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1
INTRODUCTION

1.1. BACKGROUND

Climate change is one of the biggest challenges that the humanity is currently facing. The
burning of fossil fuels, deforestation, and other human activities are releasing large amounts
of greenhouse gases into the atmosphere, causing the earth’s temperature to rise. This is
leading to a range of negative impacts, including more frequent and intense natural disasters,
displacement of communities, and negative impacts on food and water supplies, human
health, and the economy. If we do not take immediate action to reduce our greenhouse gas
emissions, the consequences could be catastrophic.

It is important for governments, communities, and individuals to work together to accel-
erate the transition to a low-carbon future. One of the most effective ways to address climate
change is to transition to clean, renewable energy sources. The international community
has also recognized the importance of renewable energy in addressing climate change. The
Paris Agreement, a landmark international treaty signed by nearly 200 countries in 2015,
calls for the phase-out of fossil fuels and the transition to clean, renewable energy sources
[92]. According to the Intergovernmental Panel on Climate Change, increasing the use of
renewable energy is essential to meet the goals of the Paris Agreement and to avoid the
worst impacts of climate change [75].

Wind energy is particularly promising as it is a reliable and cost-effective source of
electricity that does not emit any greenhouse gases. According to the International Energy
Agency (IEA), wind energy could provide 18% of the world’s electricity by 2025, up from just
4% in 2010 [47]. Therefore, by increasing the use of this clean, renewable energy source,
we can mitigate the negative impacts of climate change. Due to the growing demand for
wind energy around the world, many countries have set ambitious renewable energy targets
and are looking to increase the amount of wind energy in their energy mix. This presents
significant opportunities for the wind energy industry.

There are several challenges in harnessing wind energy. One of the major challenges is
the variability of wind. The speed and direction of wind can vary significantly over time,
which makes it difficult to predict the amount of energy that a wind turbine will produce.

1



2 1. INTRODUCTION

This can make it difficult to integrate wind energy into the grid and to balance supply and
demand. One way to address this challenge is through the use of advanced forecasting
tools and energy storage technologies. Another major challenge is the cost of wind energy.
While the cost of wind energy has decreased significantly in recent years, it is still generally
more expensive than energy from fossil fuels. This can make it difficult for wind energy
to compete with other energy sources. However, the IEA also notes that the cost of wind
energy is expected to continue to decline as the technology improves and becomes more
widespread [47]. Overall, harnessing wind energy is a complex and challenging process,
but it also presents many opportunities to address some of the most pressing issues facing
humanity today, such as climate change and energy security.

Wind turbine is one of the primary technologies used to generate electricity from wind
energy. It consist of a rotor with blades that captures the wind’s kinetic energy and converts
it into rotational energy. This rotational energy is then used to drive a generator, which
converts it into electricity. Wind turbines are typically divided into two categories: horizontal
axis and vertical axis [76]. Horizontal axis wind turbines are the most common type, and they
consist of a rotor with three blades that is mounted on top of a tower. The rotor is oriented
in a horizontal plane and is connected to a gearbox, which increases the rotational speed of
the rotor and drives the generator. Vertical axis wind turbines, on the other hand, have a
rotor with blades that are oriented in a vertical plane. These turbines are less common and
are typically used in small-scale applications.

Accurate prediction of the power output of a wind turbine is critical for the success of
wind energy projects. There are a number of factors that can impact the power output of
a wind turbine. To accurately predict the power output of a wind turbine, it is necessary
to understand, characterize and model the physics (length and time scales) of all the rele-
vant phenomena around the wind turbine. This calls for the use advanced modeling and
simulation techniques such as computational fluid dynamics (CFD) [101].

1.2. WIND MODELING USING CFD

A schematic representation of the flow features behind a wind turbine is shown in Figure
1.1. The wind-turbine wake (region downstream of the turbine) generally consists of two
regions, (i) the near-wake region that extends up to 2 − 4 rotor diameters, and (ii) the
far-wake region that is further downstream of the turbine [122]. The near-wake is a three-
dimensional, complex, and heterogeneous flow that is directly influenced by the presence of
the wind turbine. On the other hand, the far-wake zone is less impacted by the wind turbine.
Therefore, it is possible to forecast the mean flow distribution in this region using global
wind-turbine data like the thrust and power coefficient and incoming flow conditions [12].

Wind farms and turbines have been designed so far using manageable engineering tech-
nologies. Typically, straightforward wind shear models are used to describe the incoming
wind, while measurements are used to determine turbulence characteristics. The upstream
environment properties consisting of aerodynamic roughness, moisture, temperature gra-
dients, etc., govern these characteristics. Moreover, the engineering wake models have
been employed to maximize estimates of annual energy production while minimizing wake
impacts in wind farm. The development of wind energy has been greatly aided by all of
these technical tools, but as wind turbines and wind farms become larger, the fundamental
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Figure 1.1 | Schematic representation of the instantaneous (top) and the time-averaged (bottom) flow features
behind a wind turbine resulting from the interaction of the rotor and atmospheric boundary layer upstream, with

u being the streamwise velocity and ∆u its deficit (adapted from [90]).

assumptions in these models no longer hold true. For example, large wind turbines are
more likely to operate outside the surface layer, particularly under stable atmospheric con-
ditions. In these cases, the traditional logarithmic wind shear profile may not be suitable for
accurately predicting the wind conditions experienced by the turbine, as it is based on the
assumption that the wind behaves in a predictable and consistent manner within the surface
layer. This can make it difficult to accurately predict the performance and behavior of the
turbine under these conditions, as the characteristics of the wind are not fully understood.

Computational fluid dynamics (CFD) is a powerful tool for understanding and predicting
the behavior of fluids, including air. In the context of wind energy, CFD can be used to
optimize the design of wind turbines and wind farms, as well as to predict the performance
of these systems under different operating conditions. By simulating the flow of air through
a wind farm, engineers can predict how the wind turbines will interact with each other and
determine the most efficient configuration. This can help to maximize the overall power
output of the wind farm.

In computational fluid dynamics there are broadly three different approaches to simu-
lating turbulent fluid flow as show in Figure 1.2.

• Direct Numerical Simulation (DNS) which involves solving the Navier-Stokes equa-
tions for the entire flow field, without any averaging or modeling of the turbulent
eddies. DNS provides the most accurate and detailed simulation of fluid flow by resolv-
ing all length scales of the flow, including the smallest turbulent structures. However,



4 1. INTRODUCTION

Figure 1.2 | A simplified representation of DNS, LES and RANS modeling approaches of a turbulent flow.

DNS is computationally expensive and is limited to relatively low Reynolds numbers
due to the high resolution required to capture all the relevant scales of motion. It is
commonly used in academic research and for fundamental studies of turbulence [17].

• Large Eddy Simulation (LES) is a hybrid CFD technique that combines resolved and
modeled simulations. In LES, the larger turbulent structures are resolved directly
(similar to DNS), while the smaller scales are modeled. The idea is to capture the
energy-containing turbulent eddies and model the effect of the smaller, dissipative
scales. LES provides a good compromise between accuracy and computational cost,
allowing for simulations at higher Reynolds numbers than DNS. It is commonly used
in engineering applications where the detailed flow features are important, such as
aerodynamics and combustion [52, 99].

• Reynolds-Averaged Navier-Stokes (RANS) is a commonly used CFD technique that
averages the Navier-Stokes equations over time, assuming that the flow quantities
vary slowly and can be decomposed into mean and fluctuating components. The
RANS equations are then solved, and additional turbulence models (e.g., k − ϵ or
k −ω models) are employed to close the equations. RANS provides relatively fast
and inexpensive simulations compared to DNS and LES. However, it is limited in
capturing unsteady and highly three-dimensional flow features accurately. RANS is
widely used in engineering practice for a variety of applications, including industrial
aerodynamics, heat transfer, and fluid-structure interactions [3, 50, 65].

In the context of wind turbine simulations, LES and RANS approaches can be used
to model the flow around the turbine and predict its performance. The choice of which
approach to use will depend on the specific goals of the simulation, the level of accuracy
required, and the available computational resources [90, 121, 142].

1.3. UNCERTAINTY QUANTIFICATION IN CFD

Uncertainty quantification (UQ) analysis, in general, provides a measure of the reliability
of the simulation results. In any numerical simulation, there are various sources of un-
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certainty, including input data, model parameters, and numerical methods. UQ aims to
identify, quantify, and reduce these uncertainties to improve the accuracy and reliability
of the simulation results. By quantifying uncertainty, a UQ analysis can provide valuable
information about the confidence and limitations of the simulation results, which can help
to make informed decisions. For example, in engineering applications, UQ can help to
determine the safety margins and design criteria, while in scientific applications, it can help
to evaluate the accuracy of the simulation results and guide further experimentation.

In the realm of computational science and engineering, uncertainty quantification (UQ)
analysis generally involves making (mostly probabilistic) predictions of the quantities of
interest (QoIs) under the presence of various uncertainties. Figure 1.3 presents the central
idea of UQ analysis in four major steps: quantification, propagation, certification and
calibration. In the following sub-sections we describe these steps in context of CFD followed
by an example - uncertainty quantification analysis of stochastic Burgers’ equation.

1.3.1. CHARACTERIZATION

The characterization step involves identifying and characterizing the potential sources of
uncertainty in the system. Depending on the nature of the uncertainty, it can be generally
categorized into aleatory and epistemic uncertainty. Aleatory uncertainties, also known as
the stochastic uncertainties, are deemed irreducible and can be considered as the natural
variability of the (stochastic) system. The epistemic uncertainties are reducible systematic
uncertainties and are associated with the lack of knowledge. In other words, with an increase
in knowledge, there is an improvement in the characterization of aleatory uncertainties
and reduction in the epistemic uncertainties. Every source of uncertainty can be modeled
as entirely aleatory, entirely epistemic or a combination of both [57, 98]. In general, the
aleatory uncertainty is described using probability density functions, whereas the epistemic
uncertainty is represented using approaches like interval analysis and evidence theory
[81, 87].

Various sources of uncertainty (or error) appearing in CFD are listed in Table 1.1 [81, 124].
In addition to the general categorization of uncertainties into aleatory or epistemic, these
sources of uncertainties can be broadly categorized into - model, parametric and numerical
uncertainties. The model uncertainty arise due to the assumptions used to model a physical
system using mathematical description, e.g. steady and/or laminar flow, incompressibility,
turbulent eddy viscosity etc. Additionally, simplifications resulting in auxiliary models
like the RANS turbulence models, further contribute towards the model uncertainties. The
parametric uncertainties corresponds to the model’s closure parameters that may vary based
on the CFD application (typical in turbulence modeling), initial and/or boundary conditions,
geometric representation etc. The numerical uncertainty is not only associated with the
finite decimal representation (approximations) of numbers but also with the contribution
of (reducible) errors from the spatial and temporal discretization of the partial differential
equations used to model the physical system.

Out of all the above mentioned sources of uncertainty, it is mostly observed that the
geometric uncertainty, the discretization error and the turbulence modeling are the largest
contributors towards the uncertainty in a modern CFD simulation [124].
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Sources Examples
Physical Modeling Inviscid Flow
(Assumptions in the PDEs) Viscous Flow

Incompressible Flow
Transition / Turbulent Flow

Auxiliary Physical Models Equation of State
Thermodynamics properties
Transport properties
Turbulence Models

Boundary & Initial Conditions Wall, e.g. roughness
Open, e.g. far-field
Free Surface

Discretization & Solution Truncation error – spatial and temporal
Iterative convergence – steady state, transient
Geometry Representation

Round-off Error Finite-precision arithmetic

Programming User Error

Table 1.1 | Various sources of uncertainty and error in computational fluid dynamics (source - [81, 124]).

1.3.2. PROPAGATION AND CERTIFICATION

The propagation step quantifies the uncertainty in the output (QoIs) in the presence of un-
certainty in the inputs and/or in the models (see section 1.3.1). Uncertainty quantification
in CFD involves characterizing and propagating the uncertainty through the numerical
simulation to evaluate the uncertainty (confidence) in the results [7, 35, 58, 105, 136]. Un-
certainty propagation approaches can be broadly classified into intrusive and non-intrusive
types. In the intrusive strategy the baseline mathematical model as well as the numerical
solver (code) are both modified. This may result in an highly accurate and efficient method,
although at a considerably high programming effort. The non-intrusive method is generally
a sampling based technique that considers the mathematical model (and its code) as a black
box model. This approach does not require modifications in the baseline solver but can be
computationally expensive if the black box model is expensive to evaluate (e.g. CFD solve).

Consider a general stochastic differential equation:

L (x , t ,ω; v (x , t ,ω)) = S(x , t ,ω), (1.1)

where L is usually a nonlinear differential operator consisting of space and/or time deriva-
tives (e.g. CFD model), v (x , t ,ω) is the solution and S(x , t ,ω) is the source term. The random
event ω represents the uncertainty in the system, introduced via uncertain parameters, the
operator, the source term, the initial/boundary conditions, etc. The complete probability
space is given by (Ω,A ,P ), where Ω is the sample space such that ω ∈Ω, A ⊂ 2Ω is the
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σ-algebra onΩ and P : A 7→ [0,1] is the probability measure on (Ω,A ).
Assuming that a baseline model (like a CFD code) exists that solves the deterministic

form of equation (1.1), we now explore various common approaches that can be used for
uncertainty propagation in the stochastic problem described above (1.1).

MONTE CARLO METHODS

Monte Carlo (MC) is the most straightforward sampling technique that can be used as non-
intrusive uncertainty propagation approach. In the MC method the samples are randomly
sampled from the input probability space i.e. from the joint probability density function
(PDF) of the input random variables. Thereafter, these sample are evaluated using a black
box model to compete the mean and the variance in the output QoIs. For the general
stochastic problem (1.1), using the MC method, the mean E and variance V of the output v
is approximates as

E[v (x , t ,ω)] ≈ 1

N

N∑
i=1

v (x , t ,ξi (ω)),

V[v (x , t ,ω)] ≈ 1

N −1

N∑
i=1

(
v (x , t ,ξi (ω))−E[v (x , t ,ω)]

)2

,

(1.2)

where N is the number of samples, ξi (ω) is the i th MC sample of the vector of d independent
random variables ξ= {ξ1, ...,ξd }, corresponding to d uncertain parameters and v (x , t ,ξi (ω))
is the output of the (deterministic) black box model at ξi (ω). The error decreases with 1/

p
N

and is independent of the number of input random variables. Besides its obvious advantages
of easy implementation, non-intrusiveness and dimensionality independence, the Monte
Carlo method generally requires a large number of samples. In the context of CFD, such a
large number of runs is infeasible and therefore cheaper yet accurate alternatives shall be
sought.

POLYNOMIAL CHAOS EXPANSION

Polynomial chaos (PC) expansion approach is based on the spectral decomposition of the
random variable f , in terms of basis polynomials containing randomness ψi (known a
priori) and the unknown deterministic expansion coefficients fi , as

f (x, q) =
∞∑

i=0
fi (x)ψi (q). (1.3)

The intrusive variant of PC expansion also known as intrusive polynomial chaos (IPC)
approach reformulates (expands) the original model resulting in (coupled) set of equations
for the PC coefficients (mode strengths) of the model output. One of the widely used IPC
methods used for the propagation of uncertainty is the Galerkin polynomial chaos method
[125] which provides the spectral representation of the stochastic solution and results into
higher order approximations of the mean and variance. Galerkin polynomial chaos method
is a non-statistical method where the uncertain parameter(s) and the solution become
random variables (fields). For the general stochastic problem (1.1), the random variables
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can be approximated using polynomial chaos (polynomial of random variables) as follow
[35]

v (x , t ,ω) ≈
P∑

i=0
v i (x , t )ψi (ξ(ω)). (1.4)

It is worth noting that the expansion (1.4) is indeed the decomposition of a random vari-
able into a deterministic component - the expansion coefficients v i (x , t ) and a stochastic
component - the random basis functions (polynomial chaoses) ψi (ξ(ω)). Based on the
dimension of ξ (which here is d) and the highest order n of the polynomials {ψi }, the infinite
summation can be truncated to P +1 = (d +n)!/(d !n!) terms. An important property of
the basis {ψi } is their orthogonality with respect to the joint PDF of the uncertain inputs,
〈ψiψ j 〉 = 〈ψ2

i 〉δi j . Here, δi j is the Kronecker delta and 〈·, ·〉 denotes the inner product in
the Hilbert space of the variables ξ, 〈 f (ξ)g (ξ)〉 = ∫

f (ξ)g (ξ)w(ξ)dξ. The weighting function
w(ξ) is indeed the probability density function of the uncertain parameters. Such polyno-
mials already exist for some standard distributions which can be found in the Askey scheme
[137]. For example, a Normal distribution leads to Hermite-chaos, while Legendre-chaos
corresponds to a Uniform distribution. For other commonly used distributions or any arbi-
trary distribution, one can for example use the Gram-Schmidt algorithm [127] to construct
the orthogonal polynomials. Substituting (1.4) in the general stochastic differential equation
(1.1), we obtain

L

(
x , t ,ω;

P∑
i=0

v iψi

)
≈ S. (1.5)

In order to ensure that the truncation error is orthogonal to the functional space spanned by
the basis polynomials {ψi }, a Galerkin projection of the above equation is performed onto
each polynomial {ψk },〈

L

(
x , t ,ω;

P∑
i=0

v iψi

)
,ψk

〉
= 〈S,ψk〉, k = 0,1, ...,P. (1.6)

After using the orthogonality property of the polynomials, we obtain a set of P +1 determin-
istic coupled equations for all the random modes of the solution {v 0, v 1, ..., v k }.

The non-intrusive variant of PC expansion also known as non-intrusive polynomial
chaos (NIPC) approach, unlike its intrusive counterpart, approximates the expansion co-
efficients v i (x , t ) instead of directly solving for them i.e. the projection in equation (1.6) is
approximated using numerical quadrature, with quadrature points and respective weights
based on the joint probability density function of the input uncertainty [44, 135]. This results
into a decoupled system of equations (similar to the deterministic equation) for each mode
of the polynomial expansion. The following linear system of equations is solved in order to
obtain the expansion coefficients:

ψ0(ξ0) ψ1(ξ0) · · · ψP (ξ0)
ψ0(ξ1) ψ1(ξ1) · · · ψP (ξ1)

...
...

. . .
...

ψ0(ξP ) ψ1(ξP ) · · · ψP (ξP )




v 0(x , t )
v 1(x , t )

...
v P (x , t )

=


v (x , t ,ξ0)
v (x , t ,ξ1)

...
v (x , t ,ξP )

 (1.7)

In contrast to the Monte Carlo method that samples randomly with equal sample weights,
NIPC method can be seen as a smarter (PDF-based) sampling technique with non-uniform
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weight distribution. For a polynomial chaos of order n with d random variables, the NIPC
method requires (n +1)d deterministic solves to approximate all the expansion coefficients.
Thus, the number of deterministic evaluations increase exponentially with the dimension-
ality of the input random space. Sparse-grid methods like Latin Hypercube sampling can
significantly reduce the number of samples to be evaluated using the deterministic solver.

Computing lower order moments is straightforward once the expansion coefficients
v i (x , t ) are obtained using any of the variants discussed above. The mean and the variance
of the solution are given by

E[v (x , t ,ω)] = v 0(x , t ),

V[v (x , t ,ω)] =
P∑

i=1
v 2

i (x , t )〈ψ2
i 〉.

(1.8)

Also, the probability distribution of the solution v (x , t ,ω) can be obtained using for example
kernel density estimation based on samples from the PC expansion.

Due to its properties like the high computational efficiency, exponential convergence,
accurate representation of uncertainty etc., the polynomial chaos expansion is regarded as
one of the most suitable alternatives to the Monte-Carlo methods [137].

SURROGATE BASED UNCERTAINTY PROPAGATION

In the realm of machine learning numerous methods are available to construct a surrogate
(response surface) using data. One such meta-model is an artificial neural network (ANN)
which generally involves regression of an arbitrary non-linear function f that maps input
to the output [8, 37]. In context of the general stochastic problem (1.1), for a given input
{x , t ,ξi (ω)} we would like to approximate v with the function f based on the weights w ,
such that

v (x , t ,ξi (ω)) ≈ f (x , t ,ξi (ω), w ). (1.9)

Note that for a steady state CFD simulation with fixed spatial coordinates of the mesh,
the above expression simplifies to v(ξi (ω)) ≈ f (ξi (ω), w ). An artificial neural network is
typically a network of nodes organized into layers and connected to one another which apply
the activation function g on the values gathered from the previous nodes. The activation
functions introduce non-linearity in the network and essentially avails the approximation
of arbitrary functions. Sigmoid, hyperbolic tangent and ReLU are a few most widely used
activation functions. The output of the i th node in the l th layer represented as ai ,l is
expressed as:

ai ,l = g

(nl−1∑
j=0

wi j ,l−1a j ,l−1

)
, (1.10)

where nl is the number of nodes per layer and a0,l is the bias for l th layer and is set to 1 for
all layers. All the degrees of freedom of the neural network (regular weights and biases) can
simply be denoted by a single weight vector w . Thus, the matrix representation of equation
(1.10) is of the form a l = g (Wl−1a l−1), with the activation function applied element-wise to
the input vector. The weights are computed by solving an optimization problem where the
loss function L(v , f (w )) is minimized usually under the presence of regularization to avoid
an over-fitted model.
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Once the surrogate model is constructed (and validated), we can, for instance, use a
Quasi Monte Carlo (QMC) sampling to compute the statistics like mean and variance of the
respective QoIs (see equation (1.2)). Note that techniques like QMC involve large number of
samples and wouldn’t be suitable for a direct UQ analysis using computationally expensive
CFD runs. However, using an accurate surrogate model makes is drastically cheaper to
evaluate these large number of samples.

The surrogate based uncertainty quantification outperforms Monte-Carlo methods by
offering higher computational efficiency, better scalability to high dimensions, adaptability
to complex response surfaces and seamless integration with optimization algorithms to
perform optimization under uncertainty [34, 59, 114].

SENSITIVITY ANALYSIS

A natural step that follows uncertainty propagation is the so-called sensitivity analysis,
in which the sources of uncertainty that have the most influence are identified while the
sources with least effect can be considered to be fixed at their nominal values during the
forward UQ problem [19, 41, 45, 72, 113, 124].

The sensitivity analysis can be carried out locally and/or globally. The local sensitivity
analysis include computing partial derivatives using e.g. adjoint methods or finite-difference
approximations. The global sensitivity analysis, on the other hand, include approaches
like analysis of variance (ANOVA) decomposition which in turn leads to the so-called Sobol
indices [106]. The first-order indices (also called the main-effect) measure the contribution
of each individual input variable to the output variance independently of interactions or
correlations with other variables. In other words, the first-order Sobol index measures the
main effect of a variable while keeping other variables fixed. The total-effect measure the
contribution of each input variable, including both its main effect and any interactions with
other variables, there by accounting for all possible effects of a variable, whether they are
independent or due to interactions with other variables.

In case of PCE the Sobol indices can be analytically determined once the coefficients
of the expansion are approximated [113]. In the surrogate based approach, on the other
hand, the sensitivities are computed numerically e.g. using a Quasi Monte Carlo sampling
to approximate the contribution of inputs and their interactions [106].

1.3.3. CALIBRATION

The experimental and the measurement/field data can be used to (re)calibrate the model
(e.g. RANS turbulence model) parameters to obtain an accurate (highly probable) ensemble
of predictions under uncertainties. This process of propagating the information from QoIs
(outputs) towards the inputs is seen as an inverse or backward problem and is commonly
known as calibration. Bayesian calibration is one of most common techniques to solve the
so-called inverse problem [54, 56, 94, 95]. In Bayesian calibration the uncertainty (aleatory
or epistemic) in the parameters to be calibrated is treated in the probabilistic sense and are
represented as random variables. Bayes’ formula is used to obtain the posterior (calibrated)
distribution of the random variables based on - (i) the assumed/modeled prior distribution
of the parameters, and (ii) the statistical model that can describe the relationship between
the computational model and the data. Note that the latter, in turn, results in a probability
density function known as the likelihood. Denoting the data as z, the model as M and the
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(random) model parameters as θ, a statistical model with an error ϵ can be expressed as
[54]:

zi =M (x , t ,θ)+ϵi , (1.11)

where the subscript represents the i th observation. The error term is usually a multi-variate
normal distribution. Using Bayes rule the posterior distribution ρ(θ|z) of the parameters
can be obtained as:

ρ(θ|z) = ρ(z|θ)ρ(θ)

ρ(z)
, (1.12)

where ρ(z|θ) is the likelihood, ρ(θ) is the prior and ρ(z) is the evidence. For a given sample,
computing the likelihood involves the evaluation of the computational model. It is possible
to obtain an explicit form (PDF) of the posterior for a linear computational model and
simpler statistical error. For a non-linear computational model (e.g. CFD) an explicit form of
likelihood is not known and one can only evaluate the posterior several times to approximate
its form. Markov chain Monte Carlo (McMC) methods are widely used as a smart sampling
strategy to sample from high probability region(s) of the posterior. Such methods, however,
requires large number of evaluation of the likelihood and are therefore less useful when the
non-linear model is, for example, a computationally expensive CFD solve. A feasible solution
would be to use a surrogate which can not only accurately represent the computational
model but is also cheap to evaluate. We have already discussed the use of PCE and machine
learning models for the purpose of uncertainty propagation. Similarly, these models can also
be used for calibration as well. Note that the calibration step can either be carried out after
the first three steps in Figure 1.3 or as an independent step directly after the characterization
step.

1.3.4. UQ ANALYSIS OF BURGERS’ EQUATION

In this section we present a UQ analysis example which highlights all the steps listed in the
previous section. For the sake of simplicity we consider a 1D viscous Burgers’ equation:

u
∂u

∂x
=µ∂

2u

∂x2 , x ∈ [−1, 1], (1.13)

where u is the velocity with u(∓1) =±1, andµ is the viscosity which is assumed to be random
with a uniform distribution U [0.05, 0.15]. The computational model M is based on finite
differences and approximates the velocity for a given (deterministic) viscosity.

For the uncertainty propagation we use all the four methods described in section 1.3.2. In
the Monte Carlo (MC) approach we employ 10,000 samples to obtain (a gradually converged)
estimate of the mean and variance of the velocity. The intrusive and the non-intrusive poly-
nomial chaos (IPC/NIPC) methods both use Legendre polynomials with highest polynomial
degree n = 2. The IPC method therefore solves three coupled equations in the expansion
coefficients using finite difference (≥ 3×M ) while the NIPC approach uses three deter-
ministic solves for the respective quadrature points (3×M ) to approximate the integrals
and in turn the expansion coefficients. The artificial neural network (ANN) consists of a
single hidden layer with 8 neurons where each node have a hyperbolic tangent activation
function. The input and the output layers have dimensions equal to the dimension of the
input space (here 1) and the dimension of the output (here mesh size), respectively. We
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used mean-squared-error loss function and Adam optimizer with a learning rate of 1e −2
with 16 training and 4 validation samples. The ANN runs for 500 epochs (iterations) before
convergence.

Figure 1.4 shows the comparison of all the four methods for characterization and forward
propagation of uncertainty in the viscosity. The uncertainty in the velocity due to the
randomness in the viscosity is denoted with the ±2 standard deviations bound and is
maximum near x = ±0.2. Any prediction (or realization) of the velocity falls well within
these stochastic bounds and adhere to the deterministic boundary conditions. Due to its
exponential convergence rate [137], both polynomial chaos expansion methods require
significantly low computational resources to reach the same level of accuracy as the Monte
Carlo method with large number of samples. In the IPC method we solve a system of only
three coupled equations for expansion coefficients. Similarly, in the NIPC method we require
only three deterministic solves to approximate expansion coefficients. Although the ANN
based propagation of uncertainty requires a higher number of deterministic solves than the
NIPC method, it is still significantly cheaper as compared to the MC method.

On the availability of observations (measurements) or high-fidelity data at certain loca-
tions in the domain, the calibration can be carried out using the surrogate based Bayesian
inference approach. For the problem at hand, the uncertainty in the input (random vis-
cosity) is updated using the (synthetic) noisy data followed by a forward propagation to
compute (and update) uncertainty in the velocity. Note that the forward propagation reuses
the previously constructed surrogate (ANN), thus allowing an inexpensive calibration. Fig-
ure 1.5 shows the prior, the noisy data and the posterior for both the random viscosity
and random velocity. The calibration resulted in an overall reduction of uncertainty in the
system.

1.4. UQ IN WIND ENERGY APPLICATIONS

Several wind energy studies have been performed to understand the effect of the input
parameters on the outputs. The influence of the variation in wind direction on the power
output of a wind farm was studied using LES simulations of the Horns Rev wind farm
for a number of inflow angles [91]. This work showed that the power output of the wind
farm is highly sensitive to the inflow wind direction. Since the probability distribution of
the inputs are not considered in such analysis, they are usually not termed as uncertainty
quantification despite the fact that they still deliver important results. A simple uncertainty
quantification analysis is e.g. presented in the study of the wake effects over a normally
distributed wind direction [32], where the measurement data is closely represented with
the quantities averaged over several simulations as compared to that with only single inflow
wind direction simulation. This study also asserts that, in addition to the inaccuracy of the
simulation model, the disagreements between the data and the simulations can also be
attributed to the significant uncertainty in the measurements.

One of the biggest advantage of using uncertainty quantification is to significantly
increase the accuracy and confidence in numerical simulations. However, in the context of
wind energy, such UQ analysis can incur a substantial computational cost if we look beyond
the previously used simpler and inexpensive wake models. Particularly, for the complex
RANS or LES models, analysis similar to the ones discussed above might not be feasible. We
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Figure 1.4 | Uncertainty propagation in stochastic Burgers’ equation using (a) Monte Carlo (10000 samples), (b)
Intrusive polynomial chaos (3 coupled equations), (c) Non-intrusive polynomial chaos (3 quadrature points), and
(d) Artificial neural network (16 training samples). Comparison of mean and standard deviation in (e) and (f). The

probability density function of the uncertain viscosity is given by ρ(µ).
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Figure 1.5 | Surrogate based Bayesian calibration of uncertainty in stochastic Burgers’ equation.

continue our discussion on the recently employed advanced uncertainty quantification and
propagation approaches in wind energy applications.

As discussed in section 1.3.2, several methods such as Monte-Carlo, polynomial chaos ex-
pansions and surrogate based approach can be used to propagate the uncertainties through
a CFD model. The influence of the wind speed, the surface roughness and the air density
on the wind energy potential was studied by [61] using the Monte-Carlo (MC) approach.
The uncertainties considered were characterized as non-Gaussian. Moreover, model form
uncertainty in the power performance is also included in their work. The MC method was
also used to study the effect of correlated uncertainties on the wind farm’s energy yield [24].
In [51], a normal distribution for the power curve with varying mean and fixed variance was
used in along with MC method for uncertainty quantification analysis. Moreover, based on
the histogram data, a joint probability distribution function for correlated wind speed and
wind direction is presented in [27], which is in turn used by a random search algorithm to
perform layout optimization. To overcome the computationally expensive MC method, one
could use the advanced uncertainty propagation methods. Both non-intrusive and intrusive
polynomial chaos expansion (PCE) methods have been used for UQ analysis in wind energy
applications. A Weibull distribution and a uniform distribution for the wind speed and
the wind direction, respectively, were used to construct the polynomial basis employed
in a PCE method to compute the uncertainty in the AEP of the wind farm [80]. A similar
approach was used in [84], where the analytic polynomial expression was used to optimize
an offshore wind farm’s layout. In their work, it was confirmed that the PCE is indeed a more
efficient integration rule (w.r.t. the probability density function) than the expensive MC
method. A common problem with PCE is the appearance of oscillations especially near the
discontinuities. This problem was alleviated by using lower order polynomials which was
in accordance with a course MC simulation [71, 97]. In their work, CFD simulations were
used to study the influence of uncertain wind speed and angle of attack on the pressure and
force coefficients of the turbine blades. The effect of randomness in the induction factor
and ground roughness on the power output of the wind farm using only a fourth order
polynomial chaos expansion provided results with higher accuracy than a MC approach
with large number of samples [31]. A stochastic Galerkin (intrusive PCE) method was used
in [29] to obtain a stochastic blade loading model which involved solving a single non-linear
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coupled system of equations instead of running a large number of deterministic solves. The
entire stochastic solution is computed at once and involves fairly simple post-processing
steps to compute the statistics. In a continued work [30], the authors used a reduced order
model based on a lower number of random variables to generate a turbulent wind field
which in turn is used as an input for the stochastic model in [29]. Recently machine learning
methods have gained popularity in UQ analysis of wind energy applications. Probabilistic
neural network were used in [53] to quantify the model or epistemic uncertainty of the
power curve estimation. The authors used a probabilistic loss function to estimate the
aleatoric uncertainty in the data. In [73], the effect of geometric uncertainties on the wind
turbine airfoil aerodynamics have been investigated. In that work, the authors developed
an artificial neural network based reduced order model to predict the load coefficients and
performance of wind turbine airfoils.

A data-driven approach can be adopted to incorporate the measurement or high-fidelity
simulation data for the calibration of the computational models used in wind turbine wake
modeling. In [115] the mixing length parameter of a RANS turbulence model was tuned
using LES data to obtain an efficient wake model. Similarly, the Jensen wake model was
calibrated using LES data and used in an optimization method to obtain optimal yaw settings
which were later tested in a LES study [33]. In [118], a finite element model of a turbine blade
was used to identify the parameters which had the most influence on the blade vibrations
(based on analysis of variance). Thereafter, these parameters were calibrated using McMC
during Bayesian inference. The finite element model was replaced with an inexpensive
surrogate model to reduce the computational cost of McMC based calibration.

Previously, for CFD simulations in general, major efforts have been made to quantify
the uncertainties in turbulence model via parametric approach, where the closure model
parameters are either perturbed or directly injected with randomness [18, 74, 85]. The short-
comings of this parametric approach have been recognized by the turbulence modeling
community and efforts are made towards the non-parametric approaches [82]. Commonly,
uncertainties in the Reynolds stress are introduced by perturbing its eigenvalues [22, 38],
eigenvectors [46] or tensor invariants [70, 132]. These low-dimensional global perturbation
methods assume a uniform distribution of randomness throughout the computational
domain which may result in an inaccurate estimation (mostly over-prediction) of the uncer-
tainties in the quantities of interest. Considerable effort is required in the development of
high-dimensional local perturbation methods for an accurate and detailed prediction of
uncertainties in CFD simulations.

In context of wind energy applications, most of the widely used turbulence models for
CFD simulations are inherently uncertain resulting in significant variance in the flow field
solutions [16, 133]. Additionally, the uncertainties in the boundary conditions that mimic
the real environmental conditions may also contribute to the inaccurate predictions [7].
Efforts have been made to study the influence of model form uncertainty in CFD simulations
of wakes in a wind farm, e.g. in [20, 43]. However, further investigation with multiple sources
of uncertainties (parametric and model form) to study their combined influence on the
performance of the wind turbines has not been made so far.
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1.5. RESEARCH OBJECTIVES

The overarching goal of this thesis is the development of methods for quantification and
propagation of parametric and model form uncertainties in CFD simulations. These meth-
ods are used to study the non-linear effects of the uncertainties on the quantities of interest,
particularly in context of wind farm simulations. The topics presented in this thesis can be
abridged as follows:

• Proposal, motivation and testing of a new IPC based stochastic solver over increasing
dimensionality of the randomness and/or the complexity of CFD simulations.

• Adaption of a deep learning method along with wake superposition principles to
facilitate the development of a surrogate model used for the prediction of the flow
field in a wind farm.

• Comparison of the IPC based solver and the surrogate based approach for the UQ
analysis in the prediction of wake interactions in a wind farm under the presence of
multiple sources and/or types of uncertainties.

1.6. THESIS STRUCTURE

The uncertainty quantification analysis of Burgers’ equation in section 1.3.4 superficially
reflects the idea of this thesis. In the upcoming chapters we investigate in detail the quantifi-
cation and propagation of different forms of uncertainties in various complex CFD problems
using the methods developed alongside.

In chapter 2, we present the formulation and implementation of a stochastic CFD solver
which employs Generalized Polynomial Chaos (gPC) expansion to (a) quantify the uncer-
tainties associated with the fluid flow simulations, and (b) study the non-linear propagation
of these uncertainties. In particular, the parametric uncertainties - random laminar viscosity
in the Poiseuille flow and random LES model parameter CS in turbulent channel flow are
characterized and propagated. A comparison with the non-intrusive counterpart is also
discussed.

In chapter 3, we present a more holistic approach to treat uncertainties in a CFD simula-
tion while still be able to use intrusive polynomial chaos method. We consider two distinct
high-dimensional variants of the uncertainties, namely, the random eddy viscosity field and
the random Reynolds stress tensor field. In contrast to the globally perturbed parametric
uncertainties these random fields allow for local perturbations that can be characterized
using the information from a baseline simulation. A stochastic RANS solver is developed and
tested on two benchmark problems for RANS turbulence modeling - the flow over periodic
hills and the flow in a square duct. A detailed investigation of the stochastic solver based on
several influential hyper-parameters is also presented.

After establishing the capabilities and exploring the potential applications of the physics-
based stochastic RANS solver in chapter 3, we make efforts towards developing a data-driven
approach using one of the state of the art deep learning methods. In chapter 4, we use
a 3D U-Net neural network (trained over single wind turbine data) combined with wake
superposition principles to construct a surrogate model which is capable of predicting
the flow field in a wind farm. This response surface is then used in a Surrogate-Based



18 1. INTRODUCTION

Uncertainty Quantification (SBUQ) approach. Using both the approaches, the IPC solver
and the SBUQ approach, a UQ analysis for the prediction of wake interactions in a wind
farm with mixed (parametric and model form) uncertainties is carried out. The results
obtained are compared and discussed in detail followed by an account on the advantages
and disadvantages of both the approaches.

A summary and conclusion of the work presented in chapters 2, 3 and 4 is given in
chapter 5, where we moreover provide some prospects and recommendations for future
research.



2
INTRUSIVE POLYNOMIAL CHAOS FOR

PARAMETRIC UNCERTAINTIES

The content of this chapter was published in J. Parekh and R. Verstappen. Intrusive Poly-
nomial Chaos for CFD Using OpenFOAM. In Computational Science – ICCS 2020, pages
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ABSTRACT: We present the formulation and implementation of a stochastic Compu-
tational Fluid Dynamics (CFD) solver based on the widely used finite volume library
- OpenFOAM. The solver employs Generalized Polynomial Chaos (gPC) expansion to
(a) quantify the uncertainties associated with the fluid flow simulations, and (b) study
the non-linear propagation of these uncertainties. The aim is to accurately estimate the
uncertainty in the result of a CFD simulation at a lower computational cost than the
standard Monte Carlo (MC) method. The gPC approach is based on the spectral decom-
position of the random variables in terms of basis polynomials containing randomness
and the unknown deterministic expansion coefficients. As opposed to the mostly used
non-intrusive approach, in this work, we use the intrusive variant of the gPC method in
the sense that the deterministic equations are modified to directly solve for the (coupled)
expansion coefficients. To this end, we have tested the intrusive gPC implementation for
both the laminar and the turbulent flow problems in CFD. The results are in accordance
with the analytical and the non-intrusive approaches. The stochastic solver thus devel-
oped, can serve as an alternative to perform uncertainty quantification, especially when
the non-intrusive methods are significantly expensive, which is mostly true for a lot of
stochastic CFD problems.

19



20 2. INTRUSIVE POLYNOMIAL CHAOS FOR PARAMETRIC UNCERTAINTIES

2.1. INTRODUCTION

In simulating a physical system with a model, uncertainties may arise from various sources
[124], namely, initial and boundary conditions, material properties, model parameters, etc.
These uncertainties may involve significant randomness or may only be approximately
known. In order to enhance the predictive reliability, it is therefore important to quantify the
associated uncertainties and study its non-linear propagation especially in CFD simulations.

In order to reflect the uncertainty in the numerical solution, we need efficient Uncer-
tainty Quantification (UQ) methods. Broadly there exists two classes of UQ methods, the
intrusive method, where the original deterministic model is replaced by its stochastic repre-
sentation, and the non-intrusive method, where the original model itself is used without any
modifications [66, 123]. Monte Carlo (MC) sampling is one of the simplest non-intrusive
approaches. However, due to its requirement of a large number of samples, MC method is
computationally expensive for application in CFD. As an alternative, we can use Generalized
Polynomial Chaos (gPC) representations which has been proven to be much cheaper than
MC [44, 124]. This approach is based on the spectral decomposition of the random variables
in terms of basis polynomials containing randomness and the unknown deterministic ex-
pansion coefficients. In this paper, we focus mainly on the Intrusive Polynomial Chaos (IPC)
method, where a reformulation of the original model is performed resulting in governing
equations for the expansion coefficients of the model output [138].

As the model code, we use OpenFOAM [25], which is a C++ toolbox to develop numer-
ical solvers, and pre-/ post-processing utilities to solve continuum mechanics problems
including CFD. OpenFOAM (a) is a highly templated code, enabling the users to customize
the default libraries as needed for their applications, and, (b) gives access to most of the
tensor operations (divergence, gradient, laplacian etc.) directly at the top-level code. This
avails enough flexibility to implement the IPC framework for uncertainty quantification in
CFD. To obtain the inner products of polynomials we use a python library called chaospy
[26], as a pre-processing step to the actual stochastic simulation.

First, the idea of generalized polynomial chaos is presented with a focus on the intru-
sive variant. A generic differential equation is used to explain the steps involved in IPC,
leading to a simple expression for the mean and variance as a function of the expansion
coefficients. Next, we present the set of deterministic governing equations followed by its
stochastic formulation using IPC. In particular, a Large Eddy Simulation (LES) method is
used to model turbulence, which includes an uncertain model parameter. Thereafter, we
discuss the algorithm and implementation steps required for the new stochastic solver in
OpenFOAM. The stochastic version of the Navier-Stokes equations has a similar structure
to the original system. This allows reusing the existing deterministic solver with minimal
changes necessary.

The stochastic solver developed so far is tested for various standard CFD problems. Here
we present two cases, the plane Poiseuille flow with uncertain kinematic viscosity, and the
turbulent channel flow with uncertain LES model parameter. The results are found to be in
accordance with the non-intrusive gPC method.
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2.2. GENERALIZED POLYNOMIAL CHAOS

The Generalized Polynomial Chaos approach is based on the spectral decomposition of the
random variable(s) f , in terms of basis polynomials containing randomnessψi (known a pri-
ori) and the unknown deterministic expansion coefficients fi , as f (x, q) =∑∞

i=0 fi (x)ψi (q).
There are two methods to determine the expansion coefficients, namely, the Intrusive
Polynomial Chaos (IPC) and the Non-intrusive Polynomial Chaos (NIPC). In IPC, a reformu-
lation of the original model is performed resulting in governing equations for the PC mode
strengths of the model output, while in NIPC, these coefficients are approximated using
quadrature for numerical evaluation of the projection integrals.

The level of accuracy of these methods can be associated with the degree of gPC. To
attain the same level of accuracy, particularly for a higher dimensional random space, IPC
requires the solution of a much fewer number of equations that needed for NIPC. Moreover,
for such a random space, the aliasing error resulting from the approximation of the exact
gPC expansion in the NIPC method can become significant. This suggests that, for a multi-
dimensional problem, the IPC method can deliver more accurate solutions at a much lower
computational cost than the NIPC method [135].

Since the current work is based on IPC, we would introduce here the important features
of the intrusive variant and we refer to the literature [35, 125, 137] for more details about
NIPC and gPC in general.

INTRUSIVE POLYNOMIAL CHAOS

In order to demonstrate the application of IPC, we first consider a general stochastic differ-
ential equation

L (x , t ,ω; v (x , t ,ω)) = S(x , t ,ω), (2.1)

where L is usually a nonlinear differential operator consisting of space and/or time deriva-
tives, v(x , t ,ω) is the solution and S(x , t ,ω) is the source term. The random event ω rep-
resents the uncertainty in the system, introduced via uncertain parameters, the operator,
source term, initial/boundary conditions, etc. The complete probability space is given by
(Ω,A ,P ), whereΩ is the sample space such that ω ∈Ω, A ⊂ 2Ω is the σ-algebra onΩ and
P : A 7→ [0,1] is the probability measure on (Ω,A ).

We now employ the Galerkin polynomial chaos method, which is an IPC method for the
propagation of uncertainty [125]. It provides the spectral representation of the stochastic
solution and results into higher order approximations of the mean and variance. Galerkin
polynomial chaos method is a non-statistical method where the uncertain parameter(s) and
the solution become random variables. These random variables are approximated using the
polynomial chaos (polynomial of random variables) as follow [35]

v (x , t ,ω) ≈
P∑

i=0
v i (x , t )ψi (ξ(ω)). (2.2)

It is worth noting that the expansion (2.2) is indeed the decomposition of a random
variable into a deterministic component, the expansion coefficients v i (x , t ) and a stochastic
component, the random basis functions (polynomial chaoses) ψi (ξ(ω)). Here, ξ(ω) is
the vector of d independent random variables {ξ1, ...,ξd }, corresponding to d uncertain
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parameters. Based on the dimension of ξ (which here is d) and the highest order n of the
polynomials {ψi }, the infinite summation has been truncated to P +1 = (d +n)!/(d !n!) terms.

An important property of the basis {ψi } is their orthogonality with respect to the prob-
ability density function (PDF) of the uncertain parameters, 〈ψiψ j 〉 = 〈ψ2

i 〉δi j . Here, δi j is
the Kronecker delta and 〈·, ·〉 denotes the inner product in the Hilbert space of the variables
ξ, 〈 f (ξ)g (ξ)〉 = ∫

f (ξ)g (ξ)w(ξ)dξ. The weighting function w(ξ) is the probability density
function of the uncertain parameters. Such polynomials already exist for some standard
distributions which can be found in the Askey scheme [137], for example, a Normal distribu-
tion leads to Hermite-chaos, while Legendre-chaos corresponds to a Uniform distribution.
For other commonly used distributions or any arbitrary distribution, one can for example
use Gram-Schmidt algorithm [127] to construct the orthogonal polynomials.

Substituting (2.2) in the general stochastic differential equation (2.1), we obtain

L

(
x , t ,ω;

P∑
i=0

v iψi

)
≈ S. (2.3)

In order to ensure that the truncation error is orthogonal to the functional space spanned by
the basis polynomials {ψi }, a Galerkin projection of the above equation is performed onto
each polynomial {ψk },〈

L

(
x , t ,ω;

P∑
i=0

v iψi

)
,ψk

〉
= 〈S,ψk〉, k = 0,1, ...,P. (2.4)

After using the orthogonality property of the polynomials, we obtain a set of P +1 determin-
istic coupled equations for all the random modes of the solution {v 0, v 1, ..., v k }. Following
the definition, the mean and the variance of the solution are given by

E[v ] =µv = v 0(x , t ), V[v ] =σ2
v =

P∑
i=1

v i (x , t )2〈ψ2
i 〉. (2.5)

As the coefficients v i (x , t) are known, the probability distribution of the solution can be
obtained.

2.3. GOVERNING EQUATIONS

We first discuss the governing equations in the deterministic setting. The Navier-Stokes
equations for an incompressible flow is given by

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u), ∇·u = 0, (2.6)

where u is the velocity, p is the pressure and ν is the kinematic viscosity.
In Large Eddy Simulation, the reduction in the range of scales in a simulation is achieved

by applying a spatial filter to the Navier-Stokes equations [99]. This results into

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u)−∇·τ, ∇·u = 0 (2.7)
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where u is the filtered velocity, p is the filtered pressure and τ= uu −u u is the so-called
subgrid-scale (SGS) stress tensor. The subgrid-scale stress tensor represents the effect of the
small (unresolved) scales on the resolved scales, and has to be modeled in order to close the
filtered Navier-Stokes equations.

A popular class of SGS models is the eddy-viscosity models. In order to take account of
the dissipation through the unresolved scales, the eddy-viscosity models, locally increases
the viscosity by appending the molecular viscosity with the eddy viscosity. Mathematically,
these models specify the anisotropic part of the subgrid-scale tensor as

τ− 1

3
tr(τ) =−2νt S, (2.8)

where νt is the eddy-viscosity and S = (∇u + (∇u)T )/2 is the resolved strain tensor. Substi-
tuting into the filtered momentum equation (2.6), we obtain

∂u

∂t
+ (u ·∇)u =−∇p +∇· ((ν+νt )∇u), (2.9)

where the incompressibility constraint is used to simplify the equation. The pressure here is
altered to include the trace term of equation (2.8).

Smagorinsky model [104] is one of the oldest and most popular eddy-viscosity SGS
model. The eddy viscosity of the Smagorinsky model is expressed as

νt =C 2
s∆

2|S|, (2.10)

where Cs is the Smagorinsky coefficient, ∆ is the LES filter width and |S| =
√

2S : S. It
should be noted that the coefficient Cs must be known prior to the simulation and is
usually adapted to improve the results [99]. For example, Cs = 0.2 is used for isotropic
homogeneous turbulence, while a value of Cs = 0.1 is used in case of channel flow. Similar
values (Cs ≃ 0.1−0.12) are realized from the shear flow studies based on experiments [83].

2.3.1. STOCHASTIC FORMULATION

Let us consider the Navier-Stokes Equations (2.6) with some uncertainty in the system. The
sources of the uncertainty considered here are boundary conditions, material properties
and model parameters. We employ the IPC method (see section 2.2) by presuming the
dimensionality (d) and probability density function of the uncertain random variables
{ξ1,ξ2, ...ξd } to be known, allowing us to construct the finite set of orthogonal polynomial
basis {ψi }.

In order to obtain a rather generic formulation, unless specified otherwise, we consider
uncertainty in all sources listed above. Thus, the associated polynomial chaos expansion
(PCE) for kinematic viscosity is given by

ν≈
P∑

i=0
νiψi (ξ). (2.11)

Note that the coefficients νi are assumed to be known. The dependence of the flow
variables, i.e. velocity and pressure, on the stochastic variables is expressed by the following
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PCEs

u(x , t ) ≈
P∑

i=0
ui (x , t )ψi (ξ), p(x , t ) ≈

P∑
i=0

pi (x , t )ψi (ξ), (2.12)

where ui and pi are the unknown polynomial chaos mode strengths of velocity and pressure
fields, respectively. For deterministic boundary conditions, ui and pi are all zero for i =
1,2, ...,P . In case of uncertain boundary conditions with a known (or modeled) probability
density function, ui and pi , for i = 0,1, ...,P , can be estimated.

Introducing these expansions in equations (2.6) and taking a Galerkin projection onto
each polynomial {ψk } while using the orthogonality of the polynomial chaos and finally di-
viding by 〈ψkψk〉, results, for k = 0,1, ...,P , into the following set of deterministic equations:

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j Mi j k =−∇pk +
P∑

i=0

P∑
j=0

∇· (νi∇u j )Mi j k , ∇·uk = 0, (2.13)

where Mi j k = 〈ψiψ jψk〉
〈ψkψk〉

. Note that the original system of equations (2.6) is transformed

into a system of (P +1) divergence-free constraints on velocity modes and (P +1) coupled
equations in velocity and pressure modes. A detailed discussion on the solution procedure
adopted for this large system of equations is deferred to section 2.4.

Similarly, for the filtered momentum equation (2.7) with Smagorinsky model for turbu-
lence, applying the above steps, results in

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j Mi j k =−∇pk +
P∑

i=0

P∑
j=0

∇· (νi∇u j )Mi j k

+
P∑

i=0

P∑
j=0

P∑
l=0

P∑
m=0

∇· (Csl Csm∆
2|S|i∇u j )Mi j kl m ,

(2.14)

where Mi j kl m = 〈ψiψ jψkψlψm〉
〈ψkψk〉

. Note that |S|2 = 2S : S, and applying the IPC steps to this

identity - using polynomial chaos expansion and projecting on each basis polynomial, we
obtain

P∑
i=0

P∑
j=0

|S|i |S| j Mi j k = 2
P∑

i=0

P∑
j=0

S i : S j Mi j k , (2.15)

where S i is the resolved strain tensor based on i th velocity mode. The above corresponds to
system of (P +1) non-linear equations in the unknown expansion coefficients of |S|. This

system is solved using Picard iterations with |S|i =
√

2S i : S i as the initial guess.

2.4. ALGORITHM AND IMPLEMENTATION

OpenFOAM uses the finite volume method (FVM) for the discretization of partial differential
equations [28]. Among the various fluid dynamic solvers offered by OpenFOAM, we choose
the solver called pimpleFoam [25], which allows the use of large time-steps to solve the
incompressible Navier-Stokes equations (2.6). This solver is based on the PIMPLE algorithm
for pressure-velocity coupling using Rhie and Chow type interpolation [49].
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Figure 2.1 | Evolution of modes (for P = 3) between two consecutive time-steps via sequential updating using
explicit iteration.

From the previous section, it can be realized that the system of governing equations
(2.14) for the evolution of the velocity and pressure modes uk , pk for k = 0,1, ...,P , has a
structure similar to the original deterministic Navier-Stokes equations (2.6). Due to the
coupling via convection and diffusion terms, the size of this new system is P +1 times its
deterministic version. It can be observed that the divergence-free velocity constraints are
decoupled and can be solved independently. Based on this observation, a fractional step
projection scheme has been previously implemented [67]. In the first fractional step, the
convection and diffusion terms are integrated followed by enforcing the divergence-free
constraints in the second fractional step.

Our approach of the stochastic solver is based on the development of the existing de-
terministic solver (pimpleFoam) such that it can accommodate and solve (P +1) coupled
Navier-Stokes like systems in uk , pk for k = 0,1, ...,P . We solve each of these systems se-
quentially, by using the initialized/updated velocity and pressure modes, and repeat until
convergence. Figure 2.1, provides a graphical representation of this approach. Depending
on the type of flow, the value of P and a few other parameters; it usually takes about 3−6
explicit iterations (Ie ) to realize convergence at every time-step. The default value of Ie is
set to P +1. Following the conventions of OpenFOAM, we call this solver, gPCPimpleFoam.
In contrast to the fractional step scheme, this approach admits better stability, stronger
coupling and faster convergence; with an efficient data management and minimal changes
in the exiting solver.

In Figure 2.2, we highlight the most important steps needed to develop gPCPimpleFoam,
over the existing solver, pimpleFoam. In contrast to the deterministic solver, two nested
loops are introduced. The first loop is over the explicit iterations (Ie ), which updates the
mode strengths between the two consecutive time-steps. For every explicit iteration, the
second nested loop solves the Navier-Stokes like system (uk , pk ) for each mode strength
k, while employing the existing, however modified, structure of the PIMPLE scheme. The
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Figure 2.2 | Important steps of the algorithm implemented in the gPCPimpleFoam solver.

modifications are inevitable due to the summations in the convection and the diffusion
terms of the stochastic equations. It is realized that the mean mode (u0, p0) changes slowly
as compared to the other modes. Thus, in order to increase the stability, we start solving
the last system (uP , pP ) first, and updating all the modes before solving the first system (0th

mode) representing the mean.
In addition to the exiting modules, we require to either modify or create some completely

new routines for turbulence, pre- and post- processing etc. Restricting the verbosity, we
attempt to provide an overview of the major implementation steps: (a) Creation of new vari-
ables (vectors) for the list of mode strengths of all the uncertain parameters, flow variables
and derived variables for post-processing, (b) For the solver to read these inner products
(obtained using chaospy library [26]), only a small routine is added. Another similar lines of
code are added to read in the values of d ,n, Ie , etc, (c) Very subtle changes are needed in the
transport model in order to read in the transport properties for all the mode strengths. To
accommodate for reading and initializing the turbulence models, a few minor changes are
made in the LES model library. Significant changes are required specially for the Smagorin-
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sky model which allows automatic reading of all the mode strengths of Cs from the input file,
and (d) To estimate the mean and the variance of flow variables and other derived quantities,
a separate routine is added to the post-processing step of the solver. We use the IPC steps
to calculate the derived quantities (like Reynolds Stresses) using the resolved expansion
coefficients of the flow variables and the known coefficients of other parameters.

The order of accuracy and the convergence rate are governed by the large variety of space
and time discretization schemes and iterative solvers offered by the OpenFOAM library.

2.5. TEST CASES

2.5.1. PLANE POISEUILLE FLOW

We first consider a 2D steady laminar flow in long rectangular channel (with a height of
2δ) in the absence of any external forces. For a given average inlet velocity uav g , the fully
developed flow has an analytical solution known as the Hagen-Poiseuille solution.

u(x, y) = 3

2
uav g

[
1−

( y

δ

)2
]

, v(x, y) = 0,
∂p

∂x
=−3νuav g

δ2 ,
∂p

∂y
= 0. (2.16)

Therefore, the velocity field is independent of the viscosity and at y = 0, u = umax = 3
2 uav g .

We assume the boundary condition to be deterministic and presume a known PCE for
the uncertain kinematic viscosity, ν=∑P

i=0νiψi (ξ). Also, we consider a Gaussian random
variable to model the viscosity, for which the associated polynomial chaoses ψi (ξ), are the
Hermite polynomials. Using PCE of pressure gradient and random viscosity, for i = 0,1, ...,P ,
we obtain

∂pi

∂x
=−3uav g

δ2 νi . (2.17)

The use of polynomial chaos for incompressible laminar flow in a 2D channel has been
previously investigated [67], and as a validation case, we carry out a similar study with the
IPC solver developed using OpenFOAM.

A uniform velocity is used at the inlet with no-slip boundary conditions at the top and
bottom walls, and the gradient of velocity is set to zero at the outlet. Note that the use
of deterministic boundary condition implies, for i = 1, ...,P , the unknown mode strength
and/or their derivatives are by default set to zero at the boundaries. The Reynolds number,
Re = 2δuav g /ν0, is set to 100. Fifth-order 1D Hermite polynomials are employed for all the
PCEs, i.e. P = 5. The coefficient of variation (CoV =σ/µ) for the uncertain viscosity is set
to ∼ 20 %, with ν1/ν0 = 2×10−1 and ν2/ν0 = 8×10−5. The remaining mode strengths of
viscosity are assigned a value of zero. The simulation is performed in a domain with L/δ= 50
and a 250×100 mesh with a near-wall grading. Second-order discretization schemes are
used both in space and time, and time-step size ∆t = 10−2δ/uav g is specified.

Figure 2.3 shows the profile of the mean and the standard deviation of velocity. The
mean depicts the gradual transition in the flow along the channel length from a uniform
inlet profile to a parabolic profile with maximum on the centerline. The uncertainty in
velocity at inlet is zero, which is indeed the consequence of the deterministic boundary
condition. In the developing region, a higher standard deviation is realized in the channel
center as well as in the boundary layer with two lobes close to the walls. A significant
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Figure 2.3 | Profiles of the mean and the standard deviation of velocity.

variation in the modes (and thus the standard deviation) is realized up to 10−12 channel
half-widths and further downstream, these modes become less significant. Figure 2.4
provides the axial velocity profile with confidence region (±2σ) at different locations in the
downstream direction. The uncertainties tend to zero in the fully developed region, which
is in accordance with the theory where the velocity is independent of the viscosity (see
equation (2.16)). Figure 2.5 shows the estimated ratios of the modes of pressure gradient
with respect to the mean pressure gradient along the channel centerline. Clearly, after the
recirculating regions near the channel inlet, these ratios gradually reach their constant
values further downstream. For x/δ> 20, the results are identical to analytical predictions
(see equation (2.17)), characterizing the uncertainty in pressure due to the uncertainty in
viscosity. Velocity mode strengths are shown in Figure 2.6. As evident, the results from the
intrusive variant are in accordance with the non-intrusive counter-part, and due to the fast
spectral convergence of the polynomial chaos representation, the magnitudes of the modes
decrease as P increases.

2.5.2. TURBULENT CHANNEL FLOW

A turbulent channel flow is a theoretical representation of a flow driven by a constant
pressure gradient between two parallel planes extending infinitely. A 3D schematic is shown
in Figure 2.7. Since the computational domain has to be finite, in addition to channel width
h, we fix the stream- and span- wise truncation lengths, lx and lz , respectively. The values
of h, lx and lz are adopted from [13]. These values ensures that the computational domain
is large enough to accommodate the turbulent structures in the flow.

In order to maintain an equivalent flow, instead of the pressure gradient, the bulk

velocity can also be prescribed, Ub = 1
h

∫ h
0 〈u〉d y . The bulk Reynolds number is then defined

as Reb = hUb/ν. In context of turbulent channel flows, another characteristic velocity called
the friction velocity is usually introduced in terms of the wall shear stress τw and the fluid
density ρ, as uτ =

√
τw /ρ. The friction Reynolds number is then defined as Reτ = δuτ/ν,

where δ= h/2 is the channel half-width. Then the pressure gradient and the wall shear stress

relates as −d p̃
d x = τw

δ , where p̃/ρ = p. Thus we have a choice between prescribing the bulk
Reynolds number via bulk velocity and the friction Reynolds number via pressure gradient.
Since we have to study the effect of the uncertain model parameter on the flow profile, we
decide to fix the pressure-gradient and compute Ub through (stochastic) simulation.

The stochastic LES Smagorinsky model, as discussed in section 2.3, is employed to solve
for the turbulence. Since the model parameter CS may take a range of values, we assume it
to be uncertain with a known PCE. We consider a Uniform random variable to model the
parameter, for which the associated polynomial chaosesψi (ξ) are the Legendre polynomials.
Table 2.1 summarizes the physical parameters used in the deterministic and stochastic
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Figure 2.4 | Normalized axial velocity profiles at
different cross-sections.

Figure 2.5 | Pressure gradient ratios along the
centerline.

Figure 2.6 | Modes strengths of velocity at x/δ= 2, for IPC (blue) and NIPC (red) methods.

simulations. 1D third-order Legendre polynomials are used for all the PCEs. The value of CS1

is set equal to the standard deviation, while the remaining mode strengths of CS are assigned
a value of zero. Periodic boundary condition are applied in the stream- and span-wise
directions, while no-slip boundary condition is used at the walls. The simulation results will
be compared to the Direct Numerical Simulation (DNS) data from [79] at Reτ = 395. Based
on the study of the effect of computational grid size from [13], we use a reasonably fine mesh
with the details in Table 2.1. Note that ∆x+ =∆xuτ/ν, ∆z+ =∆zuτ/ν and y+ = yuτ/ν, are
calculated using value of uτ, corresponding to the value of Reτ in the DNS database. In order
to capture the sharp gradients in the near-wall region, we specify a grading along y direction.
We use the van Driest damping function to correct the behavior of the Smagorinsky model
in the near-wall region [13].

Figure 2.8 presents the normalized time-averaged streamwise component of the velocity
along with the mean and the confidence interval. The profile is compared with the DNS
data, the deterministic solution (DET) at the mean value of CS and also with the results
from non-intrusive polynomial chaos. The stochastic mean from IPC is found to be close
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Parameter Value Units
Kinematic viscosity (ν) 2×10−5 m2s−1

Pressure gradient (−d p0/d x) 5×10−5 ms−2

Target Reynolds number (Reτ) 395 -
Smagorinsky parameter (CS ) U (0.075,0.125) -

Mesh Cells along x, y, z Total cells ∆x+ ∆z+ y+

M1 80×100×60 480000 19.75 13.16 0.96

Table 2.1 | Details of the physical parameters and the computational mesh.

to DET and mean of NIPC, and deviates slightly from DNS in the same manner as the DET
solution. In contrast to IPC, the NIPC approach under predicts the variance. The uncertainty
in the LES model parameter is reflected in the solution in the regions close to the wall and
the channel center. In Figure 2.9 the normalized square-root of the second order velocity
moments and Reynolds shear stress are plotted together with their confidence regions. As
evident, the stochastic mean of stresses are close to that of NIPC and DET solution. The
deviation from DNS can mainly be attributed to the use of a relatively coarse mesh and the
choice of LES model. Both the IPC and NIPC methods predicts high variance near the wall,
with almost zero uncertainty in the channel center. This is expected as the Smagorinsky
model parameter, when changed, usually affects significantly near the wall as compared
to the channel center. While, the confidence region of intrusive method mostly overlaps
with that of the non-intrusive counterpart, in some regions, NIPC still underestimates the
uncertainty.

2.6. CONCLUSIONS

The IPC method, as it involves solving a lesser number of equations than NIPC, can be
of great use when the deterministic simulation is already computationally expensive. To
develop an IPC solver it is important to efficiently decouple the system of equations and
ensure the overhead due to coupling is not significant.

In this work, intrusive polynomial chaos for CFD simulations using a popular finite-
volume library OpenFOAM was presented. The aim was to use the existing deterministic
solver for the incompressible Navier-Stokes equations, to develop a new stochastic solver
for the quantification of the uncertainties involved and study its non-linear propagation.

To this end, we tested this solver for various standard CFD problems involving laminar
and turbulent flows. The plane Poiseuille flow with uncertain kinematic viscosity was
discussed first. Here, we realized a significant effect of the uncertainty in the re-circulation
region of the flow. The results were also compared with the non-intrusive counterpart
with same polynomial order. The results from IPC were found to be very close to NIPC,
verifying its implementation using OpenFOAM. Next, we examined the turbulent channel
flow with uncertain LES model parameter. The results were found to be in accordance with
the non-intrusive gPC method. Deviations in the variance predicted by the two variants of
gPC approaches can be attributed to the use of the two very different numerical methods to
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Figure 2.7 | Graphical representation of the turbulent
channel flow.

Figure 2.8 | Normalized time-averaged streamwise
component of velocity.

Figure 2.9 | Normalized square-root of the second order velocity moments (left) and normalized Reynolds shear
stress (right). [Legend: Figure 2.8]

estimate the expansion coefficients in both variants.
Through this work, for UQ in CFD, we bring to light an alternate to the MC and the NIPC

approaches. The promising results obtained from IPC method encourages to further pursue
research in this direction. Pseudo-spectral methods along with early truncated expansions
will be some next steps to reduce the computational cost.





3
QUANTIFICATION AND PROPAGATION

OF MODEL-FORM UNCERTAINTIES

The content of this chapter was published in J. Parekh and R. Verstappen. Quantification
and propagation of model-form uncertainties in RANS turbulence modeling via intrusive
polynomial chaos. International Journal for Uncertainty Quantification., 13:1–29, 2023.

ABSTRACT: Undeterred by their inherent limitations, Reynolds-Averaged Navier-Stokes
(RANS) based modeling is still considered the most recognized approach for several
Computational Fluid Dynamics (CFD) applications. Recently, in the turbulence mod-
eling community, quantification of model-form uncertainties in RANS has attracted
significant interest. We present a stochastic RANS solver with an efficient implemen-
tation of the Intrusive Polynomial Chaos (IPC) method in OpenFOAM. The stochastic
solver quantifies and propagates the uncertainties associated with the output of the
RANS model (eddy viscosity or Reynolds-stress-tensor). Two distinct high-dimensional
variants of the uncertainties are considered, namely, the random eddy viscosity field
(REVF) and the random Reynolds stress tensor field (RRSTF). The randomness is intro-
duced in the approximated eddy viscosity field and the Reynolds stress tensor, while
asserting the realizability [100, 134]. The stochastic RANS solver has been tested on
various benchmark problems for RANS turbulence modeling. In this study, we discuss
two important problems where the stochastic RANS solver shows significantly better
performance than the traditional Uncertainty Quantification (UQ) methods. The first
problem analyzed is the flow over periodic hills with a REVF, while the second stochastic
problem considered is the flow in a square duct with a RRSTF. Along with the compar-
ison for three different RANS turbulence models, a detailed analysis of the stochastic
solver based on various influential model parameters is also presented. The IPC based
stochastic solver demonstrated the potential to be used in the UQ analysis of further
complex CFD applications, especially when a large number of deterministic simulations
is not feasible, e.g. windfarm CFD simulations.

33
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3.1. INTRODUCTION

The Reynolds-Averaged Navier-Stokes (RANS) based turbulence models are the most com-
mon choice for reasonably accurate and cost-effective simulation of several Computational
Fluid Dynamics (CFD) applications involving turbulent flows. A lot of these predictions
contain uncertainties due to the modeling of the Reynolds stresses which combines the
mean flow with the small-scale turbulence [82]. The coefficients in a RANS turbulence
model are often calibrated for certain types of flows with various modeling assumptions,
and therefore a particular model can’t be employed to the entire class of turbulent flows.

Previously, a large number of efforts have mostly focused on quantifying the uncer-
tainties in RANS turbulence model via parametric approach, where the closure model
parameters are either perturbed or directly injected with randomness [18, 74, 85]. Recently,
the shortcomings of this parametric approach have been recognized by the turbulence
modeling community and efforts are made towards the non-parametric approaches [82].
Commonly, uncertainties in the Reynolds stress are introduced by perturbing its eigenvalues
[22, 38], eigenvectors [46] or tensor invariants [70, 132]. Methods involving perturbations
of the closure model parameters, eigenvalues, eigenvectors and invariants of the Reynolds
stress tensor can be classified as global perturbation method as the randomness is uniformly
introduced throughout the computational domain. As a consequence, the resulting UQ
problem turns into a low-dimensional forward problem that can be solved efficiently via
traditional UQ methods [22, 70, 82]. A major drawback of these low-dimensional global
methods is the inaccurate estimation (mostly over-prediction) of the uncertainties in the
Quantities of Interest (QoIs), resulting from the assumption of globally uniform input ran-
domness.

Recent studies on RANS model-form UQ have employed two different high-dimensional
local perturbation methods. Here, the uncertainty is characterized via, (a) Random Eddy
Viscosity Field (REVF) with randomness injected directly into the modeled eddy viscosity
field using Gaussian random field with an assumed spatial covariance [60], or (b) Random
Reynolds Stress Tensor Field (RRSTF) modeled using spatially correlated positive-definite
random matrices ensuring realizability of the modeled Reynolds stress [9, 129, 134]. The
REVF method considers uncertainties arising from the imprecise closure model parameters
or from the model-form uncertainties. While the RRSTF approach accounts for the scenarios
where the Boussinesq approximation fails or is inapplicable.

Several approaches have been developed to quantify and propagate uncertainties
in stochastic simulations. These approached include, moment method, interval analy-
sis method, sensitivity derivative method, Monte Carlo (MC) method, polynomial chaos
method, and more recently data-driven methods [124, 128]. Conventional UQ methods
like Monte Carlo (MC) and its variants require thousands of samples, which makes them
impractical for use, especially for the computationally expensive deterministic CFD sim-
ulations. The Generalized Polynomial Chaos (gPC) method serves as a better alternative
to MC method, as it has been proven to show exponential convergence at a significantly
lower computational cost [44, 125]. Many researchers have implemented gPC for a range
of CFD problems including laminar, turbulent, compressible and incompressible flows
[44, 124, 125, 138]. In the gPC method, the random variable is represented in terms of a
polynomial expansion. The two methods to determine the expansion coefficients are - the
Intrusive Polynomial Chaos (IPC) method and the Non-intrusive Polynomial Chaos (NIPC)
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method. In the case of the IPC method, the unknown expansion coefficients are computed
(solved for) by projecting the resulting set of equations on orthogonal polynomials (basis
functions). This requires modifications to the existing deterministic solver to account for
the coupling of the expansion coefficients. On the other hand, the NIPC method avoids
any modifications to the deterministic solver by employing various sampling or quadrature
methods. However, to achieve an equivalent level of accuracy, specifically for a higher
dimensional random space, NIPC requires a large number of deterministic solves than the
number of equations to be solved in the IPC approach. Moreover, for such a random space,
using NIPC method can result into a significant aliasing error from the approximation of the
exact gPC expansion. Thus, for a multi-dimensional problem, the IPC method can deliver
more accurate solutions at a much lower computational cost than the NIPC method [135].

In the current work, we primarily focus on the use of IPC method for quantification
and propagation of RANS based model-form uncertainties. We present an efficient im-
plementation of the coupled stochastic RANS solver based on the IPC method using an
existing (deterministic) incompressible flow solver. As a model code for the simulations,
we use OpenFOAM [25], which is basically a C++ toolbox used for developing numerical
solvers, along with pre-/post-processing utilities to solve continuum mechanics problems.
OpenFOAM (a) is a highly templated code, that allows the users to customize the default
routines as needed for their applications, and, (b) provides access to frequently used tensor
operations (gradient, divergence, laplacian, etc.) directly at the top-level code. This avails
enough flexibility to implement the IPC framework for UQ analysis in CFD. The stochastic
RANS solver numerically solves a coupled system of equations in order to estimate the
moments (mean and variance) of the QoIs. The number of equations, and hence the conver-
gence and computational cost depends on various solver parameters. The sensitivity of the
predicted stochasticity w.r.t. these parameters is studied in detail. Techniques to overcome
the so-called curse of dimensionality, comparison of stochasticity in different turbulence
models and reduction of uncertainty via data assimilation are also presented in this work.
The stochastic solver developed so far is capable of delivering an accurate prior for Bayesian
approaches employed for data-assimilation and calibration process in turbulence modeling.

The next sections of the paper are structured as follows. Section 3.2 describes the gPC
methods with emphasis on the intrusive variant. In section 3.3, we introduce the different
RANS turbulence models. The stochastic formulation of the random eddy viscosity field
and the random Reynolds stress tensor field is presented in section 3.4. In section 3.5, we
discuss the algorithm and the implementation of the stochastic RANS solver based on an
existing deterministic solver in OpenFOAM. The numerical results obtained for two different
turbulent flow benchmark problems – flow over periodic hills with REVF and flow in a square
duct with RRSTF are discussed in section 3.6. Section 3.7 concludes the paper.

3.2. GENERALIZED POLYNOMIAL CHAOS

The Generalized Polynomial Chaos approach is based on the spectral decomposition of the
random variable(s) f , in terms of basis polynomials containing randomnessψi (known a pri-
ori) and the unknown deterministic expansion coefficients fi , as f (x, q) =∑∞

i=0 fi (x)ψi (q).
The two methods to determine the expansion coefficients are - the Intrusive Polynomial
Chaos (IPC) method and the Non-intrusive Polynomial Chaos (NIPC) method. In the IPC
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method, the original model is reformulated resulting in governing equations for the PC
mode strengths (coefficients) of the model output. While in the NIPC method, these co-
efficients are approximated using quadrature for numerical evaluation of the projection
integrals. The level of accuracy of these methods can be associated with the chosen degree
of the polynomials in gPC.

3.2.1. INTRUSIVE POLYNOMIAL CHAOS

In order to demonstrate the application of IPC, we first consider a general stochastic differ-
ential equation

L (x , t ,ω; v (x , t ,ω)) = S(x , t ,ω), (3.1)

where L is usually a nonlinear differential operator consisting of space and/or time deriva-
tives, v(x , t ,ω) is the solution and S(x , t ,ω) is the source term. The random event ω rep-
resents the uncertainty in the system, introduced via uncertain parameters, the operator,
source term, initial/boundary conditions, etc. The complete probability space is given by
(Ω,A ,P ), whereΩ is the sample space such that ω ∈Ω, A ⊂ 2Ω is the σ-algebra onΩ and
P : A 7→ [0,1] is the probability measure on (Ω,A ).

We now employ an IPC method for the propagation of uncertainty - the Galerkin polyno-
mial chaos method [125]. It provides the spectral representation of the stochastic solution
and results into higher order approximations of the mean and variance. Galerkin polynomial
chaos method is a non-statistical method where the uncertain parameter(s) and the solution
become random variables. These random variables are approximated using the polynomial
chaos (polynomial of random variables) as follow [35]

v (x , t ,ω) ≈
P∑

i=0
v i (x , t )ψi (ξ(ω)). (3.2)

It is worth noting that the expansion (3.2) is indeed the decomposition of a random variable
into a deterministic component, the expansion coefficients v i (x , t ) and a stochastic compo-
nent, the random basis functions (polynomial chaoses) ψi (ξ(ω)). Here, ξ(ω) is the vector
of d independent random variables {ξ1, ...,ξd }, corresponding to d uncertain parameters.
Based on the dimension of ξ (which here is d) and the highest order n of the polynomials
{ψi }, the infinite summation has been truncated to P +1 = (d +n)!/(d !n!) terms.

An important property of the basis {ψi } is their orthogonality with respect to the prob-
ability density function (PDF) of the uncertain parameters, 〈ψiψ j 〉 = 〈ψ2

i 〉δi j . Here, δi j is
the Kronecker delta and 〈·, ·〉 denotes the inner product in the Hilbert space of the variables
ξ, 〈 f (ξ)g (ξ)〉 = ∫

f (ξ)g (ξ)w(ξ)dξ. The weighting function w(ξ) is the probability density
function of the uncertain parameters. Such polynomials already exist for some standard
distributions which can be found in the Askey scheme [137] . For example, a Normal distribu-
tion leads to Hermite-chaos, while Legendre-chaos corresponds to a Uniform distribution.
For other commonly used distributions or any arbitrary distribution, one can for example
use the Gram-Schmidt algorithm [127] to construct the orthogonal polynomials.

Substituting (3.2) in the general stochastic differential equation (3.1), we obtain

L

(
x , t ,ω;

P∑
i=0

v iψi

)
≈ S. (3.3)
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In order to ensure that the truncation error is orthogonal to the functional space spanned by
the basis polynomials {ψi }, a Galerkin projection of the above equation is performed onto
each polynomial {ψk },〈

L

(
x , t ,ω;

P∑
i=0

v iψi

)
,ψk

〉
= 〈S,ψk〉, k = 0,1, ...,P. (3.4)

After using the orthogonality property of the polynomials, we obtain a set of P +1 determin-
istic coupled equations for all the random modes of the solution {v 0, v 1, ..., v k }. Following
the definition, the mean and the variance of the solution are given by

E[v ] =µv = v 0(x , t ), V[v ] =σ2
v =

P∑
i=1

v 2
i (x , t )〈ψ2

i 〉. (3.5)

As the coefficients v i (x , t) are known, the probability distribution of the solution can be
obtained.

3.2.2. NON-INTRUSIVE POLYNOMIAL CHAOS

Unlike the intrusive polynomial chaos, its non-intrusive counterpart approximates the poly-
nomial expansion coefficients v i (x , t ) instead of directly solving for them i.e. the projection
in equation (3.4) is approximated using numerical quadrature, with quadrature points and
respective weights based on the joint probability density function of the input uncertainty.
This results into a decoupled system of equations (similar to the deterministic equation)
for each mode of the polynomial expansion. For a polynomial chaos of order n with d
random variables, the NIPC method requires (n +1)d deterministic solves to approximate
all the expansion coefficients. As noted, the number of deterministic evaluations increase
exponentially with the number of random dimensions. Sparse-grid methods like Latin
Hypercube sampling can significantly reduce the number of samples to be evaluated using
the deterministic solver. The following linear system of equations is solved in order to obtain
the expansion coefficients:

ψ0(ξ0) ψ1(ξ0) · · · ψP (ξ0)
ψ0(ξ1) ψ1(ξ1) · · · ψP (ξ1)

...
...

. . .
...

ψ0(ξP ) ψ1(ξP ) · · · ψP (ξP )




v 0(x , t )
v 1(x , t )

...
v P (x , t )

=


v (x , t ,ξ0)
v (x , t ,ξ1)

...
v (x , t ,ξP )

 (3.6)

As mentioned earlier, the stochastic solution is obtained as soon as we solve for the
expansion coefficients using equation (3.5). Further discussion on NIPC is deferred to the
extensive literature [44, 135].

3.2.3. GLOBAL SENSITIVITY ANALYSIS WITH SOBOL INDICES

In order to determine the relative influence of each random variable on the QoIs we can
employ a global sensitivity analysis based on a variance-based approach called Sobol indices
method [106]. Once the coefficients of the polynomial chaos expansion are determined, the
computation of the Sobol indices is straight-forward. The total variance (D) in terms of the
expansion coefficients can be written as:
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D = V[v ] =
P∑

i=1
v 2

i (x , t )〈ψ2
i 〉, (3.7)

which can be decomposed as [113]:

D =
i=d∑
i=1

Di +
i=d−1∑

1≤i< j≤d
Di , j +

i=d−2∑
1≤i< j<k≤d

Di , j ,k + ·· · + D1,2,··· ,d , (3.8)

where (Di1,··· ,is ) are partial variances given by

Di1,··· ,is =
∑

β∈{i1,··· ,is }
v 2
β(x , t )〈ψ2

β〉, 1 ≤ i1 < ·· · < is ≤ d . (3.9)

The Sobol indices (Si1,··· ,is ) are then defined as

Si1,··· ,is =
Di1,··· ,is

D
, (3.10)

such that,

i=d∑
i=1

Si +
i=d−1∑

1≤i< j≤d
Si , j +

i=d−2∑
1≤i< j<k≤d

Si , j ,k + ·· · + S1,2,··· ,d = 1 (3.11)

Thus, the Sobol indices basically measures the combined sensitivity arising from the
each random variable contribution (Si ) and from contribution due to their interactions
(Si , j ,Si , j ,k , ...). The combined effect of an uncertain variable with index i is therefore defined
as the sum of the partial Sobol indices that includes the contribution from the ith variable

STi =
∑
Li

Di1,··· ,is

D
; Li = {(i1, · · · , is ) : ∃k,1 ≤ k ≤ s, ik = i }. (3.12)

Thus, the Sobol indices (STi ) can be used to estimate and compare the contribution of
each uncertain parameter towards the uncertainty in QoIs.

3.3. DETERMINISTIC TURBULENCE MODELS

The Navier-Stokes equations for an incompressible flow are given by

∇·u = 0,

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u),

(3.13)

where u is the velocity, p is the pressure and ν is the kinematic viscosity. Solving these
equations for turbulent flows, in general, involves resolving a range of scales of motion
which is very expensive to compute directly. For many practical or engineering problems,
the information on how-the-turbulence-effects-the-mean-flow suffices, and the details of
the entire range of the scales of motion is not always needed. For such scenarios, we can
use the Reynolds-Averaged Navier-Stokes (RANS) approach, in which a system of mean flow
equations is derived using Reynolds averaging. The instantaneous velocity u is decomposed
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into the mean velocity u and its fluctuation u′, such that u = u +u′. Similarly, the pressure
p is also expressed in terms of a mean pressure p and its fluctuation p ′. Substituting
these decompositions in the Navier-Stokes equations and applying an averaging procedure,
results in the following mean flow equation1,

∇·u = 0,

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u)−∇·R,

(3.14)

where R = u′u′ are the Reynolds stresses which couples the mean flow to the turbulence. A
popular class of RANS models is the linear-eddy-viscosity models. These models employ
the Boussinesq approximation, where Reynolds stresses are expressed linearly in terms of
mean strain-rate,

−R ≈ 2νt S − 2

3
I k (3.15)

where νt is the eddy viscosity, S := (∇u + (∇u)T )/2 is the mean strain-rate tensor, I is the
second order identity tensor, and k := 1

2 tr(R) is the turbulent kinetic energy. Although the
eddy viscosity model has shown a decent performance for a range of flows, it still suffers to
accurately capture the flows with significant curvature, separation, impinging, anisotropy,
etc. The eddy viscosity is computed after solving the equation(s) for the turbulent flow
quantities like the turbulent kinetic energy k and the turbulent energy dissipation ϵ, or the
specific dissipation ω. In the present work, we employ three different turbulence models,
namely, the k −ω [126], the k −ω SST [78] and the Launder-Sharma k − ϵ [64] models.
For the sake of brevity, we defer the discussion of these models to the available literature
[64, 78, 126].

In the next section, we provide a formulation to introduce randomness in the RANS
equations, resulting into a system of the stochastic RANS equations. Note that the eddy
viscosity based RANS models as well as other RANS models can be studied in this framework.

3.4. STOCHASTIC FORMULATION

To quantify the model uncertainties in the RANS numerical simulations, we focus on the non-
parametric approach which can be generally categorized into two methods [133] - (a) where
the uncertainties are introduced into model forms, e.g., in the transport equations for the
fields like k,ω,ϵ etc., and (b) where the uncertainties are inserted into the model output, e.g.,
in the eddy viscosity field or in the Reynolds stress tensor field. The latter being employed
in the present work using the RANS models is discussed in section 3.3. The randomness in
the eddy viscosity field can be used to quantify uncertainties resulting from the improper
selection of the closure parameters in the RANS model which has a direct influence on the
computed turbulent viscosity. While the randomness in the Reynolds stress tensor field is
more suitable for quantifying the uncertainties where the Boussinesq approximation fails
or is inapplicable. In the following sections, we will discuss and derive the steps involved
in introducing uncertainties in these fields which will result into stochastic Navier-Stokes
equations.

1Similar to the filtered LES equations in chapter 2, the overbar notation is now used for the RANS equation.
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3.4.1. RANDOM EDDY VISCOSITY FIELD

The RANS turbulence modeling involves solving transport equations for turbulent quantities
(k,ω, or ϵ), which contain closure coefficients that are usually determined by the data from
experiments or direct numerical simulations (DNS) [17]. In a parametric approach of
quantifying the uncertainties in RANS simulations, a joint probability distribution function
of these closure coefficient (parameters) is propagated to obtain uncertain bounds for
the velocity, pressure, eddy viscosity, or other quantities-of-interest (QoIs) [19, 74]. Thus,
we obtain a globally randomized eddy viscosity field as reflection of the random closure
coefficients. However, we would like to have a locally random-eddy-viscosity-field (REVF)
considering that the Boussinesq approximation is only locally fallible. Thus, in the present
work we use the method that locally randomizes the eddy viscosity field obtained from
the deterministic solve [14]. We use a Gaussian random field with a prescribed covariance
model to obtain a log-normal REVF,

logνt (x ,ω) = logν(det )
t (x)+Z (x ,ω) (3.16)

where ω represents the uncertainty in the system, ν(det )
t is the eddy viscosity field obtained

from a deterministic RANS solve and Z (x ,ω) is a Gaussian random field. The log-normal
field guarantees the positivity of the REVF.

The RANS equations (and later the stochastic RANS) are defined in a bounded domain
D ⊂Rd (d = 1,2,3). A zero-mean Gaussian random field with a squared exponential kernel
function can be characterized as,

E[Z (x , ·)] = 0,

Cov(Z (x1, ·), Z (x2, ·)) =C (x1, x2) =σ2
c (x)exp

(
− (x1 −x2)2

l 2
x

− (y1 − y2)2

l 2
y

− (z1 − z2)2

l 2
z

)
,

(3.17)

where C :Rd →R+ with σ2
c being the marginal variance; lx , ly and lz the correlation lengths

along the x, y and z directions, respectively. This random field can be discretized using a
truncated Karhunen-Loève (KL) decomposition,

Z (x ,ω) =
NK L∑
i=1

√
λiφi (x)ξi , ξi ∼N (0,1), (3.18)

where, NK L is the number of terms retained in the decomposition, λi and φi are the eigen-
values and the corresponding eigenfunctions for the i th mode, which is obtained by numer-
ically solving the Fredholm integral [66],∫

D
C (x1, x2)φ(x1)d x1 =λφ(x2). (3.19)

A non-stationary and anisotropic kernel can be used to encode the structure of the flow
field into the KL basis functions

√
λiφi (x). This can be achieved by using spatially varying

and/or anisotropic correlation lengths [134].
Using the above KL decomposition, we can now express the REVF in terms of a polyno-

mial chaos expansion,

νt (x ,ω) ≈
P∑

i=0
νti (x)ψi (ξ), (3.20)
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where ψi (ξ) is the multidimensional (NK L dimensions) Hermite polynomials in the Gaus-
sian set {ξi } obtained from the KL decomposition. The value of P depends on number of
dimensions d = NK L and the chosen polynomial order n as discussed in section 3.2. The
expansion coefficients are given by [100],

νti (x) = ν(det )
t

p !

〈ψ2
i 〉

fp (x)
p∏

j=1

√
λk( j )φk( j )(x) (3.21)

where p is the order of the polynomial ψi ,
∏p

j=1

√
λk( j )φk( j )(x) is the product of those√

λkφk (x), where k is an index on at least one of the ξk making up ψi , and

fi (x) = σZ (x)i

i !
exp

[
µZ (x)+ 1

2
σ2

Z (x)

]
(3.22)

where µZ (x) and σ2
Z (x) are the mean and variance of the Gaussian field. In order to obtain

E[νt (x ,ω)] = νt0 (x) = ν(det )
t , we use a Gaussian field with µZ (x) = E[Z (x , ·)] =− 1

2σ
2
Z (x). The

stochastic form of RANS equations in terms of the REVF can be written as,

∇·u = 0,

∂u

∂t
+ (u ·∇)u =−∇p∗+∇· ((ν+νt (x ,ω))∇u

) (3.23)

where p∗ := p − 2
3 k. Upon substituting the polynomial chaos expansions of the velocity, the

pressure, and the laminar and turbulent viscosity; taking the Galerkin projection and using
the orthogonality of the polynomials, we obtain, for k = 0,1, ...,P , the set of equations for
the evolution of the modes (coefficients) of velocity,

∇·uk = 0,

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j Mi j k =−∇p∗k
+

P∑
i=0

P∑
j=0

∇· ((νi +νti (x))∇u j )Mi j k ,
(3.24)

where Mi j k = 〈ψiψ jψk〉
〈ψkψk〉

. The original system of equations is transformed into a system

of (P +1) divergence-free constraints on velocity modes and (P +1) coupled equations in
velocity and pressure modes. Note that the steps involved in obtaining the above set of
equations can be found in [85]. The solution procedure adopted for this large system of
equations is deferred to section 3.5.

Although this stochastic model can be used to describe the uncertainties (with local
variations) due to imprecise closure parameters in the deterministic RANS model, it in-
evitably suffers from the shortcomings of the Boussinesq approximation. This problem can
be addressed by directly inserting randomness in the Reynolds stress tensor.

3.4.2. RANDOM REYNOLDS STRESS TENSOR FIELD

The idea of random Reynolds stress tensor emerges from the work by Soize [108], who was
the first to derive the maximum entropy probability distribution of a symmetric positive
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definite matrix with a given mean and standard deviation applied to a structural mechanics
problem. Based on this work, Xiao et al. [134] recently proposed a random matrix approach
as a promising alternative to the previously developed physics-based approach [22, 23]. In
their work, Xiao et al. [134] introduced randomness in the Reynolds stress components using
a Gaussian random field with a prescribed covariance function having spatially varying
correlation lengths and variance, while guaranteeing the realizability. The following details
on the construction of a random-Reynolds-stress-tensor-field (RRSTF) are mostly based on
the original work from [108, 134] and some elements from our construction of REVF. We
will use NIPC, as discussed in section 3.2, to compute the polynomial chaos expansion of a
RRSTF.

RANDOM MATRIX FOR REYNOLDS STRESSES

Since the Reynolds stress tensor is a covariance of velocity fluctuations, it must be a symmet-
ric positive semidefiniteM+0

d . The Reynolds stresses are usually positive definiteM+
d , except

for some extreme cases, like the turbulence-free regions or that on the wall boundaries where
the eigenvalues goes to zero. The Reynolds stress obtained from a deterministic simulation
can be considered to be the mean of the random Reynolds tensor, i.e., E[R] = R(det ), where
R,R(det ) ∈M+

d . The randomness in the Reynolds stress can be introduced via a normalized
positive definite random matrix G having the identity matrix I as mean. The dispersion
parameter δ indicates the variance in G and is given by,

δ=
√

1

d
E[||G− I||2F ], (3.25)

where || · ||F is the Frobenius norm. The positive definiteness of G is guaranteed if the
dispersion parameter is chosen in the range 0 < δ<p

(d +1)/(d +5) [107], which for d = 3
gives, 0 < δ< 1/

p
2. The matrix G is first decomposed (Cholesky factorization) as G = LT L,

where L is the upper triangular matrix. The off-diagonal terms of L are given by,

Li j = δp
d +1

ξi j , for i < j , ξi j ∼N (0,1). (3.26)

While the diagonal terms are given by,

Li i = δp
d +1

√
2gi , for i = 1,2,3, (3.27)

where gi is a gamma random variable, gi > 0, with probability density function,

p(gi ) = g ki−1
i exp(−gi )

Γ(ki )
, (3.28)

where Γ(ki ) is a gamma distribution and ki = (d +1)/2δ2 + (1− i )/2, is its shape parameter
with scaling parameter set to 1. Thus, based on the shape parameter, the diagonal terms of
L will take different values.

Once we obtain such random matrix G, we can then construct a random Reynolds matrix
as R = LT

R GLR , where LR is a upper triangular matrix resulting from the decomposition

(Cholesky factorization) of the mean Reynolds stress, R(det ) = LT
R LR .
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RANDOM MATRIX FIELD FOR REYNOLDS STRESSES

Using the procedure similar to that in the previous section, we now establish random
Reynolds stresses with spatial correlation R = R(x ,ω) at different locations. The terms in the
random upper triangular matrix L = L(x ,ω) are correlated as,

Cov(Li j (x1, ·),Li j (x2, ·)) =C (x1, x2), i < j ,

Cov(L2
i i (x1, ·),L2

i i (x2, ·)) =C (x1, x2), i = j .
(3.29)

Among various covariance models, the squared-exponential covariance function (see sec-
tion 3.4.1) is used for the non-diagonal and the square of diagonal terms. The RRSTF is
formed using three diagonal and three non-diagonal independent random fields. Similar to
(3.26), the non-diagonal fields are given by,

Li j (x ,ω) = δ(x)p
d +1

Zi j (x ,ω), for i < j , Zi j (x ,ω) ∼N (0,C ). (3.30)

While similar to (3.27), the diagonal fields are given by,

Li i (x ,ω) = δ(x)p
d +1

√
2gi (x ,ω), for i = 1,2,3, (3.31)

where gi (x ,ω) is a gamma random field, gi > 0, with probability density function as,

p(gi (x , ·)) = gi (x , ·)ki (x)−1 exp(−gi (x , ·))

Γ(ki (x))
, (3.32)

where Γ(ki ) is a gamma distribution and ki (x) = (d + 1)/2δ(x)2 + (1 − i )/2, is its shape
parameter where the scaling parameter is set again to unity. The value of the dispersion
parameter varies spatially, and in order to assure a positive definite Reynolds stress at each
point it should be chosen in the range 0 < δ(x) <p

(d +1)/(d +5).
The KL decomposition of a non-Gaussian field is not straightforward and therefore the

author in [134] suggests to use generalized polynomial chaos expansion to approximate the
gamma random variables gi at any location x as,

g (x) ≈
NPC E∑
α=0

hαHα(Z ), (3.33)

where g (x) is a gamma random field, NPC E is the PCE order and Hα(Z ) are the Hermite
polynomials in Z with polynomial order α and coefficients hα. These coefficients can be
determined using the orthogonality condition with respect to the Gaussian measure [136]:

hα = 〈gHα〉
〈H 2

α〉
= 1

〈H 2
α〉

∫ ∞

−∞
F−1

g [FZ (z)]Hα(z)pZ (z)d z, (3.34)

where FZ (z) is the Cumulative Distribution Function (CDF) and pZ (z) is the PDF of the
standard Gaussian random variable; Fg is the CDF of the random variable g and F−1

g its
inverse. The above integral is computed numerically at each spatial location x with Z (x) as
a standard Gaussian variable.
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We now employ a non-intrusive polynomial chaos method to construct a PCE for the
random matrix G(x ,ω), and with that for the Reynolds stress tensor R (at each spatial
location),

G = G(x ,ω) =
P∑

i=0
Gi (x)ψi (ξ), (3.35)

whereψi (ξ) is the multidimensional (NK L dimensions) Hermite polynomials in the Gaussian
set {ξi } obtained from the KL decomposition of the random field Z (0,C ). The value of P
depends on number of dimensions d = NK L and the chosen polynomial order n as discussed
in section 3.2. The expansion coefficients are given by,

Gi = 〈Gψi 〉
〈ψ2

i 〉
. (3.36)

The numerator 〈Gψi 〉 is approximated using a quadrature rule which requires computing
(sampling) G at different quadrature points. The polynomial chaos expansion of the RRSTF
can then be simply obtained as,

R = LT
R G(x ,ω)LR =

P∑
i=0

LT
R Gi (x)LRψi (ξ) =

P∑
i=0

Ri (x)ψi (ξ), (3.37)

where Ri is the coefficient of the random Reynolds stress tensor field, Ri (x) = LT
R Gi (x)LR ,

and LR is a upper triangular matrix resulting from the decomposition (Cholesky factoriza-
tion) of the mean Reynolds stress, R(det ) = LT

R LR .
Using the RRSTF approach, the stochastic form of the RANS equations becomes,

∇·u = 0,

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u)−∇·R(x ,ω).

(3.38)

A set of equations governing the evolution of the modes of the velocity can be derived in a
way similar to that for the REVF method: for k = 0,1, ...,P ,

∇·uk = 0,

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j Mi j k =−∇pk +
P∑

i=0

P∑
j=0

∇· (νi∇u j )Mi j k−∇·Rk (x).
(3.39)

Details of the derivation can be found in [85]. The solution procedure for this large system
of equations is deferred to section 3.5.

This stochastic model directly uses the Reynolds stress obtained from the deterministic
solve and thus abstains from using the Boussinesq approximation. Since all the six compo-
nents of the Reynolds stress tensor field can have a different covariance, this model can also
capture highly anisotropic flows.

3.5. IMPLEMENTATION

OpenFOAM uses the finite volume method (FVM) to discretize partial differential equations
[28]. Among the various fluid dynamic solvers offered by OpenFOAM, we choose the solver
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called pimpleFoam [25], which allows the use of large time-steps to solve the incompressible
Navier-Stokes equations. This solver is based on the PIMPLE algorithm for pressure-velocity
coupling using a Rhie and Chow type interpolation [49]. The code for the stochastic RANS
solver is organized like any other solver in OpenFOAM and is publicly available at https:
//github.com/parallelwindfarms/UQFoam.

It may be stressed that the stochastic system of governing equations (3.24, 3.39) for the
evolution of the velocity and pressure modes uk , pk for k = 0,1, ...,P , has a structure similar
to the original deterministic RANS equations (3.14). Due to the coupling via the convection
and the diffusion terms, the size of this new system is P +1 times its deterministic version.
It can be observed that the divergence-free velocity constraints are decoupled and can be
solved independently. Based on this observation, a fractional step projection scheme has
been previously implemented [67]. In the first fractional step, the convection and diffusion
terms are integrated followed by enforcing the divergence-free constraints in the second
fractional step.

Our approach of the stochastic solver is based on the development of the existing
deterministic solver (pimpleFoam) such that it can accommodate and solve (P +1) coupled
Navier-Stokes like systems in uk , pk for k = 0,1, ...,P . Figure 3.1 (top) provides a flow chart
for the steps involved in quantifying and propagating model output-form uncertainty in
RANS simulations. These steps can be realized as follows:

1. Obtain the eddy-viscosity or Reynolds stress tensor field from the deterministic RANS
solver.

2. Introduce randomness in the eddy-viscosity or Reynolds stress tensor using a Gaussian
random field (equation (3.17)) and express it in terms of a polynomial chaos expansion
according to equation (3.20) or (3.37), respectively.

3. Propagate the random eddy-viscosity field (REVF) or random Reynolds stress tensor
field (RRSTF) by numerically solving the stochastic RANS equations (3.24) or (3.39), re-
spectively. In the stochastic RANS solver, the steps involved between two consecutive
time steps are as follows:

(a) For the first explicit iteration, start with sequentially updating the pressure and
velocity modes, while using the updated values of the previous mode (hence the
name explicit iteration).

(b) Repeat the above step for the next explicit iteration using the updated modes in
the previous explicit iteration.

(c) Increase the number of explicit iterations (step (b)) until convergence.

4. Using the solution of stochastic RANS from step 3, obtain a PCE for velocity, pressure
and other quantities of interest.

5. Compute the statistical moments of the quantities obtained in step 4 according to
equation (3.5).

In Figure 3.1 (bottom), we highlight the most important steps needed to develop the
stochastic RANS solver using pimpleFoam. In contrast to the deterministic solver, two
nested loops are introduced. The first loop is over the explicit iterations (Ie ), which updates

https://github.com/parallelwindfarms/UQFoam
https://github.com/parallelwindfarms/UQFoam
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Figure 3.1 | (top) Flow chart for the steps involved in quantifying and propagating model output-form uncertainty
in RANS simulations (P = 3), and (bottom) Graphical representation of the algorithm implemented in the

deterministic RANS solver (left) and stochastic RANS solver (right).
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the mode strengths between the two consecutive time-steps. For every explicit iteration,
the second nested loop solves the Navier-Stokes like system (uk , pk ) for each mode strength
k, while employing the existing, however modified, structure of the PIMPLE scheme. The
modifications are inevitable due to the summations in the convection and the diffusion
terms of the stochastic equations. We solve each of these systems sequentially, by using the
explicitly initialized or updated velocity and pressure modes from the previous time step,
and repeat until convergence. Depending on the type of flow, the value of P and a few other
parameters; it usually takes about 3−6 explicit iterations (Ie ) to converge at every time-step.
Note that the stochastic RANS solver is developed using a transient deterministic solver and
thus it can also be used as a stochastic URANS solver.

In addition to the exiting modules, we require to either modify or create some completely
new routines for pre- and post- processing. Restricting the verbosity, we attempt to provide
an overview of the major implementation steps:

• New variables (vectors) are defined for the list of mode strengths of all the uncertain
parameters, flow variables and derived variables for post-processing,

• A small routine is added to read these inner products (obtained using chaospy library
[26]). Another similar lines of code are added to read in the values of d ,n, Ie , etc, and

• A separate routine is added to the post-processing step to compute the moments of
flow variables and other derived QoIs.

The order of accuracy and the convergence rate depend on the wide choice of space and
time discretization schemes and iterative solvers offered by the OpenFOAM library. The
discretization schemes and iterative solvers used to solve the stochastic RANS are the same
as those used to solve the deterministic RANS.

3.6. NUMERICAL RESULTS

In order to study the performance of the stochastic RANS solver, we use two benchmark
cases - (a) flow over periodic hill, and (b) fully developed turbulent flow in a square duct.

3.6.1. FLOW OVER PERIODIC HILLS

For the flow over periodic hills, a Reynolds number Re = 2800 along with the reference DNS
data [10] is used. The recirculation zones, anisotropy, strong curvature in the mean flow and
unbounded shear layer are some typical features of this problem that makes it difficult for
the RANS models to make accurate flow predictions. For this case we only employ the REVF
approach. In the Figure 3.2, the domain shape for the flow over periodic hills is represented.
The coordinates in the x, y and z directions are aligned with streamwise, normal to wall and
span-wise directions, respectively. The Reynolds number is based on the crest height H and
the bulk velocity Ub , such that Re = 2800. For both the deterministic and stochastic solve,
for all modes of velocity and pressure, we use periodic boundary conditions in streamwise
direction, and no-slip boundary condition at the walls.

The mesh and REVF parameters are presented in Table 3.1. For the deterministic solve,
we use the Launder-Sharma k −ϵ RANS turbulence model with finer mesh (grading) near
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Flow direction

Figure 3.2 | Computational domain for turbulent flow over periodic hills.

the walls, such that y+ < 1. This avoids the use of wall-functions which are one of the
potential sources of uncertainty in RANS simulations. The stochastic simulation uses
the same mesh as the deterministic simulation. The values of the correlation lengths
lx , ly roughly represents the assumed (or observed) length of flow structures in x and y
directions, respectively. A reasonable marginal variance (less than one) is chosen in order
to avoid unrealistic realizations of eddy-viscosity. The number of terms retained in the KL
decomposition NK L is determined using a threshold s, such that,

NK L = mi n

{
k ∈N|

k∑
i=1

λi ≥ (1− s)×
+∞∑
i=1

λi

}
, (3.40)

i.e. the retained modes capture a prescribed minimal fraction of the L2-norm of the eddy
viscosity field.

We use OpenTURNS [89] for numerically computing the eigenvalues. Note that the
KL expansion is carried out on the same mesh used for the RANS solver. With a value of
1e −2 for the threshold, we retain the first 18 modes of KL decomposition of the Gaussian
field. We employ third order multi-dimensional Hermite polynomials for the polynomial
chaos expansion, resulting in a system of P +1 = (18+3)!/(18!3!) = 1330 equations coupled
in velocity modes. In order to reduce number of modes (i.e., to reduce the computation
time) we use the hyperbolic truncation with the tuning parameter q = 0.5, which results
in a system of 55 equations. A detailed analysis on the use of this truncation technique is
provided in section 3.6.1.

Figure 3.3 shows the first six KL modes. The symmetry observed in the KL modes is due
to the use of a uniform variance throughout the domain. However, one may use higher
variance in the recirculation region as compared to other regions of the flow. The KL modes
illustrate the uncertainty space of the REVF. Large characteristic scales are represented by
lower modes, while the higher modes represent oscillations.

The mean along with the confidence intervals of ± 2 standard deviations for different
quantities of interest is presented in Figure 3.4(a-c). Upon introducing randomness into
the eddy viscosity field, the mean and the deterministic profiles coincide as expected.
The mean velocities obtained from the stochastic solver are very close to those from the
deterministic RANS solution. This is indeed anticipated since the REVF uses the modeled
eddy viscosity field from the deterministic RANS simulation. However, a deviation from the
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Parameter Value
domain size (Lx ×Ly ) 9H ×3.036H
mesh (nx ×ny ) 100×80
wall normal distance in y+ ≤ 0.6
correlation lengths (lx , ly ) 1.5H ,0.5H
marginal variance (σ2

c ) 0.5
KL decomposition threshold (s) 1e −2
number of terms in KL decomposition (NK L) 18
degree of polynomial chaos expansion (n) 3
hyperbolic truncation set tuning parameter (q) 0.5

Table 3.1 | Mesh and computational parameters to generate a random eddy viscosity field for the flow over periodic
hills.

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Figure 3.3 | First six KL expansion modes of the flow over periodic hill problem. The modes are shifted and
normalized to the range of 0 (darkest) and 1 (lightest).

deterministic profile is expected for a higher level of uncertainty in the REVF. The velocities
have high variance in the recirculation region starting from the flow separation until the
reattachment point. As evident, both the deterministic and the stochastic mean velocities
deviate significantly from the DNS solution, which can be associated to the already discussed
limitation of the RANS turbulence models. Similar to the velocities, the deterministic and
stochastic mean of the wall shear-stress are very close, with a large deviation from DNS. Note
that the largest variance in the stochastic solution is around the predicted reattachment
point (x/H ≈ 3.5). It is worth mentioning that for both, the velocity and the wall shear-
stress, the DNS data mostly lies within the uncertain bounds, which is a good indicative
of improvement in the RANS modeling to further reduce the uncertainty. A RANS model
with (i) mean velocity gradients closer to that of DNS profile and, (ii) DNS results lying well
within its uncertain bounds – has a scope of improvement towards a better model upon
further investigation towards mitigation of structural or parametric uncertainties.

The Karhunen-Loève expansion was used to discretize the Gaussian random field into
a set of random variables ξ. The relative importance and effect of these random variables
on the QoIs can be studied using global sensitivity analysis via Sobol indices as discussed
in section 3.2. Figure 3.5 presents the Sobol indices (STi ,Si ) of the random variables for
the streamwise velocity and the wall shear-stress at different locations in the recirculation
region, obtained from KL decomposition of the Gaussian field. The relative importance and
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(a)

(b)

(c)

Figure 3.4 | Mean and variance of (a) turbulent viscosity, (b) streamwise velocity and (c) (top) wall shear-stress at
different locations in x−direction for the flow over periodic hills. Compared with deterministic (DET) and DNS
results. Legend in (c) (top) applies to (a) and (b) as well. Figu re (c) (bottom) shows reattachment location and

bounds colored with variance.
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(a) (b)

Figure 3.5 | Global sensitivity analysis using Sobol indices (STi
,Si ) for (a) streamwise velocity and (b) wall

shear-stress at different locations in the recirculation region for the flow over periodic hills problem.

effect of these random variables on the QoIs can be seen in the figure. These modes are in
the order of decreasing eigenvalues. The streamwise velocity shows significant dependence
on the first two modes. For modes 3-6, the dependence is relatively smaller. The streamwise
velocity is almost independent of the higher modes (< 1%) except mode 10 and 12. The
wall shear-stress on the other hand predominantly depends on modes 2 and 5, with rather
smaller dependence on remaining initial modes and almost independent of the higher
modes (< 1%) except mode 12. Note that the difference in STi and Si is significant only for
the first few modes, implying that the contribution from the interaction of these modes is
indeed important and should be taken into account when using different methods to avoid
the curse of dimensionality (discussed later in this section).

Before advancing further, the following remarks are in order:

1. The mesh sensitivity analysis shows that the stochasticity (mean and variance of QoIs)
depends only marginally on the mesh size as compared to its dependence on the
uncertainty in the turbulence model.

2. The polynomial degree is varied in the range n ∈ {1,2,3,4}. For polynomial degree of 1,
there is no interaction terms between the polynomials, resulting in a lower variance in
QoIs. For n ≥ 2, the interaction terms populate drastically and thus a high polynomial
degree implies high cardinality. Since the results for the stochastic simulation beyond
n = 3 does not show any significant difference, a polynomial degree of three is chosen
for the rest of the study.

3. The dependence of stochasticity of the solution on the marginal variance (σ2
c ) of the



52 3. QUANTIFICATION AND PROPAGATION OF MODEL-FORM UNCERTAINTIES

Parameter Case 1 Case 2 Case 3
correlation length along x-direction (lx ) 1.00H 1.50H 2.00H
correlation length along y-direction (ly ) 0.33H 0.50H 0.67H
marginal variance (σ2

c ) 0.5 0.5 0.5
number of terms in KL decomposition (NK L) 26 18 13

Table 3.2 | Random eddy viscosity field parameters for three different cases with varying correlation lengths for the
flow over periodic hills problem.

Figure 3.6 | Normalized eigenvalues of the covariance kernel for three different values of correlation length scales
for the flow over periodic hills problem, as listed in Table 3.2.

random eddy viscosity field is examined for different values in range [0.05,1.0]. The
uncertainty in QoIs grows almost linearly with σ2

c . However, a large value of marginal
variance may lead to unrealistic samples of REVF resulting in non-physical solutions.
In the present work we choose a value of σ2

c = 0.5 for the rest of the study.

VARYING CORRELATION LENGTH SCALES

We consider three different sets of correlation lengths in x and y -direction as described in
Table 3.2. The remaining parameters are the same as in Table 3.1. The effect of varying the
correlation length scales on the number of terms in KL approximation is depicted in Figure
3.6. It can be noted that, with increasing correlation length, the number of terms in the KL
approximation reduces. This is due to the fact that as the correlation length increases, lesser
number of eigenfunctions are required to represent the Gaussian field.

In Figure 3.7, we present a comparison of the solution from all the three cases. The
mean may take near zero values and thus coefficient of variation (CoV) may be misleading.
Moreover, the mean profiles for all the cases are extremely close to each other, therefore
we directly compare the standard deviations at different locations in the domain. It can
be realized that the standard deviation of the REVF is similar for all the three cases, while
the standard deviation in velocity and wall shear-stress show significant variation. Larger
correlation lengths results in a higher variance, especially near the reattachment location.
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(a)

(b)

(c)

Figure 3.7 | Comparison of the standard deviations in (a) turbulent viscosity, (b) streamwise velocity, and (c) wall
shear-stress with varying correlation lengths in x and y -directions as listed in Table 3.2. Legend in (c) applies to

(a) and (b) as well.
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TECHNIQUES TO OVERCOME THE CURSE OF DIMENSIONALITY

There are several schemes for the truncation of a polynomial chaos expansion. We already
presented one of the most widely used method, which consists of upper-bounding the total
degree of polynomials by simply choosing a maximal value n. The set of multi-indices is
denoted by

S d ,n = {α ∈Nd : |α| ≤ n}, (3.41)

whereα= {α1, ...,αd } is the multi-index. The cardinality of the truncated set S is then given
by

|S d ,n | = (d +n)!

d !n!
. (3.42)

Evidently, the above cardinality grows dramatically in both d and n. Thus, for high dimen-
sional problems (large d , say d > 10) and/or highly non-linear problems (which require
large n), such truncation method is not plausible. This issue is known as the curse of
dimensionality.

The authors in [102] realized that a lot of systems only exhibit interactions of low degree
polynomials and therefore the higher degree polynomial interactions can be ignored. Based
on this observation they proposed a new truncation scheme called hyperbolic truncation set

S d ,n
q = {α ∈Nd : ||α||q ≤ n}. (3.43)

The q-norm is defined as

||α||q =
(

d∑
i=1

α
q
i

)1/q

, (3.44)

where q ∈ (0,1} is a tuning parameter. For q = 1, the hyperbolic index set is identical to the
total degree index set. Decreasing q results in smaller set of polynomials and as q → 0, the
set is left with only the uni-variate polynomials.

Another approach to reduce the overall cardinality is to reduce the number of random
dimensions (d) by increasing the KL decomposition threshold (s) defined in equation
(3.40). In the present study, we use a combination of these approaches to study both low
dimensional and low degree polynomial representations of our stochastic problem.

Table 3.3 lists all combinations considered for the KL decomposition threshold (s) and
the hyperbolic truncation set tuning parameter (q). The remaining parameters are the same
as in Table 3.1. As shown in Figure 3.8, for a fixed tuning parameter, the number of terms
in the KL decomposition increases significantly as we decrease the threshold. While, as
depicted in Figure 3.9, for a fixed threshold, the cardinality of the truncated set decreases
drastically as we decrease the tuning parameter.

For all the cases in Table 3.3, a comparison is made in Figure 3.10. Obviously, the
standard deviation of the REVF is close to each other for all the cases. The variance in
velocity and wall shear-stress, is higher in the recirculation area and near the reattachment
location. It can be remarked that increasing the KL decomposition threshold s, gradually
reduces the cardinality of the truncated set, while under-predicting the variance. Whereas,
reducing the tuning parameter q , drastically reduces the cardinality of the truncated set
(P +1), while practically predicting the same level of variance. Therefore, decreasing the
tuning parameter, thereby ignoring the higher degree polynomial interaction results in an
accurate prediction of the stochasticity at a significantly lower computational cost.
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Parameter C1 C2 C3 C4 C5 C6 C7
KL decomposition threshold (s ×100) 1 2 5 1 2 5 5
number of KL modes (NK L) 18 13 6 18 13 6 7
hyperbolic truncation parameter (q) 0.50 0.50 0.50 0.75 0.75 0.75 1.00
cardinality of the truncated set (P +1) 55 40 19 208 118 34 120

Table 3.3 | Random eddy viscosity field parameters for different cases (C#) with varying KL decomposition
threshold (s) and hyperbolic truncation set tuning parameter (q) for the flow over periodic hills problem.

Figure 3.8 | Normalized eigenvalues of the covariance kernel for three different values of KL decomposition
threshold while keeping the hyperbolic truncation parameter fixed, cases C1, C2 and C3 in Table 3.3.

COMPARISON BETWEEN TURBULENCE MODELS

In this section we compare stochasticity arising from three different turbulence models
mentioned in section 3.3. Again, the uncertainty is introduced in the (deter
stic) eddy viscosity field and propagated through the stochastic solver to estimate the mean
and variance in the velocity and wall shear-stress. The computational mesh and the physical
parameters are the same for all three cases, as listed in Table 3.1.

Figure 3.11 (a) shows the mean and variance of the REVF for the three turbulence models.
As evident, the mean is close to each other except in the bulk region, where the k −ω SST
model estimates a lower viscosity. The amount of uncertainty introduced is the same for all
three models, as shown in figure 3.11 (a). Figure 3.11 (b) and (c) compares the mean and the
variance in the streamwise velocity and the wall shear-stress, for all three models, against
the DNS results. For all cases, the maximum deviation of mean from DNS and the maximum
uncertainty is found in the recirculation zone as well as near the reattachment location.
Overall, the k −ω SST model predictions are more accurate as compared to the k −ω and
the Launder-Sharma k −ϵ models. Note that, on average, the level of stochasticity is highest
for the k −ωmodel and lowest for the k −ω SST model. A lower variance in the k-omega SST
model predictions can be attributed to a lower sensitivity of its model parameters and/or a
lower structural uncertainty in its formulation.
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Figure 3.9 | Two-dimensional (d = 2) hyperbolic index set representation for varying degree (n)
and tuning parameter (q). The dots in black indicate the truncated set.

REDUCING UNCERTAINTY VIA DATA ASSIMILATION

After introducing randomness into the system via the REVF (section 3.4.1), we now use an
iterative data assimilation technique to update this uncertainty in the system. This will allow
the inverse modeling of the REVF and improve the accuracy of the predictions made by
the stochastic RANS solver. For this purpose, we consider the use of an Iterative Ensemble
Kalman (IEnK) method [48], which is a Bayesian inference method to infer a posterior based
on the prior and the observations (data).

The iterative ensemble Kalman method converts the steady state inverse problem into a
dynamic data assimilation problem, updating the state x at every iteration until convergence
[143]. Thus, at each iteration (or pseudo time-step), the (perturbed) observations are used
to perform a single update of the state. In this work, the state of the system includes both the
REVF and the velocity field as an “augmented-state", i.e., x ≡ [νt ,u]. The samples from the
prior augmented-state are updated after incorporating the uncorrelated observations for
velocity (y) at specific locations in the domain. At each iteration, the observations are chosen
to be independent realizations from a Gaussian distribution with DNS data as the mean
and standard deviation, σobs = 0.1× mean. Closer observation locations are considered in
the regions of steep velocity gradients (recirculation zone and reattachment region), while
lesser points are considered in the free shear region. The algorithm of the overall iterative
procedure is as follows.

1. Characterize the uncertainty in eddy viscosity field using a log-normal Gaussian field
and express it in terms of a polynomial chaos expansion νt (x ,ω) ≈∑P

i=0νti (x)ψi (ξ).

2. Propagate the (initial or updated) REVF.

(a) Using the stochastic RANS solver, obtain a PCE for velocity field,

u(x ,ω) ≈
P∑

i=0
ui (x)ψi (ξ). (3.45)
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(a)

(b)

(c)

Figure 3.10 | Comparison of the standard deviations in (a) turbulent viscosity, (b) streamwise velocity, and (c) with
varying varying KL decomposition threshold and hyperbolic truncation set tuning parameter as listed in Table 3.3.

Legend in (c) applies to (a) and (b) as well.
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(a)

(b)

(c)

Figure 3.11 | Mean (solid line) and ±2× standard deviations (shaded region) of (a) turbulent viscosity, (b)
streamwise velocity and (c) (top) wall shear-stress at different locations in x−direction for the flow over periodic
hills using three different turbulent models. Compared with deterministic (DET) and DNS results. Legend in (c)

(top) applies to (a) and (b) as well. Figure (c) (bottom) shows reattachment location and bounds colored with
variance.
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(b) Generate prior ensemble of the realizations of the state,

{x( j )}
M
j=1 = [{νt( j ) }M

j=1, {u( j )}
M
j=1], (3.46)

by sampling the random variables, {ξ( j )}
M
j=1. Where,

νt( j ) (x) =
P∑

i=0
νti (x)ψi (ξ( j )), u( j )(x) =

P∑
i=0

ui (x)ψi (ξ( j )) j = 1, ..., M , M ≫ 1

(3.47)
This step involves only polynomial evaluations and therefore large number of
samples (M) can be generated as these computations doesn’t require solving the
deterministic governing equations.

3. Update the augmented-state ensemble {x( j )}M
j=1, by employing the ensemble Kalman

filtering method [48].

(a) Determine the mean and covariance of the ensemble:

x̄ = 1

M

M∑
j=1

x( j ), P = 1

M −1

M∑
j=1

(x( j )xT
( j ) − x̄x̄T ) (3.48)

(b) Compute the Kalman gain matrix K:

K = PHT (HPHT +D) (3.49)

where, H is the observation matrix and D is the covariance matrix of the error in
the observations.

(c) Update each sample:
x( j ) → x( j ) +K(y( j ) −Hx( j )) (3.50)

where, y( j ) is an observation vector in the ensemble of observations {y( j )}
M
j=1,

generated from the joint normal distribution N (y,D).

4. Reconstruct the PCE modes of the REVF and the velocity field from the updated
ensemble [69]:

νti (x ,ω) ≈ 1

M

M∑
j=1

νt( j ) (x)ψi (ξ( j )), ui (x ,ω) ≈ 1

M

M∑
j=1

u( j )(x)ψi (ξ( j )) (3.51)

5. Return to step 2 until the misfit between the velocity mean (ū0) from step 4 and step
2, is sufficiently low. This will result in an statistically converged ensemble.

The sampling error introduced due to the averaging procedure in (3.51) is small if a large
number of samples are used in (3.47). As discussed earlier, the computing cost of these
samples is minimal in comparison to solving the deterministic system.

The iterative ensemble Kalman method converges in about 12-17 iterations for the
considered flow over periodic hills using the Launder-Sharma k −ϵ RANS model. However,
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NIPC IPC IPC (Table 3.3) MC MLMC
Cost / DET Sim 6.8×1010 1330 19−208 3000* 200*

* A rough estimate from a recent work on a similar test case using MC and MLMC [60].

Table 3.4 | Computational cost of different UQ approaches w.r.t. a single deterministic simulation (DET Sim). For
IPC and NIPC, n = 3 and d = 18.

this number may vary with the complexity of the flow, the quality of observations and
the initialization (prior) of the state. The prior and the posterior obtained is presented
in Figure 3.12. The posterior of the streamwise velocity and the wall shear-stress tends
towards the DNS results. The uncertainty (variance) near the observation locations reduces
significantly, while a higher level of uncertainty persists in the region where the observations
are unavailable. Note that, in comparison to the prior, the reattachment location in the
posterior is predicted closer to the DNS, with a lower uncertainty.

STABILITY, CONVERGENCE AND COMPUTATIONAL COST

The stability of the stochastic solver can be compared with that of the deterministic counter-
part as the same discretization schemes were used for both. A central difference scheme in
space and forward Euler in time are used in the present study.

With around three explicit iterations, the computational cost of the (decoupled) stochas-
tic solver is about 3× (P +1) times a deterministic solve. Table 3.4 shows a comparison
between the computational cost of different UQ approaches. In comparison to the standard
Monte Carlo (MC) method, the intrusive polynomial chaos is significantly cheaper. Further-
more, the cost of IPC with hyperbolic truncation is comparable (mostly lower) to multilevel
Monte Carlo (MLMC) employed recently on a similar test case [60]. The NIPC approach
for complete parametric space is not feasible. However, sparse-grid methods such as Latin
hypercube sampling (LHS) may drastically reduce the number of samples needed for NIPC
[44]. A comparison between IPC and NIPC for parametric uncertainties has been made in
authors’ previous work [85].

Since the first mode of the PCE is initialized with the deterministic solution, the con-
vergence of the stochastic solver is relatively faster than the deterministic solver. When a
Gaussian field with a higher marginal variance is used to represent the REVF, the stochas-
tic solver shows either slow convergence or even divergence for a few cases. This can be
attributed to non-physical realizations of the eddy viscosity field sampled from its high-
variance PCE. Mostly, the higher modes fail to converge as fast as the lower modes.

Note that the comparison with the deterministic solve is made using the same number of
processors for domain decomposition. A higher number of processors, may further decrease
the computing time.

3.6.2. FLOW IN A SQUARE DUCT

For the flow in a square duct, a Reynolds number Re = 1100 along with the reference DNS
data [88] is used. The most important feature of this flow is the secondary flow pattern due
to the imbalance of normal stresses, which the isotropic eddy viscosity models fail to capture.
For this reason we use the RRSTF approach. Figure 3.13 depicts a fully developed turbulent
flow in a square duct. The computational domain is a two-dimensional top-right quadrant
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(a)

(b)

(c)

(d)

(e)

Figure 3.12 | Prior and posterior for mean and variance of (a, b) streamwise velocity and (c, d) wall shear-stress
obtained from iterative ensemble Kalman method (iteration 15) using observations (×) at different locations in the
domain for the flow over periodic hills. Legend in (c) and (d) applies to (a) and (b) as well, respectively. Figure (e)

shows reattachment location and bounds colored with variance.
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Parameter Value
domain size (Lx ×Ly ) h ×h
mesh (nx ×ny ) 64×64
wall normal distance in y+ ≤ 0.3
correlation lengths (lx , ly ) 2h,2h
marginal variance (σ2

c ) 0.5
KL decomposition threshold (s) 1e −2
number of terms in KL decomposition (NK L) 6
degree of polynomial chaos expansion (n) 3
hyperbolic truncation set tuning parameter (q) 0.5
dispersion parameter (δ) 0.2

Table 3.5 | Mesh and computational parameters to generate a random Reynolds stress tensor field for the flow in a
square duct.

of the flow domain, with h = D/2 as half-duct height. For both the deterministic and the
stochastic simulation, we use a periodic boundary conditions in streamwise direction, a no-
slip boundary condition at the walls and a symmetry boundary condition at the remaining
two boundaries.

The mesh and RRSTF parameters are presented in Table 3.5. For the deterministic solve,
we use the Launder-Sharma k −ϵ RANS turbulence model with finer mesh (grading) near
the walls, such that y+ < 1. This avoids the use of wall-functions which are one of the
potential sources of uncertainty in RANS simulations. The stochastic simulation uses the
same mesh as the deterministic simulation. The values of the correlation lengths lx , ly

roughly represents the assumed (or observed) length of flow structures in x and y directions,
respectively.

Figure 3.14 depicts the level of anisotropy plotted in barycentric coordinates within
a barycentric triangle at location (x/H , y/H) ≈ (0.50,0.23). The projection of the random
Reynolds stresses on to the barycentric triangle is discussed in Appendix 3.8.1. The de-
terministic an-isotropy state and the sample mean state are at a certain distance which is
proportional to the dispersion parameter. Also, for a larger dispersion parameter, the sample
states lies further away from the deterministic state. The spread of the samples represents
the level of uncertainty introduced in the Reynolds stress tensor field.

In Figure 3.15, the uncertainty in the velocity is presented alongside the DNS profiles
at different x locations. As expected, the deterministic simulation predicts zero in-plane
velocity, while the stochastic simulation predicts a non-zero mean velocity closer to DNS.
The uncertain bound of ±2 standard deviations, completely envelops the DNS solution
at all three locations. A large variance in the stochastic solution can be attributed to – (i)
arbitrarily chosen hyper-parameters for the generation of RRSTF, (ii) not considering any
available data, and, (iii) the mean velocity being very sensitive to a small change in the
Reynolds stresses.

The qualitative comparison of the stochastic mean and DNS fields is presented in Figure
3.16. Unlike the deterministic solver, the stochastic solver is able to capture the secondary
flow perpendicular to the streamwise direction. The mesh density of the stochastic simula-
tion is evidently lower than that of the DNS. Even with a coarse mesh the stochastic RANS
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Figure 3.13 | Computational domain for turbulent flow in a square duct.

Figure 3.14 | Randomly sampled Reynolds stresses at location (x/H , y/H) ≈ (0.50,0.23), projected onto the
barycentric triangle (Appendix 3.8.1).

simulation is able to capture the rotating secondary flow pattern in accordance with DNS.
However, the magnitude and direction of the field, depends on the parameters used in the
construction of the random stress tensor, especially on the dispersion parameter.

Note that a detailed study of the parameters, similar to that conducted for the flow over
periodic hill with random eddy viscosity, can also be carried out with random Reynolds
stress tensor (not shown here for the sake of brevity).

3.7. CONCLUSIONS

In this work, we employed intrusive polynomial chaos to solve high-dimensional stochastic
RANS problems using the popular finite-volume library OpenFOAM. In contrast to the no-
tion of the IPC method being difficult to implement, the current solver provides an efficient
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Figure 3.15 | Mean and variance of the u-component of velocity compared with the deterministic and DNS
solutions, at locations x/H = 0.25 (left), x/H = 0.50 (center) and x/H = 0.75 (right).

Figure 3.16 | Qualitative comparison of the secondary velocity field between stochastic mean flow (left) and DNS
(right).

implementation which requires minimal top level changes in the existing deterministic
code. We investigated various aspects of the stochastic solver including the effects of - the
correlation length scales, the cardinality of the truncated polynomial expansion, the tuning
parameter of the hyperbolic truncation set, different turbulence models, data-assimilation
etc. The IPC based stochastic solver was tested with two high-dimensional random fields -
the random eddy viscosity field and the random Reynolds stress tensor field. The computa-
tional cost for both the random field models was found to be of the same order. The results
obtained from the stochastic simulations (QoIs) reveal that these random field models, upon
proper parameter tuning, can certainly provide uncertainty bounds that envelops most of
the realizable flow states. Tuning the hyper-parameters based on prior knowledge may allow
for thinner uncertain bounds in QoIs. For a high variance random field, divergence was
realized, where the higher modes of the polynomial expansion failed to converge after a few
initial explicit iterations. As discussed in section 3.6.1, the IPC solver avails a significant im-
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provement in the computational cost and the convergence as compared to the conventional
UQ methods.

This work promotes further development in the direction of polynomial chaos method
for uncertainty quantification in CFD. A more efficient implementation of the IPC solver
can be explored with higher polynomial degree, different covariance kernel functions and
an implicit algorithm to simultaneously solve for all the modes. As a future work, the IPC
solver will be employed in the uncertainty quantification and its non-linear propagation in
a CFD simulation of an array of wind turbines.
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3.8. APPENDIX

3.8.1. PROJECTING REYNOLDS STRESS ON A BARYCENTRIC TRIANGLE

The Reynolds stress tensor can be decomposed into two parts, an isotropic component
2/3kδi j and an anisotropic tensor which is given as the deviatoric part of the Reynolds stress
normalized by the turbulent kinetic energy:

Ai j := Ri j

2k
− δi j

3
(3.52)

The eigen-decomposition of the anisotropy tensor results into eigenvalue tensor,

A = VΛVT , (3.53)

where V is the matrix of orthogonal eigenvectors [v1, v2, v3] and Λ is the corresponding
eigenvalue matrix diag[λ1,λ2,λ3], such that tr[Λ] = 0 and λ1 ≥ λ2 ≥ λ3. Using linear rela-
tions, these eigenvalues can be mapped to unique coordinates (C1c ,C2c ,C3c ) in a Barycentric
triangle, which in turn represents the state of anisotropy in a turbulent flow at a given point:

C1c =λ1 −λ2, C2c = 2(λ2 −λ3), C3c = 3λ3 +1. (3.54)

Note that, C1c +C2c +C3c = 1. When any of these coordinates equals to one, the anisotropy
is said to achieve a limiting state. In a Barycentric map, these limiting states are represented
by the three vertices that form an equilateral triangle. Thus, C1c ,C2c and C3c represents
1-component, 2-component and 3-component turbulence, respectively. In Cartesian coor-
dinates, if the location of these vertices is expressed as (x1c , y1c ), (x2c , y2c ) and (x3c , y3c ), then
any arbitrary turbulent state (x, y) can be represented by the following linear combination
of the limiting states:

x =C1c x1c +C2c x2c +C3c x3c , y =C1c y1c +C2c y2c +C3c y3c . (3.55)

All the realizable states lie within or on this triangle. The anisotropy state of the samples
generated using the polynomial chaos expansion of the Reynolds stress tensor can therefore
be represented and analyzed using the Barycentric triangle as shown in Figure 3.14.
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UNCERTAINTY QUANTIFICATION

ANALYSIS IN WIND-FARMS

The content of this chapter is was published in J. Parekh and R. Verstappen. Uncertainty
quantification analysis for simulation of wakes in wind-farms using a stochastic RANS solver,
compared with a deep learning approach. Computers & Fluids, 257:105867, 2023.

ABSTRACT: Quantification of uncertainties in Reynolds-Averaged Navier–Stokes (RANS)
simulations has gained a considerable interest in turbulence modeling. We present two
different approaches for the quantification and propagation of model-form and opera-
tional uncertainties in context of wind turbine RANS simulations. The first approach
is based on a stochastic RANS solver in OpenFOAM using intrusive polynomial chaos
method [86]. Here the uncertainties are propagated through a single (large) simulation
for the coupled coefficients of the polynomial expansion. The second approach is a surro-
gate based uncertainty quantification (SBUQ) method. The surrogate model comprises
of a 3D U-Net neural network (trained over a single wind turbine) combined with a wake
superposition model in order to the prediction of flow field in an array of wind turbines.
The above-mentioned approaches are applied for uncertainty quantification analysis in
RANS simulations of two turbulent engineering flow problems - (i) a wake past a single
wind turbine, and (ii) wake interactions and power losses in a an array of wind turbines.
The results show that the uncertain RANS solutions from the two approaches are able to
reasonably capture the reference high-fidelity solution. We also discuss comparisons
between the two approaches including computational cost, applicability, generality etc.
The two methods can be further explored and applied to engineering applications where
it is critical to compute the turbulent RANS solution in presence of various sources of
uncertainties.

67
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4.1. INTRODUCTION

The energy consumption by the developed and the developing countries is expected to
increase by about 28% from 2015 to 2040 [47]. In the quest of alleviating global warming
and limiting the carbon release, a significant investment is directed towards sustainable
renewable energy sources. In the last few decades, the wind energy contributions via large
wind farms has proven to be one of the most reliable sustainable energy sources. This
demands more attention towards the development of further efficient wind farms using
computational fluid dynamics (CFD) simulations. These simulations are based on fast and
cost-effective numerical solvers that can provide details of the flow field in a wind farm,
particularly the wake interactions and their effect on the power output of individual wind
turbines. However, the estimated power at each wind turbine in a wind farm is highly
dependent on the accurate prediction of the turbulence in the flow [4, 36, 112]. Most of the
widely used turbulence models for CFD simulations are inherently uncertain resulting in
significant variance in the flow field solutions [16, 133]. Additionally, the uncertainties in
the boundary conditions that mimic the real environmental conditions may also contribute
to the inaccurate predictions [7]. This motivates the efforts towards the quantification
and propagation of model-form uncertainties in turbulence models and the uncertainties
associated to the operating conditions in wind farm simulations.

Based on the fidelity and accuracy levels, various approaches are available for the pre-
diction of wind turbine wakes. A high-order and high-fidelity direct numerical simulation
(DNS), a large eddy simulation (LES) [17, 77], a relatively cheaper and reasonably accurate
Reynolds-averaged Navier-Stokes (RANS) model [62, 90] and low-order engineering wake
models [4, 36], are some of the most discussed approaches. Although expensive, the CFD
approaches (DNS, LES, RANS) offer a high level of accuracy as compared to the compu-
tationally cheap wake-models. For industrial applications, especially for the simulation
of wakes behind wind turbines, a non-scale-resolving approach like the RANS turbulence
model is preferred over scale-resolving and computationally expensive high-order models
like DNS and LES [101]. However, RANS models are often called out in research articles
for inaccurate predictions of the wake flow field and the power production in a wind farm
[11, 90, 93].

The central idea of the RANS turbulence modeling is based on the closure of the Reynolds
stresses using the Boussinesq’s hypothesis that assumes a linear relationship between the
stresses and the mean rate-of-strain tensor with an eddy-viscosity as a proportionality con-
stant [17]. The shortcomings of this hypothesis have been widely discussed in the literature,
particularly for flows with streamline curvature, separation, strong pressure gradients and
significant anisotropy [139] etc. Recent efforts have been made to overcome some of these
deficiencies in RANS modeling particularly in the simulation of the wind turbine wakes.
These include the traditional approach of improving the modeling of turbulent viscosity
[119, 120] and the data-driven approaches for RANS closures [110, 111]. Most often it is not
possible to determine beforehand if such flow features will be observed in a configuration.
Therefore, RANS predictions are deemed inaccurate in the sense that they posses a struc-
tural or model-form uncertainty [15]. Based on more sophisticated constitutive relations
than the Boussinesq’s hypothesis, efforts have been made to overcome the limitations of
eddy-viscosity models. These include nonlinear eddy-viscosity models [109] and Reynolds
stress transport models (RSTM) [63]. However, despite of their mathematical superiority,
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these models are not as robust as the linear eddy-viscosity models and their usage is limited
to a small set of turbulent flow problems.

In light of the above discussion, it is essential to quantify the structural uncertainty in
RANS turbulence models. Previous efforts towards quantifying the model-form uncertain-
ties in RANS using a non-parametric approach include introducing perturbations in the
eigenspace of the anisotropy tensor, thereby resulting in a perturbed Reynolds stress tensor
[22]. More specifically, the global perturbations in turbulent kinetic energy (TKE), eigen-
values, and eigenvectors of an anisotropy tensor relates to the variations in its amplitude,
shape, and orientation, respectively. Although this method has been applied for various en-
gineering problems [39, 40, 96], the assumption of such globally-uniform low-dimensional
input uncertainty results in an inaccurate estimation of the uncertainties. More recently, a
high-dimensional local perturbation approach have been employed by directly injecting the
randomness into the Reynolds stress tensor field using spatially correlated positive-definite
random matrices while guaranteeing the realizability [134]. The resulting random Reynolds
stress tensor field (RRSTF) accounts for the structural uncertainty of the RANS model. In
authors’ previous work, a generalized (intrusive) polynomial chaos based stochastic solver
was developed to propagate uncertainties in RANS models using the random matrix ap-
proach for eddy-viscosity field or Reynolds stress tensor field [86]. This method has been
studied using a number of benchmark turbulent flow problems and has shown potential for
uncertainty quantification and propagation in engineering applications. For more details
about the stochastic solver, the reader is referred to [86].

In context of wind turbine simulations the inlet operating conditions define (model)
the atmospheric boundary layer profile. The predefined inlet profile helps avoiding the use
of periodic boundary condition which in turn require large domain size in the streamwise
direction, thus making the RANS simulations computationally less expensive. The operating
conditions are determined from various measurements and are prone to uncertainties.
In particular, the influence of the reference velocity and the turbulent intensity majorly
governs the atmospheric boundary layer profile and may have variance due to imprecise
measurements. Thus, it is important to quantify and propagate these uncertainties to study
their effect on the overall performance of wind turbine/farms. Therefore, in addition to the
randomness in the Reynolds stress tensor, in the present work we also include uncertain
inlet conditions that (indirectly) contribute to the overall model-form uncertainty in the
RANS simulations.

In wind energy applications, eigenspace perturbation of the Reynolds stress tensor
was used to quantify and propagate model-form uncertainties in RANS simulations of a
single wake behind a wind turbine [43] as well as for the wakes and power losses in wind
farms [20]. In the present work, we consider the RANS model-form uncertainty in the
Reynolds stress tensor (via the random matrices approach) as well as the uncertainties in
the operational conditions for RANS simulations of a wake behind a wind turbine and for
the wake interactions in a wind farm. Moreover, we use the previously developed stochastic
solver [86] in order to propagate the different sources of uncertainties in a single simulation.

With the exponentially increasing applications of deep learning, we explored a potential
application of neural networks towards making predictions for a flow field in a wind farm
using only data from single wind turbine simulations. Recently, a U-Net neural network
was developed for the prediction of 2D flow fields around an airfoil with an error of less
than 3% on unseen data [116]. We adapt this neural network to device a 3D U-Net model
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for predictions of flow fields (wakes) near a wind turbine. Moreover, we use the trained
neural network along with a wake superposition model [36] in order to construct a surrogate
that can (per wind turbine) predict the flow field in a wind farm. This idea is motivated
from a recent work [117], where the authors used a fully-connected neural network, which
in the present study is replaced with a more efficient and less expensive convolutional
neural network. For a given sampling strategy, the above surrogate model avails the use of a
surrogate based uncertainty quantification (SBUQ) approach.

The next sections of the paper are structured as follows. Section 4.2 describes the
fundamentals of a RANS turbulence modeling and atmospheric boundary layer modeling.
In section 4.3, we introduce the two uncertainty quantification approaches - (i) stochastic
RANS using intrusive polynomial chaos, and (ii) surrogate based uncertainty propagation.
The uncertainty quantification and propagation analysis for the numerical simulation of
a wind turbine and a wind farm is presented in section 4.4. Section 4.5 summarizes the
conclusions.

4.2. TURBULENCE MODELING

4.2.1. RANS TURBULENCE MODELS

The Reynolds-Averaged Navier-Stokes equations for an incompressible turbulent flow with
a momentum source is given by

∇·u = 0, (4.1a)

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u)−∇·R+ f , (4.1b)

where u is the velocity, p is the pressure, ν is the kinematic viscosity, R = u′u′ is the Reynolds-
stress-tensor which couples the mean flow with the turbulence, and f is the forcing term.
In the present study f models the effect of a wind turbine on the flow field. The overbar and
the prime represents the mean and the fluctuating components of the respective variables.
The most common class of RANS models is the linear-eddy-viscosity model which employs
the Boussinesq’s hypothesis. This hypothesis assumes a linear relation between Reynolds
stresses and the mean strain-rate,

−R ≈ 2νt S − 2

3
I k, (4.2)

where νt is the eddy viscosity, S = (∇u + (∇u)T )/2 is the mean strain-rate tensor, I is the
second order identity tensor, and k := 1

2 tr(R) is the turbulent kinetic energy. The eddy
viscosity is computed after solving the equation(s) for the turbulent flow quantities like the
turbulent kinetic energy k and the turbulent energy dissipation ϵ, or the specific dissipation
ω.

Despite their popularity, the eddy viscosity models suffers to accurately capture the
flows with significant separation, curvature, anisotropy, impinging, etc. The Reynolds-
stress-transport models (RSTMs) overcome many of these issues by directly solving the
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model equations for the Reynolds stresses. In the present work, we employ two linear-eddy-
viscosity models, namely the k −ω SST model and the realizable k −ϵ model, as well as the
Launder-Reece-Rodi (LRR) Reynolds stress transport model. For the sake of brevity, we defer
the discussion of these models to the available literature [64, 78, 126].

4.2.2. ATMOSPHERIC BOUNDARY LAYER MODELING

A neutral atmospheric boundary layer (ABL) modeling involves inlet boundary conditions
providing log-law type ground-normal inflow boundary conditions for wind velocity and
turbulence quantities [42, 141]. The expression for the ground-normal profiles of - stream-
wise flow speed u, turbulent kinetic energy k, turbulent kinetic energy dissipation rate ϵ and
specific dissipation rate ω are given by:

u = u∗

κ
ln

(
z + z0

z0

)
, k = (u∗)2√

Cµ

, ϵ= (u∗)3

κ(z + z0)
, ω= u∗

κ
√

Cµ(z + z0)
, (4.3)

with u∗ as the friction velocity given by

u∗ = ur e f κ

ln
(

zr e f +z0

z0

) ,

where zr e f is the reference height, ur e f is the reference mean streamwise speed at zr e f , z0

is the aerodynamic roughness length, Cµ is te empirical model constant and κ is the von
Kármán constant. Note that for a given turbulent intensity I and mean streamwise speed ū,
one can compute the turbulent kinetic energy k using the relation I =p

2k/3/ū and thereby
compute the friction velocity u∗. Subsequently, one can compute the roughness length for
a given reference height and reference mean streamwise speed.

4.3. UNCERTAINTY QUANTIFICATION APPROACHES

The characterization of model uncertainties in RANS simulations can be broadly classified
into two methods [133] - (i) where the uncertainties are injected into the model form, e.g., in
the transport equations for the fields like k, ϵ, ω etc., and (ii) where the uncertainties are
introduced in the model output, e.g., in the eddy viscosity field or in the Reynolds stress
tensor field. In the present work we employ the latter form of characterization using a
random Reynolds stress tensor field (RRSTF) which is more desirable for quantifying the
uncertainties in flows where the Boussinesq approximation fails or is inapplicable.

In RANS wind turbine simulations, the operating conditions used to model the atmo-
spheric boundary layer and atmospheric wall functions may be highly uncertain. This may
lead to a significant variance in the RANS computed flow fields. Therefore, it is important
to quantify these sources of uncertainties and study their effect on various quantities of
interest (QoIs). Following the discussion of the atmospheric boundary layer modeling in
section 4.2.2, in the present study, we consider the uncertainties in the hub height velocity
uh and the turbulent intensity Ih at hub height.

In the following sections, we will discuss two different approaches used in this work
to collectively quantify and propagate the above-mentioned uncertainties through the
linear-eddy-viscosity based RANS models discussed in section 4.2.1.
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4.3.1. STOCHASTIC RANS USING INTRUSIVE POLYNOMIAL CHAOS

Introducing randomness in the Reynolds stress, the stochastic form of RANS equations
becomes:

∇·u = 0, (4.4a)

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u)−∇·R(x ,ω)+ f . (4.4b)

where R(x ,ω) represents a random Reynolds stress tensor field (RRSTF).
In this section we present the stochastic RANS solver developed recently by the authors

[86]. Here we made use of the finite-volume library OpenFOAM [25]. The steps involved are
shown in Figure 4.1 (top). Deferring the full elaboration to [86], we provide a brief summary
of the major steps involved in the algorithm used to solve the above stochastic model.

• The characterization of the RRSTF is performed using the random matrix approach
proposed by Xiao et al. [134]. Here, while guaranteeing the realizability, the ran-
domness is introduced directly in the Reynolds stress components using a Gaussian
random field G(x) such that,

R(x) = LT
R G(x)LR , (4.5)

where LR is the upper triangular matrix resulting from the decomposition (Cholesky
factorization) of the mean Reynolds stress R(det ) = LT

R LR . The variance in G(x) is
governed by a dispersion parameter δ, which for a three-dimensional flow takes a
value in the range 0 < δ < 1/

p
2. The covariance kernel of G(x) may have spatially

varying correlation lengths {lx , ly , lz } and marginal variance σ2
c . After the construction

of RRSTF, it is represented using a finite (NK L) set of random variables using Karhunen-
Loève (KL) decomposition.

• The propagation of the uncertainties is carried out using generalized polynomial
chaos approach [137]. In particular, we use the intrusive polynomial chaos (IPC)
method, where the deterministic RANS equations are reformulated resulting in a set
of governing equations for the polynomial chaos mode strengths (also called modes or
coefficients) of the output [86]. The above steps result in the following set of equations
governing the evolution of the modes of velocity and pressure, for k = 0,1, ...,P ,

∇·uk = 0,

∂uk

∂t
+

P∑
i=0

P∑
j=0

(ui ·∇)u j Mi j k =−∇pk +
P∑

i=0

P∑
j=0

∇· (νi∇u j )Mi j k −∇·Rk (x)+ f k ,
(4.6)

where, for a random variable v , the term v i is the i th mode in the polynomial chaos
expansion v(x , t ,ω) =∑P

i=0 v i (x , t )ψi (ξ(ω)) where ψi is the multivariate polynomial
based on the joint probability density function of all the input random variables ξ,
P +1 = (d +n)!/(d !n!) with d being number of input random variables and n being
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the highest polynomial order of the polynomials {ψi }, and Mi j k = 〈ψiψ jψk〉/〈ψkψk〉.
The expansion coefficients of the Reynolds stress Ri (x) = LT

R Gi (x)LR , with Gi (x) being
the expansion coefficient of G(x), are approximated using a quadrature-based non-
intrusive polynomial approach.

In RANS wind turbine simulations, the uncertainties in the inlet conditions uh , Ih is directly
accounted in the modes via the atmospheric boundary layer inlet and atmospheric wall
functions boundary conditions. The solver framework is based on a deterministic solver
in OpenFOAM called pimpleFOAM and is again depicted in Figure 4.1 (bottom). In order
to significantly reduce the computational cost and attain the same level of accuracy a
hyperbolic truncation set with a tuning parameter (q) which controls the number of terms
in the polynomial chaos expansion was used in [86]. Once the modes of a random variable
are computed, its mean and variance are computed from

E[v ] = v 0(x , t ), V[v ] =
P∑

i=1
v 2

i (x , t )〈ψ2
i 〉. (4.7)

4.3.2. A SURROGATE BASED UNCERTAINTY PROPAGATION APPROACH

In contrast to the intrusive polynomial chaos methods, the surrogate based uncertainty
quantification (SBUQ) is a sampling based approach. The steps involved in SBUQ are
presented in Figure 4.2 (top). A three-dimensional (3D) U-Net deep learning model is
trained to predict the flow field for a single wind turbine with uncertainties as the inputs
and QoIs as the outputs. Then, the 3D U-Net model is used in conjugation with a wake-
superposition model in order to predict the flow field for an array of wind turbines.

The inspiration of employing a 3D U-Net model arises from the work of Thuerey et al.
[116]. They investigated the accuracy of a 2D U-Net model for the inference of RANS airfoil
flow solutions. In the present study, we extend this model for 3D flow configurations in
context of wind turbine simulations. A schematic of the neural network is shown in Figure
4.2 (bottom). For the sake of brevity, we only provide an overview of the adaptation of
the neural network architecture used in this work and defer - (i) the elaborate discussion
of the U-Net model to [116], and (ii) the fundamentals of artificial neural network (auto-
encoders in particular) to [5, 8]. For a given input x, we want to approximate the output y of
a true function f̂ using a representation f such that y ≈ f (x, w ), where w are the degrees of
freedom. In the present study f is represented using a U-Net neural network which avails
a non-linear mapping between the inputs and the outputs. A U-Net neural network is a
special case of an encoder-decoder architecture and usually has a bowtie structure that
translates spatial information into features that are extracted using convolutional layers. In
the encoding part of the network, using the convolutions and pooling with strides, the size
of the data is regularly down-sampled by a factor of two. This allows the gradual growth of
the number of feature channels representing increasingly large-scale and abstract features.
In the decoding part of the architecture, using de-convolutions and de-pooling with strides,
the spatial resolution regularly increases while the number of feature channels decreases.
In order to ensure a better reconstruction of the solution, low-level input information is
passed to the output channels using skip-connections. These connections concatenate
the corresponding encoding-decoding channels, thereby doubling the number of output
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(a) Quantification and propagation of model output-form uncertainty.

Randomness via Gaussian
field using KL approximationDeterministic RANS solver field

Eddy-viscosity /
Reynolds stress tensor

field
Random eddy-viscosity /
Reynolds stress tensor

Quantities of interest (QoIs)

Velocity and
pressure modes

Explicit Iterations

Se
qu

en
tia

l U
pd

at
in

g

Stochastic RANS solver

Other sources of uncertanties
(e.g. BCs, model parameters)

(b) Important steps of the algorithm implemented.

Start

T
im

e 
in

cr
em

en
t

lo
op

End

Solve the momentum equations

Solve the pressure equation

Correct the velocity fieldPr
es

su
re

 - 
ve

lo
ci

ty
co

up
lin

g 
lo

op

Ex
pl

ic
it 

It
er

at
io

ns

C
or

re
ct

or
lo

op

No

No

No

Yes

Yes

Yes

Se
qu

en
tia

l U
pd

at
in

g

Yes

Deterministic solver (pimpleFoam) Stochastic RANS solver

Start

T
im

e
in

cr
em

en
t

lo
op

End

Solve the momentum equations

Solve the pressure equation

Correct the velocity fieldPr
es

su
re

 - 
ve

lo
ci

ty
co

up
lin

g 
lo

op

C
or

re
ct

or
lo

op

No

Solve equations related to turbulene

(a) Quantification and propagation of model output-form uncertainty.

Randomness via Gaussian
field using KL approximationDeterministic RANS solver field

Eddy-viscosity /
Reynolds stress tensor

field
Random eddy-viscosity /
Reynolds stress tensor

Quantities of interest (QoIs)

Velocity and
pressure modes

Explicit Iterations

Se
qu

en
tia

l U
pd

at
in

g

Stochastic RANS solver

Other sources of uncertanties
(e.g. BCs, model parameters)

(b) Important steps of the algorithm implemented.

Start

T
im

e 
in

cr
em

en
t

lo
op

End

Solve the momentum equations

Solve the pressure equation

Correct the velocity fieldPr
es

su
re

 - 
ve

lo
ci

ty
co

up
lin

g 
lo

op

Ex
pl

ic
it 

It
er

at
io

ns

C
or

re
ct

or
lo

op

No

No

No

Yes

Yes

Yes

Se
qu

en
tia

l U
pd

at
in

g

Yes

Deterministic solver (pimpleFoam) Stochastic RANS solver

Start

T
im

e
in

cr
em

en
t

lo
op

End

Solve the momentum equations

Solve the pressure equation

Correct the velocity fieldPr
es

su
re

 - 
ve

lo
ci

ty
co

up
lin

g 
lo

op

C
or

re
ct

or
lo

op

No

Solve equations related to turbulene

Deterministic solver (pimpleFoam) Stochastic RANS solver

Figure 4.1 | (top) Flow chart of the steps involved in quantifying and propagating model output-form and other
sources of uncertainties in RANS simulations (P = 3), and (bottom) Graphical representation of the algorithm

implemented in the deterministic RANS solver (left) and stochastic RANS solver (right) [86].
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channels at each decoding level. For flow around a wind turbine, the inputs of the U-Net
network consist of all (six) components of Reynolds stress tensor field (RSTF) and the inlet
conditions (uh , Ih) spanned over the flow domain which is covered by a 128×128×128
mesh. The output of the network consists of the velocity (u) and turbulent intensity (I ) fields.
Every block of the U-Net network consists of an activation function (mostly non-linear), a
(de)convolutional layer and a batch normalization layer. As depicted in Figure 4.2 (bottom),
in the encoder part we use 7 blocks to convert an input of size 1283 ×8 into an array of 512,
while in the decoder part we use another 7 blocks to reconstruct the target output of size
1283 ×2. These blocks mostly use the (de)convolution kernels of size 43 except that the two
inner layers of the encoder and decoder part use a kernel of size 23. This results in a neural
network with approximately 46.7 million weights. We use the leaky ReLU and regular ReLU
activation functions in the encoding and decoding parts, respectively, except in the first
encoder block where a linear activation function is used.

After training the surrogate (U-Net neural network) over a single wind turbine, we
predict the solution for an array of wind turbines by using the surrogate along with a wake
superposition model as depicted in Figure 4.2 (bottom). A popular wake superposition
model is the sum of squares (SOS) model which can be written as [36],(

1− ui+1

ui n

)2

=
nup∑
j=1

(
1− ui+1, j

u j

)2

=
nup∑
j=1

(
∆ui+1, j

)2 , (4.8)

where, ui is the velocity at turbine i , ui j is velocity at turbine i explicitly in the presence of
the wake of turbine j and nup is the number of wind turbines upstream. The subscript i n
denotes the inflow. Thus, the SOS model states that in an array of wind turbine configuration,
the square of the overall velocity deficit normalized by the inflow condition is equal to the
sum of the squares of the local normalized velocity deficits of all the upstream wind turbines.
to model energy conservation, we assume that the increase of the turbulent kinetic energy
(TKE) at a turbine can be written as the sum of the local added TKEs of all the upstream
wind turbines,

ki+1 −ki n =
nup∑
j=1

(
ki+1, j −k j

)= nup∑
j=1
∆ki+1, j , (4.9)

where, ki is the TKE at turbine i , ki j is TKE at turbine i explicitly in the presence of the wake

of turbine j . Finally, the turbulent intensity can then be computed using I =p
2k/3/ui n .

The following steps summarize the overall process of using a U-Net neural network and
a wake superposition model to predict the flow field for an array of wind turbines. For each
sample in the input:

• Step 1: Assign the initial and the boundary conditions of the flow field. At the first
wind turbine (i = 1), extract the hub height velocity uh and turbulent intensity Ih .

• Step 2: Use the trained surrogate model (U-Net) to predict the velocity and the turbu-
lent intensity fields for the i th wind turbine.

• Step 3: At the (i +1)th wind turbine, compute the velocity deficit and the added TKE
fields for all the upstream turbines and approximate the hub height velocity and
turbulent intensity using the respective wake superposition models (4.8, 4.9).
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Repeat the process (Steps 2 and 3) sequentially to compute the wake field for the subsequent
wind turbines. For a given sampling strategy, the above discussed combined model (3D
U-Net with wake-superposition) can now be used as a surrogate in the SBUQ approach to
compute the statistic of the uncertain flow field in an array of wind turbines.

4.4. NUMERICAL RESULTS

Using the two approaches discussed in section 4.3, we present an uncertainty quantifica-
tion analysis for the RANS simulations of wakes behind a single wind turbine and wake
interactions in an array of wind turbines in the next sections.

4.4.1. WAKE BEHIND A SINGLE WIND TURBINE

SIMULATION SETUP

For the deterministic RANS simulation of the wake behind a single wind turbine, we consider
the Vestas V80-2MW turbine, which has a hub height zh of 70m, a turbine diameter D of 80m
and a thrust coefficient CT of 0.8. As can be seen in Figure 4.3, the size of the computational
domain is 30D ×10D ×4.3D (in the streamwise (x), spanwise (y) and vertical (z) directions,
respectively). The wind turbine is location 5D downstream of the inlet. A Cartesian mesh
with higher cell density near the wind turbine in streamwise and spanwise directions is
used to capture steep gradients in the flow. In the present work, we use the actuator disk
approach to model the effect of turbine blades as a body force [130]. The turbine induced
force is distributed uniformly across the cells in the rotor disk region and is represented as a
source term in the momentum equations (4.1) [93],

f =−1

2
u2

0 ACT , (4.10)

where, u0 is the mean upstream undisturbed velocity and A is the rotor area. The boundary
conditions at the inlet and the top surface are set in order to simulate an atmospheric bound-
ary layer profile [42, 141] such that the hub height velocity uh and turbulent intensity Ih are
8m/s and 5.4%, respectively. At the outlet a constant pressure is applied with zero gradient
conditions for both the velocity and the turbulence variables (depending on the model used).
The bottom surface is modeled as a rough ground i.e. no-slip conditions for the velocity,
zero gradient for the pressure and wall functions for the turbulence variables (depending on
the model used). In the spanwise direction a zero gradient boundary condition is applied to
all variables. Based on the analysis of different linear-eddy-viscosity RANS models in [43],
we choose the k −ω SST model [78, 126] to simulate the wake behind a single wind turbine.
We also use the LRR Reynolds stress transport model [64] to make comparisons with the
two-equation model and to verify the expected better performance of the RSTM.

The stochastic simulation uses the same mesh as the deterministic simulation. The
parameters used to characterize the random hub height variables (uh , Ih) and the random
Reynolds stress tensor field (RRSTF) are presented in Table 4.1. The hub height variables are
uniformly distributed with a coefficient of variation (CoV) of about 4% and 5%, respectively.
Such levels of variations in the measurement data are often reported in the literature [6].
The parameters chosen for the characterization of RRSTF are based on the previous work by
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(a) Quantification and propagation of model output-form uncertainty.
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Figure 4.2 | (top) Flow chart of the steps involved in SBUQ - surrogate based quantification and propagation of
model output-form and operational uncertainties in RANS simulations, and (bottom) Graphical representation of
the surrogate model i.e. a 3D U-Net (adapted from [116]) combined with a wake superposition model, where [a]3

implies a 3D array of shape a ×a ×a.
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Figure 4.3 | Computational domain for the wind turbine simulation. The turbine is situated 5D distance from the
inlet, while the outlet is 25D from the turbine to capture the turbulent wake (left). The computational mesh has

fine cells across the actuator disk to capture the momentum and pressure jump, and smaller cells near the rough
wall to capture the steep gradients (right).

the authors [86]. The values of the correlation lengths lx , ly , lz roughly represent the length
of flow structures in x, y and z directions, respectively, observed typically from the baseline
(deterministic) RANS simulation. In a recent study on turbulence scales of a wind turbine
wake [119], it was found that at relatively low turbulence levels the turbulence length scale
in the wake region is about D/4 and it gradually increases for higher levels of turbulent
intensity. The present work considers moderate levels of turbulence and thus the streamwise
correlation length lx is varied in the range [D/4,4D] while ly and lz are fixed at D and D/2,
respectively. The predicted uncertainty bounds showed no significant difference beyond
lx = 2D. Thus, we continue to use lx = 2D for the remaining study, which in turn allows
lower number of KL modes while capturing most of the variance in RSTF. The dispersion
parameter is chosen such that the (field averaged) CoV of the random field is close to the
CoV of the hub height variables. This is particularly useful to later comment on the relative
contribution of each input random variable towards the variance in QoIs for similar CoVs.
Moreover, choosing very high levels of perturbation may increase the chances of including
non-physical realizations. The remaining hyper-parameters are based on the findings in
authors’ previous work [86]. The threshold s controls the number of KL decomposition
modes while capturing most of the random field’s variance, whereas the turning parameter
q controls the number of higher order polynomial interactions to be considered for a given
degree of PCE n. In the construction of the RRSTF we use OpenTURNS [89] to obtain the
random field G(x) and subsequently compute the modes of the KL decomposition.

Figure 4.4 depicts the level of anisotropy plotted in barycentric coordinates within a
barycentric triangle at location (x/D, y/D, z/D) = (2.0,0.0, zh/D) for both turbulence models
used. The projection of the Reynolds stresses onto the barycentric triangle is discussed in
Appendix 4.6.1. The uncertainty introduced in the Reynolds stress tensor field is represented
by the spread of the samples. The distance between the deterministic anisotropy state and
the sample mean state is proportional to the dispersion parameter. As the dispersion param-
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Parameter Distribution or Value
hub height velocity (uh [m/s]) uniform [7.5,8.5]
hub height turbulent intensity (Ih [%]) uniform [5.0,6.0]
Reynolds stress tensor field (RSTF, [m2/s2])

correlation lengths (lx , ly , lz ) 2.0D,1.0D,0.5D
marginal variance (σ2

c ) 0.5
dispersion parameter (δ) 0.5
KL decomposition threshold (s) 1e −2
degree of polynomial chaos expansion (n) 3
hyperbolic truncation set tuning parameter (q) 0.5

Table 4.1 | Parameters used to characterize the random variables and the random fields for the simulation of a
wake behind a wind turbine.

Figure 4.4 | Randomly sampled Reynolds stresses at location (x/D, y/D, z/D) = (2.0,0.0, zh /D), projected onto the
barycentric triangle for the uncertain k −ω SST (left), and LRR (right) turbulence models, see 4.6.1.

eter increases, the sample states (and the mean) lies further away from the deterministic
state.

For visualizing the anisotropy in the wake region, we map the barycentric triangle, for
the sake of consistency with other contour plots, into a Viridis colormap using the method
proposed in [21]. As shown in Figure 4.5, the colors blue, yellow and green are assigned
to the one, two and three component turbulence states, respectively, while the colors are
interpolated for all the states in between these extremities. Using this mapping, we present
in Figure 4.6 the Reynolds stresses anisotropy tensor representation for the deterministic
RANS simulation and a sample from the PCE of RRSTF for both turbulence models at various
locations downstream. It can be seen that, in the near wake region, the k −ω SST model
underestimates the anisotropy of the shear layer as compared to the LRR model. Also, in
comparison to the RSTM, the two-equation model tends towards the isotropic state (three
component) rather quickly as we move further downstream. Note that the PCE sample
for the two-equation model shows a higher level of anisotropy than the deterministic one.
Based on the above discussion, we conclude that the level of uncertainty introduced in the
Reynolds stress tensor field allows for a (locally) significant increase in the anisotropy and is
sufficient for model-form uncertainty quantification analysis of the two RANS models.
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Figure 4.5 | Viridis colormap representation of the Barycentric triangle used to visualize the anisotropy in a flow
region [21].

SIMULATION RESULTS

In this section, we present the uncertainty quantification results obtained using both the
approaches discussed in section 4.3. The input uncertainties (the uncertain hub height
variables uh , Ih and the RRSTF) are characterized based on the hyper-parameters listed in
Table 4.1. We consider the normalized velocity deficit and turbulent intensity fields as the
QoIs. We compare the results obtained from the analysis of both turbulence models with a
reference LES data [43]. Note that the LES solution corresponds to the mean of hub height
variables in the present work. The LES framework in [43] consists of a pseudo spectral code
with a computational domain of size 40D ×10D ×4.44D which is slightly larger than the one
used for our RANS simulations (present work). Note, the LES domain is larger since it uses
a fringe zone. The LES uses a precursor simulation for a fully-developed boundary layer
flow under neutral conditions driven by an imposed pressure gradient and modeled the
turbine-induced forces using a non-rotational actuator disk model. For further details of
the LES see [2, 140].

In order to assess the effect of the uncertain inlet conditions alone (uh , Ih), a forward
propagation of these uncertainties through the stochastic RANS solver (using deterministic
RSTF of the baseline) is performed (Appendix 4.6.2). The results obtained from this study
show a significant contribution of the uncertain operating parameters towards the variance
in the QoIs. Next we study the combined effect of the uncertain inlet conditions and the
structural uncertainties in RANS.

Following the discussion of the SBUQ approach in section 4.3.2, we now discuss the
training, the validation and the test results obtained using the data-driven approach.

• After the characterization of the input uncertainties (section 4.4.1), we use a Quasi-
Monte Carlo (QMC) sampling technique [45, 68] to sample 1300 independent samples
of {uh , Ih , RSTF}. The RSTFs are sampled from the PCE of RRSTF. Therefore, we
essentially sample from the joint probability distribution of {uh , Ih ,ξ1, ...,ξNK L } which
indeed represents the input random space for the stochastic RANS solver as well. For
each sample we use a CFD solver to obtain the velocity and the turbulent intensity
fields, see Appendix 4.6.4 for more details.

• From all the samples we extract the hub height velocity and turbulent intensity, the
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(a)

(b)

Figure 4.6 | Visualization of the Reynolds stresses anisotropy tensor for the deterministic RANS simulation and a
sample from the PCE of Reynolds-stress tensor using the Barycentric Viridis colormap map (Figure 4.5) at different

locations in the streamwise direction for the uncertain (a) k −ω SST, and (b) LRR RANS turbulence models.
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RSTF, the velocity and the turbulent intensity fields from 1D upstream to 6D down-
stream the turbine. A 1283 mesh is used in the region of the extracted quantities which
is the same as the input size of the U-Net neural network. Thus we avoid interpolating
these fields to match the U-Net input. Note that a training sample here consists of - (i)
the inputs as uh , Ih and a RSTF spanned throughout the input space of 1283, and (ii)
the outputs as the velocity and the turbulent intensity fields of size 1283.

• The training, the validation and the test set of the 3D U-Net neural network consist of
1000, 200 and 100 samples, respectively. We implement the network in TensorFlow
[1] and train for 1000 epochs (iterations) using cross validation. We use the Adam
optimizer [55] with a mean absolute error (MAE) loss function and an exponential
decay schedule for the leaning rate initialized with a value of 1e −3. We also monitor
the field averaged relative L1 error between the true and the predicted fields.

• The training and validation history of the U-Net model trained over k −ω SST RANS
simulations data of a single wind turbine using the steps mentioned above is shown
in Figure 4.7 (a). As observed, the convergence is obtained after 400 epochs, with
the field-averaged relative L1 error dropping to about 0.96% . With the use of the
exponential decay schedule for the learning rate the loss (and the L1 error) reduces
steadily within the first 250 epochs. The validation loss is only slightly higher than
the training loss. In Figure 4.7 (b) we present the regression plots for the training, the
validation and the testing set of the surrogate model. The high correlation between
the predicted solution and the true values indicate that the surrogate model has good
convergence and properly represents (fits) the dataset. To assess the performance
of the surrogate model trained over k −ω SST RANS simulations, the baseline true
and predicted solutions are presented in Figure 4.8. Several samples from the test
set are shown in Figure 4.20. The surrogate model has high accuracy for the samples
close to baseline and only suffers slightly in a few edge cases (far away from baseline).
The discrepancies in the wake region (< 1.5D) over the entire test set has a maximum
local error of about 5.3% and 3.1% for velocity and turbulent intensity, respectively.
This can be associated to the steep pressure gradient across the actuator disk which
disturbs the inflow. Overall, the surrogate severs as a reasonable approximator of
the QoIs and is deemed suitable for the surrogate based uncertainty quantification
approach.

• To obtain the statistics (mean and variance) of the QoIs with a reasonable accuracy we
use 10,000 QMC samples of inputs. Note that we now use the surrogate constructed
in the above steps for fast and accurate predictions of the QoIs for such large number
of samples.

Similar to the k −ω SST model, we also train the 3D U-Net model over the data from
LRR RANS simulations to predict the QoIs and in turn their statistics. What follows is
a comparison between the solutions obtained from the stochastic RANS solver and the
surrogate based approach for both the turbulence models. Figure 4.9 shows the normalized
velocity deficit and the turbulent intensity averaged over the rotor area along the streamwise
direction. As observed in the plots and as expected, the stochastic mean for both the
turbulence models is in accordance with the reference LES solution. The uncertain bound
of ±2× standard deviations reflects the effect of the overall input uncertainties on the QoIs.
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(a)

(b)

Figure 4.7 | (a) History of the training and validation losses (left) and relative errors (right) over epochs for the 3D
U-Net surrogate model trained with the data from a single wind turbine simulations using the k −ω SST RANS
turbulence model, and (b) Predicted versus true values of velocity deficit and turbulent intensity 2D distance

downstream the center of the rotor, plotted for training, validation and testing sets of the surrogate model.
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Figure 4.8 | Comparison of the true (OpenFOAM) solution and the predicted solution for baseline using the 3D
U-Net surrogate model trained with the data from a single wind turbine simulations using the k −ω SST RANS

turbulence model.

For the k −ω SST model these bounds contain the LES solution except for the near wake
region. This can be associated with the inherent shortcomings of the linear eddy viscosity
model as well as with the use of actuator disk to model the effect of turbine blades. The
uncertain bounds of the LRR model captures the LES solution throughout the streamwise
direction. Figure 4.10 shows the normalized velocity deficit and turbulence intensity at four
different downstream locations. As observed again, the stochastic mean for both turbulence
models is in conformity with the reference LES solution. Considering both RANS models,
the velocity deficit - (i) shows only very small effect of the input uncertainties in the near
wake region (x/D = 2), while the variance in velocity deficit grows gradually and peaks after
x/D = 4, (ii) bounds are able to contain the LES solution except for the near wake region
which can again be associated with the inherent shortcomings of the linear eddy viscosity
model and the use of actuator disk model. The k−ω SST model under-predicts the turbulent
intensity, although its bounds capture the LES solution at least in the near wake region.
On the other hand, the LRR model shows a good prediction of the turbulent intensity and
its bounds capture the LES profile throughout all the downstream location. In both the
results discussed above, the mean profiles obtained from both uncertainty quantification
approaches are mostly close to each other, with a slightly overpredicted velocity deficit
in case of the surrogate based approach in the wake region. The variance in the solution,
especially in the wake regions is overpredicted by the surrogate based method which may
be attributed to the noise in the training data and/or the inherent uncertainty of the neural
network.

Thus, from the above discussion, it is clear that in the near wake region, due to the
adverse pressure-gradient resulting from the turbine, the linear eddy viscosity model fails to
perform as good as RSTM. Overall, the three input uncertainties (uh , Ih , RSTF) collectively
result in a slightly higher variance in the stochastic solution (∆u/uh , I ) of the two-equation
model as compared to RSTM. This makes the latter, although computationally expensive,
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(a)

(b)

Figure 4.9 | Mean and variance of the normalized velocity deficit and turbulence intensity, in streamwise direction
and averaged over the rotor area for the uncertain (a) k −ω SST, and (b) LRR RANS turbulence models. The results

from the stochastic RANS solver (blue) are compared with those from the SBUQ approach (red). The line
represents the mean profile and the shaded area represents the bound of ±2× standard deviations.
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(a)

(b)

Figure 4.10 | Mean and variance of the normalized velocity deficit and turbulence intensity, at different
downstream locations for the uncertain (a) k −ω SST, and (b) LRR RANS turbulence models. The results from the

stochastic RANS solver (blue) are compared with those from the SBUQ approach (red). The line represents the
mean profile and the shaded area represents the bound of ±2× standard deviations.
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more accurate and slightly less sensitive to the input uncertainties. However, the linear
eddy viscosity model, apart from its shortcomings in some regions of the flow, performs
reasonably well in matching the LES solution. We also gather that the surrogate model
developed using the RANS simulations over a single wind turbine may not only be used to
accurately predict the QoIs but also be considered as an efficient alternate to the full-size
stochastic RANS solver for uncertainty quantification analysis.

4.4.2. WAKE INTERACTIONS FOR AN ARRAY OF WIND TURBINES

SIMULATION SETUP

For the deterministic RANS simulation of the interactions of the wakes in an array of wind
turbines, we consider a single row of six Vestas V80-2MW turbines. Note that such an
arrangement is usually part of a large wind farm (e.g. the first six wind turbines of a row in
the Horns Rev windfarm (θwi nd = 270◦) [131] which consists of 8×10 Vestas wind turbines).
Each of these turbines has a hub height zh of 70m, a turbine diameter D of 80m and a thrust
coefficient CT of 0.8. As can be seen in Figure 4.11, the size of the computational domain is
65D×10D×4.3D in the streamwise (x), spanwise (y) and vertical (z) directions, respectively.
The first wind turbine is location 5D downstream of the inlet and the spacing between the
wind turbines is 7D . Similar to the single wind turbine case - (i) a Cartesian mesh with higher
cell density near the wind turbine in streamwise and spanwise directions is used to capture
steep gradients in the flow, and (ii) for each wind turbine, an actuator disk approach is used
to model the effect of turbine blades (see equation 4.10), and (iii) the boundary conditions
are set to match the atmospheric boundary layer profile at inlet (uh = 8m/s, Ih = 5.8%),
pressure outlet and zero gradient for all other variables at the outlet, rough ground using
no-slip condition and wall-functions at the bottom surface, and farfield conditions using
zero gradient for all variables in the spanwise direction. Based on the analysis performed
using the different linear-eddy-viscosity RANS models in [20], we choose the realizable k −ϵ
model [78, 126] to simulate the wake interaction for an array of wind turbines. Similar to
the wake prediction of a single wind turbine, we also use the LRR Reynold stress transport
model [64] to make comparisons with the two-equation model and to verify the expected
better performance of RSTM.

The stochastic simulation uses the same mesh as the deterministic simulation. The
parameters used to characterize the random hub height variables (uh , Ih) at the first wind
turbine and the random Reynolds stress tensor field (RRSTF) for the entire domain are
essentially the same as discussed in section 4.4.1 and are presented in Table 4.1, with an
exception of Ih which is now set to have a uniform distribution with bounds as [5.3%,6.3%],
allowing the mean to be 5.8% as required.

SIMULATION RESULTS

In this section, similar to the single wind turbine simulation analysis (section 4.4.1), we
present the uncertainty quantification results obtained using both the approaches discussed
in section 4.3. As earlier, we consider the normalized velocity deficit and turbulent intensity
fields as the QoIs. We compare the results obtained from the analysis of both turbulence
models with reference LES data from [20]. Note that the LES corresponds to the mean
of hub height variables in the present work. The LES uses a computational domain of
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Figure 4.11 | Computational domain for the simulation of an array of wind turbines. The first turbine is situated at
5D distance from the inlet and the spacing between the wind turbines is 7D . The outlet is at 60D from the first
turbine (left). The computational mesh has fine cells across the actuator disks to capture the momentum and

pressure jump, and smaller cells near the rough wall to capture the steep gradients (right).

size 60D ×10D ×4.44D including two columns of six wind turbines each with the lateral
spacing of 5D and streamwise spacing of 7D (same as RANS in present work). The LES
results averaged over the two columns are considered for comparison with RANS. For further
details of the LES see[2, 140].

Following the discussion of the SBUQ approach in section 4.3.2, we now discuss the train-
ing, the validation and the test results obtained by combining the deep learning surrogate
with the wake superposition model to predict the QoIs in an array of wind turbines.

• We aim to train a U-Net model over single wind turbine simulation data and use it
along with wake-superposition model to predict the flow field in an array of wind
turbines. This requires training the U-Net model for a range of possible (scalar or field)
values that the hub height variables and the RSTF may attain around the turbines.
For this purpose we use the baseline (deterministic) RANS simulation for an array of
wind turbines and extract the hub height values of velocity and turbulent intensity,
and the RSTF for each wind turbine. Thereafter, the random variables (uh , Ih) are
characterized using the same distribution type as listed in Table 4.1, with the bounds
determined from the their extracted values. Similarly, using the extracted RSTFs as
the realizations of a random field, the RRSTF is constructed and characterized by the
set of hyper-parameters listed in Table 4.1. Note that the mesh size in the region of the
extracted field is already 1283 which is the same as the input size of the U-Net neural
network. Thus we avoid interpolating these fields to match the size of the U-Net input.

• Similar to the single wind turbine analysis in section 4.4.1, we use a Quasi-Monte
Carlo (QMC) sampling technique [45, 68] to sample 1300 independent samples of
{uh , Ih , RRSTF}. For each sample we use a CFD solver to obtain the velocity and the
turbulent intensity fields. We defer the discussion of the forward CFD solver used to
Appendix 4.6.4. Note that a training sample consists of - (i) the inputs as uh , Ih and a
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RSTF spanned throughout the input space of 1283, and (ii) the outputs as the velocity
and the turbulent intensity fields of size 1283.

• The training, the validation and the test set of the 3D U-Net neural network consists
of 1000, 200 and 100 samples respectively. We implement the network in TensorFlow
[1] and train for 1000 epochs (iterations) using cross validation. We use the Adam
optimizer [55] with a mean absolute error (MAE) loss function and an exponential
decay schedule for the leaning rate initialized with a value of 1e −3. We also monitor
the field averaged relative L1 error between the true and the predicted fields.

• The training and validation history is shown in Figure 4.12 (a). As observed, the
convergence is obtained after 750 epochs, with the field-averaged relative L1 error
dropping to about 1.8%. With the use of the exponential decay schedule for the
learning rate the loss (and the L1 error) reduces steadily within the first 500 epochs.
As expected, the validation loss is higher than the training loss. In Figure 4.12 (b) we
present the regression plots for the training, the validation and the testing set of the
surrogate model. The apparent correlation between the predicted and the true values
imply that the surrogate model has acceptable convergence and represents (fits) the
dataset with reasonable accuracy. Note that in comparison to the U-Net training
in section 4.4.1, the number of the epochs required to attain convergence is larger
and the field-averaged error is significantly higher, while the correlation between
predicted and true values are slightly lower. This is associated to the larger bounds
and/or variance of hub height variables, the RSTF and the QoIs used to train the
current U-Net model. These larger bounds and/or variance in the random variables
and fields are in turn directly associated to the uncertainty characterization procedure
used in the first step. To assess the performance of the surrogate model trained over
realizable k −ϵ RANS simulations, we present a test case using the inflow conditions
and RSTF for the first wind turbine, see Figure 4.13. Several samples from the test set
are shown in Figure 4.21. The surrogate model is accurate for the samples with higher
levels of turbulent intensity, whereas for lower turbulent intensities the predictions
are more erroneous. The discrepancies in the wake region (< 1.5D) over the entire
test set has a maximum local error of about 6.8% and 4.7% for velocity and turbulent
intensity, respectively. This can be associated to the steep pressure gradient across the
actuator disk that disturbs the inflow as well as with the high variance in the training
data as discussed above. Overall, the surrogate severs as a reasonable approximator
of the QoIs and is deemed suitable for the SBUQ approach.

• After training the 3D U-Net surrogate model for a single wind turbine predictions,
we now use the neural network in conjugation with a wake superposition model
(section 4.3.2) to sequentially predict the wake fields in an array of wind turbines. To
sample the inputs, we use the same random space {uh , Ih ,ξ1, ...,ξNK L } as was created
during the uncertainty quantification analysis using the stochastic solver approach.
To assess the quality of the coupled surrogate model the baseline case with the true
and predicted solutions is presented in Figure 4.14 while the test samples presented in
Figure 4.22. As can be observed, the wake regions of all wind turbines have moderate
discrepancies with a significantly high error near the first wind turbine. The maximum
field-averaged relative L1 error in velocity and turbulent intensity over the entire test
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set is about 4.8% and 3.7%, respectively. However, in the wake regions, for some test
cases the maximum local error for velocity and the turbulent intensity are as high as
12% and 9%, respectively. Such high local errors can be correlated to the empirical
wake superposition model which may admit obvious errors in the wake predictions.
Nevertheless, the hub height velocity and turbulent intensity predictions are not
significantly affected by these larger error regions as most of these discrepancies
are concentrated in the wake region up to 3−4D distance downstream of the wind
turbines. Overall, the predicted solution is in accordance with the true solution while
having a reasonable accuracy. The SBUQ approach (3D U-Net + wake superposition) is
therefore deemed suitable for uncertainty quantification in an array of wind turbines.

• To obtain the statistics (mean and variance) of the QoIs with a reasonable accuracy
we use 10,000 QMC samples. Note that we now use the surrogate constructed in the
above steps (3D U-Net + wake superposition) for fast and accurate predictions of the
QoIs for such large number of samples.

Similar to the realizable k −ϵ model, we also train 3D U-Net model over the data from
LRR RANS simulations and in turn combine it with the wake superposition model to predict
the QoIs and perform uncertainty quantification analysis in an array of wind turbines. What
follows is a comparison between the solutions obtained from the stochastic RANS solver
and the surrogate based approach for both the turbulence models. The streamwise variation
in the normalized velocity deficit and turbulence intensity averaged over the rotor area is
shown in Figure 4.15. As evident, for both turbulence models, the stochastic mean is very
close to the deterministic simulation and is in accordance with the LES solution. Due to
the inadequacies of the linear-eddy-viscosity models, the two-equation model struggles
to such an extent that even its bounds are not able to capture the LES solution in the near
wake regions. On the other hand, RSTM shows a very close prediction to LES except for the
velocity deficit in the wake region of the second wind turbine. For the realizable k −ϵ model,
the variance in the wake regions increases slightly over the wind turbines. While for the
LRR model, the variance in the wake regions grows significantly in the streamwise direction.
In the single wind turbine study (Figure 4.9), we observed that the variance was larger in
regions of higher turbulent intensity and gradually decreased (or plateaued) downstream
as the wake recovered. In contrast, for an array of wind turbines, the wake region for every
wind turbine consists of high shear and turbulence levels, resulting in a larger variance. This
observation is also consistent with the findings in [20]. In Figure 4.16, we present the hub-
height spanwise profiles of the normalized velocity deficit and turbulence intensity at 5D
downstream of each wind turbine. Except behind the first wind turbine, both the turbulence
models are able to capture the LES solution fairly well. The variance in the realizable k −ϵ
solution is almost the same behind each wind turbine, while the variance in the LRR solution
grows not only downstream but also laterally. This might be associated with the higher
levels of anisotropy inherent in the RSTM, which on perturbation and propagation, results
in a higher overall variance in the QoIs. In the results discussed above, the mean profiles
obtained from both uncertainty quantification approaches are very close, with a slightly
overpredicted turbulent intensity in case of the surrogate based approach. Similar to the
single wind turbine study (section 4.4.1), the variance in the solution, especially in the wake
regions is overpredicted by the surrogate based method. As mentioned earlier, the added
variance may be attributed to the noise in the training data and/or the inherent uncertainty
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(a)

(b)

Figure 4.12 | (a) History of the training and validation losses (left) and relative errors (right) over epochs for the 3D
U-Net surrogate model trained with the data from a single wind turbine simulations using the realizable k −ϵ
RANS turbulence model, and (b) Predicted versus true values of velocity deficit and turbulent intensity at 2D

distance downstream the center of the rotor, plotted for training, validation and testing sets of the surrogate model.
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Figure 4.13 | Comparison of the true (OpenFOAM) solution and the predicted solution for baseline using the 3D
U-Net surrogate model trained with the data from a single wind turbine simulations using the realizable k −ϵ

RANS turbulence model. The baseline here represents the configuration with the inflow conditions and RSTF for
the first wind turbine in baseline.

Figure 4.14 | Comparison of the true (OpenFOAM) solution and the solution predicted using the SBUQ
surrogate (3D U-Net trained with the data from a single wind turbine simulations using the realizable k −ϵ

RANS turbulence model + wake superposition) for a test sample.
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of the neural network. The discrepancy w.r.t. the LES solution can be associated with the
inherent shortcomings of the linear-eddy-viscosity model and with the use of actuator disk
model as discussed earlier. As before in the single wind turbine study (section 4.4.1), we
also assert that the 3D U-Net model trained using the RANS simulations over a single wind
turbine and coupled with the wake superposition model may not only be used to accurately
predict the QoIs but also be considered as an efficient alternate to the full-size stochastic
RANS solver for uncertainty quantification analysis for an array of wind turbines.

The Gaussian random field used in the characterization of the RRSTF was discretized
using a finite set of random variables ξ obtained from its Karhunen-Loève decomposition
(see section 4.3.1). Including uh and Ih , the overall input random vector comprises of
NK L +2 random variables {uh , Ih ,ξ1, ...,ξK L}. In Figure 4.17 we present the Sobol indices for
the normalized velocity deficit and the turbulent intensity at hub height and 5D distance
downstream of each wind turbine. Sobol indices quantify the relative contribution of the
input uncertainties towards the variance in the QoIs. The details on the computation of
these indices can be found in Appendix 4.6.3. Note that the higher modes of RRSTF have
insignificant contribution, and thus for the sake of clarity, we present only the contributions
from the first eight modes of the RRSTF. In the Figure 4.17, the mode index 1 and 2 refer to
the random variables uh and Ih , respectively, while the remaining eight indices refer random
variables representing the RRSTF. The overall contribution from the RRSTF is considered to
be the sum of the contributions of all RRSTF modes. As can be observed, the normalized
velocity deficit and the turbulent intensity are almost insensitive to the uncertainty in the
hub height velocity. The contributions of the uncertain hub height turbulent intensity and
RRSTF are significant and comparable. In the variance of the normalized velocity deficit,
the contribution of the uncertain hub height turbulent intensity gradually decreases, while
the contribution of the RRSTF slowly increases in the streamwise direction. On the other
hand, in the variance of the turbulent intensity, the contribution of the uncertain hub height
turbulent intensity dominates for the first wind turbine, drops significantly for the second
wind turbine and remains almost constant for the remaining wind turbines downstream.
Here, the contribution of the RRSTF varies accordingly and is least for the first wind turbine.
Note that among the all RRSTF modes, the contribution from the first two modes is always
the largest.

In Figure 4.18, we present the normalized power output for each wind turbine with
a probability distribution based on statistics obtained from both the approaches. As can
be seen, the mean power for both approaches is in agreement with the LES and the LRR
model, with the exception of the second and the sixth wind turbine. However, the LES
solution at all turbines is captured by the high probability region of the power probability
distributions. Overall, the surrogate based approach shows a reasonable agreement with
the stochastic solver and can be considered an alternate technique to the intrusive method
when an accurate surrogate model can be developed.

Table 4.2 lists the comparison between the two uncertainty quantification approaches
present above. The accuracy of the stochastic RANS solver is generally comparable to tradi-
tional methods like Monte-Carlo or its variants like Multi-level Monte-Carlo [60]. However,
the accuracy may also depend on the variation in hyper-parameters as shown in [86]. The
SBUQ approach is reasonably accurate (as discussed previously) although it may be affected
by the inherent uncertainties in the neural network which shall be quantified. The computa-
tional cost for the uncertainty quantification analysis of the wake interactions in an array of
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(a)

(b)

Figure 4.15 | Mean and variance of the normalized velocity deficit and turbulence intensity, in streamwise
direction and averaged over the rotor area for the uncertain (a) realizable k −ϵ, and (b) LRR RANS turbulence

models. The results from the stochastic RANS solver (blue) are compared with those from the SBUQ approach
(red). The line represents the mean profile and the shaded area represents the bound of ±2× standard deviations.
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(a)

(b)

Figure 4.16 | Mean and variance of the normalized velocity deficit and the turbulence intensity, at 5D behind each
wind turbine (WT) for the uncertain (a) realizable k −ϵ, and (b) LRR RANS turbulence models. The results from the

stochastic RANS solver (blue) are compared with those from the SBUQ approach (red). The line represents the
mean profile and the shaded area represents the bound of ±2× standard deviations.
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Figure 4.17 | Sobol indices of all the random inputs {uh , Ih ,ξ1, ...,ξK L } for the normalized velocity deficit and the
turbulence intensity at hub height 5D behind each wind turbine (WT) for the uncertain realizable k −ϵ RANS

turbulence model. The higher modes of RRSTF have insignificant contribution, and thus, only the contributions
from the first eight modes of the RRSTF are shown.

Figure 4.18 | Normalized power distribution at each wind turbine, for the uncertain realizable k −ϵ RANS
turbulence model. The results from the stochastic RANS solver (blue) are compared with those from the SBUQ

approach (red). LES [20] and LRR data are used as a reference to asses the accuracy of the baseline RANS solution.
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Stochastic RANS solver SBUQ
Accuracy Comparable to traditional (ex-

pensive) methods. May also de-
pend on hyper-parameters [86].

Reasonably accurate but may be
affected by the inherent uncer-
tainty of the neural network.

Computational cost
(× 1 single WT sim.)

PCE of RRSTF 0.5 0.5
Simulation 630 -
Training - 1000
Statistics - 1
Overall comment Relatively less expensive as com-

pared to sampling-based meth-
ods [60, 86].

Sampling and computing statis-
tics using surrogate is signifi-
cantly cheaper.

Convergence Slow convergence of higher PCE
modes.

Slow convergence for samples
further from mean of inputs.

General applicability Applicable to a wide range of en-
gineering applications.

Restricted to use in closely re-
lated turbulent flows.

Possible improvements An implicit algorithm to simulta-
neously solve for all modes.

Use of dimensionality reduction
techniques for RSTF.

Table 4.2 | Overall comparison of the Stochastic RANS solver and the SBUQ approach. The figures for the
computational cost are specifically for the uncertainty quantification analysis of the wake interactions in an array

of wind turbines.

wind turbines is around 40% lower for the stochastic solver. Using early-truncation tech-
niques the computational cost can be further reduced [86]. We observed slower convergence
rates for the higher modes in the simulations using the stochastic solver. On the other hand,
in the training phase of U-Net, slower convergence rates were observed for the samples
in the regions away from the input mean. The stochastic RANS solver has capabilities to
accommodate for various sources of uncertainties (parametric, model-form, operating or
boundary conditions etc.) and can be employed for the uncertainty quantification analysis
of numerous engineering simulations with significant input uncertainties. Whereas, the
SBUQ approach is restricted in the sense that it can only be used for similar (or related)
flow fields (as seen in the current study). Since the U-Net model only relies on data, it is
very likely to predict non-physical solutions for inputs outside the training data-set. In
terms of possible improvements, the stochastic solver may use an implicit algorithm in
order to simultaneously solve all PCE modes. While the SBUQ approach can make use of
dimensionality reduction techniques such as auto-encoders [5] to avail a low dimensional
representation of the Reynolds-stress tensor field.

4.5. CONCLUSIONS

In this work we present two different approaches for the uncertainty quantification and
propagation in RANS turbulent flow simulations. Particularly, we focus on the RANS simula-
tions of - (i) a wake behind a wind turbine, and (ii) wake interactions and power losses in an
array of wind turbines, acting under the model-form and the operational uncertainties.

The first approach for the characterization and the forward propagation of uncertainties
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is based on the previously developed stochastic RANS solver that is based on an intrusive
polynomial chaos method [86]. The second approach, called the surrogate-based uncer-
tainty quantification (SBUQ), is based on a 3D U-Net deep learning model (trained over
a single wind turbine) in conjugation with a wake superposition model, to sequentially
predict the flow field for each wind turbine in an array of wind turbines.

We consider different RANS turbulence models namely, the k −ω SST and the realizable
k − ϵ linear-eddy viscosity models [78, 126] as well as the LRR Reynolds-stress transport
model [64]. The results from the uncertainty analysis of the above mentioned models
are compare with reference (high-fidelity) LES data at mean values of the input random
variables/fields [20, 43].

The uncertain bounds of the linear-eddy viscosity RANS models are able to fairly cap-
ture the high-fidelity solution except in regions very close to or in the wake immediately
behind the wind turbine. The uncertain bounds of LRR model on the other hand, are able
to precisely capture the LES solution over the wind turbines asserting its overall higher
accuracy. However, it is also observed that the variance in the solutions from two-equation
models remain nearly uniform in the streamwise direction, whereas it grows steadily for the
Reynolds-stress transport model.

In contrast to the previous wind turbine/farm studies based only on the eigenspace
perturbation of the Reynolds stress tensor [20, 43], in this work, we realize the importance
of the effect of randomness in the operating conditions (via inlet boundary layer) and its
interaction with the uncertain Reynolds stress tensor. The sensitivity analysis (in terms of
Sobol indices) for similar levels of coefficient of variation in the inputs (uh , Ih , RSTF) reveal
that the contribution of inlet conditions towards the variance in the QoIs is as significant
as that from the Reynolds stress tensor. In particular, the normalized velocity deficit and
the turbulent intensity fields are insensitive to variation in hub-height velocity (uh) and
are highly dependent on the variation in the hub-height turbulent intensity (Ih) and the
Reynolds-stress tensor field (RSTF).

The surrogate constructed using the U-Net and the wake-superposition model is able
to predict the flow field in an array of wind turbines with high accuracy and significantly
low (prediction) cost. Thus it is considered suitable for a surrogate-based uncertainty
quantification (SBUQ) approach. The results (mostly statistics) obtained from the SBUQ
approach are in accordance with the results from the stochastic solver. Furthermore, in
Table 4.2, we discuss the overall comparison of both approaches in detail. Based on the
engineering application, one approach will have more advantages over the other and it
will be crucial to decide between the two. Nevertheless, they both have demonstrated the
potential to be applied for the analysis of a RANS turbulent flow simulation under various
uncertainties.

In the lights of the above findings, it would be of great interest for the turbulence mod-
eling community to develop strategies for stochastic RANS simulation under multiple
sources of uncertainties. Future research aspects may include the implementation of an
implicit algorithm to simultaneously solve all PCE modes in the stochastic RANS solver,
lower-dimension representation of RSTF using dimensionality reduction techniques and
uncertainty quantification analysis for more complex unsteady RANS (URANS) or LES
engineering simulations.
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4.6. APPENDIX

4.6.1. PROJECTING REYNOLDS STRESS ON A BARYCENTRIC TRIANGLE

The Reynolds stress tensor can be decomposed into two parts, an isotropic component
2/3kδi j and an anisotropic tensor which is given as the deviatoric part of the Reynolds stress
normalized by the turbulent kinetic energy:

Ai j := Ri j

2k
− δi j

3
(4.11)

The eigen-decomposition of the anisotropy tensor results into an eigenvalue tensor,

A = VΛVT , (4.12)

where V is the matrix of orthogonal eigenvectors [v1, v2, v3] and Λ is the corresponding
eigenvalue matrix diag[λ1,λ2,λ3], such that tr[Λ] = 0 and λ1 ≥ λ2 ≥ λ3. Using linear rela-
tions, these eigenvalues can be mapped to unique coordinates (C1c ,C2c ,C3c ) in a Barycentric
triangle, which in turn represents the state of anisotropy in a turbulent flow at a given point:

C1c =λ1 −λ2, C2c = 2(λ2 −λ3), C3c = 3λ3 +1. (4.13)

Note that, C1c +C2c +C3c = 1. If any of these coordinates equals one, the anisotropy is said
to achieve a limiting state. In a Barycentric map, these limiting states are represented by
the three vertices of an equilateral triangle. Thus, C1c ,C2c and C3c represents 1-component,
2-component and 3-component turbulence, respectively. In Cartesian coordinates, if the
location of these vertices is expressed as (x1c , y1c ), (x2c , y2c ) and (x3c , y3c ), then any arbitrary
turbulent state (x, y) can be represented by the following linear combination of the limiting
states:

x =C1c x1c +C2c x2c +C3c x3c , y =C1c y1c +C2c y2c +C3c y3c . (4.14)

All the realizable states lie within or on this triangle. The anisotropy state of the samples
generated using the polynomial chaos expansion of the Reynolds stress tensor can therefore
be represented and analyzed using the Barycentric triangle as shown in Figure 4.4.

4.6.2. UNCERTAINTY PROPAGATION OF RANDOM INLET CONDITIONS

Figure 4.19 shows the normalized velocity deficit and the turbulent intensity under the
uncertain inlet conditions, averaged over the rotor area along the streamwise direction for a
wake behind a wind turbine simulated using the k −ω SST RANS model. The input random
variables are listed in Table 4.1. As observed in the plots and as expected, the stochastic mean
is in accordance with the reference LES solution. The uncertain bound of ±2× standard
deviations reflects the effect of the uncertain inlet conditions on the QoIs. These bounds
contain the LES solution except for the near wake region. This can be associated with the
inherent shortcomings of the linear eddy viscosity model and with the use of actuator disk
to model the effect of turbine blades. The results clearly indicate a significant contribution
of the uncertain operating parameters towards the variance in the QoIs.
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Figure 4.19 | Mean and variance of the normalized velocity deficit and turbulence intensity for the uncertain inlet
operating conditions using k −ω SST at different downstream locations.

4.6.3. GLOBAL SENSITIVITY ANALYSIS WITH SOBOL INDICES

In order to determine the relative influence of each random variable on the QoIs we can
employ a global sensitivity analysis based on a variance-based approach called Sobol indices
method [106]. Once the coefficients of the polynomial chaos expansion are determined, the
computation of the Sobol indices is straight-forward. The total variance (D) in terms of the
expansion coefficients can be written as:

D = V[v ] =
P∑

i=1
v 2

i (x , t )〈ψ2
i 〉, (4.15)

which can be decomposed as [113]:

D =
i=d∑
i=1

Di +
i=d−1∑

1≤i< j≤d
Di , j +

i=d−2∑
1≤i< j<k≤d

Di , j ,k + ·· · + D1,2,··· ,d , (4.16)

where (Di1,··· ,is ) are partial variances given by

Di1,··· ,is =
∑

β∈{i1,··· ,is }
v 2
β(x , t )〈ψ2

β〉, 1 ≤ i1 < ·· · < is ≤ d . (4.17)

The Sobol indices (Si1,··· ,is ) are then defined as

Si1,··· ,is =
Di1,··· ,is

D
, (4.18)

such that,
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i=d∑
i=1

Si +
i=d−1∑

1≤i< j≤d
Si , j +

i=d−2∑
1≤i< j<k≤d

Si , j ,k + ·· · + S1,2,··· ,d = 1 (4.19)

Thus, the Sobol indices basically measure the combined sensitivity arising from the
contribution of each random variable (Si ) and from contributions due to their interactions
(Si , j ,Si , j ,k , ...). The combined effect of an uncertain variable with index i is therefore defined
as the sum of the partial Sobol indices that include the contribution from the ith variable

STi =
∑
Li

Di1,··· ,is

D
; Li = {(i1, · · · , is ) : ∃k,1 ≤ k ≤ s, ik = i }. (4.20)

Thus, the Sobol indices (STi ) can be used to estimate and compare the contribution of
each uncertain parameter to the uncertainty in QoIs.

4.6.4. FORWARD CFD SOLVER BASED ON A PERTURBED RST

Based on a precursor RANS simulation, we obtained a deterministic Reynolds stress tensor
field R(det ). For a given perturbed RSTF R(per t ), we compute the perturbation in the RSTF as

∆R∗ = R(per t ) −R(det ) (4.21)

where ∆R∗ accounts for the model (output) form uncertainty. In order to predict the flow
field based on the perturbed RSTF, based on the approach mentioned in [96], the divergence
of the perturbation is added to the RANS momentum equations as a forcing term

∂u

∂t
+ (u ·∇)u =−∇p +∇· (ν∇u)−∇· (R+∆R∗)+ f . (4.22)

The above was implemented in the pimpleFoam solver in OpenFOAM. Note that the new
forward solver, in addition to the usual parameters and fields, also requires the perturbed
RSTF in order to predict the flow fields. The perturbation 4.21 is computed internally by the
solver.
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4.7. ANNEXURE

Figure 4.20 | The outputs of a subset of 3D U-Net’s test set trained with the data from a single wind turbine
simulations using the k −ω SST RANS turbulence model. As presented in Figure 4.8, each triplet represents one
data point and consists of four rows and three columns. The top two rows are the side view of the velocity and
turbulent intensity, respectively. The bottom two rows are the top view of the velocity and turbulent intensity,

respectively. The columns (left to right) shows the true solution, surrogate prediction and the relative absolute
error (in the range [0, 0.05]), respectively.
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Figure 4.21 | The outputs of a subset of 3D U-Net’s test set trained with the data from a single wind turbine
simulations using the realizable k −ϵ RANS turbulence model. As presented Figure 4.13, each triplet represents

one data point and consists of four rows and three columns. The top two rows are the side view of the velocity and
turbulent intensity, respectively. The bottom two rows are the top view of the velocity and turbulent intensity,

respectively. The columns (left to right) shows the true solution, surrogate prediction and the relative absolute
error (in the range [0, 0.05]), respectively.
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Figure 4.22 | Wake interaction predictions for a subset of SBUQ’s (3D U-Net + Wake Superposition) test set trained
with the data from a single wind turbine simulations using the realizable k −ϵ RANS turbulence model. As

presented Figure 4.14, each triplet represents one data point and consists of four rows and three columns. The top
two rows are the side view of the velocity and turbulent intensity, respectively. The bottom two rows are the top

view of the velocity and turbulent intensity, respectively. The columns (left to right) shows the true solution,
surrogate prediction and the relative absolute error (in the range [0, 0.05]), respectively.



5
CONCLUSIONS AND PROSPECTS

5.1. CONCLUSIONS

In the context of the CFD 2030 vision [103], Verification, Validation, and Uncertainty Quan-
tification (VVUQ) is expected to play a critical role in the development of next-generation
Computational Fluid Dynamics (CFD) simulations that are more accurate, reliable, and
efficient. The use of VVUQ will enable CFD simulations to be used with greater confidence
in applications such as aerospace, energy, and environmental engineering.

As motivated and stated in chapter 1, the goal of this thesis was to develop methods
for quantification and propagation of different forms of uncertainties in complex CFD
simulations, and apply them to study the non-linear effects of the uncertainties on the
quantities of interest, particularly in the context of wake predictions in wind farms. Majorly,
two such methods were presented - (i) the Intrusive Polynomial Chaos (IPC) based stochastic
RANS solver, and (ii) the Surrogate Based Uncertainty Quantification (SBUQ) approach using
a deep learning model. We will now summarize the most crucial results, observations and
conclusions which were encountered during the development of these methods.

INTRUSIVE POLYNOMIAL CHAOS FOR PARAMETRIC UNCERTAINTIES

In Chapter 2, we introduced the implementation and presented the application of a solver
for incompressible Navier-Stokes equations that leverages the use of Generalized Polynomial
Chaos (gPC) expansion to effectively address the uncertainties associated with fluid flow
simulations. The solver was specifically used to characterize parametric uncertainties and
study their non-linear propagation.

In order to develop an efficient Intrusive Polynomial Chaos (IPC) solver, we discussed
the important steps to decouple the system of equations while ensuring the overhead due
to coupling is not significant.

To test the IPC based solver, we presented two studies for random laminar viscosity in
Poiseuille flow and random Large Eddy Simulation (LES) model parameter CS in turbulent
channel flow. In the plane Poiseuille flow with uncertain viscosity, we realized a significant
effect of the uncertainty in the re-circulation region of the flow. The results were also
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compared with the Non-intrusive Polynomial Chaos (NIPC) approach with same polynomial
order and were found to be very close, verifying our implementation in OpenFOAM. In case
of the turbulent channel flow with uncertain LES model parameter, the results were found
to be in accordance with NIPC approach with some deviations which were attributed to the
error in the NIPC approximation of the expansion coefficients. Through this work, using the
IPC based solver, we brought to light an alternative to the mostly expensive non-intrusive
approaches for UQ analysis in CFD.

QUANTIFICATION AND PROPAGATION OF MODEL-FORM UNCERTAINTIES

The promising results obtained from IPC method discussed in chapter 2 encouraged us to
further pursue research in this direction. Despite its capabilities, further development of
the IPC based solver for parametric uncertainties may be restricted as it requires significant
modifications in the deterministic solver (including templated base classes) to obtain the
solution for the coupled equations in the expansion coefficients. In order to overcome this
problem, in chapter 3, we presented a more holistic approach to treat uncertainties in a
CFD simulation while still be able to use intrusive polynomial chaos method.

Instead of global low-dimensional random parameters/variables, we represented the
uncertainties in terms of locally-variable high-dimensional random fields characterized
using the information from a deterministic baseline simulation.

This leads to the development of a stochastic RANS solver primarily based on the model
output form uncertainties. In contrast to the previous IPC based solver for parametric
uncertainties, the stochastic RANS solver provides an efficient implementation which re-
quired minimal changes in the top-level deterministic code – promoting the re-usability
and compatibility with the newer versions of OpenFOAM.

The new IPC based stochastic RANS solver was tested on two benchmark problems for
RANS turbulence modeling – the flow over periodic hills and the flow in a square duct using
the random eddy viscosity field and the random Reynolds stress tensor field, respectively. A
detailed account on the influence of the hyper-parameters of the random fields and that
of the stochastic solver was given. Larger correlation lengths resulted in a higher variance,
especially near the reattachment location. On the one hand, increasing the Karhunen-Loève
decomposition threshold gradually reduced the cardinality of the truncated set, however
under-predicted the variance in the output. On the other hand, decreasing the hyperbolic
truncation set tuning parameter drastically reduced the cardinality of the truncated set
while practically predicting the same level of variance.

A comparison between three widely used RANS turbulence models (k −ω, k −ω SST and
Launder-Sharma k −ϵ) revealed that k −ω SST model predictions are more accurate with
the lowest level of stochasticity implying lower sensitivity of its model parameters and/or
lower structural uncertainty in its formulation.

Upon solving for the expansion coefficients, the measurement data was assimilated
directly using the response surface (PCE) resulting in a significant reduction in the overall
uncertainty levels.

The use cases of the stochastic solver confirmed that – (i) upon proper parameter tuning,
the random field models can certainly provide uncertainty bounds that envelop most of the
realizable flow states, and (ii) tuning the hyper-parameters based on prior knowledge may
allow for thinner uncertain bounds in quantities of interest (QoIs). It shall also be pointed
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out that divergence was realized for a high-variance random field, where the higher modes
of the polynomial expansion failed to converge after a few initial explicit iterations.

Overall, with minimal changes in the deterministic solver, this work added to the poten-
tial of intrusive polynomial chaos based approach for an accurate and efficient UQ analysis
of complex CFD simulations.

UNCERTAINTY QUANTIFICATION ANALYSIS IN WIND-FARMS

The IPC based stochastic RANS solver developed so far can be considered a physics-based
UQ analysis method, where we solve for the coupled expansion coefficients using the Navier-
Stokes like systems of equations. In order to assess the performance of this solver with a
pure data-driven approach for UQ analysis, we employed a Surrogate Based Uncertainty
Quantification (SBUQ) method.

In the lights of exponentially increasing applications of deep learning, we constructed a
surrogate model using a 3D U-Net neural network (trained over single wind turbine data)
combined with wake superposition principles, that is capable of predicting the flow field in
a wind farm. This surrogate model was further used to compute the desired statistics of the
QoIs over an array of wind turbines.

In chapter 4, a UQ analysis for the prediction of wake interactions in a wind farm with
parametric and model form uncertainties was carried out using both the IPC solver and the
SBUQ approach.

Two different linear-eddy viscosity based RANS turbulence models namely, the k−ω SST
and the realizable k −ϵ as well as the LRR Reynolds-stress transport model were considered
for investigation. The results from the uncertainty analysis of the above mentioned models
are compared with reference (high-fidelity) LES data at mean values of the input random
variables or random fields.

The uncertain bounds of the linear-eddy viscosity RANS models were found to capture
the high-fidelity solution reasonably well except in wake regions immediately behind the
wind turbine. The uncertain bounds of LRR model were able to precisely capture the LES
solution over the wind turbines asserting its overall higher accuracy. However, it is also
observed that the uncertainty levels in the outputs of the two-equation model remain nearly
uniform in the streamwise direction, whereas it grows gradually for the stress transport
model.

In this work, we particularly realized the importance of the effect of randomness in the
operating conditions and its interaction with the model form uncertainty. The sensitivity
analysis revealed that the effect of the variability in the inlet conditions towards the variance
in the QoIs was as significant as that of the structural variability of the turbulence model.
Interestingly, the normalized velocity deficit and the turbulent intensity fields were found
to be insensitive towards the variation in hub-height velocity, but highly dependent on the
variation in the hub-height turbulent intensity as well as in the Reynolds-stress tensor field.

The surrogate model was able to predict the flow field in an array of wind turbines with
high accuracy and significantly low (prediction) cost and was therefore considered suitable
for the SBUQ approach. The results obtained from the SBUQ approach were found to be
very close and in accordance with that from the high-fidelity stochastic solver. Both the
approaches developed so far, demonstrated the potential to be applied for the analysis of a
RANS turbulent flow simulation under various uncertainties.
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Overall, this study successfully delivered two highly useful approaches for an accu-
rate and efficient uncertainty quantification and propagation analysis, targeted especially
towards the expensive CFD simulations. It was therefore asserted that, based on the engi-
neering application and the time constraints, one approach may have more advantages over
the other and a decision shall be taken accordingly.

5.2. PROSPECTS

This work promotes further development in the direction of polynomial chaos method
for uncertainty quantification in CFD. A more efficient implementation of the IPC solver
can be explored with different covariance kernel functions, and an implicit algorithm to
simultaneously solve for all the modes while avoiding the memory issues.

As mentioned earlier, VVUQ is expected to play a critical role in the development of next-
generation CFD simulations. This would require handling multiple sources and/or forms of
uncertainties in a CFD simulation (see Table 1.1). In this regard, the IPC based stochastic
solver can be readily used with minimal tweaking and/or modifications to incorporate e.g.
model discrepancy, discretization error uncertainty, etc.

The SBUQ approach can be further enhanced using Graph Neural Networks (GNNs)
instead of the currently used Convolutional Neural Networks (CNNs). GNNs can handle
unstructured data, capture local as well as global information and offer better interpretbility
as compared to CNNs.

The use of low dimensional representation of eddy-viscosity or Reynolds-stress tensor
field using dimensionality reduction techniques can significantly speed up the training and
prediction time of the SBUQ approach.

The IPC solver and the SBUQ approach can be applied for the uncertainty quantification
analysis of further complex unsteady RANS (URANS) or LES engineering simulations. More-
over, these UQ analysis approaches can be extended with e.g. calibration using Bayesian
inference, reliability analysis to estimate the failure probability, optimization to obtain
robust design etc.
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SUMMARY

The CFD 2030 vision aims to improve the accuracy, reliability, and efficiency of Computa-
tional Fluid Dynamics (CFD) simulations in fields such as aerospace, energy, and environ-
mental engineering. To achieve this, the use of Verification, Validation, and Uncertainty
Quantification (VVUQ) is critical. Uncertainty Quantification (UQ) helps to quantify and
propagate different forms of uncertainties in complex CFD simulations, which can be used
to study their non-linear effects on quantities of interest.

This thesis focuses on developing methods for quantifying and propagating uncertainties
in CFD simulations and applying them to wind farm wake predictions. Two methods were
presented: (i) the Intrusive Polynomial Chaos (IPC) based stochastic solver, and (ii) the
Surrogate Based Uncertainty Quantification (SBUQ) approach using a deep learning model.

In Chapter 2, the IPC solver was introduced, which uses the Generalized Polynomial
Chaos (gPC) expansion to address the uncertainties associated with fluid flow simulations.
The solver was specifically used to characterize parametric uncertainties and study their
non-linear propagation. The IPC solver was tested on two studies for random laminar
viscosity in Poiseuille flow and random Large Eddy Simulation (LES) model parameter CS in
turbulent channel flow. The results showed that the IPC solver is a promising alternative to
non-intrusive and expensive approaches for UQ analysis in CFD.

Chapter 3 presents a more holistic approach for treating uncertainties in a CFD simu-
lation, where uncertainties are represented in terms of locally-variable high-dimensional
random fields characterized using the information from a baseline simulation. This leads
to the development of a stochastic RANS solver primarily based on the model output form
uncertainties. The new IPC based stochastic RANS solver was tested on two benchmark
problems for RANS turbulence modeling – the flow over periodic hills and the flow in a
square duct using the random eddy viscosity field and the random Reynolds stress ten-
sor field, respectively. A detailed account of the influence of the hyper-parameters of the
stochastic solver and that of the random fields was given. The use cases of the stochastic
solver confirmed that the random field models can certainly provide uncertainty bounds
that envelops most of the realizable flow states. Tuning the hyper-parameters based on prior
knowledge may allow for thinner uncertain bounds in quantities of interest (QoIs). However,
it should be noted that divergence was realized for a high-variance random field.
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In chapter 4, we proposed a SBUQ method, particularly for the UQ analysis of wind
farm wake predictions. We constructed a surrogate model using a 3D U-Net neural network
(trained over single wind turbine data) combined with wake superposition principles, ca-
pable of predicting the flow field in a wind farm. This surrogate model was further used
to compute the desired statistics of the QoIs over an array of wind turbines. A UQ analysis
for the prediction of wake interactions in a wind farm with parametric and model form
uncertainties was carried out using both the IPC solver and the SBUQ approach. In this
work, we particularly realized the importance of the effect of randomness in the operating
conditions and its interaction with the model form uncertainty.

Both the above-mentioned approaches demonstrated the potential to be applied for the
analysis of a RANS turbulent flow simulation under various uncertainties. The efforts in this
thesis added to the potential of intrusive polynomial chaos based approaches for accurate
and efficient UQ analysis of complex CFD simulations. The IPC based stochastic RANS
solver provides an efficient implementation with minimal changes in the deterministic code,
promoting reusability and compatibility with newer versions of OpenFOAM. The SBUQ
approach used the data from single wind turbine simulations to predict the flow field in
an array of wind turbines with a reasonable accuracy, which was further used in the SBUQ
approach to make fast predictions.

The results presented in this thesis have important implications for the development of
next-generation CFD simulations, which can be used with greater confidence in applications
such as aerospace, energy, and environmental engineering.



SAMENVATTING

De Computational Fluid Dynamics CFD 2030-visie beoogt de nauwkeurigheid, betrouwbaar-
heid en efficiëntie van numerieke stromingsleer te verbeteren op toepassingsgebieden zoals
lucht- en ruimtevaart, energie en milieutechniek. Volgens deze visie zijn Verificatie, Validatie
en Uncertainty Quantification (VVUQ) van cruciaal belang. Onzekerheidskwantificering
(Uncertainty Quantification, UQ) kan worden gebruikt om verschillende vormen van onze-
kerheden in complexe numerieke stromingssimulaties te kwantificeren en te propageren.
Aldus kunnen niet-lineaire effecten van onzekerheden op relevante grootheden worden
bestudeerd.

Deze dissertatie gaat over het ontwikkelen van methoden voor het kwantificeren en
propageren van onzekerheden in numeriek simulaties van stromingen en het toepassen
daarvan op het voorspellen van zoggen in windparken. Twee methoden werden gepresen-
teerd: (i) een stochastische methode gebaseerd op Intrusive Polynomial Chaos (IPC), en (ii)
een Surrogate Based Uncertainty Quantification (SBUQ) benadering die gebruik maakt van
een deep learning model.

De IPC-methode wordt geïntroduceerd in Hoofdstuk 2. Om onzekerheden in numerieke
simulaties van stromingen te beschrijven wordt de Generalized Polynomial Chaos (gPC)
expansie gebruikt. Deze IPC-methode wordt toegepast om parametrische onzekerheden te
karakteriseren en hun niet-lineaire propagatie te bestuderen. De IPC-methode is getest op
een laminaire kanaalstroming (Poiseuille profiel) met een onzekere viscositeit en een Large
Eddy Simulatie (LES) van een turbulente kanaalstroming met een onzekere modelparameter,
de Smagorinsky constante CS. De resultaten tonen aan dat de IPC methode een veelbelovend
alternatief is voor niet-intrusieve en dure UQ-analyses in numerieke stromingsleer.

Hoofdstuk 3 presenteert een meer holistische benadering van onzekerheden in nume-
rieke stromingsleer, waarbij onzekerheden worden voorgesteld door lokaal-variabele, hoog-
dimensionale random velden die worden gekarakteriseerd met behulp van een referen-
tiesimulatie. Dit heeft geleid tot de ontwikkeling van een stochastische RANS-methode
die hoofdzakelijk gebaseerd is op de onzekerheden in de modeluitvoer. De nieuwe op IPC
gebaseerde stochastische RANS-methode is getest op twee benchmarkproblemen voor
RANS-turbulentiemodellering – de stroming over periodieke heuvels en de stroming in een
kanaal met een vierkante doorsnede met respectievelijk een random eddy-viscositeitsveld
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en een random Reynolds-spanningstensorveld. De invloed van de hyperparameters van
de stochastische methode en die van de random velden is beschrijven in detail. De twee
benchmarkproblemen waarop de stochastische methode is toegepast bevestigen dat de
random veldmodellen onzekerheidsgrenzen kunnen opleveren die de meeste realiseerbare
stromingstoestanden omhullen. Door de hyperparameters af te stemmen op basis van
voorkennis kunnen de onzekerheidsgrenzen van de relevante grootheden (QoIs) scherper
worden. Er moet echter worden opgemerkt dat de methode divergeerde voor random velden
met een hoge variantie.

In hoofdstuk 4 wordt een SBUQ-methode voorgesteld, met name voor de UQ-analyse van
voorspellingen van zoggen in windparken. Daartoe is een surrogaatmodel geconstrueerd
met behulp van een 3D U-Net neuraal netwerk (getraind op basis van data van afzonderlijke
windturbines) in combinatie met een superpositieprincipe voor zoggen. Op basis van dit
model kan het stromingsveld in een windpark worden voorspeld. Dit surrogaatmodel is
verder gebruikt om de gewenste statistieken van de QoIs over een reeks windturbines te
berekenen. Een UQ-analyse van de voorspelling van zoginteracties in een windpark met
parametrische en modelonzekerheden is uitgevoerd met behulp van zowel de IPC-methode
als de SBUQ- benadering. In deze studie hebben wij vooral het belang van het effect van
onzekerheden in de bedrijfsomstandigheden en de interactie daarvan met onzekerheden in
het simulatiemodel onderkend.

Beide bovengenoemde aanpakken toonden aan dat zij kunnen worden toegepast voor
de analyse van een turbulente stromingssimulaties op basis van RANS onder verschillende
onzekerheden. Daarmee is het potentieel van een op IPC gebaseerde aanpak voor een
nauwkeurige en efficiënte UQ-analyse van complexe CFD-simulaties vergroot. De op IPC
gebaseerde stochastische RANS simulatiemethode biedt een efficiënte implementatie met
minimale wijzigingen in de deterministische code, wat de herbruikbaarheid en compatibili-
teit met nieuwere versies van OpenFOAM bevordert. De SBUQ methode benodigt data van
enkele windturbine simulaties om het stromingsveld in een array van windturbines met een
redelijke nauwkeurigheid te voorspellen. De in dit proefschrift gepresenteerde resultaten
hebben belangrijke implicaties voor de ontwikkeling van de volgende generatie numeriek
stromingssimulaties, die met meer vertrouwen kunnen worden gebruikt in toepassingen als
lucht- en ruimtevaart, energie en milieutechniek.



ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor Roel Verstappen. You were always
interested in the progress I made and offered complete freedom to pursue my ideas even if
they did not fully overlap with your initial plans for this project. You were always available in
the office and even online (especially during pandemic times) for any questions I had. I really
liked your advice on taking a step back and reflecting on my academic and personal goals
every now and then. I would also like to thank Cristóbal Bertoglio, my second supervisor
for all the ideas and discussions from his own PhD thesis, which certainly helped me to
better understand my project. I enjoyed my back to back TA’ing for the NM1 course with
you. Fred Wubs, thank you for always taking an interest in my work and offering me my
first ever teaching duty. I would like to extend my thanks to Arthur Veldman for some
amazing questions and discussions after my talks. I also thank you for sharing your life and
professional experiences from your inspiring career.

Larissa, thank you for being one of the best people I have ever come across. I really
enjoyed our several sports adventures including squash, canoeing, swimming and padel.
Looking forward to more in Braunschweig. Ronald, your will power and stoic mindset
inspires me. Thank you for bearing with me when our canoe got stuck in the rocks quite a
few times. Also, a huge thanks to you for introducing me to squash which turned into my
PhD stress buster. Jeremias, thanks for your prayers during my shoulder injury – it definitely
helped. Reidmen, thanks for the countless discussions about fitness and for accompanying
me for a coffee at BB. It was fun organizing the Groningen quiz with you. Thank you Johan
and Pablo for collaborating and sharing your Python and GitHub tips and tricks. Thank you
all the other colleagues for the nice conversations we had often during lunch or coffee breaks:
Christian, David, Erik, Georgia, Hugo, Julie, Maurits, Miriam, Paolo, Sven and Theresa.

Felipe, thanks for sharing you passion for coffee, even in the midst of canoeing in
Sweden. Thank you Bhupesh for the long discussions about life in general. Ankush, thanks
for being my swimming partner and all those late night Kebab treats. Thank you Atul for
brainstorming the idea of 3D UNet with me. Hina, thanks for being such an amazing friend
and a true motivator especially during the last phase of my PhD. Michiel, I enjoyed our short
yet intense squash routine as well as the chilly winter mornings tennis sessions. I would like
to thank Namita and Israfil, for your super delicious Indian food every time I visited you.

127



128 Acknowledgments

Also, a lot of love for your joyful dog Simba, who helped me get over my fear of dogs.
Finally, thanks to my family, for always being supportive through out my PhD journey.

Thank you mom for being interested in my work and even making an effort to understand it.
Thanks to my brother for helping me out in difficult situations and also for taking care of our
family over all these years. Also, thanks to my grand mother, uncles and aunts who made
it possible for me to pursue higher education outside India at the first place. Aunt Nayna,
thanks for all those weekend calls you made to care for my well being.



CURRICULUM VITAE

Jigar Parekh was born on December 22, 1990 in Jabalpur, India. He completed his primary
and secondary education in Jabalpur. From 2010 to 2014 he was a student at the Indian
Institute of Technology (BHU) Varanasi, where he obtained his bachelor’s degree in chemical
engineering. From 2014 to 2017, he pursued master’s in simulation sciences at Rheinisch-
Westfälische Technische Hochschule (RWTH) Aachen University, Germany. Thereafter, from
2017 to 2018, he worked as a research associate at Nanyang Technological University (NTU),
Singapore.

From 2018-2023, Jigar was a PhD student at the University of Groningen, The Nether-
lands under the supervision of prof. dr. ir. R.W.C.P. Verstappen. His research topic was the
development of methods for uncertainty quantification in CFD applied to wind turbine
wake prediction. Currently, he is working as a researcher at German Aerospace Center (DLR)
Braunschweig.

129


	Introduction
	Background
	Wind modeling using CFD
	Uncertainty quantification in CFD
	Characterization
	Propagation and certification
	Calibration
	UQ analysis of Burgers' equation

	UQ in wind energy applications
	Research objectives
	Thesis structure

	Intrusive polynomial chaos for parametric uncertainties
	Introduction
	Generalized polynomial chaos
	Governing equations
	Stochastic formulation

	Algorithm and implementation
	Test cases
	Plane Poiseuille flow
	Turbulent channel flow

	Conclusions

	Quantification and propagation of model-form uncertainties
	Introduction
	Generalized polynomial chaos
	Intrusive polynomial chaos
	Non-intrusive polynomial chaos
	Global sensitivity analysis with Sobol indices

	Deterministic turbulence models
	Stochastic formulation
	Random eddy viscosity field
	Random Reynolds stress tensor field

	Implementation
	Numerical results
	Flow over periodic hills
	Flow in a square duct

	Conclusions
	Appendix
	Projecting Reynolds stress on a barycentric triangle


	Uncertainty quantification analysis in wind-farms
	Introduction
	Turbulence modeling
	RANS turbulence models
	Atmospheric boundary layer modeling

	Uncertainty quantification approaches
	Stochastic RANS using intrusive polynomial chaos
	A surrogate based uncertainty propagation approach

	Numerical results
	Wake behind a single wind turbine
	Wake interactions for an array of wind turbines

	Conclusions
	Appendix
	Projecting Reynolds stress on a barycentric triangle
	Uncertainty propagation of random inlet conditions
	Global sensitivity analysis with Sobol indices
	Forward CFD solver based on a perturbed RST

	Annexure

	Conclusions and prospects
	Conclusions
	Prospects

	Technical Outputs
	Bibliography
	Summary
	Samenvatting
	Acknowledgments
	Curriculum Vitae



