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Abstract
Purpose of Review  The majority of leukocytes in advanced human atherosclerotic plaques are T-cells. T-cell subsets exert 
pro- or anti-atherogenic effects largely via the cytokines they secrete. Tregulatory cells (Tregs) are anti-inflammatory, but may 
lose these properties during atherosclerosis, proposed to be downstream of cholesterol accumulation. Aged T-cells also 
accumulate cholesterol. The effects of T-cell cholesterol accumulation on T-cell fate and atherosclerosis are not uniform.
Recent findings  T-cell cholesterol accumulation enhances differentiation into pro-atherogenic cytotoxic T-cells and boosts 
their killing capacity, depending on the localization and extent of cholesterol accumulation. Excessive cholesterol accumu-
lation induces T-cell exhaustion or T-cell apoptosis, the latter decreasing atherosclerosis but impairing T-cell functionality 
in terms of killing capacity and proliferation. This may explain the compromised T-cell functionality in aged T-cells and 
T-cells from CVD patients.
Summary  The extent of T-cell cholesterol accumulation and its cellular localization determine T-cell fate and downstream 
effects on atherosclerosis and T-cell functionality.
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Introduction

T-cells make up ~50–65% of all leukocytes in advanced 
human atherosclerotic lesions from carotid endarterec-
tomies [1••, 2••]. After infiltration into atherosclerotic 
lesions, T-cells interact with macrophages and dendritic 
cells (DCs) [3••]. Upon recognition of their cognate anti-
gen presented by DCs and dependent on the cytokine milieu, 
naïve T-cells differentiate into distinct subsets characterized 
by the expression of transcription factors (i.e., FoxP3 for 
T regulatory cells (Tregs); Tbet for T helper 1 (Th1) cells; 
GATA3 for Th2 cells; retinoic acid-related orphan receptor 
(ROR)γT for Th17 cells; and B-cell lymphoma (Bcl)6 for 
Tfollicular helper (Tfh) cells) [3••]. More than 80% of T-cells in 
atherosclerotic plaques express CD44, indicating that they 
are antigen experienced [2••, 3••]. Among the antigens that 

DCs present to T-cells are apolipoprotein B100 (apoB100), 
low-density lipoprotein (LDL), and oxidized LDL [4–6]. 
While initial studies have suggested that antigen presenta-
tion in atherosclerotic plaques induces production of the 
pro-atherogenic Th1 cytokines interferon γ (IFNγ) and 
tumor necrosis factor α (TNFα) [4, 7], later studies have 
shown an expansion of Tregs in response to antigens [6, 8, 9]. 
Tregs exert an anti-atherogenic role by secreting interleukin 
(IL)-10 and transforming growth factor β (TGF-β) [10, 11]. 
TGF-β induces smooth muscle cell (SMC) migration and 
collagen production by SMCs [12–15]. Recent single-cell 
RNA sequencing (sc-RNA-Seq) studies have revealed a high 
diversity of T-cells in human atherosclerotic plaques [1••, 
2••]. The role of specific T-cell subsets in atherosclerosis 
has been reviewed previously [3••].

Even though individual T-cell subsets have pro- or anti-
atherogenic effects, presumably via the cytokines they 
secrete, complete CD4+ or CD8+ T-cell ablation reduces 
atherosclerosis in mice [16–19]; however, in advanced 
atherosclerosis, CD8+ T-cell ablation increases plaque 
stability [20•], highlighting the complex role of T-cells in 
atherogenesis.

Recent studies have revealed that during atherosclerosis 
and cardiovascular disease (CVD) in humans, Tregs acquire 
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markers of Th1, Th17, and Tfh cells, or switch to a more 
memory-like phenotype, which may render them pro-ath-
erogenic [6, 9, 21, 22, 23•, 24]. Studies in mouse models 
have proposed that T-cell cholesterol accumulation critically 
contributes to this effect [23•]. In addition, T-cells from 
CVD patients lose their ability to proliferate and, therefore, 
to respond adequately to antigens [25•], a critical function 
of T-cells. The decreased proliferation may be the result of 
T-cell apoptosis downstream of excessive T-cell cholesterol 
accumulation [26••]. Aged T-cells also show increased cho-
lesterol accumulation [27, 28]. Here, we will review how 
pathways that regulate T-cell cholesterol accumulation deter-
mine T-cell fate, atherosclerosis, and T-cell aging.

T‑cell Receptor Stimulation and Cholesterol 
Accumulation

T-cells express high levels of the cholesterol transporters 
ATP Binding Cassette A1 (ABCA1) and ABCG1 that 
mediate cholesterol efflux to apolipoprotein A-I (apoA-I) 
and high-density lipoprotein (HDL), respectively [29]. 
T-cells mainly accumulate cholesterol in their plasma 
membrane, which is key to T-cell receptor (TCR) signaling 
and proliferation in response to interaction with their 
cognate antigen. TCR stimulation by anti-CD3, which 
mimics T-cell stimulation by antigen-presenting cells via 
major histocompatibility complex (MHC)I/II, decreases 
expression of the cholesterol transporters Abca1 and Abcg1 
(Fig. 1) [30••, 31••]. The decreased expression of ABC 
cholesterol transporters is mediated by suppression of 
Liver X receptor (LXR) signaling due to upregulation of 
the enzyme sulfotransferase family cytosolic 2B member 1 
(SULT2B1) that transfers sulfate groups to oxysterols, which 
inactivates oxysterols in terms of their ability to bind the 
transcription factor LXR and to activate it [30••, 32]. TCR 
stimulation also increases the expression of 3-hydroxy-3-
methylglutaryl-CoA reductase (Hmgcr), the LDL receptor 
(Ldlr), and acetyl coA acyl transferase 1 (Acat1), which 
promote cholesterol synthesis, uptake, and esterification, 
respectively (Fig. 1) [30••, 31••].

T‑cell Membrane Cholesterol Accumulation 
Induces T‑cell Proliferation

Several lines of evidence indicate that cholesterol accumu-
lation is key to T-cell proliferation and, as such, key to the 
T-cell response upon interaction with an antigen. Suppres-
sion of cholesterol synthesis due to deficiency of sterol regu-
latory element-binding protein (SREBP) cleavage-activating 
protein (SCAP) completely abolishes T-cell proliferation in 
response to anti-CD3 [33•]. Conversely, when cholesterol 

cannot be esterified due to deficiency of Acat1, plasma mem-
brane cholesterol accumulation increases, as does T-cell pro-
liferation [31••]. Similarly, deficiency of Abcg1-mediated 
cholesterol efflux promotes plasma membrane cholesterol 
accumulation and T-cell proliferation [30••, 34, 35]. T-cell 
cholesterol loading via methyl-β-cyclodextrin (MβCD)-
cholesterol or LDL-cholesterol (LDL-c) also increases pro-
liferation [34, 36].

Abcg1 deficient T-cells show high expression of Abca1 
[34], presumably due to the accumulation of oxysterols that 
induce the activation of LXR and consequently Abca1 tran-
scription [37,38]. Recent studies have revealed that T-cell 
Abca1 deficiency increases Abcg1 expression, reduces T-cell 
membrane cholesterol accumulation, and decreases T-cell 
proliferation in response to anti-CD3 [39]. These data sug-
gest that, as initially proposed [30••], Abcg1 is the dominant 
cholesterol transporter in T-cells. We found that deficiency 
of both Abca1 and Abcg1 increases T-cell membrane choles-
terol accumulation and proliferation in young mice [26••]. 
Conversely, incubation with reconstituted HDL (rHDL) that 
induces cholesterol efflux, shows the opposite [26••]. Recent 
studies revealed that histone deacetylase 3 (Hdac3) defi-
ciency decreases T-cell proliferation, which was attributed to 
decreased membrane cholesterol accumulation and increased 
Abca1 and Abcg1 mRNA expression [40•]. These data sub-
stantiate the crucial role for cholesterol efflux pathways in 
regulating T-cell proliferation. An overview of pathways 
regulating cholesterol accumulation and T-cell proliferation 
is given in Table 1.
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Fig. 1   Effects of anti-CD3 stimulation on expression of genes 
involved in cholesterol homeostasis. Gene transcription is shown in 
the nucleus. Created with BioRe​nder.​com
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T‑cell Proliferation During Aging and CVD

While combined T-cell Abca1/Abcg1 deficiency increased 
T-cell proliferation in young mice, T-cell Abca1/Abcg1 defi-
ciency almost abolished T-cell proliferation in mice at 1 year 
of age, concomitant with an upregulation of the senescence 
marker p21 [26••]. These findings suggest that perhaps aged 
Abca1/Abcg1 deficient T-cells became senescent due to sev-
eral rounds of homeostatic proliferation. In addition, Abca1/
Abcg1 deficiency increased T-cell apoptosis, in both young 
mice and mice at 1 year of age [26••]. The increase in T-cell 
apoptosis may be more prominent during aging, as such con-
tributing to the abolished T-cell proliferation in aged mice.

Interestingly, individuals over 70 years of age also 
show T-cell cholesterol accumulation compared to T-cells 
from individuals less than 25 years of age [27, 28], as do 
T-cells from wild-type mice at 2 years of age compared 
to T-cells from wild-type mice at 3 months of age [26••]. 
T-cells from aged mice (2 years) show increased apoptosis 
compared to T-cells from young mice (3 months) [26••]. 
Based on the findings in mice with T-cell Abca1/Abcg1 
deficiency [26••], these data suggest that also during 
aging, T-cell cholesterol accumulation contributes to apop-
tosis and, consequently, the decline in total T-cells. T-cell 
proliferation was only minimally decreased in T-cells 
from aged mice compared to young mice [26••]. How-
ever, T-cells from Apolipoprotein e deficient (Apoe−/−) 
mice with advanced atherosclerosis due to 20 weeks of 
cholesterol-rich Western-type diet (WTD) feeding, show 
decreased T-cell proliferation and increased T-cell apopto-
sis compared to T-cells from Apoe−/− mice fed a chow diet 
[25•]. Even though this was attributed to impaired antigen 
presentation by DCs [25•], previous studies have shown 

that WTD feeding induces cholesterol accumulation in 
Apoe−/− T-cells [23•], and our studies in mice with T-cell 
Abca1/Abcg1 deficiency demonstrate that T-cell choles-
terol accumulation may directly increase T-cell apoptosis 
[26••].

In line with the findings in Apoe−/− mice, patients with 
advanced coronary artery disease (CAD) show a decrease 
in proliferation and an increase in T-cell apoptosis com-
pared to patients with early CAD, irrespective of age (n 
= 14 patients per group) [25•]. While this would need to 
be confirmed in a larger CAD cohort, the data suggest a 
direct link between advanced CAD and impaired T-cell 
functionality due to T-cell apoptosis. Our data show that 
T-cell cholesterol accumulation, which may be aggravated 
in advanced CAD, contributes to this impaired T-cell 
functionality.

Not all genes that affect T-cell membrane cholesterol 
accumulation and TCR signaling (Table 1) affect apopto-
sis. Acat1 deficiency decreased apoptosis in CD8+ T-cells 
[31••], perhaps due to Acat1 deficiency increasing T-cell 
proliferation and survival, which may offset potential effects 
on apoptosis. However, it should be noted that the effects 
of Abca1/Abcg1 or Apoe were most pronounced in CD4+ 
T-cells [25•, 26••], and are probably the consequence of 
an increase in intracellular T-cell membrane cholesterol 
accumulation that is more dramatic than reported for other 
genes listed in Table 1. Nonetheless, T-cell cholesterol accu-
mulation induced by MβCD-cholesterol loading promotes 
endoplasmic reticulum (ER) stress and CD8+ T-cell exhaus-
tion without affecting apoptosis [41•]. We found that also in 
aged T-cells from wild-type mice (2 years old), expression 
of SREBP2 was decreased compared to T-cells from young 
mice (3 months), suggestive of ER cholesterol accumulation 

Table 1   Plasma membrane cholesterol and T-cell proliferation

T-cells were stimulated with αCD3/αCD28 for 72 h to induce proliferation; except for [34] (66 h)
Abca1 and Abcg1, ATP binding cassette A1 and G1; Acat1, acyl-CoA cholesterol acyltransferase 1; Hdac3, histone deacetylase 3; LDL, low-
density lipoprotein; Lxrβ, liver X receptor β; MβCD-cholesterol, methyl-β-cyclodextrin cholesterol; rHDL, reconstituted high-density lipopro-
tein; Scap, sterol regulatory element-binding protein (SREBP) cleavage-activating protein; TCR​, T-cell receptor

Model Plasma membrane cho-
lesterol

T-cell proliferation T-cell subtypes

Lxrβ deficiency [30••] Not reported ↑ Total T-cells
Abcg1 deficiency [30••, 34, 35] ↑ ↑ CD4+

T-cell Abca1 deficiency [39] ↓ ↓ CD4+ or CD8+

T-cell Acat1 deficiency [31••] ↑ ↑ CD8+

T-cell Scap deficiency [33•] ↓ ↓ CD8+

T-cell Hdac3 deficiency [40•] ↓ ↓ CD4+

MβCD-cholesterol (20 μg/mL; 2 hours prior to TCR stimulus) [34] Not reported ↑ CD4+

LDL-c (72 hours during TCR stimulus) [36] Not reported ↑ CD8+

T-cell Abca1/Abcg1 deficiency, young [26••] ↑ ↑ CD4+ or CD8+

rHDL (50 μg/mL; 72 hours during TCR stimulus) [26••] Not reported ↓ CD4+ or CD8+



530	 Current Atherosclerosis Reports (2023) 25:527–534

1 3

[26••]. ER cholesterol accumulation may account for T-cell 
exhaustion during aging.

T‑cell Membrane Cholesterol Accumulation 
and Differentiation into Cytotoxic T‑cells

In addition to T-cell proliferation, TCR stimulation 
increases granzyme B, IFNγ, and TNFα positive CD8+ 
T-cells, which are required for killing of foreign cells 
or pathogens [42]. Similar to effects on T-cell prolifera-
tion, deletion of genes or treatments that favor cholesterol 
accumulation (Lxrβ deficiency [30••], Acat1 deficiency 
[31••], MβCD-cholesterol [31••], and LDL-c [36]) 
induce differentiation into these cytotoxic CD8+ T-cells, 
while a decrease in cholesterol synthesis by Scap defi-
ciency [33•] or treatment with lovastatin [31••] or choles-
terol depletion by MβCD [31••] does the opposite. Also, 
inhibition of Niemann-Pick C1 protein, which induces 
movement of cholesterol from lysosomes to the plasma 
membrane, by the U18666A compound, decreases dif-
ferentiation into these cytotoxic T-cells [31••], presum-
ably due to decreased plasma membrane cholesterol [43]. 
These findings are summarized in Table 2. In line, T-cell 
Abca1/Abcg1 deficiency induces differentiation into 
granzyme B and IFNγ expressing CD8+ T-cells [26••]. 
However, T-cell Abca1/Abcg1 deficiency decreased IFNγ 
secretion and T-cell mediated macrophage killing [26••]. 
We attributed these effects to increased T-cell apoptosis, 
and therefore these effects are simply the consequence of 
a lower number of T-cells [26••]. Similarly, T-cells from 
Apoe−/− mice fed WTD for 20 weeks show decreased 
IFNγ production compared to Apoe−/− mice fed a chow 
diet, concomitant with increased apoptosis [25•].

T‑cell Membrane Cholesterol Accumulation, 
Atherosclerosis, and CVD

While effects of membrane cholesterol accumulation on 
T-cell proliferation and differentiation into cytotoxic T-cells 
seem to be relatively uniform, effects of T-cell cholesterol 
accumulation on downstream T-cell differentiation are not. 
T-cell Abcg1 deficiency increases membrane cholesterol 
accumulation and lipid droplet formation, indicative of 
increased cholesterol esterification [35]. T-cell Abcg1 defi-
ciency increases formation of Tregs, with athero-protective 
effects [35].

Recent studies have revealed that during atherosclerosis 
and CVD, Tregs acquire markers of Th1, Th17, and Tfh cells, 
which may render them pro-atherogenic [6, 9, 21, 22, 23•, 
24] (Fig. 2). Using a fluorescent tracing technique, current 
Tregs and exTregs (cells that were Tregs before) could be dis-
tinguished in Apoe−/− mice [23•]. This revealed that upon 
WTD feeding, Tregs underwent a phenotypic switch [23•]. 
Injections of apoA-I reversed this switch [23•], and therefore 
this switch was proposed to occur downstream of cholesterol 
efflux and thus to be cholesterol-dependent. In this model, 
Tregs lost their Foxp3 and CD25 expression and started to 
express IFNγ or Bcl6 and IL-21, suggesting differentiation 
into Th1 or Tfh cells, respectively [23•]. Previous sc-RNA-
Seq studies have indeed shown that Tregs gain features of Th1 
cells during atherosclerosis in Apoe−/− mice and that these 
cells are dysfunctional in terms of suppressing T-cell prolif-
eration, a main characteristic of Tregs [22]. Deficiency of the 
specific Tfh transcription factor Bcl6 decreased atheroscle-
rosis, indicating that Tfh cells are pro-atherogenic [23•], pre-
sumably because they induce B-cell activation and secretion 
of IL-21 [44,45]. One caveat to this atherosclerosis study 

Table 2   Plasma membrane cholesterol and granzyme B+, IFNγ+, and TNFα+ CD8+ T-cells

T-cells were stimulated with αCD3/αCD28 for 24 h; except for T-cell Abca1/Abcg1 deficiency where the stimulus was αCD3/IL-2 for 12 h. For 
Lxrβ deficiency and T-cell Scap deficiency, T-cells were stimulated by immunization in vivo
Abca1 and Abcg1, ATP binding cassette A1 and G1; Acat1, acyl-CoA cholesterol acyltransferase 1; IFNγ, interferon γ; IL-2, interleukin 2; 
LDL, low-density lipoprotein; Lxrβ, liver X receptor β; MβCD, methyl-β-cyclodextrin; Scap, sterol regulatory element-binding protein (SREBP) 
cleavage-activating protein; TCR​, T-cell receptor; TNFα, tumor necrosis factor α

Model Time prior to 
TCR stimulus

Plasma membrane 
cholesterol

Granzyme B+ CD8+ IFNγ+

CD8+
TNFα+

CD8+

Lxrβ deficiency [30••] - Not reported Not reported ↑ ↑
T-cell Acat1 deficiency [31••] - ↑ ↑ ↑ ↑
MβCD-cholesterol (10 μg/mL) [31••] 15 minutes ↑ ↑ ↑ ↑
MβCD (1mM) [31••] 5 minutes ↓ ↓ ↓ ↓
T-cell Scap deficiency [33•] - ↓ Not reported ↓ ↓
LDL-c (24 hours during TCR stimulus) [36] - Not reported ↑ ↑ ↑
Lovastatin (10 μM) [31••] 6 hours Not reported ↓ ↓ ↓
U18666A (2 μg/mL) [31••] 6 hours Not reported ↓ ↓ ↓
T-cell Abca1/Abcg1 deficiency [26••] - ↑ ↑ ↑ Not reported
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was that Bcl6 is also expressed by germinal center B-cells 
that have a pro-atherogenic role [44,46]. Nonetheless, this 
study [23•] strongly suggests that cholesterol accumulation 
in Tregs compromises Treg function and enhances atherogen-
esis. This outcome is different from the mice with T-cell 
Abcg1 deficiency that showed cholesterol accumulation and 
increased Tregs. This may be due to a higher level of mem-
brane cholesterol accumulation in T-cells from Apoe−/− mice 
fed a WTD than in WTD-fed Ldlr−/− mice with T-cell Abcg1 
deficiency, simply because in the setting of T-cell Abcg1 
deficiency cholesterol esters accumulate [35], which may 
not have been the case in Apoe−/− mice fed WTD.

Interestingly, mice with T-cell Abca1 deficiency show a 
decrease in Tregs [47], attributed to increased Abcg1 expres-
sion [39], but T-cell Abca1 deficiency is athero-protective 
in Ldlr−/− mice fed WTD [39]. This athero-protective 
effect was attributed to a decrease in membrane choles-
terol accumulation due to elevated Abcg1 expression, and 
a decrease in Tmemory effector cells that indeed may have a 
pro-atherogenic role [39]. In contrast, we recently found 
that combined T-cell Abca1/Abcg1 deficiency decreased 
Tmemory effector cells but did not affect atherosclerosis in 
young Ldlr−/− mice fed WTD, while decreasing atheroscle-
rotic plaque size in Ldlr−/− mice fed a chow diet at 1 year 

of age [26••]. We attributed the latter to the higher number 
of T-cells in plaques of Ldlr−/− mice at 1 year of age than 
in young mice, and thus a more prominent role of T-cells 
in plaque formation in aged mice [26••]. Mechanistically, 
T-cell Abca1/Abcg1 deficiency increased T-cell apoptosis 
and, consequently, decreased IFNγ production, decreasing 
macrophage inflammation in lesions [26••] (Fig. 2). Even 
though Apoe−/− mice also show decreased T-cell IFNγ 
production after 20 weeks of WTD feeding, this does not 
compromise lesion growth [25•], presumably because pro-
inflammatory effects of Apoe deficiency on other cell types, 
such as macrophages, are dominant. Apoe−/− mice fed WTD 
may resemble advanced CAD in humans [25•], and there-
fore these studies in Apoe−/− mice are most informative in 
providing mechanistic insights as to why T-cells in patients 
with advanced CAD lose their funtionality in terms of pro-
liferation and IFNγ production, likely occurring downstream 
of increased T-cell apoptosis.

Conclusions and Future Directions

T-cell membrane cholesterol accumulation is key to T-cell 
proliferation and differentiation into cytotoxic T-cells both 
processes downstream of TCR signaling that are crucial to 
T-cell function [30••, 33•]. The exact mechanism for these 
findings is not yet clear. Membrane cholesterol accumulation 
may induce TCR clustering [31••], as such activating TCR 
signaling; however, studies employing artificial membranes 
have yielded conflicting data as to the role of membrane 
cholesterol in TCR signaling [48, 49], indicating that the 
exact mechanism remains to be elucidated.

During aging, T-cell numbers decline, and T-cells accu-
mulate cholesterol [27, 28]. Cholesterol accumulation may 
induce T-cell apoptosis or T-cell exhaustion [26••, 41•], 
which both may contribute to the decrease in T-cell numbers.

The diminished T-cell functionality in terms of T-cell 
proliferation and IFNγ production in CAD patients may be 
the consequence of T-cell cholesterol accumulation [25•, 
26••]. Similarly, cholesterol accumulation in Tregs of CVD 
patients may enhance differentiation into pro-atherogenic 
T-cell subsets [6, 9, 21, 22, 23•, 24] (Fig. 2). Although defi-
ciency of T-cell cholesterol efflux pathways also increased 
T-cell apoptosis in atherosclerotic plaques [26••], it seems 
rather unlikely that high levels of cholesterol accumulation 
in T-cells from human atherosclerotic plaques have a simi-
lar effect. Even though the plaque environment is rich in 
cholesterol, plaques from human carotid endarterectomies 
show high numbers of T-cells [1••, 2••, 50••] that differ-
entiate into specific T-cell subsets completely dependent on 
the local plaque environment [50••]. Triggers that regulate 
this differentiation remain to be determined. Recent single 
TCR sequencing studies suggest that atherosclerosis has 

Fig. 2   Effects of cholesterol accumulation on regulatory T-cell (Treg) 
fate and on T-cell apoptosis and downstream effects on the production 
of interferon γ (IFNγ), inflammation, and atherosclerosis. Created 
with BioRe​nder.​com
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an auto-immune component driven by autoreactive CD4+ 
T-cells [50••].

In conclusion, several findings, as summarized in 
Tables 1 and 2, indicate that T-cell membrane cholesterol 
accumulation is key to regulating the functionality of periph-
eral T-cells. This is particularly important in response to 
infections. Indeed, a lack of cholesterol synthesis in CD8+ 
T-cells resulted in an attenuated clonal T-cell expansion dur-
ing viral infection [33•]. Excessive cholesterol accumulation 
compromises T-cell functionality by inducing T-cell apop-
tosis [26••]. This may contribute to the increase in T-cell 
apoptosis and impaired T-cell functionality in patients with 
advanced CAD [25•].
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