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Chapter 1 

INTRODUCTION 

Type 2 diabetes (T2D) is among the most prevalent chronic diseases and according to 

the World Health Organization (WHO) the number of adults living with diabetes is 

expected to increase to 693 million by 2045 [1]. T2D development is triggered by 

multiple factors including genetic and environmental factors [2]. However, since 

diabetes disease is a complex disease, not all relevant disease causes and 

pathophysiological changes are completely understood [3]. While evidence is 

mounting to support the heterogeneity of T2D, a total of five new diabetes clusters 

have been developed and validated recently as an alternative to the traditional 

classification of T2D and T1D [4]. Those five new clusters were determined using 

several factors which include BMI, the age at which diabetes was first diagnosed, as 

well homoeostasis model assessment estimates of β-cell function (HOMA2-B) and 

homoeostasis model assessment insulin resistance (HOMA2-IR). For example, 

individuals in the cluster of very insulin-resistant represent differently compared to 

individuals in insulin deficient cluster as such patients are at higher risk of developing 

chronic kidney disease and coronary events [4]. 

Insulin resistance and insulin secretion are the major pathophysiological mechanisms 

that occur before the onset of T2D [5]. Therefore, insulin resistance is an important 

component determining the risk of incident T2D. Usually, the early stage of this 

pathology could be asymptomatic, or symptoms could be so mild that they go 

unnoticed. Therefore, it could be remained unrecognized for many years [6]. 

Accordingly, the identification of individuals at high risk of developing T2D is of great 

importance, as early interventions might delay or even prevent the disease [7]. A 

number of factors contribute to the development of T2D, including metabolic factors, 

lifestyle and environmental factors, medical history and psychosocial factors [8]. 

Novel circulating biomarkers make it possible to find early biomarkers for a disease of 

interest, including T2D metabolomics which is a comprehensive characterization of 

metabolic changes connected to disease development and progression [9].  

NEED FOR NEW DIABETES BIOMARKERS 

Biomarkers can be strong tools in the identification and management of a disease. 

Plasma glucose (measured after fasting or during a glucose tolerance test) and 

glycated hemoglobin (HbA1C) are used as diagnostic and screening biomarkers for 

T2D, and a diagnosis of diabetes is based on specific cut-off values of plasma glucose 

and HbA1c. Novel biomarkers may shed light on pathophysiological changes 

contributing to diabetes development at an early stage with the advantage that such 

metabolic alterations could still be reversible [10]. Preclinical model research and the 

application of findings from animal studies to human T2D revealed that biomarkers 
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Introduction 

such as plasma metabolomic, lipidomic, and peptidomic analysis could be used to 

identify people who are at risk of developing T2D [11]. Therefore, there is a pressing 

need for biomarkers that  improve T2D prediction. Health-related resources could 

focus on preventing disease progression in individuals at higher risk of developing T2D. 

This is not only important for the prevention of T2D but also for its complications, 

thereby lowering morbidity and mortality. 

PERSONALIZED MEDICINE 

Early diagnosis of T2D is critical for identifying individuals at a higher risk of the 

disease. In this respect, precision medicine is an emerging approach that includes 

evaluations, tests, decisions and treatments that are adapted to the characteristics of 

an individual patient. With regard to T2D, precision medicine manages a wealth of 

“omics” data (genomic, metabolic, proteomic, environmental, clinical, and 

paraclinical) to increase the number of clinically validated biomarkers to identify 

patients in the early stages, even before the prediabetic phase [12]. The urgent 

demand for novel biomarkers to reduce the incidence or even delay the onset of T2D 

suggests that many potential biomarkers may be helpful in the prediction and early 

diagnosis of T2D. However, there is an emerging need to identify novel biomarkers for 

specific groups of people at risk, since each biomarker has a different impact on 

diabetes-related pathophysiology.  Also, each biomarker has its own interconnected 

dossier and can be interrogated for reported function(s), relevant publications and 

patents, relation with other biomarkers (e.g. within biomarker panels) and differential 

behaviour in multiple diseases [13]. We may be able to gain a better understanding of 

the biomarker function and its use in different populations when it comes to clinical 

practice. 

Altogether, this means that the validation of predictive biomarkers for incident T2D 

needs to be examined in different subgroups of people with different clinical 

characteristics as indicated by their status of insulin secretion and insulin resistance, 

kidney or liver function, as well as body composition.  

However, discovery and validation are not sufficient to achieve clinical 

implementation. The process of translating biomarker discovery to application is 

challenging and few validated biomarkers are ultimately implemented in daily patient 

care. A large challenge is that there is no 'gold standard approach' that guarantees a 

100% success rate in biomarker validation research, hampering biomarker 

implementation. 
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INSULIN, C-PEPTIDE, PROINSULIN 

Pancreatic β-cell dysfunction plays a fundamental role in the pathogenesis of T2D. 

Pancreatic β-cell biomarkers are known as insulin, c-peptide, and proinsulin which 

represent β-cell function and could be measured by plasma [11,12]. Insulin, which is 

produced solely in β-cells, is a critical metabolic regulator. Insulin, a peptide composed 

of 51 amino acids, is synthesized as preproinsulin and processed into proinsulin. 

Proinsulin, a peptide composed of 81 amino acids, consists of three domains: an 

amino-terminal B-chain, a carboxy-terminal A-chain and a connecting peptide in the 

middle, known as the C-peptide (Figure 1). During passage through the endoplasmic 

reticulum, the precursor folds, and the prohormone convertases PC1/3 and -2 

subsequently excise the C-peptide, generating the mature form of insulin and C-

peptide. Subsequently, they are stored in secretory granules awaiting release on 

demand [14,15]. 

Mature insulin is secreted into plasma via intracellular vesicles. Several previous 

studies have used insulin concentration to infer pancreatic insulin secretion as a 

clinical biomarker of insulin resistance [16]. Insulin is primarily degraded in the liver 

with a 3-5 min half-life [17]. 

C-peptide, which is almost always co-secreted with insulin is not cleared by the liver 

during first-pass transit, despite a substantial portion of insulin being released into the 

portal vein from pancreatic islets [18]. Thus, we hypothesized that C-peptide would 

more accurately reflect β-cell function and represent a possible reliable biomarker for 

predicting T2D. Therefore, in Chapter 2, we longitudinally investigated the association 

of C-peptide levels with the risk of developing T2D in a population-based cohort. 

 

Figure 1. Release of C-peptide in biosynthesis of human insulin [19] 
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Introduction 

Moreover, C-peptide is primarily cleared by renal filtration and mostly metabolized by 

the kidneys. Renal extraction of C-peptide accounts for approximately 85% of the total 

metabolic clearance [20]. Therefore, we hypothesized that C-peptide level is a 

biomarker that could be affected by renal impairment. We examined the association 

between C-peptide with the risk of developing T2D other than in a population with 

normal kidney function and focused on the subgroups with kidney dysfunction. 

The next important biomarker, proinsulin, has been investigated for pancreatic β-cell 

function.  Proinsulin is cleared slower from the plasma than insulin and is suggested 

as an early subclinical β-cell dysfunction biomarker [21,22]. Higher levels of proinsulin 

has been shown to be associated with insulin resistance and T2D [23–27]. In the past, 

nonspecific assays showed high cross-reactivity, which could lead to incorrect 

conclusions regarding β-cell dysfunction and prediction of diabetes. A new, specific, 

and intact proinsulin ELISA (no cross-reactivity) has been developed that can be easily 

used in routine laboratories [28]. Therefore, in Chapter 3, we longitudinally 

investigated the association between proinsulin levels and the risk of incident T2D. 

Moreover, proinsulin is substantially removed by the kidneys, and proinsulin 

degradation can be affected by kidney dysfunction [29,30]. Accordingly, we 

investigated the potential effects of modification by variables related to kidney 

function. 

LIPIDS AND LIPOPROTEINS 

T2D is known to be accompanied by lipoprotein abnormalities, including elevations in 

triglyceride-rich apolipoprotein B (apoB)-containing lipoproteins, very low-density 

lipoproteins (VLDL) and smaller sized low-density lipoproteins (LDL), and low levels of 

high density lipoproteins (HDL) [31,32]. These abnormalities have also been 

associated with insulin resistance and development of T2D [33–35]. Moreover, VLDL, 

LDL, and HDL particles are heterogeneous and vary considerably in composition, size, 

and function, which may lead to differential associations with incident T2D [36–39]. 

This may be due to accumulation of cholesterol in the pancreatic β cells by VLDL and 

LDL particles, and deficient HDL function leading to pancreatic steatosis, and β cell 

dysfunction [40–46]. 

In this thesis, we make use of a newly developed nuclear magnetic resonance (NMR)-

derived algorithm called LP4, which provides information regarding the concentration 

of lipoprotein particles categorized into different particles and subspecies according 

to their size [47–51]. This includes five triglyceride rich lipoprotein (TRL) particles (very 

large, large, medium, small and very small), three LDL particles (large, medium and 

small) and seven HDL subspecies (H1P to H7P), categorized in three HDL particles 

(small, medium, and large). They were quantified using the conventional 
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deconvolution method and the amplitudes of their spectroscopically distinct lipid 

methyl group NMR signals [52]. Total TRLP is calculated as the sum of the 

concentrations of very large, large, medium, small, and very small TRLP. Total LDLP is 

calculated as the sum of the concentrations of large, medium, and small LDLP. Total 

HDL particles is calculated by the sums of the concentrations of small, medium, and 

large HDL particles. Mean TRL,LDL, and HDL sizes were calculated using the weighted 

averages derived from the sum of the diameters of each subfraction. 

In Chapter 4, we investigated the associations of TRL and LDL particle and subfraction 

concentrations using this newly developed NMR algorithm with incident T2D in the 

general population. In addition, considering the effect of statins on glucose tolerance 

and insulin secretion, we aimed to investigate these associations in different 

subgroups of individuals of statin users and nonusers [53–55]. Furthermore, the 

association could also be affected by alcohol consumption which we aimed to 

investigate in individuals who consumed high levels of alcohol [56,57]. 

In Chapter 5, we explored the associations of HDL particles (large, medium, and small 

HDL particles), seven HDL subspecies and HDL size with incident T2D in the general 

population. In addition, as a result of the composition and functional alterations in 

HDL composition in the context of obesity, insulin resistance, and sex  [58–60], we 

aimed to examine the impact of obesity, insulin resistance, and sex on the association 

between these HDL parameters and newly developed T2D. 

Finally, we corroborated recent findings from the Brazilian Longitudinal Study of Adult 

Health cohort by Carvalho et al. regarding the association between TRL size and T2D 

incidence [61]. That study demonstrated that incorporating TRL particle diameter into 

a risk prediction model improved the accuracy of T2D risk prediction [61]. In Chapter 

6, we evaluated the improvement in incident T2D prediction when lipoprotein 

diameter markers (such as LDL and HDL size) were included in the risk prediction 

models, in addition to TRL size alone. 

POSTTRANSPLANTATION DIABETES IN KIDNEY TRANSPLANT 

RECIPIENTS 

Kidney transplantation is well-established  preferred treatment for most patients with 

end-stage kidney disease, which improves their quality of life and survival compared 

to dialysis treatment [62,63]. However, kidney transplant recipients (KTRs) are  

susceptible to chronic transplant-associated comorbidities [64]. Posttransplantation 

diabetes mellitus (PTDM) is one of the main metabolic complications after kidney 

transplantation, which is estimated to affect from 7% to 39% at one year after 

transplantation and from 10% to 30% at 3 years post-transplantation. PTDM may be 
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associated with adverse effects on both short- and long-term outcomes in KTRs, 

including infections, graft failure, cardiovascular disease and survival [65–68]. 

Accordingly, early identification of KTRs at higher risk of developing PTDM allows for 

early intervention, preventive measures, and optimal therapeutic approaches in KTRs.  

Similar to the pathogenesis of T2D, potential mechanism of transplant-associated 

hyperglycemia (TAH) and PTDM development could be explained as a result of insulin 

resistance or impaired insulin secretion by the pancreatic β-cell [64,69]. Moreover, 

specific transplant determinants including, pretransplantation insulin resistance in the 

final stage of kidney failure, obesity, less physical activity, inflammatory activity of viral 

infections, particularly cytomegalovirus (CMV) and hepatitis C virus (HCV), and chronic 

exposure to calcineurin inhibitors and corticosteroids aggravate insulin resistance and 

TAH in KTRs [70–74]. Apart from the occurrence of hyperglycemia immediately after 

transplantation, which is typically related to surgical stress and high glucocorticoid 

dosing, incident long-term PTDM could be of great importance in renal transplant 

healthcare in stable KTRs. This necessitates the identification of new biomarkers and 

factors that can predict PTDM in KTRs in epidemiological or clinical studies. Indirect 

insulin resistance indices including HOMA-IR, visceral adiposity index (VAI), lipid 

accumulation product (LAP), or triglycerides-glucose (TyG) index, are accepted for 

epidemiological or clinical studies in the general population because of their simplicity 

[72,75,76]. However, It is unknown to which extent those indices could be useful for 

determining insulin resistance and PTDM development in KTRs. Therefore, in Chapter 

7, we aimed to prospectively investigate the association between indirect insulin 

resistance indices and incident PTDM. 

Moreover, HDL itself may play a role in preservation of insulin secretion and prolong 

β-cell survival.  HDL  remodeling is altered in insulin-resistant states leading to  less 

large and more small HDL particles [51,77]. NMR measured HDL particles and HDL 

subspecies as novel lipoprotein biomarkers have not been investigated before in KTRs 

[50]. In Chapter 8, we aimed to determine the association between HDL particle 

characteristics and the risk of developing PTDM in KTRs.  

Another important factor that is known to be associated with hyperglycemia is 

medication. Statins and diuretic use have been associated with development of T2D 

[78–80].  Diuretic-induced hyperglycemia and glucose intolerance have been mainly 

attributed to the impairment of insulin secretion, secondary to potassium loss 

following diuretic treatment [81,82]. These medications are frequently prescribed in 

KTRs. The association between statin use and increased risk of PTDM in KRTs has been 

investigated recently [83]. In Chapter 9, we aimed to investigate the association 

between diuretic use and increased risk of PTDM. 
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POPULATION INVESTIGATED IN THIS THESIS 

Lower risk population for renal dysfunction 

The first part of the thesis (Chapters 2-6) concerns a general population-based cohort, 

at low risk for renal dysfunction. The study was performed within the frame of the 

Prevention of Renal and Vascular End-Stage Disease (PREVEND) study, an 

observational, general population-based, longitudinal cohort study which investigated 

vascular and renal damage among inhabitants of the city of Groningen, The 

Netherlands (Figure 2). Briefly, all residents of Groningen aged 28 to 75 years, were 

invited to participate in this study from 1997 to 1998. Pregnant women and 

participants with type 1 diabetes and T2D using insulin were excluded. After further 

exclusion of individuals who were unable or unwilling to participate in the study, a 

total of 6000 individuals with a urinary albumin concentration of 10 mg/L or greater 

and a randomly chosen control group of 2592 individuals with a urinary albumin 

concentration of less than 10 mg/L completed the screening protocol and constituted 

the PREVEND cohort (n = 8592). A second screening was performed from 2001 to 2003 

with 6894 participants, which was the baseline of our studies. 

Higher risk population for renal dysfunction 

The second part of the thesis (Chapters 7-9) concerns a KTR cohort, a population at 

high risk for recurrent renal dysfunction. The study described Chapter 7 was 

performed within the frame of the prospective cohort study in KTRs who survived with 

a functioning allograft beyond the first year after transplantation between August 

2001 and July 2003. Patients with known systemic illnesses, such as congestive heart 

failure, cancer other than cured skin cancer, endocrine disorders other than diabetes, 

or overt generalized infections were excluded. A total of 606 from an eligible 847 RTR 

(72% consent rate) signed written informed consent.  

The Chapter 8 and 9 were conducted within the TransplantLines Food and Nutrition 

Biobank and Cohort Study. All adult KTR (age ≥18 years) ≥1 year after transplantation 

were approached for participation during outpatient clinic visits at the University 

Medical Centre Groningen (UMCG), Groningen, the Netherlands between 2008 and 

2011. Included KTRs had no history of substance abuse or alcohol addiction. Patients 

with an estimated life expectancy of less than one year, particularly those with severe 

congestive heart failure (New York Heart Association class III and class IV) and those 

diagnosed and treated with cancers other than non-melanoma skin cancer, were not 

included in this cohort study. Of 817 initially invited KTRs, 707 signed a written 

informed consent form to participate in the study. 
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HYPOTHESIS AND AIM OF THIS THESIS 

The general hypotheses of this thesis are: a) that biomarkers related to insulin 

secretion, in particular C-peptide and proinsulin and b) that biomarkers related to 

lipoprotein metabolism, in particular triglyceride-rich lipoproteins, LDL and HDL 

subfractions are specifically associated with new onset T2D. 

The aims of this thesis are, therefore, to investigate the longitudinal associations of 

innovative insulin resistance and lipid biomarkers predicting incident diabetes in the 

general population and KTRs.  

The first part of this thesis focuses on the general population. In Chapters 2 and 3, we 

investigated the relation between fasting C-peptide and proinsulin levels with incident 

T2D. We aimed to evaluate the predictive value of these insulin resistance biomarkers 

for the risk of incident T2D, added to a base model of clinical predictors. Moreover, 

we examined potential effect modification by variables related to kidney function. In 

Chapters 4,5 and 6, we investigated the association between newly developed NMR-

measured lipid particles and incident T2D. We also questioned whether the later 

association was different in different groups of the general population based on their 

gender, BMI, insulin resistance status and statin use.  

The second part of this thesis concerns the kidney transplant population. In such 

patients, it was unknown whether indirect insulin resistance indices are valid for 

predicting PTDM. This was investigated in Chapter 7. In Chapter 8, we investigated 

the association between newly developed NMR-measured HDL subclasses and 

subspecies with incident PTDM. In Chapter 9, we aimed to investigate the association 

between diuretic use and increased risk for PTDM. 

Finally, in Chapter 10, the results of the thesis are discussed and summarized. 
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