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A survey of the specificity and mechanism of 1,6 hexanediol-induced disruption 
of nuclear transport
Elizabeth C. Riquelme Barrientos, Tegan A. Otto, Sara N. Mouton, Anton Steen, and Liesbeth M. Veenhoff

European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, 
Groningen, The Netherlands

ABSTRACT
Selective transport through the nuclear pore complex (NPC) depends on the dynamic binding of 
FG-repeat containing nucleoporins, the FG-nups, with each other and with Karyopherins (Kaps). 
Here, we assessed the specificity and mechanism by which the aliphatic alcohol 1,6-hexanediol 
(1,6HD) disrupts the permeability barrier of NPCs in live baker’s yeast cells. After a 10-minute 
exposure to 5% 1,6HD, no notable changes were observed in cell growth, cytosolic pH and ATP 
levels, or the appearance of organelles. However, effects on the cytoskeleton and Hsp104 were 
noted. 1,6HD clearly affected the NPC permeability barrier, allowing passive nuclear entry of a 
177kDa reporter protein that is normally confined to the cytosol. Moreover, multiple Kaps were 
displaced from NPCs, and the displacement of Kap122-GFP correlated with the observed passive 
permeability changes. 1,6HD thus temporarily permeates NPCs, and in line with Kap-centric 
models, the mechanism includes the release of numerous Kaps from the NPCs.
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Introduction

The Nuclear Pore Complex (NPC) is the sole gate 
between the nucleus and cytosol. It is a large 
macromolecular assembly composed of about 30 
conserved nucleoporins (nups). The central chan-
nel of NPCs is lined with intrinsically disordered 
phenylalanine-glycine rich nups, the FG-nups, and 
it hosts many nuclear transport receptors (NTRs), 
many belonging to the family of Karyopherins 
(Kaps) [1–4]. The NTRs bind their cargo and 
shuttle them through the channel by transiently 
binding the FG-nups [4–6]. For the NTR 
Importinβ it was shown that besides a fraction 
that is shuttling cargo between the cytoplasm and 
nucleus, there is also a fraction that is more stably 
associated with NPCs [7,8]. In addition to NTRs, 
also cargo and non-cargo are present in the NPC. 
In isolated yeast NPCs, 15,6 MDa worth of NTRs 
and 10,4 MDa worth of cargo add significantly to 
the 52,3 MDa mass of the nucleoporins [9]. The 
central channel of the nuclear pore complex is 
thus a highly crowded and complex environment 
where the joint presence of NTRs, FG-nups and

cargo creates an environment that allows fast and 
selective transport.

The exact structure of the central channel has 
remained elusive because experimentally probing 
its behavior in living cells is challenging. Our knowl-
edge about the behavior of the FG-nups and NTRs is 
inferred from, amongst others, imaging detergent- 
perforated or live cells [10–13]), AFM measurements 
on nuclear envelopes (NEs) [14], transport measure-
ment in biomimetic NPCs [15–17], surface anchored 
FG-nups [7] or from probing the structural confor-
mation of purified FG-nups or FG-nup fragment 
preparations [18–22]. These experimental studies, 
together with computational strategies [23–27], 
have resulted in a number of models explaining the 
fast and selective transport through the NPC [1– 
4,28,29]. All models agree that the phenylalanines 
of the FG-repeat regions that are engaging in hydro-
phobic interactions, as well as the intrinsically dis-
ordered nature of the FG-nups, are key parameters. 
They enable the highly dynamic intra- and inter- 
chain hydrophobic interactions between FG-repeat 
regions and with the hydrophobic grooves on the
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surfaces of NTRs. In the Kap-centric models the slow 
exchanging pool of NTRs are proposed to be impor-
tant to create the proper barrier function [30–32].

Early experiments using aliphatic alcohols 
pointed to the importance of hydrophobic inter-
actions for import into nuclei of permeabilized 
cells [33] and in live yeast cells [34]. Early 
experiments in permeabilized HeLa cells showed 
that selective transport of fluorescent reporters 
(MBP or IBB-MBP) was abrogated in the pre-
sence of hexane-1,2-diol but not by the less 
hydrophobic hexane-1,2,3-triol [33]. In live 
yeast cells, it was observed that the nuclear 
accumulation of GFP fused to a classical nuclear 
localization signal (NLS) was lost upon addition 
of alcohols and the extent of equilibration was 
dependent on the hydrophobicity of the alcohol 
[34]. Biochemical studies using purified FG- 
repeat fragments show that some of them are 
cohesive and that their interactions are disrupted 
by 1,6HD [35,36]. Also, within the yeast cytosol 
such overexpressed fragments form foci that are 
dispersed by 1,6HD [35]. Lastly, 1,6 HD was 
shown to increase the diameter of NPCs in 
Xenopus oocyte NE preparations [37]. Most dra-
matically, in the context of mutant NPCs that 
lack the inner ring nucleoporins Nup170 or 
Nup188, 1,6HD can even lead to loss of FG- 
nups from these NPCs [34,38]. The effect of 
hexanediol in the above studies was attributed 
to a reversible disruption of inter-FG repeat 
cohesion. However, as also the interactions 
between NTRs and FG-nups are based on hydro-
phobic interactions, hexanediol will likely also 
take effect here. Illustrative for the high surface 
hydrophobicity of NTRs, is their strong binding 
to a phenyl sepharose chromatography column 
yielding highly enriched fractions from HeLa cell 
extracts [33]. Jointly, these studies support the 
importance of hydrophobic interaction for 
nuclear transport, and the potential of 1,6 HD 
to disrupt those.

Unrelated to nuclear transport, 1,6HD has also 
been widely used to dissolve liquid–liquid phase 
separated compartments in cells and to dissolve 
condensates in in vitro studies. With aggregation- 
prone peptides, the alcohol dissolves hydrogels 
[39–41] but not fibers [42,43]. In cells, the inter-
pretation of the effects of 1,6HD are more difficult

[39] and depending on the cell type, growth con-
dition and the concentration and length of treat-
ment different results may be obtained. There are 
many examples of discrepancies in the literature; 
only one example is the organization of actin and 
tubulin. While some reports show that they are 
affected by 1,6HD [39,44], others report that 
microtubules are unaffected [42].

From the above, the question arises how spe-
cific the effects of 1,6HD on nuclear transport 
are, and whether they are based on a loss of 
cohesion between the FG-repeat regions, or 
between FG-nups and NTRs, or both. Here, we 
probe the impact of 1,6HD on nuclear transport 
and on the cellular localization of Nups and 
NTRs. We also assess a large number of possible 
indirect effects of 1,6HD, namely cell viability, 
the pH and ATP levels in the cytosol, and the 
appearance of mitochondria, Golgi, peroxisomes, 
ER, vacuoles, plasma membrane, nucleolus, 
secretory pathway, stress granules, the cytoskele-
ton and Hsp104 foci. Our data support that 
1,6HD provides an intervention to temporarily 
increase the passive permeability of NPCs, and 
we show that the release of NTRs from the NPC 
is part of the mechanism.

Results

Disruption of the permeability barrier of NPCs by 
1,6 hexanediol

To characterize nuclear transport, the terms influx 
and efflux are used to describe the process of 
nuclear entry or exit which occurs by diffusion 
down the concentration gradient. For reporters 
lacking NLS or NES sequences like GFP, the 
rates of influx and efflux are identical [45,46] and 
simply reflect the passive permeability of the NPC. 
Import and export are used for NTR-dependent 
transport, which can result in nuclear accumula-
tion or depletion, respectively.

Previous reports already showed that 1,6HD 
impacts import in yeast cells (Shulga and 
Goldfarb 2003 [35]. We add to this work and 
provide a quantitative analysis of the effects of 
1,6HD and 2,5 HD on the influx of a large 
reporter consisting of a Maltose Binding 
Protein with 5 GFPs (MG5), and possessing a
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molecular weight of 177 kDa. The influx of such 
a large reporter is slow and in wild type cells 
this reporter is excluded from the nucleus [26]. 
Mid-exponential growing cells were exposed for 
10 min to either 1,6HD or to the less hydro-
phobic alcohol 2,5-hexanediol (2,5HD), and the 
steady-state distribution of MG5 was determined 
as the ratio of the mean fluorescence in the 
nucleus over the cytosol (N/C ratio) (Figure 
1a). The treatment with 1,6HD resulted in an 
increase in the N/C ratio which reflects an 
increased influx of MG5. The effect of 1,6HD 
was concentration dependent and increased in 
the range between 0,625% and 5% 1,6HD. The 
effect of the less hydrophobic 2,5 HD on the 
localization of MG5 remained insignificant in 
this range. The increase of the influx of this 
large reporter upon exposure to 1,6HD implies 
that the NPCs have a more permeable barrier 
after exposure to 1,6HD.

We next assessed the effect of 1,6HD on the 
localization of GFP-NLS, which is imported by 
Kap60 and Kap95, and of GFP-NES, which is 
exported by Crm1. The efflux of GFP-NLS is fast 
due to its small size and hence the nuclear accu-
mulation of GFP-NLS reflects the balance between 
continuous Kap60/Kap95-facilitated import and 
its efflux; a pump-leak cycle [46]. Similarly, the 
balance of CRM1-facilitated export of GFP-NES 
and its influx leads to a steady-state nuclear exclu-
sion [46]. Changes in influx and efflux therefore 
readily change the N/C ratio of these small repor-
ters and based on the concentration dependent 
1,6HD-induced influx of MG5 (Figure 1a) one 
would expect a decrease in the accumulation of 
GFP-NLS and exclusion of GFP-NES. Indeed, 
assessing the impact of exposure to different con-
centrations of 1,6 HD, we find that the reporters 
for import and export showed a decline in their 
nuclear accumulation and exclusion, respectively 
(Figure 1b,c). Reporters imported by Kap104 
(Nab2 NLS) and by Pse1/Kap121 (Pho4 NLS) 
also lose their nuclear accumulation when exposed 
to 1,6HD (Supplementary Figure S1). An increase 
in efflux and influx is the simplest interpretation of 
the data in Figure 1b c. However, as the N/C ratios 
only provide a measure of the ratio between two 
parameters, we cannot exclude additional changes 
in the rates of import and export.

We note that the localization of GFP-NLS and 
GFP-NES is more sensitive to 1,6HD and 2,5 HD 
than the localization of MG5. E.g. the localization 
of MG5 was insensitive to the presence of 5% 
2,5HD but the N/C ratios of GFP-NLS and GFP- 
NES do already change at concentrations above 
2,5%. While other explanations may apply, this 
difference could be explained by the reporter size 
dependency of influx and efflux [26,47] which 
predicts that a small increase in passive permeabil-
ity may affect the influx and efflux of GFP but 
leave the influx of MG5 unaltered.

Regardless of the precise changes in the kinetics 
of import and export, we can conclude that expo-
sure of live yeast cells to 1,6HD (10 min, 0.625– 
5%) leads to loss of nuclear compartmentalization 
and that this is, at least in part, a consequence of 
the increased passive permeability of NPCs as 
measured by the increased influx of MG5 
(Figure 1a).

On the specificity of 1,6HD toward disrupting 
nuclear transport

The question if the increased NPC permeability 
after exposure to 1,6HD is a direct conse-
quence of an altered nuclear transport system, 
or rather a consequence of indirect effects on 
the cell’s physiology, is pertinent. Indeed, 
depending on the exposure time and concen-
tration 1,6HD may well have pleotropic effects 
in cells, as also previously discussed [39]. Using 
the set concentration of 5% 1,6HD, we assessed 
all aspects of cell physiology that we deemed 
relevant and could assess. First, we treat the 
cells for 10 or 30 min with 5% 1,6HD or 
2,5HD and observed no effects on growth 
(Figure 2a). Then, we assessed if 10 min expo-
sure to 5% 1,6HD leads to changes in free ATP 
levels or cytosolic pH, using fluorescence-based 
sensors [48,49]. Our rationale for testing these 
was that ATP and pH levels could change 
when cells are experiencing metabolic stresses. 
We find, however, that the levels of free ATP 
are unchanged after 1,6HD treatment. As a 
control, sodium azide (NaN3) and 2-deoxy-glu-
cose (2DG) were used, which both depleted the 
cell of energy (Figure 2b). The cytosolic pH 
values, calibrated as described in [50], decrease
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Figure 1. Disruption of NPC permeability barrier by 1,6HD. (a-c) Nuclear compartmentalization of GFP-based reporter proteins (MG5, 
GFP-NES, GFP-NLS) in yeast cells exposed for 10 min with the indicated concentrations of 1,6HD or 2,5HD. MG5 is a fusion of Maltose 
Binding Protein and 5 GFPs; GFP-NLS features the classical Simian Virus 40 NLS and GFP-NES the Stress-Seventy subfamily B1 NES. 
The N/C ratio is the ratio of the average fluorescence in the nucleus (N) over that in the cytoplasm (c). One-way ANOVA with 
Dunnett’s multiple comparison test comparing treatment to control was used to calculate the statistical significance in panel a and C 
and the non-parametrical Kruskal-Wallis with Dunn’s multiple comparison test in B. Error bars reflect the Standard Error of the Mean 
(SEM) of three independent experiments and a total of at least 30 cells per condition. P-values*<0,05 **<0,01 ****<0,0001.
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Figure 2. Impact of 1,6HD on growth, physiology and subcellular structures. (a) Growth assay showing serial dilutions of cultures 
exposed to 5% 1,6HD or 2,5HD for the indicated times. (b) Free ATP levels in cells measured using a FRET-based ATP-sensor; lower 
FRET/GFP ratio indicates lower free ATP. Cells were untreated (ctrl), exposed to 5% 1,6HD for 10 min, or exposed for 30 min to 
metabolic poisons azide (NaN3) or to NaN3 plus deoxyglucose (NaN3 +2DG). The error bar of the scatter plot reflects the SEM of three 
independent experiments. At least 60 cells per condition were analyzed. One-way ANOVA with Dunnett’s multiple comparison test 
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mildly from 7.2 to 6.8 or 6.7 after exposure to 
1,6HD and 2,5HD, respectively, and therefore 
remain in the physiological range (Figure 2c).

Next, we looked at the morphology and locali-
zation of different subcellular structures using 
GFP- or RFP-tagged proteins marking the mito-
chondria, Golgi, peroxisome, ER, vacuole, plasma 
membrane, nucleolus, secretory pathway, and 
ESCRT machinery. From visual inspection, we 
conclude there are no obvious changes in their 
appearance after 10 min exposure to 5% 1,6HD 
(Figure 2d). In contrast, the appearance of micro-
tubules and actin filaments does change after treat-
ment with 1,6HD, which aligns with some 
previous literature [39,44]. Hsp104, a disaggregase 
that can refold and reactivate previously aggre-
gated proteins and respond to alcohol-stress [51– 
54], forms foci upon exposure to 1,6HD, similar to 
when cells are exposed to either nitrogen starva-
tion, energy depletion or heat shock (Figure 2e), 
suggesting that 1,6HD induces some level of pro-
tein stress. Finally, 1,6HD does not induce the 
formation of p-bodies (Figure 2f) or stress gran-
ules (Figure 2g).

Taking the above together, under the conditions 
where mid exponentially growing cells are exposed 
to 5% 1,6HD for 10 min, there are effects on the 
cytoskeleton and Hsp104 to be noted, but cell 
viability, the pH and ATP levels in the cytosol, 
and the appearance of mitochondria, Golgi, per-
oxisomes, ER, vacuoles, plasma membrane, 
nucleolus, the secretory and ESCRT pathways 
and stress granules are not notably changed. 
While this is not a proof of the absence of indirect 
effects on nuclear transport, the data suggest that 
the 1,6HD-dependent effects on NPC permeability 
shown in Figure 1 is due to direct effects on the 
nuclear transport machinery.

1,6HD induces the loss of NTRs from the NPCs in 
a manner that correlates with the disruption of 
the permeability barrier

Previous work proposed that the effects of 1,6HD 
are related to the alcohol-sensitive hydrophobic 
interactions between the FG-nups that maintain 
the permeability barrier [33,35,36]. Indeed, when 
the FG-domains of Nup100 (Nup100FG) in pre-
formed condensates are exposed to the concen-
trations of 1,6HD that were also used in life cells 
(0–5%), partial solubilization of the condensates 
is observed (Supplementary Figure S2). While it 
is indeed expected that also in vivo 1,6 HD will 
alter the dynamic behavior of nups, additional 
explanations for the increased permeability of 
NPCs in 1,6HD treated cells relate to the compo-
sition of the NPCs and to the NTRs. We explore 
them both.

Previous work [34] showed that 1,6HD did 
not lead to a release of NPC components in 
wild type W303 cells but it did so in certain 
mutant backgrounds. We assessed the appear-
ance of the NE and the abundance and localiza-
tion of nups after exposure to 5% 1,6HD using 
nine representative endogenously tagged nups: 
five FG-nups (Nsp1, Nup49, Nup159, Nup100, 
Nup116), two scaffold nups (Nup133 and 
Nup170) and two basket nups (Nup60 and 
Nup2) in the here used strain background 
BY4741. A qualitative analysis of the images 
indicated that the morphology of the NE and 
the localization of the nups was similar in the 
presence and absence of 1,6 HD (Figure 3b and 
Supplementary Figure S3), consistent with [34], 
although more subtle effects may have remained 
undetected in this analysis. The fluorescent 
images could not be used to assess the

was used to calculate the statistical significance of the difference in FRET/GFP ratios when comparing treatment to control. (c) 
Calibration curve for cytosolic pH values of the pH sensor pHluorin (F390/F475) in cells (black circles). The pH before (ctrl, blue 
squares) and after 10 min exposure to 1,6HD (red diamonds) or 2,5 HD (red stars) are indicated. Each point represents the mean and 
SEM from 60 cells (left graph), individual measurements are shown (right graph). (d) Fluorescence images of different cellular 
structures endogenously tagged with either GFP or mCherry, before and after 10 min exposure to 5% 1,6HD. (e) Fluorescence images 
showing localization of endogenously tagged Hsp104-GFP after 10 min exposure to 5% 1,6HD or 5% 2,5HD and under indicated 
stress conditions. (f,g) Fluorescence images showing localization of endogenously tagged Lsm4 (P-bodies, F) or Pab1 (Stress 
granules, G) with GFP after 10 min exposure with 5% 1,6HD and after induction of stress. Representative images of three 
independent replicates. The scales bars are 5 μm.
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Figure 3. Impact of 1,6HD on the abundance and NE-localization of nups. (a) Cartoon representation of NPC indicating the position of the 
nups analyzed in B. (b) Endogenous Nup-GFP protein levels in whole cells lysates as determined by western blot before and after 10 min 
exposure to 5% 1,6HD; quantification gives mean, SEM and P values from unpaired t-test from at least three independent replicates. 
Fluorescence images of endogenously GFP-tagged nups before and after 10 min exposure with 5% 1,6HD. Representative images of three 
independent replicates. Shown are maximum projections of the 4 z-stacks around the z-stack that most clearly showed the NE. 
Supplementary Figure S2 shows maximum projections of the whole cell. The scale bar is 5 μm.

NUCLEUS 7



expression levels of the nups as the fluorescence 
of GFP decreases in the presence of 1,6HD 
decreases (Supplementary Figure S4). Instead, 
proteins levels were analyzed by western blot, 
and this did not show significant changes 
(Figure 3b). We conclude that the 10 min 
1,6HD treatment did not lead to major changes 
to the appearance of the NE or the localization 
and cellular abundance of the nups, suggesting 
that it does not lead to significant dissociation, 
aggregation, or degradation of the tested NPC

components. Hence, we conclude that it is unli-
kely that the increased permeability is a result of 
changes to the nup-composition of the NPCs.

NPCs constitute a significant amount of NTRs 
at any point in time and their presence critically 
shapes the permeability barrier [8,9,16,55]. 
Therefore, we addressed the localization and abun-
dance of endogenously GFP-tagged NTRs after 
treatment with 1,6HD. The interaction between 
the FG-nups and NTRs are based on dynamic 
multivalent binding with the phenylalanine’s of

Figure 4. Impact of 1,6HD on NTRs. (a) Fluorescence images of endogenously GFP-tagged NTRs after 10 min exposure with 5% 
1,6HD. Representative images of three independent replicates. The scale bar is 10 μm. Box indicates the zoomed-in single cell. (b) 
Nuclear accumulation of Kap122-GFP in yeast cells exposed for 10 min with the indicated concentrations of 1,6HD. Mean and SEM of 
three independent experiments; 90 cells per condition were analyzed; P-values from One-way ANOVA with Dunnett’s multiple 
comparison test ***<0,0005 ****<0,0001. (c) Average transport function measured with MG5 (dark red), GFP-NLS (pink) and GFP-NES 
(red) (from Fig1ABC but normalized on a scale from 0 to 1), as a function of Kap122-GFP location at the NE and nucleus (from Fig 4b) 
under control conditions and increasing concentrations of 1,6HD. Symbols as in 4B: 0% circles; 0,625% squares; 1,25% triangles up; 
2,5% triangles down; 5% diamonds.

8 E. C. R. BARRIENTOS ET AL.



the FG-nups [4,21,22,28,56,57] and will thus also 
be sensitive to interventions disrupting hydro-
phobic interaction.

We evaluated the localization of endogen-
ously GFP-tagged NTRs. Under normal condi-
tions most NTRs are enriched at the NE 
showing a punctate rim staining, e.g., Kap109, 
and few are enriched in the nucleus, e.g. 
Kap104 (Figure 4a). Strikingly, the exposure to 
1,6HD led to a clear relocalisation of NTRs 
(Figure 4a). Kap104, S×m1(Kap108), Kap114, 
Nmd5 (Kap119), Pse1 (Kap121), Kap122 and 
Kap123 lose their accumulation at the NE or 
nucleus upon exposure to 1,6HD and distribute 
over the cytosol and nucleus (Figure 4a). Cse1 
(Kap109), Kap120, Crm1 (Kap124) and Msn5 
(Kap142) which are normally enriched at the 
NE, partly relocate. Kap60 and Kap95 were 
not visibly affected by the treatment probably 
related to the previously described immobile 
pool of Kap95 at NPCs [8]. A higher concen-
tration of 1,6HD or a longer exposure does 
alter the localizations of Kap95, Kap60 and 
Crm1 (Sup fig S5). When the less hydrophobic 
alcohol 2,5HD was used, it led to some NTRs 
losing their accumulation at the NE or nucleus, 
but always to a lesser extent compared to 
1,6HD (Sup Fig S6). The alleviated effect of 
2,5HD compared to 1,6HD on the localization 
of NTRs matches the generally milder effects on 
passive permeability (Figure 1a). We conclude 
that 1,6HD induces a reduction of the pool of 
NTRs at the NE and an increase in the nuclear 
or cytosolic pools, which we interpret as a 
release of NTRs from the NPCs.

In-line with Kap-centered models [55] and 
other reports showing the importantce of the 
NPC resident pool of NTRs for the passive 
selectivity of the permeability barrier 
[8,9,16,55], the massive relocation of NTRs 
from NPCs may mechanistically explain the 
1,6HD-induced increase in the passive perme-
ability of NPCs. To challenge this interpreta-
tion, we sought to quantitatively correlate the 
concentration-dependent NTR relocalisation, 
with the 1,6HD concentration-dependent entry 
of the reporters MG5 (Figure 1a), GFP-NLS 
(Figure 1b) and GFP-NES (Figure 1c). We 
chose Kap122 for this analysis as Kap122

clearly loses its accumulation at the NE and 
distributes over the cytosol (Figure 4a). The 
localization of endogenously tagged Kap122- 
GFP in the nucleus and NE was assessed in a 
strain co-expressing endogenously tagged 
Nup133-mCherry to mark the NE. The average 
nuclear accumulation of Kap122 gradually 
decreased from 4,3 to 3,8 to 3,1 to 2,6 to 1,6 
upon exposure to zero, 0.625, 1.25, 2.5, or 5% 
1,6HD. Moreover, we could correlate Kap122 
relocalisation from the NE under these condi-
tions with the measured passive permeability of 
NPCs for MG5, GFP-NLS, and GFP-NES with a 
Pearson correlation coefficient of 0.9, 0.8, and 
0.9, respectively (Figure 4c). These correlations 
support that 1,6HD perturbs the NPC perme-
ability barrier by releasing the NTRs.

Discussion

Here we assessed the specificity and mechanism 
by which 1,6-hexanediol (1,6HD), an aliphatic 
alcohol that interferes with hydrophobic interac-
tions, disrupts the permeability barrier of NPCs 
in live baker’s yeast cells. Exposure of live yeast 
cells to 1,6HD (10 min, 0–5%) leads to an 
increased passive permeability of NPCs. We con-
clude that this is likely a direct effect on the 
nuclear transport machinery as cell viability, the 
pH and ATP levels in the cytosol, and the appear-
ance of mitochondria, Golgi, peroxisomes, ER, 
vacuoles, plasma membrane, nucleolus, secretory 
pathway and stress granules were not notably 
changed. There were effects on the cytoskeleton 
and protein homeostasis (Hsp104 foci) to be 
noted and we cannot exclude that 1,6 HD impacts 
the cell’s physiology in ways that we did not 
monitor. Mechanistically, we propose that the 
displacement of NTRs from the NPC underlies 
the loss of NPC function because 1,6HD treat-
ment induced a massive relocation of multiple 
NTRs from NPCs. This displacement from the 
NE, as assessed for Kap122-GFP, quantitatively 
correlated with the increased passive permeability 
of NPCs.

Our studies align well with previous reports 
that showed that the selective properties of the 
FG-nups rely on the physical presence of NTRs 
within the NPC. The earliest study is one
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showing that the presence of transport factor 
enhances the selectivity of FG-nucleoporin- 
coated membranes [16]. The most recent reports 
on detergent-permeabilized human cells show 
that the enrichment of NTRs at the NPCs is 
important to keep the passive permeability low 
[31]. Our work adds to this by showing the 
importance of NTRs in live cells. The benefit 
being that in live cells there is a constant and 
large transport flux and therefore, together with 
the loss of the estimated 15,6 MDa of NTRs 
from the central channel also 10,4 MDa worth 
of cargo is being lost [9]. This joint loss of NTRs 
and cargo from the NPC central channel will 
present a major change in the macromolecular 
crowding and composition, and hence its physi-
cochemical properties. How this alters the struc-
tural dynamics of the FG-nups, and if this poses 
a risk for NPC function would be interesting 
questions for the future.

Extrapolating from studies using purified FG- 
nup fragments that proposed that the effects of 
1,6HD is related to the alcohol-sensitive hydro-
phobic interactions between the FG-nups 
[33,35,36] we expect that 1,6HD also alters the 
interactions between the FG-nups in our assays 
using live cells. This is, however, difficult to 
address in live cells. Hence, it remains unclear if 
the NTRs are released from the NPCs as a conse-
quence of a lowered binding affinity between FG- 
nups, or because 1,6HD directly lowered the bind-
ing affinity of NTRs for the FG-repeat regions. If 
one considers that the functional composition of 
central channel is a system composed of NTRs and 
FG-nups in close collaboration, then the discrimi-
nation between these scenarios becomes less 
important.

An unanswered question in the field is if NPCs 
that become dysfunctional in time can be detected 
and removed. To assess this question, one needs to 
be able to inducibly damage NPCs. NPC permea-
bilization is expected to be an intervention that 
triggers quality control similar to when assembly 
fails [58–60]. The here described method could 
provide a tool to study the recruitment of quality 
control factors and to follow the repair or 
degradation.

Lastly, our study may serve as a warning that 
the effects of 1,6HD on liquid–liquid phase

separation of diverse cellular macromolecular 
complexes may be a consequence of 1,6HD’s 
prime effect on the NPC and cognate NTRs. 
We speculate that the hydrophobic and highly 
acidic nature of NTRs may readily compromise 
their stability above a critical concentration. 
Consistent with this is that the overexpression 
of Sxm1, Kap95, and Kap114 is toxic to cells 
[61]. In any case, a major misplacement of 
NTRs and associated cargo will dramatically 
change the nuclear and cytoplasmic proteomes 
and this may generally compromise their stabi-
lity. The increase in the number of Hsp104 foci 
that we observe may indeed reflect such loss of 
protein homeostasis.

Altogether, this paper provides a survey of 
the effects of 1,6HD on live cells and puts 
hydrophobic interactions between NTRs and 
FG-Nups center stage in the explanation how 
1,6HD impacts NPC function.

Materials and methods

Strains and Growth conditions

All Saccharomyces cerevisiae strains used in this 
study have the BY4741 background, except 
yER016, which were created in the W303 back-
ground. Strains are listed in Table 1 and their 
genotype is described in Table 2. yER016, 
yER020, and yER023 were created as described 
in [64]. GFP-tagged strains were taken from the 
4000-GFP yeast library (Thermofisher), RFP- 
tagged strains were taken from the localization 
database collection [63]. Cells were grown at 30° 
C, with shaking at 200 RPM on Synthetic 
Complete (SD) medium supplemented with 2% 
(w/v) glucose. Overnight cultures were diluted 
10-fold in the morning and again for a second 
overnight culture. On the day of the experiment, 
cultures were diluted and grown for several 
hours to reach an OD600 0.6–0.8 before each 
experiment. The cells expressing the different 
GFP-based reporters (GFP-NLS, GFP-NES, 
MG5) were grown overnight in synthetic drop-
out medium supplemented with 2% glucose, 
diluted 10-fold in 2% raffinose the next morn-
ing, and then again for an overnight culture in 
2% raffinose. On the day of the experiment,
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Table 1. Key resources table.
Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Gene (S. cerevisiae) See table 2
strain, strain background 

(S. cerevisiae)
BY4741 Invitrogen

strain, strain background 
(S. cerevisiae)

BY4742 Invitrogen

strain, strain background 
(S. cerevisiae)

W303 Invitrogen

Genetic reagent (S. 
cerevisiae)

See table 2

Antibody Monoclonal antibody mouse anti-GFP Santa Cruz sc-9996 (1:500)
Antibody Mouse IgG kappa binding protein conjugated to 

HRP; m-IgGK-BP-HRP
Santa Cruz sc -516,102 (1:10000)

Recombinant DNA reagent See table 3
Sequenced-based reagent Nup60_F This paper PCR primers  

GTTGATGAAAATAAAGTTGAGGCTTTCA 
AGTCCCTATATACCTTTCGTACGCTGCAGGTCGAC

Sequenced-based reagent Nup60_R This paper PCR primers 
TTGGGCTATACGGTAATTATGTCACGGCTA 

AAATTTTCATTATCAATCGATGAATTCGAGCTCG
Sequenced-based reagent Nup133_F This paper PCR primers 

GAAAAAAACTATACCATCAACTATGAAACCA 
ACACTGTAGAATACGGTGACGGTGCTGG

Sequenced-based reagent Nup133_R This paper PCR primers 
CAGTAAAGTTTATTATATATATGTAAAATTGT 
ATTATAGATATTATCGATGAATTCGAGCTCG

Sequenced-based reagent Pab1_F This paper PCR primers 
GTCTTTCAAAAAGGAGCAAGAACAACAA 

ACTGAGCAAGCTCGTACGCTGCAGGTCGAC
Sequenced-based reagent Pab1_R This paper PCR primers 

GTTTGTTGAGTAGGGAAGTAGGTGATTACATAGAGC 
ATTAATCGATGAATTCGAGCTCG

chemical compound, drug Yeast extract BD 291946
chemical compound, drug Complete supplement mixture complete Formedium DCS0019
chemical compound, drug D-Glucose anhydrous Fisher 

Chemical™
10141520

chemical compound, drug D-Raffinose pentahydrate Thermo 
Scientific

195675000

chemical compound, drug D-Galactose Acros 
Organics

150610010

chemical compound, drug Phosphatase buffered saline Sigma-Aldrich P4417
chemical compound, drug Tris base Fisher 

Scientific™
BP152–1

chemical compound, drug HEPES Fisher 
Scientific™

BP310–500

chemical compound, drug Sodium dodecyl sulfate (SDS) solution, 20% SERVA 20767.03
chemical compound, drug EDTA Sigma-Aldrich ED2P–500
chemical compound, drug Triton X-100 Acros 

Organics
215682500

chemical compound, drug 2-mercaptoethanol Sigma-Aldrich M6250–100
chemical compound, drug Sodium chloride Acros 

Organics
207790010

chemical compound, drug Tween20 MP 
Biomedicals

TWEEN201

chemical compound, drug Magnesium chloride hexahydrate Sigma-Aldrich M2393
chemical compound, drug Sodium acetate anhydrous Fisher 

Chemical™
S2080/53

chemical compound, drug Magnesium acetate tetrahydrate Fisher 
Scientific™

BP215

chemical compound, drug Glycerol Sigma-Aldrich G5516
chemical compound, drug Phenylmethanesulfonyl fluoride (PMSF) Sigma-Aldrich P7626
chemical compound, drug cOmplete ULTRA tablets, Mini EDTA-free Roche 05892791001
chemical compound, drug Albumine bovine serum (BSA) Acros 

Organics
268131000

(Continued )
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cultures were diluted and induced for 3 H with 
0.1% galactose reaching an OD of 0.4–0.6. For 
the MG5 reporter the expression was switched 
off for 1 H in 1% glucose before imaging to stop 
the induction and to allow for degradation of 
aggregates of the reporters that occasionally form.

Spot assay

10 mL of yeast culture was grown to an OD600 
0.3–0.4 and treated with 5% 1,6HD or 5% 
2,5HD for 10 or 30 min, as indicated in 
Figure 2a, and diluted in sterilized milliQ 
water to obtain 106 cells/ml, and further serial

Table 1. (Continued). 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

chemical compound, drug Glass beads BioSpec 
Products

11079105

chemical compound, drug PierceTM BCA Protein Assay Kit Fisher 
Scientific™

23225

chemical compound, drug ECL Prime Western Blotting Detection Reagent Amersham RPN2232
chemical compound, drug GX Stain-Free™ FastCast™ Acrylamide Kit, 10% BioRad 1610183
chemical compound, drug PVDF Transfer Membrane Thermo 

Scientific
88518

chemical compound, drug Methanol Technical VWR 20903.368
chemical compound, drug IPTG Sigma-Aldrich 10724815001
chemical compound, drug Ni sepharose Cytiva 17531802
chemical compound, drug Guanidine hydrochloride Thermo 

Scientific
24110

chemical compound, drug Brilliant blue G Sigma- 
Aldricht

G-250

chemical compound, drug 1,6 hexandiol Sigma- 
Aldricht

240117–50

chemical compound, drug 2,5 hexandiol Sigma- 
Aldricht

H11904–50

chemical compound, drug Sodium azide Sigma- 
Aldricht

S2002–100

chemical compound, drug 2-deoxy-d-glucose Sigma- 
Aldricht

D8375–1

software, algorithm Fiji [67]
software, algorithm Resolve3D SoftWoRx Cytiva

Table 2. Yeast strains used in this publication.
Strain BY47411 Genotype Source

yPP008; GFP-tcNLS Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GFP-tcNLS(pGal1):His Nup49-mCh:URA [62]
yPP011; GFP-NES Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 GFP-NES(pGal1):His Nup49-mCh:URA [62]
GFP collection2 Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 XX-GFP:HIS3M X 6 ThermoFisher
Nup116-GFPboundary Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 [62]
yER016; Nup60-GFP1) Mata leu2–3, 112 trp1–1 can1–100 ura3–1 ade 2–1 his3–11, 15 Nup60-GFP:KanMX4 This paper
yIS010; Nup2-GFP 

Nup49mCherry
Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Nup2-GFP:His3MX6 Nup49-mCherry:URA [62]

yER020; Pab1-GFP Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Pab1-GFP:HIS3M X 6 This paper
RFP localization database3 Matα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 YY-RFP:KanMX6 [63]
SMY12 Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 pTEF1-pHluorin:His3M X 6 [50]
SMY16 Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ATP sensor pTEF1-his6-ymEGFP Δ11-B.subtilis ε- 

ymScarletI:HIS3M X 6
[61]

yER023; Kap122-GFP 
Nup133mCherry

Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Kap122-GFP:HIS3M X 6 Nup133-mCherry:URA This paper

yAS49; Nup133-mCherry Mata his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Nup133-mCherry:URA This paper
1yER016 is in W303 background 
2XX is: NSP1, Nup49, Nup100, Nup133, Nup159, Nup170, LSM4, Hsp104, ATP1, Get1, Vma1, Pma1, Tub1, Kap124, Kap95, Kap60, Kap122, Kap104, 

Kap142, Kap119, Kap121, Kap108, Kap109, Kap114, Kap120, Kap123. 
3YY is: Anp1, Pex3, Nop56, Erg6, Snf7. 
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diluted in milliQ water. 5 μl of each dilution 
was spotted on YPD plates and the plates were 
imaged after 48 H growth at 30°C.

Microscopy

All in vivo experiments were performed at 30° 
C. Images were acquired using a DeltaVision 
Elite imaging system (Cytiva) composed of an 
inverted microscope (IX-71; Olympus) 
equipped with a UPlanSApo 100× (1.4 NA) 
oil immersion objective, InsightSSI solid-state 
illumination, and an EDGE sCMOS 5.5 camera. 
For all experiments, stacks of 30 images with 
0.2 μm spacing were taken.

Protein lysate and Western Blot

20 ml of yeast culture was grown to an OD600 
0.8–1.2. Cells were subsequently treated with 5% 
1,6HD for 10 min at 30°C, with shaking at 200 
RPM. After the treatment, cells were centrifuged, 
and all the following steps were performed at 4° 
C. The cells were resuspended in 0.25 ml of lysis 
buffer (50 mM HEPES, 200 mM sodium acetate, 
1 mM EDTA, 5 mM magnesium acetate, 5% gly-
cerol, 1% triton x-100, 10 mM β-mercaptoetha-
nol, protease inhibitor without EDTA) and lysed 
in two rounds of bead-beating in a Fastprep 
device (MP Biomedicals). Lysates were cleared 
by consecutive centrifugation steps at 6000 × g 
for 5 min and twice at 17,700 × g for 5 min. 
Western blots were performed as follows: whole 
cell lysates were separated by SDS-PAGE. The 
proteins were subsequently transferred to PVDF 
membranes. After blocking with 5% skim milk 
in TBS-T, GFP-tagged proteins were detected 
with anti-GFP (Santa Cruz sc-9996 HRP),

followed by HRP-conjugated mouse IgG kappa- 
binding protein (Santa Cruz sc -516,102, m- 
igGK BP-HRP).

Expression and purification of nucleoporin FG- 
domains

Nup100FG domains were expressed and purified 
as described in [65]. In short: FG-domains pro-
teins with an N terminal His-tag and a unique 
C-terminal cysteine were expressed in 
Escherichia coli, by induction with 0.5 mM 
IPTG and purified from cell extracts on a 
Nickel-Sepharose column under denaturing con-
ditions (2 M GuHCl, 100 mM Tris-HCl pH 8). 
The C-terminal cysteine was reduced with DTT 
and blocked by modification with 
Iodoacetamide. Protein purity was checked with 
SDS-PAGE and subsequent Brilliant Blue 
staining.

Spin Assay

A concentrated stock of 100 μM Nup100FG 
domains in 2 M GuHCl, 100 mM Tris-HCl pH 
8, was diluted to 3 μM into TBS (50 mM Tris- 
HCl, 150 mM NaCl pH 8). The protein was left 
to self-assemble into particles for 1 h at RT, and 
then the protein was treated for 10 min with 
different concentrations of 1,6HD. Samples 
were centrifuged (17.700 × g for 10 min at RT), 
and soluble and insoluble fractions were run 
separately on SDS PAA gels. Gels were stained 
with Brilliant Blue G (Sigma-Aldrich, G-250) 
and imaged using a BioRad chemidoc (BioRad). 
Band intensities were determined using Fiji 
(Image J, National Institute of Health).

Table 3. Plasmids used in this publication.
Plasmid number Genotype Source

pPP008; MG5 pUG34-Gal1-MBP-5XGFP-His [26]
pACM063; mCh-L-TM pUG36-Gal-mCherry linker-TM-URA [45]
pYM28 pAgTEF-SpHIS5-tAgTEF Euroscarf [64],
pYM30 pAgTEF-kanMX-tAgTEF Euroscarf [64],
pPP014 mCherry-Ura cassette [62]
pRS303-NLSNab2-GFP NLSNab2-GFP [46]
pRS303-NLSPho4-GFP NLSPho4-GFP [46]
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Determining the intracellular pH with the 
pHluorin sensor

pHluorin ratios were calibrated in live cells in 
buffers with a pH of 5, 5.5, 6, 6.5, 7, 7.5, and 8, 
as described in [50]. The F390/F475 ratios were 
determined from cells on a glass slide. Cells were 
then treated with 1,6HD as described, and a cali-
bration curve was used to determine the pH 
change after treatment.

ATP sensor values and free ATP levels

Cells expressing a FRET-based ATP sensor [61], 
were used to determine free ATP levels as 
described in [61]. Cells were treated as described, 
imaged, and the FRET over GFP ratio was calcu-
lated using Fiji (see below).

Image Analysis

All images were processed using Fiji (Image J, 
National Institute of Health). For each image, the 
z-stack with the best focus was selected. For the 
pHluorin and the ATP sensor, we determined the 
fluorescence in each channel corrected for the 
background, and determined the ratio between 
them. To quantify N/C ratios of the GFP-based 
reporters and Kap122, the average fluorescent 
intensity in the nucleus and the cytosol was mea-
sured. The nucleus was outlined using either the 
NE/ER marker mCherry-TM (pACM063) (Figure 
1) or Nup133-mCherry (Figure 4b). A section of 
the cytosol excluding the vacuole was selected to 
measure the fluorescence in the cytosol.

Statistical Analysis

Statistical parameters, including the number of cells 
analyzed, are reported in figure legends. All regres-
sions and correlations leading to the sigmoidal 
curve equation, R2, and all Pearson’s correlation 
statistics were done in GraphPad Prism [43,66].
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