD cohort used for meta-analysis, IBD Genetics data used for GWAS meta-analysis, and IBD

raw fecal metagenomics are available in EGA Accession numbers are listed in the key resources table.

o Supplementary material includes summary statistics from most analysis described. In addition, intermediate files and addi-

tional material can be accessed online in: Mendeley Data: https://doi.org/10.17632/4wzz7d9yf6.1.
d All original code, which was used for performing data analysis, has been deposited Zenodo and is publicly available as of the

date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples
Lifelines is a multi-disciplinary prospective population-based cohort study examining, in a three-generation design, the health and

health-related behaviors of 167,729 individuals living in the North of the Netherlands. It employs a broad range of investigative pro-

cedures to assess the biomedical, socio-demographic, behavioral, physical and psychological factors that contribute to the health

and disease of the general population, with a special focus on multi-morbidity and complex genetics.96 We collected data from the

subcohort LLD27 (58% female, mean age 45.04 years, mean BMI 25.26, 12% obese participants with BMI > 30). Approval from insti-

tutional ethics review is available under reference number M12.113965. In this study, we used a subset of LLD (n = 1,437, 57%

female, mean age 44.5 years) with available information including anthropometrics, blood parameters and self-assessed question-

naires about health and lifestyle. These questionnaires included questions about allergies in which we identified abnormally high

numbers of self-reported allergies, mainly driven by the category ‘‘other allergies’’, which might include other conditions such as

food intolerances. Previous works described the autoantibody panels for anti-CCP and CTD ratio97 and anti-SSA.98

The 1000IBD cohort is a large, prospective observational cohort study based in Groningen, the Netherlands, aiming to biologically

and clinically characterize patients with IBD who are included at the outpatient IBD clinic of the University Medical Center Groningen

(UMCG).99 Detailed phenotypic data and multi-omics profiles have been generated for over 1,000 included patients with IBD,

enrolled from 2,007 onwards. Antibody-bound peptide repertoires (PhIP-Seq profiles) were generated for 497 patients included in

the 1000IBD cohort (median age 39 years, 63% females, median BMI 24.7 kg/m2), of which 256 patients were diagnosed with

Crohn’s disease, 207 with ulcerative colitis and 34 with an undetermined type of IBD (IBD-U). Ethical approval for participation

in the 1000IBD cohort has been granted by the Institutional Review Board of the UMCG (in Dutch: ‘‘Medisch Ethische Toetsingscom-

missie’’, METc) under registration number 2008/338 and the study has been conducted in accordance with the principles of the
munity 56, 1376–1392.e1–e8, June 13, 2023
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Declaration of Helsinki (2013). Patients provided written informed consent for their participation in the study. Further details on the

subcohort of 1000IBD of which PhIP-Seq profiles were generated can be found elsewhere.40

METHOD DETAILS

PhIP-Seq library design, preparation, sequencing and processing
Microbial library description21 and the allergen, IEDB and phages library28 have been previously presented. The general PhIP-Seq

protocol was initially described by Larman et al.13 and was performed with minor modifications as previously outlined.21 In short,

PCR plates in contact with phage/antibody mixtures were blocked with bovine serum albumin (BSA) solution (used concentration

were previously described21). BSA was supplemented into phage-buffer mixtures for immunoprecipitations (IPs). Phage wash buffer

for IPs contained 0.1% (wt/vol) IPEGAL� CA 630 (Sigma-Aldrich cat. no.I3021). Phage and antibody amounts for IPs were used as

previously optimized21 at 3 mg of serum IgG antibodies (measured by ELISA) and phage library at 4,000-fold coverage of phages per

library variant. As technical replicates of the same sample agreed (average Pearson’s r = 0.9621), measurements were performed in

single reactions. The microbial libraries21 (230 nt, 244,000 variants) were mixed in a 2:1 ratio with the phage, immune and allergen

library (200 nt, 100,000 variants).28 Phage–antibody mixtures mixed with overhead mixing at 4�C. A 50%-50% mix of protein A

andGmagnetic beads (total 40 ml; ThermoFisher Scientific, cat. nos. 10008D and 10009D, prepared according to themanufacturer’s

recommendations) was added after overnight incubation and further rotated at 4�C for 4 h, then the beads were transferred to PCR

plates and washed twice, as previously reported.21 Therefore, a Tecan Freedom Evo liquid-handling robot with filter tips was used.

PCR amplifications (pooled Illumina amplicon sequencing) were run with Q5 polymerase (New England Biolabs, cat. no. M0493L)

according to the manufacturer’s recommendations (primer pairs as previously outlined21).

Composition of the antigen library
This work uses two previously developed peptide libraries: a microbial library21 and an allergen library.28 The microbial library con-

tains 244,000 peptide sequences from 28,668 different proteins, from which 27,837 proteins were derived from microbial antigens,

while the rest are controls. This contains genes predicted from metagenome-assembled genomes (147,061 peptides), known

pathogenic bacterial species (61,250 peptides), bacteria known to be coated with antibodies (22,050 peptides), probiotic bacteria

(14,700 peptides), virulence factors extracted from the virulence factor database (VFDB) (24,164 peptides) and controls (11,525 oli-

gos). Antigens were selected giving priority to known immunogenic antigens and focusing on secreted, membrane and motility pro-

teins. The second library contained 5,527 peptides from five different allergen databases,28 31,436 peptides from the Immune

Epitope Database (IEDB)29 and approximately 40,000 bacteriophage peptides.

Peptide antibody-binding enrichment
All sequencing samples were rarefied to the same sequencing read-depth prior to statistical testing. Samples were subsampled to

1.25million paired-end reads. In previous experiments, we found this number of reads sufficient to reproduce all enriched antibodies

found using the dataset, with no subsampling, whereas more exhaustive subsampling results in a loss of significant enrichment hits.

Antibody-binding against peptide (seropositivity) was defined as previously described.21 In brief, null distributions per input level

(number of reads per clone without IP) were generated in each sample. A two-parameter generalized Poisson model was fitted to the

null distribution, and the P-value to obtain the coverage level after IP for a given clone is estimated. Model parameters were estimated

for each null distribution using maximum likelihood or directly interpolated.11 A strict Bonferroni cut-off at PBonferroni < 0.05 was then

used to define seropositivity. A total of 175,242 peptides were seropositive in at least one participant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Antibody-bound peptides exploratory analysis
Data analysis was performed in R v4.0.3 using the packages tidyverse, stats, vegan,100 corrplot, igraph,101 WGCNA,102 readxl,

pheatmap, cairo and patchwork.

Antibody-bound peptide selection
Peptides were selected for the analysis based on two filters. First, we chose peptides with a prevalence of at least 5% and less than

95% in either 1000IBD or LLD (excluding follow-up samples). Second, several available peptides had the same amino acid sequence,

which may arise from different nucleotide sequences. For these antibody-bound peptides with identical sequences, we chose the

most prevalent. Applying these two filters left 2,815 antibody-bound peptides for subsequent analyses.

Principal component analysis
We used 2,815 peptides to compute perform a component analysis (PCA). Eigenvalues were used to produce a scree plot and ei-

genvectors to identify top peptides contributing to the first components. A K-medoids algorithm (k = 2) was performed on the dimen-

sionally reduced dataset (PC1 and 2) to label observed clusters (PAM, cluster R package). This analysis was reproduced after

removal of the 90 peptides belonging to CMV. The top 100 PCs (43% of total variability) were used for association to phenotypes.

PCA regression was carried out using the phenotypes as the dependent variable and all 100 PCs, sex, age and sequencing plate
Immunity 56, 1376–1392.e1–e8, June 13, 2023 e3
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as covariates. For all continuous phenotypes, a linear model was performed. For binary outcomes, a logistic regression was per-

formed. For ordered factors, an ordered logistic regression was performed.

Time and family distance analysis
322 LLD samples belonging to two different time points were used for a time consistency analysis. Jaccard distance was used as the

dissimilarity metric between samples. P-value of longitudinal effect of mean distance was estimated by computing the P-value of the

mean pairwise difference of longitudinal samples in a null distribution of mean distances of pairwise differences of 2,000 label swaps.

Interrogation of factors that might affect the degree of change in longitudinal samples was performed using pairwise distances from

longitudinal samples as dependent variable and age and sex as covariates in a linear model. Antibody-bound peptide consistency

was computed by averaging the number of changes in the enrichment profile of a peptide among all samples with longitudinal data

points. To check whether antibody-bound peptide enrichment changes seen in follow-up are due to a different reactivity of the plates

used for baseline and follow-up samples, we ran a Wilcoxon test comparing the number of enriched antibody-bound peptide of par-

ticipants profiles from plates with follow-up samples vs plates with no follow-up samples.

We then selected samples belonging to the same family34 with three members (26 families). We computed pairwise distances

(Jaccard) between family members (father to offspring, mother to offspring and father to mother). For each of the comparisons,

we estimated a P-value comparing the mean distance with a random distribution of means from 2,000 label permutations.

To study the influence of the number of peptides used on the conclusions based on Jaccard distances, we subsampled the set of

2,815 peptides in 4 subsets comprising 20%, 40%, 60% and 80% of the peptides and repeated the time and family similarity ana-

lyses. After obtaining permutation P-values, we reached largely the same conclusions. In addition, we observed that the distance

matrices using different data subsets were largely correlated (Mantel test), finding a median r of 0.88 (max = 0.95, min = 0.82).

This supports that the results are largely independent from the number of peptides used for distance calculation.

In addition to these analyses, we reproduced the findings using a Manhattan distance matrix instead of Jaccard.

Network analysis
We used a weighted gene co-expression network analysis102 in the context of antibody-bound peptide presence/absence to identify

modules of peptide co-occurrence. We used all LLD samples (1,784) and the subset of selected peptides with no missing values

(2,787) to build the network. The soft thresholding power was chosen by visually inspecting the model fit of powers from 1 to 20.

To test the network assumption of scale invariance, WGCNA reports the R2 between log(k) and log(p(k)), where k is the number of

edges from each of the nodes of the network and the function p is the power function.103 Values close to 1 indicate strong evidence

of scale invariance. A power of 7 identified the highest R2 value (0.94), and thus, we decided to use this power. An unsigned adjacency

matrix was computed using Pearson correlation between antibody presence/absence profiles. This matrix was further processed

into a topological overlap distance matrix (TOM). Hierarchical clustering (method = average) of the TOM distance was followed by

a dynamic tree cut algorithm to identify clusters of at least 10 peptides. Cluster eigengenes were estimated and used tomerge similar

modules together (mergeCloseModules, cutHeight = 0.5) to produce the final set of modules. Peptides belonging to a module of at

least 10 peptides were used to build a visual network graph (igraph). A maximum spanning tree algorithm was used to build the

network.

The peptide identity from the identifiedmoduleswas checked and a sequence similarity analysis was run.Module eigengeneswere

extracted and correlated between modules. Strong module correlation was defined on the basis of achieving a PBonferroni < 0.05.

We carried out further investigations to ensure module consistency. First, we checked two other distance metrics to define the

adjacency matrix used by WGCNA that may be better-suited to binary data, namely Jaccard and Kulczynski.104,105 However,

WGCNA’s checks on scale invariance failed (maximum R2 < 0.8). Therefore, we decided to use a different approach to build a

network of binary traits. The R package IsingFit implements the method described in this paper, which consists of determining

network adjacency based on logistic regression with an l1 penalty (lasso). The regularization strength hyperparameter l is selected

using an information criteria metric. The resulting adjacency matrix was normalized to a 1-0 range and transformed into a distance

matrix. Clustering was performed as in the WGCNA matrix by hierarchical clustering of the samples (method = average) and iden-

tifyingmodules with a dynamic tree cut. Most of the identifiedmodules (8/12) were defined to be homologous to theWGCNA-defined

ones (eigengene’s Pearson’s r > 0.95). The four extra modules were analyzed to identify peptide similarity, as previously described.

Binary-matrix modules are available at Table S1.2.

We performed a bootstrapping analysis to estimate the consistency of WGCNA modules. Sampling with replacement of 20%,

40%, 60% and 80% of samples was carried out 50 times. A WGCNA network was built in each of those subsets as previously

defined. We defined homologous modules by computing Jaccard distances between binary peptide labels (assigned to module/

not assigned), and picked the module with highest similarity to the complete set as its homologous for each data subset (if similarity

was not above 0.5, no module was picked as homologous). Finally, per peptide, we quantified the percentage of times it was as-

signed to a homologous cluster.

Additionally, we performed a combined network analysis between the IBD and LLD cohorts. Once again, we used eigengene cor-

relations to define clusters that are homologous in the combined analysis to the ones defined using LLD only (r > 0.95), which iden-

tified 21/22 clusters to be consistent between both analyses.

To check if co-occurrence modules might be driven by batch effects (due to PhIP-Seq sequencing plate), we computed the prev-

alence of each peptide within a module. If a common batch effect was present in all peptides of a module, we would expect to see a
e4 Immunity 56, 1376–1392.e1–e8, June 13, 2023
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significant batch effect adding variation to themean prevalence within all modules (Null hypothesis, Prevalence� Peptide + Batch). If

this batch effect was different per peptide, then the batch effect would show a significant interaction with the peptide (Alternative

hypothesis, Prevalence � Peptide + Batch + Peptide*Batch). If the alternative hypothesis was true, the batch would have a different

effect per peptide, and thus it is not the only explanation to observe high co-occurrence between antibody-bound peptides. We fitted

the null and alternative hypothesis in two linear models, and computed a P-value for the peptide–batch integration by computing a

likelihood ratio test between both models. All tested models showed a significant interaction effect, indicating that batch most likely

has a different effect per peptide.

To associate the presence of co-occurrence modules with genetic, environmental and lifestyle variables, we used WGCNA to

compute and extract eigengenes. Eigengenes from all modules (except the low-consistency module 17) were included in a

GWAS analysis (see STAR Methods section genome-wide association) and associated with all available phenotypes (see STAR

Methods section phenotype association analysis).

Peptide similarity
Sequence similarity between peptide groups was estimated using Clustal Omega.106 Clustal Omega uses this distance matrix to

build guiding trees for the progressive multiple sequence alignment algorithm. This distance is internally calculated using the k-tuple

method.107

Multiple sequence alignment information content
We ran MAFFT v7.487108 to obtain multiple sequence alignments.

Using the distancematrix obtained fromClustal, we performed hierarchical clustering (averagemethod) to visualize sequences in a

dendrogram. Multiple sequence alignments were attached to the dendrogram to visualize sequence similarity.

Information content per position in each multiple sequence alignment was obtained by calculating Shannon entropy (Equation 1)

and then applying (Equation 2). Gaps were included in the information content computation as one more character.

H2 = � SaaPðaaÞ3 log2ðPðaaÞÞ (Equation 1)

Shannon entropy of a position in a sequence alignment. aa stands for amino acid, which could take the value of any of the 20 com-

mon amino acids and gap. H2 stands for entropy. The probability of each amino acid was estimated as its frequency per position.

I = log2ð22Þ � H2 (Equation 2)

Information content of a position in a sequence alignment. ‘I’ stands for information. H2 stands for entropy and is obtained in

Equation 1.

Motif discovery
Groups of peptides of interest were subject tomotif discovery usingMEME.109MEME is an expectationmaximization framework that

allows for identification of enriched kmers in a group of unaligned sequences. We ran MEME v5.05 with the following parameters:

zoops as distribution of motifs, since we expected either no motif or only one motif per sequence; number of motifs to find = 3; min-

imal motif width = 3 amino acids (maximum of 50); the classic objective function; Markov order = 0; and a minimum of 7 sequences

containing the motif.

CMV analysis
We interrogated whether CMV antibody-bound peptide breadth increased with age. To do so, we clustered samples in three groups

depending on the number of CMV peptides detected (0, from 0 to average number 16, and above the average number 16). We then

performed ANOVA and an ad-hoc Tukey test to determine whether the age of the different groups differed.

We also tested CMV and EBV as a factor that might determine differences in antibody consistency after 4 years. With that aim, we

performed a linear model in which the Jaccard distance of an individual between baseline and follow-up was used as a dependent

variable, including baseline age, sex and CMV status (defined as the 2-medoids clustering determined using PC1 and 2) and EBV

status (defined as a local minimum in the EBV peptide breadth distribution) as covariates.

PhIP-Seq validation
To validate the antibody-bound peptide signals used throughout this paper, we performed two analyses.

First, 294 participants from the IBD cohort had available CMV IgGmeasurements in addition to PhIP-Seq. Since CMV peptides are

the major pattern of variability among our two Dutch cohorts, a 2-means clustering was performed in the whole IBD and LLD anti-

body-bound peptide dataset. We explored the association between belonging to a given cluster and IgG seropositivity by means

of a logistic regression (log-odds of being IgG positive if PhIP-Seq clustering was positive, 6.72, p < 2x10-16). Only two false positives

were seen by defining clustering belonging as CMV seropositivity and there were 11 false negatives.

Second, we chose 8 peptides for ELISA validation, which included a human gamma herpesvirus 4 (EBV) as positive control (80%–

90% prevalence) and human SAPK4/MAPK13 as a negative control (0% prevalence). We validated the other 6 peptides available in

the PhIP-Seq profile (see Table S1.4 for sequence and taxonomy). All peptides used for ELISA consisted of 20 amino acid peptide
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sections, since the full-length sequences could not be chemically synthesized due to technical limitations (increasing impurity). These

sections were selected based on the presence of sequence motifs identified in the network analysis or on the overlap of adjacent

PhIP-Seq peptides that showed high correlation and belonged to the same protein. Oligo synthesis was carried out at JPT Peptide

Technologies (Berlin, Germany). Subsequent ELISAs were performed following supplier’s instructions (Protocols BioTides TM

Peptides Revision 1.0; Peptide ELISA Revision 1.2). Peptides were bound to streptavidin-coated microtiter plates (ThermoFisher

Scientific, Nunc Immobilizer Streptavidin Plates, cat. no. 436014) and incubated with 100 mL of 1,000-fold diluted blood samples

from 40 population controls and 54 patients with IBD (27 CD, 27 UC). Detection of Antibody-binding was assessed using horseradish

peroxidase-conjugated anti-human IgG antibody (Southern Biotech, cat. no. 204205), 3,3’,5,5’-tetramethylbenzidine (TMB) as sub-

strate and 25% sulfuric acid as stop solution (ThermoFisher Scientific, Stop Solution for TMB Substrates, cat. no. N600).

Resulting antibody absorbances were compared between the groups of samples predicted to be antibody negative and positive

based on PhIP-Seq data using a non-parametric Wilcoxon test.

Phenotype association analysis
Jaccard distances between all baseline samples were used as the dependent variable in a PERMANOVA (R vegan package, adonis2)

against, sex, age and PhIP-Seq plate in order to identify covariates (2,000 permutations). To associate individual enrichment profiles

to available phenotypes, we performed a logistic regression on the presence/absence of antibody-bound peptides using the pheno-

type, PhIP-Seq plate, age and sex as covariates on 1,437 baseline participants. We controlled the FDR at 0.05 using the Benjamini-

Hochberg procedure.110 We reproduced the analysis in three more scenarios. First, removing a total of five participants where the

number of enriched antibody-bound peptides was below an interquartile range from the 25th quartile (200 enriched antibody-bound

peptides), since they might have failed PhIP-Seq for an undetermined reason (Table S2.7). A second analysis was carried out while

including absolute abundances of blood counts as covariates (Table S2.7). In addition, we also included CMV status (as defined

based on PCA clustering analysis) as a covariate in the model, since it has a major impact on interindividual antibody-bound peptide

differences (Table S2.7). We observed good correspondence in the results from all three additional models and our standard model.

Genotyping and imputation
Genome-wide genotyping data was generated previously generated27 and processed.49 Briefly, microarray data were generated on

CytoSNP and ImmunoSNP platforms and processed on theMichigan Imputation Server.111 Haplotype phasing was carried out using

SHAPEIT and imputation was done using the HRC version R1 as reference 112.

Genetic preprocessing
We used GenotypeHarmonizer113 for imputation quality (minimum posterior probability of 0.4), call rate (minimal call rate of 95% of

samples), Hardy-Weinberg equilibrium (minimal P-value allowed of 1x10-6) and SNP ambiguity filtering. We then computed identity

by descent among samples using PLINK v1.9114 on linkage disequilibrium (LD)–pruned genotypes (window size 50 Kb, variance infla-

tion threshold 5 and maximum R2 between variants 0.2). We estimated identity by descent between all samples using PLINK and

randomly selected a sample from the pairs with a PI_hat value > 0.2, which resulted in the removal of 14 samples from subsequent

analysis (total of 1,255 available samples).

Heritability and genetic correlation
GCTA115 was used to compute a genomic relationship matrix (GRM) using genotyped SNPs with a minor allele frequency (MAF) of at

least 0.05. The GRM was used to estimate antibody-bound peptide heritability using a linear mixed model between unrelated indi-

viduals (GREML approach)115,116 while controlling for age, sex and PhIP-Seq sequencing plate. Similarly, genetic correlations be-

tween peptides were estimated using GCTA.117

Genome-wide association
For each of the available antibody-bound peptides, we conducted an association analysis between genotypes (MAF > 0.05) and

presence/absence profile. PLINK v1.9114 logistic mode was run while controlling for age and sex and using the genotype in an ad-

ditive model. This analysis was reproduced in a recessive model between 49.1 and 49.3 Mb in chromosome 19. Additionally, co-

occurrence module’s eigengenes were also associated with genotypes using a linear model in PLINK v1.9.

Genetic meta-analysis
A second study using the same PhIP-Seq library panel and protocol has been conducted in an IBD cohort from the Netherlands.40,118

Genotyping information is also available for this cohort.95 The same quality control steps and analysis methods were used as described

above, while the disease subtype (Crohn’s disease or ulcerative colitis) was also added as an extra covariate in the logistic regression.

Summary statistics from both the LLD and 1000IBD cohorts weremeta-analyzed usingMETAL.119We performed a P-value–based

fixed-effects meta-analysis. A study-wide significance threshold was estimated by dividing the genome-wide significance threshold

of 5x10-8 by the number of independent peptides included in theGWAS. The number of PCs needed to reach 90%of antibody-bound

peptide repertoire variability in LLD was used as a number of independent tests (708 components), obtaining a study-wide threshold

of 5.67x10-11. For each peptide’s summary statistics we extracted genome-wide significant associations (p<5x10-8) for clumping.

We clumped variants in windows of 1,000 Kb if they had a minimal R2 (computed from LLD genotypes) of at least 0.1 using
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PLINK. Leading variants of each clump were then annotated using the Ensembl Variant Effect Predictor and the grCh37 human

build.120 LD between our identified leading variants and other publicly reported variants was estimated in the CEU population

from the 1,000 genomes using the LDlink webtool.121,122

HLA imputation and association
The chromosome 6 region with 25–34 Mb that contains the MHC genes was extracted. Imputation of the HLA region, including HLA

alleles, polymorphic amino acids, SNP variants and indels, was then performed using SNP2HLA (v2) with the Type 1 Diabetes Ge-

netics Consortium (T1DGC) reference panel (2,767 unrelated European descent individuals) HLA Reference Panel.123 Next, we com-

bined both imputed and genotyped SNPs, HLA alleles and amino acid variants, resulting in a total of 8,926 variants. Variants with

MAF < 0.05 and imputation quality score (INFO) < 0.5 were removed before association.

HLA to peptide association was performed using linear models in 1,175 participants, while controlling for age, sex, PhIP-Seq plate

and disease subtypes (Crohn’s disease/ulcerative colitis, only specific to IBD cohort). Summary statistics from both datasets were

further meta-analyzed using a fixed-effects model in PLINK v1.9. The statistical significance threshold was determined by dividing

the usual P-value 0.05 threshold by the number of independent features tested (66 PCs were needed to reach 90% of HLA feature

variability in LLD, while 708 PCs were needed to capture 90% of the peptide variability, resulting in 46,728 independent tests), result-

ing in a threshold of 1x10-6. FDR was estimated using the Benjamini-Hochberg method.

Modeling of peptide presentation in HLA complexes
To explore whether HLA–peptide associations potentially point to HLA-II ability to display a specific peptide, we performed compu-

tational modeling of the complex–peptide interaction.

The protein sequences of DR3, DR4, DR14, DR15 and DQ2 were obtained from the IPD-IMGT/HLA database124 and aligned

against the entire Protein Data Bank database using pBLAST. Protein structures displaying 100% amino acid identity with the

HLA-II database sequences were chosen to build the peptide binding modes. Those structures correspond to the HLA complexes

DR3:7N19, DR4:1D5M, DR14:6ATF, DR15:1YMM, DQ2:6PX6 and DQ8:2NNA. Proteins other than HLA-II, water molecules and

heteroatoms were removed from the structures prior to modeling. The NetMHCIIpan-4.041 server was then used to predict peptide

binding to the corresponding associated HLA alleles: DRB1*1501 for Lactobacillus phage LfeInf; DRB1*0301, DQA1*0501-

DQB1*0201 and DRB1*1401 for Streptococcus agalactiae C5a peptidase; and DRB1*0401 and DQA1*03-DQB1*0302 for Human

mastadenovirusminor core protein. The DRB1*1401 for Streptococcus agalactiaeC5a peptidase was selected as a no binding nega-

tive control for these experiments. Following the identification of the peptide core by NetMHCIIpan-4.0, we used %Rank_EL as a

representativemetric indicating predicted binding strength.%Rank_EL is calculated as the percentile of the predicted binding affinity

compared to the distribution of affinities calculated on a set of random natural peptides (%Rank_EL; strong binding: % 2.0, weak

binding: 2.0–10.0, no binding: > 10). The protein structures and identified peptide core were submitted to HPEPDOCK Server for

peptide–protein molecular docking.125 In brief, cleaned protein structures were used as receptors, and the peptide core sequence

was used to generate 100 different conformers and a global sampling of binding orientations into the peptide binding domain of HLA-

II receptors. Following docking, the peptide-HLA-II complexes with the highest complementarity were selected for receptor–peptide

refinement in the HADDOCK Refinement Interface.126 Finally, the peptide-HLA complexes were analyzed for the formation of molec-

ular interactions and binding energy using PLIP127 and PRODIGY.128,129

Metagenomic sequencing
Metagenomic collection and sequencing has previously been detailed.93 In brief, participants collected fecal samples at home and

directly stored then in the freezer. Fecal samples were collected on dry ice and transferred to the laboratory. Aliquots were stored at

-80�C until further processing. The allPrep DNA/RNA Mini Kit (Qiagen; cat. 80204) was used for DNA isolation. DNA was sent to the

Broad Institute (Cambridge, Massachusetts, USA) where library preparation and shotgun metagenomic sequencing were performed

on Illumina HiSeq.

Metagenomic processing
Low-quality reads were discarded by the sequencing facility. Reads aligning to the human genome or to Illumina sequencing

adapters were removed using default parameters of the KneadData pipeline (version 0.39). In short, this software uses Trimmo-

matic130 for adapter removal and quality trimming of reads and Bowtie2131 for mapping and removal of reads mapped against the

human genome (hg19). Taxonomy abundance estimation was then performed using MetaPhlan3 and default parameters.132 Next,

microbial relative abundance was transformed using log-ratios on the relative abundance table (adding ½ of minimal non-zero rela-

tive abundance to each cell in the table), with species geometric mean as denominator (centered-log ratio). Bacteria not present in at

least 10% of samples were discarded.

Microbiome-peptide association analysis
Co-occurrence between fecal microbiota and blood antibody–bound peptides was assessed using logistic regression analysis in

1,051 participants. In total, we analyzed the relation between 284 bacteria and 2,815 antibodies. Each antibody-bound peptide

was modeled in generalized linear models as a response variable in a model including age, sex, PhIP-Seq plate and transformed

bacterial abundance as predictors.
Immunity 56, 1376–1392.e1–e8, June 13, 2023 e7



ll
Resource
Microbiome meta-analysis
To increase the statistical power to detect associations between gutmicrobiota and blood antibodies, we combined the results of our

cohort with the results derived from the 1000IBD cohort (n = 137, blood and fecal samples collected with <1 year difference) by per-

forming a meta-analysis. We filtered out peptides not seen in at least 10 samples in both IBD and LLD cohorts. Heterogeneity co-

efficients (I2 and Cochran’s Q) were estimated per association. Meta-analysis was conducted by pooling summary statistics for

both cohorts and under random and fixed-effects assumptions using the meta R package (v4.19-0)133. FDR was estimated from

the resulting associations.

Microbial peptide quantification
To quantify the presence of the exact antibody-peptide sequences in themicrobiome, we selected 647 peptide-bound peptides with

origins in the human microbiome that we found to be associated with at least one phenotype. We used ShortBRED v0.9.5134 to

generate a database of the peptide sequences using UniRef90 as a reference, and quantified all available LLD metagenomes.

Each antibody-bound peptide presence/absence profile was associated with its gut microbiome quantification while controlling

for age, sex and PhIP-Seq sequencing plate. Benjamini-Hochberg FDR was estimated.
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