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Abstract
Ancestral sequence reconstruction (ASR) provides insight into
the changes within a protein sequence across evolution. More
specifically, it can illustrate how specific amino acid changes
give rise to different phenotypes within a protein family. Over
the last few decades it has established itself as a powerful
technique for revealing molecular common denominators that
govern enzyme function. Here, we describe the strength of
ASR in unveiling catalytic mechanisms and emerging pheno-
types for a range of different proteins, also highlighting
biotechnological applications the methodology can provide.
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Introduction
Ancestral sequence reconstruction, ASR, also known as
ancestral protein reconstruction, is a molecular evolu-
tion technique that infers the sequences of extinct

proteins using probabilistic methods including
maximum likelihood and Bayesian inference. Whilst not
www.sciencedirect.com
being able to determine the true sequence of an
ancestral protein, ASR captures the changes underlying
a protein phenotype occurring across sequence-space as
a function of time. Experimental characterisation of
various ancestors enables one to understand the de-

terminants permitting a given biochemical function
[1e4]. Pauling and Zuckerkandl envisioned that one day
it would be possible to routinely synthesise ancestral
proteins that existed in extinct organisms [5]. At the
time, bioinformatic technologies and sequence data-
bases were limited restricting the phylogenetic histories
that could be mapped. Since the late 20th century there
has been a massive uplift in computing power and the
amalgamation of sequence databases has institutional-
ised a new setting for ASR. Indeed, to date a plethora of
ancestral proteins have been resurrected and charac-

terised [6e12].

Reliable reconstruction of an ancestral sequence hinges
on a robust phylogenetic tree that frames the
biochemical setting for the to-be undertaken research
and the phenotype under scrutiny [13-18*]. The
resurrection component concerns the wet lab with the
sequences synthesised, expressed, purified, and char-
acterised. Here, several ancestral proteins, reflecting the
evolution of a given phenotype, are evaluated and their
sequence determinants are described.

ASR research over the last decade has seen a revolution
in terms of its use in biochemical investigations and its
potential application in industry. The development and
consolidation of cheap DNA synthesis, powerful new
experimental techniques (i.e.: mass photometry,
expression systems, kinetics) and in silico advances
(simulations, Alphafold) have strongly contributed to
the flourishing of ASR. In this review, we discuss
selected case-studies highlighting the prowess that ASR
has recently brought in modern biochemical in-

vestigations and biotechnological applications for
structural and enzymological studies (Table 1).
Fine tuning of an oxygenating flavin
intermediate for xenobiotic metabolism
Detoxification is an essential component of secondary
metabolism. A wealth of detoxifying enzymes has
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Table 1

ASRmechanistic and structural enzymology studies. Themost recent investigations (2019-to date) provide ground-breaking insight into
mechanistic or structural enzymology and are summarised here.

Enzyme/protein Mechanistic/structural enzymology concept

Vertebrates chemokines [9*] � Fold switching
Bacterial & eukaryotic family 1-glycosidases [26*] � Vestigial heme-mediated catalysis

� Flexible structure with unexpected
cofactor binding

� Allosteric regulation
Opisthokont Ser–Thr protein kinase [7] � Emergence of allosteric regulation
Bacterial solute binding proteins [8] � Origins of catalysis
Bacterial PETases [37*] � Emergence from cutinases

� Catalytic features
� Substrate (PET polymer) specificity

Prokaryotic haloalkane dehydrogenases [32] � Catalytic promiscuity
Vertebrate haemoglobin [46] � Origin of cooperativity

� Oxygen binding
� Determinants of multimerisation

Mammalian flavin-containing monooxygenases (FMOs) [22*] � Substrate/product entrance/exit
� Catalytic diversity

Rubiscos [30*-31**] � Catalytic traits in C3 plants
� Dependency on an accessory subunit

Fe/Mn superoxide dismutases (SODs) [27*] � Metal dependency for activity
Vertebrate cytochrome P450 family 1 [18*] � Substrate specialisation
tRNA nucleotidyltransferase [47*] � KM versus kcat compensation
Bacterial Cas9 [12] � Transition nickase to double-strand

breaking activity

2 Catalysis and Regulation (2023)
evolved to breakdown and remove a range of xenobiotics
[19*], including the flavin-containing monooxygenases,
FMOs [20,21]. Humans possess five different FMO
members with four performing heteroatom oxygenations
and one performing BaeyereVilliger oxidations. Both
reactions require the production of a reactive C4a-
(hydro)peroxyflavin intermediate for catalysis. The
protonation state of the intermediate has been postu-

lated to dictate the resulting catalytic trajectory; the
protonated version enables heteroatom oxygenation and
the deprotonated version is responsible for
BaeyereVilliger activity [22]. Phylogenetic analysis re-
veals that the ‘explosion’ of the FMO genes took place at
the dawn of the tetrapods (four-limbed creatures)
approximately 300 million years ago (Mya). The first
FMO to emerge was FMO5, which is responsible for the
BaeyereVilliger monooxygenase activity. The second
branch corresponded to the ancestor of all other FMOs,
1e4, that are expected to pursue heteroatom oxygena-

tion, with FMO4 emerging first, followed by FMO2, and
then FMO1 and FMO3 (Figure 1a). Mascotti and col-
leagues reconstructed four different ancestral in-
termediates to inform on the changing phenotypes:
tAncFMO1-5 (t refers to tetrapod ancestry and 1e5
mean ancestor to FMOs 1 through to 5), tAncFMO5,
tAncFMO1-4 and tAncFMO1-3 (see Figure 1a) [23*].
Using a set of canonical substrates consisting of ketones
(BaeyereVilliger substrates) and molecules possessing
soft sulphur- and nitrogen-nucleophilic centres (het-
eroatom-containing substrates) the different ancestors
Current Opinion in Structural Biology 2023, 82:102669
were screened for activity. The first ancestor,
tAncFMO1-5, exhibited mixed functionality and could
turnover, albeit in low yields, most substrates. This
trend was also observed for tAncFMO5, but with slightly
diminished heteroatom oxygenations. However, ances-
tors tAncFMO1-4 and tAncFMO1-3 showed signifi-
cantly higher heteroatom oxygenation capabilities with
ablation of BaeyereVilliger oxidation activity

(Figure 1b). This finding suggests that the gene dupli-
cation event produced a highly specialised heteroatom
oxygenase that underwent further gene duplications to
optimise oxygenation events.

With the switch in phenotype being pinpointed to the
tAncFMO1-5 and tAncFMO1-4 ancestral states, the
authors evaluated the differences between the two
proteins (45 residues in total) [23*]. Using a rational
approach considering sequence and structure elements,
they reduced the number of relevant residues down to

16 and generated several tAncFMO1-4 mutants
encompassing increasing numbers of substitutions
aiming to recapitulate the BaeyereVilliger mono-
oxygenase activity. After several mutational rounds, they
observed that just four residues were enough to confer
BaeyereVilliger activity. These were further dissected
into single, double and triple combinations. Neither of
the single point mutants introduced the switch whereas
only the combination of three of them restored the
BaeyereVilliger oxidation (Figure 1c). Inspecting the
structural positions of these residues shows two distal
www.sciencedirect.com
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ASR in enzymology Nicoll et al. 3
regions. The first is nestled close to the isoalloxazine
ring of the FAD. The second, on the periphery of the
protein core, is positioned in the vicinity of the adeno-
sine motif of NADPH (Figure 1c). Mutations in both
regions introduce subtle, yet relevant, differences
among the vast interactions that surround the ligands
engaging with the oxygenating C4a-(hydro)peroxyflavin
intermediate e NADPþ and FAD. In this scenario,

likely, both the FAD and NADPþ cofactors relay the
altered electronic properties of the newly introduced
residues towards the oxygenating intermediate. This
consequently changes its available protonation states
and thereby, its mode of function. The evolutionary
mechanism behind this process has been described as
epitasis relayed by the ligand; it has been recognised as
one of the most complex catalytic networks to be
established [24e26].
Figure 1

Evolution of the flavin-containing monooxygenases in tetrapods. (a) Scheme
ancestral states investigated are shown with circles. The clade possessing Bae
heteroatom oxygenating one is shown in blue (FMO1-3). The uncharacterised
FMOs, shown in black. Examples of both heteroatom and Baeyer–Villiger oxid
bar chart portrays an average percentage conversion for Baeyer–Villiger sub
responsible for introducing Baeyer–Villiger activity. Residues H275, H246 and
were introduced into tAncFMO1-4. Cofactor FAD and coenzyme NADP+ are
portrays an average percentage conversion for Baeyer–Villiger substrates ve

www.sciencedirect.com
Cofactors on the rise
Most enzymes employ organic and metal cofactors as

essential elements of their catalytic apparatus. ASR is
becoming a potent tool to trace the emergence and
evolution of the cofactor-binding sites, often providing
mechanistic insight about the modulation of the
cofactor reactivity by the protein environment. Sanchez-
Ruiz et al. [27*] serendipitously found that an old
ancestor of family-1 glycosidases was endowed with
heme binding. This is surprising because none of the
modern enzymes were previously reported to bind this
cofactor. Moreover, family-1 glycosidases feature a (b/
a)8-barrel and heme binding is rare among the proteins

displaying this folding topology. Nonetheless, heme
incorporation is unlikely to be a spurious artefact of the
resurrection protocol. First, the binding site is partly
conserved among the extant family-1 glycosidases and
for the phylogenetic tree of the FMO family in tetrapods. The tetrapod
yer–Villiger monooxygenase activity is shown in orange (FMO5) whilst the
FMO4 clade is shown in grey with the root of the tree, composed of fish
ations are shown. (b) Substrate conversions across ancestral FMOs. The
strates versus heteroatom-containing substrates. (c) Underlying residues
I60, shown in green, are those found in the tAncFMO1-5 backbone that

shown in yellow and cornflower blue, respectively. The inset bar chart
rsus heteroatom-containing substrates.

Current Opinion in Structural Biology 2023, 82:102669
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the authors retrospectively found that weak heme
binding is present in several extant family members.
Moreover, removal of the heme leads to drastic reduc-
tion of the enzymatic activity of the heme-binding
ancestor and is associated with reduced protein flexi-
bility. In line with these findings, recently, Sanchez-Ruiz
and colleagues observed that an unrelated TIM-barrel
protein was able to sequester free heme using a flex-

ible region of the polypeptide to promote a peroxidase
mode of function and reduce the half-life of free heme
in solution [28]. Collectively, these findings portray that
just a few mutations can craft a cofactor-binding site
with a potential functional role.

Superoxidase dismutases (SODs) are widespread in
nature. These metalloenzymes are classified based on
their metal cofactor. The iron/manganese family mem-
bers can be selective for iron or manganese or can be
equally active with either metal (so-called cambialistic

enzymes). Tawfik and co-workers [29*] reasoned that
these SODs would represent an interesting system to
study the evolution of metal dependency. They
discovered that their oldest ancestors were likely
cambialistic as the resurrected proteins display activity
with both iron and manganese. Metal specificity has
developed only later, depending on the evolutionary
branches. Interestingly, the resurrected SOD belonging
Figure 2

Evolution of form I Rubiscos. (a) A scheme of the phylogenetic tree of the Rub
perpendicular and parallel to the C4 rotation axis. Type III, Ia (PDB: 1YKW for
are shown in salmon, dark green, light green and purple, respectively. The SSU
AncL and AncLS nodes are illustrated. (b) Location of changes found in AncL
and blue, respectively. (c) Dependence and influence of activity of the SSU un

Current Opinion in Structural Biology 2023, 82:102669
to the last universal oxygen ancestor, the first organism
capable of metabolising oxygen, was strictly dependent
on manganese and unable to use iron. From a geo-
biochemical standpoint, this would seem logical as iron
bioavailability likely became limited in the early aerobic
organisms that had to protect themselves from the
potentially damaging Fenton reactions.
The evolution of specificity in form I
Rubiscos
Rubiscos are integral to carbon assimilation in all aerobic
phototrophs [30,31]. Rubiscos predate the emergence of
oxygenic photosynthesis and evolved under anaerobic

conditions. Molecular oxygen however drives a side re-
action in Rubisco resulting in the formation of 2-
phosphoglycolate that consequently interferes and re-
duces carbon-based metabolism. Among the Rubisco
family, several forms have evolved including I, I’, I’’, Ia
and III variants. Each possess unique molecular de-
terrents to dampen this side reaction [32*]. In type I
Rubisco, the recruitment of a non-catalytic small subunit
provides increased specificity for CO2. To determine the
roles of this additional protein chain, Hochberg and
colleagues set out to uncover the molecular de-

terminants giving rise to the interaction and heightened
specificity using ASR, mass photometry, X-ray crystal-
lography, Cryo-EM and mutagenesis studies [33**].
isco family. Each Rubisco family member is shown in its oligomeric forms
structure representation), I0, I00 (PDB: 7QSY) and I Rubiscos (PDB: 7QVI)
subunit is shown in orange with its introduction to function illustrated. The
+7 and the additional changes added in AncL +14 are shown in magenta
it across the ancestral states, AncL, AncL + 7 and AncL + 14 are shown.

www.sciencedirect.com
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ASR in enzymology Nicoll et al. 5
Form I Rubiscos are arranged into eight large subunits
(LSU), meshed with eight non-catalytic small subunits
(SSU), together making a 16-unit oligomer, L8S8. To
understand how the components came together to
create the large heterooligomeric structure, they
reconstructed the ancestors appearing before and after
the binding event, AncL and AncLS, respectively, as
well as the ancestral small subunit, AncSSU (Figure 2a).

They demonstrated that AncL and AncLS þ AncSSU
were catalytically competent systems, with the KM of
CO2 decreasing for the latter and the catalytic efficiency
increasing. AncSSU had no effect on the activity or
yields of AncL and did not show any identification of
binding when assessed through mass photometry or co-
elution studies. Alternatively, in the absence of AncSSU,
AncLS was enzymatically stunted. These findings
illustrated that the SSU became rapidly essential to-
wards function.
Figure 3

Ancestral sequence reconstruction for protein coagulation factors, VIII and IX.
of human FVIII (PDB: 3CDZ); right, schematic representation of the human F
quences. Mutations compared to the human protein are represented as blue lin
mutation performed on the ancestral sequence to avoid the binding of the hFVII
Left, 3D-view of human FIX (Alphafold model aligned with the crystal structure o
type FIX, the gain-of-function mutant (FIX-Padua [43]), the Anc96, and the A
represented as blue lines. The mutation R338L (in red) corresponds to the gai
through adeno-associated vector (AAV) on a murine model for haemophilia A
showed significantly higher coagulation activity than human FVIII and ET3. Ha
the human wild-type FIX, hFIX-Padua and Anc96, indicating a synergistic effe

www.sciencedirect.com
The authors documented the changes occurring be-
tween the ancestors, AncL and AncLS; after solving
crystal structures of inhibitor bound AncL and co-crys-
tallised AncLS þ AncSSU, they could pinpoint the
location of these changes with respect to the oligomer-
isation. Remarkably, only three residues were required
to induce binding when introduced into AncL with a
total of seven (hereafter denoted as AncLþ7) giving rise

to tight binding and the resulting L8S8 heterocomplex
(Figure 2b). The authors further investigated the in-
fluence of AncSSU on the activity of AncLþ7
(Figure 2c). They noted that the KM of CO2 decreased
in the presence of AncSSU, and despite a slight reduc-
tion in catalytic rate, catalytic efficiency increased two-
fold. Furthermore, AncLþ7 exhibited specificity for
CO2, but significantly more so in the presence of
AncSSU, thereby showing an increasing enhancement
by both the residue changes and the recruitment of the
(a) Structural features and domain composition of FVIII. Left, 3D-structure
VIII, the human/porcine hybrid ET3 and the ancestral protein Anc53 se-
es. The mutation E434V, shown in red, on Anc53 represents a single-point
I inhibitor MAb 4A4. (b) Structural features and domain composition of FIX.
f the Gla domain (PDB: 1J35)); right, schematic representation of the wild-

nc96-Padua sequences. Mutations compared to the human protein are
n-of-function Padua mutation. (c) Illustration of liver-directed gene transfer
(grey) or haemophilia B (red). Haemophilia A mice treated with Anc53
emophilia B mice treated with Anc96-Padua displayed higher activity than
ct between ASR and the R338L mutation.

Current Opinion in Structural Biology 2023, 82:102669
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6 Catalysis and Regulation (2023)
SSU. The addition of another residue, N170, present in
AncLS, further increased specificity for CO2 but only in
the presence of AncSSU. Of note, none of these residues
are within or proximal to the active site. After resolving
crystal structures of AncLþ7 and AncLþ7þN170, in
both L8 and L8S8 forms, it became evident that SSU
confers heightened catalysis through both allosteric and
long-distance effects.

To reveal the residues that forfeit SSU dependency, the
authors introduced seven residues into AncLþ7 found
to be neighbouring the L-S interface in the
AncLS þ AncSSU complex (AncLþ14 in Figure 2b and
c). They revealed that these residues were detrimental
to AncL solubility and dependent on AncSSU co-
expression. Further scrutiny of these individual resi-
dues revealed that one change, W437, present in AncLS,
diminished protein solubility by approximately 75% in
both AncL and AncLþ7 ancestors, substantiating that

this residue conferred SSU dependency.
ASR in biotechnology and biomedicine
The growing consensus of introduced thermostability in
reconstructed proteins has promoted interest in its po-

tential application in industry [34e39*] and biomedi-
cine [40,41]. Harmer and colleagues [42**] recently
proposed a ‘survivor bias’ model to explain this obser-
vation. Sequences that have evolved under selective
pressure tend not to include destabilising residues.
Thus, stabilising substitutions are overrepresented in
reconstructed ancestors. These results build on the
accumulating evidence collected by Goldstein and col-
leagues that maximum likelihood presents a bias to-
wards more frequent amino acids, commonly referred to
as the ‘consensus effect’ [43]. Their work suggests that
Bayesian methods have a lower tendency to induce

these thermostability-enhancing residues. Neverthe-
less, Arcus and colleagues reconstructed several ances-
tral 3-isopropylmalate dehydrogenases (LeuB),
representing the last common ancestor of Bacillus, using
both maximum likelihood and Bayesian inference
methods and observed that both introduced heightened
stability. Thus, both techniques can lead to thermo-
stabilising artefacts [44,45]. Collectively, these findings
showcase the underlining methodological attributes that
frequently impart thermostability for ancestral proteins
procured by ASR [46].

More valuable, however, concerns the retained func-
tional characteristics as opposed to the improved phys-
ical stability. This is the case of the reconstruction and
experimental validation of the coagulation factors FVIII
and FIX from mammals with gene-therapy purposes
(Figure 3). Recombinant human FVIII has been pro-
duced and used over the last thirty years to treat
haemophilia A (Figure 3a) [47]. However, the human
protein suffers from poor yields, stability and patients
Current Opinion in Structural Biology 2023, 82:102669
receiving FVIII infusions typically develop anti-FVIII
antibodies against the recombinant protein, severely
reducing the efficacy of the treatment. In 2017, Doering
and collaborators explored a historical biochemistry
approach to tackle this issue [41]. Interestingly, ances-
tral FVIII proteins showed significantly higher expres-
sion than the human FVIII and displayed a significant
reduction in sensitivity to anti-human FVIII antibodies

compared to the human protein (Figure 3a). Moreover,
B-cell epitope prediction showed no differences be-
tween the human FVIII and ancestors, corroborating
that ASR can be exploited for protein human-
isation (Figure 3c).

As for FVIII deficiency, recombinant human FIX protein
was produced for the treatment of haemophilia B pa-
tients and displayed similar issues as FVIII treatment
(Figure 3c) [48]. Doering et al. [49*] generated Anc-
FIX sequences, particularly focusing on two primate

ancestors and, remarkably, exhibited around 10-fold
higher activity than human FIX. Moreover, incorpora-
tion of a gain-of-function mutation [50] led to 5-fold
higher production yields, 3-fold greater specific activ-
ity and lower 50% effective dose. Hence, ASR is proving
to be a powerful and cost-effective method for drug
improvement and, in combination with other enzyme
engineering methods, is a useful tool in the biophar-
maceutical field.
Fortune favours the few
In this opinion, we have exemplified how ASR can un-
ravel enzymatic activities, proteineprotein interactions,
as well as showcasing novel biotechnological applications
of ASR. Interestingly, these investigations reveal the
significance of only a few residues can have on a
phenotype when investigating complex systems. These

one-hit wonders however seldom materialise entirely new
phenotypes. Instead, they take the first step in evolu-
tionary trajectories. For Rubisco, a single mutation,
S147W, greatly reduced protein solubility that ushered
in SSU, a partnership further enforced by allosteric and
long-range interactions. Differently from these protein-
protein interaction orientated studies, whereby one
residue gave rise to a trajectory that was then reinforced
with further changes, enzymatic activity in the FMOs
has required fine-tuning. These minimum requirements
were enabled by three residues; their distribution

around the integral ligands invoked the partial electro-
static shift in the active site’s microenvironment needed
to incite Baeyer-Villiger oxidation. Again, in this
example, long-range interactions play a fundamental
role. Hence, we posit that, likely, the pillars for molec-
ular evolution of multicomponent systems are grounded
by a small number of residues that provide the hallmarks
for new phenotypes (arguably preadaptation). These are
then nourished through neighbouring and/or regional
residues, with long distance substitutions playing an
www.sciencedirect.com
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ASR in enzymology Nicoll et al. 7
instrumental part. An increasing number of examples are
clearly highlighting this phenomenon [24e26,51e53*].
The future of ASR
A considerable hurdle that non-evolutionary biologists
face when looking to using ASR is the methodology
itself. The inference of a concrete phylogenetic tree
including its various statistical approaches, appropriate
rooting procedures and the introduction of alternative
ancestors to assess the robustness of the analysis may
seem daunting to a protein chemist. Nonetheless the
increasing number of reviews and articles documenting
how to carry out the technique are providing new op-

portunities to non-experts [1,13,14,18]. We envisage
that soon, as phylogenetic analysis becomes more
mainstream, researchers will include ASR as a comple-
mentary technique to substantiate their ongoing hy-
pothesis towards a protein function. In this regard,
biochemical research will routinely frame enzymatic
function not just on one sequence but across a family as
a function of time, rewording the statement from
Theodosius Dobzhansky [54] to ‘Nothing in Biochem-
istry Makes Sense Except in the Light of Evolution’.
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