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2° and 3° C-H bonds
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ORIGIN

Selective activation of C(sp®)-H bonds has been reported by Musacchio et al., who developed a photoredox-catalyzed coupling between benzylic positions and azoles to afford
N-benzylated products. Critically, N-alkoxypyridinium salts are used for enabling C(sp®-H azolation via a combination of hydrogen atom transfer (HAT) and oxidative radical polar
crossover (RPC). This platform has been demonstrated with a broad series of heterocycles and various benzylic coupling partners.

REACTION MECHANISM

In the mechanistic proposal, the photophysical properties of Ir(dFppy)s as a photocatalyst confirmed its strong photoreduction {E4,2*[*Ir(ll)/Ir(IV)] = —1.23 V vs. Ag/AgCl in MeCN} and
results in oxidative quenching via a single electron transfer (SET) with N-methoxypyridinium 1 (E;/°% = —0.44 V vs. Ag/AgC! in MeCN). This process has been explored by cyclic volt-
ammetry and Stern-Volmer fluorescence quenching studies A, which reveals efficient oxidative quenching of the excited state photocatalyst by electron withdrawing substituted
pyridinium salt due to a preferable reduction potential B. The so obtained methoxy radical 2 is competent in an intermolecular HAT step with the benzylic proton of substrate 3 to
form a carbon-centered radical intermediate 4 and simultaneously liberates pyridine, as low nucleophilic byproduct D. The initial formation of an electron donor-acceptor (EDA) complex
with pyridinium and benzylic reagent via T—11 stacking is plausible as observed by a bathochromic shift in the UV-Vis study C. Such an EDA complex could facilitate the reduction of 1,
therefore enhancing the release of radical 2. Respectively, electron-rich substrate shows more competent stacking with electron-poor pyridinium salt. Subsequent SET oxidation of 4
with Ir(IV) results in an RPC to yield benzylic carbocation 5, which enhances the azolation in a nucleophilic addition to yield the product 6. This platform has been demonstrated for a
series of N-heterocycles with diverse electronic properties, such as halides, cyano, ester, or phenyl substituents, which could couple with benzylic C(sp®-H bonds. Gratifyingly, this
methodology even tolerates benzylic chlorides, a modular functional group for follow-up derivatization.
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IMPORTANCE

This study reveals a combined photoredox-catalyzed HAT and RPC mechanism utilizing N-alkoxypyridinium salts for direct access to 2° and 3° benzylic carbocations. Enabling
ubiquitous C(sp®)-H bonds in organic compounds is an advantage of this approach and this protocol tolerates common organic functional groups on the N-heterocycles and is
even mild enough to leave benzylic electrophiles untouched, leading to potential late-stage functionalization of pharmaceutical targets.
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