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A B S T R A C T 

Astronomy is presently experiencing profound growth in the deployment of machine learning to explore large data sets. 
Ho we ver, transient quasi-periodic oscillations (QPOs) that appear in power density spectra of many X-ray binary (XRB) system 

observations are an intriguing phenomena heretofore not explored with machine learning. In light of this, we propose and 

e xperiment with no v el methodologies for predicting the presence and properties of QPOs to make the first ever detections and 

characterizations of QPOs with machine learning models. We base our findings on raw energy spectra and processed features 
derived from energy spectra using an abundance of data from the NICER and Rossi X-ray Timing Explorer space telescope 
archives for two black hole low-mass XRB sources, GRS 1915 + 105 and MAXI J1535 −571. We advance these non-traditional 
methods as a foundation for using machine learning to disco v er global inter-object generalizations between – and provide unique 
insights about – energy and timing phenomena to assist with the ongoing challenge of unambiguously understanding the nature 
and origin of QPOs. Additionally, we have developed a publicly available PYTHON machine learning library, QPOML, to enable 
further machine learning aided investigations into QPOs. 

Key words: accretion, accretion discs – black hole physics – stars: individual (GRS 1915 + 105, MAXI J1535 + 571) – X-rays: 
binaries. 
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 I N T RO D U C T I O N  

t the ends of their li ves, massi ve stars ‘do not go gentle into that good
ight’ (Thomas 1952 ). Instead, if their initial mass exceeds ∼8 M �,
ore-collapse leads to spectacular Type II supernovae (Schlegel 
995 ). If the compact remnant remains bound or becomes bound to a
on-degenerate companion star, the result can be a neutron star (NS)
r black hole (BH) remnant (Gilmore 2004 ). In special cases, this
bject maintains a non-degenerate partner, and together these may 
orm an X-ray binary (XRB) system, in which the non-degenerate 
tar engages in mass-exchange with its compact partner (Tauris & 

an den Heuvel 2006 ). Such systems are characterized by accretion 
rom the donor star, through accretion discs (Shakura & Sunyaev 
973 ) and are the sources for jets (Gallo, Fender & Kaiser 2005 ;
an den Eijnden et al. 2018 ) and winds (Neilsen 2013 ; Castro Segura
t al. 2022 ). Additional exotic phenomena like thermonuclear surface 
urning (Bildsten 1998 ) have also been observed in NS binaries. 
oth BH and NS systems are both observed to emit thermal X-ray

adiation with temperatures ∼1 keV that is understood to arise from
he conversion of gravitational potential to radiative energy. NSs can 
roduce thermal emission at their surfaces, and the optically thick, 
eometrically thin accretion discs around both NSs and BHs can 
 E-mail: thaddaeuskiker@protonmail.com 
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roduce strong thermal X-ray emission (Shakura & Sunyaev 1973 ). 
urthermore, BH and NS XRBs both also show hard X-ray flux
oming from Compton up-scattering of thermal disc emission by 
 cloud of hot electrons around the compact source known as the
orona (Galeev, Rosner & Vaiana 1979 ; White & Holt 1982 ). Comp-
onized emission is commonly modelled by a power-law relationship 
 ( E ) ∝ E 

−� , where � is the photon index (McClintock & Remillard
006 ). Strongly Comptonized spectra commonly exhibit reflection 
eatures like a fluorescent, relativistically broadened 6.4 keV Fe K α

ine (Fabian et al. 1989 ) and ∼30 keV Compton hump (Ross &
abian 2005 ). These systems can be transient in activity and undergo
volution in spectral states (Gardenier & Uttley 2018 ), ranging from
ard, to intermediate, and to soft (McClintock & Remillard 2006 ),
hich are coupled with mass-accretion rate (Done & Gierli ́nski 
004 ), spectral hardness or thermal dominance, and thereby position 
n a hardness–intensity or colour–colour diagram track (Ingram & 

otta 2019 ), and the presence/absence of quasi-periodic oscillations 
QPO) of the observed X-ray radiation (McClintock & Remillard 
006 ). These QPOs are detected as narrow peaks in power-density
pectra (PDS; Homan & Belloni 2005 ). In the past 30 yr, numerous
heories, including but not limited to relativistic precession (Stella & 

ietri 1998 ), precesssing inner flow (Ingram, Done & Fragile 
009 ), corrugation modes (Kato & Fukue 1980 ), accretion ejection
nstability (Tagger & Pellat 1999 ), and propagating oscillatory shock 
Molteni, Sponholz & Chakrabarti 1996 ) have been advanced to 
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xplain the occurrence of QPOs in BH, as well as NS, XRB
ystems. Yet, there is not consensus as to which model is most
lausible. In black-hole systems, most of the observed QPOs have
een at low frequencies (LF) ≤30 Hz (Belloni et al. 2020 ). Only
 small subset has BHXRBs hav e e xhibited high-frequenc y QPOs
HFQPO). LF QPOs are further subdivided canonically into three
lasses (Casella, Belloni & Stella 2005 ): Type-A QPOs are the rarest,
ometimes appearing in the intermediate or soft state as broad, low
mplitude features centred between 6 and 9 Hz and usually lacking
armonic companions (Motta et al. 2011 ). Type-B QPOs are more
ommon, and can be seen during the short soft intermediate state and
ave shown some connection with jet behaviour (Gao et al. 2017 ;
arc ́ıa et al. 2021 ). Finally, type C QPOs are the most common,

nd can be detected as narrow features in the low-hard and hard-
ntermediate states with harmonic companions (Fragile, Straub &
laes 2016 ). Their fundamental frequencies range from ∼0.1 to
0 Hz depending on state, and almost al w ays correlate strongly
ith spectral features like � and luminosity (Motta et al. 2015 ).
s for HFQPOs, we recommend readers to Motta et al. ( 2011 ),
 ́endez et al. ( 2013 ), and Stella & Vietri ( 1999 ). QPOs are also

bserved in NS systems (Belloni, Psaltis & van der Klis 2002 ;
 ang 2016 ). W e focus on LFQPOS from BHXRBs in this paper

nd recommend van der Klis ( 2006 ) and Wang ( 2016 ) for re vie ws
f NS specific QPOs and Ingram & Motta ( 2019 ), Jonker, van der
lis & Wijnands ( 1999 ), Kato ( 2005 ), Re vni vtse v et al. ( 2001 ), and
 ́endez & Belloni ( 2021 ) of QPOs in XRBs in general. All in all,

undreds of XRBs have been observed since the discovery of Sco
-1 (Giacconi et al. 1962 ; Liu, van Paradijs & van den Heuvel 2007 ;
orral-Santana et al. 2016 ) and a large fraction show some type of
PO. 
Machine learning is a revolutionary subfield of artificial intel-

igence in which models teach themselves patterns in data rather
han operating by externally supplied hard-coded rules (Goodfellow,
engio & Courville 2016 ). With data available to astronomers
pproaching the petabyte domain (Ivezi ́c et al. 2014 ), this aspect
f machine learning has helped it supplement traditional methods
n addressing the e ver gro wing volume and increasing complexity
f astronomical data, while also providing new perspectives on old
henomena (Kremer et al. 2017 ; Rodr ́ıguez, Rodr ́ıguez-Rodr ́ıguez &
oo 2022 ). Consequently, machine learning has been used prolif-

cally to classify variable stars (Richards et al. 2011 ), search for
 xoplanets (Pearson, P alafox & Griffith 2018 ), detect pulsars (Zhu
t al. 2014 ), predict solar flares (Li et al. 2020 ), classify and even
isco v er galaxies (Dieleman, Willett & Dambre 2015 ; Kojima et al.
020 ). Ho we ver, although machine learning techniques has been
pplied to a number of problems related XRBs as well, e.g. to
lassify and identify X-ray binaries (Huppenkothen et al. ; Arnason,
armby & Vulic 2020 ; Sreehari & Nandi 2021 ; de Beurs et al.
022 ; Orwat-Kapola et al. 2022 ; Yang et al. 2022b ), predict compact
bject identity (Pattnaik et al. 2021 ), and study gravitational waves
Schmidt et al. 2021 ), this subfield contains tens of thousands of
bservations that have never been explored with machine learning to
etect QPOs themselv es. F or the first time, in this work we seek to
evelop a methodology for using machine learning to detect QPOs,
ecause we believe that our theoretical understanding of QPOs and
heir exotic progenitor systems would benefit from insights this
pproach could provide (Fudenberg & Liang 2020 ). Our approach
s unique, because although the externally determined presence
f QPOs has been used as a binary input parameter in accretion
tate classifiers such as those in Sreehari & Nandi ( 2021 ), QPOs
av e nev er before been the output of machine learning prediction
hemselves. The rest of this paper is structured as follows: in
NRAS 524, 4801–4818 (2023) 
ection 2 we describe the observations upon which we base our work.
ollowing this, in Section 3 we describe the energy and spectral
tting procedures we employ to produce input/output data from

hese observations for the machine learning models and methods
hich we detail in Section 4 . We present our results in Section 5 ,

nd we discuss these results contextually in Section 6 . Finally,
e conclude in Section 7 . Additional work concerning demon-

trating QPOML and model comparison are presented in following
ppendices. 

 OBSERVATI ONS  

.1 GRS 1915 + 105 

RS 1915 + 105 is a well-studied galactic low mass XRB system
omposed of a 12 . 4 + 2 . 0 

−1 . 8 M � primary and a 1.2 M � K III secondary
Greiner et al. 2001 ; Greiner 2003 ) on a 34 d period located at a dis-
ance of 8 . 6 + 2 . 0 

−1 . 6 kpc from the Earth (Reid et al. 2014 ). The secondary
tar in this system o v erflows its Roche lobe. GRS 1915 + 105 was one
f the first microquasar jet systems, with (apparent) superluminal
otion detected from a ballistic jet launched with an inclination

0 ± 2 deg (Mirabel & Rodr ́ıguez 1994 ). Since its disco v ery in 1992
Castro-Tirado, Brandt & Lund 1992 ), this somewhat peculiar source
as displayed unique timing and spectral patterns which have been
rganized into 14 separate variability classifications depending on
ts variability state (Belloni et al. 2000 ; Hannikainen et al. 2005 ).

ith its 16-yr archive of observations of this source we considered
ll data from the Rossi X-ray Timing Explorer (RXTE) Proportional
ounter Array (PCA; 2 − 60 keV) that are also included in Zhang
t al. ( 2020 ), M ́endez et al. ( 2022 ), and Garc ́ıa et al. ( 2022a ). These
nclude a great number of detections of type C QPOs between 1996
nd 2012. Energy and PDS have been derived from binned, event, and
oodXenon data as described in Zhang et al. ( 2020 ). Briefly, PDS
ave been constructed by averaging 128 s long intervals at 1/128 s
ime resolution, normalized according to Leahy, Elsner & Weisskopf
 1983 ), and Poisson noise subtracted (Zhang et al. 1995 ). Of the 625
iming observations in Zhang et al. ( 2020 ), we have 554 matching
nergy spectra. 

.2 MAXI J1535 −571 

AXI J1535 −571 was disco v ered by the MAXI/GSC nova alert
ystem as a hard X-ray transient system undergoing outburst in
017 by Negoro et al. ( 2017a ), and it was first suggested to be
H system by Negoro et al. ( 2017b ). Since disco v ery, it has been

uggested as an ∼10.39 M � BH, ∼5 kpc distant (Sridhar et al.
019 ). MAXI J1535 −571 has displayed state transitions (Nakahira
t al. 2018 ), reflaring events (C ́uneo et al. 2020 ), and hysteresis
uring its main outburst (Parikh et al. 2019 ). Furthermore, it has
een determined to possess a near-maximal dimensionless spin
arameter of a = 

cJ 

GM 

2 > 0 . 99 (Miller et al. 2018 ; Liu et al. 2022 ).
o study this source we use data from the International Space
tation mounted, soft X-ray (0.5–12 keV) observatory Neutron star
nterior Composition ExploreR (NICER; Gendreau, Arzoumanian &
kajima 2012 ) which has unequaled spectral-timing capabilities in

oft X-rays (see Fig. 1 for light curves of utilized MAXI J1535-571
nd GRS 1915 + 105 observations). 

We have filtered our NICER data following standard practices,
xcluding South Atlantic Anomaly passages in order to identify
ontinuous good time intervals (GTIs) which are extracted and
nalyzed individually. Data from detectors 14, 34, and 54 have been
xcised owing to a propensity for ele v ated noise or spurious events in
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Figure 1. Light curves of GRS 1915 + 105 (left) and MAXI J1535 −571 (right) for the observations used in this work. Net count rates are calculated as the sum 

of the background subtracted counts divided by observation time for every observation of each source. Note the persistent nature of GRS 1915 + 105 versus the 
transient flare of MAXI J1535 −571 (reflaring epochs of MAXI J1535 −571 are not included given the lack of QPOs detected there in previous works). 
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hose detectors. Additionally, for each GTI, the average event rates 
f o v ershoot, undershoot, and X-ray ev ents are compared amongst
he detector ensemble, and any detector which has a median absolute 
eviation (MAD) > 15 is also excised for that GTI 1 ). All spectra
ave been corrected for deadtime (generally < 1 per cent ). NICER 

ackgrounds have been computed using the 3C50 background 
odel (Remillard et al. 2022 ), as well as using a proprietary and

imilar background model which replaces the 3C50’s ‘hrej’ and 
ibg’ indexing with cutoff-rigidity ‘COR Sax’ and o v ershoot-rate 
nde xing. We hav e remo v ed an y data with a background count rate ≥5
ounts/s, exclude observations for which the source-to-background 
ount ratio is < 10, and reject observations with exposure times t
 60 s. Additionally, we require at least 5000 net source counts

o ensure reliable energy and PDS results, and we consider the 
emaining data sufficiently bright and insensitive to the selection 
etween these similar background models. Energy spectra have been 
ebinned from the 10 eV PI channels by a factor ranging from 2
o 6 in order to o v ersample NICER ’s energy resolution by a factor
 2, while also requiring a minimum of 5 counts per bin. From
 to 4096 Hz, PDS are computed using events in the energy range
rom 0.2 to 12 keV, for a light-curve sampling at 2 −13 s ( ≈122
s). PDS are computed individually and averaged together using 4s 
egments for t < 160 s and 16 s segments for t ≥ 160 s. Below 1 Hz,
DS are computed by averaging together results for 128 s segments 
or t ≥ 128 s 64 s segments for 64 ≤ t < 128 s and 4 s segments for t
 64 s. The resulting PDS is then logarithmically rebinned in ∼3%

requency intervals, the Poisson noise subtracted, and the rms 2 Hz −1 

ormalization adopted. 
Although we have less MAXI J1535 −571 observations with QPOs 

or analysis (in large part due to the source’s transient nature), 
ne benefit of using NICER o v er RXTE data for this source (if
e could have used RXTE data) is that NICER spectral channels 
o not suffer from gain drift o v er epochs like RXTE PCA (which
ffected energy-channel conversions), and thus we can use the 
ICER energy spectra as raw inputs to our regression and classifier
odels, in addition to the engineered features discussed in Sections 3 

nd 4.2 . 
Overall, we selected these two sources for this initial e v aluation

f our methodology because they represent two very different types 
f LMXRBs. On one hand, GRS 1915 + 105 has long been known
s a markedly unusual source in terms of its outb urst beha viours and
tates (e.g. its very abnormal, three-decade long transient outburst, 
e gular/irre gular bursts, dips, etc., behaviors influenced by GRS 

915 + 105’s orbital period and accretion disc size, the longest and
 The MAD is a robust statistic that is insensitive to outliers. 15 MAD 

orresponds to approximately 10 σ for a Gaussian-distribution. 

1
1  

o  

r
fl  
argest respectively known among LMXRBs), wheres on the other 
and, MAXI J1535 −571 is, in comparison to GRS 1915 + 105, a far
ore typical source in terms of outburst states, QPO-spectral param- 

ter associations, and tracks through the hardness–intensity diagram 

Taam, Chen & Swank 1996 ; Truss & Done 2006 ; Nakahira et al.
018 ; Bhargava et al. 2019 ; C ́uneo et al. 2020 ; Koljonen & Hovatta
021 ; Garc ́ıa et al. 2022a ). Hence, between these two sources we aim
o e v aluate our methods across a spectrum of typical to challenging
pectral-timing relationships. Furthermore, in choosing objects ob- 
erved with different instruments, we aim to take advantage of the dif-
erent strengths of each instrument, such as the plethora of RXTE’ ob-
ervations and the high spectral resolution of NICER (Gendreau et al.
012 ). 

 DATA  ANALYSI S  

.1 Energy spectra 

s previously mentioned and discussed in more detail in Section 4.2 ,
e base our detection of QPOs on energy spectra and processed

eatures from the energy spectra. Thus, to generate the processed 
pectral features we fit the energy spectra for both sources with
SPEC version 12.12.0 (Arnaud, Dorman & Gordon 1999 ) using the

hree-component model tbabs ∗(discbb + nthcomp) , which 
epresents a Tuebingen–Boulder absorbed multitemperature black- 
ody and thermally Comptonized continuum (Mitsuda et al. 1984 ; 
dziarski, Johnson & Magdziarz 1996 ; Kubota et al. 1998 ; Życki,
one & Smith 1999 ). We fixed the equi v alent hydrogen column
ensities to canonical values of 6 × 10 22 atoms cm 

−2 for GRS
915 + 105 and 3.2 × 10 22 atoms cm 

−2 for MAXI J1535 −571 based
n Sreehari et al. ( 2020 ) and C ́uneo et al. ( 2020 ), respectively,
ith solar abundances in accordance with Wilms, Allen & McCray 

 2000 ) and Verner et al. ( 1996 ) cross-sections (e.g. Fig. 2 ). We
ied the nthcomp seed photon temperature to T in of discbb for
oth sources, and let high energy rollo v er (electron temperature)
reely vary between 4 and 40 keV for GRS 1915 + 105 and 4–
50 keV during fitting for MAXI J1535 −571, basing these ranges
n Zhang et al. ( 2022 ) and Dong et al. ( 2022 ), respectiv ely. F or
RS 1915 + 105, we ignore channels < 2.5 keV or > 25 keV during
tting, calculate net count rate from the resulting range, and compute
ardness as the sum of the ratio of the background subtracted
hannel net count rates for the ranges in Zhang et al. ( 2022 ), except
s a proportion rather than a ratio, i.e. [13 −60] keV 

[2 −7] + [13 −60] keV (see Fig. 
2 for pairplot comparing spectral and timing properites of GRS 

915 + 105). Regarding MAXI J1535 −571, we note the presence
f instrumental residuals in the 1.7–2.3 k eV NICER range, lik ely
elated to NICER ’s Au mirror coating and residual in the Si K α

uorescence peak, and following Miller et al. ( 2018 ), we address
MNRAS 524, 4801–4818 (2023) 
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Figur e 2. Example ener gy and power density spectra and models for MAXI J1535 observation 1050360105–21 on the top and the same for GRS 1915 + 105 
observation 40116-01-01-07 on the bottom. For each row, from left to right, the first plot shows the energy spectrum and folded tbabs ∗(nthcomp + dis- 
cbb) model, the second shows energy spectrum model alone, the third shows the power density spectrum in the relevant frequency range, and the fourth shows 
the best-fitting Lorentzian PDS model alone. Best-fitting QPO features have been superimposed o v er zero centered Lorentzians used to model the power-density 
continuum. Only the fundamental (i.e. first harmonic) is fit for the GRS 1915 + 105 QPO (as discussed in Section 3 , this was an intentional choice to see how 

the models fair with seemingly simpler outputs). 
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hese by excluding the 1.7–2.3 keV energy band from the spectral
tting process, and otherwise fit the range 0.5–10.0 keV. We compute
et count rate normalized to the number of NICER detectors, and
ardness ratios for MAXI J1535 −571 observations as the proportion
f the total net count rate contributed by the 3.0–10.0 keV range, i.e.

[3 . 0 −10 . 0] keV 
[0 . 5 −1 . 7] + [2 . 3 −3 . 0] + [3 . 0 −10 . 0] keV . Altogether, for both sources we use the
et count rate, hardness ratio, asymptotic power-law photon index,
thcomp normalization, inner disc temperature, and discbb
ormalization for input parameters, which we discuss in more detail
n Section 4.2 . 

.2 Power density spectra 

hroughout this work, all QPOs for both sources are parametrized
s Lorentzian distributions given by equation ( 1 ), 

 ( f ) = 

K( σ2 π ) 

( f − f 0 ) 2 + ( σ2 ) 
2 

(1) 

here f is frequency in Hertz, σ is full width at half maximum
FWHM), and K is the normalization, as per Arnaud et al. ( 1999 ), as
hown in Fig. 3 . In the case of GRS 1915 + 105, QPO properties
re obtained by fits to PDS following Zhang et al. ( 2020 ). A
PO is considered significant when the ratio of the QPO power

ntegral divided by its 1 σ error > 3 or quality factor Q = 

v 0 
σ

) > 2
Nowak, Wilms & Do v e 1999 ), pro vided their frequency does not
hange significantly in an observation. Our primary use for this
RS 1915 + 105 data is to train machine learning regression models

o predict the properties of the fundamental QPO feature, since
nly data with matching QPO detections are used in our GRS
915 + 105 machine-learning analysis. In all, this corresponds to
54 QPOs. In contrast to this approach of fitting individual QPOs
olely for regression, we use the energy and timing data from
AXI J1535 −571 to explore both classification of observations

nto binary states of QPO presence/absence as well as multiclass
PO cardinality states 2 based on binned raw energy spectra and
NRAS 524, 4801–4818 (2023) 

 Also called multinomial classification (Bouv e yron et al. 2019 ), when number 
f classes totals to ≥3. 

i  

r  

m  

o  
rocessed features. Additionally, for MAXI J1535 −571 we predict
he properties for both the fundamental and frequently appearing
armonic in the PDS based on binned energy spectra and spectral
arametrizations derived from energy spectra. Our QPO detection
ethod for MAXI J1535 −571 is slightly different than that of GRS

915 + 105. Specifically, we determine the presence and properties
f QPOs in PDS from MAXI J1535 −571 by first fitting two zero-
entred Lorentzian functions to PDS and then iteratively fitting a third
orentzian o v er a logarithmically sampled set of 268 frequencies f
etween 1 and 20 Hz, where width is kept σ < 

f 

10 for an initial
t, and then freed for a subsequent refined fitting step. A peak
f qualifying distance ( �χ2 distance to neighboring samples) and
hreshold (horizontal distance between samples) is identified with
he scipy function find peaks (Pedregosa et al. 2011 ) in the
esulting distribution of −1 · χ2 fit-statistic with peak height greater
han the � 10 Akaike Information Criterion (Akaike 1998 ). Finally, a
isual inspection is required to accept a QPO candidate detection (to
 v oid potential spurious detections, e.g. at the frequency boundary).
n 68 of observations the fundamental is accompanied by the second
armonic (the fundamental itself is called the first harmonic), in
4 observations it is alone, and in 188 observations no QPO is
etected. 

 M AC H I N E  L E A R N I N G  M E T H O D S  

.1 Model selection 

n machine learning, models can be broadly divided by two sets
f classification: (i) whether they operate in a supervised or unsu-
ervised manner; and (ii) whether they are built for classification
r regression (Bruce & Bruce 2017 ). Since we are providing our
odels with explicit targets for loss minimization, our approach falls

nder the umbrella of supervised learning (Singh, Thakur & Sharma
016 ), and as we are attempting to connect spectral information
bout XRBs with real-valued output vectors that describe QPOs
n their power-density spectra, we also fall under (multi-output)
egression (Xu et al. 2019 ). In selecting our machine learning
odels for regression, we seek those that natively support multi-

utput regression, incorporate capabilities for mitigating overfitting,
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Figure 3. Example PDS with o v er plotted QPO predictions for the GRS 1915 + 105 observations 80701-01-54-02, 50703-01-28-01, 50703-01-24-01 ordered by 
column left to right from least (best-fitting) median to greatest (worst) Pythagorean sum of normalized errors on the three predicted QPO Lorentzian parameters 
(with corresponding models alone in bottom row). Note that the seemingly diminished height of the predicted QPOs is actually a consequence of how they were 
determined in the processing procedure, and in the case of the best observation 80701-01-54-02, the amplitude only differs by less than 0.3 per cent from the 
‘true’ amplitude value it was predicting, as the derived amplitudes had reduced amplitudes originally. 
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ave precedents of working successfully with medium to small 
ized data sets, and natively communicate feature importances. 
dditionally, we seek to e v aluate a collection of models against each
ther in light of the No-Free-Lunch-Theorem (Wolpert 2002 ; Lones 
021 ). 
Based on these criteria, we settle on a set of tree-based models

nd their descendants, specifically decision trees (Breiman 1984 ), 
andom forests (Breiman 2001 ), and extremely randomized trees 
Geurts, Ernst & Wehenkel 2006 ). Here, we provide a brief summary
f these models for context. Decision trees are the original tree-based 
egression model which operate by inferring discriminative splits in 
ata and making predictions via a series of ‘if-then-else’ decisions 
Breiman 1984 ). Random forests are more powerful derivatives of 
ecision trees, and are based on an ensemble of decision trees trained
ia bootstrap aggregation (Breiman 1996 , 2001 ). By incorporating 
redictions from such an ensemble, random forests reduce prediction 
ariance while increasing o v erall accurac y when compared to a single 
ecision tree (Lakshminarayanan 2016 ). Finally, extremely random- 
zed trees (also known as extra trees) are similar to random forests in
his respect but operate with more randomization during the training 
rocess, as instead of employing the most discriminative thresholds 
ithin feature spaces for splits, extra trees select the best-performing 

andomly drawn thresholds for splitting rules (Geurts et al. 2006 ; 
edregosa et al. 2011 ). Details on training and optimization are given

n Section 4.3 , where we also discuss our steps to a v oid o v erfitting
Bruce & Bruce 2017 ). 

Together, these represent some of the most powerful yet 
ightweight machine learning models available, and meet our criteria 
or multi-output regression (Xu et al. 2019 ), robustness to overfitting 
Boinee, Angelis & Foresti 2008 ; Ampomah, Qin & Nyame 2020 ),
uccess with small/medium sized data sets (Floares et al. 2017 ), 
nd feature importances (Yasodhara et al. 2021 ). An additional 
enefit of these models is that they are natively supported by the
reeExplainer method in the SHAP Python package (Lund- 
erg & Lee 2017 ), which frees us from common pitfalls related
o impurity and permutation based feature importances, which we 
iscuss in more detail in Section 6 . Ov erall, we e xplore all the abo v e
odels in addition to ordinary linear regression (to provide a base

erformance comparison) for the regression cases, but focus on ran- 
om forest and logistic regression (Berkson 1944 ) for classification 
ases. 

.2 Feature engineering 

s Casari & Zheng ( 2018 ) detail, feature engineering is the process
f transforming raw data to maximize predictive performance. After 
xperimenting with different formats, we settled on the following in 
rder to use derived features from spectral fits or raw spectral data
s predictors and timing features as outcomes. We will hereafter 
efer to and experiment with two types of input data for our
odels: the first are rebinned net energy spectra, which we discuss

elow and will simply call ‘energy spectra’. The second type is the
ombination of XSPEC model-fit parameters and spectrum derived 
eatures like net count rate and hardness which we will designate the
engineered features’ input type. When using engineered features 
or inputs, we format our input data as a matrix composed of vectors
ontaining the net count rate, hardness ratio, asymptotic power-law 

hoton index, nthcomp normalization, inner-disc temperature, and 
iscbb normalization for e very observ ation. Hereafter, we refer 

o and present these values by the letters { A , B , C , D , E , F , G }
s shorthand. This input structure is visualized in equation ( 2 ) as
ollows: 

N m ×7 = 

⎡ 

⎢ ⎣ 

A 1 B 1 C 1 D 1 E 1 F 1 G 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
A m 

B m 

C m 

D m 

E m 

F m 

G m 

⎤ 

⎥ ⎦ 

(2) 

here m is the number of observations. This format can be extended
o any n -dimensional number of features, which we take advantage 
f when using raw energy spectra as input data. For the case of
MNRAS 524, 4801–4818 (2023) 
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3 Standardization prior to splitting data into train and validation sets does not 
impair our model’s predictive validity when input features are derived from 

XSPEC because its pre-adjusted inputs will al w ays be constrained within the 
theoretical bounds applied during standardization for each feature (e.g. � will 
al w ays initially range between x − y for a source, where x can be a hard lower 
limit like � = 1.1 and y can be the corresponding hard upper limit during 
fitting, such as � = 5). 
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AXI J1535 −571, we compare the predictive performance of the
odels and provide different insights by using raw spectral data

n the form of count rate values from 19 channels, 0.5 keV wide
piece spanning the energy range [0.5–10.0] directly as the input
ectors within the input matrix, similar to Pattnaik et al. ( 2020 ).
his coarse spectral input strikes a balance between sparsity and
recision, allowing us to determine importances for specific 0.5 keV
anges while not o v erwhelming the models with too many input
eatures given the overall sample size (Raudys & Jain 1991 ; van de
choot & Mio ̌cevi ́c 2020 ). With regards to regression, our QPO
utput matrix is similarly formatted as a vector matrix, with rows
hat match by index to vectors in the input matrix, but with an
mportant addition regarding ordering (detailed below). A significant
hallenge relates to the prediction of not only the presence versus
bsence of QPOs in a given PDS, as well as (for present cases)
he specific number of QPOs and the physical parameters of each
PO present. Over the course of an outburst, the number of QPOs
resent can change, as these are transient phenomena (Remillard
t al. 2006 ; Ingram & Motta 2019 ). We account for this challenge of
ariable output cardinality by first identifying all QPO occurrences
ssociated with an observation. Then, we order these occurrences
nd their features in a vector of length L = N f × max( N s ), where
 f is the number of features describing every QPO (e.g. N f = 3 for

requency, width, and amplitude), and N s is the maximum number of
imultaneous QPOs observed in any particular PDS in a data set. We
hen structure each output vector as a repeating subset of features for
very QPO contained, and order these internal QPO parametrizations
y frequency. If one or more of these occurrences are not detected
n a PDS, their feature spaces in the vector are populated with
eros. This allows us to circumvent the aforementioned difficulty
ith variable output cardinality, because the models will learn
uring training to associate indices populated with zeros as QPO
on-detections (Chollet 2017 ). As with input features, equation ( 3 )
rovides a visualization of the general QPO matrix output returned
y our model, where each row corresponds to one observation
atched with a row in the input matrix (both out of m total

bservations). 

UT m ×n = 

⎡ 

⎢ ⎣ 

f 1 , 1 σ1 , 1 K 1 , 1 . . . f 1 ,n σ1 ,n K 1 ,n 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
f n, 1 σm, 1 K m, 1 . . . f m,n σm,n K m,n 

⎤ 

⎥ ⎦ 

(3) 

In the case of MAXI J1535 −571, the maximum number of QPOs
imultaneously observed in a PDS is two, and each QPO is described
n terms of its frequency, width, and amplitude, so the output matrix
akes the shape OUT = m × 6. Since we only regress for the
undamental in the GRS 1915 + 105 PDS, its output matrix takes
he form OUT = m × 3. Prior to reformatting the data in this
anner, we applied a columnar min–max standardization to the
SPEC , and hardness input features, as well as the QPO Lorentzian
utput features, which linearly transformed each distribution into a
max( x ′ ), min( x ′ )] = [0.1, 1] range (as opposed to the traditional
0 − 1] range given our decision to denote QPO non-detections with
ero values) while preserving their shapes, according to equation ( 4 ;
andanaarachchi et al. 2019 ). 

 

′ = 

x − min ( x) 

max ( x) − min ( x) 
× max ( x ′ ) − min ( x ′ ) 

min ( x ′ ) 
. (4) 

This step is necessary to prevent features with relatively larger
bsolute amplitudes receiving undue weight, and it also frees the
odels from dependency on measurement units (Han, Kamber &
NRAS 524, 4801–4818 (2023) 
ei 2012 ; Akanbi, Amiri & Fazeldehkordi 2015 ). We did not
pply this standardization step to channel count and net count rate
nput features, ho we ver, as the imposition of a priori theoretical
imits to these features is not as readily justifiable (Pattnaik et al.
020 ). 3 

.3 Training, validation, and hyperparameter tuning 

o better understand our models in different data combinations and
inimize statistical noise, while guaranteeing every observation gets

ncluded in a training, as well as at a separate time, validation
nstance, we employ a repeated k -fold cross-validation strategy
Olson & Delen 2008 ; Vanwinckelen & Blockeel 2012 ) for model
 v aluation (as opposed to solely using a default proportion-based
rain-test split). According to this procedure, our data are first split
nto a 90 per cent training and validation set, and then a 10 per cent
eld out test set. Before e v aluating the models on this test set, the
raining and validation set is randomly split into k = 10 folds. Given
he relative class imbalance in the MAXI J1535 −571 data in fa v our
f observations without QPOs, for MAXI J1535 −571, the folds for
oth regression and classification cases are also stratified during
plitting, which means each fold maintains the same proportion of
bservations with QPOs (Ma & He 2013 ). Then, every model is
 v aluated on each unique fold after being trained on the remaining
olds, with the individual k -fold performance taken as the mean of
hese e v aluations across the ten folds. We repeat this process five
imes (randomly shuffling the data between each iteration), and the
nal score for each model is calculated as the mean performance
cross the ten k -fold instances, either as the f -score for classification
ases (a harmonic mean of the precision and recall), or the median
bsolute error for regression (Pedregosa et al. 2011 ; Kuhn & Johnson
019 ). Random initialization is kept the same between models to
ake sure each model is trained/tested on the same data within

ach fold, and to ensure fair comparison between these models,
ach was subject to automatic and individualized hyperparame-
er tuning via grid search prior during this e v aluation (Dangeti
017 ). The specific hyperparameter values from which combinations
ere derived and evaluated for each model are presented in 
able 1 . 

.4 Feature selection 

hrough feature selection, it is generally important to deal with
otential multicollinearity by calculating variance inflation fac-
ors (VIF) and removing features with VIF values � 5 (Kline
998 ; Sheather 2008 ). Ho we v er, we hav e chosen not to remo v e
otentially collinear features prior to regression for the following
easons: first, the tree based models like random forest that we
ocus on are by design robust from the effects of multicollinear-
ty (Strobl et al. 2008 ; Chowdhury et al. 2021 ). Second, since
ulticollinearity only affects the estimated coefficients of linear
odels, but not their predictive ability, applying a linear model

o potentially collinear data is perfectly reasonable in our case,



QPOML: Detecting QPOs with Machine Learning 4807 

Figure 4. Gaussian kernel density estimate violin plot representations of 
aggregated median absolute error for each tested model across k = 10 
validation folds repeated r = 5 times on GRS 1915 + 105 (feature input) data 
(top) and MAXI J1535 −571 (feature input) data (bottom). The abbreviations 
DT, RF, and ET stand for the decision tree, random forest, and extra tree 
models, respectively. As further discussed in Section 5 , linear regression 
is outperformed by the classical machine learning models models across 
folds for each repetition round. Furthermore, the two ensemble tree based 
models clearly outperform the single decision tree model, which is to be 
expected. 
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s we are using the linear model solely as a baseline against
hich we will compare the predictive capabilities of the more 

omplicated random forests model; i.e. as we are applying the 
inear model, we are not interested in its components (Lieberman & 

orris 2014 ; Mundfrom, Smith & Kay 2018 ). We will, ho we ver,
evisit multicollinearity when we interpret feature importances in 
ection 5 . 

 RESULTS  

.1 Regression 

s demonstrated in Fig. 4 , on average our tree-based models 
utperform linear regression in every regression case, regardless 
f source or input feature type. Interestingly, as shown in Fig. 6
nd Fig. 7 , linear regression also seriously struggles to correctly 
ssign 0 values to observations lacking QPOs for both processed and 
ebinned energy spectra input data, a problem not faced by the other
odels (except random forest with rebinned energy spectra to a lesser 

e gree). Furthermore, linear re gression al w ays has higher dispersion
n the relationship between actual and predicted QPO frequency. Yet, 
espite their unified superiority versus linear regression, the machine 
earning models do differ significantly within fold amongst them- 
elves, as shown in Fig. 4 , 5 , 6 , and 7 . Specifically, although decision
ree provides a notable impro v ement in dispersion between true and
redicted values, as well as a slope between these closer to unity,
t is by far bested by random forest, and extra trees. Two additional
nteresting divergences in model performance occur between the 
ources, as well as between their input types. Regarding the former,
ll models trained and e v aluated on GRS 1915 + 105 data have more
 v erall dispersion and slopes tending further away from unity in their
apping between true and predicted frequency when compared to 

he same models for MAXI J1535 −571 QPOs with processed input
eatures. This can be clearly seen when comparing Fig. 5 with Fig. 6 .
he superior performance of the algorithms on MAXI J1535 −571 
re surprising for several reasons: first, with GRS 1915 + 105 the
odels never face the problem of false ne gativ es or false positives

ecause there are no QPO-absent data in this set. In contrast, MAXI
1535 −571 observations are of varying composition, imbalanced in 
a v or of QPO absence. Second, GRS 1915 + 105 has around two times
ore total observations, and around six times more observations with 
POs than MAXI J1535 −571; in most cases training models on
ore data leads to corresponding increases in accuracy (Brefeld et al.

020 ; Kalinin & Foster 2020 ). Ho we ver, this assumption may not
old in instances like this, where models are being tested on different
bjects, as there may exist fundamentally stronger/more pronounced 
ssociations between spectral and QPO in one of the systems. The
ost likely reason for the inferior performance on GRS 1915 + 105
POs is that the underlying relationships between the input and 
utput QPO features are likely more convoluted for GRS 1915 + 105,
hich is understandable given GRS 1915 + 105 has long been known

o hav e comple x variability states, and is in fact a bit of an oddball
mong black-hole systems. Additionally, potential confusion could 
rise because the models fitted on fundamental QPOs only in GRS
915 + 105 intentionally lack the freedom to predict aspects about
armonics, which could lead to these models to potentially confuse 
ignals for harmonics with fundamentals (this is an unexpected 
nsight from our initial decision to only predict for the fundamental in
RS 1915 + 105 in an effort to explore how the models behave with

impler output space). Finally, to e v aluate the performance of the
ultioutput aspect of the regression, we carry out pairwise non- 

arametric two-sided goodness-of-fit Kolmogoro v–Smirno v (KS) 
ests on permutations of QPO parameter residual arrays (Massey 
951 ; KS 2008 ), and fail in all instances to reject the hypothesis
hat any pair of distributions of residual arrays between actual and
redicted QPO parameters are not drawn from the same distribution 
 p > 0.76 for all GRS 1915 + 105 and p > 0.99 for all MAXI
1535 −571 residual pair permutations, regardless of input type). This 
hows that the models do not fa v our any particular QPO parameter
n their regression and instead regress for each with statistically 
nsignificant differences in accuracy (i.e. accuracy is not different 
or QPO features, both for the fundamental, as well as the harmonic
hen present). As for the second interesting divergence in model 
erformance (by input type), surprisingly there is a pronounced 
ifference in model performance when these regression models are 
rained on processed features as opposed to rebinned energy spectra: 
n all model cases, dispersion and slope both drastically worsen when
odels rely on the rebinned energy spectra directly. This is shown

or MAXI J1535 −571 regression between Figs 6 and 7 demonstrates
hat although the models could hypothetically learn some lower 
evel representation of the concepts of hardness, overall net count 
ate, etc. from the data and not require the engineered features,
ith the amount of data provided engineered features provide 

ignificant additional insight for the models to base decisions on that,
MNRAS 524, 4801–4818 (2023) 
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M

Figure 5. A results regression plot for all QPOs predicted from the test set for the source GRS 1915 + 105 as returned (from left to right) by linear regression, 
decision tree, random forest, and extra trees. The best models − random forest and extra trees − both minimize dispersion between true and predicted values 
(as quantified by r 2 ), while simultaneously producing the most 1:1 relationships between them (as quantified by best-fitting slope). 
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xceeding what is provided by energy spectra alone. This would be
n interesting idea to investigate with deep learning methods, which
 ould f ar exceed these classical models’ ability to learn abstractions

n the data through automated feature extraction (Nadeau & Bengio
004 ). 

.2 Classification 

t least for MAXI J1535 −571, binary classification of QPO ab-
ence/presence appears to be a fairly trivial task, as shown by
he confusion matrices of the first repetition tenth folds in Fig. 8 .
dditionally, as Fig. 8 also shows, our logistic regression classifier

orollary to linear regression performs just as well as random forest
n terms of accuracy and other classification metrics when trained on
rocessed input data, with negligible difference for rebinned energy
pectra as well. This is corroborated by the corresponding ROC
urves also shown in Fig. 8 . The ROC curves show how a model
as optimized between specificity (on the abscissa) and recall (also
nown as sensitivity; on the ordinate), with the ideal model displaying
n ROC curve enclosing an area under curve (AUC) of 1 (Bruce &
ruce 2017 ). The curves in Fig. 8 represent the average ROC and
UC values with 1 ± σ deviations across all folds and repetitions
 v aluated. Both logistic regression and random forest decrease in
verage AUC when trained on rebinned energy spectra, but the
ecrease is most dramatic for logistic regression. We also present
ulticlass classification results for multinomial logistic regression
NRAS 524, 4801–4818 (2023) 
nd random forest based on processed and rebinned energy spectra
nput data in Fig. 9 . In the case of processed input data, random
orest clearly outperforms logistic regression, but both models
ctually experience noted decreases in accuracy when tasked with
redicting multiple outputs corresponding to the actual number of
POs in a MAXI J1535 −571 observation based on rebinned energy

pectra input. In fact, in the case of energy spectra inputs, random
orest actually performs worse than logistic re gression. Ov erall, the
ecreased performance of both models here is likely do to the class
mbalance in the data set (as mentioned in Section 3 ), which gives the

odels very few single QPO observations to use as training data per
ound. 

 DI SCUSSI ON  

ow that we have demonstrated QPOs properties can be predicted
and in the following section show how features useful to these

redictions can be analysed – on the sources MAXI J1535 −571
nd GRS 1915 + 105 individually, we propose the next step would
e to apply these methods in a future work on source-heterogeneous
nput data, a capability we intentionally incorporate into our QPOML
ibrary. To achieve this, it would be beneficial to construct a large
tandardized data base of QPO and spectral data with a scope á
a Corral-Santana et al. ( 2016 ), for which the wealth of RXTE
bservations will pro v e invaluable. Additionally, while increasing
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Figure 6. Same as Fig. 5 , except for MAXI J1535 −571 observations (processed feature input). The lesser number of points in these plots stems from both the 
smaller sample size of MAXI J1535 −571 observations, as well as the clustering of values correctly predicted as zeros at the point (0,0) where points cannot be 
seen individually in this plot). 
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ource sample size like this, it would also be fruitful to include NS
FQPOs and kHz QPOs in a follow-up study to generalize between 
ources, because unlike BH XRBs, NS XRBs are pre-dominantly 
ersistent and have significantly more observations with QPOs in 
rchi v al RXTE data in general (M ́endez et al. 1999 ; Migliari, van der
lis & Fender 2003 ; Belloni, M ́endez & Homan 2005 ; Raichur &
aul 2008 ). That being said, the likely trade-off of using RXTE data
or these sources is that these QPOs will be predicted based on
ngineered XSPEC features instead of raw spectra given gain drift, 
s was the case with our analysis of GRS 1915 + 105 versus MAXI
1535 −571. Another potential avenue for extending this work would 
nvolv e e xploring new input features to associate with QPOs, such as
H spin, mass, inclination, jet properties, and QPO phase lags, and 

racking the importance of variable features throughout outburst and 
ccretion states to see if the y evolv e in tandem. Including scattering
raction as an input parameter promises interesting results as well, 
ecause QPO frequency and scattering fraction exhibit a correlation 
or sources like MAXI J1535 −571 but an anti-correlation for other 
bjects including GX 339–4, H1743 −322 and XTE J1650 −550 
Garg, Misra & Sen 2022 ). Finally, how these non-parametric 
achine learning models interact with the polynomial/exponential 

ersus sigmoidal relationship between frequency and power-law 

ndex for some BHs versus NSs (Titarchuk & Shaposhnikov 2005 ), 
s well as how well models trained on distinct outbursts of certain
bjects perform for outbursts withheld from their training, would 
oth also be of interest if these models are applied on samples that
iffer not only by source, but also by source type (BH or NS).
ow, we turn to discussing feature importances in Section 6.1 and 
n  
tatistically compare the models we used throughout this work in 
ection 6.2 . 

.1 Feature importances and interpretation 

eature importances refer to the relative attributed weights a model 
i ves to dif ferent input features (Saarela & Jauhiainen 2021 ). In
ther words, they are measures for how helpful different features are
or the model in making correct predictions, regardless of whether 
hese predicted values are categorical or real-valued (Fisher, Rudin & 

ominici 2018 ). Before we discuss these, ho we ver, we will briefly
escribe our efforts to ensure the interpretability of our machine 
earning models. Interpretability is defined parsimoniously by Miller 
 2017 ) as the degree to which a human can understand the cause of a
ecision. Since most of our models are intrinsically complex (except 
or linear and logistic regression and decision trees), we seek post hoc
nterpretability through feature importances (Vieira & Digiampietri 
022 ). These values should not be interpreted as substitutes for
ther e.g. parametric importances, because they seek to explain 
ow a machine learning model learns and interacts with its data.
o we ver, we belie ve that properly calculated feature importances
ay offer alternative helpful insight about the origins of QPOs, and
e therefore take steps to a v oid common pitfalls associated with these
easures. F or e xample, although it is common to discuss default

mpurity-based feature importances, this approach is flawed because 
t is both biased towards high-cardinality numerical input features, 
s well as computed on training set statistics, which means it may
ot accurately generalize to held-out data (Pedregosa et al. 2011 ).
MNRAS 524, 4801–4818 (2023) 
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M

Figure 7. Same as Fig. 6 , except for MAXI J1535 −571 observations (rebinned energy spectra as inputs). Note the increased dispersion and much less 1:1 
relationships between true and predicted values for every model in the these plots compared to their equivalents in Fig. 6 . 

Figure 8. Confusion matrices and ROC Curves with labeled AUC values for MAXI J1535 −571 binary classification cases. The left pairs correspond to logistic 
regression, whereas the right correspond to random forest. The confusion matrices are taken from the first tenth fold, whereas the ROC curves are averaged across 
all folds with ±1 σ deviations denoted by the grey regions. The superior performance of the models working from processed inputs in the top row compared to 
their rebinned energy spectra input analogues in the bottom row is intriguing and discussed in more detail in Section 5 . 
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Figure 9. Confusion matrices for multiclass MAXI J1535 −571 output, where the left column corresponds to logistic regression, the right column to random 

forest, the top row to processed input features, and the bottom row to rebinned energy spectra input features. Although only the accuracy of logistic regression 
decreases from binary to multinomial classification based on processed XSPEC input features, both models are significantly more inaccurate for the multinomial 
case based on energy spectra inputs compared to either binary case in Fig. 8 . 
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dditionally, although permutation importances are commonly put 
orward as a superior alternative, these suffer from multicollinearity, 
s in the process of permutating single features, an impactful feature 
ould be erroneously ascribed as having little-to-no effect on model 
erformance if it has high correlation with another feature (Strobl 
t al. 2007 ; Nicodemus et al. 2010 ; Hooker, Mentch & Zhou 2019 ).
herefore, we chose to to determine feature importances with the 
ontemporary TreeSHAP algorithm as implemented in the Python 
ackage shap by Lundberg & Lee ( 2017 ). This model extends
ame theoretic coalitional Shapley values to calculate SHapley 
dditiv e e xPlanations (SHAP) in the presence of multicollinearity 
y incorporating conditional expected predictions (Shapley 1952 ; 
undberg & Lee 2017 ; Molnar 2022 ). As hinted earlier and detailed

n Lundberg & Lee ( 2017 ) and Molnar ( 2022 ), an additional benefit
f using tree based models is that through tree traversal and dynamic
rogramming the computational cost for computing SHAP values is 
rought down from exponential time O(2 n ) to O( n 2 ) polynomial
ime. We calculate feature importances shown in Section 5 for 
ach model f by treating the model from the tenth fold in the first
epetition as if they were taken from the test set, and averaging their
i ( f , x ) from equation ( 5 ), which represents the weighted average
f differences in model performance when a feature x out of M
implified input features is present versus absent for all subsets 
 

′ ⊆x ′ . 

i ( f , x) = 

∑ 

z ′ ⊆x ′ 

| z ′ | !( M − | z ′ | − 1)! 

M! 

[
f x ( z 

′ ) − f x ( z 
′ \ i) ] , (5) 
One of the most important things shown by Figs 10 and 11 is
hat there are significant interesting differences between the feature 
mportances attributed to the processed features for GRS 1915 + 105
nd MAXI 1535–571, which may be related to the nuances of
he process driving QPOs in these systems. F or e xample, in GRS
905 + 105, net count rate and hardness ratio are clearly the most
mportant features, after which importance falls precipitously and 
emains uniformly modest for the rest, with this proportional decrease 
anging from a factor of 3 for nthcomp asymptotic power law to six
or nthcomp and discbb normalization. Because we have used 
HAP values for importance, we can rule out the un-importance 
f these features stemming from multicollinearity or training set 
rtifacts, which means they could potentially be related to curious 
hysical related conditions. Ho we ver, there is no ambiguity about the
mportance of net count rate and hardness, because an XRB outburst’s
-shaped state-evolution in the hardness-intensity diagrams (HIDs) 
s known to also be indicative of changes in timing (e.g. QPO)
roperties as tracked in HIDs (Motta et al. 2015 ; Motta 2016 ).
his is also in agreement with the findings of fig. 2 of Garc ́ıa
t al. ( 2022b ), in which the QPO frequency of GRS 1915 + 105 is
hown to vary with a somewhat inverse relationship with hardness 
atio across mostly horizontal and vertical gradients in inner disc 
emperature and power law index, respectively. In contrast to GRS 

915 + 105, the feature importances for both the best regression and
lassification models on processed MAXI J1535 −571 input features 
a v o ̄ur a single feature abo v e all others: discbb normalization
although in the case of classification, net count rate and nthcomp
MNRAS 524, 4801–4818 (2023) 
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Figure 10. Tree-SHAP calculated average of absolute value SHAP feature importances for the most accurate predictive regression models for GRS 1915 + 105 
engineered inputs (left, extra trees), MAXI J1535 −571 engineered inputs (middle, extra trees), and MAXI J1535 −571 energy spectra inputs (right, extra trees). 
The features denoted A − F correspond to net count rate, hardness ratio, asymptotic power-law photon index, nthcomp normalization, inner-disc temperature, 
and discbb normalization features, respectively. The error bars on each importance correspond to 99 per cent confidence intervals on mean importances, the 
dashed line the median importance of all features, and the dotted line the mean of the same. Features corresponding to hard channel count rates are significantly 
more important than the median and mean feature importance, which is likely related to the higher energy origin of QPOs. An interesting difference between 
these plots and that for GRS 1915 + 105 in Fig. 10 is that Extra Trees primarily weights discbb normalization for MAXI J1535-571 regression but splits 
primary importance for GRS 1915 + 105 between the net count rate and hardness ratio engineered inputs. 

Figure 11. Similar to Fig. 10 , except for the best classification models for MAXI J1535 −571 binary output based on engineered inputs (left, random forest), and 
energy spectral inputs (right, random forest). As seen for regression, hard energy channels similarly dominant feature importances for energy spectra input, yet, 
while discbb normalization is still the most important processed feature for classification, more importance is attached here to net count rate and nthcomp 
normalization here than for regression on MAXI J1535 −571. 
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Figure 12. A pairplot displaying the pairwise relationships between engineered input and Lorentzian QPO output paramters for all GRS 1915 + 105 data. The 
letters in A − F correspond to the net count rate, hardness ratio, asymptotic power-law photon index, nthcomp normalization, inner-disc temperature, and 
discbb normalization features, respectively. 

Table 1. Feature spaces for model hyperparameter tuning. 

Decision tree Random forest Extra trees 

min samples leaf { 1,3 } { 1,3 } { 1,3 } 
min samples split { 2,4,6,8 } { 2,4,6,8 } { 2,4,6,8 } 
n estimators { 50,100,150, { 50,100,150, 

200,250,500 } 200,250,500 } 
warm start { True , False } 
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ormalization are still significant for MAXI J1535 −571). This 
uantity (ignoring relativistic and plasma corrections) approximately 
orresponds to the projected area of the inner-disc on the sky:
 disk = ( R in 

D 10 
) 2 cos ( θ ), where R in is the apparent inner disc radius

n km, D 10 is the distance to the source in 10 kpc units, and θ the
ngle of the disc (Arnaud et al. 1999 ). This prominent importance is
ntriguing because it implies a dependence between QPO presence 
nd frequency on discbb normalization and therefore inner disc 
adius. This is corroborated by Garg et al. ( 2022 ), who find that
PO frequency correlates significantly with the inner disc radius for 
AXI J1535 −571 in data provided by AstroSat according to the 

ower law relationship v QPO ∝ Ṁ R 

p 

in , where Ṁ is mass-accretion 
ate (Rao, Singh & Bhattacharya 2016 ). Ho we ver, (Garg et al. 2022 )
o not find a clear relationship between discbb normalization and 
PO frequencies in the ∼1.6–2.8 Hz range. Overall, the similarity 

n feature importances for engineered features for regression and 
lassification in MAXI J1535 −571 shows that the same features that
re important in determining the parametrizations of QPOs are those 
mportant in determining their presence versus absence. Regarding 
he feature importances derived from the energy spectra, the highest 
nergy channels are the most important for both regression and 
lassification, with the five most important channel counts rates for 
ach coming from the equi v alent [9.5 − 10), [9.0 − 9.5), [8.5 − 9.0),
8.0 − 8.5), and [7.5 − 8.0) keV channels for regression and 
9.0 − 9.5), [9.5 − 10.0), [8.5 − 9.0), [8.0 − 8.5), and [3.0 − 3.5)
eV channels for classification. Notably, for both classification and 
egression only hard channels ≥3 keV have importances significantly 
reater than the mean and median importances for all features in
heir respective sets at the 99 per cent confidence level. The fact that
he high-energy spectral data is most informative of the QPOs is
nteresting and we speculate that this may be related to the fact that
POs manifest more prominently at higher energies abo v e the disc’s
eak temperature. A broader perspective which generalizes these 
elationships to other BH systems is of high interest, but outside
he scope of this work. Consequently, we are currently working on
 comprehensive follow-up work, in which we will evaluate these 
odels on data identically reprocessed for numerous BHs and NSs 

imultaneously. One additional difference between this preliminary 
ork and that prospective one will be full inclusion of all LF QPO

eatures for all sources (such as GRS 1915 + 105), because although
ocusing on the dominant frequency for QPOs in GRS 1915 + 105
MNRAS 524, 4801–4818 (2023) 
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erved our purposes here, this would be a limitation in the future
ecause such focus would not make it clear whether these trained
orest methods would predict many false positives and false ne gativ es
or sources similar to GRS1915 + 105 that do include QBO-absent
ata, yet perform well none the less. 

.2 Statistical model comparison 

s mentioned in Section 4 , we included an ordinary least-squares
odel as a benchmark for their utilization. As Fig. 4 , 5 , 6 , and 7

emonstrate, each of our models outperform linear regression. In
rder to assess the significance of the impro v ements, we employ the
adeau & Bengio ( 2004 ) formulation of the frequentist Diebold-
ariano corrected paired t -test (Diebold & Mariano 1995 ), 

 = 

1 
k·r 

∑ k 

i= 1 

∑ r 

j= 1 x ij √ 

( 1 
k·r + 

n test 
n train 

) ̂  σ 2 
, (6) 

here k = 10 and represents the number of k-fold validation folds, r =
0 and equals the number of times we repeated the k -fold procedure, x
s the performance difference between two models, and ˆ σ 2 represents
he variance of these differences (Pedregosa et al. 2011 ). It is neces-
ary to correct the t − values in this manner because the performances
f the models are correlated with each fold upon which they are
ested, as some folds may make it harder for one of, or all of, the mod-
ls to generalize, whereas others make it easier, and thus the collective
erformance of the models varies. The results of these pairwise tests
or all permutations of two models on both sources is shown in
able A1 . 
We additionally implement the Bayesian Bena v oli et al. ( 2016 )

pproach, which allows us to calculate the probability that a given
odel is better than another, using the Student distribution formu-

ated in equation ( 7 ): 

t ( μ; n − 1 , x , ( 
1 

n 
+ 

n test 

n train 
) ̂  σ 2 ) (7) 

here n is the total number of samples, x̄ is the mean score
ifference, and ˆ σ 2 is the Nadeau & Bengio ( 2004 ) corrected variance
n differences (Pedregosa et al. 2011 ). Both sets of these pairwise
ests are also shown in Table A1 . 

Based on these tests, it is clear that extra trees significantly out
erforms all other models, and interestingly, that each model that
ollows it in decreasing order of performance is significantly better
han the remaining models following it, confirming the findings
n Fig. 3 . In fact, in all cases of regression, the order of model
erformances is extra trees, random forest, decision tree, and finally,
inear regression. This result is expected, with decision trees being

ore accurate than linear regression (because the former can leverage
on-linear relationships between input features and QPOs), as well
s for random forest to outperform individual decision trees (because
andom forests are ensemble aggregations of decision tree forests).
he similar yet superior performance of extra trees in comparison

o random forest is notable but not striking (Mathew 2022 ), yet this
mpro v ement should be considered with the additional size of an
xtra trees model compared to a trained random forest counterpart
this difference ranges from larger in terms of leaf count; Geurts
t al. 2006 ). Nevertheless, based on these findings it is clear that these
lassical machine learning models have been able to fairly accurately
ptimize for individual sources. However, although extra trees may
erform best in these individual source scenarios, it remains yet to be
een whether these classical models will be generalizable for accurate
ross-source analyses (as proposed earlier) or if other models like
NRAS 524, 4801–4818 (2023) 
eural networks will be required (Neyshabur et al. 2017 ). Although
t may seem reasonable to combine data from these two sources and
 v aluate the predictive performance of these models in such a source-
eterogeneous space, this would not be appropriate because any the
esultant feature importances would not communicate whether or not
he input engineered or raw spectral features are being leveraged for
ntuition into the physical state of the objects, or if their importances
ust reflect the models picking up on artifacts from the data generation
rocedure. In other words, this could be considered a form of
ata leakage, considering differing instrumental sensitivities, QPOs
dentification methods for each source, etc. (Hannun, Guo & van der

aaten 2021 ; Yang et al. 2022a ). Hence, this provides additional
oti v ation for follo w-up, in which energy and timing spectra from a

ingle instrument are reprocessed in an identical manner for multiple
bjects to prevent instrumental artifacts from contaminating the
ndings potentially reco v erable from such a source-heterogeneous
ata set. 

 C O N C L U S I O N  

n this paper, we have advanced no v el approaches utilizing machine
earning algorithms to link energy spectral properties (as both
ebinned raw energy spectra and alternatively via engineered features
erived from spectral fits) with the presence and properties of QPOs
rominent in power-density spectra of two low-mass XRB BH
ystems. Specifically, we tested a selection of tree-based classical
achine learning models using engineered features derived from

nergy spectra to predict QPO properties for fundamental QPOs
n the BH GRS 1915 + 105, and such derived features as well
s raw rebinned energy spectra to characterize fundamental and
armonic QPOs in the BH MAXI J1535 −571. Additionally, we
rained classification algorithms on the same data to predict the
resence/absence of QPOs, as well as the multiclass QPO state of
AXI J1535 −571 observations. We compared the performance of

he machine learning models against each other, and found extra
rees to perform best in all regression situations for both sources.
dditionally, we compared every model against simplistic linear

regression) and logistic (classification) models as well, finding the
achine learning models outperformed their linear counterpart in

ll regression cases, with linear regression notably struggling to
orrectly identify observations lacking QPOs. The main findings
rom this study are: 

(i) All tested regression models yielded significantly better results
n MAXI 1535–571 versus GRS 1915 + 105 data, despite the latter
aving 6 × more data with QPOs and no issue with QPO absent
bservations. We attributed this to the multitude of unusual variability
lasses unique to GRS 1915 + 105 among Huppenkothen et al.
 2017b ). 

(ii) Kolmogoro v–Smirno v tests on permutations of QPO param-
ter residuals showed that the best-fitting regression model, Extra
rees, does not fa v our any particular QPO parameter and instead
redicts for all with equal accuracy, including those for harmonics. 
(iii) Using rebinned raw spectral data as opposed to XSPEC

erived features resulted in significantly worse performance for
egression, binary classification, and multiclass classification on

AXI J1535 −571 observations. 
(iv) To enhance computational efficiency and ensure importance

redibility, we calculated TreeShap feature importances immune
o multicollinearity and found that for processed input features, extra
rees determined the most significant features for GRS 1915 + 105
o be net count rate and hardness ratio, whereas the same model
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redicting for MAXI J1535 −571 found discbb normalization most 
mportant, which suggests a dependence on physical inner disc radius 
n this case. 

(v) We found almost all the rebinned channels which are the 
ost important in determining the parameterizations of QPOs in 

egression are also those that are most important in determining 
heir presence versus absence in classifying MAXI J1535 −571 
nergy spectral data. Furthermore, for energy spectra, we found 
ard channels are the most important for both regression and 
lassification, which aligns with the understanding of higher energy 
PO manifestation abo v e peak disc temperatures 
(vi) We have proposed future applications of these methods that 

ange from extending the input feature space they are tested on (e.g.
cattering fraction and inclination) to moving from single source to 
ource/source-type heterogeneous samples to achieve our original 
oal of inter-object generalizations since in this paper we have 
ntroduced and laid the foundation for these methods on individual 
bjects. 

Finally, we based our work on our QPOML Python library, from
nput and output matrix construction and pre-processing, to hyperpa- 
ameter tuning, model e v aluation, and plot generation, which were 
ll conveniently streamlined for application and both (i) e x ecuted as
under-the-hood’ as possible while remaining user accessible; and 
ii) easily extendable to any number of QPOs and any number of
calar observation features for any number of observations from any 
umber of sources. This library is available on GitHub . 
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 DATA  AVA ILABILITY  

he data used for MAXI J1535 −571 are available at the NICER
rchive ( https:// heasarc.gsfc.nasa.gov/ docs/nicer/nicer archive.htm 

 ), and those for GRS 1915 + 105 belong to their correspond-
ng authors and are available at the following references Zhang 
t al. ( 2020 , 2022 ). The software used for energy spectral
ata analysis can be accessed from the HEASARC website ( 
ttps:// heasarc.gsfc.nasa.gov/ lheasoft/download.html ). The QPOML 
ode repository can be accesed via GitHub . 

Facilities:NICER , RXTE 

Softwar e:Softwar e: ASTROPY (Astropy Collaboration 2013 , 2018 ), 
ERAS (Chollet et al. 2015 ), MATPLOTLIB (Hunter 2007 ), NUMPY 

Harris et al. 2020 ), PANDAS (Wes McKinney 2010 ), SCIENCEPLOTS 

Garrett 2021 ), SCIPY (Virtanen et al. 2020 ), SCIKIT-LEARN (Pe-
regosa et al. 2011 ), and SEABORN (Waskom 2021 ). 
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M

A

 for all regression model comparisons discussed in Section 6 , where GRS 
hereas MAXI J1535 −571 models are tested on both Processed, as well as 

T (Extra Trees), RF (Random Forest), and DT (Decision Tree). The t values 
e average residual values for each model. These are accompanied by their 

odel name t p Per cent chance Per cent chance 
first better second better 

RF 0.67 0.25 74.74 25.26 
DT 0.83 0.21 79.60 20.40 
inear 5.73 0.00 100.00 0.00 
DT 0.18 0.43 57.12 42.88 
inear 5.17 0.00 100.00 0.00 
inear 5.66 0.00 100.00 0.00 

DT 0.40 3.47e −01 65.45 34.55 
RF 0.60 2.76e −01 72.59 27.41 
inear 11.21 9.35e −12 100.00 0.00 
RF 0.15 4.40e −01 56.00 44.00 
inear 8.74 1.62e −09 100.00 0.00 
inear 9.73 1.86e −10 100.00 0.00 

RF 1.25 1.07e −01 89.37 10.63 
DT 4.24 4.33e −05 100.00 0.00 
inear 11.20 4.19e −16 100.00 0.00 
DT 3.61 3.29e −04 99.98 0.02 
inear 9.04 9.27e −13 100.00 0.00 
inear 4.51 1.75e −05 100.00 0.00 
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PPENDIX  

Table A1. Pairwise fold corrected frequentist and Bayesian statistics
1915 + 105 models are only tested on extracted (Processed) features, w
rebinned raw energy spectra features (Spectral). Abbreviations-wise, E
represent the fold-corrected Student’s t values of the differences of th
corresponding p values. 

Source (Input type) First model name Second m

MAXI J1535 −571 (Spectral) 
ET 

ET 

ET L
RF 
RF L
DT L

MAXI J1535 −571 (Processed) 
ET 

ET 

ET L
DT 

DT L
RF L

GRS 1915 + 105 (Processed) 
ET 

ET 

ET L
RF 
RF L
DT L
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