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feasibility of abatement technologies by estimating firm-level marginal 
abatement costs 

Lennard Rekker *, Michaela Kesina , Machiel Mulder 
Faculty of Economics and Business, University of Groningen, Netherlands   

A R T I C L E  I N F O   

JEL classifications: 
D24 
D61 
Q52 
Q53 
Q54 
Q58 
Keywords: 
Marginal abatement cost 
Carbon dioxide emissions 
Directional distance function 
Shadow price 
European chemical firms 

A B S T R A C T   

As many other industries, the chemical industry has to strongly reduce its’ carbon emissions, for which various 
abatement technologies exist. We study the economic feasibility of these abatement technologies by estimating 
the Marginal Abatement Cost (MAC) of CO2 emissions for 24 firms in the European chemical sector over the 
period 2015–2020. We estimate the firm-level MAC by using a quadratic directional output distance function 
(DDF) model. We find a median MAC of 429 €/t CO2, which is significantly above current carbon prices, indi-
cating that most firms in this industry prefer to use carbon allowances instead of reducing their own emissions. 
We conclude that carbon abatement in the chemical industry is only likely when the carbon price is significantly 
higher or when financial support is provided for certain abatement technologies, such as renewable hydrogen 
and bio-based ammonia.   

1. Introduction 

The European chemical industry is one of the most energy-intensive 
industries in the European economy and the largest industrial energy 
consumer in the EU-28, accounting for approximately 21% of final en-
ergy consumption (50.8 million tons of oil equivalent) in the EU-28 
industry sector in 2019 (Eurostat, 2022).1 As the sector’s current en-
ergy input is mostly based on fossil fuels, predominantly oil and gas, the 
chemical sector is a relatively large contributor to European greenhouse 

gas (GHG) emissions.2 According to the European Environment Agency 
(EEA, 2021), the EU-28 chemical industry emitted a total of 132 million 
tons (Mt) of GHG emissions relating to the on-site combustion of fuels to 
generate energy and the direct emissions from production processes in 
2019, about 3.5% of total net GHG emissions in the EU-28 in the same 
year. To reach the economy-wide targets as stated in the European Green 
Deal (EC, 2019), which include a 55% net carbon emission reduction by 
2030 and carbon neutrality by 2050, the chemical sector needs to take 
measures to reduce the energy and carbon intensity of production. 

* Corresponding author. 
E-mail address: l.r.rekker@rug.nl (L. Rekker).   

1 The industry sector can be classified into manufacturing, non-manufacturing and energy-sectors, including iron and steel, chemical and petrochemical, non- 
ferrous metals, non-metallic minerals, transport equipment, machinery equipment, mining and quarrying, food, beverages and tobacco, paper, pulp and printing, 
wood and wood products, construction, textile and leather.  

2 We use the term greenhouse gas (GHG) emissions, carbon dioxide equivalent (CO2e) emissions, and (carbon) emissions interchangeably to cover all the emissions 
included in the Kyoto Protocol: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride 
(SF6), and nitrogen trifluoride (NF3). CO2-equivalent is a single metric that allows for comparing the emissions from these various GHGs based on their global 
warming potential. 

Contents lists available at ScienceDirect 

Energy Economics 

journal homepage: www.elsevier.com/locate/eneeco 

https://doi.org/10.1016/j.eneco.2023.106889 
Received 5 September 2022; Received in revised form 10 July 2023; Accepted 17 July 2023   

mailto:l.r.rekker@rug.nl
www.sciencedirect.com/science/journal/01409883
https://www.elsevier.com/locate/eneeco
https://doi.org/10.1016/j.eneco.2023.106889
https://doi.org/10.1016/j.eneco.2023.106889
https://doi.org/10.1016/j.eneco.2023.106889
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2023.106889&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Economics 126 (2023) 106889

2

There are various options to decarbonize, including demand-side 
measures, energy efficiency improvements (e.g., retrofitting existing 
plants and buildings to reduce energy consumption), using biomass or 
hydrogen for energetic (heating) and non-energetic (feedstock) pur-
poses, electrifying heat provision (e.g., using low-carbon electricity in 
electric boilers to replace gas-fired boilers), and carbon capture and 
storage (CCS). However, besides considering technical feasibility, firms 
have to consider the economic feasibility of the available carbon 
abatement measures to allocate their investments efficiently. From a 
welfare perspective, an efficient allocation of investment capital asso-
ciated with carbon abatement is important to minimize the total 
abatement costs of reaching climate targets. It is desirable that market 
players exercise least cost abatement measures first. 

The decision of market players to invest in abatement technologies is 
based on the opportunity costs of replacing existing for alternative 
technologies. The opportunity costs are determined by the marginal 
abatement cost (MAC) of a given abatement measure, which is the cost 
(in €/t CO2e) associated with the last unit of emission abatement for a 
given quantity of emission reduction. Therefore, estimates of the MAC 
can provide valuable information on the economics of carbon emission 
abatement and the economic potential of carbon abatement measures in 
the European chemical sector. In addition, MAC estimates may 
contribute to the cost-efficient design and implementation of carbon 
reduction policies specifically targeted at the chemical industry, 
including policies providing subsidies or tax-benefits for certain low- 
carbon technologies. 

This study estimates and maps the distribution of the MAC in the 
chemical industry by evaluating firms’ carbon intensity levels relative to 
those of efficient peers with comparable production activities. We esti-
mate the firm-level MAC using the distance function approach under the 
production theory framework, which models the firm as a producer of 
both desirable and undesirable outputs given a set of economic and 
technical constraints. This theoretical framework states that the MAC (or 
shadow price) measures the trade-off between desirable and undesirable 
outputs (e.g., carbon emissions) or, stated differently, the value of the 
desirable output foregone to abate the undesirable output by one unit. 

More specifically, we estimate firm-level MAC using the directional 
output distance function (DDF) method (Chung et al., 1997; Färe et al., 
2005). The DDF is defined as the translation of a point (defined by a 
particular desirable and undesirable output combination) towards the 
efficient frontier along a specified vector, i.e. the directional vector (Jain 
and Kumar, 2018). The DDF allows for both proportional and non- 
proportional changes in outputs in order to reach the efficient frontier, 
expanding the desirable output and contracting the undesirable output 
in any chosen direction (Chambers et al., 1998; Färe et al., 2005). 
Further, the DDF measures firms’ technical and environmental effi-
ciency, which is given by the deviation of each firm from the boundary 
of the output set. This efficiency provides information on about the 
extent to which firms, if they were to operate efficiently, are able to 
expand their desirable outputs and reduce their undesirable outputs. 
Previous literature has applied the DDF to estimate the MAC at the 
regional level, industrial level, for electric utilities at plant- or firm-level, 
and for firms in the iron and steel industry (Matsushita and Yamane, 
2012; Peng et al., 2012; Wei et al., 2013; Du et al., 2015; Xiao et al., 
2017; Ma and Hailu, 2016; Wang et al., 2017; Jain and Kumar, 2018; Ji 
and Zhou, 2020). 

This study contributes to the literature in several ways. First, we 
provide an assessment of the firm-level MAC within the European 
chemical industry. Second, we compare the estimated MACs to the 
prevailing carbon market prices in the EU Emission Trading System (EU- 
ETS) to determine the extent to which firms are incentivized to engage in 
actual abatement activities. Third, we compare the estimated MACs with 
data on the cost of various abatement technologies available in the 
chemical sector to identify the feasible options for emission reduction in 
various parts of the industry. 

Our dataset consists of 24 firms active in the European chemical 

industry over the period 2015 to 2020.3 We measure the level of firm 
efficiency by crediting firms for reducing their average carbon emission 
intensity per unit of output, rather than for reducing their absolute 
emissions. More specifically, we assume that firms’ production and 
carbon abatement strategies are based on a good output-maximizing 
approach, which corresponds to the practice of relative benchmarking 
for industries in the EU-ETS. We specify the DDF parametrically using 
the quadratic functional form and estimate shadow prices using the 
linear programming method by Aigner and Chu (1968). In the second 
step, we compare our derived MACs to the carbon market price and the 
cost of various abatement technologies available in the chemical sector. 

This study finds that the estimated median shadow price of CO2- 
emissions for the assumed abatement strategy of firms in the European 
chemical sector is 429 €/t CO2. Further, we find that the representative 
firm can reduce its’ carbon intensity with 3.96% if it were to operate 
efficiently, which can be achieved by increasing revenues by €333.78 
million while holding carbon emissions constant. In addition, we find a 
significant variation in firm-level MACs, which suggests that firms have 
different technological options to lower their carbon emissions. Notably, 
the range of abatement costs for the available carbon reduction tech-
nologies in the chemical industry is comparable to the range of our 
estimated firm-level MACs. Moreover, the median MAC indicates that 
the current market carbon price in the EU-ETS is not sufficient to induce 
the representative firm to engage in abating activities within the firm. At 
last, the regression analysis of the determining factors of the estimated 
shadow prices finds that the shadow prices are negatively associated 
with carbon intensity, energy intensity and market capitalization, indi-
cating increasing returns to scale in carbon emission abatement. 

The remaining sections are structured as follows. Section 2 describes 
the development of GHG emissions in the EU-28 chemical sector and the 
available technologies for carbon abatement. Section 3 provides the 
literature review on estimating the MAC. Section 4 provides the theo-
retical and empirical specification of our model. Section 5 describes the 

Fig. 1. GHG emissions index for the chemical industry (CRF2B) and fuel 
combustion in the production of chemicals (CRF1A2C) in the EU-28 in the 
period 1990–2020 and production index for the manufacture of chemicals and 
chemical products (C20) in the EU-28 in the period 1990–2019. Source: Eu-
ropean Environment Agency (2021), Eurostat (2022), Cefic (2022). 

3 The firms in our sample had an aggregated revenue (net sales) of 204 billion 
in 2018, which is about 36% of the 565 billion in sales of the total EU-28 
chemicals industry in 2018 (Cefic, 2022). Additionally, these firms collec-
tively generated about 86 million ton of CO2-equivalent emissions, which 
represents approximately 64% of the total emissions of 139 million ton in the 
EU-28 chemical industry in 2018 (EEA, 2021; Bloomberg, 2022). Hence, our 
sample represents a significant part of the European chemical industry. 
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data. In Section 6, we describe the results of the DDF estimation and the 
regression model of the factors behind the MAC. Section 7 concludes. 

2. Carbon abatement in the chemical industry 

This section describes the development of GHG emissions in the EU- 
28 chemical industry. Further, it describes the carbon abatement tech-
nologies available to the chemical sector for achieving carbon reduction 
targets. 

The chemical sector consumes energy and raw materials to produce 
plastics, fibers, solvents, inorganic chemicals, fertilizers and various 
other types of products. A distinctive feature of the chemical sector is 
that it uses different types of energy carriers for both energetic purposes, 
as a source of power or thermal heat, and non-energetic (i.e., feedstock) 
purposes, as raw material input rather than as a source of energy 
(Boulamanti and Moya, 2017). About 75% of energy and non-energy use 
is used in large upstream production processes producing certain 
products, such as olefins (ethylene, propylene and butadiene), aromatics 
(benzene, toluene and xylene), ammonia, methanol and carbon black 
(Saygin and Gielen, 2021). 

The transformation of energy and raw materials into products results 
in direct and indirect emissions. Direct emissions come from sources 
directly owned or controlled by the firm (Scope 1 GHG emissions) and 
can be divided into two sources, including the emissions from the 
combustion of fuels (combustion-related emissions) and the emissions 
generated from chemical transformations of raw materials consumed for 
non-energy use (process-related emissions). Indirect emissions come 
from assets not owned or controlled by the firm and either relate to the 
emissions from purchased electricity, steam, heat or cooling (Scope 2 
GHG emissions) or those from the release of embedded carbon in 
chemical products (Scope 3 GHG emissions). When energy carriers are 
used for non-energetic purposes, part of the CO2 becomes embedded in 
the chemical products. The embedded carbon is released during the end- 
of-life treatment of these products during product use or waste treatment 
(e.g., energy recovery). While half of the (global) chemical sector’s en-
ergy input is consumed as feedstock (IEA, 2021), resulting in significant 
Scope 3 GHG emissions, this study only considers Scope 1 GHG emis-
sions to avoid issues related to carbon accounting. 

In the period between 1990 and 2020, the EU-28 chemical industry 
has reduced its’ absolute Scope 1 GHG emissions by about 60%, while 
simultaneously expanding production by 42%, indicating a decoupling 
of production growth and GHG emissions (see Fig. 1). This emission 
reduction has mainly been the result of reductions in process-related 

nitrous oxide (N2O) and fluorinated gas emissions (see Fig. 2) and im-
provements in energy efficiency, such as the implementation of com-
bined heat and power and continuous process improvements. Over the 
same period, both fuel combustion-related and absolute CO2 emissions 
decreased to a lesser extent, while no significant reductions in GHG 
emissions have been observed after 2013 (see Fig. 3). 

From the techno-economic literature, we find various abatement 
options for carbon abatement available in the chemical sector (Saygin 
and Gielen, 2021). These options can be divided into the following 
categories: energy efficiency improvements, fuel switching, feedstock 
switching, circular economy concepts, carbon capture and storage 
(CCS), and shifting to low-carbon electricity. In Fig. 4, we describe the 
20 carbon abatement options with their corresponding abatement cost 
range as derived from Saygin and Gielen (2021).4 

3. Literature on estimating marginal abatement cost 

There are three broad categories of methods to derive the marginal 
abatement cost (MAC) of a decision-making unit (DMU), including (1) 
expert-based evaluations, (2) model-derived methods, and (3) 
production-based methods (Kesicki, 2010; Kesicki and Strachan, 2011; 
Du et al., 2015). 

Expert-based MACs are derived based on the assumptions of experts 
on the carbon abatement potential and costs of various abatement 
technologies (e.g., see Nauclér and Enkvist, 2009; Kesicki, 2010). While 
this method contains high technological detail, it is criticized for 
neglecting system-wide interactions, interactions between abatement 
measures (with the risk of double counting reduction potentials), 
transaction costs, and behavioral aspects (Kesicki and Strachan, 2011; 
Du et al., 2015). 

Model-derived MACs are calculated using bottom-up or top-down 
models of the energy system. Bottom-up models are partial 

Fig. 2. CO2-equivalent emissions per type of GHG from the chemical industry 
(CRF2B) and fuel combustion in the production of chemicals (CRF1A2C) in the 
EU-28 in the period 1990–2020. Source: European Environment Agency (2021), 
Cefic (2022). 

Fig. 3. Combustion emissions and process emissions from the chemical in-
dustry (CRF2B) and fuel combustion in the production of chemicals (CRF1A2C) 
in the EU-28 in the period 1990–2020. Source: European Environment Agency 
(2021), Cefic (2022). 

4 Maddedu et al. (2020) covers a more extensive assessment of technologies 
for the direct electrification of production processes, but does not report the 
associated abatement cost. According to Maddedu et al. (2020), all energy 
consumption for heating and cooling in the chemical sector can be electrified 
directly, in potential reducing 62% of the sector’s Scope 1 GHG emissions. 
When also including the energy demand for feedstock, the electrification po-
tential reduces to 23%. If electricity cannot substitute for fossil fuels, in the case 
of chemical feedstock, indirect electrification via synthetic fuels can be a low- 
carbon alternative to reduce end-of-life emissions. 
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equilibrium models representing an energy system or sector, and are 
based on engineering approaches that model energy technologies 
explicitly (e.g., see Criqui et al., 1999; Loughlin et al., 2017). Top-down 
models are general equilibrium models covering the economy-wide 
production activities of different economic sectors, and the in-
teractions between these (e.g., see Ellerman and Decaux, 1998; Klepper 
and Peterson, 2006). In both types of models, MACs are derived by 
applying incrementally increasing carbon prices and recording the 
corresponding emission levels, or vice versa, by defining emission 
reduction levels and deriving the carbon prices (Loughlin et al., 2017). 
While these types of models account for interactions between abatement 
technologies and across time, the drawback of these models is that these 
lack technological detail and that outcomes are sensitive to the under-
lying modeling assumptions (Du et al., 2015). 

Production-based methods rely on production theory, which assumes 
that the DMU employs a production technology to produce a combina-
tion of desirable and undesirable outputs, using a given set of inputs, 
subject to a set of technical and economic constraints. To mitigate the 
undesirable output, the DMU must allocate productive resources to-
wards abatement activities, which increases costs and decreases profits. 
This constraint-induced cost can be interpreted as the opportunity cost 
of lowering the undesirable output, as noted by Du et al. (2015). 

Production-based methods include the cost function approach and 

the distance function approach. The cost function approach develops 
cost functions directly from cost data. Cost functions describe the rela-
tion between the cost of reducing emissions and a set of associated 
factors, such as emission levels and input factor prices, under the 
assumption of cost minimization. The cost function method calculates 
the MAC by constructing a cost function and taking the first order 
derivate with respect to emission levels to obtain the marginal cost 
function or by specifying the marginal cost function directly (Du et al., 
2015). A drawback of the cost function method is that cost information 
is usually difficult to obtain, as it often is confidential information. In 
addition, in cases where firms have public aspects, such as utilities, cost 
minimization does not necessarily drive firm decisions (Matsushita and 
Yamane, 2012). 

The distance function (DF) approach is an alternative method to 
model the environmental production technology that offers several ad-
vantages over the cost function when estimating the shadow price of the 
undesirable output. First, the distance function requires no information 
on input and output prices, which is often unavailable, to calculate 
shadow prices. Second, the duality between distance and cost functions 
allows for estimating the MAC relying only on information on input and 
output quantities. Third, the distance function requires no behavioral 
assumptions, such as cost minimization or revenue maximization 
(Matsushita and Yamane, 2012). Further, compared to the other 
methods described above, the DF method does not require making as-
sumptions about future economic and technological developments or 
specifying of a functional form (Ji and Zhou, 2020). 

The DF method commonly applies the (radial) Shephard distance 
function or the (non-radial) directional distance function (DDF) to 
model the environmental technology, which can both be input or 
output-oriented (Shephard, 1970; Färe et al., 1993; Chung et al., 1997). 
The main difference between the two is that the Shephard function ex-
pands both desirable and undesirable outputs proportionally, which is 
not ideal in the cases where undesirable outputs are not supposed to 
increase, whereas the DDF allows for both proportional and non- 
proportional changes in a particular direction for each output in order 
to reach the efficient frontier (Chung et al., 1997; Färe et al., 2005). This 
makes the DDF method more suitable for measuring DMU performance 
in the presence of undesirable output regulation, such as firms subject to 
carbon trading schemes. 

Both parametric and non-parametric methods can be used to calcu-
late the partial derivatives of the DF and obtain the shadow prices for the 
undesirable output. The non-parametric method usually refers to Data 
Envelopment Analysis (DEA), which constructs the production possi-
bility set as a piecewise linear combination of all observed inputs and 
outputs (Du et al., 2015). Examples of studies estimating the MAC using 
the DEA approach include, among others, Choi et al. (2012) and Xie 
et al. (2017). An advantage of DEA is that it can measure the efficiency of 
DMUs without assuming a functional form for the production frontier 
(Charnes et al., 1978). However, due to the non-differentiability of the 
DF under the DEA approach, it is possible that some efficient observa-
tions are located on the inflection points or vertices, so that there are no 
unique slopes at those points (Ma and Hailu, 2016). As the main 
advantage of the parametric specification is that the estimated frontier is 
differentiable, we focus on the parametric specification of the DF. 

The parameters of the parametric DF can be estimated using the 
deterministic linear programming (LP) model by Aigner and Chu 
(1968), which minimizes the sum of the deviations of the estimated DFs 
from their frontier under a given set of constraints, or by stochastic 
approaches based on stochastic frontier analysis (SFA). An advantage of 
the SFA method is that it accounts for statistical noise. However, a 
drawback is that SFA cannot incorporate constraints into the estimation 
and requires distributional assumptions for inefficiency and error terms. 

Fig. 4. The estimated abatement cost range for different technology alterna-
tives for carbon emission abatement in the chemical industry (in €/t CO2 using 
a 1 USD = 1 EUR exchange rate). Note: The bars depict the lower and upper 
bounds, as well as the mean value of the abatement cost per technology. The 
ranking of technologies is based on the mean abatement cost. Source: Saygin 
and Gielen (2021). 
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In contrast, the LP method does not make distributional assumptions and 
allows for modeling the DF properties using inequality constraints. 
Previous studies have used the parametric DDF to estimate the MAC at 
the regional level (Du et al., 2015; Ma and Hailu, 2016; Ji and Zhou, 
2020), at industrial level (Peng et al., 2012; Chen, 2013), for electric 
utilities (Matsushita and Yamane, 2012; Wei et al., 2013; Jain and 
Kumar, 2018), and firms in the iron and steel industry (Wang et al., 
2017). 

This paper contributes to the literature by estimating the MAC of 
firms in the European chemical industry. Using the parametric DDF 
method, we assume that the representative firm’s abatement strategy is 
based on a good output-maximizing approach, which reflects the regu-
latory environment of energy-intensive industries in the EU-ETS. To 
validate the results of our DDF model, we compare our derived MACs to 
the carbon market price in the EU-ETS and information on the cost of 
various abatement technologies available in the chemical sector. 

4. Method 

This section describes the theoretical framework for the derivation of 
shadow prices using the directional distance function (DDF), the 
empirical specification of our DDF model and the choice for the direc-
tional vector used in the DDF. Further, we explain the firm-specific 
factors used in the regression analysis to explain the MAC to clarify 
our results. 

4.1. Theoretical framework 

We assume the production process of firms in the chemical sector 
employs inputs x = (x1, x2,…, xN) ∈ RN

+ to produce desirable outputs 
y = (y1, y2,…, yM) ∈ RM

+ and undesirable outputs b = (b1, b2,…bJ) ∈ RJ
+. 

The production technology is represented by the output set P(x)
denoting the set of desirable and undesirable outputs (y, b) that can be 
jointly produced from the input vector x. More formally, 

P(x) = {(y, b) : x can produce (y, b) } (1) 

We impose the standard axioms on the output sets as described in 
Färe et al. (2005):  

i. P(x) is compact: P(0) = (0,0)
ii. Strong disposability of inputs: x ≤ x′ implies P(x) ∈ P(x′)

iii. Strong disposability of desirable outputs: (y′, b) ≤ (y, b) implies 
that (y′, b) ∈ P(x)

iv. Weak disposability of outputs: if (y, b) ∈ P(x), 0 ≤ θ ≤ 1, then 
(θy, θb) ∈ P(x). This assumption states that only proportional 
contractions of desirable and undesirable goods are feasible for a 
given level of inputs, implying that reducing undesirable outputs 
is costly.  

v. Null-jointness: if (y, b) ∈ P(x) and b = 0, then y = 0. This 
assumption states that it is not possible to produce the desirable 
output without some undesirable output, that is, the undesirable 
output is a by-product. 

We use the output-oriented DDF to represent the environmental 

technology set P(x). Let g =
(

gy, − gb

)
∕= 0 be the directional vector. 

Then, the output DDF can be defined as the maximum amount by which 
the outputs can be adjusted along a certain directional vector: 

D0
̅→

(x, y, b; g) = max
{

β :
(

y + βgy, b − βgb

)
∈ P

(
x
)}

(2)  

where β is non-negative and scaled to reach the frontier of the output set 
(

y + β*gy, b − β*gb

)
∈ P(x) with β* = D0

̅→
(x, y, b; g). A positive β in-

dicates that the firm is inefficient and a higher β points to a lower 
technical efficiency, implying that the firm is further away from the 
frontier. A zero value for β indicates that the firm is operating at the 
efficient frontier. The DDF satisfies the following properties from the 
output set P(x):  

i. Non-negativity: D0
̅→

(x, y, b; g) ≥ 0 if and only if (y, b) ∈ P(x)
ii. Monotonicity for the desirable output: D0

̅→
(x, y′, b; g) ≥

D0
̅→

(x, y, b; g) for (y′, b) ≤ (y, b) ∈ P(x)
iii. Monotonicity for the undesirable output: D0

̅→
(x, y, b′; g) ≥

D0
̅→

(x, y, b; g) for (y, b′) ≥ (y, b) ∈ P(x)
iv. Weak disposability: D0

̅→
(x, θy, θb; g) ≥ 0 for (y, b) ∈ P(x) and 

0 ≤ θ ≤ 1,  

v. Translation property: D0
̅→

(
x, y + αgy,b − αgb;g

)
= D0

̅→
(x, y, b; g) −

α 

To derive the shadow price of the undesirable output, we use the 
duality between the maximal revenue function and the directional 
output distance function (Färe et al., 2006). Let p represent the market 
price for the desirable output and q = (q1,…, qJ) be a vector of unde-
sirable output prices that are unobservable. Then, the revenue function 
is given by: 

R(x, p, q) = max
y,b

{
py − qb : D0

̅→
(x, y, b; g) = 0

}
(3)  

where D0
̅→

(x, y, b; g) = 0 is used as constraint so to only consider the 
frontier of the production possibility set. To solve the maximization 
problem above and derive the shadow price function, we use the 
Lagrangian method. The Lagrangian function for (3) can be expressed as: 

L = py − qb+ λ D0
̅→

(x, y, b; g) (4) 

From the first order conditions with respect to y and b, we obtain 

δL
δy

: p+ λ
δ D0
̅→

(x, y, b; g)
δy

= 0 (5)  

δL
δb

: − q+ λ
δ D0
̅→

(x, y, b; g)
δb

= 0 (6) 

We derive the shadow price of the undesirable output (q) as follows: 

q = − p

[
δ D0
̅→

(x, y, b; g)
/

δb

δ D0
̅→

(x, y, b; g)
/

δy

]

(7)  

where shadow price q represents the value of desirable output foregone 
to reduce the undesirable output with one unit for a DMU operating at 
the efficient frontier (the so-called marginal rate of transformation be-
tween the desirable and the undesirable output). 

For illustration purposes, Fig. 5 describes how the DDF measures the 
efficiency of DMUs in the case of one desirable output (y) and one un-
desirable output (b) under different specified directional vectors (g). In 
the figure, DMU C is located under the boundary of the production 
possibility set P(x), which implies that DMU C’s production process is 
inefficient compared to its’ peers. Efficiency can be defined along any 
specified directional vector from point C towards the efficient frontier 
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(for example, towards DMUs A, B, or D). The directional vector g =
(

gy, − gb

)
describes the simultaneous unit expansion of the desirable 

output and the unit contraction of the undesirable output in the pro-
duction function. Alternatively, we can assume the desirable and un-

desirable outputs are treated asymmetrically. The vector g =
(

gy,0
)

describes a situation in which the desirable output is allowed to expand 
while the undesirable output is held constant. In this case, the inefficient 
firms move vertically to the efficient frontier to gain maximum good 
output for a given amount of undesirable output. The vector g =

(
0, − gb

)

holds the desirable output constant while contracting the undesirable 
output. Here, the inefficient firms move horizontally to the efficient 
frontier to gain minimum undesirable output for a given amount of 
desirable output. 

The slopes of the lines tangent to the points of the efficient DMUs 
represent the relative shadow prices for output bundle C(y, b). As 
denoted by Eq. (7), the relative shadow price equals the ratio of the 
partial derivatives of the distance functions with respect to both outputs. 
A vertical directional vector favoring the expansion of the desirable 
output relates to a relatively low slope equal to (q/p)’ in Fig. 5, whereas 
a horizontal vector favoring the reduction of the undesirable output 
relates to relatively large slope equal to (q/p)”. The vertical and hori-
zontal vectors, given by g = (1,0) and g = (0, − 1), represent the lower 
and upper boundaries of the relative shadow prices in the DDF (Wei 
et al., 2013; Wang et al., 2017). 

4.2. Empirical specification 

We use the deterministic LP model by Aigner and Chu (1968) to 
compute the unknown parameters in the parametric DDF. Frequently 
used functional forms for the parametric specification include translog 
and quadratic functions (Zhou et al., 2014). Contrary to the translog 
form, the quadratic form can be specified to satisfy the translation 
property (Färe et al., 2006). In addition, previous literature has 

indicated that quadratic models outperform translog models under 
various conditions (Färe et al., 2008; Vardanyan and Noh, 2006; Mat-
sushita and Yamane, 2012). Therefore, we specify the quadratic function 
to parameterize the DDF. 

Previous studies have argued for using a multi-pollution framework, 
modeling multiple undesirable outputs in the production technology to 
obtain conditional MAC estimates rather than unconditional MAC esti-
mates obtained from modeling a single undesirable output (Ma and 
Hailu, 2016; Ji and Zhou, 2020). To estimate the overall compliance cost 
of pollutant mitigation, the conditional MAC is more informative, as 
mitigating a given pollutant (e.g., carbon dioxide) has often the co- 
benefit of mitigating other correlated pollutants in the mitigation pro-
cess, such as sulfur dioxide, methane, or nitrous oxide. Due to data 
availability, we model a single pollution model, instead of modeling a 
multi-pollution model, using a single metric covering different types of 
GHGs (see footnote 5). 

Suppose each firm in the European chemical sector employs three 
inputs, namely labor (x1), capital (x2) and energy consumption (x3), to 
produce a desirable output, revenue (y), and an undesirable output, 
carbon emissions (b). Then, the quadratic DDF for firm i in year t can 
expressed as: 

D0
̅→

(xit, yit, bit; g) =a0 +
∑3

n=1
anxnit +

1
2
∑3

n=1

∑3

n′=1

ann′xnitxn′it + β1yit +
1
2
β11y2

it

+ γ1bit +
1
2

γ11b2
it +Σ3

n=1δnxnityit +Σ3
n=1ηnxnitbit + μyitbit

(8)  

where a0, an, ann′, β1, β11, γ1, γ11, δn, ηn, and μ1 are the unknown pa-
rameters to be estimated for n and n′ = 1,2,3. Then, the shadow price (or 
MAC) is calculated by taking the derivative of Eq. (8) with respect to the 
desirable and undesirable outputs and substituting the result into Eq. 
(7): 

Fig. 5. Distance functions. Note: P(x) denotes the output set, y is the desirable output, b is the undesirable output, p is the price of the desirable output, q is the 
shadow price of the undesirable output, q

p is the relative shadow price, g represents a directional vector. Points A, B, C, and D represent DMUs. 
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δ D0
̅→

(xit, yit, bit; g)
/

δyit = β1 + β11yit +Σ3
n=1δnxnit + μbit (9)  

δ D0
̅→

(xit, yit, bit; g)
/

δbit = y1 + γ11 +Σ3
n=1ηnxnit + μyit (10)  

q = − p
[

y1 + γ11 + Σ3
n=1ηnxnit + μyit

β1 + β11yit + Σ3
n=1δnxnit + μbit

]

(11) 

Considering the various chemical products of the chemical firms in 
our sample, we use the monetary output value of these firms rather than 
the physical outputs as desirable outputs (Wang et al., 2017). This im-
plies that p represents the market price of revenue, which is a monetary 
measure of goods and services produced with a value of 1. In this case, 
the shadow price is interpreted as the value of revenue foregone to 
reduce carbon emissions with one unit for a firm operating at the effi-
cient frontier. 

The deterministic LP method by Aigner and Chu (1968) is used to 
estimate the unknown parameters on the right-hand side of the 
quadratic DDF in Eq. (8). The LP method estimates the parameters by 
minimizing the sum of the deviations between the individual firm ob-
servations and the frontier in each year, subject to the constraints 
satisfying the underlying restrictions of the DDF. Following Ji and Zhou 

(2020), we define the directional vector as g =
(

gy, gb

)
= (σ, − ν). Then, 

the LP model can be denoted as follows: 

minΣI
i=1ΣT

t=1

[
D0
̅→

(xit, yit, bit; g) − 0
]

subject to  

i. D0
̅→(

xit , yit, bit; g
)
≥ 0, i = 1,…, I, t = 1,…,T  

ii. δ D0
̅→(

xit, yit , bit; g
)
/δyit ≤ 0  

iii. δ D0
̅→(

xit, yit , bit; g
)
/δbit ≥ 0  

iv. αnn′ = αn′n for n ∕= n′  

v.  

σβ1 − νγ1 = − 1; σβ11 = νμ; σμ = νγ11; σΣ3
n=1δn = νΣ3

n=1ηn (12)   

Restriction (i) ensures that all observations are feasible and located 
either on or below the frontier; (ii) and (iii) ensure negative mono-
tonicity and positive monotonicity in the desirable and undesirable 
outputs, respectively; (iv) impose the symmetry conditions; and (v) 
imposes the translation property of the DDF which depends on the 
specification of the directional vector. 

4.3. Choice of directional vector 

The directional vector used in the DDF represents the different pro-
duction and emission abatement strategies of the DMUs. From the 
literature, it can be inferred that the estimated shadow prices of unde-
sirable outputs are sensitive to the directional vector used in the DDF 
estimation (Vardanyan and Noh, 2006; Wang et al., 2017; Jain and 
Kumar, 2018; Ji and Zhou, 2020). For the directional vector g = (σ, − ν), 
the ratio of ν to σ indicates the relative importance of the desirable and 
undesirable output in the production technology, and reflects the long- 
term growth pattern of the DMU. In general, as the ratio νσ increases, the 
shadow price for the undesirable output increases. This implies that 
when the production technology is on a growth path that favors 
reducing carbon emissions, the MAC of carbon emissions is higher 
(Baker et al., 2008; Ji and Zhou, 2020). 

We impose the directional vector to be reflective of the regulatory 
environment of EU energy-intensive industries. That is, we assume our 
directional vector reflects the European chemical sector’s imposed 

requirement to reduce relative emissions (i.e., the carbon intensity), 
rather than absolute emissions, in the period under consideration. Under 
the EU-ETS, industrial installations considered to be at significant risk of 
carbon leakage receive a significant share of their total emission al-
lowances for free. Since the start of phase 3 of the EU-ETS (2013− 2020), 
the free allocation of emission allowances is based on relative bench-
marks determined by historical production data (EC, 2021).5 More 
specifically, the amount of freely allocated allowances is determined by 
the average CO2 emissions per unit of production of the 10% most 
efficient installations in a given benchmark group. Based on this average 
carbon intensity, each sub-installation in a certain benchmark group 
receives the same number of emission allowances per unit of production. 
This implies that, in principle, efficient installations do not need to 
purchase additional allowances as they receive sufficient allowances 
needed to cover their emissions, whereas installations emitting above 
the benchmark need to purchase additional allowances to cover their 
emissions, incentivizing inefficient installations to alter their carbon 
intensity per unit of production. Further, we assume firms follow the 
least-cost pathway to reduce their carbon intensities. 

Following the above, we assume a directional vector of g = (σ, − ν) =

(1,0). This implies that firms in our sample follow a good output 
maximizing-approach, where the growth path gives priority to revenue 
growth while simultaneously holding the level of carbon emissions 
constant. Under a good output-maximizing approach, firms are evalu-
ated in the direction of the desirable output (y), firm-level revenue. 
Therefore, given the assumed directional vector, efficient firms have no 
peers with higher levels of the desirable output for a given level of inputs 
(x) and undesirable output (b), while inefficient firms need to increase 
their desirable output by a given proportion to reach the efficient 
frontier.6 

4.4. Explaining the MAC 

To explain our results, we make use of the fact that the MAC can be 
written as a function of firm-specific variables, including firms’ carbon 
intensity, energy intensity, capital intensity, and market capitalization. 

Carbon intensity is defined as the ratio of carbon emissions to energy 
consumption (in t CO2/MWh) and is expected to be negatively related to 
the MAC, as carbon-intensive firms are expected to have more low-cost 
abatement opportunities (Wei et al., 2013; Du et al., 2015; Jain and 
Kumar, 2018). 

Energy intensity is defined as the amount of energy consumed to 
produce a given level of output and is calculated as the ratio of energy 
consumption to revenues (in kWh/€). We expect a negative relationship 
between energy-intensity and the MAC, as firms with relatively high 
energy consumption have greater scope for abating carbon emissions in 
order to improve energy efficiency (Du et al., 2015). The more energy- 
efficient (and less energy-intensive) the firm becomes, the higher the 
MAC, as more expensive abatement options are exercised. However, we 
note that a firm’s energy-intensity does not necessarily inform us about 
the type of energy consumption and the scope for additional abatement 
within the firm. For some firms, energy consumption can be relatively 
less carbon-intensive compared to other firms, implying a higher MAC, 
while energy consumption is relatively high. In the latter case, the 
negative relationship between energy intensity and the MAC is not 
evident. 

Market capitalization (in billion EUR) is included to control for firm 

5 European Commission (2021). Update of benchmark values for the years 
2021–2025 of phase 4 of the EU-ETS. 

6 Note that an abatement strategy following an undesirable output mini-
mizing approach, which favors the reduction of carbon emissions, is not the 
preferred strategy to reduce carbon intensity and reach the efficient frontier, as 
a higher ratio of ν to σ results in higher abatement cost to the firm. Therefore, 
we do not consider the directional vector g = (σ, − ν) = (0, − 1). 
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size, as carbon mitigation is often characterized by economies of scale 
(Wei et al., 2013; Jain and Kumar, 2018). Larger firms can benefit from 
economies of scale in resource utlization and pollution abatement, and 
are therefore expected to have a lower MAC (Dasgupta et al., 2001; Wei 
et al., 2013; Jain and Kumar, 2018). 

5. Data 

We construct a balanced panel dataset consisting of 24 firms active in 
the European chemical sector from 2015 to 2020.7 Each firm in our 
sample has production facilities in EU and, therefore, some or all in-
stallations directly owned or controlled by each firm fall under the scope 
of the EU Emissions Trading System (EU-ETS), which is a cap-and-trade 
system operating in all EU countries plus Iceland, Liechtenstein and 
Norway (EEA-EFTA states). Table A.1 in Appendix A lists the names and 
corresponding subsectors of the firms in our dataset. 

The data on our three inputs (labor, capital and energy), desirable 
output (revenue), undesirable output (CO2 emissions) are obtained from 
Bloomberg and firms’ annual reports. Table 1 describes the summary 
statistics of our variables and Table A.1 in Appendix A describes the 
mean values for revenue, CO2-emissions, labor, capital, and energy 
consumption per firm. As a measure of firms’ desirable output, we use 
the amount of revenue (i.e., net sales) in EUR generated from firm 
operating activity after the deduction of sales returns, allowances, dis-
counts, and sales-based taxes. This reflects the firm’s aim to maximize 
the direct value of produced goods or services. For the undesirable 
output we use firm-level data on Scope 1 emissions reported in thou-
sands of metric tons of CO2-equivalents covering emissions of the most 
important GHGs8 Scope 1 emissions fall under the direct control of the 
firm, which allows us to identify heterogeneity in firms’ production 
processes (Trinks et al., 2020). In contrast, Scope 2 and 3 emissions can 
be altered without long-term changes to production activities within the 
firm (Trinks et al., 2020). Firms’ labor input is measured as the number 

of people employed by the firm, which is based on the number of full- 
time equivalents (and if unavailable, the number of full-time em-
ployees). As a measure of the firms’ capital stock, we use the book value 
of property, plant, and equipment (PPE, or Net Fixed Assets) in EUR, 
which represents the firms’ physical capital used for operating activities. 
Energy consumption is a measure of the amount of energy in MWh 
directly consumed by the firm through combustion in owned or 
controlled boilers, furnaces, vehicles, or through chemical production in 
owned or controlled process equipment. It also includes energy 
consumed as electricity. 

6. Results 

6.1. Shadow price estimation 

We estimate the parameters of the DDF using the deterministic linear 
programming (LP) method by Aigner and Chu (1968). To avoid 
convergence problems, the data are normalized by dividing each input 
and output by its mean value (Färe et al., 2005). We include firm and 
year dummies to control for time-invariant firm effects and time effects 
in the production technology (Färe et al., 2005; Du et al., 2015; Ji and 
Zhou, 2020). We omit the dummies for the year 2015 and firm 1 to avoid 
the dummy variable trap. We estimate the shadow prices using Eq. (7). 
Given that all input and output data are normalized, we multiply Eq. 
(11) with mean(y)/mean(b). 

Following the shadow price estimation with the assumed directional 
vector, we test if the null-jointness assumptions holds across all obser-
vations. The null-jointness assumption states that desirable and unde-
sirable outputs are jointly produced, which implies that a combination 
of positive revenues and non-positive carbon emissions is not part of the 
production possibility set (i.e., (y, 0) ∕∈ P(x)). Further, we recall from the 
restrictions in method Section 4 that (y, b) ∈ P(x) only if 
D0
̅→(

xit, yit, bit; g
)
≥ 0. This implies that observations satisfy the null- 

jointness assumption if it holds that y > 0, b = 0 and 
D0
̅→(

xit, yit, bit; g
)
< 0. In Table 2, we report the share of observations 

satisfying the null-jointness assumption, the mean and median DDF 
values, and the goodness-of-fit of the LP model.9 Further, we report the 
calculated parameters of the DDF in Table A.2 in Appendix A. 

Table 3 summarizes our technical efficiency and shadow price esti-
mates and Table A.3 in Appendix A describes the summary statistics of 
the estimated shadow prices per firm. We exclude 16 observations in 
total, as 16 observations contain negative values for the frontier values 
of bj (bj − β̂). For the remaining 128 observations, we find that 12 ob-
servations have zero inefficiency, which indicates these points are 
operating on the efficient frontier. Under the assumed directional vec-
tor, we find a median inefficiency of 0.0395 and a median shadow price 
of 429 €/t CO2. The shadow price varies between 0 and 477 €/t CO2. 
Given the data normalization and our directional vector, these results 
indicate that, at the median, firm revenue can be increased by 0.0395 ×
€ 8.45 billion = € 333.78 million, while carbon emissions remain con-
stant, if all firms would operate efficiently. Therefore, the CO2 intensity 
of revenue (in kg CO2/€) of European chemical firms can be reduced 
from 0.404 to 0.388 kg CO2/€, resulting in a reduction of carbon in-
tensity of 3.96%. At the mean inefficiency level, the average firm rev-
enue could be further increased, while carbon emissions remain 

Table 1 
Descriptive statistics of 24 chemical firms for the period 2015–2020.  

Variable Obs. Mean Std. Dev. Min. Max. 

Revenue (billion EUR) 144 8.45 12.26 0.30 70.45 
CO2-emissions (in 103 tons) 144 3413.28 5314.65 5.57 17,820 
Labor (in 103 employees) 144 18.93 24.71 0.74 122.40 
Capital (billion EUR) 144 4.19 5.65 0.02 26.41 
Energy consumption (million 

MWh) 
144 20.48 33.89 0.04 192.10 

Source: Bloomberg (2021). 

7 The Industrial Classification Benchmark (ICB) divides the firms into four 
subsectors (with the number of firms per subsector between parentheses): 
Chemicals and Synthetic Fibers (1), Chemicals Diversified (12), Fertilizers (3) 
and Specialty Chemicals (8). Given the different subsector classifications, there 
might be substantial firm heterogeneity in the production technologies across 
firms in our dataset. For example, firms might structurally differ based on their 
technologies and capacities, equipment, customer and product portfolio’s, 
factor cost differences, and regulatory environments. The heterogeneity in 
production technologies implies that the inter-factor substitutability between 
firms is limited in the short-run (Ma and Hailu, 2016). However, this is 
consistent with the DDF, which assumes more drastic inter-factor substitutions 
in the long-run. This study estimates the MAC for the whole sample of firms and 
does not further explore the heterogeneity in production technologies across 
firms, for which the meta-frontier distance function may be a possible alter-
native (Zhang et al., 2013).  

8 Scope 1 emissions refer to the firm’s direct GHG emissions, from sources 
directly owned or controlled by the firm, such as boilers, furnaces, vehicles, or 
chemical process equipment. Scope 2 emissions refer to indirect GHG emissions 
from purchased electricity, steam, heat or cooling. Scope 3 emissions include 
other indirect GHG emissions released in the firms’ value chain, which result 
from activities from assets not owned or controlled by the firm. 

9 Following Ji and Zhou (2020), the goodness-of-fit criterion (Ω) is defined as 

Ω =
ΣI

i=1ΣT
t=1nit/N

ΣI
i=1ΣT

t=1(
̂
D0
̅→

(xit ,yit ,bit ;g)− 0 )/N

, where N = I*T, nit =

{

1, if ̂D0
̅→ (

xit , yit , bit ; g
)
< 0

0, otherwise
, and ̂D0

̅→ (
xit , yit , bit ; g

)
is the estimated value for 

each DDF. The numerator represents the share of observations satisfying the 
null-jointness assumption and the denominator the arithmetic mean of the 
estimated DDF values. 
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constant, reducing the carbon intensity of the industry by 10.61% if all 
firms would operate efficiently. 

For illustrative purposes, Fig. 6 depicts the distribution of esti-
mated shadow prices (in €/t CO2) across all observations, while Fig. 7 
depicts the distributions of the estimated shadow prices per firm. The 
estimated shadow prices fall within the range of abatement costs 
(− 200 to 500 €/t CO2) for the technologies featured in Fig. 4. This 
suggests that some firms have access to less expensive abatement 
technologies on the left-hand side of Fig. 4, while others can only 
reduce their carbon emissions through methods that are more 
expensive. For instance, firms with relatively low marginal abatement 
costs, such as YARA, AIR LIQUIDE and BASF, can use the more 
affordable technologies like the electrification of process heat, solar 
process heat, or CCS of process emissions. In contrast, the firms with 
higher marginal abatement costs, such VICTREX, GIVAUDAN and 
JOHNSON MATTHEY, can only reduce their emissions by using more 
costly methods, such as renewable hydrogen, chemical recycling or 
using bio-based organic materials as feedstock. 

To assess the temporal change in shadow prices during the estima-
tion period, we plot the kernel density curves of the MACs in Fig. A.1 in 
Appendix A. Although the direction of the shift of the curves over the 
years is not immediately evident, the yearly means demonstrate a 
decreasing trend in the MACs, indicating a leftward shift in the kernel 
density curves. A leftward shift of the kernel density curves over time 
indicates that the marginal costs to abate CO2 emissions have decreased 
over time, potentially due to technological innovation or learning effects 
that have lowered the cost of adopting certain abatement technologies 
(e.g., the cost of renewable electricity generation has decreased over 
time). 

6.2. Comparison shadow price with external benchmark 

We follow previous literature by comparing our derived shadow 
prices to the actual market prices for carbon allowances in the period 
2015–2020 (Wei et al., 2013; Ma and Hailu, 2016; Ma et al., 2019; Ji and 
Zhou, 2020).10 

Under the assumed directional vector, we observe that for most ob-
servations in the sample our derived shadow prices exceed the carbon 
market price range in this period (i.e., 7–30 €/t CO2), whereas only the 
lower end of MAC estimates is close to observed market prices. For 13 of 
the 144 observations in our sample, the MAC is lower than an EU 
allowance price of 100 €/t CO2 which indicates these may benefit from 
mitigating emissions within the firm and selling excess allowances on 
secondary markets. For most observations, the MAC is higher than 100 
€/t CO2. Therefore, these firms either receive free allowances in primary 
allocations or need to buy their allowances on secondary markets, rather 
than abate emissions within the firm. In the case of relatively high 
shadow price estimates, firms can achieve gains in economic efficiency 
through the purchase of emission allowances on secondary markets, 
instead of abating themselves. This does not hold for the firms with 
relatively low shadow prices, which gain by abating emissions within 
the firm rather than by buying emission allowances on secondary 
markets. 

The divergence between our MAC estimates and observed market 
carbon prices can be explained as follows. First, relative to non-radial 
DFs (DDF), radial DFs (Shephard DFs) are more likely to provide short- 
run MAC estimates which are directly comparable to market prices for 
carbon allowances (Ma and Hailu, 2016; Ma et al., 2019). This is 
because radial and non-radial DFs project the input and output vector 
onto the production possibility frontier in different ways. In case of 
radial DFs, the input and output mix is kept fixed at current pro-
portions, while non-radial DFs do not preserve the current mix of 

Table 2 
Goodness-of-fit results.  

Directional 
vector 

Observations Share of observations satisfying the null-jointness 
assumption 

Mean of estimated DDF 
values 

Median of estimated DDF 
values 

Goodness-of-fit criterion 
(Ω) 

DDF (1, 0) 144 0.5208 0.105 0.0278 4.935 

Note: 24 firms and 3 inputs (capital, labor, and energy). 

Table 3 
Inefficiency and shadow price estimates.  

Variable Observations Mean Median Std. Dev. Min. Max. Number of frontier observations 

Inefficiency (β̂) 128 0.1187 0.0395 0.217 0.00 1.71 12 
Shadow price of CO2 (€/tCO2) 128 369.54 428.80 119.45 0.00 477.13 – 

Note: 16 observations contain negative vale for the frontier value of bj (bj − β̂). Hence, we exclude these 16 observations from the estimates.  

Fig. 6. Estimated shadow prices (in €/t CO2) ranked from low to high for all 
144 observations in the period 2015–2020. 

10 The estimated MACs can be interpreted as the value of a carbon emission 
allowance in a carbon market (Coggins and Swinton, 1996; Ma et al., 2019). 
Therefore, the carbon market price can be used as benchmark for the estimated 
MACs to assess the validity of the DDF specification and other parameters in the 
estimation (Ma et al., 2019). Although the carbon market price is an appro-
priate benchmark, it is not identical to the shadow price as the former is 
determined by the supply and demand for allowances of all market players that 
fall under the scope of the EU-ETS, while the latter reflects an opportunity cost 
of the individual DMU (Coggins and Swinton, 1996; Smith et al., 1998; Wei 
et al., 2013; Du et al., 2015). 
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inputs and outputs when projecting to the frontier. Given that the 
elasticity of inter-fuel and inter-factor substitution is greater in the 
long run than in the short run, significant transformations in the input 
or output mix are more likely to occur in the long run than in the short 
run. As significant long run transformations are expected to be more 
costly, we expect higher estimated MAC in case of non-radial DFs. 

Second, the market carbon price is determined by the supply and 
demand for allowances of all market players that fall under the scope 
of the EU-ETS, while the MAC reflects the opportunity cost of abate-
ment of the individual DMU. As the chemical sector is only partly 
determining the total supply and demand for carbon allowances in the 
EU-ETS, the derived shadow prices from our sample do not necessarily 
need to equal the market price for carbon. The observed market price 
for carbon reflects the MAC of those firms trading allowances on 
secondary markets, which are typically firms with low abatement 
costs (Ma et al., 2019). For relatively modest mitigation targets in 
carbon trading markets, requiring relatively less abatement compared 
to stringent targets, firms with higher MACs would not need to abate, 
whereas only the firms with lower MACs undertake the actual abate-
ment activities. 

6.3. Explaining the MAC 

We start by exploring the relationship between the MAC and each of 
the explanatory variables by graphing a Locally Weighted Scatterplot 
Smoothing (LOWESS) of the estimated marginal abatement costs (in €/t 
CO2) on carbon intensity (t CO2/MWh), energy intensity (kWh/€), 
market capitalization (in billion EUR), and carbon emissions (in Mt. of 
CO2) using the default brandwith of 0.8 and a tricube weight function 

(see Fig. A.2 in Appendix A). Overall, we observe a negative relationship 
between the MAC and the explanatory variables, indicating that it is 
more costly to reduce emissions at the margin when these variables have 
lower values, as was hypothesized. 

Finally, we conduct a linear regression to estimate the impact of the 
variables on the MAC curve. As independent variables, we use firms’ 
carbon intensity, energy intensity and market capitalization. We control 
for year effects by including dummy variables. As our dependent vari-
able is an estimate that is based on a previous estimation, we bootstrap 
the standard errors to account for potential estimation errors. 

From Table 4, we find that the coefficient of carbon intensity is 
significant at the 5% level and negatively related to the MAC. We find 
that for each 0.1 unit increase in the carbon intensity (in t CO2/MWh), 
the MAC decreases with 51.67 €/t CO2. This indicates that less carbon- 
efficient (and more carbon-intensive) firms have lower MACs, implying 
there are relatively more low-cost abatement options that are not yet 
exercised. Further, we find that the coefficient of market capitalization is 
significant at the 5% level and negatively related to the MAC. For every 
unit increase in the market capitalization (in billion EUR), the MAC 
decreases with 4.54 €/t CO2. This implies that larger firms have rela-
tively more low-cost abatement options, which is a finding consistent 
with previous empirical studies (Wei et al., 2013; Wang et al., 2017; Jain 
and Kumar, 2018). 

7. Conclusions 

To achieve carbon mitigation targets, all industries need to invest in 
additional carbon abatement measures, including the chemical industry, 
which is responsible for about 3.5% of the aggregated GHG emissions in 
Europe. There are various abatement technologies available to this in-
dustry to address the energy and carbon emission intensity of production 
processes and fuel combustion. This study estimates the marginal cost of 
abatement on firm level and compares these results to information on 
the costs of abatement technologies as well the benchmark of the carbon 
price in the EU-ETS. 

We derive the MAC by evaluating firms’ carbon intensity levels 
relative to those of efficient peers with comparable production activities. 
More specifically, we use a quadratic directional output distance func-
tion (DDF) model under the assumption that firms’ carbon abatement 

Fig. 7. Distribution of estimated shadow prices (in €/t CO2) per firm ranked by 
firms’ average abatement cost over the period 2015–2020. 

Table 4 
Regression model results.  

Dependent variable: MAC  

Carbon intensity − 516.69** 
(242.17) 

Energy intensity − 9.34 
(11.38) 

Market capitalization − 4.54** 
(1.85) 

Year  
2016 19.55* 

(10.17) 
2017 6.91 

(7.33) 
2018 − 16.77** 

(7.18) 
2019 − 5.21 

(8.04) 
2020 − 1.61 

(10.93) 
Constant 516.66*** 

(34.19) 

Note: Standard errors in parentheses. Significance levels are 
indicated by ***p < 0.01, **p < 0.05, and *p < 0.1. Bootstrap 
replications: 200. 
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strategies are based on a good output-maximizing approach. This 
approach allows for the expansion of the desirable output while the 
carbon emissions remain constant. This approach is consistent with 
actual climate policies for industries that use relative-emission 
benchmarks. 

For a sample of 24 firms in the European chemical sector over the 
years 2015–2020, we find a median MAC of 429 €/t CO2. Further, we 
find that the carbon intensity of revenue of the industry can be reduced 
by 3.96 to 10.61% if all firms would operate efficiently, depending on 
whether the median or mean inefficiencies were used for evaluation. 
Moreover, our findings indicate that the firm-level results vary widely, 
ranging from approximately 0 to 480 €/t CO2. The range of estimated 
firm-level MACs fall within the range of abatement costs (which vary 
from − 200 to 500 €/t CO2) for the available carbon reduction technol-
ogies in the chemical industry. The variation in MACs among firms 
suggests that firms have access to different technological options to 
lower their carbon emissions. Firms with relatively low MACs have ac-
cess to less expensive technologies, such as the electrification of process 
heat, solar process heat or CCS of process emissions. Conversely, the 
firms with higher MACs can only decrease their emissions by using more 
costly methods, such as using renewable hydrogen or bio-based organic 
materials as feedstock. 

In line with other studies, we find that the empirical MACs exceed the 
relevant market price for carbon (Wei et al., 2013; Ma and Hailu, 2016; 
Ma et al., 2019; Ji and Zhou, 2020). As noted above, this is consistent 
with the use of the non-radial DFs, such as the DDF, and the fact that the 
carbon market price is determined by the supply and demand for al-
lowances of all market players in the EU-ETS and our MAC is estimated 
for a limited sample. For most firms, the MAC is higher than an EU 
allowance price of 100 €/t CO2, which indicates that these firms prefer 
to buy their emission allowances on secondary markets (or receive 
enough free allowances in primary allocations to cover their emissions), 
rather than to abate emissions within the firm. For some firms, the MAC 
is lower than an EU allowance price of 100 €/t CO2. These firms may 
benefit from mitigating emissions within the firm and selling excess 
allowances on secondary markets. Further, consistent with previous 
studies, we find that the carbon intensity and market capitalization are 
negatively related to the MAC, pointing to economies of scale in abating 
carbon emissions (Wei et al., 2013; Wang et al., 2017; Jain and Kumar, 
2018; Ji and Zhou, 2020). 

Comparing our results with previous studies using the DDF method 
to derive the MAC is challenging, however. These previous studies 
refer to DMUs like provinces, cities, industries, or firms in various 
sectors of the economy other than the chemical sector (Matsushita and 
Yamane, 2012; Peng et al., 2012; Wei et al., 2013; Du et al., 2015; Xiao 
et al., 2017; Ma and Hailu, 2016; Wang et al., 2017; Jain and Kumar, 
2018; Ji and Zhou, 2020). The difference in the economic interpre-
tation of the MACs between these studies is mainly driven by the 
heterogeneity in the underlying characteristics of the studied DMUs 
(in particular, the carbon intensity may differ among DMUs), the 
functional form of the DDF, the directional vector that determines how 
the inputs and outputs are scaled to the production frontier, and other 
data characteristics. 

As a caveat, it should be mentioned that our derived MACs and the 
economic interpretation thereof depend on the chosen estimation 
method, functional form, directional vector, and data inputs. For 

example, if the directional vector is assumed to be on a growth path 
favoring reducing the undesirable output relative to the desirable 
output (i.e., a carbon minimizing approach), the MAC of carbon 
emissions would be higher (Vardanyan and Noh, 2006; Ji and Zhou, 
2020). We chose the production technology to be consistent with the 
current regulatory environment in which the European chemical 
sector operates, imposing relative carbon mitigation, while also 
assuming that firms follow the least-cost pathway to reduce their 
carbon intensities. It is also possible that the calculated MAC over-
estimates the actual abatement cost as new technologies are developed 
over time (Wei et al., 2013; Ma and Hailu, 2016). Further, we note that 
the chemical industry is a wide, complex and diverse industry asso-
ciated with a broad range of products and technologies, different 
process routes for producing the same product, and firms producing 
products that belong to different subsectors, which makes it chal-
lenging to model the whole sector. However, as noted above, the 
group heterogeneity in our sample is consistent with the DDF, which 
assumes more extensive inter-factor substitutions of labor, capital and 
energy in long-run scenarios (Ma and Hailu, 2016). To account for the 
heterogeneity between firm technologies, the meta-frontier distance 
function may be a possible alternative (Zhang et al., 2013). 

Overall, our findings indicate that the average MAC of the European 
chemical sector significantly exceeds the prevailing carbon market 
price. Consequently, we conclude that the industry lacks sufficient in-
centives to reduce its’ own emissions, despite having the potential for 
emission abatement. This also implies that the industry will only be 
incentivized to adopt the more expensive abatement measures, such as 
chemical recycling or feedstock switching, when the carbon price is 
significantly higher or when financial support for these technologies is 
provided. 

This research contains useful recommendations for policymakers. 
If policymakers find it desirable to achieve carbon emission reductions 
in the European chemical sector, they can provide the required in-
centives to chemical firms to realize this potential. For example, 
governments can subsidize the technological development or imple-
mentation of the more costly abatement technologies, as this may 
reduce the costs of these technologies significantly and, as a result, the 
chemical industry may choose to engage in abating actual emissions 
instead of buying allowances. Additionally, policymakers can use 
these results to identify the firms with a greater potential to abate 
emissions. In general, larger and more carbon-intensive firms are more 
likely to abate actual emissions using the lower-cost abatement tech-
nologies and, as a result, do not require subsidies for abatement. In 
contrast, smaller and relatively less-carbon intensive firms only have 
access to the more expensive abatement technologies, and may either 
purchase emission allowances to cover their emissions or require 
subsidies to achieve actual abatement. These findings may help gov-
ernments to efficiently allocate subsidies and minimize the total 
abatement costs of reaching climate targets. 
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Table A.1 
Information on included firms.  

Company name Ticker ID Subsector Mean 

Revenue (in billion 
EUR) 

CO2 emissions (in thousands of 
tons) 

Labor (in thousands of 
employees) 

Capital (in billion 
EUR) 

Energy consumption (in million 
MWh) 

AIR LIQUIDE SA AI FP Equity 1 Specialty chemicals 19.62 14,679.33 63.52 19.12 139.24 
AKZO NOBEL N.V. AKZA NA Equity 2 Specialty chemicals 10.16 65.58 37.97 2.63 1.71 
ARKEMA AKE FP Equity 3 Chemicals diversified 8.16 2828.00 19.80 2.72 8.14 
BASF SE BAS GR Equity 4 Chemicals diversified 61.32 17,295.67 115.35 23.19 56.10 
BORREGAARD ASA BRG NO Equity 5 Specialty chemicals 0.48 137.66 1.07 0.34 1.68 
CLARIANT AG-REG CLN SW Equity 6 Chemicals diversified 4.65 408.33 16.97 1.86 3.09 
COVESTRO AG 1COV GR Equity 7 Specialty chemicals 12.64 1581.67 16.23 4.79 15.39 
CRODA INTERNATIONAL 

PLC 
CRDA LN Equity 8 Chemicals diversified 1.55 138.91 4.52 0.84 0.93 

ELEMENTIS PLC ELM LN Equity 9 Chemicals diversified 0.67 201.53 1.48 0.31 1.41 
EVONIK INDUSTRIES AG EVK GR Equity 10 Specialty chemicals 13.20 5332.80 34.34 6.58 22.33 
GIVAUDAN-REG GIVN SW Equity 11 Specialty chemicals 4.87 103.17 12.66 1.62 0.79 
IMCD NV IMCD NA Equity 12 Specialty chemicals 2.17 6.58 2.49 0.04 0.04 
JOHNSON MATTHEY PLC JMAT LN Equity 13 Chemicals diversified 14.51 206.76 12.88 1.51 1.40 
K + S AG-REG SDF GR Equity 14 Fertilizers 3.38 2100.00 14.71 6.04 11.81 
KEMIRA OYJ KEMIRA FH 

Equity 
15 Chemicals diversified 2.48 152.00 4.86 0.98 4.39 

LANXESS AG LXS GR Equity 16 Chemicals diversified 6.98 1646.50 16.19 3.17 11.97 
LENZING AG LNZ AV Equity 17 Chemicals and Synthetic 

Fibers 
2.05 1110.00 6.68 1.53 11.32 

OCI NV OCI NA Equity 18 Fertilizers 2.37 6810.00 3.08 5.08 65.94 
SOLVAY SA SOLB BB Equity 19 Chemicals diversified 10.77 10,390.00 25.78 5.89 40.79 
SYMRISE AG SY1 GR Equity 20 Chemicals diversified 3.10 205.93 9.48 0.99 1.43 
SYNTHOMER PLC SYNT LN Equity 21 Chemicals diversified 1.59 144.69 2.76 0.41 1.41 
VICTREX PLC VCT LN Equity 22 Specialty chemicals 0.34 22.26 0.85 0.30 0.17 
WACKER CHEMIE AG WCH GR Equity 23 Chemicals diversified 4.91 1334.75 15.25 3.61 13.08 
YARA INTERNATIONAL 

ASA 
YAR NO Equity 24 Fertilizers 10.84 15,016.67 15.46 6.91 77.08 

Source: Bloomberg (2022).  
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Table A.2 
Calculated parameters of the directional distance function.  

Coefficient Variable Estimate 

α0 intercept − 1.588 
α1 x1 1.145 
α2 x2 − 0.118 
α2 x3 0.148 
α11 x2

1 − 0.452 
α22 x2

2 − 0.223 
α33 x2

3 0.009 
α12 = a21 x1x2 0.352 
α12 = a21 x1x3 − 0.133 
α12 = a21 x2x3 0.051 
β1 y − 1.000 
β11 y2 0.000 
γ1 b 0.176 
γ11 b2 − 0.034 
δ1 x1y 0.000 
δ2 x2y 0.000 
δ3 x3y 0.000 
η1 x1b − 0.010 
η2 x2b 0.018 
η3 x3b − 0.008 
μ11 by 0.000 

Note: We do not report the parameter estimates of the year 
dummies (2016–2020) and firm dummies (2–24).  

Table A.3 
Estimated MAC (in €/t CO2) by firm.  

Company name Ticker ID Mean Std. Dev. Min. Max. 

AIR LIQUIDE SA AI FP Equity 1 64.21 54.69 0.00 145.55 
AKZO NOBEL N.V. AKZA NA Equity 2 426.08 21.36 413.98 468.98 
ARKEMA AKE FP Equity 3 367.82 9.58 356.99 384.28 
BASF SE BAS GR Equity 4 92.18 88.74 0.00 236.71 
BORREGAARD ASA BRG NO Equity 5 434.29 1.31 433.15 436.88 
CLARIANT AG-REG CLN SW Equity 6 426.28 6.93 418.18 435.83 
COVESTRO AG 1COV GR Equity 7 430.97 18.91 414.71 460.70 
CRODA INTERNATIONAL PLC CRDA LN Equity 8 436.02 2.56 433.83 440.79 
ELEMENTIS PLC ELM LN Equity 9 432.94 1.51 431.40 435.76 
EVONIK INDUSTRIES AG EVK GR Equity 10 311.32 20.71 290.50 344.44 
GIVAUDAN-REG GIVN SW Equity 11 437.22 4.06 432.47 442.36 
IMCD NV IMCD NA Equity 12 436.30 4.21 432.21 443.37 
JOHNSON MATTHEY PLC JMAT LN Equity 13 452.87 19.88 428.88 477.14 
K + S AG-REG SDF GR Equity 14 422.13 11.32 406.30 432.79 
KEMIRA OYJ KEMIRA FH Equity 15 433.22 1.67 431.14 435.80 
LANXESS AG LXS GR Equity 16 399.93 9.32 387.74 412.78 
LENZING AG LNZ AV Equity 17 407.82 8.37 400.76 423.76 
OCI NV OCI NA Equity 18 259.37 48.68 201.69 336.20 
SOLVAY SA SOLB BB Equity 19 179.16 16.76 164.38 208.96 
SYMRISE AG SY1 GR Equity 20 428.50 2.26 426.30 432.50 
SYNTHOMER PLC SYNT LN Equity 21 437.48 3.40 433.07 441.52 
VICTREX PLC VCT LN Equity 22 437.88 1.65 436.75 441.19 
WACKER CHEMIE AG WCH GR Equity 23 413.51 15.87 401.10 434.52 
YARA INTERNATIONAL ASA YAR NO Equity 24 66.67 42.72 22.52 130.56   
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Fig. A.1. Kernel density curves of the MAC estimates for the years 2015 to 2020.  

Fig. A.2. Locally Weighted Scatterplot Smoothing (LOWESS) of the estimated marginal abatement costs (in €/t CO2) on carbon intensity (t CO2/MWh), energy 
intensity (kWh/€), market capitalization (in billion EUR), and carbon emissions (in Mt. of CO2) using the default brandwith of 0.8 and a tricube weight function. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2023.106889. 
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