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1. Introduction and results

Let p be a prime number, let q be a power of p, and denote by Fq the finite field with 
q elements and by Fq2 its quadratic field extension. Let C be a curve (complete, smooth, 
and geometrically irreducible) of genus g ≥ 0 defined over Fq. One calls the curve C
maximal over Fq2 if the number of rational points of C over Fq2 attains the Hasse-Weil 
upper bound, i.e.,

#C(Fq2) = 1 + q2 + 2gq.

Maximality of C over Fq2 is equivalent to a property of the Jacobian J = J (C) of 
the curve C: namely, the Frobenius endomorphism F : J → J that raises coordinates of 
points to the power q2, equals the multiplication by −q. This, in turn, is equivalent to the 
zeta function Z(C/Fq2 , T ) being given as (1 −qT )2g/((1 −T )(1 −q2T )). A consequence of 
these equivalent characterizations of maximality over Fq2 is that if C/Fq2 is maximal and 
C → D is a nonconstant morphism of curves defined over Fq2 , then D/Fq2 is maximal as 
well. Constructing maximal curves in this way by starting from well-known ones (such 
as the Hermitian curves over Fq2 given in P 2 by xq+1 + yq+1 + zq+1 = 0) remains a 
popular subject in various papers, see for example [13], [9], [1], [19], [18], [3], [14].

In this note two specific types of curves over Fq that are maximal over Fq2 are dis-
cussed. For the first one, we assume q ≡ 3 mod 4 which in particular implies that the 
elliptic curve E : y2 = x3 + x is maximal over Fq2 . In this situation any curve C over Fq

corresponding to an equation

C : s4 = f(t)

such that C is maximal over Fq2 is considered. Fix a primitive 4-th root of unity i ∈
Fq2 and define ι ∈ Aut(E) by ι(x, y) = (−x, iy). Similarly, μ ∈ Aut(C) denotes the 
automorphism μ(t, s) = (t, is). The (minimal resolution of the) quotient (E ×C)/〈ι ×μ〉
is a surface Ef ; its function field is the subfield of Fq(x, y, t, s) (with y2 = x3 + x and 
s4 = f(t)) consisting of the invariants under (x, y, t, s) �→ (−x, iy, t, is). A straightforward 
verification shows that this field equals Fq(ξ, η, t) where ξ = s2x and η = s3y. The 
generators satisfy η2 = ξ3 + f(t)ξ. In fact this calculation reflects the observation that 
the projection (E×C)/〈ι ×μ〉 → C/〈μ〉 ∼= P 1 gives Ef the structure of an elliptic surface 
over P 1; it is a quartic twist of the trivial elliptic surface E×P 1 → P 1. The generic fiber 
of Ef → P 1 is the elliptic curve Ef/Fq(t) with equation η2 = ξ3 + f(t)ξ. In Section 2 we 
will show the following.

Theorem 1.1. Suppose q ≡ 3 mod 4. Take f(t) ∈ Fq(t) such that s4 = f(t) defines a 
geometrically irreducible curve C of genus g that is maximal over Fq2 .

Then the rank of the elliptic curve Ef : η2 = ξ3 + f(t)ξ over Fq(t) equals g−h, where 
h denotes the genus of the hyperelliptic curve corresponding to s2 = f(t).



S. Bootsma et al. / Finite Fields and Their Applications 91 (2023) 102256 3
In more explicit terms, viewing f(t) as a rational function on P 1 write

Df (odd) := {P ∈ P 1(Fq) : ordP (f) ≡ 1 mod 2}

and

Df (two) := {P ∈ P 1(Fq) : ordP (f) ≡ 2 mod 4}.

The assumption that s4 = f(t) should define a geometrically irreducible curve C simply 
means that Df (odd) 
= ∅. The Zeuthen-Hurwitz genus formula applied to C → P 1 defined 
by (t, s) �→ t shows that 2g = 3#Df (odd) + 2#Df (two) − 6. The same formula applied 
to the hyperelliptic curve yields 2h = #Df (odd) − 2. Hence Theorem 1.1 states that 
provided C is maximal over Fq2 , one obtains

rankEf (Fq(t)) = #
{
P ∈ P 1(Fq) : ordP (f) 
≡ 0 mod 4

}
− 2.

A similar result involving specific curves over Fq that are maximal over Fq2 relates to 
sextic twists of an elliptic curve. One starts with E : y2 = x3 + 1 and q ≡ 5 mod 6 so 
that E is maximal over Fq2 . Let C be a (smooth, geometrically irreducible, projective) 
curve over Fq, corresponding to an equation s6 = g(t). Fix ω ∈ Fq2 a primitive 3-rd root 
of unity. One has ρ ∈ Aut(E) given by ρ(x, y) = (ωx, −y) and ν ∈ Aut(C) such that 
ν(t, s) = (t, −ωs). A minimal resolution Eg of E × C/〈ρ × ν〉 is the surface considered in 
this case. Its function field is Fq(t, ξ, η) where ξ = s3x and η = s2y hence η2 = ξ3 + g(t). 
Here, Eg → C/〈ν〉 ∼= P 1 is a sextic twist of E × P 1 → P 1.

Theorem 1.2. Suppose q ≡ 5 mod 6. Take g(t) ∈ Fq(t) such that s6 = g(t) defines a 
geometrically irreducible curve C of genus g that is maximal over Fq2 . For j ∈ {2, 3}
write gj for the genus of the curve corresponding to sj = g(t).

The rank of the elliptic curve Eg : η2 = ξ3 + g(t) over Fq(t) is equal to g − g2 − g3.

As in the quartic twists case, the genera of the curves occurring here can be read off 
easily from the rational function g(t): write

Dg(odd) := {P ∈ P 1(Fq) : ordP (g) ≡ ±1 mod 6}

and

Dg(even) := {P ∈ P 1(Fq) : ordP (g) ≡ ±2 mod 6}

and

Dg(three) := {P ∈ P 1(Fq) : ordP (g) ≡ 3 mod 6}.
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The equation s6 = g(t) defines a geometrically irreducible curve precisely when either 
Dg(odd) 
= ∅ or both of Dg(even) and Dg(three) are nonempty. Under these conditions 
one obtains

2g = 5#Dg(odd) + 4#Dg(even) + 3#Dg(three) − 10,
2g2 = #Dg(odd) + #Dg(three) − 2,
2g3 = 2#Dg(odd) + 2#Dg(even) − 4.

So whenever C/Fq : s6 = g(t) corresponds to a geometrically irreducible curve that is 
maximal over Fq2 , Theorem 1.2 yields

rankEg(Fq(t)) = #
{
P ∈ P 1(Fq) : ordP (g) 
≡ 0 mod 6

}
− 2.

Proofs of Theorems 1.1-1.2 are presented in Section 2. These are variations of a clas-
sical idea of Tate and Shafarevich [21], who used Tate’s proof [20] of the famous “Tate 
conjecture for abelian varieties over finite fields” to deduce a result similar to Theo-
rems 1.1-1.2 for the case of quadratic twists. See also [15, §13.3] for a review of the idea 
by Tate and Shafarevich as well as various examples.

Section 3 discusses examples satisfying the conditions of Theorem 1.1 or Theorem 1.2. 
As a special case, it turns out that in every characteristic p ≡ 3 mod 4 taking q = pm

for odd m ≥ 1, the rank of E1728 : y2 = x3 + (tq+1 + 1)x over Fq(t) equals pm − 1. This 
clearly exceeds any given bound when considering m � 0. Similarly for p ≡ 5 mod 6
and q = pm with m ≥ 1 odd, the rank of E0 : y2 = x3 + tq+1 + 1 over Fq(t) equals 
pm − 1. We will discuss how this implies a result of Schütt and Shioda presented in [15, 
Theorem 13.42], where a rather different argument is used to find the rank of E0 over 
the quadratic extension Fq2(t).

Remark 1.3. The arguments used here exploit that the curves C are maximal and that 
the elliptic curve E is supersingular. Arbitrarily high ranks using some ordinary elliptic 
curve E and certain quadratic twists of E × P 1 → P 1 are found in [5], [4]. We did not 
investigate whether the ideas used there extend to the case of quartic or sextic twists.

Remark 1.4. As will be evident from the proofs presented in Section 2, the geometric
rank, i.e., the rank over Fq(t) of the elliptic curves discussed in Theorems 1.1-1.2, equals 
twice the rank they have over Fq(t).

2. Proofs

A first and elementary step in proving Theorems 1.1-1.2 is a reduction to state-
ments over Fq2 instead of Fq. An important advantage will turn out to be that all 
automorphisms of the elliptic curves in question are defined over Fq2(t), and also that 
the extensions of function fields that will be considered are Galois.
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Lemma 2.1. Let K be a field such that K(i) is a quadratic extension of K, where i2 = −1. 
Let E : y2 = x3 + ax be an elliptic curve over K.

Then

E(K(i)) ⊗Q ∼= (E(K) ×E(K)) ⊗Q.

In particular, if q is a prime power ≡ 3 mod 4 and K = Fq(t), then

rankE(Fq2(t)) = 2 · rankE(Fq(t)).

Proof. Define ι : E → E by ι(x, y) = (−x, iy) and let σ be the K-linear automorphism 
of K(i) such that σ(i) = −i. The action of σ on the coordinates of points in E(K(i)) is 
written as P �→ P σ. Then (P, Q) �→ P + ι(Q) defines a homomorphism E(K) ×E(K) →
E(K(i)) and R �→ (R+Rσ, ι(Rσ) − ι(R)) is a homomorphism E(K(i)) → E(K) ×E(K). 
The composition of the two maps yields multiplication by 2 on E(K) ×E(K), implying 
the lemma. �

As a consequence of Lemma 2.1, with notations from Theorem 1.1, proving this the-
orem is equivalent to showing that rankEf (Fq2(t)) = 2g − 2h. To achieve the latter 
equality, the extension Fq2(t, s) ⊃ Fq2(t) will be used, where s4 = f(t) (so Fq2(t, s) is 
the function field of the curve C over Fq2). By assumption this extension has degree 4. 
Since Fq2 contains a 4-th root of unity i with i2 = −1, the extension is Galois. Its Galois 
group is generated by the automorphism

τ : Fq2(t, s) ∼−→ Fq2(t, s) defined by τ(s) = is.

Note that over Fq2(t, s) the elliptic curves E : y2 = x3 + x and Ef : y2 = x3 + f(t)x are 
isomorphic (reflecting that by construction Ef is a quartic twist of E). Indeed, the map

Ef → E : (x, y) �→ (xs−2, ys−3)

is an explicit isomorphism. As a consequence one obtains

Ef (Fq2(t)) ⊂ Ef (Fq2(t, s)) ∼= E(Fq2(t, s)) = MorFq2
(C, E).

The rank of the latter group equals 4g, as is well known: indeed, for this one uses the 
exact sequence (see, e.g., [4, p. 488]; this idea was in fact already used in [21])

0 → E(Fq2) −→ MorFq2
(C, E) −→ HomFq2

(J , E) → 0.

Here J denotes the Jacobian of C; a point P ∈ E(Fq2) is mapped to the constant 
morphism with image P , and a morphism φ ∈ MorFq2

(C, E) yields a φ∗ on divisor 
classes. The assumption that C/Fq2 is maximal implies that J is isogenous over Fq2
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to Eg; indeed, maximality of cC/Fq2 is equivalent to the characteristic polynomial of 
Frobenius attached to J /Fq2 being (T + q)2g as explained, e.g., in [16, §2.1], see also 
[11, §10.1]. Since q ≡ 3 mod 4, the characteristic polynomial of Frobenius on Eg/Fq2 is 
also (T + q)2g. Hence Tate’s result [20, Thm 1(c)] proves the existence of an isogeny as 
stated. As a consequence

rankEf (Fq2(t, s)) = rankHomFq2
(J , E) = rankHomFq2

(Eg, E)

= g · rankEndFq2
(E) = 4g,

where it is used that the q-th power Frobenius and the map ι : (x, y) �→ (−x, iy) do not 
commute in EndFq2

(E), implying that rankEndFq2
(E) = 4.

To complete the proof of Theorem 1.1, the action of τ on Ef (Fq2(t, s)) will be studied 
in more detail. For convenience, write V := Ef (Fq2(t, s)) ⊗ Q. With 

√
−1 · (P ⊗ r) :=

ι(P ) ⊗ r, this V is actually a vector space over Q(
√
−1). Moreover τ defines a Q(

√
−1)-

linear map V → V and τ4 = idV . We now describe the eigenspaces Vλ ⊂ V corresponding 
to the 4 possible eigenvalues λ ∈ {±1, ±

√
−1} of τ .

Clearly eigenvalue +1 corresponds to (nontrivial) points v = P ⊗ r such that P τ − P

has finite order, hence some multiple of P is in Ef (Fq2(t)). So V1 = Ef (Fq2(t)) ⊗Q.
An element v = P ⊗ r ∈ V to be eigenvector with eigenvalue −1 means that P τ + P

has finite order. In other words, a multiple of P is of the form (ξ(t), s2η(t)) for ξ(t), η(t) ∈
Fq2(t). This is equivalent to (f(t)ξ(t), f(t)2η(t)) ∈ Ef3(Fq2(t)) where Ef3 denotes the 
quadratic twist of Ef given by

Ef3 : y2 = x3 + f3x.

It follows that V−1 ∼= Ef3(Fq2(t)) ⊗Q. Moreover, since q ≡ 3 mod 4 the q-power Frobenius 
morphism defines a rational isogeny Ef → Ef3 . In particular, this implies that Ef (Fq2(t))
and Ef3(Fq2(t)) have the same rank, so dimV1 = dimV−1.

Next, V√
−1 is considered. It leads to P τ − ι(P ) of finite order and analogous to the 

cases above, to points (s2ξ(t), sη(t)) ∈ Ef (Fq2(t)). This means (f(t)ξ(t), f(t)η(t)) ∈
Ef2(Fq2(t)), with

Ef2 : y2 = x3 + f2x.

The rank of Ef2(Fq2(t)) is determined as in the paper [21] of Tate and Shafarevich: 
write r = s2, so that Fq2(t, r) is the function field Fq2(D) of the hyperelliptic curve 
D : r2 = f(t) of genus h. Over Fq2(D) one obtains an isomorphism Ef2 ∼= E, hence as 
above

Ef2(Fq2(t)) ⊂ Ef2(Fq2(t, r)) ∼= E(Fq2(t, r)) = MorFq2
(D, E).

Moreover, since Ef2 is the quadratic twist of E/Fq2(t) using the extension Fq2(t, r)/Fq2(t), 
one obtains rankE(Fq2(t, r)) = rankE(Fq2(t)) +rankEf2(Fq2(t)) = rankEf2(Fq2(t)), as 
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E(Fq2(t)) = MorFq2
(P 1, E) ∼= E(Fq2). The inclusion Fq2(t, r) ⊂ Fq2(t, s) corresponds to 

a degree 2 map C → D, implying that D is maximal over Fq2 . Using the validity of the 
Tate conjecture over finite fields, the Jacobian J (D) is then isogenous over Fq2 to Eh. 
The exact sequence

0 → E(Fq2) −→ MorFq2
(D, E) −→ HomFq2

(J , E) → 0

now shows

rankEf2(Fq2(t)) = rankE(Fq2(t, r)) = rankMorFq2
(D, E) = rankHom(Eh, E) = 4h.

Finally, for V−
√
−1 one considers points (s2ξ(t), s3η(t)) ∈ Ef (Fq2(t)), meaning that we 

have (ξ(t), η(t)) ∈ E(Fq2(t)) = E(Fq2). The latter group is finite, hence V−
√
−1 = {0}.

Combining these arguments yields

4g = dimQ(V ) = dimQ(V1) + dimQ(V−1) + dimQ(V√
−1) = 2 · rankEf (Fq2(t)) + 4h.

This finishes the proof of Theorem 1.1. �
The proof of Theorem 1.2 presented below follows a mostly identical pattern, so a bit 

less detail is given. Here a lemma reducing the statement to one over Fq2(t) is as follows.

Lemma 2.2. Let K be a field such that K(ω) is a quadratic extension of K, where ω
satisfies ω2 + ω = −1. Assume char(K) 
= 2 and let E : y2 = x3 + a be an elliptic curve 
over K.

Then

(E(K) × E(K)) ⊗Q ∼= E(K(ω)) ⊗Q.

In particular, if q is a prime power ≡ 5 mod 6 and K = Fq(t), then

rankE(Fq2(t)) = 2 · rankE(Fq(t)).

Proof. Let σ be the nontrivial K-linear automorphism of K(ω). Note (ω − ω2)2 = −3. 
The linear action of σ on E(K(ω)) ⊗Q decomposes it into a +1-eigenspace E(K) ⊗Q and 
a −1-eigenspace, generated by elements (Pσ−P ) ⊗r with P ∈ E(K(ω)) \E(K). For such 
a point P one finds Pσ − P = (ξ, η

√
−3) with ξ, η ∈ K such that (9η)2 = (−3ξ)3 − 27a. 

Hence the −1-eigenspace may be identified with E′(K) ⊗Q where E′ : y2 = x3 − 27a. 
The latter elliptic curve is 3-isogenous to E over K, see, e.g. [23, p. 306]. This implies 
the result. �

For the remainder of the argument we take, using the notations from the statement 
of Theorem 1.2, the field extension



8 S. Bootsma et al. / Finite Fields and Their Applications 91 (2023) 102256
Fq2(t) ⊂ Fq2(C) = Fq2(t, s)

with s6 = g(t). This extension is cyclic of degree 6, with Galois group generated by τ
such that τ(s) = −ωs. One writes

W := Eg(Fq2(t, s)) ⊗Q.

This W is a vector space over Q(ζ6), where ζ6 denotes a primitive 6-th root of unity, 
by defining ζ6 · P ⊗ r := ρ(−P ) ⊗ r. Here ρ ∈ Aut(Eg) is defined by ρ(x, y) = (ωx, y). 
Analogous to the proof of Theorem 1.1 one has dimQW = 4g with g = genus(C).

The map τ induces a Q(ζ6)-linear automorphism of W . Since τ6 = id, this leads to a 
decomposition of W into eigenspaces Wζj

6
that will be described now; the verification is 

straightforward and analogous to the case discussed earlier. For j ∈ Z write Egj : y2 =
x3 + g(t)j . The result is

Wζj
6
∼= Egj+1(Fq2(t)) ⊗Q for j = 0, 1, 2, 3, 4

and Wζ5
6

= {0}. The q-power Frobenius map yields q-isogenies Eg → Egq ∼= Eg5 and 
Eg2 → Eg2q ∼= Eg4 , hence W1 ∼= Wζ4

6
and Wζ6

∼= W−1. Denoting for j = 2, 3 by Cj the 
curve of genus gj given by yj = g(x). The obvious degree 6/j map C → Cj makes Cj/Fq2

a maximal curve. We use these maps to obtain inclusions Fq2(t) ⊂ Fq2(Cj) ⊂ Fq2(C).
Note that Eg3(Fq2(t)) ⊂ Eg3(Fq2(C2)) ∼= MorFq2

(C2, E1) and as before, one concludes

dimQ Wζ2
6

= rankEg3(Fq2(t)) = 4g2.

To analyze the remaining space Wζ6 , the method exploited so far will be used one 
final time. Write Fq2(t) ⊂ Fq2(C3) = Fq2(t, r) with r3 = g(t). The Galois group of this 
extension is generated by ν such that ν(r) = ωr. The space U := Eg2(Fq2(t, r) ⊗ Q

is a vector space over Q(ζ6) with, as earlier, ζ6 · ((a, b) ⊗ q) = (ωa, −b) ⊗ q. Then ν
yields a Q(ζ6)-linear map on U , resulting in a decomposition of U into eigenspaces Uζ2j

6
. 

Here U1 = Eg2(Fq2(t)) ⊗Q and one verifies Uζ4
6
∼= Eg4(Fq2(t)) ⊗Q which, using the q-

Frobenius, is isomorphic to U1. Finally, Uζ2
6

= {0}. Since dimQ U = 4g3, the conclusion 
is that

dimQ Wζ6 = dimQ U1 = 1
2 dimQ U = 2g3.

Finally,

4g = dimQ W = 2 dimQ W1 +2 dimQ Wζ6 +dimQ Wζ2
6

= 2 · rankEg(Fq2(t))+4g3 +4g2.

This completes the proof of Theorem 1.2. �
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3. Examples

Note that if a curve C/Fq admits a degree n map C → P 1 defined over Fq, then in 
particular #C(Fq2) ≤ n(q2 + 1). Hence if such C is moreover maximal over Fq2 , then its 
genus g satisfies

g ≤ (n− 1)(q2 + 1)
2q .

For q � 0 and fixed n this bound is obviously stronger (although of course only applicable 
to a small class of curves) in comparison with the main result in [7], which states (at 
least in characteristic > 2) that apart from curves maximal over Fq2 and isomorphic over 
Fq2 to one corresponding to yq + y = xm with m ∈ {q + 1, (q + 1)/2}, one has

g <
(q − 1)2

4 .

The bounds on the genus mentioned here apply in particular to maximal curves corre-
sponding to an equation sn = f(t), or in more geometric terms, curves over Fq admitting 
an automorphism of order n coprime to the characteristic (with the property that any 
Galois conjugate of the automorphism is a power of it, to ensure that the quotient is 
again defined over Fq) and such that the quotient by this automorphism has genus 0. In 
light of Theorems 1.1-1.2 we consider this in two situations:

• n = 4 and q ≡ 3 mod 4;
• n = 6 and q ≡ 5 mod 6.

First, for small q and n ∈ {4, 6} such that q ≡ −1 mod n we list integers g ≥ 1 and 
curves C : sn = f(t) of genus g defined over Fq such that C/Fq2 is maximal. Next, we 
discuss some ‘families’ of examples.

3.1. Small finite fields

The smallest nonempty case is q = 3, and in this case only n = 4 is relevant here. 
Using the tables in [10], maximal curves over F9 of positive genus g only exist for g = 1
and g = 3. In case g = 1 an example is provided by the equation s2 = t3− t. Here indeed 
an automorphism of order n = 4 exists, namely (t, s) �→ (−t, is) with i ∈ F9 satisfying 
i2 = −1. Then (s, t) �→ r := t2 is the corresponding quotient map, and it realizes the 
curve as a cyclic degree 4 cover of P 1, with equation s4 = r(r − 1)2. By Theorem 1.1, 
E : y2 = x3 − r(r − 1)2x has rank 1 over F3(r). The other case is g = 3 and here the 
Hermitian curve defined using s4 = t4 + 1 is maximal over F9. Theorem 1.1 then shows 
that E : y2 = x3 + (t4 + 1)x has rank 2 over F3(t).

Consider (q = 5, n = 6). Maximal curves over F25 of positive genus g only exist 
for g ∈ {1, 2, 3, 4, 10}. For g = 10 the (unique up to F25-isomorphisms) example is the 
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Hermitian curve s6 = t6 + 1, and Theorem 1.2 implies that E : y2 = x3 + t6 + 1 has 
rank 4 over F5(t). For genus g = 4 one uses the quotient of the Hermitian curve by an 
involution as in [7], so s6 = t3 +1. As a consequence, E : y2 = x3 + t3 +1 has rank 2 over 
F5(t). A g = 2 example is provided by s6 = t2 + 1. Also g = 1 works: the elliptic curve 
E : y2 = x3 + 1 is maximal over F25. It admits the automorphism (x, y) �→ (ωx, −y)
of order 6, with ω ∈ F25 such that ω2 + ω + 1 = 0. The quotient map corresponds to 
(x, y) �→ r := y2. Note that s := xy generates F5(E) over F(r), with minimal relation 
s6 = r3(r − 1)2. So this is in the required form. The remaining possibility is g = 3. The 
“S4-model” of the Klein curve, i.e., the plane quartic given by

x4 + y4 + z4 + 3 ± 3
√
−7

2 (x2y2 + y2z2 + z2x2) = 0,

see [16, §4.1.2], [22, p. 43] is maximal over F25 and of genus 3. However, its automorphism 
group is the simple group PSL(2, F7) of order 168 and this group does not contain an 
element of order 6. We claim that in fact no curve C of genus 3 defined over F5 by an 
equation s6 = g(t) and such that moreover C/F25 is maximal, exists. Indeed, for a curve 
of this form to be irreducible and of genus 3, the discussion following Theorem 1.2 implies 
that #Dg(odd) = #Dg(three) = 2 and Dg(even) = 0. Using this, one is reduced to cases 
s6 = tg2(t)3 where g2(t) is a monic, separable, quadratic polynomial over F5 such that 
g2(0) 
= 0. A simple verification reveals that none of the possibilities results in a curve 
with number of F5-rational points equal to 6, a necessary condition for a curve over F5
to be maximal over F25.

(q = 7, n = 4). The bound g ≤ (n − 1)(q2 + 1)/(2q) here implies g ≤ 10, which rules 
out the Hermitian curve (for q = 7 of genus 21). The tables [10] plus in case g = 6 a 
result from [2, p. 147] yield as remaining positive possibilities g ∈ {1, 2, 3, 5, 7, 9}. For 
several of these, the examples of maximal genus g curves over F49 found on [10] directly 
or after a small calculation result in equations of the desired form. They are listed here.

g curve
1 s4 = t(t− 1)2
2 s4 = t(t2 − 1)2
3 s4 = t4 + 1
5 s4 = t(t2 + 1)3
9 s4 = t7 + t.

For g = 2 we briefly discuss the entry above. An example (in fact, isomorphic to the one 
presented in [10]) of a maximal genus 2 curve over F49 is given by y2 = x5 − x. This 
admits the order 4 automorphism (x, y) �→ (−x, iy) where i2 = −1. The quotient map 
for this automorphism can be given as (x, y) �→ t := x2, resulting, for s = y, in the given 
equation s4 = t(t2 − 1)2 for the curve.

Finally, for g = 7 the curve corresponding to y16 = x9(1 − x) is maximal over F49. 
From [6, Thm. 5] it is known that this is in fact the unique example of a maximal genus 
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7 curve over F49. Although the curve admits automorphisms or order 4, the quotient by 
any one of them does not have genus 0. In particular, no example s4 = f(t) exists in this 
case.

3.2. Families depending on q

The examples for small q presented above, already hint at a few more general cases. 
We describe some of these here.

In case the positive integer n and the prime power q satisfy q ≡ −1 mod n, the 
Hermitian curve H/Fq : yq+1 = xq+1 + 1 evidently covers the curve C : sn = tq+1 + 1 via 
the map (x, y) �→ (t = x, s = y(q+1)/n). The curves H and C are maximal over Fq2 , so 
from Theorems 1.1-1.2 one obtains the following.

Corollary 3.1. Take p ≡ 3 mod 4 a prime number and q = pm with m ≥ 1 odd. The 
elliptic curve E1728/Fq(t) : y2 = x3 + (tq+1 + 1)x satisfies

rankE1728(Fq(t)) = pm − 1.

Corollary 3.2. Take p ≡ 5 mod 6 a prime number and q = pm with m ≥ 1 odd. The 
elliptic curve E0/Fq(t) : y2 = x3 + tq+1 + 1 satisfies

rankE0(Fq(t)) = pm − 1.

Note that the special case m = 1 in Corollary 3.2 combined with Lemma 2.2 implies 
that rankE0(Fp2(t)) = 2p − 2 whenever p is a prime number congruent to 5 modulo 
6. This is part of the assertion in [15, Theorem 13.42] where a different argument is 
presented. However, as is also observed in the introduction of [15, §13.3.2] there are 
similarities between the two approaches: our method (as a variation of the classical one 
by Tate and Shafarevich [21]) uses that the elliptic surface is covered by the product 
H×E where E denotes the elliptic curve y2 = x3 +1. The method of [15] (originating in 
earlier work [17] by Shioda) may be seen as exploiting the fact that the elliptic surface 
is covered by the product H×H of Hermitian (Fermat) curves.

With n and C : sn = tq+1+1 as above, for any positive d|(q+1) the curve Cd : sn = td+1
is covered by C and this provides several more examples where one (or depending on q
both) of Theorems 1.1-1.2 can be applied.

A similar although slightly more elaborate idea originated in [8] and also results in a 
quotient of the Hermitian curve H, but only for (n, q) satisfying q ≡ −1 mod 2n. Recall 
that for d ≥ 1 the d-th Chebyshev polynomial is the unique ϕd(x) ∈ Z[x] such that

td + t−d = ϕd(t + t−1)

in Z[t, t−1]. One verifies that ϕd is monic and of degree d. Moreover ϕ1 = 1 and ϕ2 =
x2−2 and ϕd+2(x) = xϕd+1(x) −ϕd(x) for d ≥ 1. Also, ϕab(X) = ϕa(ϕb(X)). Considering 
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ϕd as a polynomial in characteristic p > 0, it is separable if and only if either p � 2d
or d = 1, see [18, Lemma 4.1]. Starting from the curve C : yn = xq+1 + 1 which is 
maximal over Fq2 , write q + 1 = 2kn (with k ∈ Z≥1 since q ≡ −1 mod 2n). The map 
(x, y) �→ (t = x + x−1, s = y/xk) defines a nonconstant morphism C → D where

D : sn = ϕnk(t).

By construction the curve D is maximal over Fq2 ; its genus is (3q − 9)/4 for n = 4, 
respectively (5q − 15)/4 for n = 6. The property that if de = nk for d, e ∈ Z≥1 then 
ϕd(ϕe(t)) = ϕnk(t), implies that for such d, e the map (t, s) �→ (ϕe(t), s) yields a non-
constant morphism D → D′ with

D′ : sn = ϕd(t), d |nk = (q + 1)/2.

This produces several more examples. A specific one of this type is obtained by taking 
d = n and e = k. Since ϕ4(x) = x4 − 4x2 + 2 and ϕ6(x) = x6 − 6x4 + 9x2 − 2, it shows 
that s4 = t4 − 4t2 + 2 defines a curve of genus 3 that is maximal over Fq2 whenever 
q ≡ −1 mod 8, and similarly s6 = t6 − 6t4 + 9t2 − 2 yields a curve of genus 10 that is 
maximal over Fq2 for any prime power q ≡ −1 mod 12. The elliptic surfaces defined using 
y2 = x3 +ϕ4(t)x and y2 = x3 +ϕ6(t) are in fact rational surfaces. There are well known 
methods for determining the structure of the group of sections in this case, regardless of 
the characteristic; see for example [15, Chapters 7-8].

Further examples in the same spirit are obtained by starting from a different model 
of the Hermitian curve, as follows. See also [8, §4], [12, §3]. As before it is assumed 
that (q, n) satisfy q ≡ −1 mod 2n. Choose a positive d|(q − 1)/2 and write q + 1 =
2na, q − 1 = 2md so that na = md + 1. The property n|(q + 1) implies that the curve 
C′ : yn = xq + x is maximal over Fq2 . A straightforward verification shows that the map 
(x, y) �→ (t = xm + x−m, s = yx−a) defines a nonconstant morphism C′ → D′′ with

D′′ : sn = ϕd(t), d | (q − 1)/2.

Taking n = 4 (so that q ≡ −1 mod 8), the choice d = (q − 1)/2 results in a curve of 
genus (3q − 9)/4, and to the elliptic curve over Fq(t) given by y2 = x3 − ϕ(q−1)/2(t)x
having rank (q− 3)/2 over Fq(t). Similarly, n = 6 and q ≡ −1 mod 12 and d = (q− 1)/2
yield genus (5q − 15)/4 and y2 = x3 + ϕ(q−1)/2(t) of rank (q − 3)/2 over Fq(t) In both 
examples, the rank over Fq2(t) and over Fq(t) equals q − 3.

In [12] variations of the constructions used here are discussed, and these result in more 
explicit cases of similar type. We leave it to the reader to fill in the details for those.

Data availability

Data will be made available on request.
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