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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Humans are able to adapt to the fast-changing world by estimating statistical regularities of

the environment. Although fear can profoundly impact adaptive behaviors, the computa-

tional and neural mechanisms underlying this phenomenon remain elusive. Here, we con-

ducted a behavioral experiment (n = 21) and a functional magnetic resonance imaging

experiment (n = 37) with a novel cue-biased adaptation learning task, during which we

simultaneously manipulated emotional valence (fearful/neutral expressions of the cue) and

environmental volatility (frequent/infrequent reversals of reward probabilities). Across 2

experiments, computational modeling consistently revealed a higher learning rate for the

environment with frequent versus infrequent reversals following neutral cues. In contrast,

this flexible adjustment was absent in the environment with fearful cues, suggesting a sup-

pressive role of fear in adaptation to environmental volatility. This suppressive effect was

underpinned by activity of the ventral striatum, hippocampus, and dorsal anterior cingulate

cortex (dACC) as well as increased functional connectivity between the dACC and tempo-

ral-parietal junction (TPJ) for fear with environmental volatility. Dynamic causal modeling

identified that the driving effect was located in the TPJ and was associated with dACC acti-

vation, suggesting that the suppression of fear on adaptive behaviors occurs at the early

stage of bottom-up processing. These findings provide a neuro-computational account of

how fear interferes with adaptation to volatility during dynamic environments.
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Introduction

Humans and animals are able to adapt to the fast-changing world. Fear, the most studied emo-

tion despite differences regarding its definition and measurement [1–4], profoundly influences

adaptive behavior [5,6]. Although adaptation to dynamic environments is a key form of behav-

ioral flexibility, how fear affects adaptation to dynamic environments remains unclear. Evolu-

tionarily, fear acts as an alerting signal for self-protection [7]. A rich literature illustrates

beneficial effects of fear on flexibility [2,6,8,9]. Thus, elicitation of fearful signals may facilitate

adaptation to dynamic environments. In contrast, when dominating consciousness, fear can

disrupt systems supporting flexible behavior [5,10], and lesions of fear circuits may even facili-

tate flexible performance [11]. Consequently, the conscious experience of fear may suppress

adaptation to changing environments.

Adaptation to dynamic environments depends on the internal representation of uncertain-

ties [12], which can be classified into 2 types: expected uncertainty and unexpected uncertainty

[12–14]. The former refers to noise in the action–outcome association, for example, when

choosing the correct option occasionally results in an undesirable outcome. The latter is char-

acterized as volatility or the frequency at which action–outcome contingencies change. For

example, after the switch of the action–outcome association, an action that was primarily asso-

ciated with a given outcome becomes predominantly associated with another. Optimal adap-

tive behavior depends on accurate identification of the source of uncertainty [14–17]. More

specifically, if unexpected outcomes are caused by noise, the current action is optimally guided

by averaging previous observations. Instead, if unexpected outcomes result from environmen-

tal volatility, only recent outcomes are necessary to determine the present action. According to

reinforcement learning theory [18], human learners can adapt to changing environments,

exhibiting a higher learning rate in the volatile relative to stable environment [14,16]. The

Bayesian learner has also been demonstrated to dynamically track environmental volatility

with optimal performance [14,17]. Significant steps forward in uncertainty-related studies

point toward the relevance of affective representations [19–21]. Emotional responses contrib-

ute to adaptation to volatility [14], and failure to adapt to environmental volatility has been

identified as a major contributor to affective disorders [17,22–24]. Animal studies demon-

strated a facilitating role of serotonin neurons in flexible adaptation to volatility [19] and

observed that levels of the neurotransmitter serotonin modulated fear processing [25], suggest-

ing an important link between fear and adaptation to volatility.

Previous neuroimaging studies on adaptation to volatility have implicated a distributed

brain system involving the dorsal anterior cingulate cortex (dACC) that represents subjective

estimation of environmental volatility [14,26], the amygdala and the hippocampus (HI) that

encode valance-dependent conditioning and storage [13,27,28], and the ventral striatum (VS)

and the orbitofrontal cortex (OFC) process uncertain-related value information [27,29]. For

example, Behrens and colleagues (2007) has observed that the dACC is involved in the estima-

tion of reward structure for decisions to be made effectively. Interestingly, these brain areas

are also of importance for emotional processing, in particular fearful experience. Signals from

the dACC have been linked to the processing of emotion–cognition integration (facilitation

and inhibition) [30]. As a fear circuitry hub, the amygdala has been shown to influence interac-

tions between fearful reactions and executive functions [30]. The HI has long been considered

crucial for fear memory [6,31]. The VS and OFC have been responsible for affective computing

from learning signals [32,33]. Therefore, these candidate brain areas may influence the inter-

play between fear and adaptation to volatility.

This study aimed to examine the effect of fear on adaptation to volatility and its underlying

neuro-computational mechanisms. From an evolutionary perspective, it can be hypothesized
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that fear would facilitate adaptation to volatility learning. Alternatively, fear could prevent

adaptation to volatility learning due to the cognitive cost of fear processing and a flight

response induced by fearful stimuli with which the individual seeks to escape the volatile envi-

ronment. The region of interests (ROIs) in the fear-biased adaption to volatility included the

dACC, amygdala, HI, VS, and OFC. To test these hypotheses, we used computational model-

ing and functional magnetic resonance imaging (fMRI) in a novel cue-biased adaptation learn-

ing task. Based on the framework of the probabilistic reward reversal learning task [14,24], the

current task simultaneously manipulated emotional valence of the cue (fearful/neutral facial

expressions) and environmental volatility (frequent/infrequent reversals of reward probability)

[16]. We also took into account individual differences in propensity for emotion processing

and regulation. More specifically, this regards alexithymia, which refers to a reduced ability to

identify, describe, and regulate one’s feelings [34]. Given cognitive and emotional deficits in

alexithymia [35], we explored associations between alexithymia levels and fear-biased adapta-

tion to volatility learning.

We observed a higher learning rate for the environment with frequent compared to infre-

quent reversals with the cue of neutral face, which was consistent with previous studies

[14,17,24]. However, this pattern was absent in the fearful cues, suggesting a suppressive role

of fear in adaptation to volatility and thus supporting the second hypothesis. Interestingly, this

bias was stronger with higher levels of alexithymia. We also revealed the distributed neural

substrates underlying computations of fear-biased adaptation to volatility learning, including

integration systems, learning systems, and memory systems. In particular, the TPJ-dACC

pathway was found to influence the interplay between fear and adaptation to volatility learn-

ing. It implies that the suppression of fear affects adaptive behaviors at a relatively early stage

of processing bottom-up inputs.

Results

Participants completed the cue-biased adaptation learning task (Fig 1) in Experiment 1 (exp1;

n = 21, behavioral study) and Experiment 2 (exp2; n = 40, fMRI study; see Table 1 for demo-

graphic information). Using the framework of the probabilistic reward reversal learning task

[14,24], we developed a 2 [emotional valence of cue: fearful/neutral expressions (fear/neut)] by

2 [environmental volatility: frequent/infrequent reversals (freq/infreq); Fig 1] within-subject

design to test how fear influences adaptation to volatility.

Manipulation checks

We first tested the validity of fear induction (i.e., presentation of fearful/neutral facial expres-

sions before each trial). We collected rating data for fearful and neutral facial expressions of

“how fearful do you feel when seeing this face” using a Likert scale from 0 (no experience of

fear at all) to 8 (strong experience of fear). Paired-sample t test showed a significant stronger

fearful experience for fearful versus neutral expressions (p = 0.001; the mean rating for fearful

expressions was 3.52; see S5 Text and S3 Fig), suggesting that participants indeed experienced

slight-to-moderate fear during the experiment. To examine whether participants were able to

learn the reward structure of our task, in line with Piray and colleagues (2019) [36], we plotted

participants’ performance after reversal. Results showed that participants learned the reward

schedule successfully (Fig 2A and 2B). In addition, a small number of missing trials (less than

14;<5.8%) and a low ratio of short response time (<200 ms; <1.67%; S2 Table) suggested suf-

ficient engagement during the task.

Computational mechanisms underlying fear-biased adaptation to volatility learning

PLOS BIOLOGY Fear-biased adaptation learning
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To formally quantify cognitive mechanisms underlying fear-biased adaptation to volatility

learning, we constructed 12 models, with considerations of learning by trial and error

(Rescorla–Wagner (RW) model), attentional lapses, forgetting, and learning by attention

(Pearce-Hall model; see Materials and methods). Using indices of leave-one-out information

criterion (LOOIC) and widely applicable information criterion (WAIC), model comparison

showed that the winning model was Model 1 (M1) in both exp1 and exp2 [except slightly bet-

ter for model 5 (M5) at the index of LOOIC in exp2, ΔLOOIC = −0.4; Table 2]. Specifically,

Fig 1. Experimental design. AU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and2:Pleaseverifythatallentriesarecorrect:(A) Trial design of the fear-biased volatility learning task and (B) an example of contingency between cue and environmental

volatility. These facial expressions we used as examples are free of copyright from the TFEID [74]. TFEID, Taiwanese Facial Expression Image Database.

https://doi.org/10.1371/journal.pbio.3001724.g001

Table 1. Demographics and questionnaire scores.

exp 1 (n = 21) exp 2 (n = 40)

Age 20.81 (1.94) 21.75 (2.13)

Gender (female) 11 18

BVAQ 122.71 (8.76) 124.70 (10.71)

BVAQ-C 74.90 (7.87) 74.10 (7.28)

BVAQ-A 47.81 (6.31) 50.60 (5.69)

MASQ-AA 21.95 (6.90) 23.03 (5.91)

MASQ-AD 63.10 (14.05) 59.90 (12.33)

MASQ-GDA 15.14 (5.63) 16.68 (5.04)

MASQ-GDD 18.14 (6.22) 18.73 (7.34)

Descriptive data are presented as mean (SD).

BVAQ, the Bermond–Vorst Alexithymia Questionnaire; BVAQ-C, the cognitive dimension of BVAQ; BVAQ-A, the

affective dimension of BVAQ; MASQ-AA, anxious arousal of the Mood and Anxiety Symptoms Questionnaire;

MASQ-AD, anhedonia depression; GDA, general distress: anxiety; GDD, general distress: depression.

https://doi.org/10.1371/journal.pbio.3001724.t001
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M1 assumed that each condition was learned differently with the trial-and-error strategy (1

learning rate per condition). The pseudoR2 and balanced accuracy for M1 were 0.247% and

64.9% for exp1 and 0.189% and 61.1% for exp2, which were decent [37]. The balanced accu-

racy in both exp1 and exp2 was significantly better than the chance level (i.e., 50%; ps< 0.001).

We further validated this winning model (M1) in 4 ways for both exp1 and exp2. First, model

simulation from M1 showed high correlation coefficients between real accuracy and simulated

accuracy for every condition (exp1: rs> 0.82, ps< 0.001; exp2: rs> 0.85, ps< 0.001; S4 Fig).

Second, model simulation from M1 showed high correlations between real and simulated win-

stay and loss-switch (WSLS) behavior for each condition (exp1: rs> 0.80, ps< 0.001; exp2:

rs> 0.78, ps< 0.001; S5 and S7 Figs). Third, parameter recovery for M1 showed high correla-

tions between real parameters and simulated parameters (see S2 Text and S6 Fig). Finally,

model recovery for M1 showed that the winning model among 12 candidate models was iden-

tifiable (see S2 Text and S3 Table). In addition, simulated data closely resembled the real per-

formance (Fig 2A and 2B), confirming the validity of parameter estimation.

Fig 2. Behavioral results. (A, B) Performance after reversals in each condition of 2 experiments. Solid lines represent real data (mean ± standard error).

Shaded panels represent 95% HDI from the winning model. (C, D) Learning rate from the winning model. The line within the violin plot represents the

median value. Note: *p< 0.05; ~p< 0.1. The data underlying this figure can be found at https://osf.io/avhne/. HDI, high density interval.

https://doi.org/10.1371/journal.pbio.3001724.g002
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To examine how learning rates from the winning model M1 were modulated by emotional

cue and environmental volatility, we implemented linear mixed-effect models (LMMs) with

subject as a random factor and with cue (fear/neut) and volatility (freq/infreq) as within-sub-

ject factors for exp1 and exp2, respectively. We observed a significant interaction effect

between cue and environmental volatility in each experiment (exp1: F = 19.095, p< 0.001, par-

tial η2 = 0.24; exp2: F = 22.509, p< 0.001, partial η2 = 0.16; Fig 2 and 2D). Simple effect analysis

consistently showed a higher learning rate for environments with freq versus infreq in neutral

cues (exp1: F = 13.126, p = 0.004, partial η2 = 0.18; exp2: F = 22.667, p< 0.001, partial η2 =

0.16), replicating previous results regarding adaptation to volatility learning [14,17,24]. How-

ever, this pattern disappeared or reversed in the face of fearful cues (exp1: F = 6.538, p = 0.079,

partial η2 = 0.10, freq < infreq; exp2: F = 3.799, p = 0.322, partial η2 = 0.03). These findings

suggest that fear interferes with adaptation to volatility learning. To identify whether the

manipulated variables (volatility and cue) influence learning rates, rather than inverse temper-

ature, we also added inverse temperature as the covariate in the regression model. Results

showed the same pattern (see S1 Text for details), suggesting that the manipulated variables

specifically impacted learning rates. In addition, M5, adding a component of attentional lapse,

performed slightly better than M1 at the index of LOOIC in exp2 (ΔLOOIC = −0.4; Table 2).

The implementation of LMM for M5 showed the same pattern as M1 (S9 Fig), suggesting that

the current results were highly robust. We also found a higher proportion to select the optimal

option in the third trial after reversal for environments with frequent versus infrequent rever-

sals in face of neutral cues (F = 9.622, p = 0.003, partial η2 = 0.14), while a reversal pattern was

observed when cued by fearful facial expressions (F = 4.291, p = 0.043, partial η2 = 0.07), show-

ing the same pattern with conditional differences in learning rates. It suggests that atypical

mental computations for adaptation learning under fear result in aberrant learning perfor-

mance, especially after reversal (see S2 Text and S8 Fig). Details of statistical results were

reported in S1 Text and S2 Text.

Furthermore, to test the influences of fear on punishment learning, we conducted another

experiment with the same design [2 (fear/neut) by 2 (freq/infreq)] under the punishment

Table 2. Model comparison.

Models Number of parameters exp 1 (n = 21) exp 2 (n = 40)

ΔLOOIC ΔWAIC pseudoR2 BA (%) ΔLOOIC ΔWAIC pseudoR2 BA (%)

M1 8 0 0 0.247 64.9 0 0 0.189 61.1

M2 4 11.3 20.7 0.237 64.5 103.4 118.5 0.172 60.3

M3 5 7.6 23.0 0.238 64.6 35.9 53.2 0.180 60.7

M4 8 64.9 68.2 0.234 63.8 112.2 126.8 0.179 60.4

M5 9 24.6 57.8 0.243 64.8 −0.4 11.5 0.187 61.1

M6 9 118.7 89.7 0.224 63.9 107.6 112.5 0.179 60.7

M7 10 74.5 85.1 0.233 64.3 136.4 135.2 0.178 60.7

M8 10 62.0 70.4 0.234 64.3 123.7 128.1 0.178 60.6

M9 7 53.6 63.0 0.233 63.7 124.9 131.6 0.175 60.1

M10 8 53.9 59.0 0.233 63.7 123.9 131.0 0.175 60.1

M11 8 51.7 58.1 0.233 63.7 112.8 124.4 0.176 60.2

M12 11 2.6 8.9 0.246 64.9 35.3 57.5 0.187 61.0

The winning model in both exp1 and exp2 is M1.

ΔLOOIC, leave-one-out information criterion relative to the winning model; ΔWAIC, widely applicable information criterion relative to the winning model; BA,

balanced accuracy.

https://doi.org/10.1371/journal.pbio.3001724.t002
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context (expS1 in S4 Text). We observed the same pattern with our findings in the reward con-

text, suggesting that fear-biased adaptation to volatility is reward/punishment-independent

(for details, see S4 Text and S10 Fig). We also conducted another experiment (expS2 in S4

Text) with the design of 2 (happy versus neutral facial expressions) by 2 (freq/infreq) in the

reward context to control for the potential impact of attention-grabbing (without experiencing

fear) on adaptation to volatility. Happy expressions were used here because fearful and happy

expressions have similar properties of attention-grabbing but distinct affective experience [38].

We did not find a significant interaction effect between cue and volatility (S11 Fig), suggesting

that fear experience, but not the attentional-distracting property, disrupts flexible adaptation

to volatility (see S4 Text for details).

Neural correlates of fear-biased adaptation to volatility learning: Learning rates

To examine how fear-biased adaptation to volatility learning was represented in the human

brain from the perspective of learning rates, we performed the first generalized linear model

(GLM1). The behavioral bias was defined as [(fear & freq–fear & infreq)–(neut & freq–neut &

infreq)] in learning rates, whereas the neural bias was defined as [(fear & freq–fear & infreq)–

(neut & freq–neut & infreq)] in BOLD signals at the outcome stage. This study focused on the

dACC, VS, amygdala, OFC, and HI that have been identified to link emotion to adaptation to

environmental volatility (see Introduction for details). The dACC was selected from Behrens

and colleagues [14] (MNI: x = −6, y = 26, z = 34 mm, a sphere with 10 mm radius), a classical

study on adaptation to volatility with fMRI. To keep the selective procedure objective, other

ROIs were obtained from AAL atlas. Small volume correction (SVC) was used for ROIs. All

imaging results were corrected with the threshold of p< 0.001 at the voxel level and with the

threshold of p< 0.05 at the cluster level using AlphaSim procedure (implemented in DPABI

toolbox: version 3.1 [39]). These brain regions were thus hypothesized to contribute to fear-

biased adaptation learning. Note that the coordinates for activated brain areas we reported rep-

resent peak coordinates, which were from second-level contrasts of the group. ROI analysis

showed positive correlations between the behavioral bias and the neural bias in the VS (ROI

analysis, peak at [4 8 –4], r = 0.578, p< 0.001, k = 7; Fig 3B) and HI (ROI analysis; peak at [28

–16 –22]; r = 0.606, p< 0.001, k = 10; Fig 3C). No significant activation in the amygdala,

dACC, and OFC was found. We also conducted exploratory whole-brain analysis, revealing a

positive correlation between the behavioral bias and the neural bias in the posterior parietal

cortex (PPC; whole-brain analysis; peak at [–50 –60 50] in MNI coordinates; r = 0.586,

p< 0.001, k = 103; Fig 3A). These findings remained significant when controlling for potential

differences in outcome (see S3 Text for details). These results suggest that the PPC, VS, and HI

encode fear-biased adaptation to volatility learning.

Neural substrates of fear-biased adaptation to volatility learning: Subjective volatility

To examine representations of the human brain for fear-biased adaptation to volatility

learning, we implemented model-based fMRI analysis (GLM2) with parametric modulation of

subjective volatility at the stage of outcome. Again, the neural bias was defined as [(fear &

freq–fear & infreq)–(neut & freq–neut & infreq)] in the parametric activation of subjective vol-

atility. Note that trial-by-trial subjective volatility was derived from Bayesian Learner model

(see Materials and methods for detailed equations; see S12 Fig for an example participant). We

observed significant activations in the dACC (ROI analysis; peak at [–2 32 32]; k = 8, Fig 3D)

and VS (ROI analysis; peak at [10 16 –8]; k = 9; Fig 3E). We also validated significant activation

in the dACC with different sphere radiuses (e.g., 8 mm and 12 mm; see S3 Text for details). No

significant activation in the amygdala, HI, or OFC was found. Specifically, for both the dACC

and VS, we first observed significant interaction effects between cue and environmental vola-

tility (dACC: F = 14.609, p< 0.001, partial η [2] = 0.29; VS: F = 15.274, p< 0.001, partial η [2]

= 0.30). Simple effect analysis showed significant increased activation in infreq versus freq

PLOS BIOLOGY Fear-biased adaptation learning
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with neutral cues (dACC: F = 13.272, p = 0.001, partial η2 = 0.27; Fig 3D; VS: F = 8.191,

p = 0.007, partial η2 = 0.19; Fig 3E). However, such patterns disappeared or reversed for fearful

cues (dACC: F = 1.833, p = 0.184, partial η2 = 0.05; Fig 3D; VS: F = 3.966, p = 0.054, partial η2

= 0.10; Fig 3E). These findings remained significant when controlling for potential differences

in outcome (see S3 Text for details). These results indicate that the dACC and VS are engaged

to encode subjective volatility in fear-biased adaptation.

We next sought to explore the underlying brain networks modulating fear-biased adapta-

tion to volatility learning. Based on model-based fMRI results, generalized psychophysiological

Fig 3. Activity and connectivity results. Neural correlates of fear-biased adaptation to volatility learning in terms of learning rate in the (A) PPC (whole-brain

analysis, peak at [–50 –60 50], k = 103), (B) VS (ROI analysis, peak at [–4 8 –4], k = 7), and (C) HI (ROI analysis, peak at [28 –16 –22], k = 10). Activation

results from fear-biased adaptation to volatility learning in terms of subjective volatility in the (D) dACC (ROI analysis, peak at [–2 32 32], k = 8) and (E) VS

(ROI analysis, peak at [10 16 –8], k = 9). (F) FC between the dACC (seed region) and TPJ (target region, whole-brain analysis, peak at [–64 –52 36], k = 263) for

each condition. Significant voxels are computed across the 2 conditions. Circles in red represent ROI analysis. Activation maps without the red circle represent

whole-brain analysis. Both the scatter and violin plot show the mean activation within the corresponding cluster. The line within the violin plot represents the

median value. Note: PPC, posterior parietal cortex; VS, ventral striatum; HI, hippocampus; dACC, dorsal anterior cingulate cortex; FC, functional connectivity;

n.s., not significant; *p< 0.05; ~p< 0.1. The source data can be found at https://osf.io/avhne/.

https://doi.org/10.1371/journal.pbio.3001724.g003
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interaction (gPPI) [40] analysis was performed with the dACC and VS as seed regions, sepa-

rately. We found significant connectivity of the dACC with the temporal parietal junction

(TPJ; whole-brain analysis; peak at [–64 –52 36]; k = 263; Fig 3F). The interaction effect

(F = 26.551, p< 0.001, partial η [2] = 0.42) further showed that functional connectivity

between the dACC and TPJ increased in infreq as compared to freq following neutral cues

(F = 11.306, p = 0.002, partial η2 = 0.24), but decreased following fearful cues (F = 4.748,

p = 0.036, partial η2 = 0.12). The gPPI results suggest that the dACC-TPJ circuit encodes sub-

jective volatility calculations in fear-biased adaptation.

To further test directions of information flow between the dACC and TPJ underlying fear-

biased adaptation to volatility, we conducted dynamic causal modeling (DCM) analysis [41].

We constructed 6 models with different assumptions of modulatory effects and driving effects

while we fixed the full intrinsic connectivity (Fig 4A; see Materials and methods for details).

The random-effect (RFX) Bayesian model selection (BMS) using indices of exceedance proba-

bility and expected posterior probability recommended model 3 as the winning model (Fig 4B

and 4C). The model 3 assumed a driving effect from the TPJ, a modulatory effect from the TPJ

to dACC, and another modulatory effect from the dACC to TPJ. We found a significant inter-

action effect between cue and environmental volatility in the driving effect on the TPJ

(F = 8.321, p = 0.007, partial η2 = 0.19; Fig 4D). Simple effect analysis showed a significant

increase in infreq than freq in neutral cues (F = 9.827, p = 0.003, partial η2 = 0.21; Fig 4D), but

not fearful cues (F = 0.064, partial η2 = 0.00; Fig 4D), suggesting the modulation of the driving

effect from the TPJ on fear-biased adaptation to subjective volatility. Given that the winning

Fig 4. DCM results. (A) Model space for DCM analysis. Black arrows represent intrinsic connectivity. Blue arrows represent the driving

effect. Orange arrows represent modulatory effects. The winning model was highlighted in red. Model comparison using indices of (B)

expected posterior probability and (C) exceedance probability. (D) Driving effect on TPJ for each condition. The line within the violin

plot represents the median value. (E) Correlation between driving effect on the TPJ and parametric activation of subjectivity volatility in

the dACC in terms of fear-biased adaptation to volatility learning. The scatter plot shows the mean activation within the corresponding

cluster. Note: TPJ, temporal parietal junction; dACC, dorsal anterior cingulate cortex; RFX, random-effect; n.s., not significant;

*p< 0.05. The source data can be found at https://osf.io/avhne/.

https://doi.org/10.1371/journal.pbio.3001724.g004
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model (DCM model 3) was close to model 2, as shown by exceedance probability for model 3

(about 0.6) and model 2 (about 0.3; Fig 4C), we also checked differences in the driving effect

on the TPJ. Results showed the same pattern with the winning model (S1 Text), indicating the

robustness of this finding. Furthermore, the driving bias from the TPJ was positively correlated

to parametric bias for BOLD signals in subjective volatility of the dACC (r = 0.371, p = 0.024;

Fig 4E). Taken together, consistent with our behavioral modeling results, these neural results

relating to subjective volatility support the notion that fear interferes with adaptation to volatil-

ity learning and further uncover the driven computation from the TPJ in the dACC-TPJ path-

way underlying fear-biased adaptation to volatility learning.

Alexithymia was related to fear-biased adaptation to volatility learning

We found a significant correlation between the total score of the Bermond–Vorst Alexithymia

Questionnaire (BVAQ) [42] and the behavioral bias (in learning rates; r = 0.351, p = 0.006;

Fig 5A). Please note that higher scores on the BVAQ represented lower levels of alexithymia.

The higher score for behavioral bias [(fear & freq–fear & infreq)–(neut & freq–neut & infreq)]

reflected weaker influence of fear on adaptation to volatility learning. Therefore, the positive

correlation suggests that the interference of fear with adaptation to volatility learning was

stronger the more alexithymic individuals were. To examine contributions of cognitive

(BVAQ-C) and affective dimensions (BVAQ-A) of alexithymia for learning rate bias, we per-

formed correlations of learning rate bias with BVAQ-C and BVAQ-A, respectively. We

observed a significant correlation of learning rates-bias with BVAQ-C (r = 0.291, p = 0.023;

Benjamini–Hochberg FDR corrected; Fig 5B), while the correlation with BVAQ-aff was not

significant (r = 0.227, p = 0.078; Fig 5C), indicating that the cognitive dimension of alexithymia

explained fear-biased adaptation to volatility learning. In addition, these results hold when

controlling for anxiety and depression (see S2 Text).

Fig 5. Correlations of learning rate in terms of fear-biased adaptation to volatility learning with BVAQ (A), BVAQ-C (B), and BVAQ-A (C). Note: BVAQ, the

Bermond–Vorst Alexithymia Questionnaire; BVAQ-C, cognitive dimension of BVAQ; BVAQ-A, affective dimension of BVAQ. The source data can be found

at https://osf.io/avhne/.

https://doi.org/10.1371/journal.pbio.3001724.g005
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Discussion

This study examined neuro-computational mechanisms of how fear influenced adaptation to

volatility. In 2 independent experiments, we consistently found that the environment with fre-

quent reversals elicited a higher learning rate than the environment with infrequent reversals

in neutral cues, replicating previous studies [14,17,24]. However, this difference was absent in

the face of fearful cues, supporting the hypothesis that fear prevented adaptation to volatility.

This suppressive effect was underpinned by activity of the PPC, VS, HI, and dACC, as well as

functional connectivity between the dACC and temporal-parietal junction (TPJ), suggesting

distributed brain systems for computations of fear-biased adaptation. Effective connectivity

results further showed that this bias mainly resulted from the driving effect from the TPJ, indi-

cating that computations underlying fear-biased adaptation to volatility may occur at a rela-

tively early stage of processing bottom-up inputs. Lastly, this bias was stronger in individuals

with higher levels of alexithymia.

Using computational modeling, this study revealed that fear inhibits adaptation to volatility.

In our control conditions of neutral cues, participants showed a higher learning rate to the

environment with frequent (as compared to infrequent) reversals, consistent with previous

findings of a higher learning rate for volatile than stable conditions [14,17,24]. This finding

supports the notion that humans are able to adjust learning rates in adaptation to volatility

[14,16,17,24]. Critically, this adjustment was disrupted by fearful signals. It has been shown

that fear disrupts systems supporting flexible behavior through dominating consciousness

[6,10,11]. Therefore, the conscious experience of fear potentially inhibits adaptive function, in

particular adaption to volatility. This supports the notion of mutual inhibition between emo-

tion and cognition and the dual competition model of emotion–cognition integration

[30,43,44]. In addition, we observed that fear prevented flexible adjustments to volatility in

both reward and punishment contexts (see S4 Text), suggesting that our findings of fear-biased

adaptation to volatility were reward/punishment-independent. It seems that our manipulation

was similar to those from Browning and colleagues (2015) and observed inconsistent results.

Although electrical shocks used in Browning and colleagues (2015) also evoked strong fear,

our study systematically examined the role of fear (as compared to the neutral baseline) on

adaptation to volatility. Importantly, their manipulation of fear was contingent on the outcome

(shock or not shock), whereas fearful facial expressions in our study were associated with envi-

ronmental volatility, which is a higher level in the Bayesian Learner model [14]. Previous stud-

ies have shown different representations between outcome encoding and volatility processing

[45,46]. It has also been shown inflexible adaptation to volatility in anxious individuals [17].

Given the high similarity in concepts and structures between anxiety and fear [47], we comple-

mented Browning and colleagues (2015)’s findings from individual difference in anxiety to the

within-subject effects of fearful cues. Together, these findings jointly suggest that fear-biased

adaption to volatility characterizes fear-related affective disorders.

Neuroimaging results showed that the dACC encoded fear-biased adaptation to volatility

learning. In our control conditions, decreased activation in the dACC was observed in envi-

ronments with frequent versus infrequent reversals. This finding was contrary to previous

findings of a positive correlation of dACC signals with subjective volatility [14,26]. However, it

has been proposed that task difficulty modulates the relationship between activation in the

dACC and cognitive demand in an inverted U-shape pattern [48,49]. For example, stronger

dACC activation has been found for processing fearful versus neutral faces under low cognitive

demand (e.g., 0-back task), while lower responses of the dACC to fearful versus neutral expres-

sions have been observed under high cognitive demand (e.g., 2-back task) [30]. One explana-

tion for the discrepancy in activation of the dACC might be that the current task was more
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difficult than those of the previous probabilistic reward learning task due to our design of

interleaved trials from 4 conditions. Importantly, the signal of volatility in the dACC was

absent in fearful conditions, suggesting a suppressive role of fear in the adaptive function of

the dACC. The dACC is considered to be a higher-order integrative hub for multiple informa-

tion [30,50,51]. For example, integration between fearful signals and executive functions has

been found in the dACC [30]. Therefore, these results indicate that fear modulates the dACC’s

signals to track environmental volatility and support the integrative processing of emotion and

cognition in the dACC.

The TPJ was also found to work in concert with the dACC to influence fear-biased adapta-

tion to volatility in our study. A nexus model of the TPJ has contended a basic integrative hub

for the TPJ function, including attentional processing, memory storage, and social processing

[52]. For example, the TPJ was identified to be involved in global Gestalt integration at the per-

ceptive level [53]. Moderation of dACC-TPJ functional connectivity on fear-biased adaptation

to volatility in our study suggests a circuit of information interchange between low- and high-

level integrative processing of fear and adaptation learning. While bidirectional information

flow between the dACC and TPJ during fear-biased adaptation learning was observed, fear-

biased adaptation to volatility was influenced by the driving effect from the TPJ. This may sug-

gest that fear mainly impedes bottom-up information input and low-level integrative process-

ing between fear and adaptation to volatility. In sum, in combination with the significant

correlation between the activated bias in the dACC and the driving bias in the TPJ (Fig 5E),

these results reveal a crucial role of the TPJ-dACC neural pathway in volatility learning of fear-

biased adaptation.

We also observed activation in the VS, but not the amygdala, in fear-biased adaptation to

volatility, which suggests differential roles of the VS and amygdala. Both the VS and amygdala

have been demonstrated to represent uncertainties during dynamic environments and emo-

tion processing [27,54–56]. Within learning contexts, the amygdala is linked to Pavlovian con-

ditioning, while the VS has been implicated in instrumental learning [6]. The current results

may thus reflect the interference of instrumental adaptation by fear in the VS. Another expla-

nation regards a possible role of Pavlovian-instrumental transfer. This transfer effect underly-

ing the amygdala and VS has been demonstrated in animal models [6,57]. In this study,

Pavlovian tendencies were gradually dominated by instrumental learning. This transfer effect

thus explains activation in the VS, but not the amygdala, in fear-biased adaptation learning.

However, interpretations about the negative result of activation in the amygdala should be cau-

tious. In addition, the HI and PPC were found to moderate fear-biased adaptation to volatility

in our study. The HI has been thought to encode and store memory [58,59], while the PPC

was implicated in memory retrieval [60]. These 2 brain regions were also involved in learning

and value representation in the uncertain environment [13,28,61,62]. Therefore, these results

indicate that fear interferes with memory signals in the HI and PPC for adaptation to dynamic

environments. Our study did not find any significant OFC activation. This is surprising given

its crucial involvements in emotion-related valuation and flexible learning [29,63,64]. One

potential explanation is low signal-noise ratio for the OFC BOLD signals [65]. In brief, distrib-

uted brain areas involved in memory and learning systems seem to contribute to fear-biased

adaptation to volatility learning.

This study used the conventional reinforcement learning model and the Bayesian Learner

model, which are complementary to each other regarding cognitive and neural mechanisms

and behaviors [66]. We found shared (e.g., activation in the VS) and distinct neural mecha-

nisms between these types of models. Unexpectedly, no direct correlation between learning

rate and subjective volatility was observed in this study. The Bayesian Learner model has been

proposed in a hierarchical structure [14] with (i) subjective estimation of environmental
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volatility at the first level; (ii) subjective estimation of the winning probability at the second

level; and (iii) the observed outcome at the third level. Based on the reinforcement learning

model without hierarchical processing, learning rates were fit from the subjective probability

across trials at the second level. Previous studies indeed showed a positive correlation between

volatility signals and learning rate [14,17]. However, a recent simulation study demonstrated

that learning rates were jointly estimated from both stochasticity and volatility [16]. Although

separate correlations of activation in the HI were observed with the volatility index and the

learning rate, the absence of a direct correlation between volatility and learning rate may be

due to the ignorance of stochasticity in our model space, which was in line with previous stud-

ies [14,17,24]. Future studies may benefit from taking stochasticity into account when con-

structing computational models to examine the relationship between learning rate and

volatility.

We observed that maladaptation to volatility following fear cues correlated with alexithy-

mia, suggesting a stronger influence of fear on adaptation to volatility learning in individuals

with higher levels of alexithymia. Alexithymia refers to difficulties in emotion processing [34].

Alexithymia has been considered as a transdiagnostic risk factor for various affective disorders,

such as anxiety and depression [67,68]. While a rich literature showed both cognitive and emo-

tional deficits in alexithymia [35,49,69,70], the current results further suggest an integrative

difficulty between fear and adaptation to volatility in individuals with high alexithymia levels.

Given that abnormalities in regulating fearful signals are at the core of affective disorders [6]

and failure to appropriately adjust learning to dynamic environments contributes to affective

disorders [17,22–24], our findings provide additional insights into pathological mechanisms of

alexithymia-related affective disorders.

Several limitations of the present study should be mentioned. First, in addition to fear-

biased adaptation to volatility in terms of learning rates, we also observed that fearful relative

to neutral faces induced hypo-learning speed during infrequent reversal environments and

hyper-learning rate for environments with frequent reversals, suggesting suboptimal learning

under fear. Future studies would be benefit from investigating whether fear influences adap-

tion to volatility (differences between frequent and infrequent reversal environments) or fear

induces suboptimal learning in environments both with frequent and infrequent reversals,

resulting in the observed maladaptation. Second, there are different variants for Bayesian

Learner model, e.g., hierarchical Gaussian filter [21]. We followed the most classical research

on adaptation to volatility and only used Bayesian Learner model [14]. Future studies would

benefit from examining shared and distinct neural responses among these variants. Last, par-

ticipants indeed reported fear in response to fearful expressions. Although subjective report

has been considered to be importance in the measurement of fear [3,4], future studies would

benefit from real-time objective measures using physiological recordings (e.g.,

electrocardiography and eye-tracking) to examine the interaction between emotion swing and

learning during uncertainty.

To conclude, this study provides a neuro-cognitive account of how fear interferes with

adaptation to volatility during dynamic environments at the computational level. We also

show that this bias is related to individual differences in propensity for emotion processing

and regulation. Our findings reveal distributed brain substrates underlying fear-biased adapta-

tion to volatility, including integration systems, learning systems, and memory systems. The

TPJ-dACC pathway, in particular, influences the interplay between fear and adaptation to vol-

atility learning, suggesting that the suppression of fear on adaptive behaviors may occur at a

relatively early stage of processing bottom-up inputs. Our work thus sheds light on the neuro-

computational mechanisms underlying fear-biased adaptation to volatility learning.
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Materials and methods

Participants

Sixty-four right-handed healthy college students participated in 2 experiments. Experiment 1

(exp1) was a behavioral study, including 21 participants (11 females, age = 20.81 ± 1.94).

Experiment 2 (exp2) was an fMRI study, including 43 participants. Due to impatience (1 par-

ticipant), and many missing trials (2 participants failed to respond in more than 10% of the tri-

als; 62 and 46 in the 240 trials, respectively), and excessive head motion (3 participants with

more than 10% scans with frame-wise displacement (FD) > 0.5) [71], the final sample for exp2

included 40 participants (18 females, age = 21.75 ± 2.13) for behavioral analysis and 37 partici-

pants (16 females, age = 21.57 ± 2.06) for fMRI analysis. See Table 1 for demographic informa-

tion. All the participants had no history of neurological and psychiatric disorders or head

injury. The study was approved by the Center for Brain Disorders and Cognitive Sciences

Institutional Review Board (IRB number: CBDCS202107080020) at Shenzhen University and

performed in full compliance with the latest Declaration of Helsinki. Written informed con-

sent was obtained from all participants.

General procedure

After signing the informed consent, participants were asked to complete a three-stage training

task to understand the probability and reversal components underlying the task [72]. The cue-

biased adaptation learning task was then implemented (while participants in exp2 simulta-

neously experienced fMRI scanning). After the task, participants were asked to complete the

Chinese version of the BVAQ [42] and the Mood and Anxiety Symptoms Questionnaire

(MASQ) [73]. Finally, participants were paid based on their learning performance, which was

instructed before the experiment.

Cue-biased adaptation learning task

Inspired by Behrens and colleagues (2007) [14] and Piray and colleagues (2019) [36], we devel-

oped a cue-biased adaptation learning task (Fig 1). Using the framework of the probabilistic

reward reversal learning task [14,24], we manipulated the type of cue (fearful/neutral expres-

sions) and environmental volatility (frequent/infrequent reversals) [16]. Specifically, frequent

reversals (freq) were defined as a situation in which the contingency reversed every 9 to 11 tri-

als randomly, while infrequent reversals (infreq) referred to a situation in which the contin-

gency reversed every 18 to 22 trials randomly. In brief, the current study with a two by two

within-subject design consisted of 240 trials, with 60 trials per condition. Please note that trials

for each condition were intermixed within a block. Participants were asked to learn by trial

and error to maximize their payoff. Although participants were explicitly informed that reward

structure would change throughout the task, they needed to infer the moment on which rever-

sal occurred and the speed at which reversal changed [45]. At the beginning of each trial, a cue

(a fearful or neutral face) was first shown on the screen center with duration of 1 s (Fig 1A). To

eliminate potential gender effects, facial expressions with the same gender with participants

were used as cues. For example, the female face with the fearful or neutral expression was

shown on the cue for the female participants. We selected 4 female faces and 4 male faces from

the Taiwanese Facial Expression Image Database (TFEID) [74], with 2 fearful and neutral

expressions for each gender. The normative rating (category and intensity) from the TFEID

can be seen in S1 Table. Please note that the cue type and the environmental volatility were

randomly matched across participants. After a fixation cross with a random duration (0.2 to

1.5 s for exp1 and 1 to 3 s for exp2), 2 options (horizon and vertical Gabor patches) were
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presented randomly on each side. Participants were required to make a decision within 2 s.

Upon response, the selected option would be highlighted for 0.2 s, followed by a question

mark at the screen center with a jitter interval at 1 to 3 s. Then, the outcome was shown for 1 s,

with “+1” in green indicating reward and “+0” in red reflecting no reward. Outcome was deliv-

ered with a probability of reward at either 85% or 15%, based on the outcome schedule (Fig

1B). If participants did not respond within 2 s, which was defined as a missing trial, the option

would not be highlighted and outcome was “+0.” At the end of a trial, a fixation cross was pre-

sented for 0.3 to 5.6 s to ensure that each trial lasted for 9 s for exp1 and 0.8 to 6.8 s to ensure

that each trial lasted for 11 s for exp2. Exp1 and exp2 lasted for 36 and 44 min, respectively. All

experimental procedures were presented using E-prime 2.0 (Psychology Software Tools, Pitts-

burgh, Pennsylvania, United States of America).

Self-report questionnaires

To assess alexithymia, we used the Chinese version of the BVAQ [42]. This questionnaire con-

sists of 35 items, each answer being scored on a five-point Likert scale of 1 (this in no way

applies to me) to 5 (this definitely applies to me). BVAQ includes both cognitive and affective

components with acceptable reliability and validity. Higher scores for BVAQ represented

lower levels of alexithymia. To control for potential confounding effects of anxiety and depres-

sion, participants also completed the Chinese version of the MASQ [73]. The MASQ consists

of 62 items that are assessed with a four-point Likert scale of 1 (not at all) to 4 (extremely). It

measures symptoms of anxiety and depression based on a tripartite model, including general

distress, which can be further divided into general distress: anxiety (GDA) and general distress:

depression (GDD), anxious arousal (AA), and anhedonia depression (AD) subscales.

Computational modeling of task performance

To best describe participants’ learning performance in our fear-biased volatility learning task,

we conducted a stage-wise model construction procedure [24,75]. That is, we added each com-

ponent to the model or modified an existing component progressively, based on the best

model from the previous stage. Model comparison used the LOOIC and the WAIC to avoid

overfitting. Lower scores of LOOIC or WAIC indicated better out-of-sample prediction accu-

racy of the candidate model. Parameter estimation was performed using hierarchical Bayesian

analysis. Posterior inference was performed with Markov chain Monte Carlo (MCMC) sam-

pling with 4,000 iterations across 4 chains from the posterior distribution. The entire model-

ing-related procedures were performed using the hBayesDM package [76]. In total, we tested

12 candidate models using the stage-by-stage model construction procedure in exp1. For exp2,

we compared these models directly.

We used the simple RW model (Eqs 1–3) as the baseline model [18], which was widely used

in learning-related studies [14,17,24]. The simple RW model assumed that participants learned

reward structure by trial and error (Eqs 1–3) [18].

Vc;t ¼ Vc;t� 1 þ aðOt� 1 � Vc;t� 1Þ ð1Þ

Vnc;t ¼ 1 � Vc;t ð2Þ

P Að Þ ¼
1

1þ e� bðVA � VBÞ
ð3Þ

Here, the value V of the chosen option is updated trial-by-trial, which are determined by

both the prediction error and learning rate α (0 < α< 1). The prediction error is derived from
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the difference between received outcome (O) and expected value (V) from the previous trial.

For simplicity, the value of the unchosen option is regarded as the opposite value for the cho-

sen option [14,17]. Finally, we used a softmax function with a decision parameter β (or inverse

temperature parameter; 0< β< 10) to calculate the chosen probability for each option.

In Stage 1, we compared a model (M1) that assumed each of 4 conditions was learned dif-

ferently with a model (M2) that assumed that participants learned differently between volatility

[14], but not the type of cue. That is, M2 assumed that there was no cue (emotional) effect for

all parameters. Thus, M1 included a learning parameter (learning rate) and a decision parame-

ter (inverse temperature) for each condition, whereas M2 consisted of 2 learning parameters

and decision parameters for conditions of frequent and infrequent reversals. Given that it was

well established that the environment with frequent reversals elicited higher learning rate than

that with infrequent reversals [14,17,24], we thus did not include the model assuming that

there was no effect of volatility. M1 with 8 parameters showed better performance than M2

with 4 parameters (Table 2).

In Stage 2, we removed/added some components to the M1 to validate the winning model

from Stage 1. M3 assumed that participants learned differently for each condition but shared a

decision parameter across conditions (5 parameters). M4 assumed that participants regarded

our task as the two-arm bandit and only updated the value of the chosen option (8 parame-

ters), rather than the one-arm bandit (Eq 2). M5 added a parameter of the lapse in attention

(ε; 0< ε< 1; Eq 4), assuming that participants occasionally made random choices due to a

lapse in attention (9 parameters).

P Að Þ ¼ 1 � εð Þ
1

1þ e� bðVA � VBÞ
þ

ε
2

ð4Þ

Model comparisons among M1, M3, M4, and M5 indicated that M1 performed better (see

Table 2).

Participants needed to learn 4 types of cue-option-outcome contingencies in our task (as

compared to 1 type in the previous probabilistic reward reversal learning task), including the

option of forgetting [77]. Therefore, in Stage 3, we added forgetting parameters ϕ to the M1 (0

< ϕ< 1; Eq 5). This parameter pulled the estimated value toward the random level (0.5).

Vt ¼ Vt� 1 þ �ð0:5 � Vt� 1Þ ð5Þ

M6 assumed a sharing forgetting parameter across conditions (9 parameters). M7 assumed

ϕ were modulated by volatility, with 2 forgetting parameters for environments with frequent

and infrequent reversals (10 parameters). Rather, we assumed ϕ were modulated by emotional

cues in M8 (10 parameters). Model comparisons among M1, M6, M7, and M8 showed that

M1 performed best (Table 2).

In Stage 4, we considered hybrid models of the Pearce-Hall model with the RW model

given that this type of hybrid model performed best among the candidate models during the

emotion- and volatility-related task [36]. M9 assumed a shared weighting parameter ω across

conditions (0 < ω< 1; 7 parameters). M10 assumed distinct weighting parameters ω for fear-

ful and neutral cues (8 parameters). M11 assumed different scale parameters κ of learning rate

for fearful and neutral conditions (0 < κ< 1; 8 parameters). M9–11 were the same as M2, M4,

and M5 in Piray and colleagues (2019), respectively. Again, M1 won among these candidate

models (see Table 2).

We also added a model (M12) assuming linear relationships among 4 learning rates. Specif-

ically, each parameter was linearly represented by the learning rate for the neutral and infre-

quent condition. M1 outperformed than M12 (Table 2), suggesting that it is better to

independently represent each parameter in the current experiment, though there are
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significant correlations between each parameter.

aðneut;freqÞ ¼ kðneut;freqÞaðneut;infreqÞ þ bðneut;freqÞ ð6Þ

aðfear;infreqÞ ¼ kðfear;infreqÞaðneut;infreqÞ þ bðfear;infreqÞ ð7Þ

aðfear;freqÞ ¼ kðfear;freqÞaðneut;infreqÞ þ bðfear;freqÞ ð8Þ

We further performed model validation for the winning model (M1) in exp1 using the gen-

erated data from MCMC sampling (4,000 iterations). First, we computed correlations between

real accuracy and simulated accuracy for each condition. Please note that mean simulated

accuracy across 4,000 iterations per condition and participant was used. Second, we analyzed

the generated data using the index of performance after reversal and computed 95% high den-

sity posterior interval (HDI) to compare the difference between simulated data and real data.

Next, we compared these 12 candidate models directly in exp2. The same procedures of

model validation were performed for exp2 behavioral data.

Statistical analysis for learning rates

Each parameter was represented by the mean of the posterior distribution of the parameters.

We conducted LMMs on learning rate with subject as a random factor and with cue (fear/

neut) and volatility (infreq/freq) as within-subject factors for exp1 and exp2, respectively. Pear-

son correlations of fear-biased adaptation to volatility learning in terms of learning rate were

implemented with total BVAQ scores, the cognitive dimension, and the affective dimension of

BVAQ scores across 61 participants. Statistical analyses were conducted using SPSS 17.0

(IBM) and R (4.1.0). We set the significance level at p = 0.05.

Bayesian learner model

Bayesian Learner model has been shown to dynamically track environmental volatility [14].

Specifically, the learner estimates the probability to gain reward on the next trial (Vt+1) given

the obtained outcome and the estimated probability on the current trial (Vt). Please note that

Vt can also be represented as probability given that the magnitude in our study was fixed at 1.

Taking advantage of the Markovian assumption, the new estimated probability only depends

on information from the last trial, but not the full history of previous trials. Therefore, the esti-

mation of probability on trial t+1 can be represented using a beta distribution with the esti-

mated probability on trial t as the mean and a width parameter sv, where sv equals to exp (SV),

representing the estimated subjective volatility of the environment.

PðVtþ1jVt; SVÞ � bðVt; svÞ ð9Þ

Another parameter is a distrust parameter k, representing uncertainty in the current esti-

mation of environmental volatility. Subjective volatility of the next trial (SVt+1) can be repre-

sented as a normal distribution, with SVt as the mean and K as the width parameter, where

K = exp(k).

PðSVtþ1jSVt; kÞ � NðSVt;KÞ ð10Þ

The joint probability of Vt+1, SVt+1, and k is estimated based on the outcome (y) of each
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trial:

PðVtþ1; SVtþ1; kjy�tþ1Þ

/ Pðytþ1jVtþ1Þ
R
½
R
PðVt; SVt; kjy�tÞPðSVtþ1jSVt; kÞdSVt�PðVtþ1jVt; SVtþ1ÞdVt . ð11Þ

Trial-by-trial estimates of the individual parameters (Vt+1, SVt+1, k) are obtained by the

marginalization of the joint probability function. For more details, see Behrens and colleagues

(2007).

Image acquisition and preprocessing

MRI data were acquired with a Siemens Trio 3T scanner. Both the fMRI and high-resolution

3D structural brain data were obtained using a 64-channel phased-array head. The fMRI data

were acquired by means of a gradient-echo echo-planar imaging sequence containing the fol-

lowing parameters: repetition time (TR) = 1,000 ms, echo time (TE) = 30 ms, 78 multiband

slices, voxel size = 2 × 2 × 2 mm [3], flip angle = 35˚, field of view (FOV) = 192 mm × 192 mm,

data matrix = 96 × 96, and 240 volumes scanned in 2,640 seconds. Additionally, the 3D struc-

tural brain images (1 mm [3] isotropic) were acquired for each participant using a T1-weighted

3D magnetization-prepared rapid gradient echo sequence with the following parameters: TR/

TE = 2,300 ms/2.26 ms, flip angle = 8˚, data matrix = 232 × 256, FOV = 232 mm × 256 mm,

BandWidth = 200 Hz/pixel, 192 image slices along the sagittal orientation, obtained in about 9

min.

Functional MRI data were preprocessed with DPABI [39] (http://rfmri.org/dpabi), a soft-

ware package based on SPM12 (version no.7219; https://www.fil.ion.ucl.ac.uk/spm/software/

spm12/). It comprised the following steps: (i) realignment; (ii) co-registering the T1-weighted

image to the corresponding mean functional image; (iii) segmenting into gray matter, white

matter, and cerebrospinal fluid by DARTEL; (iv) normalizing to the standard Montreal Neuro-

logical Institute space (MNI template, resampling voxel size 2 × 2 × 2 mm [3]); (v) smoothing

with a Gaussian kernel of 6 mm full width at half maximum (FWHM).

Generalized linear models (GLM)

SPM12 (version no.7219; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used for

general linear model (GLM) analysis. The current study focused on the interaction effect

between cue (fear/neut) and volatility (infreq/freq), or fear-biased adaptation to volatility

learning, which was defined as [(fear & freq–fear & infreq)–(neut & freq–neut & infreq)].

Neural responses to learning rates

Based on the winning model and its parameter estimation, the learning rate for each condition

(mean value across 4,000 iterations) was obtained. The first model (GLM1) aimed to examine

fear-biased adaptation to volatility learning at the neural level in terms of learning rates. The

first-level design matrix in GLM1 included the cue for fearful and neutral expressions, option

presentation, highlight of the selected options, jitter, and outcome for each condition. If any,

we modeled missing trials with option presentation, highlight of the selected options, jitter,

and outcome. In addition, the 6 head motion parameters and an FD regressor were included

as covariates of no interest. The regressors were then convolved with the canonical hemody-

namic response function (HRF). To obtain the fear-biased adaptation to volatility learning

effect, we calculated contrasted images [(fear & freq–fear & infreq)–(neut & freq–neut &

infreq)] at outcome stage. These contrasted betas further regressed against fear-biased
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adaptation to volatility learning in terms of learning rate [(fear & freq–fear & infreq)–(neut &

freq–neut & infreq)] at the second level.

Neural responses to subjective volatility

Trial-by-trial subjective volatility from Bayesian Learner model was used to examine neural

correlates of fear-biased adaptation to volatility learning in terms of subjective volatility

(GLM2). The first-level design matrix in GLM2 included the cue for fearful and neutral expres-

sions, option presentation with the parametric modulation by subjective volatility, highlight of

the selected options, jitter with the parametric modulation by subjective volatility, and out-

come with the parametric modulation of subjective volatility for each condition. If any, we

modeled missing trials with option presentation, highlight, jitter, and outcome. In addition,

the 6 head motion parameters and an FD regressor were included as covariates of no interest.

The regressors were then convolved with the canonical HRF. Finally, contrasted images [(fear

& freq–fear & infreq)–(neut & freq–neut & infreq)] at outcome stage for the modulator effect

of subjective volatility from the first-level analysis were entered into one-sample t-tests for the

second-level analysis.

Generalized psychophysiological interaction (gPPI)

To assess how the functional connectivity between BOLD signals in the seed region and BOLD

signals in the target region was modulated by fear-biased adaptation to volatility learning, we

performed gPPI using the gPPI toolbox [40]. The seed region(s) were determined by activation

results from GLM2. Specifically, we extracted the deconvolved (with HRF) time course from

the first eigenvariate of the seed region (the physiological term) for each participant. The sub-

jective volatility at outcome onset for each condition was used as the psychological term. The

interaction term was then generated by multiplying the physiological term with the psycholog-

ical term. The convolved interaction term was entered into the GLM analysis.

Dynamic causal modeling (DCM)

To assess effective connectivity between the brain regions underlying the modulation of fear-

biased adaptation, we performed DCM using the DCM12 toolbox [41]. We used the same

parametric signals (subjective volatility) from each condition to test fear-biased adaptation

effects. Six models were constructed with different assumptions of modulatory effects (B

matrix) and driving effects (C matrix) while we fixed the full intrinsic connectivity (A matrix;

Fig 4A). For the winning model, ANOVAs were performed with cue (fear/neut) and volatility

(freq/infreq) as within-subject factors in A, B, and C matrices, respectively. Bonferroni correc-

tion was used to correct for multiple comparisons.

Supplementary experiments

To test the influences of fear on punishment learning, we conducted an additional experiment

with the design of 2 (fear/neut) by 2 (freq/infreq) in the punishment context (expS1; n = 27).

To control for potential impact of attention-grabbing (rather than experiencing fear) on adap-

tation to volatility, we conducted a control experiment (expS2; n = 39). The design was 2

(happy versus neutral facial expressions) by 2 (freq/infreq). Happy expressions were used here

because fearful and happy expressions have similar properties of attention-grabbing but dis-

tinct affective experience [38]. To test the validity of fear induction (i.e., presentation of fear-

ful/neutral facial expressions before each trial), we collected post-rating data for the presented

facial expressions of “how fearful do you feel when seeing this face” using a Likert scale from 0

PLOS BIOLOGY Fear-biased adaptation learning

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001724 May 1, 2023 19 / 26



(no experience of fear at all) to 8 (strong experience of fear) following expS1 and expS2 in S4

Text.

Supporting information

S1 Text. Statistic values for main effects and interaction effects.
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data can be found at https://osf.io/avhne/.

(TIF)

S2 Fig. Identification ratings for fearful and neutral expressions. Data are represented as

mean (SE). Note: SE, standard error; *p< 0.05. The source data can be found at https://osf.io/

avhne/.

(TIF)

S3 Fig. Fear experience ratings for fearful-neutral and neutral-happy expressions. Data are

represented as mean (SE). Note: SE, standard error; *p< 0.05. The source data can be found at

https://osf.io/avhne/.

(TIF)

S4 Fig. Model validation using the correlation between real accuracy and simulated accu-

racy. The source data can be found at https://osf.io/avhne/.

(TIF)

S5 Fig. Model validation using the correlation between real and simulated win-stay loss-

switch behavior (WSLS). Note that WSLS sums win-stay rate and loss-switch rate. The source

data can be found at https://osf.io/avhne/.

(TIF)

S6 Fig. Parameter recovery. The source data can be found at https://osf.io/avhne/.

(TIF)

S7 Fig. Win-stay loss-switch behavior. Data are represented as mean (SD). Simulated data

(hollow circles) from the winning model (M1) showed a similar patter with real data. The

source data can be found at https://osf.io/avhne/.

(TIF)

S8 Fig. Accuracy in the third trial after reversal. Data are represented as mean (SD). Simu-

lated data (hollow circles) from the winning model (M1) showed a similar patter with real

data. Note: *., p< 0.05. The source data can be found at https://osf.io/avhne/.

(TIF)

PLOS BIOLOGY Fear-biased adaptation learning

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001724 May 1, 2023 20 / 26



S9 Fig. Learning rates from M5 in exp2. The line within the violin plot represents the median

value. Note: n.s., not significant; *p< 0.05. The source data can be found at https://osf.io/

avhne/.

(TIF)

S10 Fig. Learning rate results from the winning model in expS1. The line within the violin

plot represents the median value. Note: *p< 0.05. The source data can be found at https://osf.

io/avhne/.

(TIF)

S11 Fig. Learning rate results from the winning model in expS2. The line within the violin

plot represents the median value. Note: n.s., p> 0.05. The source data can be found at https://

osf.io/avhne/.

(TIF)

S12 Fig. Subjective volatility estimated from Bayesian Learner model in an example partic-

ipant. Solid lines in blue represent trial-by-trial estimated volatility. Dash lines represent

reward schedules. The source data can be found at https://osf.io/avhne/.

(TIF)

S13 Fig. BOLD regression differences for volatility at the time of the outcome between infre-

quent and frequent reversals in neutral (A) and fearful (B) conditions. All activations were

whole-brain corrected with the threshold of p< 0.001 at the voxel level and with the threshold

of p< 0.05 at the cluster level using family-wise error (FWE) procedure. The source data can

be found at https://osf.io/avhne/.

(TIF)

S14 Fig. BOLD regression for outcome (win/no win) at the time of the outcome in learning

rates-related analysis. All activations were whole-brain corrected with the threshold of

p< 0.001 at the voxel level and with the threshold of p< 0.05 at the cluster level using family-

wise error (FWE) procedure. The source data can be found at https://osf.io/avhne/.

(TIF)

S15 Fig. BOLD regression for outcome (win/no win) at the time of the outcome in volatil-

ity-related analysis. All activations were whole-brain corrected with the threshold of

p< 0.001 at the voxel level and with the threshold of p< 0.05 at the cluster level using family-

wise error (FWE) procedure. The source data can be found at https://osf.io/avhne/.

(TIF)

S16 Fig. BOLD regression for expected value (Q-value) at the time of the cue using finite

impulse filter (FIR) with ROI-based analysis. Data are represented as mean (SE). Note:

***p< 0.001; *p< 0.05. The source data can be found at https://osf.io/avhne/.

(TIF)

S17 Fig. Other correlations. The source data can be found at https://osf.io/avhne/.

(TIF)
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Facial Expression Image Database (TFEID).
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