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AbstractAbstract

Background
The similarity of gallbladder cancer and benign gallbladder lesions brings challenges to 
diagnosing gallbladder cancer (GBC). This study investigated whether a convolutional 
neural network (CNN) could adequately differentiate GBC from benign gallbladder dis-
eases, and whether information from adjacent liver parenchyma could improve its per-
formance.
 
Methods
Consecutive patients referred to our hospital with suspicious gallbladder lesions with 
histopathological diagnosis confirmation and available contrast-enhanced portal venous 
phase CT-scan were retrospectively selected. A CT-based CNN was trained once by gall-
bladder only and once by gallbladder including 2 cm adjacent liver parenchyma. The 
best-performing classifier was combined with the diagnostic results based on radiological 
visual analysis.
 
Results
A total of 127 patients were included in the study, 83 patients with benign gallbladder 
lesions, and 44 with gallbladder cancer. The CNN trained by the gallbladder including 
adjacent liver parenchyma achieved the best performance with an AUC of 0.81 (95% CI 
0.71-0.92), >10% better than the CNN trained by only the gallbladder (P=0.09). Com-
bining the CNN with radiological visual interpretation did not improve differentiation 
between GBC and benign gallbladder diseases.
 
Conclusions
The CT-based CNN shows promising ability to differentiate gallbladder cancer from be-
nign gallbladder lesions. In addition, the liver parenchyma adjacent to the gallbladder 
seems to provide additional information improving the CNN performance for gallblad-
der lesion characterization. However, these findings should be confirmed in larger mul-
ticenter studies.
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IntroductionIntroduction

The diagnosis of gallbladder cancer (GBC) remains a challenge in clinical practice because 
of its similarity with benign gallbladder disease. Therefore, GBC is often diagnosed at a rela-
tively late stage, resulting in a poor prognosis, with a five-year overall survival rate being up 
to only 13% [1-4]. However, when GBC is detected at an early stage, radical resection can be 
an option (especially in patients with T1b/T2 tumors), increasing the survival rate to 53% 
[4]. Besides, adequate characterization of gallbladder lesions is also important to correctly 
select patients that should be treated at specialized hepatobiliary hospitals.

A recent study evaluated the radiologists’ performance in differentiating gallbladder lesions 
based on CT images, which achieved a high sensitivity of 90%. However, the specificity 
was merely 60% [5]. Another recent study adopted the quantitative approach of radiom-
ic analysis to evaluate gallbladder lesions [6]. Various machine-learning models were built 
based on extracted radiomic features to differentiate GBC and benign gallbladder lesions. 
The specificity of the radiomic analysis achieved 80%, but the sensitivity was merely 64% 
[6]. In addition, when including both the gallbladder and adjacent liver parenchyma in the 
radiomic analysis, the diagnostic performance did not significantly improve. The best results 
were obtained when combining CT-based radiomics with visual radiological assessment [6]. 

Convolutional Neural Networks (CNN) have shown their strong ability in medical image 
classification during recent years. Compared with machine learning models using extracted 
radiomic features as input, CNN use all CT-images information as input and exploit useful 
information from the image for a specific task during model training. The use of all available 
CT-information can possibly improve the differentiation between GBC and benign gallblad-
der disease.  

The primary aim of this study was to determine whether CNN can adequately differentiate 
GBC from benign gallbladder diseases on CT scans. The secondary aim was to investigate 
whether CNN can exploit information from adjacent liver parenchyma to improve the per-
formance of CT-based gallbladder lesion characterization.

Materials and MethodsMaterials and Methods

Study populationStudy population

All patients referred to our hospital (which is a tertiary referral center) between January 
2007 and October 2020 for suspicion of GBC or because of an incidentally found GBC after 
cholecystectomy, were included in the study. Exclusion criteria were: absence of contrast-en-
hanced portal venous phase CT-scan (for incidentally found GBC, CT had to be performed 
prior to cholecystectomy), and lacking histopathological diagnosis confirmation. Reasons 
for suspicion of GBC and subsequent referral to our hospital were: a polyp with a diameter 
>10 mm, a focal or diffuse wall thickening without obvious signs of benign disease, a mass 
lesion, or a porcelain gallbladder that has been considered to increase the risk of GBC [1]. 
Although CT systems were of multivendor origin, scan parameters were harmonized be-
tween our hospital and surrounding referring hospitals (more specifically: automatic tube 
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current modulation and tube voltage selection, slice thickness of 1 mm, delay of 75 seconds 
after IV injection of 90-100 mL of contrast medium at a flow rate of 3.6-4.0 mL/s followed by 
32 mL of saline solution). All patients were identified in a prospectively maintained surgical 
institutional database or by searching multidisciplinary team meeting lists, and analyzed 
retrospectively. Approval of the Institutional Review Board was obtained, and the need for 
written informed consent was waived. The current study population was also part of two 
previous studies which were focused on different research questions [5,6].
Collected data included: patient age, gender, date and type of surgery, date of CT, and his-
topathology results. In case of GBC suspicion, an open radical cholecystectomy was per-
formed, combined with frozen section biopsy of the gallbladder. If frozen section biopsy 
was positive, without signs of disseminated disease, a lymph node dissection of the hepa-
toduodenal ligament and a wedge resection of the gallbladder bed were performed. A sim-
ilar approach was used for patients referred with an incidentally found GBC, after previ-
ous cholecystectomy in the referring hospital and after excluding disseminated disease on 
postoperative CT. Each resection and biopsy specimen underwent routine histopathological 
examination, performed by a specialized hepatobiliary pathologist.

Image processing and deep learning models Image processing and deep learning models 

The workflow of deep learning for gallbladder disease characterization is shown in Figure 1. 
The 3D portal venous phase CT scans were pre-processed before being fed to the deep learn-
ing model. To improve contrast among abdominal organs, the CT scans were processed 
by a soft window centering at 50 HU with a width of 400 HU. To normalize the CT scans 
throughout the entire dataset, the images were resampled to the same spacing of [1.0, 1.0, 
2.0] by a linear interpolator. The gallbladder on CT scans was manually delineated by an 
abdominal radiologist using the software ITK-SNAP being blinded to the final diagnosis. 
Examples of CT scans with segmented GBC and benign gallbladder disease can be found in 
Figures 2 and 3.

The processed and segmented CT scans served as input for a CNN, a type of deep learn-
ing algorithm that is well-suited for image analysis tasks, such as image classification [7]. 
The CNN was trained to learn important information to differentiate between gallbladder 
cancer and benign gallbladder diseases. After training, the model was capable of predict-
ing the probabilities of either condition for the new input CT scans. The CNN used in 
the current study consisted of six convolutional blocks and three linear layers. Each con-
volutional block included a transposed convolutional layer, an activation function, and a 
batch normalization layer.

Because GBC concerns a rare disease, an imbalance existed in the dataset between GBC 
and benign gallbladder disease. To improve the learning efficiency of the deep learning 
algorithm and to avoid overfitting the imbalance of the dataset, a class weight of 2.0 was 
assigned to the GBC images during model training.

The CNN was trained and validated by 80% of images randomly selected from the dataset. 
The remaining 20% of the CT scans were used as a test set to evaluate the performance of the 
trained CNN, the test set remained unseen to the model during training. The model training 
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Figure 1. W
orkflow

 of the convolutional neural netw
ork for gallbladder cancer and benign gallbladder disease differentiation.
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Figure 2. Axial CT slice (A) with an example of gallbladder cancer (histopathologically proven adenocarcinoma; B, 
encircled) and subsequent segmented gallbladder (C).

 a)

 a)

 b)

 b)

 c)

 c)
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Figure 3. Axial CT slice (A) with an example of benign gallbladder disease (adenomyomatosis; B, encir-
cled) and subsequent segmented gallbladder (C).

was terminated according to the performance on a validation set that accounted for 10% of 
the training set. The CNN was developed based on the deep learning framework PyTorch 
[8] and the performance of the model was quantified by the open-source library scikit-learn 
0.23.2 with Python 3.7.9 [9].

Deep learning model based on gallbladder and liver parenchymaDeep learning model based on gallbladder and liver parenchyma

In a previous study, the suspicion of invasion of adjacent liver parenchyma was observed 
to be positively related to GBC [5]. Therefore, in addition to using only the gallbladder on 
CT-images when training the deep learning model, a separate analysis was performed to 
investigate whether the combination of the gallbladder and adjacent liver parenchyma could 
increase the performance of the deep learning model when differentiating between GBC and 
benign gallbladder disease. The segmentation of a 2 cm rim of liver parenchyma adjacent 
to the gallbladder was automatically generated, and adjusted by an experienced abdominal 
radiologist if necessary. The adjacent liver parenchyma was combined with the segmented 
gallbladder as training data for the deep learning model. Figure 4 shows examples of input 
CT-images with segmentation of both the gallbladder and 2 cm of adjacent liver parenchy-
ma. The deep learning model based on the combination of the gallbladder and adjacent liver 
parenchyma was trained and tested by the same methodology as described for the model 
solely based on the gallbladder.

Figure 4. Axial CT slices with examples of segmented gallbladder including 2 cm of adjacent liver parenchyma (A: 
gallbladder cancer case from Figure 2; B: benign gallbladder disease case from Figure 3).

Combining Convolutional Neural Network prediction with radiological visual interpreta-Combining Convolutional Neural Network prediction with radiological visual interpreta-
tion tion 

In a previous study, the best results for differentiation between GBC and benign gallbladder 
disease were observed when combining CT-based radiomic analysis with radiological visual 
interpretation [6]. To determine whether the results of the CNN could also improve the ra-
diological visual interpretation, an additional analysis was performed combining the CNN 
prediction with radiological visual interpretation.
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The radiological visual interpretation was given in a five-point scale format by two radiolo-
gists after consensus reading [5]. Subsequently, the assigned points were converted into the 
probability of GBC (definitely benign=0.0, probably benign=0.25, equivocal=0.5, probably 
GBC=0.75, and definitely GBC=1.0). The converted probability of radiological visual inter-
pretation and the probability predicted by the CNN were summed up with an equal weight 
of 0.5 as the combined probability score. In case of a combined probability score >0.5, the 
patient was considered positive for GBC.

ResultsResults

Study populationStudy population

A total of 127 patients fulfilled our inclusion criteria and were therefore included in the 
study. The patient cohort had a median age of 66 (interquartile range: 58-73). Eighty patients 
were female (63%), and 47 were male (37%). Detailed information regarding surgical treat-
ment and histopathological examination results can be found in Table 1.

Convolutional Neural Network resultsConvolutional Neural Network results

Training the CNN by solely the gallbladder on CT scans yielded an accuracy rate of 0.77 
(95% CI 0.70-0.85) and an area under the receiver operating characteristic (ROC) curve 
(AUC) of 0.71 (95% CI 0.58-0.88) in the randomly split test set for GBC and benign gallblad-
der disease differentiation. By adding the adjacent liver parenchyma to the gallbladder on 
the CT scan, the AUC increased by >10% to 0.81 (95% CI 0.71-0.92; P=0.09). The sensitivity 
also increased from 56% to 67% (95% CI 50%-86%) with merely a 6% drop in specificity 
(P=0.15). More detailed results are summarized in Table 2, and the ROC curves are provid-
ed in Figure 5.
 
Adding the radiological visual assessment to the results of the CNN trained solely on the 
gallbladder, as well as to a combination of the gallbladder and adjacent liver parenchyma, 
did not improve the diagnostic performance (Table 2).

      
Figure 5. Receiver operating characteristic curves of the performance of the convolutional neural network on the 
test set. A: CT-based convolutional neural network trained by only the gallbladder on the CT scan; B: CT-base 
convolutional neural network trained by the gallbladder including adjacent liver parenchyma on the CT scan.
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Table 1. Histopathology results and treatment data.

Characteristic Total study population N=127

Benign 
gallbladder 
disease

Acute cholecystitis 1 (1%)

Chronic cholecystitis 49 (39%)

Xanthogranulomatous cholecystitis 6 (5%)

Adenoma 4 (3%)

Adenomyomatosis 15 (12%)

Porcelain gallbladder 2 (2%)

Other benign entities 6 (5%)

Gallbladder 
cancer

Adenocarcinoma 37 (29%)

Adenosquamous carcinoma 3 (2%)

High-grade dysplasia 2 (2%)

Other types of malignancy 2 (2%)

Incidentally 
found gallblad-

der cancer

9 (7%)

Types of (surgi-
cal) treatment

Open cholecystectomy 42 (33%)

Laparoscopic cholecystectomy 13 (10%)

Cholecystectomy combined with resection of liver 
segment 4/5

5 (4%)

Cholecystectomy combined with a wedge resection of 
the liver parenchyma

41 (32%)

Cholecystectomy combined with extensive surgery* 4 (3%)

Cholecystectomy combined with lymphadenectomy 6 (5%)

Open-closure procedure 10 (8%)

Biopsy without any further operation 6 (5%)
* e.g. >3 liver segments, and/or pancreaticoduodenectomy.
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Table 2. Result of the Convolutional Neural Network for differentiation between gallbladder cancer and 
benign gallbladder disease.

AUC Accuracy Sensitivity Specificity

CNN based on segmented gall-
bladder

0.71
[0.58,0.88]

0.77
[0.70,0.85]

0.56
[0.33,0.80]

0.88
[0.83,1.00]

CNN based on segmented gall-
bladder including 2 cm of adjacent 
liver parenchyma

0.81
[0.71,0.92]

0.77
[0.70,0.85]

0.67
[0.50,0.86]

0.82
[0.75,0.92]

CNN (only gallbladder) combined 
with radiological diagnosis

0.75
[0.65,0.89]

0.73
[0.65,0.85]

0.56
[0.40,0.71]

0.82
[0.75,0.93]

CNN (gallbladder including 
adjacent liver) combined with 
radiological diagnosis

0.71
[0.58,0.86]

0.77
[0.70,0.85]

0.67
[0.50,0.86]

0.82
[0.75,0.93]

Abbreviations: CNN = convolutional neural network; AUC = area under the ROC curve.
Values between brackets concern 95% confidence intervals.

DiscussionDiscussion

In the current study, the hypotheses that a CNN can differentiate between GBC and benign 
gallbladder diseases, and that a CNN can exploit valuable information from adjacent liver 
parenchyma to improve the performance of GBC diagnosis, were tested. In our study pop-
ulation, consisting of 127 patients with among them 44 patients with GBC and 83 patients 
with benign gallbladder disease, the CNN trained by CT scans including both the gallblad-
der and a rim of adjacent liver parenchyma yielded the best performance in differentiating 
between GBC and benign gallbladder disease. More specifically, an AUC of 0.81 and an 
accuracy rate of 77% were obtained.

To our knowledge, this is the first study using a CNN for differentiation between GBC and be-
nign gallbladder disease. Compared with radiomic analysis, a CNN uses all available CT-im-
age information from the segmented part as input, which theoretically could provide more 
information compared with radiomic features, which uses only specific extracted radiomic 
features from the segmented area. This concept can be further underlined by the fact that the 
accuracy rate of the CNN was 3% better than that of radiomic analysis in the same study pop-
ulation reported recently by our group [6]. However, the current study concerns a relatively 
small patient group, and therefore, should be considered a feasibility study serving as the first 
step towards a large multicenter study on the applicability of deep learning techniques in 
gallbladder lesion characterization. 

In a recent study conducted by our research group, a radiomic analysis for GBC and be-
nign gallbladder disease differentiation was performed, based on features extracted from the 
gallbladder and adjacent liver parenchyma. However, the diagnostic performance was not 
significantly improved compared with a radiomic analysis solely based on features derived 
from the gallbladder. A possible explanation could be that the parenchymal invasion of GBC 
in adjacent liver tissue might be too small to be reflected as a difference in texture features 
[6]. However, a CNN is considered to have a stronger ability to exploit information from CT 
scans. Perhaps this could explain that in the current study, the AUC of the CNN improved 
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by 11% when including both the gallbladder and adjacent liver parenchyma at the CT scans 
as input in the CNN. 

We recently reported that when combining radiological visual interpretation with radiomic 
analysis of CT scans in patients with gallbladder lesions, the best diagnostic performance 
was achieved for differentiating between GBC and benign gallbladder disease [6]. On the 
contrary, the combined results of radiological visual interpretation and CNN prediction did 
not improve diagnostic performance in the current study. Perhaps this could be related to the 
relatively small study population in the current study, and this should be subject of future re-
search. Besides, when using larger datasets in future studies, gallbladder segmentation could 
be automated and quantified by deep learning algorithms. 

Due to the rarity of gallbladder cancer in daily clinical practice and the single-center study 
design, the CNN was trained and tested on a small population. The scale of the dataset could 
influence the generalization ability and limit the performance of the CNN. The utilization 
of a dataset that is both larger and more heterogeneous in nature has been demonstrated to 
result in improved sensitivity and specificity of CNN models. The significance of the im-
provement in AUC and sensitivity by adding adjacent liver parenchyma to the model should 
also be further validated by a more extensive dataset. As a result, the current study should 
be considered the first step towards a large multicenter study focusing on the ability of deep 
learning techniques to better characterize gallbladder diseases. Thereby, not only could pa-
tient care and long-term survival outcomes be improved, but also more efficient use of scarce 
highly specialized hepatobiliary health care resources might be obtained. 

ConclusionsConclusions

A CT-based CNN shows promising ability to differentiate gallbladder cancer from benign 
gallbladder lesions. In addition, the CT-based CNN shows stronger ability to exploit in-
formation from the surrounding liver parenchyma for gallbladder lesion characterization 
compared with a previously reported CT-based radiomic analysis. Our results could serve 
as the first step towards large multicenter studies further improving artificial intelligence 
techniques to adequately characterize gallbladder diseases.



82

ReferencesReferences

1.	 Lazcano-Ponce EC, Miquel JF, Muñoz N, et al. Epidemiology and molecular pathology 
of gallbladder cancer. CA Cancer J Clin. 2001;51(6):349-364.

2.	 Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7-
30.

3.	 Lau CSM, Zywot A, Mahendraraj K, Chamberlain RS. Gallbladder Carcinoma in the 
United States: A Population Based Clinical Outcomes Study Involving 22,343 Patients 
from the Surveillance, Epidemiology, and End Result Database (1973-2013). HPB Surg. 
2017;2017:1532835.

4.	 de Savornin Lohman E, de Bitter T, Verhoeven R, et al. Trends in Treatment and Surviv-
al of Gallbladder Cancer in the Netherlands; Identifying Gaps and Opportunities from 
a Nation-Wide Cohort. Cancers (Basel). 2020;12(4):918.

5.	 Kuipers H, Hoogwater FJH, Holtman GA, Slangen JJG, de Haas RJ, de Boer MT. Di-
agnostic performance of preoperative CT in differentiating between benign and malig-
nant origin of suspicious gallbladder lesions. Eur J Radiol. 2021;138:109619.

6.	 Yin Y, Yakar D, Slangen JJG, Hoogwater FJH, Kwee TC, de Haas RJ. Optimal radiolog-
ical gallbladder lesion characterization by combining visual assessment with CT-based 
radiomics. Eur Radiol. 2023; (in press).

7.	 Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press; 2016;9:331-372.
8.	 Paszke A, Gross S, Chintala S, et al. Automatic differentiation in pytorch. 31st Confer-

ence on Neural Information Processing Systems (NIPS 2017). URL: https://openre-
view.net/pdf?id=BJJsrmfCZ.

9.	 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python. 
J Mach Learn Res. 2011;12:2825-2830.


	Chapter 5



