

TUGAS AKHIR (MO 1336)

ANALISIS PENGARUH VARIASI JARAK HORISONTAL ANTARA FSRU DAN LNGC SAAT SIDE BY SIDE OFFLOADING TERHADAP PERILAKU GERAK KAPAL DAN GAYA TARIK COUPLING LINE

YUNI ARI WIBOWO NRP. 4310100703

Dosen Pembimbing Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D Ir. Murdjito, MSc .Eng

JURUSAN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember <u>Surabaya</u> 2014

FINAL PROJECT (MO 1336)

HORIZONTAL DISTANCE EFFECT ANALYSIS IN SIDE BY SIDE CONFIGURATION BETWEEN FSRU AND LNGC DUE TO MOTION CHARACTERISTIC OF MULTIBODY AND COUPLING LINE TENSION

YUNI ARI WIBOWO NRP. 4310100703

Supervisors

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D Ir. Murdjito, MSc .Eng

DEPARTMENT OF OCEAN ENGINEERING Faculty of Marine Technology Institut Teknologi Sepuluh Nopember Surabaya 2014

ANALISIS PENGARUH VARIASI JARAK HORISONTAL ANTARA FSRU DAN LNGC SAAT *SIDE BY SIDE OFFLOADING* TERHADAP PERILAKU GERAK KAPAL DAN GAYA TARIK *COUPLING LINE*

Nama Mahasiswa	: Yuni Ari Wibowo
NRP	: 4310 100 703
Jurusan	: Teknik Kelautan FTK – ITS
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D
	Ir. Murdjito, M.Sc.,Eng

ABSTRAK

Teknologi transfer LNG antara dua bangunan apung merupakan komponen yang cukup penting pada operasi FSRU. Sistem transfer LNG dengan menggunakan konfigurasi side by side menciptakan jarak horisontal antara lambung FSRU dan LNGC. Pada penelitian ini akan dikaji pengaruh variasi jarak horisontal terhadap perilaku gerak bangunan multibody dan terhadap gaya tarik tali tambatnya yang menghubungkan kedua lambung kapal. Variasi jarak horisontal yang dikaji mengacu pada kriteria operasi loading arm sebagai alat transfer LNG berdasarkan OCIMF, yaitu 2.5, 4, 6 dan 8.5 meter. Penelitian ini menyajikan metodologi berbasis frekuensi untuk menghitung perilaku gerak bangunan apung dan metodologi berbasis waktu untuk menghitung gaya tarik tali tambatnya. Berdasarkan analisis tersebut variasi jarak horisontal kurang memberikan pengaruh yang signifikan terhadap perilaku gerak bangunan apung yaitu memberikan beda sekitar 1% pada tiap penambahan jarak horisontalnya. Sedangkan pada gaya tarik tali tambat memberikan pengaruh cukup signifikan terhadap intensitas gayanya sesuai dengan arah beban gelombang yang mengenai struktur apung. Arah beban gelombang perempat haluan maupun buritan meyebabkan naiknya nilai gaya tarik tali tambat terhadap pertambahan jarak horisontal yaitu sekitar 80 s.d. 90% pada gaya tarik signifikan spring linenya (tali 4) pada kondisi steady state, sebagai akibat dari pertambahan luasan bidang kapal yang terkena tekanan gelombang melalui celah yang terbentuk antara FSRU dan LNGC. Sedangkan arah beban gelombang sisi menyebabkan turunnya nilai gaya tarik tali tambat terhadap pertambahan jarak horisontal yang terbentuk yaitu sekitar 25 s.d. 75%, pada gaya tarik signifikan spring linenya (tali 7) pada kondisi steady state sebagai akibat dari bidang luasan LNGC terkena tekanan gelombang yang terdifraksi badan FSRU.

Kata kunci : Side by side, perilaku gerak, gaya tarik tali tambat

HORIZONTAL DISTANCE EFFECT ANALYSIS IN SIDE BY SIDE CONFIGURATION BETWEEN FSRU AND LNGC DUE TO MOTION CHARACTERISTIC OF MULTIBODY AND COUPLING LINE TENSION

Student Name	: Yuni Ari Wibowo
Reg	: 4310 100 703
Department	: Ocean Engineering, Marine Faculty – ITS
Supervisors	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D
	Ir. Murdjito, M.Sc.,Eng

ABSTRACT

The technology of LNG transfer between two floating vessels is a crucial component of FSRU operation. Side by side configuration of LNG transfer creates a gap (horizontal distance) between FSRU and LNGC body. This research has been carried out by investigating the influence of various horizontal distance between FSRU and LNGC towards it's motion and coupling line tension. The horizontal distance based on operating criteria of loading arm issued by OCIMF : 2.5, 4, 6 and 8.5 meters. This paper will present a metodology of frequency domain to analyze multibody motion and time domain to analyze coupling line tension. Based on this research the variety of horizontal distance has no significant effect towards multibody motion by interval 1%. But it has significant effect towards the coupling line tension due to the heading of wave pressure working on it's body. The obligue wave invents increasing the horizontal distance of length to the bigger load intensity of coupling line significant tension by interval 83 to 90% (line 4 of spring line) at steady state due to the increasing LNGC area impacted by wave pressure. And the beam wave influences decreasing of the horizontal distance towards the bigger load intensity of coupling line significant tension by interval 25 to 75% (line 7 of spring line) at steady state due to the wave diffraction impacted to LNGC area.

Keywords : Side by side, motion, coupling line tension

ANALISIS PENGARUH VARIASI JARAK HORISONTAL ANTARA FSRU DAN LNGC SAAT *SIDE BY SIDE* OFFLOADING TERHADAP PERILAKU GERAK KAPAL DAN GAYA TARIK COUPLING LINE

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik

pada Program Studi S-1 Jurusan Teknik Kelautan

Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

> Oleh : YUNI ARI WIBOWO NRP. 4310 100 703

Disetujui oleh Pembimbing Tugas Akhir :

1. Prof. Ir. Eko B. Djatmiko, M.Sc., Ph.D. (Pembimbing 1)

2. Ir. Murdjito, M.Sc., Eng (Pembimbing 2)

SURABAYA, 11 AGUSTUS 2014

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Syukur Alhamdulillah penulis haturkan kehadirat Allah SWT atas segala limpahan rahmat, hidayah dan karunia-Nya, sehingga penulis dapat menyelesaikan Tugas Akhir ini dengan baik dan lancar. Ucapan terima kasih sudah sepatutnya diberikan kepada Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D dan Ir. Murdjito, M.Sc.,Eng selaku dosen pembimbing yang selalu menuntun dan mengarahkan penulis untuk menyelesaikan tugas akhir ini.

Tugas Akhir ini disusun guna memenuhi persyaratan dalam menyelesaikan Studi Kesarjanaan (S-1) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan (FTK), Institut Teknologi Sepuluh Nopember Surabaya (ITS). Tugas Akhir yang berjudul "Analisis Pengaruh Variasi Jarak Horisontal Antara FSRU dan LNGC saat Side By Side Offloading terhadap Perilaku Gerak Kapal dan Gaya Tarik Coupling Line" ini menjelaskan mengenai analisis terhadap pengaruh jarak horizontal yang terbentuk antara lambung FSRU dan LNGC pada saat kondisi berthing terhadap karakteristik gerak kapal dan gaya tarik coupling line yang terikat pada kedua lambung kapal tersebut.

Penulis menyadari dalam penulisan laporan ini masih terdapat kekurangan, oleh karena itu saran dan kritik sangat diharapkan sebagai bahan penyempurnaan laporan selanjutnya. Penulis berharap semoga laporan ini bermanfaat bagi perkembangan teknologi di bidang kelautan, bagi pembaca umumnya dan penulis pada khususnya.

Wassalamualaikum Wr. Wb.

Surabaya, 4 Agustus 2014

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	iii
ABSTRAK	v
KATA PENGANTAR	ix
UCAPAN TERIMA KASIH	xi
DAFTAR ISI	xiii
DAFTAR GAMBAR	XV
DAFTAR TABEL	xix
DAFTAR LAMPIRAN	xxii

BAB I PENDAHULUAN

1.1 LATAR BELAKANG MASALAH	1
1.2 PERUMUSAN MASALAH	4
1.3 TUJUAN	4
1.4 MANFAAT	4
1.5 BATASAN MASALAH	5
1.6 SISTEMATIKA PENULISAN	5

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 TINJAUAN PUSTAKA	7
2.2 DASAR TEORI	8
2.2.1 Struktur Bangunan Apung pada Gelombang Reguler	8
2.2.2 Respon Struktur pada Gelombang Reguler	14
2.2.3 Faktor-faktor Non Linear	18
2.2.4 Sistem Tali Tambat	19
2.2.5 Respon Struktur pada Gelombang Acak	21

BAB III METODOLOGI PENELITIAN

3.1 METODOLOGI PENELITIAN	27
3.2 PENGUMPULAN DATA	30

BAB IV ANALISIS HASIL DAN PEMBAHASAN	
4.1 PEMODELAN FSRU DAN LNGC	35
4.2 SKENARIO ANALISIS KARAKTERISTIK GERAK	
STRUKTUR	40
4.2.1 Perhitungan Cemter of Gravity Struktur	40
4.2.2 Perhitungan Radius Girasi Struktur	41
4.2.3 Skenario Pembebanan	44
4.2.4 Skenario Analisis	44
4.3 ANALISIS KARAKTERISTIK GERAK STRUKTUR	46
4.3.1 Analisis Karakteristik Gerak Struktur pada Gelombang	
Reguler	46
4.3.1.1 Analisis Karakteristik Gerak Struktur Kondisis	
Mengapung Bebas	46
4.3.1.2 Analisis Karakteristik Gerak Struktur Kondisi	
Tertambat Side by Side	62
4.3.2 Analisis Karakteristik Gerak Struktur pada Gelombang	
Acak	100
4.3.1.1 Penentuan Kondisi Lingkungan untuk Analisis	
Respon Struktur pada Gelombang Acak	100
4.3.1.2 Analisis Respon Struktur pada Gelombang Acak	104
4.3.3 Analisis Pengaruh Sudut Fase dalam Interaksi	
Hidrodinamis	115
4.3.4 Analisis Operasi Side by Side	122
4.4 ANALISIS GAYA TARIK TALI TAMBAT	127
4.4.1 Gaya Tarik Tali Tambat (Coupling Line)	127
4.4.2 Analisis Pengaruh Jarak Horisontal terhadap Gaya Tarik	
Tali Tambat (Coupling Line)	137
BAB V PENUTUP	
5.1 KESIMPULAN	149
5.2 SARAN	151
DAFTAR PUSTAKA	153
LAMPIRAN	

DAFTAR TABEL

BAB III METODOLOGI PENELITIAN

Tabel 3.1 Data Struktur FSRU, (FSRU PGN, 2012)	31
Tabel 3.2 Data Struktur LNGC, (K LINE PGN, 2012)	31
Tabel 3.3 Data Presentasi Tinggi Gelombang (Metocean PGN, 2012)	32
Tabel 3.4 Data Distribusi Tinggi Gelombang dan Peak Period	
(Metocean PGN, 2012)	32
Tabel 3.5 Data Presentasi Kecepatan Angin (Metocean PGN, 2012)	33
Tabel 3.6 Data Presentasi Kecepatan Arus (Metocean PGN, 2012)	33
Tabel 3.7 Data coupling line (<i>Effective Mooring</i> OCIMF, 2004)	34
Tabel 3.8 Koordinat <i>bollard</i> pada FSRU dan LNGC	34

BAB IV ANALISIS HASIL DAN PEMBAHASAN

Tabel 4.1 Hasil validasi model FSRU	39
Tabel 4.2 Hasil validasi model LNGC	39
Tabel 4.3 Perhitungan center of gravity dan radius girasi kapal dalam	
beberapa kondisi	42
Tabel 4.4 Skenario analisis yang dilakukan pada penelitian ini	44
Tabel 4.5 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 100%	
heading 45°	64
Tabel 4.6 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 100%	
heading 90°	67
Tabel 4.7 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 100%	
heading 135°	69
Tabel 4.8 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 60%	
heading 45°	71
Tabel 4.9 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 60%	
heading 90°	73
Tabel 4.10 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 60%	
heading 135°	75

Tabel 4.11 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 10%
heading 45°
Tabel 4.12 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 10%
heading 90°
Tabel 4.13 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 10%
heading 135°
Tabel 4.14 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 100%
heading 45°
Tabel 4.15 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 100%
heading 90°
Tabel 4.16 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 100%
heading 135°
Tabel 4.17 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 50%
heading 45°
Tabel 4.18 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 50%
heading 90°
Tabel 4.19 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 50%
heading 135°
Tabel 4.20 Perbandingan RAO tertinggi tiap gerakan LNGC muatan
ballast heading 45°
Tabel 4.21 Perbandingan RAO tertinggi tiap gerakan LNGC muatan
ballast heading 90°
Tabel 4.22 Perbandingan RAO tertinggi tiap gerakan LNGC muatan
Ballast heading 135°
Tabel 4.23 Data sebaran gelombang pada perairan Labuhan Maringgai
(Metocean PGN, 2012)
Tabel 4.24 Perhitungan jumlah presentasi gelombang dan
kumulatifnya tiap interval
Tabel 4.25 Tabulasi perhitungan komponen peluang kumulatif
Tabel 4.26 Tabulasi perhitungan kurun waktu panjang
Tabel 4.27 Tabulasi harga amplitudo ekstrim gerakan surge FSRU
Tabel 4.28 Tabulasi harga amplitudo ekstrim gerakan sway FSRU

Tabel 4.29 Tabulasi harga amplitudo ekstrim gerakan heave FSRU	109
Tabel 4.30 Tabulasi harga amplitudo ekstrim gerakan roll FSRU	109
Tabel 4.31 Tabulasi harga amplitudo ekstrim gerakan pitch FSRU	110
Tabel 4.32 Tabulasi harga amplitudo ekstrim gerakan yaw FSRU	110
Tabel 4.33 Tabulasi harga amplitudo ekstrim gerakan surge LNGC	113
Tabel 4.34 Tabulasi harga amplitudo ekstrim gerakan sway LNGC	114
Tabel 4.35 Tabulasi harga amplitudo ekstrim gerakan heave LNGC	114
Tabel 4.36 Tabulasi harga amplitudo ekstrim gerakan <i>roll</i> LNGC	114
Tabel 4.37 Tabulasi harga amplitudo ekstrim gerakan pitch LNGC	115
Tabel 4.38 Tabulasi harga amplitudo ekstrim gerakan yaw LNGC	115
Tabel 4.39 Kondisi operasi FSRU dan LNGC side by side dengan jarak	
horisontal 2.5 meter berdasarkan kriteria operasi	124
Tabel 4.40 Kondisi operasi FSRU dan LNGC side by side dengan jarak	
horisontal 8.5 meter berdasarkan kriteria operasi	126
Tabel 4.41 Material tali tambat (kondisi awal)	128
Tabel 4.42 Nilai intensitas gaya tarik tali tambat (kondisi awal)	129
Tabel 4.43 Material tali tambat (kondisi setelah dikonfigurasi ulang)	129
Tabel 4.44 Nilai intensitas gaya tarik tali tambat kondisi transient (kondisi	
setelah dikonfigurasi ulang)	137
Tabel 4.45 Nilai intensitas gaya tarik tali tambat kondisi steady (kondisi	
setelah dikonfigurasi ulang)	137
Tabel 4.46 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi transient (jarak 2,5 m)	138
Tabel 4.47 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi steady (jarak 2,5 m)	138
Tabel 4.48 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi transient (jarak 4 m)	139
Tabel 4.49 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi steady (jarak 4 m)	139
Tabel 4.50 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi transient (jarak 6 m)	140

Tabel 4.51 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi steady (jarak 6 m)	140
Tabel 4.52 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi transient (jarak 8,5 m)	141
Tabel 4.53 Nilai intensitas gaya tarik tali tambat akibat beban arah	
melintang kondisi steady (jarak 8.5 m)	141
Tabel 4.54 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi transient (jarak 2,5 m)	143
Tabel 4.55 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi steady (jarak 2,5 m)	143
Tabel 4.56 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi transient (jarak 4 m)	144
Tabel 4.57 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi steady (jarak 4 m)	144
Tabel 4.58 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi transient (jarak 6 m)	145
Tabel 4.59 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi steady (jarak 6 m)	145
Tabel 4.60 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi transient (jarak 8,5 m)	146
Tabel 4.61 Nilai intensitas gaya tarik tali tambat akibat beban sisi	
kondisi steady (jarak 8,5 m)	146

DAFTAR GAMBAR

BAB I PENDAHULUAN

Gambar 1.1 Konfigurasi Offloading Side by Side (Lu, 2009)	2
Gambar 1.2 Konfigurasi Offloading <i>Tandem</i> (Lu, 2009)	2

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Gambar 2.1 Floating Storage Regasification Unit (Golar LNG Energy	
Presentation Slide, Floating Storage and Regasification	
Unit, 2011)	8
Gambar 2.2 Enam derajat kebebasan pada struktur bangunan apung	
(Ardhiansyah, 2010)	9
Gambar 2.3 Klasifikasi kondisi hidrodinamis pada bangunan laut	
(Faltinsen, 1990)	10
Gambar 2.4 Grafik Respons Gerakan Bangunan Apung	
(Journee <i>et all</i> , 2001)	15
Gambar 2.5 Superposisi dari permasalahan hidrodinamis	
(Journee <i>et all</i> , 2001)	15
Gambar 2.6 General Arrangement Tower mooring	
(Hyundai Hoegh,2011)	20
Gambar 2.7 Sistem tambat <i>dolphin mooring</i> (hoeghlng, 2012)	20
Gambar 2.8 Konfigurasi coupling line saat side by side offloading	
(OCIMF, 2008)	21

BAB III METODOLOGI PENELITIAN

Gambar 3.1 Diagram alir metodologi penelitian yang dilakukan	27
Gambar 3.2 Lokasi FSRU akan beroperasi (PGN, 2012)	31

BAB IV ANALISIS HASIL DAN PEMBAHASAN

Gambar 4.1 Pemodelan FSRU menggunakan software maxsurf	35
Gambar 4.2 Pemodelan LNGC menggunakan software maxsurf	36
Gambar 4.3 Pemodelan FSRU menggunakan software MOSES	37

Gambar 4.4 Pemodelan LNGC menggunakan software MOSES	38
Gambar 4.5 Tampilan kondisi tertambat side by side pada MOSES	46
Gambar 4.6 RAO gerakan FSRU dengan berbagai kondisi muatan akibat	
beban gelombang perempat buritan	47
Gambar 4.7 RAO gerakan FSRU dengan berbagai kondisi muatan akibat	
beban gelombang sisi	50
Gambar 4.8 RAO gerakan FSRU dengan berbagai kondisi muatan akibat	
beban gelombang perempat haluan	52
Gambar 4.9 RAO gerakan LNGC dengan berbagai kondisi muatan akibat	
beban gelombang perempat buritan	55
Gambar 4.10 RAO gerakan LNGC dengan berbagai kondisi muatan akibat	
beban gelombang sisi	57
Gambar 4.11 RAO gerakan LNGC dengan berbagai kondisi muatan akibat	
beban gelombang perempat haluan	59
Gambar 4.12 RAO gerakan FSRU muatan 100% kondisi mengapung bebas	
dan tertambat akibat gelombang perempat buritan	62
Gambar 4.13 RAO gerakan FSRU muatan 100% kondisi mengapung bebas	
dan tertambat akibat gelombang sisi	65
Gambar 4.14 RAO gerakan FSRU muatan 100% kondisi mengapung bebas	
dan tertambat akibat gelombang perempat haluan	67
Gambar 4.15 RAO gerakan FSRU muatan 60% kondisi mengapung bebas	
dan tertambat akibat gelombang perempat haluan	69
Gambar 4.16 RAO gerakan FSRU muatan 60% kondisi mengapung bebas	
dan tertambat akibat gelombang sisi	72
Gambar 4.17 RAO gerakan FSRU muatan 60% kondisi mengapung bebas	
dan tertambat akibat gelombang perempat haluan	74
Gambar 4.18 RAO gerakan FSRU muatan 10% kondisi mengapung bebas	
dan tertambat akibat gelombang perempat buritan	76
Gambar 4.19 RAO gerakan FSRU muatan 10% kondisi mengapung bebas	
dan tertambat akibat gelombang sisi	78
Gambar 4.20 RAO gerakan FSRU muatan 10% kondisi mengapung bebas	
dan tertambat akibat gelombang perempat buritan	79

Gambar 4.21	RAO gerakan LNGC muatan 100% kondisi mengapung bebas	
	dan tertambat akibat gelombang perempat buritan	81
Gambar 4.22	RAO gerakan LNGC muatan 100% kondisi mengapung bebas	
	dan tertambat akibat gelombang sisi	84
Gambar 4,23	RAO gerakan LNGC muatan 100% kondisi mengapung bebas	
	dan tertambat akibat gelombang perempat haluan	86
Gambar 4.24	RAO gerakan LNGC muatan 50% kondisi mengapung bebas	
	dan tertambat akibat gelombang perempat haluan	88
Gambar 4.25	RAO gerakan LNGC muatan 50% kondisi mengapung bebas	
	dan tertambat akibat gelombang sisi	91
Gambar 4.26	RAO gerakan LNGC muatan 50% kondisi mengapung bebas	
	dan tertambat akibat gelombang perempat haluan	93
Gambar 4.27	RAO gerakan LNGC muatan ballast kondisi mengapung bebas	5
	dan tertambat akibat gelombang perempat buritan	95
Gambar 4.28	RAO gerakan LNGC muatan ballast kondisi mengapung bebas	5
	dan tertambat akibat gelombang sisi	97
Gambar 4.29	RAO gerakan LNGC muatan ballast kondisi mengapung bebas	5
	dan tertambat akibat gelombang perempat buritan	98
Gambar 4.30	Grafik korelasi antara tinggi gelombang dan distribusi	
	Kumulatif	102
Gambar 4.31	Pengaruh perubahan tinggi gelombang signifikan terhadap	
	pola spektra JONSWAP	104
Gambar 4.32	Spektra respon FSRU dalam enam derajat kebebasan	107
Gambar 4.33	Spektra respon LNGC dalam enam derajat kebebasan	113
Gambar 4.34	Grafik sudut fase gerakan roll dan ilustrasi gerakannya saat	
	periode 13 detik	116
Gambar 4.35	Grafik sudut fase gerakan roll dan ilustrasi gerakannya saat	
	periode 9.5 detik	117
Gambar 4.36	Grafik sudut fase gerakan roll dan ilustrasi gerakannya saat	
	periode 7.5 detik	118
Gambar 4.37	Grafik sudut fase gerakan sway dan ilustrasi gerakannya saat	
	periode 16 detik	119

Gambar 4.38	Grafik sudut fase gerakan sway dan ilustrasi gerakannya saat	
	periode 7.5 detik	120
Gambar 4.39	Grafik sudut fase gerakan sway dan ilustrasi gerakannya saat	
	periode 4.5 detik	121
Gambar 4.40	Ilustrasi gerak kapal kondisi side by side jarak 2.5 meter,	
	gerakan sway-roll	123
Gambar 4.41	Ilustrasi gerak kapal kondisi side by side jarak 2.5 meter,	
	gerakan <i>heave-roll</i>	124
Gambar 4.42	Ilustrasi gerak kapal kondisi side by side jarak 8.5 meter,	
	gerakan sway-roll	125
Gambar 4.43	Ilustrasi gerak kapal kondisi side by side jarak 8.5 meter,	
	gerakan heave-roll	126
Gambar 4.44	Konfigurasi tali tambat side by side	127
Gambar 4.45	Gaya tarik pada tali tambat no 1 sebagai fungsi waktu	130
Gambar 4.46	Gaya tarik pada tali tambat no 2 sebagai fungsi waktu	131
Gambar 4.47	Gaya tarik pada tali tambat no 3 sebagai fungsi waktu	132
Gambar 4,48	Gaya tarik pada tali tambat no 4 sebagai fungsi waktu	132
Gambar 4.49	Gaya tarik pada tali tambat no 5 sebagai fungsi waktu	133
Gambar 4.50	Gaya tarik pada tali tambat no 6 sebagai fungsi waktu	134
Gambar 4.51	Gaya tarik pada tali tambat no 7 sebagai fungsi waktu	134
Gambar 4.52	Gaya tarik pada tali tambat no 8 sebagai fungsi waktu	135
Gambar 4.53	Gaya tarik pada tali tambat no 9 sebagai fungsi waktu	136
Gambar 4.54	Pengaruh intensitas gaya tarik tali tambat terhadap variasi	
	jarak horisontal (beban perempat buritan)	142
Gambar 4.55	Pengaruh intensitas gaya tarik tali tambat terhadap variasi	
	jarak horisontal (beban sisi)	147

BAB I PENDAHULUAN

1.1 LATAR BELAKANG MASALAH

Dewasa ini permintaan akan *clean energy* –sumber energi alternatif pengganti bahan bakar minyak dengan emisi lebih rendah dibandingkan bahan bakar fosil lainnya (Azhar, 2013) yang semakin meningkat menjadikan berbagai upaya untuk mengelola dan mengembangkan produksinya. Salah satu dari *clean energy* yang sedang menjadi sorotan industri minyak dan gas dunia adalah *Liquified Natural Gas* (LNG). LNG merupakan gas alam yang dikondensasi dalam bentuk cairan pada suhu rendah (*cryogenic*), yaitu sekitar -160° Celcius. Indonesia diklaim memiliki cadangan LNG sebesar 2,8 triliun meter kubik di akhir tahun 2005 (Kementrian ESDM, 2010). Sebagian besar cadangan gas alam tersebut berlokasikan di daerah laut dalam dan terisolasi dari infrastruktur daratan ataupun dari jalur perpipaan lepas pantai. Untuk mengatasi hal ini dibutuhkan fasilitas struktur bangunan apung yang dewasa ini sedang dikembangkan secara luas oleh industri minyak dan gas.

Fasilitas struktur bangunan apung memiliki beberapa kelebihan yaitu kemampuan untuk berpindah setelah operasi selesai (1), kapasitas muat dan distribusi yang cukup besar (2), biaya operasi yang lebih rendah dibandingkan dengan biaya instalasi sistem perpipaan (3) dan tidak mensyaratkan struktur baru, yaitu struktur lama yang beralih fungsi setelah melalui tahapan konversi (4).

FSRU (*Floating Storage Regasification Unit*) merupakan salah satu jenis fasilitas terapung yang berfungsi untuk menyimpan, memproses gas dari wujudnya yang berupa gas menjadi cairan atau sebaliknya (proses regasifikasi) dan mendistribusikannya melalui LNG *Carrier* melalui sestem *offloading*. Sistem *offloading* yang telah dikenal yaitu sistem *side by side* dan *tandem*. *Side by side* mengharuskan kedua fasilitas terapung berada tepat bersebelahan antar sisi-sisinya (*portside – starboard*) yang ditambat dengan *hawser mooring* sedangkan tandem berada pada satu garis sejajar longitudinal (*bow – stern*).

Gambar 1. 1 Konfigurasi Offloading Side by Side (Lu, 2009)

Gambar 1. 2 Konfigurasi Offloading Tandem (Lu, 2009)

Sistem *offloading* pada LNG tergolong dalam *Offshore Cryogenic Transfrer*. Hal ini disebabkan karena karakteristik LNG berbeda dengan bahan bakar minyak pada umumnya. LNG yang akan ditransfer umumnya bersuhu rendah, yaitu sekitar -160° Celcius. Kondisi yang demikian belum dapat diselesaikan dengan proses transfer melalui *floating hose* yang biasa digunakan pada sistem *tandem*. Sehingga proses trasnsfer LNG yang digunakan adalah melalui *loading arm*. Jarak jangkauan *loading arm* yang relatif pendek mengharuskan proses *offloading* dilakukam dengan menggunakan sistem *side by side*.

Perlu diadakannya analisis tentang jarak horisontal yang terbentuk antara badan FSRU dan LNGC saat tertambat *side by side*, apakah memiliki pengaruh yang signifikan terhadap perilaku gerak kapal dan gaya tarik tali tambat yang menghubungkan keduanya (*coupling line*).

Pada penelitian sebelumnya telah dilakukan penelitian tentang analisis hidrodinamis pada interaksi kedua struktur bangunan apung dengan sistem *side by side* oleh Perwitasari (2010). Kemudian menyusul penelitian dengan pokok bahasan yang sama dan dikembangkan untuk mengetahui operabilitas FSRU saat side by side offloading akibat beban gelombang (Ziyan, 2013). Dalam penelitian tersebut baik Perwitasari maupun Ziyan tidak melakukan analisis terhadap pengaruh jarak horisontal yang terbentuk oleh kedua bangunan apung saat *side by side offloading*. Pada penelitian ini akan dilakukan analisis pengaruh variasi jarak horisontal yang terbentuk antara kedua struktur bangunan apung terhadap perilaku hidrodinamis bangunan apung dan pengaruhnya terhadap gaya tarik tali tambat (*coupling line*) yang menghubungkan FSRU dan LNGC saat *side by side offloading*.

Fasilitas struktur bangunan apung yang akan dianalisis adalah FSRU milik PGN yang akan dioperasikan di peraiaran Maringgai Lampung Selatan pada kedalaman 23 meter (berdasarkan LWS), ditambatkan pada *tower mooring system*. *Tower mooring system* biasanya digunakan pada daerah dengan kedalaman 18 – 40 meter (de Pee, 2005). *Tower mooring system* yang dipasang menggunakan *steel tower* sebagai *shackle point mooring* untuk menjaga FSRU tetap berada pada tempatnya. Sedangkan struktur bangunan apung satunya menggunakan LNG *Carrier* (LNGC) sebagai pengangkut LNG yang diambil dari FSRU.

Tugas akhir ini akan membahas tentang pengaruh variasi jarak horisontal pada perilaku gerak FSRU dan LNGC saat *offloading* menggunakan konfigurasi *side by side*. Proses *offloading* antara FSRU dan LNGC pada konfigurasi *side by side* perlu untuk dilakukannya analisis perilaku gerak kedua struktur bangunan apung dan analisis gaya tarik tali tambat (*coupling line*). Pada penelitian ini akan

divariasikan jarak (gap) yang terbentuk antara badan FSRU dengan LNGC untuk diketahui pengaruhnya terhadap perilaku gerak FSRU dan LNGC. Selain itu penelitian ini ditujukan juga untuk mengetahui pengaruh jarak terhadap gaya tarik tambat yang menghubungkan FSRU dan LNGC pada konfigurasi *side by side offloading*.

1.2 PERUMUSAN MASALAH

Permasalahan yang akan dibahas dalam tugas akhir ini adalah :

- Bagaimana karakteristik gerakan FSRU dan LNGC pada kondisi terapung bebas
- 2. Bagaimana perilaku gerak FSRU dan LNGC pada kondisi tertambat *side by side*
- Bagaimana pengaruh variasi jarak horisontal yang terbentuk antara badan FSRU dengan LNGC saat konfigurasi side by side offloading terhadap respon gerak kapal dan gaya tarik *coupling line*

1.3 TUJUAN

Tujuan yang ingin dicapai dari tugas akhir ini adalah :

- Mengetahui karakteristik gerakan FSRU dan LNGC pada kondisi terapung bebas
- 2. Mengetahui perilaku gerak FSRU dan LNGC pada kondisi tertambat *side by side*
- Menghitung pengaruh variasi jarak horisontal yang terbentuk antara badan FSRU dengan LNGC saat konfigurasi *side by side offloading* terhadap respon gerak kapal dan gaya tarik *coupling line*

1.4 MANFAAT

Manfaat tugas akhir ini adalah memberikan informasi mengenai pengaruh variasi jarak horisontal yang terbentuk antara badan FSRU dan LNGC terhadap perilaku gerak kapal saat *offloading* menggunakan konfigurasi *side by side* dan

pengaruhnya terhadap gaya tarik tali tambat yang menghubungkan kedua bangunan apung tersebut (*coupling line*).

1.5 BATASAN MASALAH

Batasan masalah yang digunakan dalam tugas akhir ini adalah sebagai berikut :

- 1. Struktur bangunan apung diasumsikan sebagai rigid body
- Struktur bangunan apung yang dikaji adalah FSRU PGN dengan kapasitas tanki penyimpanan mencapai 170.000 m³ dan LNGC dengan kapasitas tanki 155.000 m³
- 3. Beban yang ditinjau terdiri dari beban angin, beban gelombang dan beban arus
- 4. Beban gelombang, angin dan arus yang ditinjau adalah propagasi gelombang perempat buritan, gelombang sisi dan gelombang perempat haluan
- 5. FSRU yang ditinjau ditambatkan pada tower mooring system
- Konfigurasi tali tambat (*hawser arrangement*) mengacu pada OCIMF 3rd Mooring Equipment Guideline
- 7. Offloading system yang digunakan adalah loading arm
- 8. Tali tambat antara FSRU dan LNGC (*coupling line*) menggunakan tipe *syntethic rope*
- Variabel bebas yang digunakan adalah variasi jarak horisontal yang terbentuk antara badan FSRU dan LNGC saat *side by side offloading*, yaitu 2,5, 4, 6 dan 8,5 meter (Ship to Ship Trasnfer Guide (Liquified Gas) – Second Edition, OCIMF/SIGGTO, 1995).
- 10. Pemodelan standing wave tidak dilakukan
- 11. Analisis stabilitas tidak dilakukan

1.6 SISTEMATIKA PENULISAN

Sistematika penulisan laporan tugas akhir ini adalah sebagai berikut :

BAB I. PENDAHULUAN

Bab ini menjelaskan tentang latar belakang penelitian yang akan dilakukan, perumusan masalah, tujuan yang hendak dicapai dalam penulisan tugas akhir, manfaat yang diperoleh, serta ruang lingkup penelitian untuk membatasi analisis yang dilakukan dalam tugas akhir.

BAB II. TINJAUAN PUSTAKA DAN LANDASAN TEORI

Bab ini berisi referensi dan juga teori-teori pendukung yang digunakan sebagai acuan atau pedoman dalam menyelesaikan tugas akhir. Referensi tersebut bersumber pada jurnal lokal maupun internasional, literatur, *rules/code* dan juga buku yang berkaitan dengan topik yang dibahas.

BAB III. METODOLOGI PENELITIAN

Bab ini menjelaskan langkah-langkah pengerjaan yang meliputi : identifikasi data, pemodelan struktur, analisis gerakan struktur pada kondisi tertambat dengan mempertimbangkan jarak horisontal (gap) yang terbentuk antara FSRU dan LNGC. Dari penelitian ini akan didapatkan pengaruh gerak kapal serta pengaruhnya terhadap gaya tarik tambat (*coupling line*) yang digunakan saat konfigurasi *side by side*.

BAB IV. ANALISIS HASIL DAN PEMBAHASAN

Bab ini menjelaskan mengenai pemodelan struktur, analisis gerakan struktur kondisi terapung bebas, analisis perilaku gerak kapal kondisi tertambat konfigurasi *side by side* berdasarkan variasi jarak horisontal (gap) yang terbentuk antara FSRU dan LNGC, serta analisis pengaruhnya terhadap gaya tarik tali tambat (*coupling line*) yang digunakan.

BAB V. PENUTUP

Bab ini berisi kesimpulan dari analisis yang dilakukan pada penelitian ini. Bagian ini juga berisi saran yang bermanfaat guna keberlanjutan penelitian terkait kedepannya.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 TINJAUAN PUSTAKA

Dewasa ini perkembangan teknologi bangunan apung pada industri minyak dan gas semakin meningkat. Hal ini diilhami oleh semakin berkembangnya teknologi laut dalam (*deepsea technology*) yang menjawab tantangan baru dunia industri minyak dan gas. Hal ini menghasilkan suatu perubahan besar dalam perkembangan bangunan laut sebagai sarana eksplorasi dan produksi minyak dan gas bumi.

Penggunanaan teknologi bangunan apung memiliki beberapa alasan, yaitu kemampuan untuk berpindah setelah operasi selesai (1), kapasitas muat dan distribusi yang cukup besar (2), biaya operasi yang lebih rendah dibandingkan dengan biaya instalasi sistem perpipaan (3) dan tidak mensyaratkan struktur baru, yaitu struktur lama yang beralih fungsi setelah melalui tahapan konversi (4). Halhal tersebut menjadikan kelebihan bagi bangunan apung sebagai fasilitas eksplorasi maupun produksi minyak dan gas bumi.

Floating Storage Regasification Unit (FSRU) merupakan salah satu fasilitas struktur bangunan apung yang memiliki fungsi sebagai fasilitas penyimpanan dan regasifikasi (mengubah bentuk wujud gas alam dari gas ke cair dan sebaliknya) LNG. FSRU dilengkapi dengan peralatan tanki penyimpanan dan regasifikasi serta fasilitas *offloading system* berupa *loading arms* (Perwitasari, 2010).

Kegiatan distribusi LNG dari atau ke FSRU dilakukan oleh LNG *Carrier* (LNGC). Proses pemindahan muatan dari kedua fasilitas apung ini dikenal dengan istilah *offloading*. *Offloading* LNG antara FSRU dan LNGC menggunakan konfigurasi *side by side*, yaitu kedua fasilitas terapung berada tepat bersebelahan antar sisi-sisinya (*portside – starboard*) yang ditambat dengan *hawser mooring*.

Perlu diadakannya analisis tentang jarak horisontal yang terbentuk antara badan FSRU dan LNGC saat tertambat *side by side*, apakah memiliki pengaruh yang signifikan terhadap perilaku gerak kapal dan gaya tarik tali tambat yang menghubungkan keduanya (*coupling line*).

Pada penelitian sebelumnya telah dilakukan penelitian tentang analisis hidrodinamis pada interaksi kedua struktur bangunan apung dengan sistem *side by side* oleh Perwitasari (2010). Kemudian menyusul penelitian dengan pokok bahasan yang sama dan dikembangkan untuk mengetahui operabilitas FSRU saat *side by side offloading* akibat beban gelombang (Ziyan, 2013). Dalam penelitian tersebut baik Perwitasari maupun Ziyan tidak melakukan analisis terhadap pengaruh jarak horisontal yang terbentuk oleh kedua bangunan apung saat *side by side offloading*. Pada penelitian ini akan dilakukan analisa pengaruh variasi jarak horisontal yang terbentuk antara kedua struktur bangunan apung terhadap perilaku hidrodinamis bangunan apung dan pengaruhnya terhadap gaya tarik tali tambat yang menghubungkannya saat *side by side offloading*.

Gambar 2. 1 Floating Storage Regasification Unit (Golar LNG Energy Presentation Slide, Floating Storage and Regasification Unit, 2011)

2.2 DASAR TEORI

2.2.1 Struktur Bangunan Apung pada Gelombang Reguler

2.2.1.1 Teori Dasar Gerakan Bangunan Apung

Struktur bangunan apung mempunyai enam moda gerakan bebas yang terbagi menjadi dua kelompok, yaitu tiga moda gerakan translasional dan tiga moda gerakan rotasional. Keenam moda gerakan tersebut adalah :

- 1. Moda gerak translasional
 - a. Surge, gerakan translasional arah sumbu x
 - b. Sway, gerakan translasioal arah sumbu y

- c. Heave, gerakan translasioal arah sumbu z
- 2. Moda gerak rotasional
 - a. Roll, gerakan rotasional arah sumbu x
 - b. Pitch, gerakan rotasional arah sumbu y
 - c. Yaw, gerakan rotasional arah sumbu z

Moda gerakan tersebut dapat dilihat penjelasannya pada gambar 2.2. Dengan memakai konversi sumbu tangan kanan tiga gerakan translasi pada arah sumbu x, y dan z, adalah masing-masing *surge* (ζ_1), *sway* (ζ_2) dan *heave* (ζ_3), sedangkan untuk gerakan rotasi terhadap ketiga sumbu adalah *roll* (ζ_4), *pitch* (ζ_5) dan *yaw* (ζ_6).

Gambar 2. 2 Enam derajat kebebasan pada struktur bangunan apung (Ardhiansyah, 2010)

2.2.1.2 Gelombang Reguler

Dalam analisis hidrodinamis pada struktur bangunan laut terdapat beberapa klasifikasi kondisi hidrodinamis yang akan menentukan analisis yang akan digunakan (Perwitasari, 2010). Gambar di bawah ini menunjukkan klasifikasi kondisi hidrodinamis yang lazim dijumpai pada struktur bangunan laut.

Gambar 2. 3 Klasifikasi kondisi hidrodinamis pada bangunan laut (Faltinsen, 1990)

1. Teori Potensial Gelombang

Berdasarkan gambar 2.3 analisa beban hidrodinamis pada struktur bangunan apung yang memiliki luasan tercelup relatif besar memiliki pengaruh dampak potensial gelombang yang lebih dominan dibandingkan dengan dampak viskositasnya. Dengan asumsi batasan fluida yang dianalisis adalah kecil maka fluida di sekitar bangunan apung dianggap sebagai fluida ideal, yang memiliki karakter tidak memiliki viskositas (*inviscid*) dan tidak mampu mampat (*incompressible*), sehingga gerakan fluida tersebut menjadi tidak berotasi (*irrotational*). Dalam kondisi tersebut vektor kecepatan fluida V dapat diekspresikan sebagai derajat kecepatan (skalar) potensial ϕ arah x (x, y, z) terhadap waktu t pada sumbu Cartesian (Faltinsen, 1990).

$$\mathbf{V} = \nabla \phi \cong \frac{\partial \phi}{\partial x} i + \frac{\partial \phi}{\partial y} j + \frac{\partial \phi}{\partial z} k$$
(2.1)

dengan *i*, *j* dan *k* adalah unit vektor dari masing-masing sumbu *x*, *y* dan *z*...

Dikarenakan fluida tersebut diasumsikan tak mampu mampat maka,

$$\mathbf{V} \cdot \nabla = \mathbf{0} \tag{2.2}$$

sehingga,

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$
 (2.3)

Persamaan tersebut memenuhi persamaan Laplace yang mengekspresikan massa fluida pada aliran potensial yang diselesaikan dalam fungsi kecepatan potensial pada masing-masing sumbu x, y dan z.

Faktor lainnya yang turut diperhitungkan adalah tekanan pada permukaan fluida. Tekanan *p* didapatkan dari persamaan Bernoulli yang mengkorelasikan antara kecepatan dan tekanan aliran. Jika suatu aliran telah diketahui karakteristik kecepatannya maka dapat digunakan untuk menghitung tekanannya, dan jika tekanan diintegralkan akan didapatkan besaran gaya yang ditimbulkan oleh fluida. Hal ini menjadi prinsip dasar dari teori hidrodinamika, yakni menghitung besarnya beban atau gaya fluida dari integrasi tekanan yang berasal dari hasil identifikasi pola dan kecepatan aliran fluida (Djatmiko, 2012). Berdasarkan persamaan Bernoulli tekanan pada permukaan fluida dapat diekspresikan sebagai,

$$p + \rho g z + \rho \frac{\partial \phi}{\partial t} + \frac{\rho}{2} V \cdot V = C$$
(2.4)

dengan C merupakan konstanta dalam fungsi waktu yang bergantung pada kecepatan potensial. Tekanan pada permukan (z = 0) diasumsikan memiliki tekanan yang sama dengan tekanan atmosfer, sehingga persamaannya akan dijelaskan kemudian.

2. Kondisi Batas

Dalam memperoleh persamaan gelombang harus ditentukan terlebih dahulu kondisi batasnya. Kondisi batas fluida tersebut terdiri dari :

• Kondisi batas kinematik

Kondisi ini berkaitan erat dengan kecepatan fluida di sekitar bangunan. Kondisi batas kinematik pada bangunan apung yang bergerak translasi dan rotasi, fluida diasumsikan sebagai,

$$\frac{\partial \phi}{\partial n} = \boldsymbol{U} \cdot \boldsymbol{n}$$
 pada permukaan (2.5)

11

dengan U adalah kecepatan gerak bangunan apung dan n adalah vektor yang menjelaskan titik normal pada permukaan di sekitar bangunan (menunjukkan arah translasi maupun rotasi).

Sedangkan pada bangunan terpancang persamaan (2.5) menjadi,

$$\frac{\partial \phi}{\partial n} = 0$$
 pada permukaan (2. 6)

Persamaan di atas menjelaskan bahwa tidak ada fluida yang keluar maupun masuk dari bangunan. Kondisi batas permukaan bebas didefinisikan sebagai $z = \zeta$ (x, y, t) = 0, dengan ζ adalah elevasi gelombang. Sehingga partikel fluida didefinisikan sebagai fungsi,

$$F(x, y, z, t) = z - \zeta (x, y, t) = 0$$
(2.7)

Partikel pada permukaan diasumsikan selalu berada di permukaan (Chakrabarti, 1987), sehingga dapat dituliskan sebagai

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial t} + V \cdot \nabla F = 0 \qquad (2.8)$$

$$\frac{\partial}{\partial t} (z - \zeta (x, y, t)) + \nabla \emptyset \cdot \nabla (z - \zeta (x, y, t)) = 0$$

$$\frac{\partial \zeta}{\partial t} + \frac{\partial \emptyset}{\partial x} \frac{\partial \zeta}{\partial x} + \frac{\partial \emptyset}{\partial y} \frac{\partial \zeta}{\partial y} - \frac{\partial \emptyset}{\partial z} = 0 \qquad \text{pada } z = \zeta (x, y, t)$$

Sedangkan kondisi batas kinematik pada dasar laut diasumsikan bahwa dasar laut adalah padat sehingga tidak dapat ditembus oleh fluida. Hal ini menjelaskan bahwa kecepatan vertikal fluida di dasar laut adalah sama dengan nol, sehingga dapat didefinisikan sebagai

$$\frac{\partial \phi}{\partial n} = 0$$
 pada dasar laut (2.9)

• Kondisi batas dinamik

Kondisi ini berkaitan dengan gaya-gaya yang bekerja pada batas di sekitar bangunan. Kondisi ini mengasumsikan tekanan yang terjadi di permukaan sama dengan tekanan atmosfer (Chakrabarti, 1987). Jika koefisien C pada persamaan 3. 4 diartikan sebagai $\frac{P_0}{\rho}$ maka persamaannya berarti tidak terjadi gerakan fluida sehingga dapat dituliskan,

$$g\zeta + \frac{\partial\phi}{\partial t} + \frac{1}{2} \left(\left(\frac{\partial\phi}{\partial x} \right)^2 + \left(\frac{\partial\phi}{\partial y} \right)^2 + \left(\frac{\partial\phi}{\partial z} \right)^2 \right) = 0$$
(2.10)

Tetapi dari persamaan (2.10), permukaan bebas tidak bisa diketahui sebelum menyelesaikan persamaan sebelumnya. Perlu dilakukan linearisasi pada kondisi batas permukaan sehingga persamaan di atas dapat diselesaikan. Dengan mengasumsikan struktur tidak memiliki kecepatan dan arusnya bernilai nol. Teori linearisasi yang diterapkan mempunyai arti bahwa kecepatan potensial memiliki hubungan sebanding dengan amplitudo gelombang, sehingga dapat dituliskan,

$$g\zeta + \frac{\partial\phi}{\partial t} = 0$$
 pada z = 0 (2.11)

3. Teori Gelombang Reguler

Dengan mengasumsikan kondisi dasar laut adalah rata dan batasan horisontal pada permukaan bernilai tak hingga maka teori gelombang linear atau yang lebih dikenal dengan teori gelombang Airy dapat diterapkan.

Adapun persamaan-persamaan yang dari teori gelombang Airy adalah sebagai berikut :

Kecepatan potensial (Ø)

$$\emptyset = \frac{gA}{\omega} \frac{\cosh k (z+d)}{\cosh kd} \sin(kx - \omega t)$$
(2. 12)

• Kecepatan fluida (v_z)

$$v_z = -A\omega \frac{\sinh(kz-kd)}{\sinh(kd)} \sin(\omega t - k.x)$$
(2.13)

• Percepatan fluida (a_z)

$$a_z = -A\omega^2 \frac{k}{k} \frac{\sinh(kz+kd)}{\sinh(kd)} \cos(\omega t - k.x)$$
(2.14)

dengan,

А	= amplitudo gelombang
ω	= frekuensi alami gelombang
k	= nomor gelombang
d	= kedalaman laut

2.2.2 Respon Struktur pada Gelombang Reguler

2.2.2.1 Respon Amplitude Operator (RAO)

Response Amplitude Operator (RAO) merupakan fungsi respon gerakan dinamis struktur yang disebabkan oleh gelombang dengan rentang frekuensi tertentu. RAO merupakan alat untuk mentransfer gaya gelombang menjadi respon gerakan dinamis struktur. Menurut Chakrabarti (1987) RAO dapat didefinisikan sebagai :

$$RAO(\omega) = \frac{X_{p}(\omega)}{\eta(\omega)}$$
dengan :
$$X_{p}(\omega) = \text{amplitudo struktur}$$

$$\eta(\omega) = \text{amplitudo gelombang}$$
(2. 15)

RAO dapat diilustrasikan sebagai grafik perbandingan amplitudo respon dengan amplitudo gelombang terhadap frekuensi gelombang.

Gambar 2. 4 Grafik Respons Gerakan Bangunan Apung (Journee et all, 2001)

2.2.2.2 Single Body

Pada struktur bangunan apung permasalahan hidrodinamis terdiri dari dua jenis :

Gambar 2. 5 Superposisi dari permasalahan hidrodinamis (Journee et all, 2001)

• Gaya dan momen struktur yang berosilasi pada kondisi still water

Struktur bangunan apung yang berosilasi terhadap dirinya sendiri akan mempengaruhi osilasi fluida di sekelilingnya dan integrasi fluida yang terpengaruh akan menghasilkan gaya dan momen yang bekerja pada struktur. Total gaya pada struktur didapatkan dari hasil integrasi tekanan yang mengenai luasan permukaan struktur yang dikenainya. Berdasarkan persamaan gerak koefisien massa tambah dan redaman (*damping*) pada gerakan harmonik dapat ditentukan. Gaya pengembali dan momen dapat dihitung berdasarkan perhitungan hidrostatis dan massa.

• Gaya dan momen struktur yang berosilasi akibat gelombang

Gelombang dan momen struktur yang berosilasi akibat gelombang. Gaya dan momen yang bekerja dikenal dengan gaya dan momen Froude-Kriloff dan difraksi. Gaya Froude-Kriloff dihasilkan dari area yang dikenai tekanan yang tidak terganggu pola alirannya (*undisturbed*). Sedangkan gaya difraksi diperoleh dari perubahan area yang dikenai tekanan yang terganggu pola alirannya akibat difraksi.

Pada bangunan apung *single body* gerakannya terdiri dari enam derajat kebebasan yang yang tersusun dalam matriks *6N*, *N* untuk menunjukkan jumlah badan yang ditinjau.

2.2.2.3 Multi Body

Pada bangunan apung *multi body*, jumlah matriks massa derajat kebebasan, matriks gerak bangunan apung dan matriks gaya menjadi $6N \ x \ 6N$. Hal tersebut mengindikasikan persamaan gerak kedua bangunan apung merupakan superposisi dari persamaan gerak untuk masing-masing bangunan. Koefisien-koefisien hidrodinamis dapat diselesaikan dengan mempertimbangkan :

- Radiasi dan difraksi dari masing-masing bangunan apung
- Interaksi hidrodinamis bangunan I akibat kehadiran bangunan II, bangunan II akibat kehadiran bangunan I

2.2.2.4 Analisis Dinamis Berbasis Ranah Frekuensi (Frequency Domain Analysis)

Frequency domain analysis adalah simulasi kejadian pada saat tertentu dengan interval frekuensi yang telah ditentukan sebelumnya. Setelah mendapatkan koefisien hidrodinamik dan gaya gelombang yang bekerja pada bangunan apung, maka persamaan gerak untuk single body dapat dituliskan sebagai berikut :

$\sum_{k=1}^{6} $	$((M+A)\ddot{\eta}+B)$	$\dot{\eta} + C\eta] = F$	e^{-iw_e}	t	(2	2. 16)
dengan,						
М	= Massa struk	xtur (generali	ized m	nass)		
А	= Massa tamb	oah (<i>added m</i>	ass)			
В	= Koefisien r	edaman (<i>dam</i>	ping)			
С	= Koefisien p	engembali (r	estori	ing)		
F	=Amplitudo	gelombang	dan	komponen	momen	yang
didefinisik	an sebagai kon	nponen dari F	re ^{-iw}	^{et} .		

Dengan mengembangkan persamaan gerak untuk *single body* dapat untuk mendefinisikan persamaan gerak untuk multi body, yaitu

$$\begin{split} \sum_{k=1}^{6} [(M^{1} + A^{11} + \dots + A^{1N})\ddot{\eta} + (B^{11} + \dots + B^{1N})\dot{\eta} + C^{1}\eta] &= \\ F^{1}e^{-iw_{e}t} \\ \cdot \\ \cdot \\ \cdot \\ \sum_{k=1}^{6} [(M^{N} + A^{N1} + \dots + A^{NN})\ddot{\eta} + (B^{N1} + \dots + B^{NN})\dot{\eta} + \\ C^{N}\eta] &= F^{N}e^{-iw_{e}t} \end{split}$$
(2.17)

Superscipt pada persamaan tersebut menunjukkan nomer moda antara jumlah bangunan apung N tertentu. Jika bangunan apung berosilasi akibat gelombang harmonik maka respon struktur yang terbentuk adalah sebagai fungsi harmonik. Analisis berbasis ranah frekuensi dilakukan untuk menentukan respon bangunan struktur pada gelombang reguler yang disajikan dalam bentuk *Respon Amplitude Operator*. Keuntungan metode ini adalah tidak membutuhkan banyak waktu untuk perhitungan, *input* dan *output* juga lebih sering digunakan oleh perancang. Kekurangannya adalah untuk setiap persamaan *non-linear* harus diubah menjadi *linear*.

2.2.3 Faktor-faktor Non Linear

Pada pembahasan sebelumnya perhitungan respon strktur didasarkan pada persamaan Bernoulli, yang menekankan tentang teori linear. Adapun untuk memenuhi kondisi yang mendekati kenyataan, faktor-faktor non linear harus dipertimbangkan dalam perhitungan, yaitu dengan melengkapi persamaan Bernoulli. Adapun faktor-faktor non linear yang turut diperhitungkan adalah sebagai berikut :

2.2.3.1 Beban Gelombang Second Order

Pengaruh beban gelombang *second order* akan tampak pada perilaku struktur bangunan apung yang tertambat. Pada gelombang reguler cara yang paling sederhana untuk mendefinisikan pengaruh non linear adalah dengan melengkapi persamaan Bernoulli (Faltinsen, 1990). Hasil dari persamaan tersebut dapat diklasifikasikan menjadi tiga komponen penyusun : beban *mean wave (drift)*, beban osilasi variasi frekuensi dan beban osilasi dari penjumlahan frekuensi tersebut yang akan mendeskripsikan spektrum gelombang.

2.2.3.2 Beban Angin dan Arus

1. Beban Angin

Berdasarkan OCIMF (1997) *Mooring Equipment Guidkines*, perhitungan beban angin didefinisikan sebagai berikut :

Longitudinal wind force

$$F_{xw} = C_{xW} \left(\frac{\rho_w}{7600}\right) V_w^2 A_T$$
(2.18)

Lateral wind force

$$F_{yw} = C_{yW} \left(\frac{\rho_w}{7600}\right) V_w^2 A_L$$
 (2.19)

dengan,

F_{xw}	= gaya angin longitudinal (kN)
F _{yw}	= gaya angin lateral (kN)
C_{xW}	= koefisien gaya angin longitudinal non dimensional

C_{yW}	= koefisien gaya angin transfersal non dimensional
$ ho_w$	= densiti udara = 1.223 Kg/m^3 pada 20^0 C
V_w	= kecepatan angin pada ketinggian 10m (knot)
A_T	= luas penampang transfersal diatas air (m^2)
A_L	= luas penampang longitudinal diatas air (m^2)

2. Beban Arus

Arus permukaan di sekitar kapal dibangkitkan dari angin lokal, pasang surut, *stokes drift*, massa jenis arus lokal, dan fenomena *set-up* (Faltinsen, 1990). Berdasarkan OCIMF (1997) *Mooring Equipment Guidkines*, perhitungan beban arus didefinisikan sebagai berikut :

Longitudinal current force

$$F_{xc} = C_{xc} \left(\frac{\rho_c}{7600}\right) V_c^2 T L_{BP}$$
(2.20)

Lateral current force

$$F_{yc} = C_{yc} \left(\frac{\rho_c}{7600}\right) V_c^2 T L_{BP}$$
(2.21)

dengan,

F_{xc}	= gaya arus longitudinal (kN)
Fyc	= gaya arus lateral (kN)
C_{xc}	= koefisien gaya arus longitudinal non dimensional
Cyc	= koefisien gaya arus transfersal non dimensional
$ ho_c$	= densiti air laut = 1025 Kg/m^3 pada 20° C
V _c	= kecepatan arus pada ketinggian 10 m (knot)
Т	= draft kapal (m)
L_{BP}	= length between perpendicular (m)

2.2.4 Sistem Tali Tambat

2.2.4.1 Sistem Tambat

Sistem tambat pada fasilitas struktur bangunan apung pada prinsipnya berfungsi menjaga posisinya agar tetap berada tetap pada tempatnya atau jarak jangkauannya. Secara garis besar sistem tambat dapat dikategorikan sebagai *weathervaning* dan *non-weathervaning*. Dikatakan *weathervaning* jika respon struktur bangunan apung bebas berputar 360 derajat tergantung arah beban lingkungan yang mengenainya, contoh *tower mooring system*. Sedangkan *nonweathervaning*, arah respon struktur dibatasi dan beban lingkungan yang menimpanya ditahan oleh struktur bangunan apung, contoh : *dolphin mooring*.

Gambar 2. 6 General Arrangement Tower mooring (Hyundai Hoegh, 2011)

Gambar 2. 7 Sistem tambat *dolphin mooring* (hoeghlng, 2012)

2.2.4.2 Tali Tambat antar *Multi Body* (*Coupling Line*)

Dalam kondisi *side by side offloading* yang terhubung oleh tali tambat, gerakan masing-masing bangunan apung akan mempengaruhi bangunan apung yang lainnya. Perhitungan tali tambat dapat dituliskan sebagai berikut,

$$\Delta l = \frac{T}{k} \tag{2.22}$$
dengan Δl adalah perpanjangan tali tambat, *T* adalah gaya tarik tali tambat dan *k* adalah kekakuan aksial efektif. Kekakuan aksial efektif dapat dihitung berdasarkan persamaan,

$$\frac{1}{k} = \frac{l}{EA} + \frac{1}{k_0} \tag{2.23}$$

Kekakuan dari tali tambat terdiri dari kekakuan elastisitas dan kekakuan geometri. Kekakuan elastisitas berasal dari material elastis, sedangkan kekakuan geometri berasal dari perubahan bentuk geometri tali tambat (Faltinsen, 1990). Sehingga gaya tarik tali tambat dapat diperoleh dari hasil perkalian kekakuan aksial efektif dengan pertambahan panjang tali tambat.

Gambar 2.8 Konfigurasi coupling line saat side by side offloading (OCIMF, 2008)

2.2.5 Respon Struktur pada Gelombang Acak

Dalam analisis respon bangunan apung pada gelombang reguler dapat diketahui pengaruh interaksi hidrodinamik pada massa tambah, *potential damping* dan gaya eksternal. Analisis tersebut menghasilkan respon struktur pada gelombang reguler. Sedangkan sistem *side by side offloading* yang dilakukan di lapangan terjadi pada gelombang acak sehingga dituntut untuk melakukan analisis respon struktur pada gelombang acak.

Gelombang acak merupakan superposisi dari komponen-komponen pembentuknya berupa gelombang sinusoidal dalam jumlah yang tak terhingga. Tiap-tiap komponen gelombang memiliki tingkat energi tertentu yang dikontribusikan dan secara keseluruhan dapat diakumulasikan dalam bentuk spektrum energi gelombang (Djatmiko, 2012).

Respon struktur pada gelombang acak dapat dilakukan dengan mentransformasikan spektrum gelombang menjadi spektrum respon. Spektrum respon didefinisikan sebagai respon kerapatan energi pada struktur akibat gelombang. Hal ini dapat dilakukan dengan mengalikan harga pangkat kuadrat dari *Response Amplitude Operator* (RAO) dengan spektrum gelombang pada daerah struktur bangunan apung tersebut beroperasi. Persamaan spektrum respon secara matematis dapat dituliskan sebagai :

$$S_{R} = [RAO(\omega)]^{2} S(\omega)$$
(2.25)

dengan :

S_{R}	= spektrum respons (m ² -sec)
$S(\omega)$	= spektrum gelombang (m ² -sec)
$RAO(\omega)$	= transfer function
ω	= frekuensi gelombang (rad/sec)

Setelah spektrum respon diperoleh maka intensitas gerakan dapat dihitung sebagai fungsi luasan di bawah kurva spektrum respon atau merupakan variasi elevasi gerakan, yaitu sebagai berikut :

$$m_{r0} = \int_0^\infty S_{\zeta}(\omega) d\omega \qquad (2.26)$$

Berdasarkan persamaan 2. 26 jika diturunkan akan didapatkan harga-harga statistik gerakan sebagai fungsi varian elevasi gerakan m_{r0} , yaitu misalnya sebagai amplitudo gerakan rata-rata yang dihitung sebagai :

$$\bar{\zeta}_r = 1.25\sqrt{m_{r0}}$$
 (2.27)

Harga amplitudo gerakan signifikan dihitung sebagai :

$$\zeta_{rs} = 2.0\sqrt{m_{r0}} \tag{2.28}$$

Dan amplitudo respon ekstrim yang berpeluang terjadi dalam waktu *T* jam dapat dihitung dengan persamaan :

$$\hat{\zeta}_r = \sqrt{m_{r0}} \times \sqrt{\left\{2 \ln\left(\frac{60^2 T}{2\pi} \sqrt{\frac{m_{r2}}{m_{r0}}}\right)\right\}}$$
 (2.29)

Harga m_{r2} merupakan momen kedua dari luasan di bawah kurva spektrum respon.

2.2.5.1 Spektrum Gelombang

Sebuah gelombang reguler memuat energi yang diidentifikasikan pada setiap unit atau satuan luas permukaannya ekuivalen dengan harga kuadrat amplitudonya (Djatmiko, 2012) seperti yang ditunjukkan pada persamaan 2.26.

$$\frac{dE_T}{dA} = \frac{dE_p + dE_K}{dA} = \frac{1}{2}\rho g \zeta_0^2 \qquad (2.30)$$

dengan,
$$dE_T = \text{energi total}$$

$$dA = \text{luas permukaan}$$

$$dE_p = \text{energi potensial}$$

$$dE_k = \text{energi kinetik}$$

$$\zeta_0 = \text{amplitudo gelombang}$$

Penjumlahan energi dari seluruh komponen gelombang reguler per satuan luas permukaan dapat diekspresikan sebagai kepadatan spektrum gelombang atau lebih dikenal dengan istilah spektrum gelombang.

Bersamaan dengan semakin meningkatnya intensitas studi yang dilakukan mengenai respon gerak pada gelombang acak telah banyak dihasilkan spektrum gelombang yang beragam sesuai dengan kondisi lingkungan yang dianalisis. Jenisjenis spektrum gelombang yang biasa digunakan dalam perhitungan adalah model Pierson-Moskowitz (1964), ISSC (1964), Scott (1965), Bretschneider (1969), JONSWAP (1973), ITTC (1975) dan Wang (1991). Spektrum gelombang yang digunakan dalam analisis ini mengacu pada soektrum gelombang JONSWAP karena karakteristik perairan Indonesia yang tertutup/kepulauan sehingga cocok dengan karakter spektrum JONSWAP (Djatmiko, 2012).

Spektrum JONSWAP didasarkan pada percobaan yang dilakukan di North Sea. Persamaan spektrum JONSWAP dapat dituliskan dengan memodifikasi persamaan spektrum Pierson-Moskowitz (DNV RP-C205, 2010), yaitu :

$$S_{j}(\omega) = A_{\gamma} S_{pm}(\omega) \gamma^{\exp(-0.5\left(\frac{\omega-\omega_{p}}{\sigma\,\omega_{p}}\right)^{2}\right)}$$
(2.31)

dengan,

 $S_{pm}(\omega) = Spektra Pierson-Moskowitz$

$$= \frac{5}{16} H_s^2 \omega_p^4 \, \omega^{-5} \exp\left(-\frac{5}{4} \left(\frac{\omega}{\omega_p}\right)^{-4}\right)$$
(2.32)

$$\gamma$$
 = parameter puncak (*peakedness parameter*)

$$\sigma = \text{parameter bentuk (shape parameter) untuk } \omega \le \omega_0 = 0,07 \text{ dan } \omega \ge \omega_0 = 0,09$$

$$A_{\gamma}$$
 = normalizing factor = $1 - 0.287 \ln(\gamma)$

 ω = wave frequency (rad/sec)

$$\omega_p$$
 = angular spectral peak frequency (rad/sec)

 H_s = tinggi gelombang signifikan (m)

$$Tp$$
 = periode puncak (s)

2.2.5.2 Analisis Dinamis Berbasis Ranah Waktu (Time Domain Analysis)

Jika suatu sistem linear dan beban gelombang yang bekerja hanya terdiri dari *first order* maka beban yang diterima maupun respon yang dihasilkan juga dalam bentuk linear sehingga dapat diselesaikan dengan analisis dinamis berbasis ranah frekuensi (*frequency domain analysis*). Sedangkan jika terkandung di dalamnya faktor-faktor non linear, seperti beban gelombang *second order*, *nonlinear viscous damping*, gaya dan momen akibat angin dan arus maka perhitungan *frequency domain analysis* menjadi kurang relevan. Oleh karena itu untuk mengakomodasi faktor-faktor non linear tersebut maka persamaan gerak dari hukum kedua Newton diselesaikan dalam fungsi waktu atau yang lebih dikenal dengan istilah analisis dinamis berbasis ranah waktu (*time domain analysis*).

Pendekatan yang dilakukan dalam metode ini akan menggunakan prosedur integrasi waktu dan menghasilkan *time history response* berdasarkan fungsi waktu x(t). Metode analisis *time domain* umumnya seperti program komputer dapat digunakan untuk menganalisis semua situasi tali tambat dibawah pengaruh dinamika frekuensi gelombang. Periode awal harus dimaksimalkan untuk meminimalkan efek transient. Namun, metode ini dalam membutuhkan proses lebih kompleks dan waktu yang lama. Hal ini membutuhkan simulasi *time history. Time history* memberikan hasil *tension* maksimum, beban jangkar, dan lain-lain. Persamaan tersebut dideskripsikan sebagai :

$$[m + A(\omega)]\ddot{x} + C(\omega)\dot{x} + D_1\dot{x} + D_2f(\dot{x}) + Kx = q_{WI} + q_{WA}^1 + q_{WA}^2 + q_{CU} + q_{xet}$$
(2.33)

dengan,

q_{WI}	= beban seret angin (<i>wind drag force</i>)
q_{WA}^1	= beban gelombang first order
q_{WA}^2	= beban gelombang second order
q_{CU}	= beban arus
q_{xet}	= beban eksternal lainnya

Output dari simulasi time domain adalah:

- Simulasi gelombang reguler dapat digunakan untuk memprediksi fungsi transfer dengan mengambil rasio amplitudo respon dengan input amplitudo gelombang.
- Spektrum respon dapat dihitung dari *time series*, informasi yang diberikan sama dengan analisa domain frekuensi.

• Respon ekstrim dapat disimulasi langsung dari puncak respon selama simulasi.

Keuntungan metode ini dibandingkan *frequency domain* adalah semua tipe *non-linear* (matrik sistem dan beban-beban eksternal) dapat dimodelkan dengan lebih tepat. Sedangkan kerugiaannya adalah membutuhkan waktu perhitungan yang lebih. Menurut DNV OS E301 (2010), minimal simulasi *time domain* adalah selama 3 jam.

BAB III

METODOLOGI PENELITIAN

3.1 METODE PENELITIAN

Metode yang digunakan dalam pengerjaan tugas akhir ini dapat dilihat pada *flowchart* berikut ini :

Gambar 3. 1 Diagram alir metodologi penelitian yang dilakukan

Gambar 3. 1 Diagram alir metodologi penelitian yang dilakukan (lanjutan)

Penjabaran diagram di atas dijelaskan pada langkah-langkah di bawah ini :

1. Studi literatur, pengumpulan data struktur dan data lingkungan

Penelusuran literatur ditujukan untuk mendapatkan data mengenai struktur bangunan apung berupa FSRU dan LNGC serta mempelajari penelitian yang telah dilakukan sebelumnya terkait perilaku FSRU dan LNGC. Pengumpulan data lingkungan meliputi data gelombang, arus dan angin yang akan digunakan sebagai input beban lingkungan.

2. Pemodelan struktur

Pemodelan struktur bangunan apung, FSRU dan LNGC dilakukan dengan bantuan perangkat lunak Maxsurf dan MOSES. Struktur terapung dimodelkan berdasarkan pada data-data yang telah didapatkan. 3. Validasi model

Model struktur yang telah dimodelkan diperiksa kesesuaiannya dengan data struktur sesungguhnya di lapangan. Untuk validasi model dilakukan analisis hidrostatis dengan bantuan perangkat lunak Maxsurf.

4. Analisis dinamis berbasis ranah frekuensi (*frequency domain analysis*) single body

Setelah validasi model dilakukan dan hasilnya cenderung mendekati data lapangan, langkah selanjutnya ialah melakukan *frequency domain analysis* pada FSRU dan LNGC pada kondisi tidak tertambat (terapung bebas) hal ini dilakukan guna mengetahui RAO dari kedua bangunan tersebut saat kondisi terapung bebas.

5. Pemodelan kondisi side by side offloading

Pada tahap ini akan dilakukan pemodelan sistem *offloading* antara FSRU dan LNGC dengan konfigurasi *side by side*. Penentuan *coupling line* (*hawser arrangement*) mengacu berdasarkan OCIMF. Selain itu akan dilakukan pemodelan sistem *side by side* offloading dengan variasi jarak/gap yang terbentuk di antara kedua bangunan apung guna mengetahui pengaruhnya terhadap respon gerak dan gaya tarik tali tambat. Pemodelan ini akan dilakukan dengan bantuan perangkat lunak MOSES.

6. Analisis dinamis berbasis ranah frekuensi (*frequency domain analysis*) multi body

Analisis ini dilakukan guna mengetahui RAO dari kedua bangunan tersebut saat kondisi *side by side offloading*. Dalam kondisi tertambat respon gerak bangunan satu akan dipengaruhi oleh bangunan lain yang tertambat kepadanya. Selain itu analisis ini dilakukan untuk menghasilkan koefisien hidrodinamik dan koefisien gaya gelombang *second order* yang nantinya akan digunakan pada *time domain analysis*. Dalam analisis ini akan dilakukan variasi

pemodelan berupa jarak/gap yang terbentuk antara FSRU dan LNGC dengan variasi jarak 2.5, 4, 6 dan 8.5 meter.

7. Analisis dinamis berbasis ranah waktu (time domain analysis)

Pada tahapan ini pemodelan akan dilakukan pada gelombang acak dengan memasukkan persamaan spektrum gelombang, selain itu faktor-faktor non linear turut diperhitungkan, sehingga analisis yang dilakukan adalah *time domain analisys*. Berdasarkan analisis ini akan didapatkan respon gerak bangunan apung saat *side by side offloading* dalam fungsi waktu dan besaran gaya tarik yang terjadi pada *coupling line*.

 Analisis pengaruh variasi jarak horisontal (gap) antara FSRU dan LNGC terhadap respon gerak dan gaya tarik tali tambat

Tahapan ini berfokus pada analisis pengaruh variasi jarak horisontal yang terbentuk antara FSRU dan LNGC terhadap respon gerak bangunan apung saat *side by side offloading* dan terhadap besaran *coupling line* yang menghubungkan kedua bangunan apung tersebut. Hasil analisis akan ditampilkan pada grafik perbandingan karakteristik RAO struktur dan besarnya gaya tarik tali tambat berdasarkan variasi jarak horisontal antara badan FSRU dan LNGC.

9. Kesimpulan dan saran

1.2 PENGUMPULAN DATA

Adapun data-data yang dapat diperlukan dalam penelitian ini adalah sebagai berikut :

3.2.1 Data Struktur

Data struktur FSRU dan LNGC yang digunakan dalam penelitian ini adalah sebagai berikut :

Data Struktur	Ukuran	Satuan
Length of all (Loa)	294	М
Length between perpendecular (Lpp)	282	М
Breadth (B)	46	М
Depth (H)	26	М
Draft design (T)	11,6	М

Tabel 3.1Data Struktur FSRU, (FSRU PGN, 2012)

 Tabel 3. 2
 Data Struktur LNGC, (K LINE PGN, 2012)

Data Struktur	Ukuran	Satuan
Length of all (Loa)	268,101	m
Length between	274	m
perpendecular (Lpp)		
Breadth (B)	43,4	m
Depth (H)	26	m
Draft design (T)	11,5	m

3.2.2 Data Lingkungan

Data lingkungan yang digunakan pada penelitian ini merupakan data lingkungan tempat FSRU dan LNGC ini akan beroperasi, yaitu di daerah Labuhan Maringgai Lampung dengan kedalaman perairannya kurang lebih 23 meter. Lokasi FSRU dan LNGC beroperasi ditunjukkan pada peta berikut,

Gambar 3. 2 Lokasi FSRU akan beroperasi (PGN, 2012)

Adapun data lingkungan yang diperlukan adalah sebagai berikut :

a. Data Presentasi Tinggi Gelombang

Hs (m) 0.0-0.25 0.25-0.5 0.5-0.75 0.75-1.0 1.0-1.25 1.25-1.5 1.5-1.75 TOT Ν 0.0 1.65 1.05 0.29 0.03 0.01 3.02 NNE 22.5 0.53 0.17 0.7 0.37 0.53 NE 45.0 0.15 0.01 ENE 67.5 0.6 0.89 0.46 0.11 0.01 2.07 ENE 90.0 2.72 19.28 19.09 6.08 1.19 0.16 48.51 WAVE DIRECTION (DEG) ESE 112.5 1.47 2.1 0.71 0.27 0.06 4.62 SE 135.0 0.74 0.53 0.04 1.31 SSE 157.5 0.66 0.39 0.05 1.09 S 180.0 0.91 0.52 0.09 0.01 1.52 SSW 202.5 1.22 0.58 0.01 1.8 SW 225.0 2.69 4.3 0.1 7.09 WSW 247.5 4.02 6.71 0.12 10.85 wsw 3.48 0.04 5.57 270.0 2.06 WNW 292.5 3.54 1.71 0.02 5.26 2.32 NW 315.0 2.11 0.03 4.46 NNW 337.5 0.96 0.61 0.01 1.59 27.88 43.15 1.27 тот 21.05 6.49 0.16 100

 Tabel 3. 3
 Data Presentasi Tinggi Gelombang (Metocean PGN, 2012)

c. Data Distribusi Tinggi Gelombang dan Peak Period

 Tabel 3. 4
 Data Distribusi Tinggi Gelombang dan Peak Period (Metocean PGN, 2012)

			Hs (m)								
		0.0-0.25	0.25-0.5	0.5-0.75	0.75-1.0	1.0-1.25	1.25-1.5	1.5-1.75	тот		
	0-2.5	20.91	18.05						38.96		
	2.5-5.0	5.64	15.73	8.69	2.35	0.18			32.59		
	5.0-7.5	0.98	9.32	12.36	4.14	1.09			27.89		
(s)	7.5-10		0.01						0.01		
Tp	10-12.5	0.03					0.16		0.19		
	12.5-15.0	0.23	0.02						0.25		
	15.0-17.5	0.05	0.02						0.07		
	17.5-20.0	0.04							0.04		
	тот	27.88	43.15	21.05	6.49	1.27	0.16		100		

d. Data Presentasi Kecepatan Angin

 Tabel 3.5
 Data Presentasi Kecepatan Angin (Metocean PGN, 2012)

				WIND SPEED (m/s)							
			2.0	4.0	6.0	8.0	10.0	12.0	14.0	тот	
	Ν	0.0	0.72	0.73	0.22	0.03				1.71	
	NNE	22.5	0.81	0.67	0.12					1.60	
	NE	45.0	0.99	1.32	0.39	0.01	0.02			2.72	
	ENE	67.5	1.26	3.37	2.72	0.62	0.04			8.01	
છ	ENE	90.0	1.6	5.09	7.1	2.76	0.2			16.74	
(DE	ESE	112.5	1.49	4.68	4.92	1.61	0.11			12.82	
ION	SE	135.0	1.23	2.89	0.88	0.1				5.10	
ICT	SSE	157.5	1.27	1.44	0.09	0.01				2.81	
DIRI	S	180.0	0.99	0.99	0.16					2.14	
IIN	SSW	202.5	0.95	1.19	0.72	0.24	0.03	0.01		3.14	
RRE	SW	225.0	1	1.9	2.08	2.14	1.27	0.15	0.01	8.57	
CU	WSW	247.5	1	2.39	3.71	3.62	1.49	0.19		12.40	
	WSW	270.0	1.04	2.25	2.6	0.94	0.09	0.03		6.96	
	WNW	292.5	0.84	2.52	2.32	0.8	0.15	0.03		6.67	
	NW	315.0	0.99	1.6	1.69	0.99	0.45	0.04		5.76	
	NNW	337.5	0.66	1.04	0.73	0.35	0.07	0.01		2.86	
		тот	16.82	34.07	30.46	14.23	3.93	0.47	0.01	100.00	

e. Data Presentasi Kecepatan Arus

Tabel 3.6	Data Presentasi	Kecepatan Arus	(Metocean	PGN, 2012)
-----------	-----------------	----------------	-----------	------------

				CURRENT SPEED (m/s)												
			0.015	0.045	0.075	0.105	0.135	0.165	0.195	0.225	0.255	0.285	0.315	0.345	0.375	тот
	N	0.0	1.22	0.5												1.72
	NNE	22.5	0.7	0.02	0.01											0.73
	NE	45.0	0.53													0.53
	ENE	67.5	0.91													0.91
(F)	ENE	90.0	0.1													0.10
DEC	ESE	112.5														0.00
ION	SE	135.0														0.00
ECT	SSE	157.5														0.00
DIR	S	180.0	39.65													39.65
ENT	SSW	202.5														0.00
JRR	SW	225.0						0.11	5.22	4.97	3.63	1.77	1.3	0.84	0.06	17.91
5	WSW	247.5			0.01	0.14	3.82	6.26	2.55	1.11	0.56	0.15	0.01			14.61
	WSW	270.0		0.05	1.08	3.46	2.38	1.7	1.03	0.28	0.07					10.05
	WNW	292.5	0.17	0.66	2.24	2.17	1.14	0.44	0.05							6.86
	NW	315.0	0.17	1.54	1.76	0.71	0.05									4.22
	NNW	337.5	0.56	1.73	0.41	0.01										2.71
		TOT	44.01	4.49	5.5	6.48	7.39	8.51	8.85	6.36	4.26	1.92	1.31	0.84	0.06	100.00

3.2.3 Data pendukung

Data pendukung dalam penelitian ini terdiri dari data tali tambat yang menghubungkan FSRU dan LNGC (*coupling line*). Data tersebut terangkum dalam tabel berikut ini :

Usage	Breast Line
Material	Nylon
Diameter	120 mm
Minimum breaking strength (MBL)	305 ton
Safety factor (OCIMF)	2,2
Usage	Spring Line
Material	Nylon
Diameter	192 mm
Minimum breaking strength (MBL)	760 ton
Safety factor (OCIMF)	2,2

 Tabel 3. 7 Data coupling line (Effective Mooring OCIMF, 2004)

Koordinat *bollard* yang akan dipasangkan *couplimg line* pada badan FSRU dan LNGC ditunjukkan pada Tebel 3.8. (Lihat lampiran : Konfigurasi *Coupling Line*)

		Body : FSRU	*	Body : LNGC			
Koordinat	х	У	Z	Х	У	Z	
Bollard 1	283.51	-11.65	26.00	268.88	14.14	26.00	
Bollard 2	278.67	-14.21	26.00	265.32	15.63	26.00	
Bollard 3	274.28	-16.30	26.00	261.58	16.87	26.00	
Bollard 4	168.50	-22.00	26.00	202.99	20.70	26.00	
Bollard 5	158.50	-22.00	26.00	192.99	20.70	26.00	
Bollard 6	127.39	-22.00	26.00	67.99	20.70	26.00	
Bollard 7	117.39	-22.00	26.00	47.99	20.70	26.00	
Bollard 8	6.15	-18.54	20.00	10.01	19.27	20.00	
Bollard 9	1.61	-15.59	20.00	4.46	16.32	20.00	

 Tabel 3. 8 Koordinat bollard pada FSRU dan LNGC

ANALISIS HASIL DAN PEMBAHASAN

BAB IV

4.1 PEMODELAN FSRU DAN LNGC

Pemodelan FSRU dan LNGC yang akan dianalisis dalam penelitian ini dilakukan dengan bantuan *software maxsurf* dan MOSES. Langkah awal dalam pemodelan ini dilakukan dengan memodelkan FSRU dan LNGC pada maxsurf dengan mengacu pada data *General Arrangement* (GA) dan data-data lain yang dibutuhkan. Setelah mendapatkan model yang sesuai dengan GA dengan melakukan beberapa validasi data kapal, maka model tersebut ditransfer ke MOSES dengan mendeskripsikan titik-titik koordinat model dari maxsurf untuk dilakukan analisis lebih lanjut. Berikut ini merupakan hasil-hasil pemodelan yang dilakukan pada software maxsurf dan MOSES beserta hasil validasinya.

• Pemodelan pada maxsurf

Gambar 4. 1 Pemodelan FSRU menggunakan software maxsurf

Setelah dilakukan pemodelan di maxsurf maka dihitunglah offset dari badan kapal tersebut, offset merupakan titik-titik koordinat yang menggambarkan model tersebut. Offset inilah yang digunakan untuk memodelkan kapal pada MOSES.

Berikut ini merupakan tampilan model kapal yang dimodelkan pada software MOSES :

Sebelum melanjutkan ke dalam tahap analaisis, pemodelan yang dilakukan baik pada MOSES maupun maxsurf harus divalidasi terlebih dahulu untuk mengetahui apakah kapal tersebut sesuai dengan kondisi yang sebenarnya sehingga layak untuk digunakan dalam analisis-analisis sesudahnya. Kriteria validasi yang digunakan mengacu pada ABS dimana untuk validasi displacement bernilai maksimum 2% dan untuk ketentuan lainnya bernilai maksimum 1%.

Berikut ini merupakan hasil validasi pemodelan ditunjukkan pada Tabel 4.1.

A. 1	Validasi	Model	FSRU

Perbandingan	Satuan	Mo	Selisih	
(FSRU)	Satuali	Data	Maxsurf	(%)
Displacement	ton	112528	113346	-0,722
Perbandingan	Cotuon	Mo	del	Selisih
(FSRU)	Satuali	Maxsurf	MOSES	(%)
Displacement	ton	113346	112375	-0,856
Water <mark>Pla</mark> ne Area	m ²	10612	10688	0,712
Keel to Metacenter Transversal (KMT)	meter	20,25	20,34	0,434
Keel to Metacenter Longitudinal (KML)	meter	499,95	503,37	0,679
Buoy to Metacenter Transversal (BMT)	meter	14,15	14,20	0,367
Buoy to Metacenter Longitudinal (BML)	meter	493,84	497,23	0,682

B. Validasi Model LNGC

An An	Tabel 4. 2 H	asil validasi model	LNGC		
Perbandingan	Satuan	Model		Selisih	
(LNGC)	Satual	Data	Maxsurf	(%)	
Displacement	ton	100661	103275	-1,620	
Pe <mark>rban</mark> dingan ()	Satuan	Ukuran (ton)		Selisih	
(LNGC)	Satuali _	Maxsurf	MOSES	(%)	
Displacement	ton	103275	102319	-0,926	
Water Plane Area	m ²	9711	9769	0,594	
Keel to Metacenter Trans <mark>versa</mark> l (KM <mark>T) (</mark>	meter	18,73	18,76	0,160	
Keel to Metacenter Longitudinal (KML)	meter	479,95	476,84	0,652	
Buoy to Metacenter Transversal (BMT)	meter	12,62	12,62	0,00	
Buoy to Metacenter Longitudinal (BML)	meter	467,44	470,70	0,692	

39

Berda<mark>sark</mark>an hasil validasi di atas dapat diambil kesimpulan bahwa model MOSES layak digunakan dalam analisis-analisis selanjutnya.

4.2 SKENARIO ANALISIS KARAKTERISTIK GERAK STRUKTUR

Sebelum memasuki tahap analisis karakterisrik gerak struktur bangunan ap<mark>ung</mark> terlebih dahulu dijelaskan skenario analisis yang terdiri dari skenario muatan dan pembebanan yang akan dikenakan pada FSRU dan LNGC.

Skenario muatan FSRU terdiri dari :

- a. FSRU kondisi muatan 100% dengan muatan LNG
- b. FSRU kondisi muatan 60% dengan muatan LNG
- c. FSRU kondisi muatan 10% dengan muatan LNG

dan muatan LNGC terdiri dari :

- a. LNGC kondisi muatan 10% dengan muatan LNG
- b. LNGC kondisi muatan 50% dengan muatan LNG
- c. LNGC kondisi muatan ballast dengan muatan air ballast

Variasi muatan tersebut akan mempengaruhi harga *center of gravity* kapal pada tiap-tiap kondisi muatan. Harga *center of gravity* inilah yang akan berdampak langsung pada nilai radius girasi yang digunakan untuk menghitung inersia kapal, mengacu pada persamaan inersia yang merupakan hasil kali antara massa kapal dengan harga kuadrat dari radius girasi. Berikut ini akan dijelaskan lebih mendalam terkait dengan perhitungan *center of gravity* dan radius girasi kapal.

4.2.1 Perhitungan Center of Gravity Struktur

Meninjau pemodelan struktur pada maxsurf dan MOSES yang hanya dimodelkan bagian lambung kapalnya saja, maka *center of gravity* dari lambung kapal tersebut perlu dikoreksi dengan menambahkan *point mass* dari bangunan atas, tanki muatan dan jumlah muatan yang mengisi tanki tersebut berdasarkan lokasi yang sesuai dengan *General Arrangement* yang diberikan. Berdasarkan perhitungan tersebut akan didapatkan *center of gravity* baru sesuai dengan skenario kondisi muatan yang akan dianalisis. Penambahan *point mass* ini juga akan berdampak pada sarat kapal yang akan semakin bertambah seiring dengan penambahan massa baru pada struktur.

4.2.2 Perhitungan Radius Girasi Struktur

Perhitungan radius girasi struktur didasarkan pada persamaan yang diajukan oleh Bhattacharyya (1978) dimana radius girasi dari gerak rotasi struktur merupakan hasil akar dari jumlah massa dikalikan masing-masing jarak massa tersebut dari *center of gravity* struktur.

• Radius girasi roll

$$k_{xx} = \sqrt{\frac{\sum w_i(y_i^2 + z_i^2)}{\Delta}}$$

Radius girasi pitch

$$k_{yy} = \sqrt{\frac{\sum w_i(x_i^2 + z_i^2)}{\Delta}}$$

Radius girasi yaw

$$k_{zz} = \sqrt{\frac{\sum w_i(x_i^2 + y_i^2)}{\Delta}}$$

Menurut Bhattacharyya (1978) perhitungan ini dilakukan dengan membagi kapal dalam bentuk pias-pias kecil kemudian dihitung dengan perkalian simpson. Namun sejak bentuk kapal yang akan dianalisis berbentuk tidak homogen sehingga akan relatif susah menentukan titik *point mass* dari sebuah volume benda tak beraturan, maka dalam penelitian ini perhitungan radius girasi dilakukan dengan pendekatan standard Bureau Veritas, yaitu sebagai berikut :

Radius girasi roll

$$k_{xx} = 0.289 * B * \left(1.0 + \left(\frac{2 \overline{KG}}{B}\right)^2\right)$$

(4.4)

(4.1)

(4.2)

(4.3)

Radius girasi *pitch* = radius girasi yaw

$k_{yy} = k_{zz} = \sqrt{\frac{1}{12}}L$ dengan,

B	= lebar kapal (meter)
KG	= jarak keel to gravity (meter)
L	= Length of Water Line (meter)

Berikut ini merupakan hasil perhitungan *center of gravity* dan radius girasi kapal dalam beberapa kondisi ditunjukkan pada Tabel 4.3.

(4.5)

FSRU k	ondisi muatan 10% (T = 9	,4 meter)
Center of Gravity		
COG X (meter)	COG Y (meter)	COG Z (meter)
160,95	-0,02	7,84
Radius Girasi		
k _{xx} (meter)	kyy (meter)	k _{zz} (meter)
14,89	82,31	82,31
Center of Gravity	$\frac{1}{1} = 10$	5,3 meter)
COG X (meter)	COG Y (meter)	COG Z (meter)
155,82	-0,02	8,65
		(0)(0)
Radius Girasi		
15 III III III	k(meter)	k _{zz} (meter)
k _{xx} (meter)	kyy (meter)	DYXE DYXE

FSRU kondisi muatan 100% (T = 11,6 meter)			
Center of Gravity	Star Star S	and share	
COG X (meter)	COG Y (meter)	COG Z (meter)	
152,41	-0,01	11,67	
Radius Girasi			
		1- (
k _{xx} (meter)	Kyy (meter)	K _{zz} (meter)	
k _{xx} (meter) 16,77 LNGC ko	82,17 ndisi muatan ballast (T =	82,17 9,4 meter)	
kxx (meter) 16,77 LNGC ko Center of Gravity	82,17	82,17 9,4 meter)	
kxx (meter) 16,77 LNGC ko Center of Gravity COG X (meter)	82,17 mdisi muatan ballast (T = COG Y (meter)	82,17 9,4 meter)	
kxx (meter) 16,77 LNGC ko Center of Gravity COG X (meter) 158,20	kyy (meter) 82,17 ondisi muatan ballast (T = COG Y (meter) -0,02	82,17 9,4 meter) COG Z (meter) 6,01	
kxx (meter) 16,77 LNGC ko Center of Gravity COG X (meter) 158,20	kyy (meter) 82,17 andisi muatan ballast (T = COG Y (meter) -0,02	82,17 9,4 meter) COG Z (meter) 6,01	
kxx (meter) 16,77 LNGC ko Center of Gravity COG X (meter) 158,20 Radius Girasi	kyy (meter) 82,17 ondisi muatan ballast (T = COG Y (meter) -0,02	82,17 9,4 meter) COG Z (meter) 6,01	
kxx (meter) 16,77 LNGC ko Center of Gravity COG X (meter) 158,20 Radius Girasi kxx (meter)	kyy (meter) 82,17 andisi muatan ballast (T = COG Y (meter) -0,02 kyy (meter)	Kzz (meter) 82,17 9,4 meter) COG Z (meter) 6,01 kzz (meter)	

LNGC kondisi muatan ballast (T = 9,4 meter) Center of Gravity			
158,20	-0,02	6,01	
Radius Girasi			
k _{xx} (meter)	k _{yy} (meter)	k _{zz} (meter)	
13,55	79,77	79,77	

COG X (meter)COG Y (meter)COG Z151,00-0,018,	Z (meter 8,74
-0,01 -0,00 -0,000 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00 -0,00	8,74
Radius Girasi	
k _{xx} (meter) k _{yy} (meter) k _{zz} (r	(meter)
16,33 79,16 79	79,16

ter of Gravity		
COG X (meter)	COG Y (meter)	COG Z (meter)
143,98	-0,01	11,83
lius Girasi		
k _{xx} (meter)	k _{yy} (meter)	k _{zz} (meter)
16,32	79,69	79,69

4.2.3 Skenario Pembebanan (Environmental Loading)

Skenario pembebanan yang dilakukan dalam penelitian ini, khususnya untuk beban lingkungan adalah sebagai berikut :

- a. Beban angin, arus dan gelombang arah perempat buritan (45°)
- b. Beban angin, arus dan gelombang arah sisi (90°)
- c. Beb<mark>an a</mark>ngin, a<mark>rus d</mark>an gelombang arah perempat haluan (135°)

4.2.4 Skenario Ananlisis

Skenario analisis yang dilakukan dalam penelitian ini terdiri dari kondisi mengapung bebas (*free floating*) dan kondisi tertambat (*moored*) *side by side* dengan variasi jarak horisontal 2.5, 4, 6 dan 8.5 meter. Berikut ini adalah tabel skenario analisis yang menjelaskan masing-masing set pemodelan yang dianalisis dalam penelitian ini.

Free Floe	ating (arah pembebana	n : 45°, 90° dan 135°)
THE THE	Kondisi 1	Muatan 100%
FSRU	Kondisi 2	Muatan 60%
	Kondisi 3	Muatan 10%
	Kondisi 4	Muatan ballast
LNGC	Kondisi 5	Muatan 50%
	Kondisi 6	Muatan 100%

Moored : St	ide by Side (arah	pembebanan : 45°,	90° dan 135°)
Jarak horisontal	Skenario	FSRU	LNGC
	Kondisi 1	Muatan 100%	Muatan ballast
2,5 meter	Kondisi 2	Muatab 60%	Muatan 50%
	Kondisi 3	Muatan 10%	Muatan 100%
	Kondisi 4	Muatan 100%	Muatan ballast
4 meter	Kondisi 5	Muatan 60%	Muatan 50%
	Kondisi 6	Muatan 10%	Muatan 100%
101	Kondisi 7	Muatan 100%	Muatan ballast
6 meter	Kondisi 8	Muatab 60%	Muatan 50%
	Kondisi 9	Muatan 10%	Muatan 100%
TT TT	Kondisi 10	Muatan 100%	Muatan ballast
8,5 meter	Kondisi 11	Muatab 60%	Muatan 50%
	Kondisi 12	Muatan 10%	Muatan 100%

Pemodelan kondisi tertambat side by side pada MOSES ditunjukkan dalam

ilustrasi ditunjukkan pada Gambar 4.5.

Gambar 4. 5 Tampilan kondisi tertambat side by side pada MOSES, gambar a (tampak atas), gambar b (tampak isometri)

4.3 ANALISIS KARAKTERISTIK GERAK STRUKTUR

4.<mark>3.1</mark> Ananli<mark>sis Karakterist</mark>ik Ger<mark>ak S</mark>truktu<mark>r pa</mark>da Gelombang Reguler 4.3.1.1 Analisis Karakteristik Gerak Struktir Kondisi Mengapung Bebas

Karakteristik gerak kapal dalam kondisi mengapung bebas (*free floating*) tanpa sistem penambatan akan menghasilkan moda gerak vertikal (*heave, roll* dan *pitch*) yang lebih dominan daripada moda gerak horisontal (*surge, sway* dan *yaw*). Hal ini disebabkan karena ketiga moda gerak tersebut (moda gerak vertikal) memiliki faktor kekakuan akibat eksitasi gelombang harmonik, adanya faktor kekakuan tersebut menyebabkan harga faktor redaman menjadi kecil sehingga ketika gerakan mencapai frekuensi resonansinya perubahan karakteristik gerak akan mempunyai bagian yang melonjak secara tajam.

Sedangkan moda gerak horisontal yang tidak memiliki faktor kekakuan saat kondisi terapung bebas akan menghasilkan faktor redaman yang relatif besar sehingga gerakan akan teredam oleh adanya faktor redaman tersebut sehingga dalam moda gerak horisontal tidak memiliki bagian yang melonjak tajam. Bilapun ada kenaikan pada bagian tertentu, maka kenaikan kurva tersebut dipengaruhi oleh efek kopel dari gerakan lainnya. Penjelasan dibawah ini akan menerangkan karakteristik gerak kapal yang dianalisis (FSRU dan LNGC) dengan variasi muatannya akibat beban lingkungan yang ditinjau, dalam hal ini berupa gelombang perempat buritan (*heading* 45°), gelombang sisi (*heading* 90°) dan gelombang perempat buritan (*heading* 135°).

• FSRU akibat gelombang perempat buritan

Karakteristik gerak FSRU akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.6.

Wave Frequency, ω (Rad/Sec)

(c)

Wave Frequency, ω (Rad/Sec)

(d)

Gambar 4. 6 RAO gerakan FSRU dengan berbagai kondisi muatan akibat beban gelombang perempat buritan (lanjutan)

Karakteristik gerakan *heave* seperti yang ditunjukkan dalam grafik RAO (gambar c) menjelaskan pada daerah frekuensi rendah RAO *heave* mempunyai harga sekitar 0.95 m/m, kemudian menurun secara tajam hingga mencapai frekuensi sekitar 0.6 rad/sec dan kurva beranjak naik hingga harga RAO mencapai sekitar 0.32 m/m yang merupakan resonansi gerakan tersebut, setelah mencapai frekuensi resonansi gerakan *heave* kurva menurun pada daerah frekuensi tinggi hingga RAO bernilai mendekati nol. Kurva RAO *heave* saat muatan 10% naik menjadi 0.10 m/m akibat efek kopel dari gerakan *pitch* saat resonansi ketiganyanya (frekuensi 1.13 rad/det). RAO *heave* tertinggi terjadi pada muatan 10% dengan harga RAO sekitar 0.96 m/m saat frekuensi 0.25 rad/det.

Karakteristik gerakan *roll* (gambar d) pada daerah frekuensi rendah mempunyai harga RAO sekitar 0.25 deg/m kemudian melonjak naik hingga mencapai harga sekitar 2.30 deg/m (muatan 100%) yang merupakan frekuensi resonansinya, yaitu sekitar 0.47 rad/det. Kurva lalu menurun secara tajam dan naik lagi pada resonansi keduanya hingga mencapai sekitar 0.95 deg/m saat frekuensi sekitar 0.70 rad/det. Resonansi kedua gerakan ini akan mempengaruhi gerakan *sway* dan *yaw*.

RAO gerakan *pitch* (gambar e) pada daerah frekuensi rendah mempunyai harga RAO sekitar 0.25 deg/m saat frekuensi 0.25 rad/det kemudian melonjak naik

pada frekuensi resonansinya saat 0.50 rad/det dengan harga sekitar 0.73 deg/m. Kemudian kurva menurun drastis dan naik lagi pada resonansi kedua saat frekuensi 0.80 rad/sec mencapai 0.17 deg/m. Kurva RAO *pitch* saat muatan 10% naik mencapai 0.17 deg/m dengan frekuensi 1.12 rad/sec. RAO *pitch* tertinggi terjadi saat muatan 10% dengan harga 0.73 deg/m saat frekuensi 0.50 rad/det.

RAO gerakan *surge* (gambar a) pada daerah frekuensi rendah berada pada harga sekitar 0.67 m/m kemudian menurun secara melonjak pada daerah superkritis. Kurva beranjak naik saat muatan 100% pada frekuensi sekitar 1.12 rad/det dengan harga 0.05 m/m akibat efek kopel dari gerakan *pitch* saat resonansi ketiganya.

Meninjau gerakan *sway* (gambar b) karakter gerakannya pada daerah frekuensi rendah mempunyai harga RAO sekitar 0.65 m/m kemudian menurun secara tajam. Efek kopel dari gerakan *roll* pada resonansi keduanya mampu menaikkan kurva gerakan *sway* hingga mencapai 0.21 m/m. Kemudian kurva bergerak landai.

Karakeristik gerakan *yaw* (gambat f) pada arah propagasi gelombang seperempat buritan dan seperempat haluan akan lebih dominan dibandingkan saat arah propagasi gelombang sisi. Secara umum arah gelombang menyilang akan menyebabkan dominansi gerakan *yaw*. Kurva gerakan *yaw* beranjak naik hingga mencapai harga 0.28 deg/m saat frekuensi resonansinya, yaitu 0.47 rad/det. Kemudian kurva melonjak turun dan naik hingga mencapai 0.13 deg/m saat frekuensi 0.80 rad/det akibat efek kopel dari gerakan *roll* saat resonansi keduanya. Kurva RAO *yaw* saat muatan 100% yang mencapai harga 0.04 deg/m saat frekuensi 1.15 rad/det dipengaruhi oleh efek kopel gerakan *pitch* (muatan 100%).

B. Karakteristik gerak FSRU akibat gelombang sisi

Karakteristik gerak FSRU akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.7.

Gambar 4. 7 RAO gerakan FSRU dengan berbagai kondisi muatan akibat beban gelombang sisi

Karakteristik gerakan *heave* (gambar c) akibat propagasi gelombang sisi memiliki harga sekitar 1.00 m/m pada daerah frekuensi rendah, sesuai dengan kondisi platforming. Kemudian melonjak naik saat frekuensi resonansinya sekitar 0.65 rad/det dengan harga 1.30 m/m. Kurva turun secara tajam pada daerah superkritis hingga harga RAO mendekati nol. Gerakan *heave* tertinggi ditemukan pada FSRU saat muatan 100% dengan harga 1.29 m/m saat frekuensi 0.63 rad/det.

RAO gerakan *roll* (gambar d) akan mendominasi gerakan kapal saat propagasi gelombang, pada daerah frekuensi rendah kurva mempunyai harga sekitar 0.40 deg/m kemudian naik secara tajam hingga mencapai 3,80 deg/m (muatan 100%) saat frekuensi resonansinya 0.48 rad/det dan saat muatan 60% mencapai RAO roll 4.50 deg/m saat frekuensi resonansinya sekitar 0.6 rad/det. Pada saat muatan 10% RAO *roll* sekitar 4.70 deg/m saat frekuensi resonansinya sekitar 0.72 rad/det. Kurva *roll* menurun secara tajam sesaat setelah melewati masingmasing frekuensi resonansinya pada daerah super-kritis.

Meninjau karakteristik gerakan *pitch* (gambar e), kurva mengecil saat dikenai propagasi gelombang sisi. Frekuensi resonansi terjadi pada sekitar 0.72 rad/det dengan harga mencapai 0.14 deg/m, kemudian kurva menurun pada daerah frekuensi tinggi. Pada muatan 100% kurva RAO *pitch* naik secara signifikan saat frekuensi resonansi gerakannya yang kedua yaitu saat 1.06 rad/det dengan harga 0.10 deg/m.

Karakteristik gerakan *surge* (gambar a) akibat pengaruh gelombang sisi seperti yang diharapkan relatif sangat kecil. Frekuensi naturalnya terjadi saat 0.63 rad/det dengan harga RAO sekitar 0.03 m/m, saat muatan 100% dan saat muatan 10% dan 60% berturut-turut 0.017 m/m dan 0.02 m/m. Efek kopel dari gerakan *pitch* masih terlihat saat muatan 100% yang mampu menaikkan kurva hingga mencapai harga 0.02 m/m.

RAO gerakan sway (gambar b) terlihat mendominasi pada propagasi gelombang sisi. Efek kopel dari gerakan *roll* mampu menaikkan kurva pada frekuensi 0.57 rad/det (muatan 100%), 0.74 rad/det (muatan 60%) dan 0.84 rad/det (muatan 10%).

Kurva RAO yaw (gambar f) saat dikenai propagasi gelombang sisi terlihat relatif kecil yaitu memiliki harga 0.28 deg/m ketika mencapai frekuensi resonansinya. Hal ini disebabkan oleh faktor simetri kapal ke arah memanjang sehingga gerakan yaw relatif kecil. Kurva yaw terlihat naik akibat efek kopel dari gerakan pitch saat mencapai frekuensi resonansi gerakannya, yaitu pada frekuensi sekitar 0.74 rad/det.

C. Karakteristik gerak FSRU akibat gelombang perempat haluan

Karakteristik gerak FSRU akibat gelombang perempat haluan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.8.

Gambar 4.8 RAO gerakan FSRU dengan berbagai kondisi muatan akibat beban gelombang perempat haluan (berlanjut)

Gambar 4. 8 RAO gerakan FSRU dengan berbagai kondisi muatan akibat beban gelombang perempat haluan (lanjutan)

Karakteristik gerak FSRU akibat gelombang perempat haluan pada umumnya hampir serupa dengan propagasi gelombang perempat buritan. RAO *heave* (gambar c) pada daerah frekuensi rendah memiliki harga RAO 0.96 m/m kemudian melonjak turun hingga mencapai frekuensi 0.57 rad/det. Kemudian kurva beranjak naik akibat efek kopel gerakan *pitch* hingga mencapai harga 0.24 m/m lalu turun pada daerah frekuensi tinggi. RAO *heave* untuk muatan 100% mengresonansi kenaikan lagi akibat efek kopel gerakan pitch pada frekuensi sekitar 1.05 rad/det.

RAO roll (gambar d) memiliki karakteristik gerakan pada daerah frekuensi rendah dengan harga 0.30 deg/m. Kemudian kurva melonjak naik secara tajam hingga mencapai harga 2.29 deg/m (muatan 100%) saat frekuensi resonansinya yang bernilai 0.48 rad/det. Kurva lalu turun secara tajam pada frekuensi sekitar 0.60 rad/det dan beranjak naik lagi hingga mencapai harga RAO sekitar 1.72 deg/m (muatan 10%) saat frekuensi resonansi gerakannya yang kedua. Kurva lalu turun pada daerah frekuensi tinggi dan semakin tinggi frekuensinya maka harga RAO cenderung mendekati nol.

Karakteristik gerakan *pitch* (gambar e) memiliki RAO sekitar 0.75 deg/m saat frekuensi resonansi gerakannya. Kurva kemudian melonjak turun hingga frekuensi mencapai 0.69 rad/det dan naik secara tajam hingga mencapai harga sekitar 0.20 deg/m yang merupakan resonansi kedua dari gerakan *pitch*. Kurva kemudian turun pada daerah frekuensi tinggi dengan harga mendekati nol. Saat muatan 100% terlihat kenaikan kurva pada frekuensi 1,14 rad/det yang merupakan resonansi ketiga dari gerakannya.

Meninjau gerakan *surge* (gambar a) saat dibebani gelombang perempat haluan akan terlihat bahwa gerakannya cenderung lebih dominan dibandingkan dengan kapal ketika dikenai propagasi gelombang sisi. Efek kopel dari gerakan *pitch* masih terlihat saat frekuensi gerakan *surge* sekitar 1.14 rad/det walaupun hanya dapat menaikkan kurva tidak lebih dari 0.04 m/m.

Gerakan *sway* (gambar b) pada daerah frekuensi rendah memiliki harga sekitar 0.64 m/m, kemudian kurva turun secara tajam pada daerah frekuensi tinggi. Terlihat kenaikan kurva yang dipengaruhi efek kopel dari gerakan *roll*, yaitu ketika frekuensi 0.66 rad/det yang merupakan frekuensi resonansi gerakan *roll*. Kenaikan juga terjadi pada saat muatan 100% pada frekuensi 1.14 rad/det akibat efek kopel dari gerakan *pitch*.

Karakteristik gerakan *yaw* (gambar f) akibat gelombang perempat haluan pada daerah frekuensi rendah memiliki harga RAO sekitar 0.13 deg/m, kemudian kurva naik secara tajam hingga mencapai harga 0.28 deg/m saat frekuensi resonansi. Kenaikan kurva RAO *yaw* akibat efek kopel gerakan *roll* masih terlihat pada frekuensi 0.74 rad/det yang merupakan frekuensi resonansi gerakan *roll*. Kenaikan juga terjadi pada frekuensi 1.14 rad/det akibat efek kopel gerakan *pitch*.

LNGC

A. Karakteristik gerak LNGC akibat gelombang perempat buritan Karakteristik gerak LNGC akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.9.

Gambar 4.9 RAO gerakan LNGC dengan berbagai kondisi muatan akibat beban gelombang perempat buritan (lanjutan)

Karakteristik gerakan *heave* (gambar c) seperti yang ditunjukkan dalam grafik RAO menjelaskan pada daerah frekuensi rendah RAO *heave* mempunyai harga sekitar 0.95 m/m, kemudian menurun secara tajam hingga mencapai frekuensi sekitar 0.60 rad/sec dan kurva beranjak naik hingga harga RAO mencapai sekitar 0.33 m/m yang merupakan resonansi gerakan tersebut, setelah mencapai frekuensi resonansi gerakan *heave* kurva menurun pada daerah frekuensi tinggi hingga RAO bernilai mendekati nol. RAO *heave* tertinggi terjadi pada muatan ballast dengan harga RAO sekitar 0.96 m/m saat frekuensi 0.25 rad/det.

Karakteristik gerakan *roll* (gambar d) pada daerah frekuensi rendah mempunyai harga RAO sekitar 0.25 deg/m kemudian melonjak naik hingga mencapai harga sekitar 2.39 deg/m (muatan 100%) yang merupakan frekuensi resonansinya, yaitu sekitar 0.45 rad/det. Kurva saat muatan 0% mencapai harga 2,20 deg/m saat frekuensi resonansinya dan kurva saat muatan ballast mencapai harga 1.52 deg/m. Kurva lalu menurun secara tajam dan naik lagi pada resonansi keduanya hingga mencapai sekitar 0.95 deg/m saat frekuensi sekitar 0.70 rad/det. Resonansi kedua gerakan ini akan mempengaruhi gerakan *sway* dan *yaw*.

RAO gerakan *pitch* (gambar e) pada daerah frekuensi rendah mempunyai harga RAO sekitar 0.25 deg/m saat frekuensi 0.25 rad/det kemudian melonjak naik pada frekuensi resonansinya saat 0.50 rad/det dengan harga sekitar 0.74 deg/m. Kemudian kurva menurun drastis dan naik lagi pada resonansi kedua saat frekuensi 0.79 rad/sec mencapai 0.17 deg/m.

RAO gerakan *surge* (gambar a) pada daerah frekuensi rendah berada pada harga sekitar 0.65 m/m kemudian menurun secara melonjak pada daerah superkritis. Perbandingan gerakan *surge* untuk variasi muatan tidak terlalu signifikan terlihat dari selisih yang relatif kecil pada harga RAO gerakannya.

Meninjau gerakan *sway* (gambar b) karakter gerakannya pada daerah frekuensi rendah mempunyai harga RAO sekitar 0.64 m/m kemudian menurun secara tajam. Efek kopel dari gerakan *roll* pada resonansi keduanya mampu menaikkan kurva gerakan *sway* hingga mencapai 0.08 m/m.

Karakeristik gerakan *yaw* (gambar f) pada arah propagasi gelombang seperempat haluan lebih dominan dibandingkan saat arah propagasi gelombang sisi.
Kurva gerakan yaw beranjak naik hingga mencapai harga 0.29 deg/m saat frekuensi resonansinya, yaitu 0.43 rad/det. Kemudian kurva melonjak turun dan naik hingga mencapai 0.05 deg/m saat frekuensi 0.84 rad/det akibat efek kopel dari gerakan *roll* saat resonansi keduanya.

B. Karakteristik gerak LNGC akibat gelombang sisi

Muatan ballast

Muatan 50%

Muatan 100%

0,03

0,02

0,01

Karakteristik gerak LNGC akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.10.

1,00

0,75

0,50

0,25

Sway RAO, ζ_{x0}/ζ₀ (m/m)

Muatan ballast

- Muatan 50%

Muatan 100%

Gambar 4.10 RAO gerakan LNGC dengan berbagai kondisi muatan akibat beban gelombang sisi

Karakteristik gerakan *heave* (gambar c) akibat propagasi gelombang sisi memiliki harga sekitar 1.00 m/m pada daerah frekuensi rendah, sesuai dengan kondisi platforming. Kemudian melonjak naik saat frekuensi resonansinya sekitar 0.63 rad/det dengan harga 1.36 m/m. Kurva turun secara tajam pada daerah superkritis hingga harga RAO mendekati nol. Gerakan *heave* tertinggi ditemukan pada FSRU saat muatan 100% dengan harga 1.36 m/m saat frekuensi 0.63 rad/det.

RAO gerakan *roll* (gambar d) akan mendominasi gerakan kapal saat propagasi gelombang, pada daerah frekuensi rendah kurva mempunyai harga sekitar 0.40 deg/m kemudian naik secara tajam hingga mencapai 3,72 deg/m (muatan 100%) saat frekuensi resonansinya 0.42 rad/det dan saat muatan 50% mencapai RAO roll 4.60 deg/m saat frekuensi resonansinya sekitar 0.56 rad/det. Pada saat muatan ballast RAO *roll* sekitar 4.80 deg/m saat frekuensi resonansinya sekitar 0.72 rad/det. Kurva *roll* menurun secara tajam sesaat setelah melewati masing-masing frekuensi resonansinya pada daerah super-kritis.

Meninjau karakteristik gerakan *pitch* (gambar e), kurva mengecil saat dikenai propagasi gelombang sisi. Frekuensi resonansi terjadi pada sekitar 0.72 rad/det dengan harga mencapai 0.12 deg/m, kemudian kurva menurun pada daerah frekuensi tinggi.

Karakteristik gerakan *surge* (gambar a) akibat pengaruh gelombang sisi seperti yang diharapkan relatif sangat kecil. Frekuensi naturalnya terjadi saat 0.72

rad/det dengan harga RAO sekitar 0.02 m/m, saat muatan 100% dan saat muatan ballast dan 50% berturut-turut 0.02 m/m dan 0.01 m/m.

RAO gerakan *sway* (gambar b) terlihat mendominasi pada propagasi gelombang sisi. Efek kopel dari gerakan *roll* mampu menaikkan kurva pada frekuensi 0.55 rad/det (muatan 100%), 0.67 rad/det (muatan 50%) dan 0.89 rad/det (muatan 10%).

Kurva RAO *yaw* (gambar f) saat dikenai propagasi gelombang sisi terlihat relatif kecil yaitu memiliki harga 0.29 deg/m ketika mencapai frekuensi resonansinya. Hal ini disebabkan oleh faktor simetri kapal ke arah memanjang sehingga gerakan *yaw* relatif kecil. Kurva *yaw* terlihat naik pada frekuensi resonansi yang kedua, yaitu pada 0.82 rad/det.

C. Karakteristik gerak LNGC akibat gelombang perempat haluan

Karakteristik gerak LNGC akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.11.

Gambar 4. 11 RAO gerakan LNGC dengan berbagai kondisi muatan akibat beban gelombang perempat haluan (lanjutan)

Karakteristik gerak LNGC akibat gelombang perempat haluan secara umumnya serupa dengan propagasi gelombang perempat buritan. RAO *heave* (gambar c) pada daerah frekuensi rendah memiliki harga RAO 0.95 m/m kemudian melonjak turun hingga mencapai frekuensi 0.60 rad/det. Kemudian kurva beranjak naik akibat efek kopel gerakan *pitch* hingga mencapai harga 0.24 m/m lalu turun pada daerah frekuensi tinggi.

RAO *roll* (gambar b) memiliki karakteristik gerakan pada daerah frekuensi rendah dengan harga 0.31 deg/m. Kemudian kurva melonjak naik secara tajam hingga mencapai harga 2.40 deg/m (muatan 100%) saat frekuensi resonansinya yang bernilai 0.45 rad/det. Kenaikan kurva saat muatan 60% mencapai harga 2.18 deg/m saat mencapai frekuensi resonansinya dan kenaikan kurva saat muatan ballast mencapai harga sekitar 1.81 deg/m saat mencapai frekuensi resonansi dari gerakannya. Kurva gerakan roll saat muatan ballast turun secara tajam pada frekuensi sekitar 0.60 rad/det dan beranjak naik lagi hingga mencapai harga RAO sekitar 1.81 deg/m (muatan ballast) saat frekuensi resonansi gerakannya yang kedua. Kurva lalu turun pada daerah frekuensi tinggi dan semakin tinggi frekuensinya maka harga RAO cenderung mendekati nol.

Karakteristik gerakan *pitch* (gambar e) memiliki RAO sekitar 0.75 deg/m saat frekuensi resonansi gerakannya. Kurva kemudian melonjak turun hingga frekuensi mencapai 0.47 rad/det dan naik secara tajam hingga mencapai harga sekitar 0.20 deg/m yang merupakan resonansi kedua dari gerakan *pitch*. Kurva kemudian turun pada daerah frekuensi tinggi dengan harga mendekati nol. Saat muatan 100% terlihat kenaikan kurva pada frekuensi 1,13 rad/det yang merupakan resonansi ketiga dari gerakannya.

Meninjau gerakan *surge* (gambar a) saat dibebani gelombang perempat haluan akan terlihat bahwa gerakannya cenderung lebih dominan dibandingkan dengan kapal ketika dikenai propagasi gelombang sisi. Karakteristik gerakan surge pada frekuensi rendah memiliki harga 0.65 kemudian menurun tajam pada daerah frekuensi tinggi dengan harga mendekati nol.

Gerakan *sway* (gambar b) pada daerah frekuensi rendah memiliki harga sekitar 0.64 m/m, kemudian kurva turun secara tajam pada daerah frekuensi tinggi. Terlihat kenaikan kurva yang dipengaruhi efek kopel dari gerakan *roll*, yaitu ketika frekuensi 0.70 rad/det yang merupakan frekuensi resonansi gerakan *roll*.

Karakteristik gerakan *yaw* (gambar f) akibat gelombang perempat haluan pada daerah frekuensi rendah memiliki harga RAO sekitar 0.13 deg/m, kemudian kurva naik secara tajam hingga mencapai harga 0.27 deg/m saat frekuensi resonansi. Kenaikan kurva RAO yaw akibat efek kopel gerakan *roll* masih terlihat pada frekuensi 0.74 rad/det yang merupakan frekuensi resonansi gerakan *roll*. Kenaikan juga terjadi pada frekuensi 1.14 rad/det akibat efek kopel gerakan *pitch*. 4.3.1.B Analisis Karakteristik Gerak Struktir Kondisi Tertambat Side by Side

Karakteristik gerakan kapal yang tertambat pada suatu tower mooring dan atau tertambat pada kapal lain (*side by side*), akan menghasilkan moda gerak yang berbeda saat dalam kondisi mengapung bebas. Bilamana karakteristik gerakan kapal pada kondisi mengapung bebas akan menaikkan moda gerak vertikal (*heave*, *roll* dan *pitch*) akibat kekakuan kapalnya terhadap gaya apung yang memotong bidang vertikal kapal, gerakan kapal pada kondisi tertambat akan menaikkan moda gerak tertentu yang dipengaruhi oleh faktor kekakuan sistem tali tambatnya dan massa kapal tersebut.

Berikut akan dijelaskan karakteristik gerak kapal kondisi tertambat jika dibandingkan dengan kondisi mengapung bebas. Karakteristik gerak kapal akan dijelaskan tiap kondisi muatan beserta arah pembebanannya.

FSRU

A. Karakteristik gerak FSRU tertambat muatan 100% akibat gelombang perempat buritan

Karakteristik gerak FSRU muatan 100% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.12.

Gambar 4. 12 RAO gerakan FSRU muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang perempat buritan (berlanjut)

2,0

1,5

0,00

0,0

0.5

1.0

Wave Frequency, (Rad/Sec)

(f)

1.5

2,0

0,25

0,00

0,0

0,5

1,0

Wave Frequency, ω (Rad/Sec)

(e)

Karakteristik gerak FSRU yang tertambat pada tower yoke mooring menyebabkan dominansi gerakan-gerakan tertentu yang berbeda ketika kapal mengapung bebas.

RAO surge (gambar a) akibat gelombang perempat buritan saat kondisi tertambat memiliki harga sekitar 2.19 m/m pada daerah frekuensi rendah. Sedangkan saat kondisi mengapung bebas hanya mencapai 0.66 m/m pada frekuensi yang sama. Terlihat bahwa RAO surge saat tertambat memberikan harga RAO yang lebih tinggi dibandingkan dengan kondisi mengapung bebas. Hal ini disebabkan oleh kekakuan sistem tali tambat yang menghubungkan FSRU dengan

tower yoke mooring. Jika meninjau variasi jarak horisontal yang terbentuk antara FSRU dan LNGC relatif tidak menunjukkan perbedaan yang terlalu signifikan.

Hal yang sama juga terlihat pada gerakan *sway* (gambar b), RAO gerakan *sway* saat kondisi tertambat memberikan harga yang lebih tinggi dibandingkan dengan kondisi mengapung bebas dengan harga bertutut-turut 1.34 m/m dan 0.64 m/m pada daerah frekuensi rendah. Begitu pula dengan gerakan *yaw*, RAO yaw saat kondisi tertambat memberikan harga yang lebih tinggi dibandingkan saat mengapung bebas dengan perbandingan 0.78 deg/m : 0.12 deg/m pada daerah frekuensi rendah. Berdasarkan hasil tersebut dapat ditarik kesimpulan FSRU muatan 100% saat dikenai propagasi gelombang perempat buritan akan menghasilkan dominansi gerakan moda horisontal (*surge, sway* dan *yaw*) saat kondisi tertambat.

Karakteristik gerakan *heave* (gambar c) saat kondisi tertambat memiliki harga yang lebih kecil dibandingkan saat mengapung bebas dengan harga masing masing 0.75 m/m dan 0.96 m/m pada daerah frekuensi rendah. Hal ini terjadi karena saat kondisi mengapung bebas akan menaikkan gerakan moda vertikal secara signifikan. Terlihat juga pada moda vertikal yang lain (*roll* dan *pitch*) –gambar d dan e dalam kondisi ini memiliki karakteristik serupa dengan gerakan *heave*.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	r FSRU m	uatan 10	0% heading 45°			
	Free	Floating		Moored			
Moda gerak		ζz	0/ζ0		ζ _{z0} /ζ0		
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit	
Surge	0.25	0.654	m/m	0.25	2.194	m/m	
Sway	0.25	0.642	m/m	0.25	1.349	m/m	
heave	0.25	0.957	m/m	0.25	0.753	m/m	
Roll	0.48	2.256	deg/m	0.47	2.045	deg/m	
Pitch	0.50	0.679	deg/m	0.39	0.611	deg/m	
Yaw	0.47	0.275	deg/m	0.25	0.776	deg/m	

 Tabel 4. 5
 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 100% heading 45°

: lebih besar

B. Ka<mark>rak</mark>teristik <mark>gera</mark>k FSR<mark>U te</mark>rtamb<mark>at m</mark>uatan 100% akib<mark>at ge</mark>lomba<mark>ng si</mark>si

Karakteristik gerak FSRU muatan 100% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.13.

Gambar 4. 13 RAO gerakan FSRU muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang sisi (berlanjut)

Gambar 4. 13 RAO gerakan FSRU muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang sisi (lanjutan)

Karakteristik gerak FSRU akibat gelombang sisi menunjukkan keenam derajat kebebasannya (*surge*, *sway*, *heave*, *roll*, *pitch* dan *yaw*) saat kondisi tertambat memiliki harga yang lebih tinggi dibandingkan dengan kondisi mengapung bebas (harga RAO dapat dilihat pada tabel).

Karakteristik moda gerak horisontal yang memang akan meningkat secara signifikan saat kondisi tertambat ditambah gaya propagasi gelombang sisi yang mengenai keseluruhan sisi badan kapal dengan moda gerak vertikal akibat kekakuan sistem coupling line dan massa kedua kapal menjadikan gerakan pada kondisi tertambat lebih dominan. Moda gerak vertikal lebih bebas bergerak sejak tidak adanya tali tambat yang menancap pada dasar laut, sehingga tidak ada peredam yang membatasi gerak vertikal dan gerakannya relatif meningkat dengan keberadaan kapal yang tertambat pada FSRU.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terb	esar FSRL	J muatan 1	00% heading 9	0°	
	Fre	e Floating			Noored	
Moda gerak		ζ _{z0} /ζ ₀			ζ _{z0} /ζο	
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit
Surge	1.05	0.021	m/m	0.25	0.052	m/m
Sway	0.25	0.048	m <mark>/m</mark>	0.25	2.366	m/m
heave	0.63	1.285	m/m	0.25	1.391	m/m
Roll	0.48	3.724	deg/m	0.48	5.291	deg/m
Pitch	1.05	0.101	deg/m	0.63	0.104	deg/m
Yaw	1.14	0.041	deg/m	0.50	0.067	deg/m

Tabel 4. 6 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 100% *heading* 90%

: lebih besar

C. Karakteristik gerak FSRU tertambat muatan 100% akibat gelombang perempat haluan

Karakteristik gerak FSRU muatan 100% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.14.

Gambar 4. 14 RAO gerakan FSRU muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan (berlanjut)

Gambar 4. 14 RAO gerakan FSRU muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan (lanjutan)

Meninjau gerakan-gerakan FSRU baik saat kondisi tertambat maupun mengapung bebas, akan terlihat serupa antara yang dibebani gelombang perempat haluan dengan yang dibebani gelombang perempat buritan. Secara umum memang keduanya akan menunjukkan pola yang relatif sama karena bentuk kapal yang simetris.

Moda gerak horisontal pada saat tertambat lebih dominan dibandingkan dengan saat mengapung bebas. Sedangkan moda gerak vertikal saat mengapung bebas lebih dominan dibandingkan saat tertambat.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbes	ar FSRU m	uatan 100	% heading 135°		
	Free	Floating		M	oored	
Moda <mark>gera</mark> k	ζ _{z0} /ζ ₀		/ζο		ζ _{z0} /ζ ₀	
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit
Surge	1.05	0.021	m/m	0.25	1.59	m/m
Sway	0.25	0.048	m/m	0.25	1.302	m/m
heave	0.63	1.285	m/m	0.25	0.748	m/m
Roll	0.48	3.724	deg/m	0.47	1.703	deg/m
Pitch	1.05	0.101	deg/m	0.35	0.683	deg/m
Yaw	1.14	0.041	deg/m	0.25	0.805	deg/m

Tabel 4.7 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 100% heading 135°

: lebih besar

D. Karakteristik gerak FSRU tertambat muatan 60% akibat gelombang perempat buritan

Karakteristik gerak FSRU muatan 60% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.15.

Gambar 4. 15 RAO gerakan FSRU muatan 60% kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan (lanjutan)

Karakteristik gerak FSRU muatan 60% akibat gelombang perempat haluan menunjukkan dominansi moda gerak horisontal saat kondisi tertambat dibandingkan saat mengapung bebas. Sedangkan moda gerak vertikal saat kondisi mengapung bebas lebih mendominasi dibandingkan dengan saat tertambat. Namun tidak berlaku untuk gerakan roll, terlihat bahwa gerakan roll saat kondisi tertambat lebih dominan dibandingkan saat kondisi mengapung bebas. Hal ini disebabkan oleh sistem kekakuan coupling line antara FSRU dan LNGC beserta massa keduanya yang saling tertambat.

Lantas timbul pertanyaan, mengapa pola gerakan kondisi muatan 60% berbeda dengan muatan 100%, dilihat dari karakteristik gerakan roll yang pada

muatan 60% kondisi tertambat lebih dominan sedangkan saat muatan 100% yang lebih dominan adalah pada saat terapung bebas. Hal ini tentu merujuk pada titik acuan RAO yang dianalisis, yaitu pada kasus ini terletak pada *center of gravity* dari kapal. *Center of gravity* pada kapal muatan 100% cenderung lebih stabil dibandingkan saat muatan 60% maupun saat muatan 10%. Hal ini tentunya akan mempengaruhi perhitungan radius girasi sejak perhitungannya mengacu pada *center of gravity* kapal dengan kondisi muatan masing-masing. Sehingga inersia yang mendeskripsikan gerakan kapal akan terpengaruh dengan perhitungan tersebut karena inersia ditunjukkan dengan perkalian antara massa dengan harga kuadrat dari radius girasi kapal.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

19257	RAO terbesa	r FSRU n	nuatan 60	0% heading 45°	She have		
	Free I	Floating	1	Moored			
Moda gerak		ζz0/ζο			ζ20/ζ0		
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit	
Surge	0.25	0.656	m/m	0.25	2.22	m/m	
Sway	0.25	0.643	m/m	0.25	1.193	m/m	
heave	0.25	0.955	m/m	0.25	0.736	m/m	
Roll	0.55	1.058	deg/m	0.63	1.364	deg/m	
Pitch	0.50	0.718	deg/m	0.37	0.646	deg/m	
Yaw	0.45	0.266	deg/m	0.25	0.788	deg/m	

Tabel 4.8 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 60% heading 45°

: lebih besar

E. Karakteristik gerak FSRU tertambat muatan 60% akibat gelombang sisi Karakteristik gerak FSRU muatan 60% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.16.

Gambar 4. 16 RAO gerakan FSRU muatan 60% kondisi mengapung bebas dan tertambat akibat gelombang sisi

Meninjau gerak FSRU akibat gelombang sisi saat muatan 60% didapatkan untuk semua moda gerakan, baik moda gerak horisontal maupun vertikal saat kondisi tertambat lebih dominan dibandingkan saat kondisi mengapung bebas. Seperti yang telah dijelaskan pada penjelasan sebelumnya bahwa kondisi ini disebabkan oleh kekakuan coupling line dan massa kapal yang saling tertambat. Adapun mengenai variasi jarak horisontal yang terbentuk antara FSRU dan LNGC tidak terlihat perbedaan yang mencolok pada harga RAO gerakannya.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	Free I	MSAD 1				
	The second se	loating		Mo	ored	
Moda gerak	ζzo/ζ		0/ζ0	(und(dat)	ζz0/ζ0	
TTTT I	w (rad/det)	harga	unit	w (rad/det)	harga	unit
Surge	0.74	0.014	m/m	0.25	0.052	m/m
Sway	0.25	0.958	m/m	0.25	2.310	m/m
heave	0.63	1.227	m/m	0.25	1.316	m/m
Roll	0.60	4.373	deg/m	0.60	5.159	deg/m
Pitch	0.74	0.095	deg/m	0.70	0.109	deg/m
Yaw	0.70	0.073	deg/m	0.66	0.092	deg/m

Tabel 4. 9 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 60% heading 90°

: lebih besar

F. Karakteristik gerak FSRU tertambat muatan 60% akibat gelombang perempat haluan

Karakteristik gerak FSRU muatan 60% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.17.

Gambar 4. 17 RAO gerakan FSRU muatan 60% kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan

Karakteristik gerak FSRU akibat gelombang perempat haluan relatif serupa dengan akibat gelombang perempat buritan karena bentuknya yang simetris. Moda gerak horisontal saat kondisi tertambat terlihat lebih mendominasi dibandingkan dengan saat kondisi mengapung bebas. Sedangkan moda gerak vertikal pada kondisi mengapung bebas dijumpai lebih dominan dibandingkan saat tertambat, kecuali untuk gerakan *roll* yang terlihat mempunyai harga RAO lebih tinggi saat kondisi tertambat dibandingkan saat mengapung bebas.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	FSRU m	uatan 60	% he <mark>ading</mark> 135°	1775	
Moda gerak	Free I	Floating		Mc	ored	
	() (rad (dat)	ζΖ	0/ζ0	((red (dat)	ζz0/ζ0	
	ω (rad/det)	harga	unit	w (rad/det)	harga	unit
Surge	0.25	0.649	m/m	0.25	1.371	m/m
Sway	0.25	0.643	m/m	0.25	1.198	m/m
heave	0.25	0.954	m/m	0.25	0.755	m/m
Roll	0.66	1.271	deg/m	0.63	2.129	deg/m
Pitch	0.48	0.716	deg/m	0.35	0.673	deg/m
Yaw	0.45	0.263	deg/m	0.25	0.771	deg/m

Tabel 4. 10 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 60% heading 135°

: lebih besar

G. Karakteristik gerak FSRU tertambat muatan 10% akibat gelombang perempat buritan

Karakteristik gerak FSRU muatan 10% akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.18.

Gambar 4. 18 RAO gerakan FSRU muatan 10% kondisi mengapung bebas dan tertambat akibat gelombang perempat buritan

Karakteristik gerak FSRU muatan 10% jika diperhatikan pada grafik RAO akan terlihat serupa dengan karakteristik gerak FSRU saat muatan 60%. Pada moda gerak horisontal saat kondisi tertambat, harga RAO cenderung lebih tinggi dibandingkan saat mengapung bebas. Sedangkan moda gerak vertikal, kecuali *roll* saat kondisi tertambat memiliki harga RAO yang lebih rendah jika dibandingkan dengan kondisi mengapung bebas. RAO *roll* saat kondisi tertambat memiliki harga yang lebih tinggi dibanding saat mengapung bebas disebabkan oleh kekakuan sistem tali tambat dan massa kedua kapal tersebut. Keberadaan kapal yang tertambat pada badannya menyebabkan gerakan *roll* lebih mendominasi saat kondisi tertambat.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

19251	RAO terbesa	r FSRU n	nuatan 10	0% heading 45°			
Moda gerak	Free I	Floating		Moored			
	ζzo/ζο		o/ζο		ζ20/ζ0		
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit	
Surge	0.25	0.656	m/m	0.25	3.587	m/m	
Sway	0.25	0.652	m/m	0.25	1.391	m/m	
heave	0.25	0.957	m/m	0.25	0.734	m/m	
Roll	0.70	0.946	deg/m	0.66	1.348	deg/m	
Pitch	0.50	0.731	deg/m	0.39	0.649	deg/m	
Yaw	0.45	0.254	deg/m	0.25	0.925	deg/m	

Tabel 4. 11 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 10% heading 45°

: lebih besar

H. Karakteristik gerak FSRU tertambat muatan 10% akibat gelombang sisi Karakteristik gerak FSRU muatan 10% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.19.

Gambar 4. 19 RAO gerakan FSRU muatan 10% kondisi mengapung bebas dan tertambat akibat gelombang sisi

Sama halnya dengan kondisi muatan 100% maupun 60% saat dikenai beban propagasi gelombang sisi. Semua moda gerakan, baik moda gerak horisontal dan vertikal memiliki harga lebih tinggi dibandingkan saat mengapung bebas.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	r FSRU n	nuatan 10	0% heading 90°		
Mo <mark>da g</mark> erak	Free	Floating		Mo	oored	
	(rad/dat)	ζ_{z0}/ζ_{0}			ζ _{z0} /ζ ₀	
	w (rad/det)	harga	unit	w (rad/det)	harga	unit
Surge	0.63	0.026	m/m	0.25	0.075	m/m
Sway	0.25	0.965	m/m	0.25	2.337	m/m
heave	0.66	1.256	m/m	0.60	1.311	m/m
Roll	0.66	4.543	deg/m	0.63	5.211	deg/m
Pitch	0.74	0.141	deg/m	0.66	0.168	deg/m
Yaw	0.70	0.090	deg/m	0.63	0.093	deg/m

Tabel 4. 12 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 10% heading 90°

: lebih besar

I. Karakteristik gerak FSRU tertambat muatan 10% akibat gelombang perempat haluan

Karakteristik gerak FSRU muatan 10% akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.20.

Gambar 4. 20 RAO gerakan FSRU muatan 10% kondisi mengapung bebas dan tertambat akibat gelombang sisi (berlanjut)

Gambar 4. 20 RAO gerakan FSRU muatan 10% kondisi mengapung bebas dan tertambat akibat gelombang sisi (lanjutan)

Karakteristik gerak FSRU muatan 10% akibat gelombang perempat haluan cenderung menyerupai karakteristik gerak saat dikenai beban propagasi gelombang perempat buritan, mengingat bentuk kapal yang simetris. Karakteristik moda gerak horisontal dan gerakan *roll* saat kondisi tertambat memiliki harga RAO yang lebih tinggi dibandingkan saat mengapung bebas. Sedangkan moda gerak vertikal (*heave* dan *pitch*) saat kondisi tertambat memiliki harga RAO yang lebih kecil dibanding saat mengapung bebas.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	r FSRU m	uatan 10	% heading 135°		
	Free I	Floating		Mo	oored	
Moda gerak	ζ _{z0} /ζ		0/ζ0		ζz0/ζ0	
		harga	unit	w (rad/det)	harga	unit
Surge	0.25	0.656	m/m	0.25	1.434	m/m
Sway	0.25	0.650	m/m	0.25	1.240	m/m
heave	0.25	0.957	m/m	0.25	0.756	m/m
Roll	0.70	1.716	deg/m	0.66	2.228	deg/m
Pitch	0.48	0.710	deg/m	0.35	0.657	deg/m
Yaw	0.45	0.275	deg/m	0.25	0.771	deg/m

 Tabel 4. 13
 Perbandingan RAO tertinggi tiap gerakan FSRU muatan 10% heading 135°

: lebih besar

LNGC

A. Karakteristik gerak LNGC tertambat muatan 100% akibat gelombang perempat buritan

Karakteristik gerak LNGC muatan 100% akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.21.

Gambar 4. 21 RAO gerakan LNGC muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang perempat buritan (berlanjut)

Karakteristik gerak LNGC yang tertambat side by side pada FSRU menyebabkan dominansi gerakan-gerakan tertentu yang berbeda ketika kapal mengapung bebas.

RAO *surge* akibat gelombang perempat buritan saat kondisi tertambat memiliki harga sekitar 1.77 m/m pada daerah frekuensi rendah. Sedangkan saat kondisi mengapung bebas hanya mencapai 0.65 m/m pada frekuensi yang sama. Terlihat bahwa RAO surge saat tertambat memberikan harga RAO yang lebih tinggi dibandingkan dengan kondisi mengapung bebas. Hal ini disebabkan oleh kekakuan sistem tali tambat yang menghubungkan LNGC dengan FSRU. Jika meninjau variasi jarak horisontal yang terbentuk antara FSRU dan LNGC, relatif tidak menunjukkan perbedaan yang terlalu signifikan.

Hal yang sama juga terlihat pada gerakan *sway*, RAO gerakan *sway* saat kondisi tertambat memberikan harga yang lebih tinggi dibandingkan dengan kondisi mengapung bebas dengan harga bertutut-turut 1.24 m/m dan 0.64 m/m pada daerah frekuensi rendah. Begitu pula dengan gerakan *yaw*, RAO yaw saat kondisi tertambat memberikan harga yang lebih tinggi dibandingkan saat mengapung bebas dengan perbandingan 0.78 deg/m : 0.12 deg/m pada daerah frekuensi rendah. Berdasarkan hasil tersebut dapat ditarik kesimpulan LNGC muatan 100% saat dikenai propagasi gelombang perempat buritan akan menghasilkan dominansi gerakan moda horisontal (*surge, sway* dan *yaw*) saat kondisi tertambat.

Karakteristik gerakan *heave* saat kondisi tertambat memiliki harga yang lebih kecil dibandingkan saat mengapung bebas dengan harga masing-masing 0.73 m/m dan 0.95 m/m pada daerah frekuensi rendah. Hal ini terjadi karena saat kondisi mengapung bebas akan menaikkan gerakan moda vertikal secara signifikan. Terlihat juga pada moda vertikal yang lain, misalnya gerakan pitch, dalam kondisi ini memiliki karakteristik serupa dengan gerakan *heave*.

Moda gerak vertikal jika diamati akan lebih dominan saat kondisi mengapung bebas dibandingkan saat tertambat, kecuali pada gerakan roll, saat muatan penuh gerakan roll saat kondisi tertambat menunjukkan bagian yang lebih tinggi dibandingkan saat mengapung bebas. Bebar kemungkinan hal ini disebabkan oleh kekakuan sistem tali tambat yang menghubungkan antara LNGC dan FSRU.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	r LNGC n	nuatan 10	00% heading 4	5°	
	Free	Floating		M	oored	
gerak	(rad/dat)	ζzι	0/50	(rad/dat)	ζz0/ζ0	
	ω (rad/det)	harga	unit	w (rad/det)	harga	unit
Surge	0.25	0.650	m/m	0.25	1.766	m/m
Sway	0.25	0.641	m/m	0.25	1.234	m/m
heave	0.25	0.948	m/m	0.25	0.734	m/m
Roll	0.45	2.386	deg/m	0.45	2.726	deg/m
Pitch	0.50	0.742	deg/m	0.39	0.695	deg/m
Yaw	0.45	0.294	deg/m	0.25	0.833	deg/m

Tabel 4. 14 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 100% heading 45°

: lebih besar

B. Karakteristik gerak LNGC tertambat muatan 100% akibat gelombang sisi

Karakteristik gerak LNGC muatan 100% akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.22.

Karakteristik gerak LNGC akibat gelombang sisi menunjukkan keenam derajat kebebasannya (*surge*, *sway*, *heave*, *roll*, *pitch* dan *yaw*) saat kondisi tertambat memiliki harga yang lebih tinggi dibandingkan dengan kondisi mengapung bebas (harga RAO dapat dilihat pada tabel).

Karakteristik moda gerak horisontal yang memang akan meningkat secara signifikan saat kondisi tertambat ditambah gaya propagasi gelombang sisi yang mengenai keseluruhan sisi badan kapal dengan moda gerak vertikal akibat kekakuan sistem coupling line dan massa kedua kapal menjadikan gerakan pada kondisi tertambat lebih dominan. Moda gerak vertikal lebih bebas bergerak sejak tidak adanya tali tambat yang menancap pada dasar laut, sehingga tidak ada pe<mark>reda</mark>m yan<mark>g me</mark>mbatasi gerak vertikal dan gerakannya relatif meningkat dengan keberadaan kapal yang tertambat pada LNGC.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	r LNG <mark>C n</mark>	nuatan 10	00% heading 9	0°		
	Free	Floating		Moored			
Moda gerak		ζΖ	/ζο		ζΖ	0/ζ0	
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit	
Surge	0.25	0.022	m/m	0.74	0.023	m/m	
Sway	0.25	0.942	m/m	0.25	2.308	m/m	
heave	0.63	1.355	m/m	0.57	1.482	m/m	
Roll	0.45	3.518	deg/m	0.45	5.385	deg/m	
Pitch	0.74	0.104	deg/m	0.66	0.128	deg/m	
Yaw	0.48	0.045	deg/m	0.50	0.080	deg/m	
Yaw	0.48	0.045	deg/m	0.50	0.080	deg,	

 Tabel 4. 15
 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 100% heading 90°

: lebih besar

C. Karakteristik gerak LNGC tertambat muatan 100% akibat gelombang perempat haluan

Karakteristik gerak LNGC muatan 100% akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.23.

Gambar 4. 23 RAO gerakan LNGC muatan 100% kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan (lanjutan)

Meninjau gerakan-gerakan LNGC baik saat kondisi tertambat maupun mengapung bebas, akan terlihat serupa antara yang dibebani gelombang perempat haluan dengan yang dibebani gelombang perempat buritan. Secara umum memang keduanya akan menunjukkan pola yang relatif sama karena bentuk kapal yang simetris.

Moda gerak horisontal pada saat tertambat lebih dominan dibandingkan dengan saat mengapung bebas. Sedangkan moda gerak vertikal saat mengapung bebas lebih dominan dibandingkan saat tertambat. Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesar	LNGC m	uatan 10	0% heading 13	S5°	
	Free	Floating	5	M	oored	-
gerak a	(rad/dat)	ζΖ	0/50	<mark>ω (</mark> rad/det)	ζΖ	0/ζ <mark>0</mark>
	ω (rad/det)	harga	unit		harga	unit
Surge	0.25	0.651	m/m	0.25	1.397	m/m
Sway	0.25	0.641	m/m	0.25	1.264	m/m
heave	0.25	0.948	m/m	0.25	0.735	m/m
Roll	0.45	2.402	deg/m	0.43	2.456	deg/m
Pitch	0.48	0.722	deg/m	0.37	0.661	deg/m
Yaw	0.42	0.261	deg/m	0.25	0.780	deg/m

: lebih besar

D. Karakteristik gerak LNGC tertambat muatan 50% akibat gelombang perempat buritan

Karakteristik gerak LNGC muatan 50% akibat gelombang perempat buritan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.24.

Gambar 4. 24 RAO gerakan LNGC muatan 50% kondisi mengapung bebas dan tertambat akibat gelombang perempat buritan (berlanjut)

Gambar 4. 24 RAO gerakan LNGC muatan 50% kondisi mengapung bebas dan tertambat akibat gelombang perempat buritan (lanjutan)

Karakteristik gerak LNGC muatan 50% akibat gelombang perempat haluan menunjukkan dominansi moda gerak horisontal saat kondisi tertambat dibandingkan saat mengapung bebas. Sedangkan moda gerak vertikal saat kondisi mengapung bebas lebih mendominasi dibandingkan dengan saat tertambat. Namun tidak berlaku untuk gerakan *pitch*, terlihat bahwa gerakan *pitch* saat kondisi tertambat lebih dominan dibandingkan saat kondisi mengapung bebas. Hal ini disebabkan oleh sistem kekakuan *coupling line* antara FSRU dan LNGC beserta massa keduanya yang saling tertambat.

Perbedaan pada pola gerakan kondisi muatan 50% dengan muatan 100%, dilihat dari karakteristik gerakan *pitch* yang pada muatan 50% kondisi tertambat lebih dominan sedangkan saat muatan 100% yang lebih dominan adalah pada saat terapung bebas. Hal ini tentu merujuk pada titik acuan RAO yang dianalisis, yaitu pada kasus ini terletak pada *center of gravity* dari kapal. *Center of gravity* pada kapal muatan 100% cenderung lebih stabil dibandingkan saat muatan 50% maupun saat muatan 10%. Hal ini tentunya akan mempengaruhi perhitungan radius girasi sejak perhitungannya mengacu pada *center of gravity* kapal dengan kondisi muatan masing-masing. Sehingga inersia yang mendeskripsikan gerakan kapal akan terpengaruh dengan perhitungan tersebut karena inersia ditunjukkan dengan perkalian antara massa dengan harga kuadrat dari radius girasi kapal.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	ar LNGC I	muatan 5	0% heading 45		NA
Moda gerak	Free Floating			Moored		
	ω (rad/det)	ζ20/ζ0		(rad/dat)	ζ20/ζ0	
		harga	unit	ω (rad/det)	harga	unit
Surge	0.25	0.658	m/m	0.25	1.721	m/m
Sway	0.25	0.650	m/m	0.25	1.269	m/m
heave	0.25	0.953	m/m	0.25	0.785	m/m
Roll	0.55	2.200	deg/m	0.50	1.406	deg/m
Pitch	0.57	0.687	deg/m	0.48	0.927	deg/m
Yaw	0.48	0.276	deg/m	0.25	0.790	deg/m

Tabel 4. 17 Perbandingan RAO tertinggi tiap gerakan LNGC muatan 50% heading 45°

: lebih besar

E. Karakteristik gerak LNGC tertambat muatan 50% akibat gelombang sisi Karakteristik gerak LNGC muatan 50% akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.25.

Meninjau gerak FSRU akibat gelombang sisi saat muatan 50% didapatkan untuk semua moda gerakan, baik moda gerak horisontal maupun vertikal saat kondisi tertambat lebih dominan dibandingkan saat kondisi mengapung bebas. Seperti yang telah dijelaskan pada penjelasan sebelumnya bahwa kondisi ini disebabkan oleh kekakuan *coupling line* dan massa kapal yang saling tertambat. Adapun mengenai variasi jarak horisontal yang terbentuk antara LNGC dan FSRU tidak terlihat perbedaan yang mencolok pada harga RAO gerakannya.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesa	r LNGC r	muatan 5	0% heading 90)°		
Moda gerak	Free Floating			Moored			
	ω (rad/det)	ζ _{z0} /ζο		(rad/dat)	ζzo/ζο		
		harga	unit	w (rad/det)	harga	unit	
Surge	0.84	0.014	m/m	0.48	0.070	m/m	
Sway	0.25	0.958	m/m	0.25	2.323	m/m	
heave	0.66	1.277	m/m	0.50	1.438	m/m	
Roll	0.55	4.542	deg/m	0.55	5.749	deg/m	
Pitch	0.74	0.117	deg/m	0.74	0.158	deg/m	
Yaw	0.60	0.053	deg/m	0.60	0.080	deg/m	

: lebih besar

F. Karakteristik gerak LNGC tertambat muatan 50% akibat gelombang perempat haluan

Karakteristik gerak LNGC muatan 50% akibat gelombang perempat haluan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.26.

Gambar 4. 26 RAO gerakan LNGC muatan 50% kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan

Karakteristik gerak LNGC akibat gelombang perempat haluan relatif serupa dengan akibat gelombang perempat buritan karena bentuknya yang simetris. Moda gerak horisontal saat kondisi tertambat terlihat lebih mendominasi dibandingkan dengan saat kondisi mengapung bebas. Sedangkan moda gerak vertikal pada kondisi mengapung bebas dijumpai lebih dominan dibandingkan saat tertambat, kecuali untuk gerakan *pitch* yang terlihat mempunyai harga RAO lebih tinggi saat kondisi tertambat dibandingkan saat mengapung bebas.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

RAO terbesar LNGC muatan 50% heading 1350										
	Free	Floating		M	oored					
Moda gerak	(rod(dat)	<u>ζzo/ζo</u>		(rad/dat)	ζz0/ζ0					
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit				
Surge	0.25	0.643	m/m	0.25	1.438	m/m				
Sway	0.25	0.651	m/m	0.25	1.316	m/m				
heave	0.25	0.953	m/m	0.25	0.784	m/m				
Roll	0.55	2.175	deg/m	0.47	1.278	deg/m				
Pitch	0.48	0.765	deg/m	0.48	0.915	deg/m				
Yaw	0.77	0.280	deg/m	0.25	0.801	deg/m				

: lebih besar

G. Karakteristik gerak LNGC tertambat muatan ballast akibat gelombang perempat buritan

Karakteristik gerak LNGC muatan ballast akibat gelombang perempat haluan ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.27.

Gambar 4. 27 RAO gerakan LNGC muatan ballast kondisi mengapung bebas dan tertambat akibat gelombang perempat buritan

Karakteristik gerak LNGC muatan ballast jika diperhatikan pada grafik RAO memiliki pola tersendiri yang berbeda dengan kondisi muatan yang sudah dijelaskan sebelumnya. Pada moda gerak horisontal saat kondisi tertambat, harga RAO cenderung lebih tinggi dibandingkan saat mengapung bebas. Sedangkan moda gerak vertikal, kecuali *roll* saat kondisi tertambat memiliki harga RAO yang lebih rendah jika dibandingkan dengan kondisi mengapung bebas. RAO *roll* saat kondisi tertambat memiliki harga yang lebih tinggi dibanding saat mengapung bebas disebabkan oleh kekakuan sistem tali tambat dan massa kedua kapal tersebut. Keberadaan kapal yang tertambat pada badannya menyebabkan gerakan *roll* lebih mendominasi saat kondisi tertambat.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesar	LNGC m	uatan ba	llast heading 4	45°	1	
Moda gerak	Free	Free Floating 7					
	() (red (det)	ζz	0/50	(rad/dat)	ζ_{z0}/ζ_{0}		
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit	
Surge	0.25	0.657	m/m	0.25	1.584	m/m	
Sway	0.25	0.655	m/m	0.25	1.289	m/m	
heave	0.25	0.957	m/m	0.25	0.78	m/m	
Roll	0.74	1.519	deg/m	0.7	1.679	deg/m	
Pitch	0.50	0.725	deg/m	0.39	0.672	deg/m	
Yaw	0.47	0.267	deg/m	0.25	0.775	deg/m	

4. 20 Perbandingan RAO tertinggi tiap gerakan LNGC muatan ballast heading 45°

: lebih besar

H. Karakteristik gerak LNGC tertambat muatan ballast akibat gelombang

sisi

Karakteristik gerak LNGC muatan ballast akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.28.

Gambar 4. 28 RAO gerakan LNGC muatan ballast kondisi mengapung bebas dan tertambat akibat gelombang sisi

Sama halnya dengan kondisi muatan 100% maupun 50% saat dikenai beban propagasi gelombang sisi. Semua moda gerakan, baik moda gerak horisontal dan vertikal memiliki harga lebih tinggi dibandingkan saat mengapung bebas.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesar	LNGC m	uatan ba	llast heading 9	90°	
	Free	Floating		M	oored	
Moda	(red (det)	ζ _{z0} /ζ ₀		(rad/dat)	ζ _{z0} /ζ ₀	
gelak	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit
Surge	0.79	0.017	m/m	0.25	0.031	m/m
Sway	0.25	0.965	m/m	0.25	2.351	m/m
heave	0.66	1.235	m/m	0.60	1.313	m/m
Roll	0.70	4.789	deg/m	0.70	5.278	deg/m
Pitch	0.79	0.094	deg/m	0.74	0.108	deg/m
Yaw	0.79	0.057	deg/m	0.74	0.062	deg/m

4.21 Perbandingan RAO tertinggi tiap gerakan LNGC muatan ballast heading 90°

: lebih besar

I. Karakteristik gerak LNGC tertambat muatan ballast akibat gelombang

perempat haluan

Karakteristik gerak LNGC muatan ballast akibat gelombang sisi ditunjukkan dalam grafik RAO yang terdapat pada Gambar 4.29.

Gambar 4. 29 RAO gerakan LNGC muatan ballast kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan (berlanjut)

Gambar 4. 29 RAO gerakan LNGC muatan ballast kondisi mengapung bebas dan tertambat akibat gelombang perempat haluan (lanjutan)

Karakteristik gerak LNGC muatan ballast akibat gelombang perempat haluan cenderung menyerupai karakteristik gerak saat dikenai beban propagasi gelombang perempat buritan, mengingat bentuk kapal yang simetris. Karakteristik moda gerak horisontal dan gerakan *roll* saat kondisi tertambat memiliki harga RAO yang lebih tinggi dibandingkan saat mengapung bebas. Sedangkan moda gerak vertikal (*heave* dan *pitch*) saat kondisi tertambat memiliki harga RAO yang lebih kecil dibanding saat mengapung bebas.

Berikut ini merupakan tabel perbandingan harga RAO tertinggi antara kondisi mengapung bebas dan tertambat *side by side*.

	RAO terbesar	LNGC mu	uatan bal	last heading 13	350	
	Free	Floating		M	oored	
gerak	ζzo/ζο -		(rad/dat)	ζ_{z0}/ζ_{0}		
	ω (rad/det)	harga	unit	ω (rad/det)	harga	unit
Surge	0.25	0.656	m/m	0.25	1.652	m/m
Sway	0.25	0.655	m/m	0.25	1.352	m/m
heave	0.25	0.955	m/m	0.25	0.775	m/m
Roll	0.74	1.806	deg/m	0.70	2.105	deg/m
Pitch	0.48	0.743	deg/m	0.37	0.690	deg/m
Yaw	0.47	0.267	deg/m	0.25	0.802	deg/m

Tabel 4.22 Perbandingan RAO tertinggi tiap gerakan LNGC muatan ballast heading 135°

: lebih besar

4.3.2 Ananlisis Karakteristik Gerak Struktur pada Gelombang Acak 4.3.2.A Penentuan Kondisi Lingkungan untuk Analisis Respon Struktur

pada Gelombang Acak

Sistem tertambat *side by side* pada FSRU dan LNGC dioperasikan pada perairan Labuhan Maringgai, Lampung. Daerah ini memiliki data sebaran gelombang yang ditunjukkan pada Tabel 4.23.

 Tabel 4. 23 Data sebaran gelombang pada perairan Labuhan Maringgai (Metocean PGN, 2012)

		Hs (m)					
		0.0-0.25	0.25-0.5	0.5-0.75	0.75-1.0	1.0-1.25	1.25-1.5
10	0-2.5	20.91	18.05	17-11	17-41		
	2.5-5.0	5.64	15.73	8.69	2.35	0.18	
1	5.0-7.5	0.98	9.32	12.36	4.14	1.09	
det,	7.5-10	TT TT	0.01				17 1-)
p (10-12.5	0.03			2 /- 1		0.16
	12.5-15.0	0.23	0.02	~ -	in - n		-
	15.0-17.5	0.05	0.02				DE L
	17.5-20.0	0.04	65-00		<u>)</u> / - 5. ((

Data tersebut diolah untuk mendapatkan intensitas gelombang signifikan akibat badai yang mungkin terjadi dalam kurun waktu 10 tahun, 50 tahun dan 100 tahun yang digunakan unruk keperluan perancangan. Untuk mengantisipasi ketidaktentuan dalam pengukuran gelombang, maka dalam perhitungan disarankan jumlah total presentasi gelombang dari tabel ditambah 0.5, yakni untuk mengantisipasi presentasi kejadian gelombang signifikan di atas 1,5 meter. Analisis ini menggunakan prosedur analisis kurun waktu panjang dalam melakukan prediksi tinggi gelombang signifikan yang dibantu dengan penyelesaian grafis.

Hasil perhitungan jumlah presentasi gelombang tiap interval dan kumulatifnya ditunjukkan pada Tabel 4.24.

2			Hs (m)						
Tr)		0.0-0.25	0.25-0.5	0.5-0.75	0.75-1.0	1.0-1.25	1.25-1.5	Jumian	
K.	0-2.5	20.91	18.05		Ş. 🗬			38.96	
Ph-	2.5-5.0	5.64	15.73	8.69	2.35	0.18		32.59	
The	5.0-7.5	0.98	9.32	12.36	4.14	1.09	TAT	27.89	
det	7.5-10		0.01	17 J.S.	25-V		Slo I	0.01	
þ	10-12.5	0.03		-			0.16	0.19	
	12.5-15.0	0.23	0.02					0.25	
M)	15.0 <mark>-17.</mark> 5	0.05	0.02					0.07	
S.	17.5-20.0	0.04						0.04	
1	Jumlah	27.88	43.15	21.05	6.49	1.27	0.16	100	
The k	(umul <mark>atif</mark>	27.88	71.03	92.08	98.57	<mark>9</mark> 9.84	100	TTO ST	

 Tabel 4. 24
 Perhitungan jumlah presentasi gelombang dan kumulatifnya tiap interval

Berdasarkan perhitungan pada tabel 2 dapat dilakukan perhitungan komponen peluang kumulatif untuk analisis kurun waktu panjang, seperti yang ditunjukkan dalam Tabel 4.25.

Tabel 4. 25 Tabulasi perhitungan komponen peluang kumulatif

5	H (m)	P(H)	$\ln(H-q)$	$\ln \left[\ln \{1/1 - P(H)\} \right]$
	11 ₅ (11)	r (IIs)	$m(n_s - \alpha)$	
2	(1)	(2)	(3)	(4)
ſ	0.25	0.277 <mark>4129</mark> 4	-1. <mark>3863</mark>	-1.1242
2	0.5	0.70676617	-0.6931	0.2044
5	0.75	0.91621891	-0.2877	0.9081
	1	0.98079602	0.0000	1.3744
5	1.25	0.99343284	0.2231	1.6146
	1.5	0.99502488	0.4055	1.6683

Keterangan pada tabulasi perhitungan tabel 4.22 adalah sebagai berikut :

• Harga acuan batas bawah tinggi gelombang *a* yang diambil sama dengan

0.0 m

Jumlah presentasi gelombang yang digunakan untuk melakukan perhitungan $P(H_s)$ ditambahkan dengan nilai 0,5. Hal ini dilakukan untuk mengantisipasi ketidaktentuan terjadinya gelombang dengan intensitas di atas $H_s = 1,5$ m.

 $P(H_s)$ merupakan jumlah kumulatif pada setiap tinggi gelombang signifikan dibagi dengan jumlah presentasi gelombang total (100.5)

Berdasarkan perhitungan tabel 3 akan didapatkan grafik hubungan antar parameter dengan kolom (3) sebagai absis dan kolom (4) sebagai ordinat. Grafik tersebut seperti yang ditunjukkan dalam gambar 1 menunjukkan data sebaran gelombang yang dilakukan analisis regresi (dilakukan perkiraan *trendline* sebaran data) yang digunakan sebagai panduan untuk menyelesaikan analisis prediksi tinggi gelombang dalam kurun waktu tertentu.

Gambar 4.30 Grafik korelasi antara tinggi gelombang dan distribusi kumulatif

Berdasarkan Gambar 4.30 dapat diambil kesimpulan bahwa persamaan trendline yang diperkirakan sesuai dengan sebaran data lingkungan perairan Labuhan Maringgai adalah v = 1.6116u + 1.2412; dengan u = $ln(Hs - a) dan v = ln[ln{1/1-P(Hs)}]$.

Perhitungan untuk prediksi tinggi gelombang gelombang signifikan dalam kurun waktu 10, 50 dan 100 tahunan seperti yang ditunjukkan dalam Tabel 4.26.

Kurun Waktu	Py(H _s)	ln [ln{1/1-P(Hs)}]	ln (Hs - a)	H _s (m)
(1)	(2)	(3)	(4)	(5)
10 tahun	0.99996575	2.3304	0.6758	1.97
50 tahun	0.99999315	2.4758	0.7661	2.15
100 tahun	0.99999658	2.5325	0.8012	2.23

Penjelasan dari tabel 4.23 adalah sebagai berikut :

- Kolom (1) menjelaskan tentang prediksi kurun waktu yang akan dianalisis
- Kolom (2) didapatkan dari persamaan $Py(H) = 1 \frac{x}{y*365*24}$; y merupakan
 - kurun waktu panjang (dalam tahun) kejadian gelombang; x merupakan durasi badai (3 jam)
 - Kolom (3) diperoleh dari perhitungan dari kolom (2)
 - Kolom (4) didapatkan dari pembacaan trendline dengan menggunakan persamaan garis trendline v = 1.6116u + 1.2412, dengan u merupakan hasil yang dimasukkan ke dalam kolom (4)
- Kolom (5) merupakan hasil akhir berupa tinggi gelombang signifikan yang diperoleh dari inversi kolom (4), yaitu ($H_s a$) = $e^{\ln (H_s a)}$, di awal telah dijelaskan bahwa a = 0.0 meter maka $H_s a = H_s$.

Berdasarkan perhitungan pada tabel 4 didapatkan hasil berupa :

- Tinggi gelombang signifikan kurun waktu 10-tahunan adalah = 1.97 meter
- Tinggi gelombang signifikan kurun waktu 50-tahunan adalah = 2.15 meter
- Tinggi gelombang signifikan kurun waktu 100-tahunan adalah = 2.23 meter

Prediksi tinggi gelombang signifikan yang diperoleh dari analisis kurun waktu panjang ini nantinya akan digunakan untuk analisis respon struktur pada gelombang acak. Kebanyakan *code/standard* internasional seperti API, ABS dan DNV mensyaratkan perancangan bangunan laut harus didasarkan pada gelombang ekstrim 1-tahunan untuk analisis kondisi operasi dan 100-tahunan untuk analisis kondisi survival.

4.<mark>3.2.</mark>B Analisis Respon Struktur pada Gelombang Acak

Analisis ini dimaksudkan untuk mengetahui karakteristik respon gerakan struktur pada gelombang acak. Respon struktur pada gelombang acak dapat diperoleh dengan mengalikan harga kuadrat dari RAO tiap gerakan dengan spektra gelombang. Spektra gelombang yang sesuai dengan perairan Indonesia yang termasuk dalam kategori perairan terbuka adalah spektra gelombang JONSWAP seperti yang telah dijelaskan pada bab 2. Spektra JONSWAP pada tinggi gelombang signifikan yang dianalisis sebelumnya untuk kurun waktu 10, 50 dan 100-tahunan ditunjukkan dalam Gambar 4.31.

Gambar 4.31 Pengaruh perubahan tinggi gelombang signifikan terhadap pola spektra JONSWAP

Dalam analisis ini akan ditunjukkan respon struktur pada gelombang acak, khususnya pada kondisi yang dianggap paling kritis, dalam hal ini yaitu kondisi ketika FSRU muatan 100% dan LNGC kondisi ballast dengan pembebanan *beam seas.* Tinggi gelombang yang digunakan dalam analisis ini mengacu pada analisis sebelumnya, yakni tinggi gelombang signifikan kurun waktu 10, 50 dan 100tahunan. Dengan harga periode puncak, Tp = 7.5 detik dan parameter ketinggian, γ = 2.5 maka didapatkan respon spektra seperti yang ditunjukkan pada Gambar 4.33 dan 4.34.

Berdasarkan grafik dari Gambar 4.32a terdapat tiga kurva spektra respon gerakan *surge* yang dihitung menurut kenaikan tinggi gelombang signifikan yang dianalisis sebelumnya, yakni berdasarkan analisis kurun waktu 10, 50 dan 100tahunan. Harga tinggi gelombang signifikan tersebut berturut-turut adalah 1.97, 2.15 dan 2.23 meter. Pola kurva spektra respon menunjukkan harga yang relatif kecil karena harga RAO gerakan *surge* juga kecil, akibat beban gelombang yang mengenainya berasal dari propagasi gelombang sisi. Meninjau pola kurva spektra respon gerakan *surge*, nilai puncak spektra respon yang pertama menunjukkan pengaruh dari interferensi dari puncak spektra gelombang. Sedangkan nilai puncak spektrum yang kedua menunjukkan pengaruh resonansi gerakan surge pada frekuensi sekitar 1.05 rad/detik. Berdasarkan analisis spektra respon tersebut menghasilkan amplitudo ekstrim gerakan *surge* sebagaimana ditunjukkan dalam Tabel 4.27.

Tabel 4. 27 Tabulasi harga amplitudo ekstrim gerakan <i>surge</i> FSRU								
	$H_{s} = 1.97 \text{ m}$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 m$					
Amplitudo ekstrim gerakan surge (meter)	0.025	0.027	0.028					

Sebagaimana terlihat pada Gambar 4.33b, bentuk kurva spektra respon gerakan *sway* terlihat agak menonjol yaitu pada bentang frekuensi sekitar 0.95 sampai 1.1 rad/detik sebagai akibat dari resonansi gerakan *sway*. Puncak spektra respon dipengaruhi oleh interferensi puncak spektra gelombang. Untuk $H_s = 2.23$ m harga puncak spektrum respon mencapai sekitar 0.11 m²/(rad/detik) yang kirakira 0.1 kali nilai puncak spektra gelombang pada tinggi gelombang signifikan yang sama. Amplitudo ekstrim gerakan *sway* yang dihasilkan dari analisis tersebut ditunjukkan dalam Tabel 4.28 di bawah ini.

Tabel 4. 28	Tabulasi harga	amplitudo ekstrim	gerakan sway FSRU
1 abci 4. 20	rabulasi harga	ampilitudo eksumi	gerakan sway i SKU

	0		
	$H_{s} = 1.97 \text{ m}$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 \text{ m}$
Amplitudo ekstrim gerakan sway (meter)	0.689	0.752	0.780

Pola kurva spektrum respon gerakan *heave*, seperti yang ditunjukkan dalam Gambar 4.45c menggambarkan bagian yang gemuk yaitu dari frekuensi sekitar 0.75 hingga 0.8 rad/detik karena efek posisi frekuensi alami gerakan *heave*. Untuk H_s = 2.23 m puncak spektrum respon yang mencapai $0.21 \text{ m}^2/(\text{rad/detik})$ dipengaruhi oleh puncak spektrum gelombang pada tinggi gelombang signifikan yang sama. Berdasarkan tabel harga-harga stokastik respon gerakan *heave* FSRU pada H_s = 2.23 m (tabel terlampir) atau amplitudo signifikan 1.12 m akan mengakibatkan amplitudo *heave* signifikan sebesar 0.47 m atau sekitar 0.4 kali amplitudo gelombang signifikan. Sedangkan amplitudo ekstrim gerakan *heave* yang dihasilkan dari analisis tersebut ditunjukkan dalam Tabel 4.29 di bawah ini.

Taber 4. 29 Tabulasi narga ampitudo eksirim gerakan nedve FSRU								
	$H_{s} = 1.97 \text{ m}$	$H_{\rm s} = 2.15 \text{ m}$	$H_{s} = 2.23 \text{ m}$					
Amplitudo ekstrim gerakan heave (meter)	1.00	1.09	1.14					

1 30 T 1 1 1

Meninjau pola kurva spektrum gerakan *roll* seperti yang ditunjukkkan Gambar 4.33d, terlihat pola yang serupa dengan spektra respon gerakan *heave*, yaitu menggambarkan bagian yang gemuk pada bentang frekuensi sekitar 0.75 hingga 0.8 rad/detik sebagai akibat dari resonansi gerakan *roll*. Puncak spektra respon ketika $H_s = 2.23$ m menunjukkan harga sekitar 0.25 deg²/(radian/detik). Dan menghasilkan amplitudo *roll* signifikan sebesar 0.54 degree (tabel harga-harga stokastik respon gerakan *roll* terlampir). Amplitudo ekstrim gerakan *roll* yang dihasilkan dari analisis tersebut ditunjukkan dalam Tabel 4.30 di bawah ini.

Tabel 4. 30	Tabulasi harga	amplitudo ekstrim	gerakan	roll FSRU	1
			and the second sec		_

	$H_{s} = 1.97 \text{ m}$	$H_s = 2.15 \text{ m}$	$H_{\rm s} = 2.23 \text{ m}$
Amplitudo ekstrim gerakan roll (deg)	1.158	1.263	1.311

Berdasarkan grafik dari Gambar 4.33e pola kurva spektrum respon gerakan *pitch* menunjukkan bagian yang gemuk pada frekuensi sekitar 0.65 hingga 0.75 rad/detik sebagai akibat dari resonansi pertama gerakan pitch. Puncak spektra respon dipengaruhi oleh puncak spektrum gelombang dengan tinggi gelombang signikan yang sama. Untuk $H_s = 2.23$ m puncak spektra respon memiliki harga sekitar 0.002 deg²/(rad/detik). Kemudian jika diperhatikan akan didapatkan bagian yang menonjol pada frekuensi 0.95 hingga 1.05 rad/detik yang diakibatkan oleh resonansi kedua gerakan *pitch*. Berdasarkan analisis spektra respon tersebut

m<mark>engh</mark>asilkan amplitudo ekstrim gerakan *pitch* sebagaimana ditunjukkan dalam Tabel 4.31.

Tabel 4. 31 Tabulasi harga amplitu	udo ekstrim gera	kan <i>pitch</i> FSRU	DOTA TO
	$H_{\rm s} = 1.97 {\rm m}$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 \text{ m}$
Amplitudo ekstrim gerakan pitch (deg)	0.106	0.116	0.119

Sebagaimana terlihat pada Gambar 4.33f bentuk kurva spektrum respon gerakan yaw menunjukkan perbedaan posisi kontribusi frekuensi puncak spektra gelombang dan frekuensi alami gerakan yaw. Puncak pertama spektra respon dipengaruhi oleh interferensi puncak spektrum gelombang, sedangkan puncak kedua dipengaruhi oleh frekuensi alami gerakan yaw. Amplitudo ekstrim gerakan heave yang dihasilkan ditunjukkan dalam Tabel 4.32 berikut.

 Tabel 4. 32
 Tabulasi harga amplitudo ekstrim gerakan yaw FSRU

THE THE THE THE	$H_{s} = 1.97 \text{ m}$	$H_{s} = 2.15 \text{ m}$	$H_s = 2.23 \text{ m}$
Amplitudo ekstrim gerakan yaw (deg)	0.073	0.080	0.083

b. Spektra respon LNGC

0,0004 Surge Spectral Density, S₂₂ (₁₀) in m²/(rad/s) 000000 100000 100000 Hs = 1,97 meter ls = 2,15 meter – Hs = 2,23 meter

1,0

1,5

2,5

2,0

Spektra respon FSRU ditunjukkan pada Gambar 4.33 berikut ini.

0,5

0,0

Berdasarkan Gambar 4.33a, pola perubahan kurva spektra respon gerakan gerakan *surge* LNGC sebagai fungsi kenaikan tinggi gelombang signifikan terlihat relatif serupa dengan pola perubahan kurva spektra gelombangnya. Hal ini disebabkan karena posisi masing-masing frekuensi puncak spektra kurang lebih sama dengan resonansi gerakannya. Puncak spektra respon terjadi pada frekuensi 0.85 rad/detik dengan harga 0.0003 m²/(radian/detik). Harga ini terlihat relatif kecil karena beban yang mengenai LNGC berasal dari bagian sisi kapal. Berdasarkan analisis spektra respon tersebut menghasilkan amplitudo ekstrim gerakan *surge* sebagaimana ditunjukkan dalam Tabel 4.33.

Tabel 4. 33 Tabulasi harga amplitu	do ekstrim geral	kan surge LNGO	
	$H_{s} = 1.97 \text{ m}$	$H_{\rm s} = 2.15 {\rm m}$	$H_{s} = 2.23 \text{ m}$
Amplitudo ekstrim gerakan surge (meter)	0.034	0.037	0.038

Pola spektra respon gerakan *sway* seperti yang ditunjukkan dalam Gambar 4.34b menunjukkan perbedaan posisi kontribusi frekuensi dari puncak spektra gelombang dengan resonansi gerakannya. Puncak spektra respon yang memiliki harga sekitar 0.07 m²/(radian/detik) pada $H_s = 2.23$ m dipengaruhi oleh puncak spektra gelombangnya pada tinggi gelombang signifikan yang sama. Sedangkan puncak kedua dipengaruhi oleh resonansi gerakan *sway*. Amplitudo ekstrim gerakan *sway* yang dihasilkan dari analisis tersebut ditunjukkan dalam Tabel 4.34 di bawah ini.

Tabel 4. 34 Tabulasi harga amplitudo ekstrim gerakan sway LNGC			
	$H_{s} = 1.97 \text{ m}$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 m$
Amplitudo ekstrim gerakan sway (meter)	0.666	<mark>-0.72</mark> 6	0.753

Meninjau spektra respon gerakan *heave* seperti yang ditunjukkan pada Gambar 4.34c terlihat pada bentang frekuensi sekitar 0.7 hingga 0.75 rad/detik, bentuk kurva relatif membesar sebagai akibat dari resonansi gerakannya dan puncak spektra respon yang mencapai harga sekitar 0.4 m²/(radian/detik) dipengaruhi uleh puncak spektra gelombangnya. Berdasarkan tabel harga-harga stokastik respon gerakan *heave* LNGC pada $H_s = 2.23$ m (tabel terlampir) atau amplitudo signifikan 1.12 m akan mengakibatkan amplitudo heave signifikan sebesar 0.63 m atau sekitar 0.56 kali amplitudo gelombang signifikan. Amplitudo ekstrim gerakan *heave* yang dihasilkan ditunjukkan dalam Tabel 4.35 berikut.

Tabel 4. 55 Tabulasi narga ampilu	ido ekstriin gera	kan neave LNG	
	$H_{s} = 1.97 \text{ m}$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 m$
Amplitudo ekstrim gerakan heave (meter)	1.347	1.470	1.524

Sebagaimana terlihat pada Gambar 4.34d bentuk kurva spektra respon gerakan *roll* hampir menyerupai pola kurva spektra gelombangnya. Hal ini disebabkan karena interferensi puncak spektra gelombang maupun resonansi gerakannya berada pada frekuensi yang sama. Untuk $H_s = 2.23$ m puncak spektra responnya mencapai harga 11,01 deg²/(radian/detik). Amplitudo ekstrim gerakan *roll* yang dihasilkan dari analisis tersebut ditunjukkan dalam Tabel 4.36 di bawah

IIII.

Tabel 4. 36 Tabulasi harga amplit	udo ekstrim gera	akan <i>roll</i> LNGC	
A A A	$H_{s} = 1.97 m$	$H_{s} = 2.15 \text{ m}$	$H_{\rm s} = 2.23 \ {\rm m}$
Amplitudo ekstrim gerakan <i>roll</i> (deg)	6.423	7.009	7.270

Pola kurva spektrum respon gerakan *pitch* seperti yang ditunjukkan pada Gambar 4.34e menunjukkan bentuk kenaikan spektra respon mengikuti bentuk kenaikan kurva spektra gelombang pada tinggi gelombang signifikan yang sama. Hal ini disebabkan karena pengaruh interferensi puncak spektra respon dan resonansi gerakannya terjadi pada frekuensi yang berdekatan. Berdasarkan analisis spektra respon tersebut menghasilkan amplitudo ekstrim gerakan *pitch* sebagaimana ditunjukkan dalam Tabel 4.37.

	$H_s = 1.97 \text{ m}$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 \text{ m}$
Amplitudo ekstrim gerakan pitch (deg)	0.163	0.178	0.185

Sebagaimana terlihat pada Gambar 4.34f pola kurva respon gerakan *yaw* juga memiliki karakteristik yang relatif sama dengan pola spektrum gelombangnya. Seperti yang dijelaskan sebelumnya, hal ini terjadi karena efek posisi puncak spektra gelombang dan posisi puncak resonansi gerakannya terletak pada frekuensi yang sama. Puncak spektra respon ini memiliki harga sekitar 0.003 deg²/(radian/detik) yang terjadi pada frekuensi 0.85 rad/detik. Amplitudo ekstrim gerakan *heave* yang dihasilkan ditunjukkan dalam Tabel 4.38 berikut.

	Tabel 4. 38 Tabulasi harga ampl	Tabel 4. 38 Tabulasi harga amplitudo ekstrim gerakan yaw LNGC		
1	T DATE DATE DATE	$H_{s} = 1.97 m$	$H_{s} = 2.15 \text{ m}$	$H_{s} = 2.23 \text{ m}$
V	Amplitudo ekstrim gerakan yaw (deg)	0.114	0.125	0.130

4.3.3 Ananlisis Pengaruh Sudut Fase dalam Interaksi Hidrodinamis

Analisis gerakan kedua kapal (FSRU dan LNGC) pada kondisi *side by side* menghasilkan sudut fase gerakan yang beragam pada tiap-tiap frekuensinya. Pengaruh dari sudut fase gerakan tersebut yang akan ditinjau terhadap interaksi hidrodinamis antara dua kapal, karena jaraknya yang berdekatan. Dalam analisis ini sudut fase gerakan yang ditinjau adalah sudut fase gerakan *roll* dan *sway* karena gerakan inilah yang berpengaruh secara signifikan terhadap beban gelombang dari arah sisi kapal.

Sudut fase gerakan *roll* ditinjau dari beberapa periode yang terekam saat kapal bergerak. Sudut fase gerakan *roll* pada periode 13 detik ditunjukkan ditunjukkan dalam grafik berikut beserta ilustrasi geraknya pada kedua kapal.

Gambar 4.34 Grafik sudut fase gerakan roll dan ilustrasi gerakannya saat periode 13 detik

Berdasarkan grafik dan ilustrasi pada Gambar 4.34 ditunjukkan bahwa sudut fase gerakan *roll* saat t = 11 detik menunjukkan gerak *roll* FSRU sebesar 2.63 deg searah jarum jam dan gerak *roll* LNGC sebesar 1.20 deg searah jarum jam, artinya bahwa gerak *roll* FSRU dan LNGC bergerak *in phase* yaitu bergerak searah yang identik. Hal ini mengakibatkan kenaikan yang signifikan terhadap nilai Tennifikasi gaya gelombang eksitasi sehingga amplitudo gerakan yang dihasilkan meningkat.

Meninjau sudut fase gerakan roll saat periode 9.5 detik seperti yang ditunjukkan oleh grafik dan ilustrasi pada gambar 4.35.

Gambar 4.35 Grafik sudut fase gerakan roll dan ilustrasi gerakannya saat periode 9.5 detik Grafik dan ilustrasi pada Gambar 4.35 menjelaskan bahwa gerakan roll saat

t = 3 detik, untuk FSRU dan LNGC berturut-turut adalah 0.55 deg searah jarum jam dan 2.50 deg searah jarum jam, artimya baik gerak roll FSRU maupun LNGC bergerak *in phase*. Seperti yang telah dijelaskan sebelumnya hal ini mengakibatkan naiknya nilai Tennifikasi gaya gelombang eksitasi sehingga amplitudo gerakan yang dihasilkan meningkat.

Pada contoh lain ditunjukkan sudut fase gerakan *roll* pada periode 7.5 detik, seperti yang disajikan dalam grafik dan ilustrasi pada Gambar 4.36.

detik

Berdasarkan grafik dan ilustrasi pada Gambar 4.36 gerakan *roll* yang terjadi saat t = 8 detik untuk FSRU dan LNGC berturut-turut adalah 0.18 deg berlawanan arah jarum jam dan 1.49 deg searah jarum jam, artinya bahwa gerak *roll* FSRU dan LNGC bergerak *out phase* yaitu bergerak berlawanan yang identik. Hal ini mengakibatkan penurunan yang cukup signifikan terhadap nilai Tennifikasi gaya gelombang eksitasi (karena gelombang yang terjadi saling meniadakan) sehingga amplitudo gerakan yang dihasilkan menurun.

Meninjau gerakan sway saat periode 16 detik, grafik dan ilustrasi gerakan ditunjukkan pada Gambar 4.37.

Gambar 4.37 Grafik sudut fase gerakan sway dan ilustrasi gerakannya saat periode 16 detik

Pada saat t = 2 detik gerakan *sway* untuk FSRU dan LNGC berturut-turut bergerak sebesar 0.23 meter ke arah kanan dan 0.08 meter ke arah kanan, artinya bahwa gerak *sway* FSRU dan LNGC bergerak *in phase* yaitu bergerak searah. Hal ini mengakibatkan naiknya nilai Tennifikasi gaya gelombang eksitasi sehingga simpangan gerakan yang dihasilkan meningkat.

Gerakan *sway* pada periode 7.5 detik ditunjukkan dalam grafik dan ilustrasi pada Gambar 4.38.

Gambar 4.38 Grafik sudut fase gerakan sway dan ilustrasi gerakannya saat periode 7.5 detik Gerakan *sway* saat t = 4 detik untuk FSRU dan LNGC berturut-turut bergerak sebesar 0.16 meter kearah kiri dan 0.11 meter ke arah kanan, artinya bahwa gerak *sway* FSRU dan LNGC bergerak *out phase* yaitu bergerak berlawanan yang identik. Hal ini mengakibatkan penurunan yang signifikan terhadap nilai Tennifikasi gaya gelombang eksitasi (karena gelombang yang terjadi saling meniadakan) sehingga amplitudo gerakan yang dihasilkan menurun.

Begitu juga gerakan sway pada periode 4.5 detik yang ditunjukkan dalam grafik dan ilustrasi pada Gambar 4.39.

detik

Gerakan *sway* saat t = 3 detik untuk FSRU dan LNGC berturut-turut bergerak sebesar 0.02 meter kearah kanan dan 0.03 meter ke arah kiri, artinya bahwa gerak *sway* FSRU dan LNGC bergerak *out phase* yaitu bergerak berlawanan yang identik. Hal ini mengakibatkan penurunan yang signifikan terhadap nilai Tennifikasi gaya gelombang eksitasi sehingga simpangan gerakan yang dihasilkan menurun.

4.3.4 Ananlisis Operasi Side by Side

Berdasarkan analisis perilaku gerak kapal pada kondisi gelombang acak yang telah dilakukan sebelumnya dapat digunakan untuk mengetahui hubungan perilaku gerak ekstrim dengan kriteria operasi *side by side*. Kriteria operasi *side by side* yang digunakan dalam penelitian ini mengacu pada operasi loading arm sebagai alat distribusi LNG dari FSRU menuju LNGC. Berdasarkan ketentuan OCIMF (1^{st} Edition 1980 and 2^{nd} Edition 1987) direkomendasikan area geser (*drifting area*) yang diizinkan untuk gerakan geser longitudinal dan lateral (arah gerakan *surge* dan *sway*) sebesar ±3.1 meter. Jika gerakan melebihi ketentuan yang telah disebutkan maka proses transfer LNG akan diberhentikan dan akan dilanjutkan kembali saat gerakan tidak melebihi batas yang telah ditentukan.

Kriteria batasan gerak kapal yang dianalisis adalah saat kondisi kemungkinan terjadi tubrukan kapal yaitu pada jarak horisontal terdekat, 2.5 meter dan kondisi yang mempengaruhi proses transfer LNG yaitu pada saat jarak horisontal terjauh, 8,5 meter. Bentang jarak horisontal terdekat dan terjauh merupakan area jangkauan *loading arm* (*flanging area*) saat kondisi mula-mula (*initial condition*). Adapun kondisi operasi yang bisa berlangsung ialah saat ujung sisi kapal tidak saling bertabrakan saat kapal saling mendekat dan berada pada jangkauan *flanging area* ditambah dengan *drifting area* sesuai yang telah ditentukan oleh OCIMF saat kapal saling bergerak menjauh, atau jika dihitung mencapai **11.6 meter** (jarak horisontal, 8.5 meter ditambah dengan jarak offset yang diizinkan, 3.1 meter).

Analisis operasi *side by side* yang dilakukan dalam penelitian ini mengacu berdasarkan batas operasi *loading arm*, khususnya saat kapal bergerak horisontal, baik bagian kedua badan kapalnya bergerak saling mendekat maupun saling menjauh. Gerakan kapal yang ditinjau untuk melihat batas operasi *loading arm* saat bergerak horisontal terdiri dari *sway*, *roll* dan *heave*. Gerakan-gerakan tersebut dipengaruhi oleh besarnya sudut fase gerakan tiap kapal seperti yang dijelaskan pada sub bab 4.3.3.

Analisis yang dilakukan pada sub bab ini yaitu melihat kondisi batas operasi loading arm saat FSRU dan LNGC bergerak dengan kombinasi gerakan sway-roll

dan *heave-roll*. Kondisi gerakan yang terjadi antara FSRU dan LNGC untuk variasi kombinasi gerakan *sway-roll* dan *heave-roll* dengan jarak horisontal 2.5 meter ditunjukkan pada Gambar 4.40 dan 4.41.

Gambar 4.40 Ilustrasi gerak kapal kondisi side by side jarak 2.5 meter, gerakan sway-roll

Gambar 4.40 menjelaskan ilustrasi FSRU dan LNGC yang bergerak dengan kombinasi gerakan *sway-roll*, arah gerakan masing-masing kapal lebih jelasnya dapat dilihat pada Tabel 4.39. Ukuran gerakan yang terdapat pada gambar menjelaskan gerakan masing-masing kapal dari posisi awalnya (warna hitam) serta menjelaskan jarak horisontal gerakan yang timbul akibat gerakan masing-masing kapal dari posisi awalnya (warna merah). Jarak horisontal inilah yang akan digunakan sebagai acuan operasi *side by side*. Operasi side by side dapat dilakukan jika jarak horisontalnya tidak melebihi batas operasi yaitu 11.6 meter atau kedua kapal tidak saling bertubrukan (jarak horisontalnya bernilai negatif). Berdasarkan Gambar 4.40 dapat disimpulkan semua kondisi gerakannya dapat memenuhi operasi side by side kecuali kondisi yang terdapat pada Gambar 4.42b, karena kedua kapal saling bertubrukan dengan jarak horisontalnya sebesar -1.8 meter sehingga pada kondisi ini harus di*shutdown*.

Ilustrasi kombinasi gerakan FSRU dan LNGC heave-roll ditunjukkan pada

Gambar 4.41.

Gambar 4.41 Ilustrasi gerak kapal kondisi *side by side* jarak 2.5 meter, gerakan *heaveroll* Meninjau Gambar 4.41 dengan melihat jarak korisontal gerakannya (warna merah) dapat disimpulkan bahwa kondisi (e) s.d. (h) memenuhi batasan operasi *side by side*. Arah gerakan masing-masing kapal lebih jelasnya dapat dilihat pada Tabel 4.39.

Kondisi	Moda Gerak	Arah Gerak	Jarak Horisontal Gerakan (meter)	Keterangan
1	Sway		7.16	Operable
(Gambar 4.52a)	Roll		- Dec - Dec	and a
2	🕖 Sway (4.10	Operable
(Gambar 4.52b)	Roll			(2.50 + 4.66 = 7.16)
3	Sway			Shutdown
(Gambar 4.52c)	Roll		-1.0	(tubrukan)
4	Sway		4.80	Operable
(Gambar 4.52d)	Roll			Operable
5	Heave		0.56	Operable
(Gambar 4.53e)	Roll			
6	Heave		0.56	Operable
(Gambar 4.53f)	Roll			Operable

 Tabel 4.39 Kondisi operasi FSRU dan LNGC side by side dengan jarak horisontal 2.5 meter

 berdasarkan kriteria operasi

Kondisi	Moda Gerak	Arah Gerak	Jarak Horisontal Gerakan (meter)	Keterangan Operable	
7	Heave		4.80		
(Gambar 4.53g)	Roll		T.00		
8	Heave		2 30	Operable	
(Gambar 4.53h)	Roll	2		Operable	

Sedangkan kondisi gerakan yang terjadi antara FSRU dan LNGC untuk variasi kombinasi gerak *sway-roll* dan *heave-roll* dengan jarak horisontal 8.5 meter ditunjukkan pada Gambar 4.42 dan 4.43.

Gambar 4.42 Ilustrasi gerak kapal kondisi *side by side* jarak 8.5 meter, gerakan *sway-roll*

kombinasi gerakan *sway-roll* saat jarak horisontalnya 8.5 meter, arah gerakan masing-masing kapal lebih jelasnya dapat dilihat pada Tabel 4.40. Berdasarkan Gambar 4.42 dapat disimpulkan semua kondisi gerakannya dapat memenuhi operasi side by side kecuali kondisi yang terdapat pada Gambar 4.54b, karena kedua kapal saling bergerak menjauhi dengan jarak horisontalnya sebesar 13.16 meter sehingga pada kondisi ini harus di*shutdown*.

Ilustrasi kombinasi gerakan FSRU dan LNGC heave-roll ditunjukkan pada

Gambar 4.43.

Gambar 4.43 Ilustrasi gerak kapal kondisi side by side jarak 8.5 meter, gerakan heaveroll

Seperti yang terlihat pada Gambar 4.43 dengan melihat jarak korisontal gerakannya (warna merah) dapat disimpulkan bahwa kondisi (e) s.d. (h) memenuhi batasan operasi side by side. Arah gerakan masing-masing kapal lebih jelasnya dapat dilihat pada Tabel 4.40.

Kriteria operasi side by side pada jarak horisontal 8.5 meter ditunjukkan dalam Tabel 4.40 di bawah ini :

Kondisi	Moda Arah		Jarak Horisontal	Keterangan		
	Gerak	Gerak	Gerakan (meter)			
$Q_1 Q$	Sway		10.10	Operable		
(Gambar 4.54a)	Roll	6	10.10			
2	Sway		12 16	Shutdown		
(Gambar 4.54b)	Roll	くく	13.10	(melebihi batas operasi loading arm)		
3	Sway		7 20 776	Operable		
(Gambar 4.54c)	Roll		4.20			
4	Sway	AA	7.26	Operable		
(Gambar 4.54d)	Roll			Spelasie		
5	Heave		10.80	Operable		
(Gambar 4.55e)	Roll	The start		Operable		

T

Kondisi	Moda <mark>Gera</mark> k	Arah <mark>Ger</mark> ak	Jarak Horisontal Gerakan (meter)	Keterangan		
6	Heave		6.56	Operable		
(Gambar 4.55f)	Roll	GIPATI C				
7 7	Heave		6.56	Operable		
(Gambar 4.55g)	Roll					
8	Heave		10.80	Operable		
(Gambar 4.55h)	Roll	> >	10.80	Operable		

4.4 ANALISIS GAYA TARIK TALI TAMBAT

4.4.1 Gaya Tarik Tali Tambat (Coupling Line)

Konfigurasi tali tambat *coupling line* yang menghubungkan antara FSRU dan LNGC saat kondisi *side by side* mengacu pada OCIMF dan ditunjukkan pada Gambar 4.44 berikut.

Konfigurasi tali tambat seberti yang ditunjukkan pada Gambar 4.44 terdiri dari :

• Breast line : Tali 1,2,3,8,9

Spring line : Tali 4,5,6,7

Dengan jenis material sebagai seperti yang ditunjukkan pada Tabel 4.41.

Konfigurasi	Jenis Material	Diameter (mm)	MBL (ton)	
Breast line	Nylon	88	175	
Spring line	Nylon	104	235	

Selain itu terdapat fender yang terletak diatara badan FSRU dan LNGC yang berfungsi sebagai peredam gaya tubrukan antar lambung kapal saat keduanya saling mendekat. Fender yang digunakan memiliki diameter 2.05 meter

Analisis gaya tarik tali tambat dilakukan dengan memodelkan kondisi kritis kapal, yakni dengan muatan FSRU 100% dan LNGC muatan ballast ketika dikenai gelombang sisi. Analisis yang digunakan menggunakan analisis dinamis *time domain* dengan durasi waktu selama 1 jam (3600 detik). Durasi waktu analisis yang hanya 1 jam digunakan karena keterbatasan spesifikasi komputer yang digunakan untuk menganalisis pemodelan tersebut.

Batas operasi gaya tarik tiap-tiap tali tambat yang diizinkan mengacu pada *safety factor* Nylon sebesar 2.2 (OCIMF, 2008), artinya *Minimum Breaking Load* (MBL = gaya tarik minimum yang cukup untuk memutuskan tali) per gaya tarik tali tambatnya tidak diizinkan kurang dari 2.2.

Berdasarkan analisis tersebut didapatkan intensitas gaya tarik tali tambat tiap tali yang tercantum dalam tabel 4.42.

Description	Load intensity per each line (ton)									
	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension 1/3 Highest	11.192	27.252	5.689	53.612	3.676	82.971	67.856	11.200	63.794	11.913
Tension 1/100 Highest	220 <mark>.927</mark>	1.381	114.720	2.659	68. <mark>433</mark>	4.457	<mark>303</mark> .936	2.501	294.3 <mark>67</mark>	2.582
Maximum	250.538	1.217	245.888	1.240	222.364	1.372	340.165	2.234	328.167	2.316
Mean	2.854	61.317	2.775	63.063	2.584	67.724	50.706	4.635	49.988	4.701
Minimum	0.735	414.966	0.584	522.260	0.478	638.075	3.813	199.318	3.801	199.947

Tabel 4.42 Nilai intensitas gaya tarik tali tambat (kondisi awal)
	Load intensity per each line (ton)									
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		
Tension 1/3 Highest	44.855	16.943	41.571	18.282	0.473	644.820	0.638	478.056		
Tension 1/100 Highest	213.882	3.553	181.885	4.178	0.832	366.587	1.133	269.197		
Maximum	244.405	3.110	209.457	3.628	1.069	285.313	1.365	223.443		
Mean	43.843	5.360	40.520	40.520	0.390	448.718	0.530	330.189	TTY TT)	
Minimum	6.416	118.454	8.215	92.514	0.366	833.333	0.485	628.866		

Tabel 4.42 Nilai intensitas gaya tarik tali tambat (kondisi awal)

Keterangan :

- Kolom "Ten" merupakan gaya tarik yang terjadi pada tali tambat
- Kolom "BT/Ten" menunjukkan nilai ratio MBL per gaya tarik yang terjadi, kolom ini bertujuan untuk melihat apakah gaya tarik tali tambat masih memenuhi kriteria operasi
- Baris "Tension 1/3 Highest" menunjukkan nilai gaya tarik tali tambat signifikan
- Baris "Tension 1/100 Highest" menunjukkan nilai gaya tarik tali tambat ekstrim Berdasarkan Tabel 4.39 didapatkan beberapa tali tambat yang putus yaitu ditandai dengan rasio MBL per gaya tariknya kurang dari batas yang diizinkan, yaitu 2.2 (*safety factor nylon*). Keterangan tali tambat yang putus adalah sebagai berikut :
 - Tali 1 dengan gaya tarik maksimal sebesar 250.538 ton dengan rasio 1.217
 - Tali 2 dengan gaya tarik maksimal sebesar 245.888 ton dengan rasio 1.240
 - Tali 3 dengan gaya tarik maksimal sebesar 222.364 ton dengan rasio 1.372

Dikarenakan pada analisis tersebut masih terdapat tali tambat yang tidak memenuhi batas aman maka pemodelan tali tambat dikonfigurasi ulang dengan mengubah material jenis tali tambat yang terdapat pada Tabel 4.41 menjadi properti material tali tambat yang terdapat pada Tabel 4.43.

Konfigurasi	Jenis Material	Diameter (mm)	MBL (ton)		
Breast line	Nylon	120	305		
Spring line	Nylon	192	760		

Tabel 4.43 Material tali tambat (kondisi setelah dikonfigurasi ulang)

Analisis gaya tarikan tali tambat berbasis ranah waktu yang dilakukan dengan mengganti material tali tambat menghasilkan gaya tarikan yang ditunjukkan pada Gambar 4.45 s.d. 4.53. Berdasarkan analisis tersebut didapatkan intensitas gaya tarik tali tambat tiap tali dalam kondisi *transient* dan dalam kondisi *steady*. Kondisi *transient* menggambarkan nilai gaya tarik tambat yang berosilasi pada kondisi mula-mula saat nilainya masih belum mencapai nilai yang stabil. Analisis dalam kondisi *transient* dilakukan untuk melihat nilai gaya tarik (hentakan) sesaat yang terjadi pada tali tambat. Sedangkan kondisi *steady* menggambarkan nilai gaya tariknya yang sudah stabil.

Kondisi transient pada Gambar 4.45 s.d. 4.53 berlangsung saat events 0 s.d. 1440 detik dan kondisi steadynya berlangsung mulai dari 1440 detik hingga durasi waktu analisis yang dibutuhkan, yaitu selama 3600 detik.

Grafik *time history* gaya tarik tali tambat 1 dalam kondisi *transient* dan *steady* ditunjukkan pada Gambar 4.45 yang menggambarkan nilai gaya tariknya dalam fungsi waktu (*event*) ketika kapal dikenai beban lingkungan dari arah sisi (*heading* 90°).

Bagian absis menunjukkan durasi waktu analisis yaitu selama 3600 detik sedangkan ordinatnya berupa nilai gaya tarik tali tambat dalam satuan ton. Meninjau pada Gambar 4.45 tali tambat 1 memiliki gaya tarik signifikan sebesar 20.9 ton pada kondisi *transient* dan 1.42 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 124.7 ton pada kondisi transient dan 1.4 ton pada kondisi steady.

Grafik *time history* gaya tarik tali tambat 2 ditunjukkan pada Gambar 4.46 dengan kondisi kapal dikenai beban lingkungan dari arah sisi.

Gambar 4.46 Gaya tarik pada tali tambat no 2 sebagai fungsi waktu

Seperti yang ditampilkan pada Gambar 4.46 tali tambat 2 memiliki statistik gaya tarik signifikan sebesar 3.8 ton pada kondisi *transient* dan 1.1 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 33.7 ton pada kondisi *transient* dan 1.2 ton pada kondisi *steady*.

Grafik *time history* gaya tarik tali tambat 3 saat kapal dikenai beban lingkungan dari arah sisi ditujukkan pada Gambar 4.47.

Gambar 4.47 Gaya tarik pada tali tambat no 3 sebagai fungsi waktu

Nilai-nilai statistik yang terdapat pada Gambar 4.47 terdiri dari gaya tarik signifikan sebesar 2.2 ton pada kondisi *transient* dan 0.9 ton pada kondisi steady. Gaya tarik maksimumnya mencapai 5.6 ton pada kondisi *transient* dan 0.9 ton pada kondisi *steady*.

Meninjau grafik gaya tarik tali 4 pada Gambar 4.48 didapatkan data-data statistik diantaranya, nilai gaya tarik signifikan sebesar 54.2 ton pada kondisi transient dan 42.9 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 76.4 ton pada kondisi *transient* dan 45.9 ton pada kondisi *steady*.

Grafik *time history* tali tambat 5 ketika kondisi kapal dibebani beban lingkungan dari arah sisi ditunjukkan pada Gambar 4.49.

Gambar 4.49 Gaya tarik pada tali tambat no 5 sebagai fungsi waktu

Sebagaimana yang terlihat pada Gambar 4.49 dapat diambil data-data statistik berupa nilai gaya tarik signifikan sebesar 51.1 ton pada kondisi *transient* dan 42.9 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 71.7 ton pada kondisi *transient* dan 45.9 ton pada kondisi *steady*.

Grafik *time history* tali tambat 6 saat kapal dikenai beban lingkungan dari arah sisi seperti yang ditunjukkan oleh Gambar 4.50.

Gambar 4.50 Gaya tarik pada tali tambat no 6 sebagai fungsi waktu Meninjau pada Gambar 4.50 tali tambat 6 memiliki nilai-nilai statistik berupa gaya tarik signifikan sebesar 40.1 ton pada kondisi transient dan 30.1 ton pada kondisi steady. Gaya tarik maksimumnya mencapai 43.9 ton pada kondisi transient dan 36.7 ton pada kondisi steady.

Gambar 4.51 memiliki nilai-nilai statistik yang terdiri dari nilai gaya tarik signifikan sebesar 48.8 ton pada kondisi transient dan 44.8 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 52.9 ton pada kondisi *transient* dan 45.5 ton pada kondisi *steady*.

Grafik *time history* gaya tarik tali tambat 8 saat kapal dikenai beban lingkungan dari arah sisi ditujukkan pada Gambar 4.52.

Gambar 4.52 Gaya tarik pada tali tambat no 8 sebagai fungsi waktu

Seperti yang terlihat pada Gambar 4.52, grafik tersebut memiliki nilai-nilai statistik berupa nilai gaya tarik signifikan sebesar 0.7 ton pada kondisi *transient* dan 0.7 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 0.8 ton pada kondisi *transient* dan 0.7 ton pada kondisi *steady*.

Grafik *time history* gaya tarik tali tambat 9 saat kapal dikenai beban lingkungan dari arah sisi ditujukkan pada Gambar 4.53.

Gambar 4.53 Gaya tarik pada tali tambat no 9 sebagai fungsi waktu

Sebagaimana terlihat pada Gambar 4.53 tali tambat 9 memiliki data-data statistik berupa nilai gaya tarik signifikan sebesar 1.0 ton pada kondisi *transient* dan 1.0 ton pada kondisi *steady*. Gaya tarik maksimumnya mencapai 1.0 ton pada kondisi *transient* dan 1.0 ton pada kondisi *steady*.

Meninjau grafik gaya tarik tali tambat yang disajikan pada Gambar 4.45 s.d. 4.53 dapat disimpulkan bahwa pada waktu-waktu awal intensitas pada setiap gaya tarik memiliki nilai yang cukup besar kemudian dengan berjalannya waktu nilai gaya tarik tersebut semakin mengecil. Hal ini disebabkan karena hentakan sesaat antar kedua kapal akibat propagasi gelombang, seiring bertambahnya waktu maka kapal tersebut memutar terhadap poros *yoke* sehingga luasan yang dikenai gelombang semakin lama semakin mengecil. Nilai intensitas pada bagian *spring line* (Tali 4, 5, 6 dan 7) cenderung lebih besar dibandingkan dengan bagian *breast line* (Tali 1, 2, 3, 8 dan 9). Besarnya nilai intensitas pada *spring line* dibandingkan dengan *breast line* disebabkan oleh semakin kecilnya sudut yang terbentuk antara tali tambat dan badan kapal.

Adapun nilai intensitas gaya tarik untuk masing-masing tali pada kondisi

transient dan steady adalah seperti yang disajikan pada Tabel 4.44 s.d. 4.45.

Tabel 4.44 Nilai intens	itas gava tarik tali tamba	t kondisi transient (kondisi setelah	dikonfigurasi ulang)
	8.,			0/

Description	Load Intensity per Each Line (ton)											
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)		
Tension of 1/3 Highest	20.947	14.561	3.767	80.966	2.201	138.573	54.177	14.028	51.112	14.869		
Tension of 1/100 Highest	424.718	0.718	24.431	12.484	4.985	61.184	73.242	10.377	66.343	11.456		
Maximum	457.802	0.666	33.651	9.064	5.599	54.474	76.363	9.952	71.671	10.604		
Mean	3.899	78.225	1.838	165.941	1.365	223.443	42.144	18.033	41.103	18.490		
Minimum	1.420	214.789	1.125	271.111	0.919	331.882	31.278	24.298	30.830	24.651		
Description				Load	d Intensity p	per Each Line (to	on)	Shark I	And	15		
Description	Ten (6)	BT/T <mark>en (6)</mark>	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		K		
Tension of 1/3 Highest	40.119	18.944	48.790	15.577	0.739	412.720	0.973	313.464				
Tension of 1/100 Highest	43.534	17.458	52.432	14.495	0.759	401.845	1.001	304.695	-			
Maximum	43.907	17.309	52.853	14.380	0.760	401.316	1.004	303.785	The	5		
Mean	37.142	20.462	45.734	16.618	0.717	425.384	0.944	323.093		1		
Minimum	21 1 10	22.062	12 975	17 776	0.600	442 020	0.006	226 645	3	7		

Tabel 4.45 Nilai intensitas gaya tarik tali tambat kondisi steady (kondisi setelah dikonfigurasi ulang)

Description	Load Intensity per Each Line (ton)											
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)		
Tension of 1/3 Highest	1.426	213.885	1.131	269.673	0.925	329.730	42.889	17.720	42.904	17.714		
Tension of 1/100 Highest	1.454	209.766	1.152	264.757	0.940	324.468	45.592	16.670	45.609	16.663		
Maximum	1.456	209.478	1.153	264.527	0.941	324.123	45.866	16.570	45.902	16.557		
Mean	1.402	217.546	1.114	273.788	0.911	334.797	39.259	19.359	39.261	19.358		
Minimum	1.371	222.465	1.090	279.817	0.892	341.928	33.991	22.359	33.982	22.365		
Description	Star	4 Jon		Loa	ad Intensity	per Each Line (t	on)	The had	WAR	14		
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		5		
Tension of 1/3 Highest	36.065	21.073	44.787	16.969	0.736	414.402	0.973	313.464				
Tension of 1/100 Highest	36.658	20.732	45.467	16.715	0.744	409.946	0.983	310.275				
Maximum	36.738	20.687	45.547	16.686	0.745	409.396	0.984	309.959	When when	1		
Mean	35.151	21.621	43.712	17.387	0.722	422.438	0.954	319.706				
Minimum	33.995	22.356	42.398	17.925	0.701	435.093	0.928	328.664				

Berdasarkan Tabel 4.44 dan 4.45 tersebut diketahui bahwa semua gaya tarik tali tambat dalam kondisi *transient* dan *steady* memenuhi batas faktor keamanan yang diizinkan, yaitu nilai rasio MBL per gaya tariknya memiliki nilai lebih besar dari faktor keamanannya, 2.2.

4.4.2 Analisis Pengaruh Jarak Horisontal terhadap Gaya Tarik Tali Tambat (Coupling Line)

Analisis pada tiap-tiap jarak horisontal yang terbentuk antara FSRU dan LNGC, yaitu 2.5 m, 4 m, 6 m dan 8.5 m dilakukan untuk mengetahui pengaruhnya

terhadap gaya tarik tali tambatnya. Masing-masing model dengan jarak horisontal tertentu akan dikenai beban lingkungan arah melintang (*heading* 45°), sisi dan dari arah sisi (*heading* 90°). Gaya tarik yang dihasilkan berdasarkan variasi jarak horisontal dan arah pembebanannya dipaparkan sebagai berikut (**grafik gaya tarik**

tiap-tiap tali tambat tercantum pada bab lampiran).

Pembebanan dengan arah melintang (*heading* 45°)

Nilai intensitas gaya tarik tali tambat yang dihasilkan akibat pembebanan dari arah melintang ditunjukkan pada tabel 4.46 s.d. 4.53.

a. Jarak horisontal 2.5 meter

Tabel nilai intensitas gaya tarik tali tambat dengan konfigurasi jarak horisontalnya sebesar 2.5 meter ditunjukkan pada Tabel 4.46 pada kondisi *transient* dalam rentang 0 s.d. 1800 detik dan Tabel 4.47 untuk kondisi *steady*nya mulai rentang 1800 s.d. 3600 detik.

Description	Load Intensity per Each Line (ton)											
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)		
Tension of 1/3 Highest	2.618	116.501	1.950	156.410	1.496	203.877	52.124	14.581	50.216	15.135		
Tension of 1/100 Highest	4.300	70.930	3.003	101.565	2.199	138.699	56.099	13.547	53.859	14.111		
Maximum	4.518	67.508	3.114	97.945	2.256	135.195	56.099	13.547	53.859	14.111		
Mean	2.005	152.120	1.538	198.309	1.218	250.411	36.243	20.970	35.612	21.341		
Minimum	1.638	186.203	1.281	238.095	1.034	294.971	24.302	31.273	24.152	31.467		
17757		TODO	TYTE)	Loa	d Intensity	per Each Line (t	on)	177 51				
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		No.		
Tension of 1/3 Highest	49.079	15.485	58.926	12.898	0.715	426.573	0.941	324.123		3-		
Tension of 1/100 Highest	54.951	13.831	64.773	11.733	0.718	424.791	0.946	322.410		1		
Maximum	54.951	13.831	64.773	11.733	0.719	424.200	0.947	322.070				
Mean	40.202	18.905	49.192	15.450	0.708	430.791	0.931	327.605		SKA S		
Minimum	33.910	22.412	42.147	18.032	0.695	438.849	0.915	333.333				

Tabel 4.46 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi transient (jarak 2.5 m)

Tabel 4.47 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi steady (jarak 2.5 m)

Description	Load Intensity per Each Line (ton)										
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)	
Tension of 1/3 Highest	1.653	184.513	1.294	235.703	1.044	292.146	48.261	15.748	47.902	15.866	
Tension of 1/100 Highest	1.698	179.623	1.323	230.537	1.064	286.654	51.039	14.891	50.469	15.059	
Maximum	1.698	179.623	1.324	230.363	1.065	286.385	51.039	14.891	50.469	15.059	
Mean	1.596	191.103	1.252	243.610	1.013	301.086	34.947	21.747	34.787	21.847	
Minimum	1.535	198.697	1.208	252.483	0.981	310.907	23.281	32.645	23.232	32.713	

Description	Load Intensity per Each Line (ton)										
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)	1		
Tension of 1/3 Highest	49.037	15.499	59.174	12.843	0.718	424.791	0.946	322.410	DE		
Tension <mark>of 1/10</mark> 0 Highest	53.108	14.310	63.206	12.024	0.720	423.611	0.950	321.053			
Maximum	53.108	14.310	63.206	12.024	0.721	423.024	0.951	320.715			
Mean	39.330	19.324	48.360	15.715	0.711	428.973	0.938	325.160			
Minimum	33.629	22.600	41.868	18.152	0.700	435.714	0.923	330.444			

Tabel 4.47 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi steady (jarak 2.5 m)

b. Jarak horisontal 4 meter

Nilai-nilai statistik intensitas gaya tarik dari tiap tali tambat dengan konfigurasi jarak horisontalnya sebesar 4 meter ditunjukkan pada Tabel 4.48 pada kondisi *transient* dalam rentang 0 s.d. 1800 detik dan Tabel 4.49 untuk kondisi *stead*ynya mulai rentang 1800 s.d. 3600 detik.

Description	Load Intensity per Each Line (ton)											
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)		
Tension of 1/3 Highest	2.514	121.321	1.894	161.035	1.479	206.220	85.428	8.896	40.069	18.967		
Tension of 1/100 Highest	4.268	71.462	2.981	102.315	2.191	139.206	119.162	6.378	46.226	16.441		
Maximum	4.328	70.471	3.015	101.161	2.214	137.760	119.162	6.378	46.226	16.441		
Mean	1.911	159.602	1.488	204.973	1.195	255.230	37.610	20.207	23.154	32.824		
Minimum	1.570	194.268	1.249	244.195	1.022	298.434	21.180	35.883	14.605	52.037		
Description				Loa	d Intensity	per Each Line (t	on)		-			
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		2		
Tension of 1/3 Highest	64.197	11.839	81.685	9.304	0.713	427.770	0.931	327.605		2		
Tension of 1/100 Highest	88.642	8.574	107.325	7.081	0.716	425.978	0.934	326.552	A			
Maximum	88.642	8.574	107.325	7.081	0.717	425.384	0.935	326.203				
Mean	34 424	22.078	43.858	17.329	0.707	431.400	0.923	330.444				
	9	EEIOTO				- F F			1111	175		

Tabel 4.48 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi transient (jarak 4 m)

Tabel 4.49 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi steady (jarak 4 m)

Description	Load Intensity per Each Line (ton)											
Description	Ten (1)	BT/T <mark>en (1)</mark>	Ten (2)	BT/Ten (2)	Ten 3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)		
Tension of 1/3 Highest	1.591	191.703	1.263	241.489	1.032	295.543	91.768	8.282	40.438	18.794		
Tension of 1/100 Highest	1.627	187.462	1.291	236.251	1.054	289.374	136.979	5.548	47.781	15.906		
Maximum	1.627	187.462	1.291	236.251	1.055	289.100	136.979	5.548	47.781	15.906		
Mean	1.535	198.697	1.224	249.183	1.005	303.483	37.053	20.511	22.726	33.442		
Minimum	1.481	205.942	1.185	257.384	0.975	312.821	20.696	36.722	14.306	53.125		
				Load	lintensity	per Each Line (t	on)					
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)	- Ar	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Tension of 1/3 Highest	71.520	10.626	90.869	8.364	0.715	426.573	0.935	326.203	Se	5		
Tension of 1/100 Highest	107.295	7.083	131.055	5.799	0.718	424.791	0.938	325.160				
Maximum	107.295	7.083	131.055	5.799	0.719	424.200	0.938	325.160	1			
Mean	34.024	22.337	43.596	17.433	0.710	429.577	0.928	328.664	ala	5		
Minimum	24.095	31.542	30.832	24.650	0.700	435.714	0.918	332.244		1		

c. Jarak horisontal 6 meter

Tabel nilai intensitas gaya tarik tali tambat dengan konfigurasi jarak horisontalnya sebesar 6 meter ditunjukkan pada Tabel 4.50 pada kondisi *transient* dalam rentang 0 s.d. 1800 detik dan Tabel 4.51 untuk kondisi *steady*nya mulai rentang 1800 s.d. 3600 detik.

Tabel 4.50 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi transient (jarak 6 m	I)
--	-----------	----

Description	Load Intensity per Each Line (ton)											
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/ <mark>Ten (2</mark>)	Ten (3)	BT/Ten (3)	Ten (4)	BT/ <mark>Ten (4)</mark>	Ten(5)	BT/Ten (5)		
Tension of 1/3 Highest	2.476	123.183	1.902	160.358	1.498	203.605	179.934	4.224	168.686	4.505		
Tension of 1/100 Highest	4.070	74.939	2.910	104.811	2.182	139.780	192.765	3.943	187.751	4.048		
Maximum	4.120	74.029	2.940	103.741	2.203	138.448	192.765	3.943	187.751	4.048		
Mean	1.869	163.189	1.483	205.664	1.210	252.066	26.090	29.130	21.906	34.694		
Minimum	1.558	195.764	1.262	241.680	1.050	290.476	11.334	67.055	11.291	67.310		
Developing				Lo	oad Intensit	ty per Each Line	(ton)					
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		5		
Tension of 1/3 Highest	43.736	17.377	61.530	12.352	0.750	406.667	0.964	316.390	THE T	Tr D		
Tension of 1/100 Highest	50.746	14.977	74.992	10.134	0.760	401.316	0.980	311.224		els.		
Maximum	50.746	14.977	74.992	10.134	0.761	400.788	0.981	310.907	7			
Mean	27.149	27.994	36.159	21.018	0.742	411.051	0.955	319.372		5		
Minimum	17.399	43.681	22.448	33.856	0.732	416.667	0.944	323.093				

Tabel 4.51 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi steady (jarak 6 m)

Description Tension of 1/3 Highest			1		oad Intensi	ty per Each Line	(ton)			
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT <mark>/Ten (2</mark>)	Ten (3)	BT/Ten (3)	Ten (4)	BT/ <mark>Ten (4</mark>)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	1.570	194.268	1.272	239.780	1.060	287.736	168.417	4.513	148.047	5.134
Tension of 1/100 Highest	1.602	190.387	1.296	235.340	1.076	283.457	182.642	4.161	169.189	4.492
Maximum	1.602	190.387	1.296	235.340	1.077	283.194	182.642	4.161	169.189	4.492
Mean	1.526	199.869	1.240	245.968	1.035	294.686	24.552	30.955	22.602	33.625
Minimum	1.480	206.081	1.206	252.902	1.009	302.279	11.182	67.966	11.161	68.094
Description				Lo	oad Intensi	ty per Each Line	(ton)	C D		y.
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		5
Tension of 1/3 Highest	44.627	17.030	64.290	11.821	0.751	406.125	0.964	316.390		
Tension of 1/100 Highest	48. <mark>399</mark>	15.703	71.409	10.643	0.753	405.046	0.966	315.735	PLC.	D.C.
Maximum	48.399	15.703	71.409	10.643	0.753	405.046	0.967	315.408	a dest	
Mean	26.927	28.224	36.183	21.004	0.744	409.946	0.958	318.372	~	5
Minimum	17.120	44.393	22.099	34.391	0.735	414.966	0.950	321.053		

d. Jarak horisontal 8.5 meter

Nilai intensitas gaya tarik tambat dengan konfigurasi jarak horisontal 8.5

meter ditunjukkan pada Tabel 4.52 pada kondisi transient dalam rentang 0

s.d. 1800 detik dan Tabel 4.53 untuk kondisi steadynya mulai rentang 1800

s.d. 3600 detik.

Tabel 4.52 Nilai intensitas gaya tarik tali tambat akibat beban arah melintang kondisi transient (jarak 8.5 m)

				Loa	d Intensity	per Each Line	(ton)		A SPI	5
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	2.413	126.399	1.896	160.865	1.520	200.658	319.934	2.375	252.934	3.005
Tension of 1/100 Highest	3.904	78.125	2.878	105.976	2.215	137.698	338.587	2.245	234.272	3.244
Maximum	3.928	77.648	2.893	105.427	2.224	137.140	338.587	2.245	234.272	3.244
Mean	1.787	170.677	1.455	209.622	1.216	250.822	27.015	28.133	19.160	39.666
Minimum	1.534	198.827	1.273	239.592	1.082	281.885	8.477	89.654	8.457	89.866
NY TO DE	THE	h wh		Loa	d Intensity	/ per Each Line ((ton)	DATE I	DYCH	
Description	(6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		5
Tension of 1/3 Highest	66.000	11.515	241.478	3.147	0.819	372.405	1.033	295.257	- The	
Tension of 1/100 Highest	95.434	7.964	356.697	2.131	0.830	367.470	1.053	289.649		5
Maximum	95.434	7.964	356.697	2.131	0.831	367.028	1.055	28 9.100		
Mean	23.751	31.999	38.765	19.605	0.809	377.009	1.022	298.434	34	
Minimum	13.294	57.169	17.150	44.315	0.797	382.685	1.009	302.279		

Tabel 4.53 Nilai intensitas gaya tarik tali tambat akibat beban arah perempat buritan kondisi steady (jarak 8.5 m)

				Loa	ad Intensity	y per Each Line	(ton)			
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	1.554	196.268	1.289	236.618	1.097	278.031	309.874	2.453	250.264	3.037
Tension of 1/100 Highest	1.577	193.405	1.306	233.538	1.109	275.023	328.029	2.317	220.009	3.454
Maximum	1.577	193.405	1.306	233.538	1.109	275.023	328.029	2.317	220.009	3.454
Mean	1.517	201.055	1.261	241.872	1.074	283.985	27.564	27.572	23.281	32.645
Minimum	1.475	206.780	1.230	247.967	1.050	290.476	8.389	90.595	8.376	90.735
				Loa	nd Intensity	y per Each Line	(ton)		J. J. P.	5
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		
Tension of 1/3 Highest	63.130	12.039	251.573	3.021	0.819	372.405	1.031	295.829		2
Tension of 1/100 Highest	64.229	11.833	273.548	2.778	0.821	371.498	1.034	294.971		
Maximum	64.229	11.833	273.548	2.778	0.821	371.498	1.034	294.971		
Mean	23.234	32.711	40.012	18.994	0.810	376.543	1.024	297.852		
Minimum	13.151	57.790	16.964	44.801	0.800	381.250	1.015	300.493		2

Meninjau gaya tarik signifikan pada tiap-tiap jarak horisontal pada kondisi *steady* jika diplot dalam sebuah grafik nilai intensitas gaya tariknya berdasarkan variasi jarak akan menghasilkan grafik seperti yang ditunjukkan pada Gambar 4.54.

Gambar 4.54 Pengaruh intensitas gaya tarik tali tambat signifikan kondisi steady state terhadap variasi jarak horisontal (beban melintang)

Seperti yang ditunjukkan pada Gambar 4.54 dapat dijelaskan bahwa karakter gaya tarik yang terjadi pada jarak yang semakin membesar cenderung memiliki gaya tarik yang semakin membesar pula. Karakter tersebut sangat jelas ditunjukkan pada tali tambat nomor 4 (bagian *spring line*) dengan beda sekitar 80 s.d. 90% pada pertambahan jarak horisontalnya, saat jaraknya 2.5 meter gaya tarik yang dihasilkan (gaya tarik signifikan) mencapai 48.2 ton, saat 4 meter mencapai 91.7 ton serta saat 6 dan 8.5 meter secara berturut-turut mencapai 168.4 dan 309.8 ton. Hal ini disebabkan karena semakin besar jarak yang timbul antara FSRU dan LNGC ketika dikenai gelombang *obligue* akan menimbulkan gaya tekan gelombang yang melewati celah antara FSRU dan LNGC dengan intensitas lebih besar sehingga tekanan yang diterima tali tambat menjadi lebih besar.

- Pembebanan dengan arah sisi
 - Nilai intensitas gaya tarik tali tambat yang dihasilkan akibat pembebanan dari arah sisi ditunjukkan pada tabel 4.54 s.d. 4.61.
- a. Jarak horisontal 2.5 meter

Tabel nilai intensitas gaya tarik tali tambat dengan konfigurasi jarak horisontalnya sebesar 2.5 meter ditunjukkan pada Tabel 4.54 pada kondisi *transient* dalam rentang 0 s.d. 1440 detik dan Tabel 4.53 untuk kondisi *steady*nya mulai rentang 1440 s.d. 3600 detik.

Tabel	4.34 INII	ii iiiciisitas	gaya tali	K tall tallida	a akibai	UCUAII SISI K	undisi u	ansient Jara	K 2.3 III)	
Description				Load	d Intensity p	per Each Line (to	on)			
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	20.947	14.561	3.767	80.966	2.201	138.573	54.177	14.028	51.112	14.869
Tension of 1/100 Highest	424.718	0.718	24.431	12.484	4.985	61.184	73.242	10.377	66.343	11.456
Maximum	457.802	0.666	33.651	9.064	5.599	54.474	76.363	9.952	71.671	10.604
Mean	3.899	78.225	1.838	165.941	1.365	223.443	42.144	18.033	41.103	18.490
Minimum	1.420	214.789	1.125	271.111	0.919	331.882	31.278	24.298	30.830	24.651
				Load	d <mark>Intensit</mark> y p	per Each <mark>Line (to</mark>	on)			
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		7
Tension of 1/3 Highest	40.119	18.944	48.790	15.577	0.739	412.720	0.973	313.464	N.	
Tension of 1/100 Highest	43.534	17.458	52.432	14.495	0.759	401.845	1.001	304.695	- Mar	5
Maximum	43.907	17.309	52.853	14.380	0.760	401.316	1.004	303.785		17
Mean	37.142	20.462	45.734	16.618	0.717	425.384	0.944	323.093	A Star	1
Minimum	34.448	22.062	42.875	17.726	0.690	442.029	0.906	336.645		

Tabel 4.54 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi transient (jarak 2.5 m)

Tabel 4.55 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi steady (jarak 2.5 m)

Description				Loa	d Intensity	per Each Line (t	on)			
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	1.426	213.885	1.131	269.673	0.925	329.730	42.889	17.720	42.904	17.714
Tension of 1/100 Highest	1.454	209.766	1.152	264.757	0.940	324.468	45.592	16.670	45.609	16.663
Maximum	1.456	209.478	1.153	264.527	0.941	324.123	45.866	16.570	45.902	16.557
Mean	1.402	217.546	1.114	273.788	0.911	334.797	39.259	19.359	39.261	19.358
Minimum	1.371	222.465	1.090	279.817	0.892	341.928	33.991	22.359	33.982	22.365
				Loa	ad Intensity	per Each <mark>Line (t</mark>	on)			1P
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		
Tension of 1/3 Highest	36.065	21.073	44.787	16.969	0.736	414.402	0.973	313.464	X	
Tension of 1/100 Highest	36.658	20.732	45.467	16.715	0.744	409.946	0.983	310.275	she	1
Maximum	36.738	20.687	45.547	16.686	0.745	409.396	0.984	309.959		
Mean	35.151	21.621	43.712	17.387	0.722	422.438	0.954	319.706		
Minimum	33.995	22.356	42.398	17.925	0.701	435.093	0.928	328.664	-	

b. Jarak horisontal 4 meter

Nilai-nilai statistik intensitas gaya tarik dari tiap tali tambat dengan konfigurasi jarak horisontalnya sebesar 4 meter ditunjukkan pada Tabel 4.56 pada kondisi *transient* dalam rentang 0 s.d. 1800 detik dan Tabel 4.57 untuk kondisi *steady*nya mulai rentang 1800 s.d. 3600 detik.

Development of the second			Ser 1	Load	d Intensity	per Each Line (to	on)	Carbo		
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	18.786	16.235	2.852	106.942	1.962	155.454	45.912	16.553	28.141	27.007
Tension of 1/100 Highest	368.701	0.827	12.029	25.355	4.294	71.029	52.825	14.387	31.4 <mark>82</mark>	24.141
Maximum	515.167	0.592	18.190	16.767	4.724	64.564	53.632	14.171	32.017	23.737
Mean	3.310	92.145	1.614	188.971	1.259	242.256	40.412	18.806	25.253	30.095
Minimum	1.321	230.886	1.071	284.781	0.892	341.928	35.702	21.287	22.739	33.423
	T	H N N	Tr	Load	d Inte <mark>nsity</mark> p	per Each Line (to	on)	NY YE	1017	The last
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		<u>\$</u>
Tension of 1/3 Highest	30.840	24.643	39.060	19.457	0.727	419.532	0.950	321.053	1	12
Tension of 1/100 Highest	32.191	23.609	40.604	18.717	0.742	411.051	0.971	314.109		~
Maximum	32.677	23.258	41.093	18.495	0.742	411.051	0.971	314.109	17	
Mean	28.843	26.350	36.795	20.655	0.713	427.770	0.932	327.253		K/
Minimum	26.853	28.302	34.473	22.046	0.693	440.115	0.904	337.389		

Tabel 4.56 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi transient (jarak 4 m)

Tabel 4.57 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi steady (jarak 4 m)

Cart and a second se				Loa	ad Intensity	per Each Line (t	on)	C CODY		22/
	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	1.344	226.935	1.089	280.073	0.907	336.273	40.136	18.936	24.991	30.411
Tension of 1/100 Highest	1.349	226.093	1.093	279.048	0.9 <mark>10</mark>	335.165	41.462	18.330	25.647	29.633
Maximum	1.350	225.926	1.094	278.793	0.910	335.165	41.753	18.202	25.753	29.511
Mean	1.333	228.807	1.080	282.407	0.900	338.889	38.195	19.898	24.047	31.605
Minimum	1.317	231.587	1.068	285.581	0.889	343.082	35.256	21.557	22.561	33.686
Description	T ATA		An MI	Loa	ad Inte <mark>nsity</mark>	per Each Line <mark>(t</mark>	on)	WY (r)		Tr D
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)		\$S
Tension of 1/3 Highest	27.947	27.194	35.885	21.179	0.727	419.532	0.952	320.378		
Tension of 1/100 Highest	28.217	26.934	36.239	20.972	0.732	416.667	0.959	318.040		
Maximum	28.244	26.908	<u>36</u> .274	20.952	0.732	416.667	0.959	318.0 40		TT)
Mean	27.459	27.678	35.255	21.557	0.718	424.791	0.941	324.123	L.	es
Minimum	26.714	28.450	34.317	22.146	0.703	433.855	0.923	330.444		1

c. Jarak horisontal 6 meter

Tabel nilai intensitas gaya tarik tali tambat dengan konfigurasi jarak horisontalnya sebesar 6 meter ditunjukkan pada Tabel 4.58 pada kondisi *transient* dalam rentang 0 s.d. 1800 detik dan Tabel 4.59 untuk kondisi *steady*nya mulai rentang 1800 s.d. 3600 detik.

1ab	CI 4.30 IN.	nai miensita	is gaya la	uik tail taili	Dat akiba	it beball sist	KOHUISI	transferit (Ja	Tak O III)	
Description				Load	d Intensity	per Each Line (to	on)	32.02	1 23	
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	10.151	30.046	2.644	115.356	1.934	157.704	27.127	28.016	25.417	29.901
Tension of 1/100 Highest	152.358	2.002	6.711	45.448	3.537	86.231	35.237	21.568	30.868	24.621
Maximum	391.825	0.778	8.854	34.448	4.030	75.682	36.363	20.900	31.772	23.920
Mean	2.549	119.655	1.593	191.463	1.272	239.780	23.207	32.749	22.489	33.794
Minimum	1.316	231.763	1.089	280.073	0.923	330.444	20.216	37.594	19.689	38.600
	TY TH	1 DAN		Load	d Intensity p	per Each Line (to	on)	775	77777	
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)	A CAR	>
Tension of 1/3 Highest	21.611	35.167	27.919	27.222	0.761	400.788	0.981	310.907	-	2
Tension of 1/100 Highest	22.405	33.921	28.901	26.297	0.776	393.041	1.002	304.391		2
Maximum	23.008	33.032	29.633	25.647	0.778	392.031	1.004	303.785	17751	
Mean	20.148	37.721	26.112	29.105	0.750	406.667	0.964	316.390	Sk	3
Minimum	18.725	40.587	24.332	31.235	0.733	416.098	0.941	324.123		

Tabel 4.59 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi steady (jarak 6 m)

Description Tension of 1/3 Highest Tension of 1/100 Highest Maximum Mean Minimum	A.S.			Loa	d Intensity	per Each Line (t	on)			2
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	1.326	230.015	1.098	277.778	0.931	327.605	22.119	34.360	22.121	34.356
Tension of 1/100 Highest	1.336	228.293	1.105	276.018	0.936	325.855	22.890	33.202	22.889	33.204
Maximum	1.337	228.123	1.106	275.769	0.937	325.507	22.899	33.189	22.896	33.194
Mean	1.318	231.411	1.091	279.560	0.926	329.374	21.329	35.632	21.329	35.632
Minimum	1.306	233.538	1.082	281.885	0.917	332.606	20.141	37.734	20.135	37.745
Description	ANG A	DI WY		Loa	nd <mark>Intensi</mark> ty	per Each <mark>Line (</mark> t	on)	TYTE DI	DP TT	
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)	S	5
Tension of 1/3 Highest	19.201	39.581	24.980	30.424	0.760	401.316	0.979	311.542		
Tension of 1/100 Highest	19.332	39.313	25.165	30.201	0.764	399.215	0.985	309.645		1
Maximum	<u>19.374</u>	39.228	25.219	30.136	0.766	39 <mark>8.172</mark>	0.987	309.017	TALL	
Mean	19.012	39.975	24.733	30.728	0.753	405.046	0.971	314.109	Se	5
Minimum	18.647	40.757	24.231	31.365	0.743	410.498	0.959	318.040		

Jarak horisontal 8.5 meter d.

Nilai intensitas gaya tarik tambat dengan konfigurasi jarak horisontal 8.5 meter ditunjukkan pada Tabel 4.60 pada kondisi transient dalam rentang 0 s.d. 2160 detik dan Tabel 4.61 untuk kondisi steadynya mulai rentang 2160 s.d. 3600 detik.

				Loa	d Intensity	per Each Line (t	on)	AND I	(AND)	
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	3.941	77.392	2.570	118.677	1.957	155.851	22.896	33.194	21.158	35.920
Tension of 1/100 Highest	17.410	17.519	5.239	58.217	3.312	92.089	37.318	20.366	30.012	25.323
Maximum	40.714	7.491	6.440	47.360	3.723	81.923	41.876	18.149	32.471	23.406
Mean	2.037	149.730	1.584	192.551	1.296	235.340	17.513	43.396	16.948	44.843
Minimum	1.345	226.766	1.137	268.250	0.981	310.907	13.436	56.564	13.025	58.349
Description	DIA TO	TO DAY		Loa	id <mark>Intensi</mark> ty	per Each Line (t	on)		1775	
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)	All a	3
Tension of 1/3 Highest	17.110	44.418	22.218	34.206	0.824	370.146	1.041	292.988	-	
Tension of 1/100 Highest	18.776	40.477	24.644	30.839	0.839	363.528	1.066	286.116		~
Maximum	18.929	40.150	24.813	30.629	0.841	362.663	1.068	285.581	TAN	
Mean	15.450	49.191	20.111	37.790	0.815	374.233	1.028	296.693	SKI	
Minimum	14.330	53.036	18.642	40.768	0.800	381.250	1.010	301.980		

Tabel 4.60 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi transient (jarak 8.5 m)

Tabel 4.61 Nilai intensitas gaya tarik tali tambat akibat beban sisi kondisi steady (jarak 8.5 m)

Description Tension of 1/3 Highest Tension of 1/100 Highest Maximum Mean Minimum Description	Load Intensity per Each Line (ton)									
Description	Ten (1)	BT/Ten (1)	Ten (2)	BT/Ten (2)	Ten (3)	BT/Ten (3)	Ten (4)	BT/Ten (4)	Ten(5)	BT/Ten (5)
Tension of 1/3 Highest	1.356	224.926	1.147	265.911	0.991	307.770	17.581	43.228	17.574	43.246
Tension of 1/100 Highest	1.359	224.430	1.149	265.448	0.993	307.150	18.293	41.546	18.291	41.550
Maximum	1.359	224.430	1.149	265.448	0.993	307.150	18.377	41.356	18.375	41.361
Mean	1.351	225.759	1.142	267.075	0.987	309.017	16.055	47.337	16.055	47.337
Minimum	1.342	227.273	1.135	268.722	0.980	311.224	14.158	53.680	14.159	53.676
Description	THE A	The state		Loa	nd Intensity	per Each <mark>Line (</mark> t	on)	TYTE DI	DP TT	
Description	Ten (6)	BT/Ten (6)	Ten (7)	BT/Ten (7)	Ten (8)	BT/Ten (8)	Ten (9)	BT/Ten (9)	Sh	5
Tension of 1/3 Highest	15.005	50.650	19.607	38.762	0.823	370.595	1.040	293.269		
Tension of 1/100 Highest	15.238	49.875	19.931	38.132	0.826	369.249	1.043	292.426		~
Maximum	15.241	49.865	19.933	38.128	0.826	36 <mark>9.249</mark>	1.044	292.146	TALL	
Mean	14.630	51.948	19.071	39.851	0.818	372.861	1.034	294.971	Se	5
Minimum	14.142	53.741	18.388	41.331	0.810	376.543	1.026	297.271		N.

Berdasarkan tabel intensitas gaya tarik tali tambat berikut jika nilai intensitas gaya tarik maksimalnya diplot dalam suatu grafik terhadap variasi jarak horisontalnya akan menghasilkan grafik seperti yang ditunjukkan pada Gambar 4.55.

Gambar 4.55 Pengaruh intensitas gaya tarik tali tambat signifikan kondisi steady state terhadap variasi jarak horisontal (beban sisi)

Meninjau grafik intensitas gaya tarik yang terdapat pada Gambar 4.55 dapat dijelaskan bahwa semakin kecil jarak yang ditimbulkan FSRU dan LNGC karakter gaya tariknya cenderung menunjukkan nilai yang lebih besar. Hal ini seperti yang terlihat pada tali tambat no 4, 5, 6 dan 7 dengan beda di setiap penambahan jarak horisontalnya mencapai 25 hingga 75%. Kondisi tersebut disebabkan ketika sistem SBS dibebani beban lingkungan dari arah sisi intensitas tekanan baik gelombang, arus maupun angin yang bekerja pada LNGC terhalangi/terdifraksi oleh badan FSRU, karena ukuran FSRU relatif lebih besar jika dibandingkan dengan LNGC. Sudut yang terbentuk antara tali tambat dengan badan kapal serta panjangnya tali tambat yang lebih dominan mempengaruhi gaya tarik tali tambat. Semakin kecil sudut yang terbentuk antara tali tambat dengan badan kapal serta semakin pendek talinya akan menghasilkan gaya tarik yang lebih besar.

BAB V PENUTUP

5.1 KESIMPULAN

Berdasarkan analisis yang dilakukan mengenai perilaku gerak kapal dan gaya tarik tali tambat (*coupling line*) pada sistem *side by side* antara FSRU dan LNGC dihasilkan beberapa kesimpulan sebagai berikut :

- Kondisi FSRU saat mengapung bebas dan dibebani beban propagasi gelombang perempat buritan (*heading* 45°) menghasilkan RAO gerakan tertinggi pada saat muatan 10% dengan rincian gerakan *surge* sebesar 0.67 m/m, *sway* sebesar 0.65 m/m, *heave* sebesar 0.95 m/m, *roll* sebesar 1.00 deg/m, *pitch* sebesar 0.73 deg/m dan *yaw* sebesar 0.28 deg/m.
- Ketika dibebani propagasi gelombang sisi (*heading* 90°) RAO gerakan tertinggi juga terjadi pada saat FSRU bermuatan 10% dengan rincian gerakan *surge* sebesar 0.02 m/m, *sway* sebesar 0.08 m/m, *heave* sebesar 1.30 m/m, *roll* sebesar 4.70 m/m, *pitch* sebesar 0.14 deg/m dan *yaw* sebesar 0.28 deg/m. Terlihat pada gerakan *surge*, *pitch* dan *yaw* memiliki harga RAO yang relatif kecil saat dikenai propagasi gelombang sisi.
- Saat dibebani propagasi gelombang perempat haluan (*heading* 135°) RAO tertinggi terjadi saat FSRU dimuati dengan kondisi muatan 10% dengan rincian gerakan *surge* sebesar 0.67 m/m, *sway* sebesar 0.67 m/m, *heave* sebesar 0.97 m/m, roll sebesar 1.54 deg/m, *pitch* sebesar 0.76 deg/m dan *yaw* sebesar 0.28 deg/m.
- Kondisi LNGC saat mengapung bebas dan dibebani beban propagasi gelombang perempat buritan menghasilkan RAO gerakan tertinggi pada saat muatan ballast dengan rincian gerakan *surge* sebesar 0.65 m/m, *sway* sebesar 0.64 m/m, *heave* sebesar 0.95 m/m, *roll* sebesar 1.50 deg/m, *pitch* sebesar 0.75 deg/m dan *yaw* sebesar 0.29 deg/m.
- Ketika dibebani propagasi gelombang sisi RAO gerakan tertinggi juga terjadi pada saat LNGC bermuatan ballast dengan rincian gerakan *surge* sebesar 0.02 m/m, *sway* sebesar 0.95 m/m, *heave* sebesar 1.40 m/m, *roll* sebesar 4.80 m/m,

pitch sebesar 0.09 deg/m dan *yaw* sebesar 0.28 deg/m. Terlihat pada gerakan *surge*, *pitch* dan *yaw* memiliki harga RAO yang relatif kecil saat dikenai propagasi gelombang sisi.

- Saat dibebani propagasi gelombang perempat haluan RAO tertinggi terjadi saat LNGC dimuati dengan kondisi muatan ballast dengan rincian gerakan *surge* sebesar 0.65 m/m, *sway* sebesar 0.65 m/m, *heave* sebesar 0.95 m/m, roll sebesar 1.57 deg/m, *pitch* sebesar 0.75 deg/m dan *yaw* sebesar 0.28 deg/m.
- Kondisi ekstrim gerakan FSRU maupun LNGC dalam kondisi tertambat *side by side* terjadi pada saat FSRU bermuatan 100% dan LNGC bermuatan ballast. Ketika sistem *side by side* dikenai beban propagasi gelombang menyilang (perempat buritan) nilai RAO tertinggi untuk FSRU terdiri dari gerakan *surge* 2.19 m/m, *sway* sebesar 1.34 m/m, *heave* sebesar 0.75 m/m, *roll* sebesar 2.05 deg/m, *pitch* sebesar 0.61 deg/m dan *yaw* sebesar 0.78 deg/m. Sedangkan pada LNGC gerakan *surge* sebesar 1.58 m/m, *sway* sebesar 1.29 m/m, *heave* sebesar 0.77 deg/m dan *yaw* sebesar 0.780 m/m, gerakan *roll* sebesar 1.68 deg/m, *pitch* sebesar 0.67 deg/m dan *yaw* sebesar 0.76 deg/m.
- Ketika sistem dibebani propagasi gelombang sisi menghasilkan RAO tertinggi untuk FSRU dengan rincian gerakan *surge* sebesar 0.05 m/m, *sway* sebesar 2.37 m/m, *heave* sebesar 1.39 m/m, *roll* sebesar 5.29 m/m, *pitch* sebesar 0.10 m/m dan *yaw* sebesar 0.07 m/m. Sedangkan pada LNGC gerakan *surge* sebesar 0.03 m/m, *sway* sebesar 2.35 m/m, *heave* sebesar 1.31 m/m, *roll* sebesar 5.28 deg/m, *pitch* sebesar 0.11 deg/m dan *yaw* sebesar 0.06 deg/m.
- Perilaku gerakan pada kondisi mengapung bebas (*single body*) terlihat berbeda dengan kondisi saat tertambat *side by side (multibody*). Saat dikenai beban propagasi gelombang menyilang (*oblique wave*) harga RAO pada saat kondisi tertambat cenderung lebih besar dibandingkan saat kondisi mengapung bebas untuk gerakan-gerakan horisontal (*surge, sway* dan *yaw*). Sedangkan gerakangerakan vertikal (*heave, roll* dan *pitch*) memiliki RAO dengan harga lebih besar pada saat mengapung bebas dibandingkan saat kondisi tertambat.

- Perilaku gerakan saat dikenai propagasi gelombang sisi (*beam seas*) memiliki harga RAO yang lebih besar dibandingkan saat mengapung bebas untuk keenam moda geraknya.
- Variasi pertambahan jarak horisontal antara badan FSRU dan LNGC kurang memberikan pengaruh yang signifikan terhadap perubahan perilaku gerak kapal. Pertambahan jarak horisontal hanya memberikan beda sekitar 1% pada perubahan perilaku gerak kapal.
- Variasi pertambahan jarak horisontal memberikan pengaruh yang cukup signifikan terhadap gaya tarik *coupling line*. Saat sistem dikenai beban propagasi gelombang menyilang, semakin besar jarak horisontal yang terbentuk menyebabkan semakin besar gaya tarik *coupling line* dengan beda sekitar 80 s.d. 90% bagian *spring line* (tali 4) saat kondisi *steady state*. Sedangkan saat dikenai beban propagasi gelombang sisi, semakin besar jarak horisontal yang terbentuk menyebabkan semakin kecil gaya tarik *coupling line* nya dengan beda sekitar 25 s.d. 75% pada bagian *spring line* (tali 7).

5.2 SARAN

Penelitian ini masih belum bisa dikatakan sempurna karena masih menyederhanakan beberapa masalah dalam analisis. Untuk itu dalam penelitian selanjutnya diharapkan membertimbangkan hal-hal seperti halnya berikut :

- 1. Studi optimasi pada sistem konfigurasi *side by side* dengan variasi jarak horisontal dan konfigurasi *coupling line*.
- 2. Studi interaksi hidrodinamis yang berkaitan dengan *added mass*, *damping* dan *external force* pada sistem *side by side*.
- 3. Studi parameter yang menentukan variasi jarak horisontal, misalkan panjang gelombang.
- 4. Perhitungan energi fender yang dibutuhkan pada sistem side by side.

(halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- Azhar, T. A. 2013. "Studi komparasi Pengaruh Dolphin Mooring System dan Tower Mooring System terhadap Perilaku Gerak FSRU PGN dan LNG Carrier". *Tugas Akhir Jurusan Teknik Kelautan*. Institut Teknologi Sepuluh Nopember, Surabaya.
- Bo Chen, X. 2005. "Hydrodynamic Analysis For Offshore LNG Terminals". 2nd International Workshop on Applied Offshore Hydrodynamics. Rio De Janeiro, Brazil.
- Beer, F. 2012. Mechanics of Materials, McGraw-Hill, New York.
- Bok Kim, Y. 2003. "Dynamic Analysis of Multiple-Body Floating platforms Coupled With Mooring Lines and Risers". Dissertation of Ocean Engineering, Texas A&M University.
- Bunnik, T., Pauw, W. 2009. "Hydrodynamic Analysis for Side-by-side Offloading". Proceeding of Nineteenth (2009) International Offshore and Polar Engineering Conference. Osaka : The International Society of Offshore and Polar Energy.
- Chakrabarti, S. K. 1987. *Hydrodynamic of Offshore Structures*. Boston, USA : Computational Mechanics Publications Southampton.
- De Pee, A. 2005. "Operability of a Floating LNG Terminal", *Shell Global Solutions. Shell* Global Solutions International.
- Deep rope manual. 2004. Polyester & Dyneema mooring ropes manual. Norway.
- Djatmiko, E. B. 2012. Perilaku dan Operabilitas Bangunan Laut Di Atas Gelombang Acak. Surabaya : ITS Press.
- DNV-RP-F205. 2010. Global Performance Analysis of Deepwater Floating Structures. Norway.
- Faltinsen, O. M. 1990. Sea Loads On Ships And Offshore Structures. United Kingdom : Cambridge University Press.
- Hong, P. Y. 2009. "An Experimental and Numerical Study on the Motion Characteristics of Side-by-Side Moored LNG-FPSO and LNG Carrier". 19th ISOPE Conference. Osaka

- Journee, J. M. J., Massie, W. W. 2001. *Offshore Hydrodynamic First Edition*. Delft University of Technology.
- Koo, B. J., Kim, M. H. 2006. "Global Analysis of FPSO and Shuttle Tankers During Side-by-Side Offloading". *Minerals Management Service Under the MMS/OTRC Cooperative Research Agreement*, 1435-01-99-CA-31003, *Task Order 73604, MMS project Number and OTRC Industry Consortium*. Dept. of Civil Engineering (Ocean Engineering program), Texas A&M University.
- Lu, H. "On the Simulation of Ship Motions Induced by Extreme Waves". Dissertation of Computational and Data Sciences. George Mason University.
- Nasyih, M. 2008. "Desain Mooring Tower untuk Terminal Floating Storage Offloading (FSO) di Laut Jawa". *Tugas Akhir Jurusan Teknik Kelautan*. Institut Teknologi Sepuluh Nopember, Surabaya.
- OCIMF. 1999. *Design and Construction Specification for Loading Arms*. United Kingdom : Witherby Seamanship International
- OCIMF. 1997. *Mooring Equipment Guidelines* 2nd Edition. United Kingdom : Witherby Seamanship International.
- OCIMF. 2008. *Mooring Equipment Guidelines* 3rd Edition. United Kingdom : Witherby Seamanship International.
- Perusahaan Gas Negara. 2012. Labuhan Maringgai LNG Floating Storage and Regasification Facilities Procect. LNGC – PGN – 18000 – SY – SI – 001
- Perwitasari, R. P. 2010. "Hydrodynamic Interaction and Mooring Analysis For Offloading Between FPSO and LNG Shuttle Tanker". *Master Thesis of Departement Marine Technology*, Norwegian University of Science and Technology, Trondheim.
- Ziyan, M. 2013. "Analisis Operabilitas FSRU Akibat Beban Lingkungan Berbasis Ranah Waktu". *Tugas Akhir Jurusan Teknik Kelautan*. Institut Teknologi Sepuluh Nopember, Surabaya.

BIODATA PENULIS

Yuni Ari Wibowo dilahirkan di Purworejo pada 19 Juni 1992. Anak pertama dari 3 bersaudara ini telah menempuh pendidikan di SDN 01 Bruno, SMP dan SMA Darul Hikmah Kutoarjo serta telah menyelesaikan pendidikan di Pondok Pesantren Darul Hikmah Kutoarjo, Purworejo. Setelah itu penulis mengikuti Seleksi Penerimaan Mahasiswa Baru melalui jalur PBSB (Penerima Beasiswa Santri Berprestasi) yang

diselenggarakan oleh Kementrian Agama Republik Indonesia dan diterima di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya. Selama kuliah, penulis sempat aktif menjadi staf Kesejahteraaan Mahasiswa HIMATEKLA 11/12. Penulis juga aktif menjadi panitia kegiatan kampus maupun luar kampus. Penulis tercatat aktif mengikuti pelatihan-pelatihan pengembangan diri dan pengetahuan pengoperasian software, selain itu penulis juga mengisi berbagai tutorial software yang digunakan di jurusan seperti pelatihan software SACS, GT STRUDL dan MOSES. Penulis pernah melakukan kerja praktek di PT. Biro Klasifikasi Indonesia (Persero). Bidang keahlian di Jurusan Teknik Kelautan yang diambil oleh penulis adalah hidrodinamika lepas pantai sehingga Tugas Akhir yang diambil berhubungan dengan mata kuliah Olah Gerak Bangunan Apung.

DAFTAR LAMPIRAN

LAMPIRAN A-1 General Arrangement FSRU and LNGC
LAMPIRAN A-2 Center of Gravity FSRU dan LNGC Kondisi Muatan
LAMPIRAN A-3 Tabel Perhitungan Spektra Respon
LAMPIRAN A-4 Konfigurasi Coupling Line
LAMPIRAN A-5 Grafik Gaya Tarik Coupling Line

LAMPIRAN B-1 Input Pemodelan FSRU dan LNGC pada MOSES
LAMPIRAN B-2 Input *Frequency Domain Analysis* Kondisi Mengapung Bebas
LAMPIRAN B-3 Input *Frequency & Time Domain Analysis* Kondisi Tertambat
LAMPIRAN B-4 Output RAO Kondisi Mengapung Bebas
LAMPIRAN B-5 Output RAO Kondisi Tertambat
LAMPIRAN B-6 Output Gaya Tarik *Coupling Line*

LAMPIRAN A-1 GENERAL ARRANGEMENT FSRU AND LNGC

General Arrangement : FSRU

General Arrangement : LNGC

LAMPIRAN A-2 CENTER OF GRAVITY FSRU DAN LNGC KONDISI MUATAN

Na		Luasan Deck	Tebal Plat	Volume	density	Deret (ten)	Pan	jang Lengan (COG		Moment	
INO	Bangunan FSRO	(m ²)	(m)	(m ³)	(ton/m ³)	Berat (ton)	х	У	Z	х	У	Z
1	Upper Deck	12418,40	0,01	74,51	7,86	585,65	-26,88	0,00	12,07	-15744,95	0,00	7071,16
2	2nd Deck	1587,82	0,01	9,53	7,86	74,88	-97,86	0,00	6,57	-7328,22	0,00	492,27
3	3rd Deck	1587,82	0,01	9,53	7,86	74,88	-97,86	0,00	1,57	-7328,22	0,00	117,86
4	4th Deck	1166,67	0,01	7,00	7,86	55,02	-94,41	0,00	-3,43	-5194,67	0,00	-188,50
5	Motor Room	416,92	0,00	1,67	7,86	13,11	-57,61	14,21	22,09	-755,18	186,29	289,60
6	Cargo Compressor Room	683,50	0,00	2,73	7,86	21,49	-46,09	14,21	22,09	-990,44	305,41	474,78
7	Regas Unit	1228,25	0,00	4,91	7,86	38,62	-20,26	13,02	24,28	-782,40	502,78	937,59
8	Cargo Gear Locker	152,04	0,00	0,61	7,86	4,78	3,47	9,61	21,02	16,58	45,95	100,47
9	Accomodation Room	3372,28	0,00	13,49	7,86	106,02	-84,73	0,00	24,43	-8983,07	0,00	2590,48
10	Accomodation Room 2	3334,75	0,00	13,34	7,86	104,84	-108,68	0,00	27,93	-11394,13	0,00	2928,23
11	Cargo Tank 1	3921,20	0,01	19,61	7,86	154,10	97,70	0,00	-2,48	15056,54	0,00	-381,74
12	Cargo Tank 2	5697,08	0,01	28,49	7,86	223,90	53,66	0,00	-2,48	12014,61	0,00	-554,63
13	Cargo Tank 3	5697,08	0,01	28,49	7,86	223,90	3,31	0,00	-2,48	741,81	0,00	-554,63
14	Cargo Tank 4	5697,08	0,01	28,49	7,86	223,90	-47,05	0,00	-2,48	-10534,80	0,00	-554,63
15	Muatan Tank 1 (LNG)			26510,00	0,47	12459,70	97,70	0,00	-2,48	1217366,27	0,00	-30865,17
16	Muatan Tank 2 (LNG)			47830,00	0,47	22480,10	53,66	0,00	-2,48	1206322,63	0,00	-55687,70
17	Muatan Tank 3 (LNG)			47830,00	0,47	22480,10	3,31	0,00	-2,48	74481,07	0,00	-55687,70
18	Muatan Tank 4 (LNG)			47830,00	0,47	22480,10	-47,05	0,00	-2,48	-1057742,66	0,00	-55687,70
						81805,09				1399220,78	1040,42	-185159,97
								COG		17,10	0,01	-2,26

Tabel Berat dan COG Bangunan Atas terhadap	COG kapal : FSRU Kondisi Muatan 100%
--	--------------------------------------

11,67

COG FSRU 100% 152,41 -0,01

(MOSES di titik 0,0,0 KEEL)

No	Bangunan LNGC	Luasan Deck	Tebal Plat	Volume	density	Berat (ton)	Panjang Lengan COG			Moment		
NU		(m ²)	(m)	(m ³)	(ton/m ³)		х	У	Z	х	У	z
1	Upper Deck	11299,942	0,006	67,800	7,86	532,90526	-23,5905	0		-12571,502	0	12,0555
2	2nd Deck	1774,7844	0,006	10,649	7,86	83,698832	-102,048	0	6,4737	-8541,2984	0	541,84113
3	3rd Deck	1774,7844	0,006	10,649	7,86	83,698832	-102,048	0	0,9274	-8541,2984	0	77,622297
4	4th Deck	1774,7844	0,006	10,649	7,86	83,698832	-102,048	0	-3,4542	-8541,2984	0	-289,11251
5	A-Deck	1411,3475	0,006	8,468	7,86	66,559148	-92,0641	0	15,962	-6127,7081	0	1062,4171
6	B-Deck	1152,5304	0,006	6,915	7,86	54,353334	-92,0641	0	19,162	-5003,9907	0	1041,5186
7	C-Deck	1242,3558	0,006	7,454	7,86	58,5895	-92,0641	0	22,312	-5393,9895	0	1307,2489
8	D-Deck	1123,446	0,006	6,741	7,86	52,981713	-92,0641	0	25,462	-4877,7138	0	1349,0204
9	Navigation Deck	668,6157	0,006	4,012	7,86	31,531916	-78,9529	0	28,612	-2489,5362	0	902,19119
10	W/Н Тор	295,1455	0,006	1,771	7,86	13,919062	-78,9529	0	31,762	-1098,9503	0	442,09724
11	Elec Motor Room	608,3650	0,004	2,433	7,86	19,126994	-50,1313	11,7518	19,0646	-958,86109	224,77661	364,64849
12	Cargo Mach Room	834,3185	0,004	3,337	7,86	26,230974	-36,5975	11,7518	19,0646	-959,98807	308,26116	500,08303
13	Deck Store	175,3581	0,004	0,701	7,86	5,5132597	-23,4394	10,6496	20,7289	-129,2275	58,714011	114,28381
14	Accomodation Room	2259,3529	0,004	9,037	7,86	71,034055	-81,224	0	20,4546	-5769,6701	0	1452,9732
15	Accomodation Room 2	1655,2178	0,004	6,621	7,86	52,040048	-105,2511	0	18,9383	-5477,2723	0	985,55005
16	Cargo Tank 1	3191,2455	0,005	15,956	7,86	125,41595	95,5281	0	-2,2849	11980,747	0	-286,5629
17	Cargo Tank 2	5472,5547	0,005	27,363	7,86	215,0714	55,269	0	-2,2849	11886,781	0	-491,41664
18	Cargo Tank 3	5472,5547	0,005	27,363	7,86	215,0714	5,0717	0	-2,2849	1090,7776	0	-491,41664
19	Cargo Tank 4	5472,5547	0,005	27,363	7,86	215,0714	-45,2225	0	-2,2849	-9726,0664	0	-491,41664
20	Muatan Tank 1 (LNG)			14415,000	0,47	6775,05	95,5281	0	-2,2849	647207,65	0	-15480,312
21	Muatan Tank 2 (LNG)			45195,000	0,47	21241,65	55,269	0	-2,2849	1174004,8	0	-48535,046
22	Muatan Tank 3 (LNG)			45195,000	0,47	21241,65	5,0717	0	-2,2849	107731,28	0	-48535,046
23	Muatan Tank 4 (LNG)			45195,000	0,47	21241,65	-45,2225	0	-2,2849	-960600,52	0	-48535,046
						72506,512				907093,1	591,75178	-152981,82
								COG		12,510505	0,0081614	-2,1099046

Tabel Berat dan COG Bangunan Atas terhadap COG Kapal : LNGC Kondisi Muatan 100%

(AutoCAD di titik 0,0,0 COG MAXSURF) COG LNGC 100% 143,983

-0,008

11,83

COG LNGC 100% (MOSES di titik 0,0,0 KEEL)

Nia	No Bangunan FSRU	Luasan Deck	Tebal Plat	Volume	density	Berat (ton)	Panjang Lengan COG			Moment		
NO		(m ²)	(m)	(m ³)	(ton/m ³)		х	У	Z	х	у	Z
1	Upper Deck	12418,40	0,01	74,51	7,86	585,65	-26,88	0,00	12,07	-15744,95	0,00	7071,16
2	2nd Deck	1587,82	0,01	9,53	7,86	74,88	-97,86	0,00	6,57	-7328,22	0,00	492,27
3	3rd Deck	1587,82	0,01	9,53	7,86	74,88	-97,86	0,00	1,57	-7328,22	0,00	117,86
4	4th Deck	1166,67	0,01	7,00	7,86	55,02	-94,41	0,00	-3,43	-5194,67	0,00	-188,50
5	Motor Room	416,92	0,00	1,67	7,86	13,11	-57,61	14,21	22,09	-755,18	186,29	289,60
6	Cargo Compressor Room	683,50	0,00	2,73	7,86	21,49	-46,09	14,21	22,09	-990,44	305,41	474,78
7	Regas Unit	1228,25	0,00	4,91	7,86	38,62	-20,26	13,02	24,28	-782,40	502,78	937,59
8	Cargo Gear Locker	152,04	0,00	0,61	7,86	4,78	3,47	9,61	21,02	16,58	45,95	100,47
9	Accomodation Room	3372,28	0,00	13,49	7,86	106,02	-84,73	0,00	24,43	-8983,07	0,00	2590,48
10	Accomodation Room 2	3334,75	0,00	13,34	7,86	104,84	-108,68	0,00	27,93	-11394,13	0,00	2928,23
11	Cargo Tank 1	3921,20	0,01	19,61	7,86	154,10	97,70	0,00	-2,48	15056,54	0,00	-381,74
12	Cargo Tank 2	5697,08	0,01	28,49	7,86	223,90	53,66	0,00	-2,48	12014,61	0,00	-554,63
13	Cargo Tank 3	5697,08	0,01	28,49	7,86	223,90	3,31	0,00	-2,48	741,81	0,00	-554,63
14	Cargo Tank 4	5697,08	0,01	28,49	7,86	223,90	-47,05	0,00	-2,48	-10534,80	0,00	-554,63
15	Muatan Tank 1 (LNG)			3118,82	0,47	1465,85	97,70	0,00	-8,95	143219,58	0,00	-13114,06
16	Muatan Tank 2 (LNG)			5627,06	0,47	2644,72	53,66	0,00	-8,95	141920,33	0,00	-23660,71
17	Muatan Tank 3 (LNG)			5627,06	0,47	2644,72	3,31	0,00	-8,95	8762,48	0,00	-23660,71
18	Muatan Tank 4 (LNG)			5627,06	0,47	2644,72	-47,05	0,00	-8,95	-124440,33	0,00	-23660,71
19	Muatan Ballast Tank			48000,00	1,03	49200,00	29,00	0,00	-6,33	1426800,00	0,00	-311239,20
60505,09									1555055,54	1040,42	-382567,07	
								COG		25,70	0,02	-6,32

Tabel Berat dan COG Bangunan Atas terhadap COG kapal : FSRU Kondisi Muatan 10%

(AutoCAD di titik 0,0,0 COG MAXSURF)

COG FSRU 10% 160,95 -0,02

7,84

(MOSES di titik 0,0,0 KEEL)

Na	No Bangunan LNGC	Luasan Deck	Tebal Plat	Volume	density	Berat (ton)	Panjang Lengan COG			Moment		
NO		(m ²)	(m)	(m ³)	(ton/m ³)		х	У	Z	х	У	Z
1	Upper Deck	11299,94	0,01	67,80	7,86	532,91	-23,59	0,00		-12571,50	0,00	12,06
2	2nd Deck	1774,78	0,01	10,65	7,86	83,70	-102,05	0,00	6,47	-8541,30	0,00	541,84
3	3rd Deck	1774,78	0,01	10,65	7,86	83,70	-102,05	0,00	0,93	-8541,30	0,00	77,62
4	4th Deck	1774,78	0,01	10,65	7,86	83,70	-102,05	0,00	-3,45	-8541,30	0,00	-289,11
5	A-Deck	1411,35	0,01	8,47	7,86	66,56	-92,06	0,00	15,96	-6127,71	0,00	1062,42
6	B-Deck	1152,53	0,01	6,92	7,86	54,35	-92,06	0,00	19,16	-5003,99	0,00	1041,52
7	C-Deck	1242,36	0,01	7,45	7,86	58,59	-92,06	0,00	22,31	-5393,99	0,00	1307,25
8	D-Deck	1123,45	0,01	6,74	7,86	52,98	-92,06	0,00	25,46	-4877,71	0,00	1349,02
9	Navigation Deck	668,62	0,01	4,01	7,86	31,53	-78,95	0,00	28,61	-2489,54	0,00	902,19
10	W/Н Тор	295,15	0,01	1,77	7,86	13,92	-78,95	0,00	31,76	-1098,95	0,00	442,10
11	Elec Motor Room	608,36	0,00	2,43	7,86	19,13	-50,13	11,75	19,06	-958,86	224,78	364,65
12	Cargo Mach Room	834,32	0,00	3,34	7,86	26,23	-36,60	11,75	19,06	-959,99	308,26	500,08
13	Deck Store	175,36	0,00	0,70	7,86	5,51	-23,44	10,65	20,73	-129,23	58,71	114,28
14	Accomodation Room	2259,35	0,00	9,04	7,86	71,03	-81,22	0,00	20,45	-5769,67	0,00	1452,97
15	Accomodation Room 2	1655,22	0,00	6,62	7,86	52,04	-105,25	0,00	18,94	-5477,27	0,00	985,55
16	Cargo Tank 1	3191,25	0,01	15,96	7,86	125,42	95,53	0,00	-2,58	11980,75	0,00	-324,19
17	Cargo Tank 2	5472,55	0,01	27,36	7,86	215,07	55,27	0,00	-2,58	11886,78	0,00	-555,94
18	Cargo Tank 3	5472,55	0,01	27,36	7,86	215,07	5,07	0,00	-2,58	1090,78	0,00	-555,94
19	Cargo Tank 4	5472,55	0,01	27,36	7,86	215,07	-45,22	0,00	-2,58	-9726,07	0,00	-555,94
										0,00	0,00	0,00
20	Muatan Ballast Tank			51000,00	1,03	52275,00	28,93	0,00	-8,34	1512315,75	0,00	-435868,95
						54281,51				1451065,69	591,75	-427996,51
								COG		26,73	0,01	-7,88

Tabel Berat dan COG Bangunan Atas terhadap COG Kapal : LNGC Kondisi Muatan Ballast

COG 26,73 (AutoCAD di titik 0,0,0 COG MAXSURF)

COG LNGC BALLAST 158,20 -0,02 -7,88

6,01

(MOSES di titik 0,0,0 KEEL)
No		Luasan Deck	Tebal Plat	Volume	density	Dorot (top)	Pan	jang Lengan (COG		Moment	
NO	Ballgullall FSRU	(m ²)	(m)	(m ³)	(ton/m ³)	Berat (ton)	х	У	Z	х	У	Z
1	Upper Deck	12418,40	0,01	74,51	7,86	585,65	-26,88	0,00	12,07	-15744,95	0,00	7071,16
2	2nd Deck	1587,82	0,01	9,53	7,86	74,88	-97,86	0,00	6,57	-7328,22	0,00	492,27
3	3rd Deck	1587,82	0,01	9,53	7,86	74,88	-97,86	0,00	1,57	-7328,22	0,00	117,86
4	4th Deck	1166,67	0,01	7,00	7,86	55,02	-94,41	0,00	-3,43	-5194,67	0,00	-188,50
5	Motor Room	416,92	0,00	1,67	7,86	13,11	-57,61	14,21	22,09	-755,18	186,29	289,60
6	Cargo Compressor Room	683,50	0,00	2,73	7,86	21,49	-46,09	14,21	22,09	-990,44	305,41	474,78
7	Regas Unit	1228,25	0,00	4,91	7,86	38,62	-20,26	13,02	24,28	-782,40	502,78	937,59
8	Cargo Gear Locker	152,04	0,00	0,61	7,86	4,78	3,47	9,61	21,02	16,58	45,95	100,47
9	Accomodation Room	3372,28	0,00	13,49	7,86	106,02	-84,73	0,00	24,43	-8983,07	0,00	2590,48
10	Accomodation Room 2	3334,75	0,00	13,34	7,86	104,84	-108,68	0,00	27,93	-11394,13	0,00	2928,23
11	Cargo Tank 1	3921,20	0,01	19,61	7,86	154,10	97,70	0,00	-2,48	15056,54	0,00	-381,74
12	Cargo Tank 2	5697,08	0,01	28,49	7,86	223,90	53,66	0,00	-2,48	12014,61	0,00	-554,63
13	Cargo Tank 3	5697,08	0,01	28,49	7,86	223,90	3,31	0,00	-2,48	741,81	0,00	-554,63
14	Cargo Tank 4	5697,08	0,01	28,49	7,86	223,90	-47,05	0,00	-2,48	-10534,80	0,00	-554,63
15	Muatan Tank 1 (LNG)			14814,41	0,47	6962,77	97,70	0,00	-5,36	680292,92	0,00	-37285,65
16	Muatan Tank 2 (LNG)			26728,53	0,47	12562,41	53,66	0,00	-5,36	674121,48	0,00	-67271,70
17	Muatan Tank 3 (LNG)			26728,53	0,47	12562,41	3,31	0,00	-5,36	41621,77	0,00	-67271,70
18	Muatan Tank 4 (LNG)			26728,53	0,47	12562,41	-47,05	0,00	-5,36	-591091,49	0,00	-67271,70
19	Muatan Ballast Tank			22000,00	1,03	22550,00	29,00	0,00	-5,93	653950,00	0,00	-133631,30
						69105,09				1417688,16	1040,42	-359963,75
								COG		20,51	0,02	-5,21

Tabel Berat dan COG Bangunan Atas terhadap COG kapal : FSRU Kondisi Muatan 60%

(MOSES di titik 0,0,0 KEEL)

COG FSRU 60%

(AutoCAD di titik 0,0,0 COG MAXSURF)

155,82

-0,02

8,65

N.		Luasan Deck	Tebal Plat	Volume	density	Devet (text)	Pan	jang Lengan C	OG	Moment			
INO	Bangunan LNGC	(m ²)	(m)	(m ³)	(ton/m ³)	Berat (ton)	х	У	Z	х	У	Z	
1	Upper Deck	11299,94	0,01	67,80	7,86	532,91	-23,59	0,00		-12571,50	0,00	12,06	
2	2nd Deck	1774,78	0,01	10,65	7,86	83,70	-102,05	0,00	6,47	-8541,30	0,00	541,84	
3	3rd Deck	1774,78	0,01	10,65	7,86	83,70	-102,05	0,00	0,93	-8541,30	0,00	77,62	
4	4th Deck	1774,78	0,01	10,65	7,86	83,70	-102,05	0,00	-3,45	-8541,30	0,00	-289,11	
5	A-Deck	1411,35	0,01	8,47	7,86	66,56	-92,06	0,00	15,96	-6127,71	0,00	1062,42	
6	B-Deck	1152,53	0,01	6,92	7,86	54,35	-92,06	0,00	19,16	-5003,99	0,00	1041,52	
7	C-Deck	1242,36	0,01	7,45	7,86	58,59	-92,06	0,00	22,31	-5393,99	0,00	1307,25	
8	D-Deck	1123,45	0,01	6,74	7,86	52,98	-92,06	0,00	25,46	-4877,71	0,00	1349,02	
9	Navigation Deck	668,62	0,01	4,01	7,86	31,53	-78,95	0,00	28,61	-2489,54	0,00	902,19	
10	W/Н Тор	295,15	0,01	1,77	7,86	13,92	-78,95	0,00	31,76	-1098,95	0,00	442,10	
												ľ	
11	Elec Motor Room	608,36	0,00	2,43	7,86	19,13	-50,13	11,75	19,06	-958,86	224,78	364,65	
12	Cargo Mach Room	834,32	0,00	3,34	7,86	26,23	-36,60	11,75	19,06	-959,99	308,26	500,08	
13	Deck Store	175,36	0,00	0,70	7,86	5,51	-23,44	10,65	20,73	-129,23	58,71	114,28	
14	Accomodation Room	2259,35	0,00	9,04	7,86	71,03	-81,22	0,00	20,45	-5769,67	0,00	1452,97	
15	Accomodation Room 2	1655,22	0,00	6,62	7,86	52,04	-105,25	0,00	18,94	-5477,27	0,00	985,55	
16	Cargo Tank 1	3191,25	0,01	15,96	7,86	125,42	95,53	0,00	-2,28	11980,75	0,00	-286,56	
17	Cargo Tank 2	5472,55	0,01	27,36	7,86	215,07	55,27	0,00	-2,28	11886,78	0,00	-491,42	
18	Cargo Tank 3	5472,55	0,01	27,36	7,86	215,07	5,07	0,00	-2,28	1090,78	0,00	-491,42	
19	Cargo Tank 4	5472,55	0,01	27,36	7,86	215,07	-45,22	0,00	-2,28	-9726,07	0,00	-491,42	
20	Muatan Tank 1 (LNG)			7207,50	0,47	3387,53	95 <i>,</i> 53	0,00	-3,43	323603,83	0,00	-11610,23	
21	Muatan Tank 2 (LNG)			22597,50	0,47	10620,83	55,27	0,00	-3,43	587002,38	0,00	-36401,28	
22	Muatan Tank 3 (LNG)			22597,50	0,47	10620,83	5,07	0,00	-3,43	53865,64	0,00	-36401,28	
23	Muatan Tank 4 (LNG)			22597,50	0,47	10620,83	-45,22	0,00	-3,43	-480300,26	0,00	-36401,28	
24	Muatan Tank Ballast			24000,00	1,03	24600,00	28,93	0,00	-5,94	711678,00	0,00	-146074,80	
						61856,51				1134599,52	591,75	-258785,26	
								COG		18,34	0,01	-4,18	

Tabel Berat dan COG Bangunan A	Atas terhadap COG Kapal	: LNGC Kondisi Muatan 50%
0		

(MOSES di titik 0,0,0 KEEL)

COG LNGC 50%

(AutoCAD di titik 0,0,0 COG MAXSURF)

151,00

-0,01

8,74

LAMPIRAN A-3

TABEL PERHITUNGAN SPEKTRA RESPON

Surge (1)

JONSWAP

m ₀ =	0,0000264887
m ₁ =	0,0000235174
m ₂ =	0,0000214152
m₄ =	0,0000190768

Hs	1,97	m	1							L	-		
ω (rad/s)	S(@)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	ζs =	0,01029	m	(Significant Surge amplitude)
(rad/s)	(m ² /rad/s)		(m/m)	(m^{2}/m^{2})	(m ² /(rad/s))	(m ² /(rad/s))	(m ²)	(m ² (rad/s))	(m ² (rad ³ /s ³))	T ₀ =	8,84632	secs	(Modal period)
0,25	0,00000	1	0,052	0,003	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	8,32146	secs	(Peak period)
0,3	0,00000	4	0,033	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	8,73494	secs	(Zero up-crossing period)
0,35	0,00000	2	0,023	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,71026	rad/s	(Modal frequency)
0,4	0,00000	4	0,020	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,75506	rad/s	(Peak frequency)
0,45	0,00001	2	0,019	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _z =	0,71932	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,022	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
0,55	0,01059	2	0,018	0,000	0,00000	0,00001	0,00000	0,00000	0,00000	ζav =	0,00643	m	(Average Surge amplitude)
0,6	0,04933	4	0,008	0,000	0,00000	0,00001	0,00001	0,00000	0,00000	ζ 1/10 =	0,01307	m	(One-tenth highest Surge amplitude)
0,65	0,12182	2	0,010	0,000	0,00001	0,00002	0,00002	0,00001	0,00000	ζext =	0,01972	m	(Most probable extreme Surge amplitude)
0,7	0,21452	4	0,013	0,000	0,00004	0,00015	0,00010	0,00007	0,00004	ζ(α=0.01) =	0,02516	m	(Extreme Surge amplitude w/ prob. of occ.
0,75	0,35915	2	0,014	0,000	0,00007	0,00014	0,00010	0,00008	0,00004				1% -> 99% level of confidence)
0,8	0,63207	4	0,013	0,000	0,00011	0,00042	0,00034	0,00027	0,00017				
0,85	0,74695	2	0,010	0,000	0,00008	0,00015	0,00013	0,00011	0,00008				
0,9	0,48933	4	0,001	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
0,95	0,30856	2	0,006	0,000	0,00001	0,00002	0,00002	0,00002	0,00002				
1	0,24236	4	0,017	0,000	0,00007	0,00027	0,00027	0,00027	0,00027				
1,05	0,20793	2	0,025	0,001	0,00013	0,00026	0,00027	0,00028	0,00031				
1,1	0,17933	4	0,013	0,000	0,00003	0,00012	0,00013	0,00014	0,00017				
1,15	0,15374	2	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,2	0,13130	4	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,25	0,11194	2	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,3	0,09543	4	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,35	0,08144	2	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,4	0,06962	4	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,45	0,05966	2	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,5	0,05125	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,55	0,04415	2	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,6	0,03815	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,65	0,03307	2	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,7	0,02875	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,75	0,02507	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,8	0,02193	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,85	0,01924	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,9	0,01693	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,95	0,01494	2	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
2	0,01321	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
2,05	0,01172	1	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
		Σ =				0,00159	0,00141	0,00128	0,00114]			
						Σ0	Σ1	Σ2	Σ4				

Roll (4)

JONSWAP

m ₀ =	1,7480287890
m ₁ =	1,3463076996
m ₂ =	1,0484575439
m₄ =	0.6578973330

Hs	1,97	m	1									1	
ω (rad/s)	S(@)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	2,64426	deg	(Significant Roll amplitude)
(rad/s)	(m ² /rad/s)		(deg/m)	(deg ² /m ²)	(deg ² /(rad/s))	(deg ² /(rad/s))	(deg ²)	(deg ² (rad/s))	(deg ² (rad ³ /s ³))	T ₀ =	10,19753	secs	(Modal period)
0,25	0,00000	1	0,945	0,893	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	9,91488	secs	(Peak period)
0,3	0,00000	4	1,166	1,360	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	10,14121	secs	(Zero up-crossing period)
0,35	0,00000	2	1,424	2,028	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,61615	rad/s	(Modal frequency)
0,4	0,00000	4	1,728	2,985	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,63371	rad/s	(Peak frequency)
0,45	0,00001	2	2,106	4,437	0,00003	0,00007	0,00003	0,00001	0,00000	ω _z =	0,61957	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	2,617	6,849	0,00517	0,02070	0,01035	0,00517	0,00129				
0,55	0,01059	2	3,347	11,205	0,11861	0,23721	0,13047	0,07176	0,02171	ζav =	1,65266	deg	(Average Roll amplitude)
0,6	0,04933	4	4,210	17,724	0,87429	3,49716	2,09830	1,25898	0,45323	ζ 1/10 =	3,35821	deg	(One-tenth highest Roll amplitude)
0,65	0,12182	2	5,046	25,462	3,10185	6,20369	4,03240	2,62106	1,10740	ζext =	5,01498	deg	(Most probable extreme Roll amplitude)
0,7	0,21452	4	5,272	27,790	5,96167	23,84668	16,69268	11,68487	5,72559	ζ(α=0.01) =	6,42262	deg	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	4,690	21,998	7,90047	15,80095	11,85071	8,88803	4,99952				1% -> 99% level of confidence)
0,8	0,63207	4	3,687	13,594	8,59252	34,37008	27,49607	21,99685	14,07799				
0,85	0,74695	2	2,869	8,230	6,14738	12,29476	10,45055	8,88296	6,41794				
0,9	0,48933	4	1,764	3,113	1,52335	6,09339	5,48405	4,93564	3,99787				
0,95	0,30856	2	1,284	1,649	0,50871	1,01743	0,96656	0,91823	0,82870				
1	0,24236	4	0,961	0,923	0,22365	0,89458	0,89458	0,89458	0,89458				
1,05	0,20793	2	0,731	0,535	0,11120	0,22241	0,23353	0,24520	0,27034				
1,1	0,17933	4	0,567	0,322	0,05771	0,23084	0,25392	0,27931	0,33797				
1,15	0,15374	2	0,439	0,193	0,02968	0,05936	0,06827	0,07851	0,10382				
1,2	0,13130	4	0,319	0,102	0,01336	0,05345	0,06414	0,07697	0,11084				
1,25	0,11194	2	0,225	0,051	0,00569	0,01138	0,01423	0,01778	0,02779				
1,3	0,09543	4	0,177	0,031	0,00299	0,01196	0,01554	0,02021	0,03415				
1,35	0,08144	2	0,163	0,027	0,00217	0,00435	0,00587	0,00792	0,01444				
1,4	0,06962	4	0,150	0,023	0,00157	0,00630	0,00882	0,01234	0,02419				
1,45	0,05966	2	0,128	0,016	0,00098	0,00197	0,00285	0,00414	0,00869				
1,5	0,05125	4	0,107	0,011	0,00059	0,00235	0,00352	0,00528	0,01189				
1,55	0,04415	2	0,087	0,008	0,00034	0,00067	0,00105	0,00162	0,00389				
1,6	0,03815	4	0,070	0,005	0,00019	0,00075	0,00121	0,00193	0,00495				
1,65	0,03307	2	0,055	0,003	0,00010	0,00020	0,00033	0,00055	0,00150				
1,7	0,02875	4	0,042	0,002	0,00005	0,00021	0,00035	0,00060	0,00172				
1,75	0,02507	2	0,031	0,001	0,00002	0,00005	0,00009	0,00015	0,00046				
1,8	0,02193	4	0,022	0,001	0,00001	0,00004	0,00008	0,00014	0,00046				
1,85	0,01924	2	0,015	0,000	0,00000	0,00001	0,00002	0,00003	0,00011				
1,9	0,01693	4	0,010	0,000	0,00000	0,00001	0,00001	0,00003	0,00010				
1,95	0,01494	2	0,007	0,000	0,00000	0,00000	0,00000	0,00001	0,00002				
2	0,01321	4	0,006	0,000	0,00000	0,00000	0,00000	0,00001	0,00003				
2,05	0,01172	1	0,007	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
		Σ =				104,88173	80,77846	62,90745	39,47384]			
						Σ0	Σ1	Σ2	Σ4				

Pitch (1)

JONSWAP

m ₀ =	0,0011220698
m1 =	0,0009171366
m ₂ =	0,0007608971
m₄ =	0.0005523026

Hs	1,97	m											
ω (rad/s)	S(ω)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,06699	deg	(Significant Pitch amplitude)
(rad/s)	(m ² /rad/s)		(deg/m)	(deg ² /m ²)	(deg ² /(rad/s))	(deg ² /(rad/s))	(deg ²)	(deg ² (rad/s))	(deg ² (rad ³ /s ³))	T ₀ =	9,60897	secs	(Modal period)
0,25	0,00000	1	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	9,21861	secs	(Peak period)
0,3	0,00000	4	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	9,53757	secs	(Zero up-crossing period)
0,35	0,00000	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,65389	rad/s	(Modal frequency)
0,4	0,00000	4	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,68158	rad/s	(Peak frequency)
0,45	0,00001	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _z =	0,65878	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,012	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
0,55	0,01059	2	0,026	0,001	0,00001	0,00001	0,00001	0,00000	0,00000	ζav =	0,04187	deg	(Average Pitch amplitude)
0,6	0,04933	4	0,052	0,003	0,00013	0,00053	0,00032	0,00019	0,00007	ζ _{1/10} =	0,08508	deg	(One-tenth highest Pitch amplitude)
0,65	0,12182	2	0,080	0,006	0,00077	0,00155	0,00101	0,00065	0,00028	ζext =	0,12760	deg	(Most probable extreme Pitch amplitude)
0,7	0,21452	4	0,103	0,011	0,00226	0,00903	0,00632	0,00442	0,00217	ζ(α=0.01) =	0,16315	deg	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,107	0,011	0,00412	0,00824	0,00618	0,00463	0,00261				1% -> 99% level of confidence)
0,8	0,63207	4	0,096	0,009	0,00579	0,02315	0,01852	0,01482	0,00948				
0,85	0,74695	2	0,082	0,007	0,00506	0,01013	0,00861	0,00732	0,00529				
0,9	0,48933	4	0,066	0,004	0,00215	0,00861	0,00775	0,00698	0,00565				
0,95	0,30856	2	0,054	0,003	0,00091	0,00183	0,00173	0,00165	0,00149				
1	0,24236	4	0,045	0,002	0,00049	0,00196	0,00196	0,00196	0,00196				
1,05	0,20793	2	0,038	0,001	0,00029	0,00059	0,00062	0,00065	0,00072				
1,1	0,17933	4	0,032	0,001	0,00019	0,00076	0,00083	0,00092	0,00111				
1,15	0,15374	2	0,028	0,001	0,00012	0,00025	0,00028	0,00033	0,00043				
1,2	0,13130	4	0,025	0,001	0,00008	0,00032	0,00038	0,00046	0,00066				
1,25	0,11194	2	0,021	0,000	0,00005	0,00010	0,00013	0,00016	0,00025				
1,3	0,09543	4	0,018	0,000	0,00003	0,00013	0,00017	0,00022	0,00037				
1,35	0,08144	2	0,016	0,000	0,00002	0,00004	0,00006	0,00008	0,00014				
1,4	0,06962	4	0,014	0,000	0,00001	0,00005	0,00007	0,00010	0,00021				
1,45	0,05966	2	0,012	0,000	0,00001	0,00002	0,00003	0,00004	0,00008				
1,5	0,05125	4	0,011	0,000	0,00001	0,00003	0,00004	0,00006	0,00013				
1,55	0,04415	2	0,010	0,000	0,00000	0,00001	0,00001	0,00002	0,00006				
1,6	0,03815	4	0,009	0,000	0,00000	0,00001	0,00002	0,00003	0,00009]			
1,65	0,03307	2	0,008	0,000	0,00000	0,00000	0,00001	0,00001	0,00003]			
1,7	0,02875	4	0,007	0,000	0,00000	0,00001	0,00001	0,00002	0,00005]			
1,75	0,02507	2	0,006	0,000	0,00000	0,00000	0,00000	0,00001	0,00002]			
1,8	0,02193	4	0,006	0,000	0,00000	0,00000	0,00000	0,00001	0,00003				
1,85	0,01924	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
1,9	0,01693	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,95	0,01494	2	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
2	0,01321	4	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	1			
2,05	0,01172	1	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	1			
		Σ =				0,06732	0,05503	0,04565	0,03314	7			
				•		Σ0	Σ1	Σ2	Σ4	1			

Yaw (1)

JONSWAP

m ₀ =	0,0005487049
m1 =	0,0004806592
m ₂ =	0,0004327564
m₄ =	0.0003873716

Hs	1,97	m]									-	
ω (rad/s)	S(ω)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,04685	deg	(Significant Yaw amplitude)
(rad/s)	(m ² /rad/s)		(deg/m)	(deg ² /m ²)	(deg ² /(rad/s))	(deg ² /(rad/s))	(deg ²)	(deg ² (rad/s))	(deg ² (rad ³ /s ³))	T ₀ =	8,96587	secs	(Modal period)
0,25	0,00000	1	0,037	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	8,30135	secs	(Peak period)
0,3	0,00000	4	0,023	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	8,84379	secs	(Zero up-crossing period)
0,35	0,00000	2	0,016	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,70079	rad/s	(Modal frequency)
0,4	0,00000	4	0,013	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,75689	rad/s	(Peak frequency)
0,45	0,00001	2	0,015	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _z =	0,71046	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,015	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
0,55	0,01059	2	0,011	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ζav =	0,02928	deg	(Average Yaw amplitude)
0,6	0,04933	4	0,020	0,000	0,00002	0,00008	0,00005	0,00003	0,00001	ζ 1/10 =	0,05950	deg	(One-tenth highest Yaw amplitude)
0,65	0,12182	2	0,038	0,001	0,00018	0,00036	0,00023	0,00015	0,00006	ζext =	0,08969	deg	(Most probable extreme Yaw amplitude)
0,7	0,21452	4	0,055	0,003	0,00066	0,00264	0,00185	0,00129	0,00063	ζ(α=0.01) =	0,11445	deg	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,063	0,004	0,00141	0,00282	0,00211	0,00159	0,00089			_	1% -> 99% level of confidence)
0,8	0,63207	4	0,061	0,004	0,00237	0,00948	0,00759	0,00607	0,00389				
0,85	0,74695	2	0,057	0,003	0,00240	0,00480	0,00408	0,00347	0,00251				
0,9	0,48933	4	0,051	0,003	0,00126	0,00505	0,00454	0,00409	0,00331				
0,95	0,30856	2	0,048	0,002	0,00071	0,00141	0,00134	0,00127	0,00115				
1	0,24236	4	0,045	0,002	0,00050	0,00199	0,00199	0,00199	0,00199				
1,05	0,20793	2	0,043	0,002	0,00038	0,00076	0,00080	0,00084	0,00093				
1,1	0,17933	4	0,041	0,002	0,00030	0,00119	0,00131	0,00144	0,00174				
1,15	0,15374	2	0,039	0,001	0,00023	0,00046	0,00053	0,00061	0,00080				
1,2	0,13130	4	0,037	0,001	0,00018	0,00070	0,00084	0,00101	0,00145				
1,25	0,11194	2	0,034	0,001	0,00013	0,00026	0,00033	0,00041	0,00064				
1,3	0,09543	4	0,032	0,001	0,00010	0,00039	0,00051	0,00066	0,00111				
1,35	0,08144	2	0,029	0,001	0,00007	0,00014	0,00019	0,00026	0,00047				
1,4	0,06962	4	0,027	0,001	0,00005	0,00020	0,00028	0,00039	0,00077				
1,45	0,05966	2	0,024	0,001	0,00003	0,00007	0,00010	0,00014	0,00030				
1,5	0,05125	4	0,020	0,000	0,00002	0,00009	0,00013	0,00019	0,00043				
1,55	0,04415	2	0,017	0,000	0,00001	0,00003	0,00004	0,00006	0,00015				
1,6	0,03815	4	0,014	0,000	0,00001	0,00003	0,00005	0,00008	0,00021	1			
1,65	0,03307	2	0,012	0,000	0,00000	0,00001	0,00002	0,00003	0,00007	1			
1,7	0,02875	4	0,010	0,000	0,00000	0,00001	0,00002	0,00003	0,00009	1			
1,75	0,02507	2	0,008	0,000	0,00000	0,00000	0,00001	0,00001	0,00003	1			
1,8	0,02193	4	0,006	0,000	0,00000	0,00000	0,00001	0,00001	0,00003				
1,85	0,01924	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
1,9	0,01693	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
1,95	0,01494	2	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	1			
2	0,01321	4	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	1			
2,05	0,01172	1	0,001	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	1			
· · · · · ·		Σ =				0,03292	0,02884	0,02597	0,02324	1			
				•		Σ0	Σ1	Σ2	Σ4	1			

Sway (1)

JONSWAP

m ₀ =	0,0200507432
m1 =	0,0162406027
m ₂ =	0,0134299315
m₄ =	0.0098082732

Hs	1,97	m	1								-		
ω (rad/s)	S(ω)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,28320	m	(Significant Sway amplitude)
(rad/s)	(m ² /rad/s)		(m/m)	(m^{2}/m^{2})	(m ² /(rad/s))	(m ² /(rad/s))	(m ²)	(m ² (rad/s))	(m ² (rad ³ /s ³))	T ₀ =	9,69659	secs	(Modal period)
0,25	0,00000	1	2,366	5,598	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	9,19034	secs	(Peak period)
0,3	0,00000	4	1,988	3,950	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	9,59664	secs	(Zero up-crossing period)
0,35	0,00000	2	1,729	2,991	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,64798	rad/s	(Modal frequency)
0,4	0,00000	4	1,572	2,472	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,68367	rad/s	(Peak frequency)
0,45	0,00001	2	1,344	1,807	0,00001	0,00003	0,00001	0,00001	0,00000	ω _z =	0,65473	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,819	0,670	0,00051	0,00203	0,00101	0,00051	0,00013				
0,55	0,01059	2	0,481	0,231	0,00244	0,00489	0,00269	0,00148	0,00045	ζav =	0,17700	m	(Average Sway amplitude)
0,6	0,04933	4	0,515	0,265	0,01309	0,05237	0,03142	0,01885	0,00679	ζ 1/10 =	0,35967	m	(One-tenth highest Sway amplitude)
0,65	0,12182	2	0,497	0,247	0,03008	0,06016	0,03911	0,02542	0,01074	ζext =	0,53916	m	(Most probable extreme Sway amplitude)
0,7	0,21452	4	0,451	0,204	0,04368	0,17472	0,12230	0,08561	0,04195	ζ(α=0.01) =	0,68947	m	(Extreme Sway amplitude w/ prob. of occ.
0,75	0,35915	2	0,407	0,165	0,05941	0,11881	0,08911	0,06683	0,03759				1% -> 99% level of confidence)
0,8	0,63207	4	0,365	0,133	0,08401	0,33606	0,26885	0,21508	0,13765				
0,85	0,74695	2	0,321	0,103	0,07687	0,15374	0,13068	0,11108	0,08025				
0,9	0,48933	4	0,276	0,076	0,03735	0,14941	0,13447	0,12102	0,09803				
0,95	0,30856	2	0,248	0,062	0,01903	0,03807	0,03617	0,03436	0,03101				
1	0,24236	4	0,247	0,061	0,01481	0,05925	0,05925	0,05925	0,05925				
1,05	0,20793	2	0,244	0,059	0,01235	0,02470	0,02593	0,02723	0,03002				
1,1	0,17933	4	0,158	0,025	0,00446	0,01784	0,01962	0,02158	0,02612				
1,15	0,15374	2	0,081	0,007	0,00101	0,00201	0,00232	0,00266	0,00352				
1,2	0,13130	4	0,075	0,006	0,00073	0,00292	0,00350	0,00420	0,00605				
1,25	0,11194	2	0,085	0,007	0,00082	0,00163	0,00204	0,00255	0,00398				
1,3	0,09543	4	0,077	0,006	0,00057	0,00228	0,00297	0,00386	0,00652				
1,35	0,08144	2	0,065	0,004	0,00034	0,00068	0,00092	0,00124	0,00226				
1,4	0,06962	4	0,053	0,003	0,00020	0,00079	0,00111	0,00155	0,00304				
1,45	0,05966	2	0,045	0,002	0,00012	0,00024	0,00035	0,00051	0,00107				
1,5	0,05125	4	0,038	0,001	0,00008	0,00030	0,00045	0,00068	0,00153				
1,55	0,04415	2	0,032	0,001	0,00005	0,00009	0,00014	0,00022	0,00053				
1,6	0,03815	4	0,027	0,001	0,00003	0,00011	0,00018	0,00028	0,00072				
1,65	0,03307	2	0,022	0,000	0,00002	0,00003	0,00005	0,00009	0,00023				
1,7	0,02875	4	0,018	0,000	0,00001	0,00004	0,00006	0,00010	0,00030				
1,75	0,02507	2	0,014	0,000	0,00000	0,00001	0,00002	0,00003	0,00009				
1,8	0,02193	4	0,011	0,000	0,00000	0,00001	0,00002	0,00004	0,00011				
1,85	0,01924	2	0,009	0,000	0,00000	0,00000	0,00001	0,00001	0,00004				
1,9	0,01693	4	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00005				
1,95	0,01494	2	0,007	0,000	0,00000	0,00000	0,00000	0,00000	0,00002				
2	0,01321	4	0,006	0,000	0,00000	0,00000	0,00000	0,00001	0,00003				
2,05	0,01172	1	0,007	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
		Σ =				1,20304	0,97444	0,80580	0,58850]			
						Σ0	Σ1	Σ2	Σ4				

Heave (1)

JONSWAP

m ₀ =	0,0425396961
m1 =	0,0310645679
m ₂ =	0,0230763199
m₄ =	0,0134255918

Hs	1,97	m	1									-	
ω (rad/s)	S(@)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,41250	m	(Significant Heave amplitude)
(rad/s)	(m ² /rad/s)		(m/m)	(m^{2}/m^{2})	(m ² /(rad/s))	(m ² /(rad/s))	(m ²)	(m ² (rad/s))	(m ² (rad ³ /s ³))	T ₀ =	10,75524	secs	(Modal period)
0,25	0,00000	1	1,041	1,084	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	10,29692	secs	(Peak period)
0,3	0,00000	4	1,071	1,148	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	10,66362	secs	(Zero up-crossing period)
0,35	0,00000	2	1,119	1,252	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,58420	rad/s	(Modal frequency)
0,4	0,00000	4	1,186	1,407	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,61020	rad/s	(Peak frequency)
0,45	0,00001	2	1,267	1,605	0,00001	0,00002	0,00001	0,00000	0,00000	ω _Z =	0,58922	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	1,318	1,736	0,00131	0,00525	0,00262	0,00131	0,00033				
0,55	0,01059	2	1,392	1,938	0,02051	0,04102	0,02256	0,01241	0,00375	ζav =	0,25781	m	(Average Heave amplitude)
0,6	0,04933	4	1,335	1,783	0,08796	0,35183	0,21110	0,12666	0,04560	ζ 1/10 =	0,52388	m	(One-tenth highest Heave amplitude)
0,65	0,12182	2	1,145	1,310	0,15963	0,31926	0,20752	0,13489	0,05699	ζext =	0,77960	m	(Most probable extreme Heave amplitude)
0,7	0,21452	4	0,871	0,759	0,16284	0,65136	0,45595	0,31917	0,15639	ζ(α=0.01) =	0,99979	m	(Extreme Heave amplitude w/ prob. of occ.
0,75	0,35915	2	0,640	0,410	0,14723	0,29446	0,22085	0,16564	0,09317				1% -> 99% level of confidence)
0,8	0,63207	4	0,466	0,217	0,13736	0,54945	0,43956	0,35165	0,22506				
0,85	0,74695	2	0,336	0,113	0,08451	0,16902	0,14367	0,12212	0,08823				
0,9	0,48933	4	0,240	0,058	0,02820	0,11279	0,10151	0,09136	0,07400				
0,95	0,30856	2	0,173	0,030	0,00927	0,01854	0,01761	0,01673	0,01510				
1	0,24236	4	0,151	0,023	0,00552	0,02209	0,02209	0,02209	0,02209				
1,05	0,20793	2	0,146	0,021	0,00446	0,00891	0,00936	0,00982	0,01083				
1,1	0,17933	4	0,094	0,009	0,00159	0,00636	0,00699	0,00769	0,00931				
1,15	0,15374	2	0,047	0,002	0,00033	0,00067	0,00077	0,00088	0,00117				
1,2	0,13130	4	0,035	0,001	0,00016	0,00063	0,00075	0,00090	0,00130				
1,25	0,11194	2	0,033	0,001	0,00012	0,00024	0,00030	0,00038	0,00059				
1,3	0,09543	4	0,026	0,001	0,00006	0,00026	0,00034	0,00044	0,00074				
1,35	0,08144	2	0,020	0,000	0,00003	0,00007	0,00009	0,00012	0,00022				
1,4	0,06962	4	0,016	0,000	0,00002	0,00007	0,00010	0,00014	0,00027				
1,45	0,05966	2	0,014	0,000	0,00001	0,00002	0,00003	0,00005	0,00010				
1,5	0,05125	4	0,014	0,000	0,00001	0,00004	0,00006	0,00009	0,00020				
1,55	0,04415	2	0,014	0,000	0,00001	0,00002	0,00003	0,00004	0,00010				
1,6	0,03815	4	0,014	0,000	0,00001	0,00003	0,00004	0,00007	0,00018				
1,65	0,03307	2	0,013	0,000	0,00001	0,00001	0,00002	0,00003	0,00008				
1,7	0,02875	4	0,012	0,000	0,00000	0,00002	0,00003	0,00005	0,00013				
1,75	0,02507	2	0,011	0,000	0,00000	0,00001	0,00001	0,00002	0,00005				
1,8	0,02193	4	0,010	0,000	0,00000	0,00001	0,00001	0,00003	0,00008				
1,85	0,01924	2	0,008	0,000	0,00000	0,00000	0,00000	0,00001	0,00003]			
1,9	0,01693	4	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00004]			
1,95	0,01494	2	0,006	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
2	0,01321	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
2,05	0,01172	1	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
		Σ =				2,55238	1,86387	1,38458	0,80554]			
						Σ0	Σ1	Σ2	Σ4				

Roll (1)

JONSWAP

m ₀ =	0,0572254501
m ₁ =	0,0401132032
m ₂ =	0,0287996453
m₄ =	0.0159656533

Hs	1,97	m										-	
ω (rad/s)	S(ω)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,47844	deg	(Significant Roll amplitude)
(rad/s)	(m ² /rad/s)		(deg/m)	(deg ² /m ²)	(deg ² /(rad/s))	(deg ² /(rad/s))	(deg ²)	(deg ² (rad/s))	(deg ² (rad ³ /s ³))	T ₀ =	11,20451	secs	(Modal period)
0,25	0,00000	1	1,104	1,219	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	10,54851	secs	(Peak period)
0,3	0,00000	4	1,485	2,205	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	11,07113	secs	(Zero up-crossing period)
0,35	0,00000	2	2,118	4,486	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,56077	rad/s	(Modal frequency)
0,4	0,00000	4	3,262	10,639	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,59565	rad/s	(Peak frequency)
0,45	0,00001	2	4,901	24,022	0,00018	0,00036	0,00016	0,00007	0,00001	ω _z =	0,56753	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	5,154	26,569	0,02007	0,08028	0,04014	0,02007	0,00502				
0,55	0,01059	2	3,442	11,848	0,12542	0,25083	0,13796	0,07588	0,02295	ζav =	0,29902	deg	(Average Roll amplitude)
0,6	0,04933	4	1,960	3,841	0,18949	0,75796	0,45478	0,27287	0,09823	ζ 1/10 =	0,60761	deg	(One-tenth highest Roll amplitude)
0,65	0,12182	2	1,262	1,593	0,19404	0,38807	0,25225	0,16396	0,06927	ζext =	0,90183	deg	(Most probable extreme Roll amplitude)
0,7	0,21452	4	0,881	0,777	0,16665	0,66659	0,46661	0,32663	0,16005	ζ(α=0.01) =	1,15774	deg	(Extreme Roll amplitude w/ prob. of occ.
0,75	0,35915	2	0,642	0,413	0,14825	0,29650	0,22237	0,16678	0,09381				1% -> 99% level of confidence)
0,8	0,63207	4	0,479	0,229	0,14475	0,57899	0,46319	0,37055	0,23715				
0,85	0,74695	2	0,364	0,132	0,09870	0,19741	0,16780	0,14263	0,10305				
0,9	0,48933	4	0,282	0,080	0,03897	0,15590	0,14031	0,12628	0,10228				
0,95	0,30856	2	0,209	0,044	0,01349	0,02698	0,02563	0,02435	0,02197				
1	0,24236	4	0,144	0,021	0,00501	0,02005	0,02005	0,02005	0,02005				
1,05	0,20793	2	0,093	0,009	0,00180	0,00360	0,00378	0,00397	0,00437				
1,1	0,17933	4	0,075	0,006	0,00101	0,00404	0,00445	0,00489	0,00592				
1,15	0,15374	2	0,069	0,005	0,00073	0,00145	0,00167	0,00192	0,00254				
1,2	0,13130	4	0,065	0,004	0,00056	0,00224	0,00268	0,00322	0,00464				
1,25	0,11194	2	0,062	0,004	0,00043	0,00086	0,00107	0,00134	0,00210				
1,3	0,09543	4	0,051	0,003	0,00025	0,00099	0,00128	0,00167	0,00282				
1,35	0,08144	2	0,036	0,001	0,00010	0,00021	0,00028	0,00038	0,00068				
1,4	0,06962	4	0,023	0,001	0,00004	0,00015	0,00021	0,00030	0,00058				
1,45	0,05966	2	0,017	0,000	0,00002	0,00003	0,00005	0,00007	0,00015				
1,5	0,05125	4	0,014	0,000	0,00001	0,00004	0,00006	0,00009	0,00020				
1,55	0,04415	2	0,012	0,000	0,00001	0,00001	0,00002	0,00003	0,00007				
1,6	0,03815	4	0,009	0,000	0,00000	0,00001	0,00002	0,00003	0,00009				
1,65	0,03307	2	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00003	1			
1,7	0,02875	4	0,006	0,000	0,00000	0,00000	0,00001	0,00001	0,00003	1			
1,75	0,02507	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
1,8	0,02193	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,85	0,01924	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
1,9	0,01693	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00002	1			
1,95	0,01494	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
2	0,01321	4	0,007	0,000	0,00000	0,00000	0,00000	0,00001	0,00004	1			
2,05	0,01172	1	0,009	0,000	0,00000	0,00000	0,00000	0,00000	0,00002	1			
· · · · · · · · · · · · · · · · · · ·		Σ =				3,43353	2,40679	1,72798	0,95794	1			
		•		•		Σ0	Σ1	Σ2	Σ4	1			

Pitch (1)

JONSWAP

m ₀ =	0,0004739436
m ₁ =	0,0003776692
m ₂ =	0,0003080626
m₄ =	0.0002218903

Hs	1,97	m									-		
ω (rad/s)	S(ω)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	ζs =	0,04354	deg	(Significant Pitch amplitude)
(rad/s)	(m ² /rad/s)		(deg/m)	(deg ² /m ²)	(deg ² /(rad/s))	(deg ² /(rad/s))	(deg ²)	(deg ² (rad/s))	(deg ² (rad ³ /s ³))	T ₀ =	9,85612	secs	(Modal period)
0,25	0,00000	1	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	9,25425	secs	(Peak period)
0,3	0,00000	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	9,74170	secs	(Zero up-crossing period)
0,35	0,00000	2	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,63749	rad/s	(Modal frequency)
0,4	0,00000	4	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,67895	rad/s	(Peak frequency)
0,45	0,00001	2	0,011	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _Z =	0,64498	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,035	0,001	0,00000	0,00000	0,00000	0,00000	0,00000				
0,55	0,01059	2	0,049	0,002	0,00003	0,00005	0,00003	0,00002	0,00000	ζav =	0,02721	deg	(Average Pitch amplitude)
0,6	0,04933	4	0,075	0,006	0,00028	0,00112	0,00067	0,00040	0,00014	ζ 1/10 =	0,05530	deg	(One-tenth highest Pitch amplitude)
0,65	0,12182	2	0,098	0,010	0,00117	0,00233	0,00152	0,00099	0,00042	ζext =	0,08281	deg	(Most probable extreme Pitch amplitude)
0,7	0,21452	4	0,080	0,006	0,00139	0,00555	0,00388	0,00272	0,00133	ζ(α=0.01) =	0,10594	deg	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,065	0,004	0,00153	0,00306	0,00230	0,00172	0,00097				1% -> 99% level of confidence)
0,8	0,63207	4	0,055	0,003	0,00192	0,00770	0,00616	0,00493	0,00315				
0,85	0,74695	2	0,045	0,002	0,00152	0,00304	0,00259	0,00220	0,00159				
0,9	0,48933	4	0,034	0,001	0,00055	0,00222	0,00200	0,00180	0,00146				
0,95	0,30856	2	0,031	0,001	0,00029	0,00059	0,00056	0,00053	0,00048				
1	0,24236	4	0,034	0,001	0,00028	0,00112	0,00112	0,00112	0,00112				
1,05	0,20793	2	0,038	0,001	0,00030	0,00060	0,00063	0,00066	0,00073				
1,1	0,17933	4	0,030	0,001	0,00016	0,00065	0,00071	0,00079	0,00095				
1,15	0,15374	2	0,021	0,000	0,00007	0,00014	0,00016	0,00018	0,00024				
1,2	0,13130	4	0,016	0,000	0,00003	0,00013	0,00016	0,00019	0,00028				
1,25	0,11194	2	0,012	0,000	0,00002	0,00003	0,00004	0,00005	0,00008				
1,3	0,09543	4	0,010	0,000	0,00001	0,00004	0,00005	0,00007	0,00012				
1,35	0,08144	2	0,010	0,000	0,00001	0,00001	0,00002	0,00003	0,00005				
1,4	0,06962	4	0,009	0,000	0,00001	0,00002	0,00003	0,00004	0,00009				
1,45	0,05966	2	0,008	0,000	0,00000	0,00001	0,00001	0,00002	0,00004				
1,5	0,05125	4	0,008	0,000	0,00000	0,00001	0,00002	0,00003	0,00006				
1,55	0,04415	2	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00003				
1,6	0,03815	4	0,007	0,000	0,00000	0,00001	0,00001	0,00002	0,00004]			
1,65	0,03307	2	0,006	0,000	0,00000	0,00000	0,00000	0,00001	0,00002]			
1,7	0,02875	4	0,006	0,000	0,00000	0,00000	0,00001	0,00001	0,00003]			
1,75	0,02507	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,8	0,02193	4	0,005	0,000	0,00000	0,00000	0,00000	0,00001	0,00002				
1,85	0,01924	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,9	0,01693	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001]			
1,95	0,01494	2	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
2	0,01321	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001	1			
2,05	0,01172	1	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
		Σ =				0,02844	0,02266	0,01848	0,01331				
						Σ0	Σ1	Σ2	Σ4]			

Yaw (1)

JONSWAP

m ₀ =	0,0002240033
m1 =	0,0002045336
m ₂ =	0,0001932422
m₄ =	0.0001905110

Hs	1,97	m											
ω (rad/s)	S(@)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,02993	deg	(Significant Yaw amplitude)
(rad/s)	(m ² /rad/s)		(deg/m)	(deg ² /m ²)	(deg ² /(rad/s))	(deg ² /(rad/s))	(deg ²)	(deg ² (rad/s))	(deg ² (rad ³ /s ³))	T ₀ =	8,60163	secs	(Modal period)
0,25	0,00000	1	0,033	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	7,91010	secs	(Peak period)
0,3	0,00000	4	0,019	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	8,45604	secs	(Zero up-crossing period)
0,35	0,00000	2	0,015	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,73047	rad/s	(Modal frequency)
0,4	0,00000	4	0,026	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,79433	rad/s	(Peak frequency)
0,45	0,00001	2	0,054	0,003	0,00000	0,00000	0,00000	0,00000	0,00000	ω _z =	0,74304	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,067	0,004	0,00000	0,00001	0,00001	0,00000	0,00000				
0,55	0,01059	2	0,058	0,003	0,00004	0,00007	0,00004	0,00002	0,00001	ζav =	0,01871	deg	(Average Yaw amplitude)
0,6	0,04933	4	0,043	0,002	0,00009	0,00036	0,00022	0,00013	0,00005	ζ 1/10 =	0,03802	deg	(One-tenth highest Yaw amplitude)
0,65	0,12182	2	0,039	0,002	0,00019	0,00037	0,00024	0,00016	0,00007	ζext =	0,05748	deg	(Most probable extreme Yaw amplitude)
0,7	0,21452	4	0,033	0,001	0,00023	0,00092	0,00065	0,00045	0,00022	ζ(α=0.01) =	0,07326	deg	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,031	0,001	0,00035	0,00069	0,00052	0,00039	0,00022				1% -> 99% level of confidence)
0,8	0,63207	4	0,031	0,001	0,00062	0,00249	0,00199	0,00159	0,00102				
0,85	0,74695	2	0,029	0,001	0,00063	0,00125	0,00106	0,00090	0,00065				
0,9	0,48933	4	0,030	0,001	0,00044	0,00176	0,00158	0,00143	0,00116				
0,95	0,30856	2	0,028	0,001	0,00024	0,00049	0,00046	0,00044	0,00040				
1	0,24236	4	0,037	0,001	0,00033	0,00133	0,00133	0,00133	0,00133				
1,05	0,20793	2	0,049	0,002	0,00050	0,00101	0,00106	0,00111	0,00122				
1,1	0,17933	4	0,045	0,002	0,00037	0,00147	0,00162	0,00178	0,00216				
1,15	0,15374	2	0,037	0,001	0,00021	0,00042	0,00048	0,00055	0,00073				
1,2	0,13130	4	0,027	0,001	0,00010	0,00039	0,00047	0,00056	0,00081				
1,25	0,11194	2	0,019	0,000	0,00004	0,00008	0,00010	0,00012	0,00019				
1,3	0,09543	4	0,016	0,000	0,00002	0,00010	0,00013	0,00017	0,00029				
1,35	0,08144	2	0,017	0,000	0,00002	0,00005	0,00007	0,00009	0,00016				
1,4	0,06962	4	0,018	0,000	0,00002	0,00009	0,00013	0,00018	0,00034				
1,45	0,05966	2	0,016	0,000	0,00002	0,00003	0,00005	0,00007	0,00014				
1,5	0,05125	4	0,014	0,000	0,00001	0,00004	0,00006	0,00009	0,00020				
1,55	0,04415	2	0,012	0,000	0,00001	0,00001	0,00002	0,00003	0,00007				
1,6	0,03815	4	0,010	0,000	0,00000	0,00002	0,00003	0,00004	0,00010				
1,65	0,03307	2	0,009	0,000	0,00000	0,00001	0,00001	0,00001	0,00004				
1,7	0,02875	4	0,008	0,000	0,00000	0,00001	0,00001	0,00002	0,00006				
1,75	0,02507	2	0,007	0,000	0,00000	0,00000	0,00000	0,00001	0,00003				
1,8	0,02193	4	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00005				
1,85	0,01924	2	0,007	0,000	0,00000	0,00000	0,00000	0,00001	0,00002				
1,9	0,01693	4	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00005				
1,95	0,01494	2	0,008	0,000	0,00000	0,00000	0,00000	0,00001	0,00003				
2	0,01321	4	0,009	0,000	0,00000	0,00000	0,00001	0,00002	0,00006				
2,05	0,01172	1	0,010	0,000	0,00000	0,00000	0,00000	0,00000	0,00002				
		Σ =				0,01344	0,01227	0,01159	0,01143				
						Σ0	Σ1	Σ2	Σ4				

Surge (1)

JONSWAP

m ₀ =	0,0000475403	
m1 =	0,0000396134	
m ₂ =	0,0000334856	
m₄ =	0.0000251721	

Hs	1,97	m	1								·	1	
ω (rad/s)	S(ω)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	<u>ζs =</u>	0,01379	m	(Significant Surge amplitude)
(rad/s)	(m ² /rad/s)		(m/m)	(m^{2}/m^{2})	(m ² /(rad/s))	(m ² /(rad/s))	(m ²)	(m ² (rad/s))	(m ² (rad ³ /s ³))	T ₀ =	9,42565	secs	(Modal period)
0,25	0,00000	1	0,031	0,001	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	9,05859	secs	(Peak period)
0,3	0,00000	4	0,013	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	9,35821	secs	(Zero up-crossing period)
0,35	0,00000	2	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,66661	rad/s	(Modal frequency)
0,4	0,00000	4	0,008	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,69362	rad/s	(Peak frequency)
0,45	0,00001	2	0,012	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ω _z =	0,67141	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	0,013	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
0,55	0,01059	2	0,010	0,000	0,00000	0,00000	0,00000	0,00000	0,00000	ζav =	0,00862	m	(Average Surge amplitude)
0,6	0,04933	4	0,010	0,000	0,00000	0,00002	0,00001	0,00001	0,00000	ζ 1/10 =	0,01751	m	(One-tenth highest Surge amplitude)
0,65	0,12182	2	0,011	0,000	0,00001	0,00003	0,00002	0,00001	0,00001	ζext =	0,02630	m	(Most probable extreme Surge amplitude)
0,7	0,21452	4	0,017	0,000	0,00006	0,00025	0,00018	0,00012	0,00006	ζ(α=0.01) =	0,03361	m	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,020	0,000	0,00015	0,00029	0,00022	0,00017	0,00009				1% -> 99% level of confidence)
0,8	0,63207	4	0,020	0,000	0,00025	0,00100	0,00080	0,00064	0,00041				
0,85	0,74695	2	0,018	0,000	0,00025	0,00050	0,00043	0,00036	0,00026				
0,9	0,48933	4	0,015	0,000	0,00011	0,00043	0,00039	0,00035	0,00028				
0,95	0,30856	2	0,013	0,000	0,00005	0,00010	0,00009	0,00009	0,00008				
1	0,24236	4	0,010	0,000	0,00003	0,00010	0,00010	0,00010	0,00010				
1,05	0,20793	2	0,008	0,000	0,00001	0,00003	0,00003	0,00003	0,00003				
1,1	0,17933	4	0,007	0,000	0,00001	0,00004	0,00004	0,00005	0,00006				
1,15	0,15374	2	0,007	0,000	0,00001	0,00001	0,00002	0,00002	0,00003				
1,2	0,13130	4	0,006	0,000	0,00000	0,00002	0,00002	0,00003	0,00004				
1,25	0,11194	2	0,005	0,000	0,00000	0,00001	0,00001	0,00001	0,00001				
1,3	0,09543	4	0,004	0,000	0,00000	0,00001	0,00001	0,00001	0,00002				
1,35	0,08144	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,4	0,06962	4	0,003	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
1,45	0,05966	2	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,5	0,05125	4	0,002	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,55	0,04415	2	0,001	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,6	0,03815	4	0,001	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,65	0,03307	2	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,7	0,02875	4	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,75	0,02507	2	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,8	0,02193	4	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
1,85	0,01924	2	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
1,9	0,01693	4	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
1,95	0,01494	2	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
2	0,01321	4	0,000	0,000	0,00000	0,00000	0,00000	0,00000	0,00000]			
2,05	0,01172	1	0,001	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
		Σ =				0,00285	0,00238	0,00201	0,00151	1			
						Σ0	Σ1	Σ2	Σ4				

Sway (2)

JONSWAP

m ₀ =	0,0187283754
m1 =	0,0146833886
m ₂ =	0,0119264307
m₄ =	0.0087777920

Hs	1,97	m]										
ω (rad/s)	S(@)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	ζs =	0,27370	m	(Significant Sway amplitude)
(rad/s)	(m ² /rad/s)		(m/m)	(m^{2}/m^{2})	(m ² /(rad/s))	(m ² /(rad/s))	(m ²)	(m ² (rad/s))	(m ² (rad ³ /s ³))	T ₀ =	10,01762	secs	(Modal period)
0,25	0,00000	1	2,351	5,527	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	9,15490	secs	(Peak period)
0,3	0,00000	4	1,955	3,822	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	9,84205	secs	(Zero up-crossing period)
0,35	0,00000	2	1,658	2,750	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,62721	rad/s	(Modal frequency)
0,4	0,00000	4	1,436	2,063	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,68632	rad/s	(Peak frequency)
0,45	0,00001	2	1,268	1,609	0,00001	0,00002	0,00001	0,00000	0,00000	ω _z =	0,63840	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	1,136	1,290	0,00097	0,00390	0,00195	0,00097	0,00024				
0,55	0,01059	2	1,021	1,043	0,01104	0,02208	0,01214	0,00668	0,00202	ζav =	0,17106	m	(Average Sway amplitude)
0,6	0,04933	4	0,885	0,783	0,03862	0,15449	0,09270	0,05562	0,02002	ζ 1/10 =	0,34760	m	(One-tenth highest Sway amplitude)
0,65	0,12182	2	0,699	0,489	0,05952	0,11904	0,07738	0,05030	0,02125	ζext =	0,52017	m	(Most probable extreme Sway amplitude)
0,7	0,21452	4	0,464	0,215	0,04610	0,18440	0,12908	0,09036	0,04427	ζ(α=0.01) =	0,66564	m	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,285	0,082	0,02927	0,05854	0,04391	0,03293	0,01852				1% -> 99% level of confidence)
0,8	0,63207	4	0,254	0,065	0,04090	0,16360	0,13088	0,10471	0,06701				
0,85	0,74695	2	0,266	0,071	0,05299	0,10597	0,09008	0,07656	0,05532				
0,9	0,48933	4	0,280	0,078	0,03832	0,15328	0,13795	0,12416	0,10057				
0,95	0,30856	2	0,260	0,067	0,02082	0,04163	0,03955	0,03757	0,03391				
1	0,24236	4	0,233	0,054	0,01317	0,05267	0,05267	0,05267	0,05267				
1,05	0,20793	2	0,204	0,042	0,00869	0,01739	0,01826	0,01917	0,02114				
1,1	0,17933	4	0,178	0,032	0,00567	0,02267	0,02494	0,02743	0,03319				
1,15	0,15374	2	0,152	0,023	0,00356	0,00712	0,00819	0,00942	0,01245				
1,2	0,13130	4	0,127	0,016	0,00212	0,00847	0,01016	0,01219	0,01756				
1,25	0,11194	2	0,105	0,011	0,00122	0,00245	0,00306	0,00382	0,00597				
1,3	0,09543	4	0,088	0,008	0,00074	0,00296	0,00385	0,00500	0,00846				
1,35	0,08144	2	0,076	0,006	0,00047	0,00094	0,00127	0,00172	0,00313				
1,4	0,06962	4	0,065	0,004	0,00030	0,00118	0,00166	0,00232	0,00454				
1,45	0,05966	2	0,055	0,003	0,00018	0,00036	0,00052	0,00075	0,00158				
1,5	0,05125	4	0,045	0,002	0,00011	0,00042	0,00064	0,00095	0,00214				
1,55	0,04415	2	0,037	0,001	0,00006	0,00012	0,00019	0,00029	0,00071	_			
1,6	0,03815	4	0,030	0,001	0,00003	0,00014	0,00022	0,00035	0,00089	_			
1,65	0,03307	2	0,023	0,001	0,00002	0,00004	0,00006	0,00010	0,00027	_			
1,7	0,02875	4	0,018	0,000	0,00001	0,00004	0,00006	0,00010	0,00030	_			
1,75	0,02507	2	0,013	0,000	0,00000	0,00001	0,00002	0,00003	0,00008	_			
1,8	0,02193	4	0,009	0,000	0,00000	0,00001	0,00001	0,00003	0,0008				
1,85	0,01924	2	0,007	0,000	0,00000	0,00000	0,00000	0,00001	0,00002				
1,9	0,01693	4	0,005	0,000	0,00000	0,00000	0,00000	0,00001	0,00002				
1,95	0,01494	2	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
2	0,01321	4	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00002				
2,05	0,01172	1	0,005	0,000	0,00000	0,00000	0,00000	0,00000	0,00001				
		Σ =				1,12370	0,88100	0,71559	0,52667				
						Σ0	Σ1	Σ2	Σ4				

Heave (3)

JONSWAP

m ₀ =	0,0769779362
m1 =	0,0581194308
m ₂ =	0,0444922814
m₄ =	0.0271701202

Hs	1,97	m										_1	
ω (rad/s)	S(@)	SM	RAO	RAO ²	Sr(w)	Sr(ω)*SM	ω*Sr(w)*SM	ω ² *Sr(w)*SM	ω ⁴ *Sr(w)*SM	ζs =	0,55490	m	(Significant Heave amplitude)
(rad/s)	(m ² /rad/s)		(m/m)	(m^{2}/m^{2})	(m ² /(rad/s))	(m ² /(rad/s))	(m ²)	(m ² (rad/s))	(m ² (rad ³ /s ³))	T ₀ =	10,40245	secs	(Modal period)
0,25	0,00000	1	1,020	1,040	0,00000	0,00000	0,00000	0,00000	0,00000	T _P =	10,05050	secs	(Peak period)
0,3	0,00000	4	1,039	1,079	0,00000	0,00000	0,00000	0,00000	0,00000	T _z =	10,33075	secs	(Zero up-crossing period)
0,35	0,00000	2	1,067	1,138	0,00000	0,00000	0,00000	0,00000	0,00000	ω ₀ =	0,60401	rad/s	(Modal frequency)
0,4	0,00000	4	1,107	1,225	0,00000	0,00000	0,00000	0,00000	0,00000	ω _P =	0,62516	rad/s	(Peak frequency)
0,45	0,00001	2	1,157	1,339	0,00001	0,00002	0,00001	0,00000	0,00000	ω _z =	0,60820	rad/s	(Zero up-crossing frequency)
0,5	0,00076	4	1,217	1,480	0,00112	0,00447	0,00224	0,00112	0,00028				
0,55	0,01059	2	1,277	1,631	0,01726	0,03453	0,01899	0,01044	0,00316	ζav =	0,34681	m	(Average Heave amplitude)
0,6	0,04933	4	1,313	1,724	0,08506	0,34024	0,20415	0,12249	0,04410	<u>د</u> 1/10 =	0,70472	m	(One-tenth highest Heave amplitude)
0,65	0,12182	2	1,277	1,631	0,19868	0,39735	0,25828	0,16788	0,07093	ζext =	1,05104	m	(Most probable extreme Heave amplitude)
0,7	0,21452	4	1,137	1,293	0,27732	1,10926	0,77648	0,54354	0,26633	ζ(α=0.01) =	1,34673	m	(Extreme Pitch amplitude w/ prob. of occ.
0,75	0,35915	2	0,915	0,838	0,30084	0,60168	0,45126	0,33845	0,19038				1% -> 99% level of confidence)
0,8	0,63207	4	0,710	0,505	0,31888	1,27552	1,02042	0,81634	0,52245				
0,85	0,74695	2	0,576	0,332	0,24770	0,49540	0,42109	0,35793	0,25860				
0,9	0,48933	4	0,365	0,133	0,06506	0,26023	0,23421	0,21079	0,17074				
0,95	0,30856	2	0,263	0,069	0,02136	0,04272	0,04059	0,03856	0,03480				
1	0,24236	4	0,193	0,037	0,00901	0,03602	0,03602	0,03602	0,03602				
1,05	0,20793	2	0,142	0,020	0,00422	0,00844	0,00886	0,00930	0,01025				
1,1	0,17933	4	0,105	0,011	0,00199	0,00797	0,00877	0,00965	0,01167				
1,15	0,15374	2	0,078	0,006	0,00094	0,00188	0,00216	0,00249	0,00329				
1,2	0,13130	4	0,058	0,003	0,00045	0,00178	0,00214	0,00256	0,00369				
1,25	0,11194	2	0,044	0,002	0,00021	0,00043	0,00054	0,00067	0,00105				
1,3	0,09543	4	0,032	0,001	0,00010	0,00039	0,00051	0,00066	0,00112				
1,35	0,08144	2	0,024	0,001	0,00005	0,00009	0,00013	0,00017	0,00031				
1,4	0,06962	4	0,019	0,000	0,00002	0,00010	0,00014	0,00019	0,00037				
1,45	0,05966	2	0,017	0,000	0,00002	0,00003	0,00005	0,00007	0,00015				
1,5	0,05125	4	0,018	0,000	0,00002	0,00006	0,00010	0,00014	0,00032				
1,55	0,04415	2	0,019	0,000	0,00002	0,00003	0,00005	0,00008	0,00018				
1,6	0,03815	4	0,019	0,000	0,00001	0,00005	0,00009	0,00014	0,00035				
1,65	0,03307	2	0,018	0,000	0,00001	0,00002	0,00004	0,00006	0,00016				
1,7	0,02875	4	0,017	0,000	0,00001	0,00003	0,00006	0,00010	0,00028				
1,75	0,02507	2	0,016	0,000	0,00001	0,00001	0,00002	0,00004	0,00012				
1,8	0,02193	4	0,015	0,000	0,00000	0,00002	0,00003	0,00006	0,00020				
1,85	0,01924	2	0,013	0,000	0,00000	0,00001	0,00001	0,00002	0,00008				
1,9	0,01693	4	0,011	0,000	0,00000	0,00001	0,00002	0,00003	0,00011				
1,95	0,01494	2	0,009	0,000	0,00000	0,00000	0,00000	0,00001	0,00004				
2	0,01321	4	0,007	0,000	0,00000	0,00000	0,00001	0,00001	0,00004				
2,05	0,01172	1	0,004	0,000	0,00000	0,00000	0,00000	0,00000	0,00000				
		Σ =				4,61868	3,48717	2,66954	1,63021]			
						Σ0	Σ1	Σ2	Σ4				

LAMPIRAN A-4

KONFIGURASI COUPLING LINE

KONFIGURASI COUPLING LINE FSRU

KONFIGURASI COUPLING LINE LNGC

LAMPIRAN A-5

GRAFIK GAYA TARIK COUPLING LINE

Gaya Tarik Coupling Line

A. Heading 45° (Jarak Horisontal 2.5 meter)

B. Heading 45° (Jarak Horisontal 4 meter)

C. Heading 45° (Jarak Horisontal 6 meter)

D. Heading 45° (Jarak Horisontal 8.5 meter)

E. Heading 90º (Jarak Horisontal 2.5 meter)

F. Heading 90º (Jarak Horisontal 4 meter)

G. Heading 90° (Jarak Horisontal 6 meter)

H. Heading 90º (Jarak Horisontal 8.5 meter)

I. Heading 135º (Jarak Horisontal 2.5 meter)

J. Heading 135° (Jarak Horisontal 4 meter)

K. Heading 135º (Jarak Horisontal 6 meter)

L. Heading 135º (Jarak Horisontal 8.5 meter)

LAMPIRAN B-1 INPUT PEMODELAN FSRU DAN LNGC PADA MOSES

Input MOSES : Model FSRU

<pre>\$ Model : FSRU \$ File Dame : FSRU.dat \$ Created by : Yuni Ari Wibowo \$ NRP : 4310 100 703 \$************************************</pre>	plane	6	-cart	0 2.556 5.111 7.619 7.667 10.223 12.778 15.334 17.89 18.573	10.02 10.42 10.969 11.6 11.613 12.425 13.606 15.907 23.778 26	///////////////////////////////////////
<pre>&endif &dimen -save -dimen meters m-tons \$ \$ **** basic variables \$ &set vname = FSRU &set v_npref = *t@ &set ves_type = FSRU &set cmp_ok = .false. &set flex ok = .false.</pre>	plane	8	-cart	0 2.556 5.111 7.667 10.223 10.289 12.778 15.334 17.89 19.71	9.177 9.62 10.156 10.79 11.577 11.6 12.637 14.395 18.684 26	ノノノンシンシン
<pre>&set lwa_ok = .false. \$ \$ \$********************************</pre>	plane	10	-cart	0 2.556 5.111 7.667 10.223 12.112 12.778 15.334 17.89 20.445 20.696	5.987 8.67 9.376 10.097 10.891 11.6 11.889 13.342 16.284 25.333 26	///////////////////////////////////////
<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	plane	12	-cart	0 2.556 5.111 7.667 10.223 12.778 13.673 15.334 17.89 20.445 21.529 0 2.556	1.808 2.721 6.466 8.263 9.688 11.12 11.6 12.532 14.764 22.448 26 1.2 1.85	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
plane 2 -cart 0 12.032 \ 2.556 12.569 \ 5.111 13.234 \ 7.667 13.936 \ 10.223 14.803 \ 12.778 16.534 \ 15.334 22.986 \ 15.623 26				5.111 7.667 10.223 12.778 15.195 15.334 17.89 20.445 21.876	3.595 5.822 7.975 9.851 11.6 11.701 13.718 18.329 26	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
plane 4 -cart 0 10.977 \ 2.556 11.393 \ 3.465 11.6 \ 5.111 11.989 \ 7.667 12.658 \ 10.223 13.499 \ 12.778 14.869 \ 15.334 18.23 \ 17.207 26	plane	16	-cart	0 2.556 5.111 5.534 7.667 8.572 10.223 11.102 12.778 13.359 15.334	0.86 1.398 2.735 3 4.373 5 6.263 7 8.483 9 10.72	///////////////////////////////////////

			16.358 17.507 17.89 20.445 22.052	11.6 12.6 12.945 16.181 26					15.334 15.655 17.521 17.89 19.423 20.131	6.712 7 9 9.467 11.6 12.6	$\langle \rangle \rangle \langle \rangle$
plane	18	-cart	0 2.226 2.556	0.639 1 1.099	\ \ \				20.445 22.457	13.029 26	Ń
			5.111 6.587 7.667 9.986 10.223 12.628 12.778 14.726 15.334 17.293 17.293 17.89 18.303 20.445 22.177	2.206 3 3.598 5.158 7 7.131 9 9.623 11.6 12.189 12.6 15.067 26	$\langle \\ \rangle \\ $	plane	26	-cart	0 2.556 2.685 4.809 5.111 7.667 10.065 10.223 12.778 13.796 15.334 16.37 17.89 18.168 19.938	0.214 0.477 0.5 1 1.088 1.98 3 3.073 4.383 5 6.1 7 8.647 9 11.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plane	20	-cart	0 2.556 2.965 5.111	0.485 0.882 1 1.824					20.445 20.57 22.533	12.404 12.6 26	\ \
			7.556 7.667 10.223 11.158 12.778 13.83 15.334 15.837 17.89 18.099 18.997 20.445 22.282	3.056 4.429 5 6.133 7 8.456 9 11.362 11.6 12.6 14.28 26	$\langle \rangle$	plane	28	-cart	0 2.556 3.219 5.111 5.412 7.667 10.223 10.803 12.778 14.482 15.334 16.989 17.89 18.717	0.16 0.389 0.5 0.92 1 1.713 2.738 3 3.985 5 5.595 7 7.959 9	$\times \times $
plane	22	-cart	0 1.434 2.556 3.606	0.371 0.5 0.717 1					20.368 20.445 20.934 22.604	11.6 11.735 12.6 26	$\langle \rangle$
			5.111 7.667 8.451 10.223 12.158 12.778 14.82 15.334 16.755 17.89 18.812 19.606 20.445 22.373	1.529 2.634 3 3.886 5 5.406 7 7.479 9 10.406 11.6 12.6 13.619 26	$\langle \rangle$	plane	48	-cart	0 2.556 5.111 7.667 9.471 10.223 12.156 12.778 15.334 16.684 17.89 19.15 20.445 20.56	0 0.044 0.148 0.318 0.5 0.603 1 1.183 2.245 3 3.839 5 6.792 7	$\times \times $
plane	24	-cart	0 2.111 2.556 4.212 5.111	0.283 0.5 0.584 1 1.288					20.56 21.441 22.207 22.431 22.991	9 11.6 12.6 26	$\langle \rangle$
			7.667 9.284 10.223 12.778 13.029	2.283 3 3.448 4.843 5		plane	68	-cart	0 2.556 5.111 7.667 10.223	0 0.003 0.01 0.025 0.054	$\langle \rangle$ $\langle \rangle$ $\langle \rangle$

plane	88	-cart	12.778 15.334 17.072 17.89 18.483 20.445 21.011 21.886 22.287 22.542 22.772 22.838 23	0.109 0.244 0.5 0.746 1 2.34 3 5 7 9 11.6 12.6 26 0		plane	148	-cart	0 2.556 5.111 7.667 10.223 12.778 15.334 17.89 20.445 21.216 21.963 22.805 22.857 22.857 22.872 22.883	0 0.001 0.003 0.008 0.017 0.035 0.081 0.273 0.5 1 3 5 7 9	$\langle \rangle$
			2.556 5.111 7.667 10.223 12.778	0 0.001 0.003 0.007 0.015		plane	168	-cart	22.9 22.907 23 0	11.6 12.6 26 0	
			15.334 17.89 20.445 21.003 21.783 22.768 22.929 22.954 22.954 22.977 22.984 23	0.033 0.081 0.315 0.5 1 3 5 7 9 11.6 12.6 26	$\langle \rangle$				2.556 5.111 7.667 10.223 12.778 15.334 17.89 20.421 20.445 21.302 22.337 22.429 22.476	0.001 0.003 0.009 0.019 0.038 0.073 0.155 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	$\langle \rangle$
plane	108	-cart	0 2.556 5.111 7.667 10.223	0 0 0.001 0.004		nlana	100	aant	22.521 22.587 22.616 23	9 11.6 12.6 26	
			12.778 15.334 17.89 20.445 21.478 22.184 22.95 22.993 22.999 23 23 23	0.01 0.023 0.058 0.21 0.5 1 3 5 7 9 11.6 12.6 26	$\langle \rangle$	prane	100	-cart	2.556 5.111 7.667 10.223 12.778 15.334 17.89 18.328 19.705 20.445 21.173 21.385 21.511	0.002 0.009 0.025 0.053 0.103 0.196 0.423 0.5 1 1.63 3 5 7	$\langle \rangle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle $
plane	128	-cart	0 2.556 5.111 7.667 10.223	0 0 0.002 0.004					21.638 21.826 21.908 23	9 11.6 12.6 26	$\langle \rangle$
			12.778 15.334 17.89 20.445 21.456 22.169 22.947 22.987 22.993 22.994 22.995 22.995 23	0.011 0.024 0.06 0.216 0.5 1 3 5 7 9 11.6 12.6 26	$\langle \rangle$	plane	208	-cart	0 2.556 5.111 7.667 10.223 12.778 13.587 15.334 15.811 17.89 18.231 18.871 19.209 19.545	0 0.006 0.032 0.09 0.197 0.399 0.5 0.85 1 2.495 3 5 7 9	$\langle \\ \rangle \\ \langle \\ \rangle \\ \rangle \\ \langle \\ \rangle \\ \rangle \\ \langle \\ \rangle \\ \rangle$

plane	228	-cart	20.036 20.247 20.445 22.994 0 2.556	11.6 12.6 13.494 26 0 0.031					6.518 7.667 10.223 12.778 15.334 17.89 18.22	12.6 13.87 16.319 18.937 22.016 25.522 26	$\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$
			5.111 7.657 9.635 10.223 12.778 12.849 14.012 14.676 15.334 15.437 16.552 17.02 17.89 20.445 22.929	0.17 0.5 0.502 1 1.219 2.921 3 5 7 8.743 9 11.6 12.6 14.376 19.834 26	$\langle \\ \rangle \\ $	plane	272	-cart	0 2.256 2.556 3.027 4.767 5.111 5.111 5.111 5.267 5.276 5.693 5.897 5.939 7.667 10.223 12.778	0 0.5 0.67 1 3 9.419 11.276 3.594 11.6 9 5 7 12.6 14.491 16.931 19.659	$\times \times $
plane	248	-cart	0 2.556 4.262	0 0.138 0.5	\setminus				15.334 17.487	22.905 26	\
			5.111 5.52 7.667 8.088 9.354 9.837 10.201 10.223 11.794 12.562 12.778 15.334 17.89 20.445 22.414	0.811 1 2.549 3 5 7 9 9.054 11.6 12.6 12.871 15.988 19.32 22.987 26		plane	274	-cart	$\begin{array}{c} 0\\ 2.108\\ 2.556\\ 2.843\\ 4.53\\ 4.726\\ 4.893\\ 5.111\\ 5.111\\ 5.111\\ 5.357\\ 5.433\\ 5.605\\ 7.667\\ 10.223\\ 12.778 \end{array}$	$\begin{matrix} 0 \\ 0.5 \\ 0.781 \\ 1 \\ 3 \\ 11.6 \\ 9 \\ 4.108 \\ 8.545 \\ 12.254 \\ 12.6 \\ 5 \\ 7 \\ 15.127 \\ 17.606 \\ 20.493 \end{matrix}$	$\times \times $
plane	268	-cart	0 2.556 2.556	0 0.5 0.5					15.334 16.683	23.962 26	\
			3.395 5.111 5.245 6.034 6.22 6.347 6.488 7.093 7.667 10.223 12.778 15.334 17.89 18.886	1 2.802 3 5 11.6 7 12.6 13.246 15.745 18.293 21.249 24.605 26	$\langle \rangle$	plane	276	-cart	0 1.96 2.556 2.659 4.181 4.29 4.503 4.766 5.11 5.111 5.111 5.173 5.315 7.667 10 223	0 0.5 0.914 1 11.6 3 9 12.6 4.788 7.765 13.067 5 7 15.806 18.383	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
plane	270	-cart	0 2.406 2.556	0 0.5 0.577	$\langle \rangle$				10.223 12.778 15.334 15.803	18.383 21.491 25.25 26	\ \ \
			3.21 5.005 5.111 5.656 5.806 5.954 6.19	1 3 3.169 9 11.6 5 7	、 、 、 、 、 、	plane	278	-cart	0 1.81 2.471 2.556 3.626 4.043	0 0.5 1 1.078 11.6 3	$\langle \rangle \rangle \langle \rangle$

			4.1 4.158 4.907 5.021 5.111 7.667 10.223 12.778 14.836	9 12.6 5 7 13.888 16.582 19.327 22.73 26		plane	286.8	-cart	3.746 5.111 7.667 9.809 0 2.556 5.111 7.667 9.172	5 20.005 22.756 26 11.6 13.585 18.589 20.855 23.705 26	
plane	280	-cart	0 1.651 2.274 2.556 3.05 3.516 3.675	0 0.5 1 1.286 11.6 12.6 9		plane	288	-cart	0 2.556 5.111 7.667 8.16	16.816 19.955 22.17 25.241 26	
			3.788 4.632 4.719 5.111 7.667	3 5 7 14.836 17.557		plane	289	-cart	0 2.556 5.111 7.261	18.559 21.089 23.309 26	\backslash
	202		10.223 12.778 13.772	20.539 24.311 26		plane	290	-cart	0 2.556 5.111 6.31	20.125 22.229 24.498 26	\setminus
prane	202	-Cart	1.47 2.061 2.425 2.556 2.556	0.5 1 11.6 1.55 12.013		plane	291	-cart	0 2.556 5.111 5.312	21.622 23.378 25.749 26	\backslash
			2.557 2.794 3.207 3.525	9.904 12.6 9 3		plane	292	-cart	0 2.556 4.236	23.09 24.537 26	\backslash
			4.348	5 7		plane	294	-cart	0	26	
			7.667	18.876		pgen bo	w -perm	1.0 -]	loc 0 0	0 -dift	ype 3ddif
plane	284	-cart	12.592 0 1.218 1.642 1.794 2.556 2.556 2.556 2.662	26 0.012 0.5 11.6 12.6 1 1.875 9.106 14.945 9		plane	286	-cart	0 0.288 0.582 1.421 2.037 2.556 2.964 3.73 3.746	0.287 11.6 0.5 1 9 2.315 8.602 3 7 5	$\langle \rangle$
			3.259 4.057 4.077 5.111 7.667 10.223 11.278	3 5 7 17.957 20.625 24.187 26		plane	286.8	-cart	0 0.072 1.143 1.801 2.556 2.556 2.815	0.475 11.6 0.5 1 9 2.555 8.443 3	
plane	286	-cart	0 0.288 0.308	0.287 11.6 12.6	\ \ \				3.564 3.595	7 5	\

3.317 5 -cart 0 1.235 0 9.742 plane 289 \setminus 9.742 \ 0 1.328 9 \setminus 2.217 3 \ 2.553 3.606 \backslash 2.556 7.823 \ 2.959 7 \backslash 3.023 5 -cart 0 0 \setminus plane 290 1.726 \setminus 9.708 1.124 9 \setminus 1.779 3 \ 2.551 7.12 \ 2.553 4.589 \setminus 2.587 7 \setminus 2.653 5 -cart 0 0 plane 291 2.35 \backslash 9.667 \backslash 0.856 9 \backslash 1.106 3 \setminus 2.132 7 \setminus 2.176 5 -cart 0 0 plane 292 3.175 \ 9.492 \ 0.483 9 \backslash 1.532 5 \setminus 1.565 7 plane 293 -cart 0 0 4.399 \ 0 8.942 \ 0.534 5 \backslash 0.822 7 end pgen nb : Untuk memodelkan FSRU ini harus dijalankan

dengan program .cif berikut ini :
\$ Model : FSRU
\$ File Dame : FSRU.cif
\$ Created by : Yuni Ari Wibowo
\$ NRP : 4310 100 703
&title MODEL FSRU
&devi -cecho yes -oecho no -PRIMA DEV -auxin
FSRU.dat
inmo
&DIMEN -DIMEN METERS M-TONS

&instate barge -condi 0.0 0.0 0.0 &PLTMODEL VESSEL PIC ISO -anot points

PIC STARBOARD PIC BOW PIC TOP END &FINI

Input MOSES : Model LNGC

<pre>\$ Model : LNCG \$ File Dame : LNGC.dat \$ Created by : Yuni Ari Wibowo \$ NRP : 4310 100 703 \$************************************</pre>	*			5.111 7.488 7.667 8.731 10.223 12.778 15.334 17.632	10.953 11.6 11.655 12 12.568 13.997 17.217 26	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
<pre>& all administer (b) file. meters within &set bigl = &number(real 3.28) &set litl = &number(real 1./25.4) &endif &dimen -save -dimen meters m-tons \$ \$ *********************************</pre>	plane *	8	-cart	0 2.556 5.111 7.667 9.959 10.223 10.942 12.778 15.334 17.89 18.718	9.078 9.557 10.133 10.826 11.6 11.702 12 12.939 15.236 23.343 26	$\setminus \setminus \setminus \setminus \setminus \setminus \setminus \setminus$
<pre>&set flex_ok = .false. &set lwa_ok = .false. \$ \$*** basic dimensions \$ &set vdepth = &number(real %bigl%*31) &set vbeam = &number(real %bigl%*58) &set vlength = &number(real %bigl%*327) \$ \$**********************************</pre>	plane *	10	-cart	0 0.298 2.556 3.843 5.111 7.667 10.223 11.669 12.505 12.778 15.334 17.89 19.663	3.711 6 8.617 9 9.371 10.141 11.005 11.6 12 12.142 13.944 18.527 26	$\times \times $
\$ \$ VESSEL DEFINITION \$ &DESCRIBE body LNGC \$ \$ pgen LNGC -perm 1.0 -loc 0 0 0 -diftype 30 plane 0 -cart 0 13.164 \ 2.189 13.907 \ 3.983 14.446 \ 13.089 24.239 \ 13.114 26	plane	12	-cart	0 0.581 1.53 2.556 2.709 5.111 7.361 7.667 10.223 12.778 13.051 13.801 15.334	1.637 2 3 5.713 6 7.931 9 9.136 10.267 11.462 11.6 12 13.011	$\times \times $
plane 2 -cart 0 11.994 \ 2.556 12.567 \ 5.111 13.27 \ 7.667 14.025 \ 10.223 15.034 \ 12.778 17.497 \ 14.789 26	plane	14	-cart	17.89 20.401 0 1.836 2.556 3.023	16.165 26 1.09 2 2.568 3	
plane 4 -cart 0 10.911 \ 2.556 11.359 \ 3.559 11.6 \ 5.111 11.991 \ 5.144 12 \ 7.667 12.717 \ 10.223 13.675 \ 12.778 15.432 \ 15.334 20.343 \ 16.321 26				5.111 5.606 7.667 9.7 10.223 12.778 14.216 14.853 15.334 17.89 20.445	5.392 6 7.756 9 9.299 10.748 11.6 12 12.318 14.72 23.378	///////////////////////////////////////
plane 6 -cart 0 9.933 \ 2.556 10.367 \				20.003	20	

plane	16	-cart	0 0.842	0.775 1	\setminus				20.445 21.137	15.026 26	\
			2.556 2.834 4.269 5.111 7.667 7.977 10.223 11.51 12.778 15.204 15.334 15.745 17.89 20.445 20.838	1.827 2 3.619 5.708 6 8.031 9 9.894 11.6 11.695 12 13.854 20.315 26	$\langle \rangle$	plane	44	-cart	0 2.556 5.111 7.667 7.712 10.223 10.357 12.778 13.089 14.997 15.334 17.89 18.436 20.03 20.445	-0.006 0.067 0.23 0.494 0.5 0.965 1 1.86 2 3 3.207 5.328 6 9	~~~~~~~~~~~~~
plane	18	-cart	0 1.647 2.556 3.711	0.569 1 1.39 2					20.844 20.944 21.678	11.6 12 26	\ \ \
			5.111 5.398 7.667 9.817 10.223 12.778 13.069 15.334 16.087 16.55 17.89 20.445 20.953	2.828 3 4.403 6 6.349 8.734 9 10.959 11.6 12 13.234 17.087 26	$\langle \rangle$	plane	66	-cart	0 2.556 5.111 7.667 10.223 12.778 15.334 16.114 17.445 17.89 18.938 19.832 20.459 20.869	0 0.003 0.011 0.029 0.063 0.136 0.347 0.5 1 1.248 2 3 4.281 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plane	20	-cart	0 0.547 2.32 2.556 4.533	0.424 0.5 1 1.09 2					20.889 21.27 21.486 21.512 21.7	9 11.6 12 26	\ \ \
			5.111 6.446 7.667 10.223 11.275 12.778 14.429 15.334 16.912 17.304 17.89 20.445 21.05	2.299 3 3.658 5.221 6 7.317 9 9.961 11.6 12 12.6 15.87 26	$\langle \rangle$	plane	88	-cart	0 2.556 5.111 7.667 10.223 12.778 15.334 17.89 19.977 20.445 20.686 21.36 21.541 21.645	0 0.001 0.003 0.007 0.017 0.04 0.114 0.5 0.797 1 2 3 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plane	22	-cart	0 1.218 2.556 2.942	0.317 0.5 0.868 1					21.645 21.672 21.686 21.688 21.7	6 9 11.6 12 26	$\langle \rangle$
			5.111 5.326 7.419 7.667 10.223 12.456 12.778 15.334 15.539 17.676 17.89 18.005	1.901 2 3 3.123 4.492 6 6.256 8.764 9 11.6 11.86 12		plane	110	-cart	0 2.556 5.111 7.667 10.223 12.778 15.334 17.89 20.265 20.445 20.933	0 0 0.002 0.005 0.013 0.032 0.092 0.5 0.606 1	~~~~~~~~~~

plane	132	-cart	21.538 21.656 21.698 21.7 21.7 21.7 21.7	2 3 6 9 11.6 12 26					13.859 15.334 15.848 17.248 17.923 18.55 18.945 19.333	0.5 0.818 1 2 2.933 3 6 9 11.6	///////////////////////////////////////
p zane	101	0420	2.556 5.111 7.667 10.223	0 0.001 0.002 0.006					19.399 20.445 21.697	12 17.866 26	\ \ \
			12.778 15.334 17.89 20.192 20.445 20.873 21.501 21.621 21.666 21.671 21.675 21.676 21.7	0.015 0.036 0.101 0.5 0.651 1 2 3 6 9 11.6 12 26	$\langle \rangle$	plane	220	-cart	$\begin{array}{c} 0\\ 2.556\\ 5.111\\ 7.5\\ 7.667\\ 9.408\\ 10.223\\ 11.368\\ 12.44\\ 12.778\\ 13.823\\ 14.835\\ 15.334\\ 15.847 \end{array}$	0 0.032 0.178 0.5 0.533 1 1.332 2 3 3.455 6 9 10.324 11.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plane	154	-cart	0 2.556 5.111 7.667 10.223	0 0.002 0.006 0.015		nlana	242	aart	16.014 17.89 20.445 21.64	12 16.233 22.626 26	$\langle \rangle$
			12.776 15.334 17.89 19.705 20.445 20.457 21.172 21.33 21.409 21.445 21.48 21.487 21.7	0.066 0.166 0.5 0.99 1 2 3 6 9 11.6 12 26	$\langle \rangle$	prane	242		2.556 3.869 5.016 5.111 6.43 7.377 7.667 8.862 9.279 10.223 10.758 11.048 12.778	0.175 0.5 1 1.052 2 3 3.382 6 9 10.821 11.6 12 14.224	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
plane	176	-cart	0 2.556 5.111 7.667 10.223	0 0.001 0.007 0.02 0.044	$\langle \rangle$				15.334 17.89 20.445 21.041	17.489 21.1 25.037 26	\ \ \
			$12.778 \\ 15.334 \\ 17.89 \\ 18.154 \\ 19.236 \\ 20.142 \\ 20.445 \\ 20.445 \\ 20.642 \\ 20.77 \\ 20.898 \\ 20.92 \\ 21.7 \\ 10.000 \\ 20.000 \\ 21.7 \\ 20.000 \\ 20.000 \\ 21.7 \\ 20.000 \\ 2$	0.088 0.176 0.439 0.5 1 2 2.969 3 6 9 11.6 12 26	$\langle \rangle$	plane	264	-cart	$\begin{matrix} 0 \\ 2.112 \\ 2.556 \\ 2.836 \\ 3.791 \\ 4.476 \\ 4.978 \\ 5.069 \\ 5.111 \\ 5.111 \\ 5.111 \\ 5.111 \\ 5.305 \\ 5.551 \\ 7.667 \end{matrix}$	0 0.5 0.782 1 2 3 9 11.6 4.282 8.652 11.677 12 6 14.829	~~~~~~~~~~~~~
plane	198	-cart	0 2.556 5.111 7.667 10.223 12.778	0 0.005 0.028 0.079 0.176 0.363	$\langle \rangle$				10.223 12.778 15.334 16.411	17.515 20.631 24.307 26	

plane	267	-cart	0 1.896	0 0.5	\backslash				8.103	26	
			2.556 2.568 3.471 4.129 4.305	0.99 1 2 3 11.6		plane	280	-cart	0 2.556 5.111 7.076	17.318 20.766 23.297 26	$\langle \rangle$
			4.419 4.517 5.109 5.11 5.11	9 12 5.61 7.13 12 893		plane	281	-cart	0 2.556 5.111 6.163	19.349 21.996 24.553 26	$\langle \rangle$
			5.156 7.667 10.223 12.778	6 15.818 18.672 22.134		plane	282	-cart	0 2.556 5.111 5.202	21.114 23.217 25.869 26	$\langle \rangle$
plane	270	-cart	0 1.678 2.295	0 0.5 1	\setminus	plane	283	-cart	0 2.556 4.174	22.754 24.433 26	\backslash
			2.556 3.143 3.522 3.707	1.269 2 11.6 12		plane	284	-cart	0 2.556 2.972	24.321 25.649 26	\ \
			3.771 3.835 4.756	3 9 6	N N	plane end	285.101	-cart	0	26	
			5.111 7.667 10.223 12.778 13.791	14.1 17.036 20.233 24.212 26		pgen bo plane	ow -perm 276	1.0 -: -cart	loc 0 0 0 1.042 1.61 1.651	0 -dift 0.064 0.064 0.5 11.6 1	cype 3ddif \ \ \ \
plane	273	-cart	0 1.436 2.002 2.556 2.556 2.557 2.683	0 0.5 1 11.105 1.655 10.258 11.6					2.38 2.45 2.556 2.556 3.037 3.893	9 2 8.8 2.162 3 6	
			2.802 2.829 3.192 3.404 4.336 5.111 7.667 10.223 12.157	2 12 9 3 6 15.758 18.874 22.563 26		plane	278.8	-cart	$\begin{array}{c} 0 \\ 0.003 \\ 0.764 \\ 1.351 \\ 1.929 \\ 2.554 \\ 2.555 \\ 2.576 \\ 3.377 \end{array}$	0.686 11.6 1 9 2 7.964 2.957 3 6	
plane	276	-cart	0 1.042 1.61 1.655 2.38 2.45 2.556 2.556 2.556	0.064 0.5 11.6 1 12 9 2 8.8 2.162 15.428		plane	280	-cart	0 0 1.077 1.496 2.248 2.551 2.554 3.048	9.8 1.146 9 2 3.579 7.54 6	
plane	278.8	-cart	3.037 3.893 5.111 7.667 10.231 0 2.556 5.111 7.667	3 6 18.66 21.746 26 13.134 11.665 19.272 21.851 25.257		plane	281	-cart	0 0.845 0.941 1.853 2.544 2.556 2.698	9.668 1.643 2 9 3 4.5 6.787 6	

plane	282	-cart	0 0.777 1.231 2.252	9.677 2.285 9 3 6	\ \ \
plane	283	-cart	0 0 0.491 1.666	9.576 3.152 9 6	\ \ \
plane end pge	284 n	-cart	0 0 0.815	9.011 4.49 6	\ \
nb : Ur dengan \$ Model \$ File \$ Creat \$ NRP &title &devi LNGC.da inmo &DIMEN &instat &PLTMOD PIC PIC PIC PIC	ntuk men program Dame ed by MODEL LI -cecho t -DIMEN I e barge EL VESSI ISO -and STARBOAI BOW TOP	odelkan .cif be : LNGC : LNGC : Yuni : 4310 NGC yes -oe METERS M -condi EL ot point RD	LNGC ir rikut ir Ari Wił 100 703 cho no -TONS 0.0 0.0 s	ni harus ni : Dowo -PRIMA 0.0	dijalankan DEV -auxin
4ND &FINI					

LAMPIRAN B-2 INPUT FREQUENCY DOMAIN ANALYSIS KONDISI MENGAPUNG BEBAS

Input MOSES : Kondisi Mengapung Bebas (Free Floating)

\$ Ś Ś Response Amplitude Operators Response Amplitude Operators \$ \$ Ś untuk kondisi FSRU mengapung bebas untuk kondisi LNGC mengapung bebas Ś Ś (free floating) \$ (free floating) Created by : Yuni Ari Wibowo (4310 100 703) Created by : Yuni Ari Wibowo (4310 100 703) \$ \$ Ś Ś \$ Ŝ Ś Ś \$***************** set basic parameters \$***************** set basic parameters Ś Ś &dimen -remember -DIMEN meters m-tons &dimen -remember -DIMEN meters m-tons &device -oecho no -query no -primary device &device -oecho no -query no -primary device -\-auxin FSRU.DAT auxin LNGC.DAT &TITLE Step 4 - Response Amplitude Operators &TITLE Step 4 - Response Amplitude Operators Ś Ś \$***** \$**** READ MODEL READ MODEL Ŝ Ś INMODEL INMODEL Ś Ś \$************* ` \$****** set transit condition set transit condition \$ Ŝ &INSTATE -CONDITION 11.6 &INSTATE -CONDITION 9.1 \$**** \$**** plot of model plot of model Ś \$ &PLTMODEL VESSEL &PLTMODEL VESSEL PIC ISO PIC ISO pic side pic side pic top pic top END END Ś Ś \$**** \$***************** compute weight for cond. compute weight for cond. Ś Ś &weight -compute FSRU 11.67 16.77 82.17 82.17 &weight -compute LNGC 9.44 14.97 79.67 79.67 &equi -iter 50 &equi -iter 50 &STATUS B_W &STATUS B_W \$ \$**** \$***** enter hydrodynamics menu enter hydrodynamics menu Ŝ \$ HYDRODYNAMICS HYDRODYNAMICS Ś \$ \$**** . \$****************** stability trans. stability trans. \$ \$ g_press -heading 45 90 135 g_press -heading 45 90 135 end end \$ \$ \$**** \$***** frequency response frequency response Ś Ś freq_resp freq_resp Ś Ś \$**** \$**** response response Ś Ś rao -speed 0 rao -speed 0 Ś Ś \$**** \$***************** std post processing std post processing Ś Ś fr_point &body(cg FSRU -GLOBAL) \$ fr_point &body(cg LNGC -GLOBAL) \$ fr_point 152.41 -0.01 11.67 fr_point 158.07 -0.02 9.44 report report end end end end Ś &FINISH &FINISH

LAMPIRAN B-3 INPUT FREQUENCY & TIME DOMAIN ANALISIS KONDISI TERTAMBAT

Input MOSES : Kondisi Tertambat (Moored)

*TAB1 268.88 14.14 26.00 *TAB2 265.32 15.63 26.00 Ś 261.58 16.87 RAO & TENSION *TAB3 Ś 26.00 Kondisi Tertambat (Moored) 202.99 20.70 \$ *TAB4 26.00 192.99 20.70 Created by : Yuni Ari Wibowo (4310 100 703) *TAB5 26.00 Ś *ТАВб 67.99 20.70 26.00 47.99 20.70 *TAB7 26.00 *TAB8 10.01 19.27 26.00 *TAB9 4.46 16.32 26.00 Ś \$*** ***************** SET BASIC PARAMETERS 26.00 21.53 *M0 9.50 Ŝ *M1 86.00 21.53 9.50 *м4 *м5 166.00 21.53 &device -auxin fsru.dat -auxin LNGC.dat -oecho 9.50 no -primary device 226.00 21.53 9.50 &dimen -DIMEN METERS M-TONS ~ropel h_cat 120 exact -b_tension 305 -len 30 ¶meter -depth 25 \$ water depth (meter/feet) ~rope2 h_cat 120 exact -b_tension 305 -len 30 ~rope3 h_cat 120 exact -b_tension 305 -len 30 ~rope4 h_cat 192 exact -b_tension 760 -len 40 Ś S***** GEN. DATABASE \$ ~rope5 h_cat 192 exact -b_tension 760 -len 40 ~rope6 h_cat 120 exact -b_tension 305 -len 15 INMODEL &TITLE SHIP TO SHIP OPERATION MOORING ANALYSIS ~rope7 h_cat 120 exact -b_tension 305 -len 15 CONNECTOR TAUT1 ~rope1 *TAB1 *TAT1 Ś \$********************** SET PARAMETERS CONNECTOR TAUT2 ~rope2 *TAB2 *TAT2 \$ CONNECTOR TAUT3 ~rope3 *TAB3 *TAT3 CONNECTOR TAUT4 ~rope4 *TAB4 *TAT4 = 90 &SET HEAD = 2.23 CONNECTOR TAUT5 ~rope4 *TAB5 *TAT5 &SET Hs = 7.5 &SET Tp CONNECTOR TAUT6 ~rope5 *TAB6 *TAT6 CONNECTOR TAUT7 ~rope5 *TAB7 *TAT7 &SET Gamma = 2.5 &SET TIME = 3600 CONNECTOR TAUT8 ~rope6 *TAB8 *TAT8 CONNECTOR TAUT9 ~rope7 *TAB9 *TAT9 Ś \$***** Set Ground ~fedo gspr com x 100 2000 y 1 2000 z 1 2000 CONNECTOR FD0 ~FEDO *M0 *M0A -euler 0 0 90 Ś CONNECTOR FD1 ~FEDO *M1 *M1A -euler 0 0 90 &dimen -save -dimen meters m-tons CONNECTOR FD4 ~FEDO *M4 *M4A -euler 0 0 90 &DESCRIBE BODY GROUND CONNECTOR FD5 ~FEDO *M5 *M5A -euler 0 0 90 MEDIT *TY1 334.0 0.0 20 ~YOKE FIX END CONNECTOR A1 ~YOKE *TSL1 *TY1 \$******************* SET INIT. CONDITIONS END Ś &dcptime Time to Connect &INSTATE -LOCATE FSRU 0.00 0.00 -11.6 \ Ś -LOCATE LNGC 4.4189 -47.6422 -9.5 &connector TAUT1 -l_horizontal 30.5 &connector TAUT2 -1_horizontal 30.5 \$ \$*********************** SET WEIGHTS &connector TAUT3 -1_horizontal 30.5 &connector TAUT4 -l_horizontal 76.0 Ŝ &weight -compute FSRU 11.67 16.77 82.17 82.17 \ &connector TAUT5 -l_horizontal 76.0 -compute LNGC 6.01 13.55 79.77 79.77 &connector TAUT6 -l_horizontal 76.0 &connector TAUT7 -l_horizontal 76.0 &dcptime Time to Ballast &connector TAUT8 -l_horizontal 30.5 Ś &connector TAUT9 -1_horizontal 30.5 Ŝ &select :interest -select *@ &describe interest -associate :interest &subti Initial Position of FSRU and LNGC Ś &stat b w -h . \$***** DEFINE LINES &stat config -h \$****** plots MEDIT &DESCRIBE bodY FSRU Ś 0.00 26.00 *TSL1 294.0 &SUBTI Initial Position of FSRU and LNGC 283.51 -11.65 26.00 *TAT1 &picture iso -connector yes *TAT2 278.67 -14.21 26.00 &picture side -connector yes 274.28 -16.30 26.00 168.50 -22.00 26.00 *TAT3 &picture top -connector yes *TAT4 &picture bow -connector yes *TAT5 158.50 -22.00 26.00 Ś \$***** Mooring Tables *ТАТб 127.39 -22.00 26.00 117.39 -22.00 26.00 *TAT7 Ś 6.15 -18.54 26.00 *TAT8 Ś 1.61 -15.59 26.00 \$CONN_DESIGN *TAT9 30.00 -22.95 11.60 90.00 -22.95 11.60 \$ TABLE TAUT@ *MOA *M1A \$ REPORT 170.00 -22.95 11.60 END *M4A Ŝ 230.00 -22.95 11.60 *M5A \$END

```
$&DCPTIME Time To End Mooring Design
$****************** Frequency Domain
Ś
hydrodynamics
    g_press FSRU -heading %head%
    g_press LNGC -heading %head%
end
Ś
$***************** Find Equilibrium
Ś
&ENV SEA -sea JONSWAP %head% %Hs% %Tp% %Gamma% \
-CURRENT 0.375 %head% -WIND 14 %head% \
-TIME %time% 1.0
&equi -iter_max 1500
&subti Environment Heading SEA %head% degree \
Hs=%Hs% Tp=%Tp% (Frequency Domain Simulation)
Ś
&STATUS F_CONNECT -H
&STATUS Force
&stat cl_flex -h
&stat g_connect -h
&stat spread -h
&stat config -h
$&stat b_w -h
$&dcptime Time For Equilibrium
$*********************** NOW FIND EQUI.
Ŝ
&EQUI -OMEGA 1
Ŝ
.
$****** plots
Ś
&SUBTI EQUILIBIRUM SBS FSRU AND LNGC MODEL
&picture iso -connector yes
&picture side -connector yes
&picture top -connector yes
&picture bow -connector yes
Ś
$****************** Define Report Points
Ś
&select :interest -select *@
&describe interest -associate :interest
Ś
$***** RAOs
Ś
freq resp
  rao -HEADING %head%
  fr_point &BODY(CG FSRU)
     VLTST
     PLOT 1 3 5 7 -T_LEFT 'Translation RAO'\
       -RAX 9 11 13 -T_RIGHT 'Rotational RAO'
       -T_MAIN 'VESSEL MOTION'
     REPORT
  END
   SP_POINT sea
     VLIST
     PLOT 1 4 5 6 7 8 9 -T_LEFT 'SPECTRA
RESPONSE' $-N
     report
  END
Ś
$****************** Frequency Domain Post
Ś
Ś
   eau sum
   fr_point &BODY(CG FSRU)
Ŝ
     REPORT
Ś
$
  END
  st_point
     REPORT
  END
  st_clearance
Ś
```

```
Ś
      report
   end
   st_cforce @
     REPORT
   END
END
   $&DCPTIME Time To End FRQPOST
$****************** COMPUTE TDOM
tdom -no_cap
$&dcptime Time For Time Domain
&subti Environment Heading SEA %head% degree
Hs=2.23 Tp=7.5 (Time Domain Simulation)
$***************** REPORT TDOM RESULTS
PRCPOST
  CF_MAGNITUDE -EVENT 0.999 3600 2.0
    VLIST
    STATISTIC 1 12 14 16 18 20 22 24 26 28 -HARD
    STATISTIC 1 13 15 17 19 21 23 25 27 29 -HARD
       PLOT 1 12 -no ∖
          -t_left 'Tension Line 1 (Ton)'\
           -t_x 'Events (Sec)'
       PLOT 1 14 -no \setminus
          -t_left 'Tension Line 2 (Ton)' \
          -t_x 'Events (Sec)'
       PLOT 1 16 -no ∖
          -t_left 'Tension Line 3 (Ton)' \
           -t_x 'Events (Sec)'
       PLOT 1 18 -no \
          -t_left 'Tension Line 4 (Ton)' \
           -t_x 'Events (Sec)'
       PLOT 1 20 -no ∖
          -t_left 'Tension Line 5 (Ton)' \
          -t_x 'Events (Sec)'
       PLOT 1 22 -no ∖
          -t_left 'Tension Line 6 (Ton)' \
           -t_x 'Events (Sec)'
       PLOT 1 24 -no ∖
           -t_left 'Tension Line 7 (Ton)' \
           -t_x 'Events (Sec)'
       PLOT 1 26 -no ∖
          -t_left 'Tension Line 8 (Ton)' \
           -t_x 'Events (Sec)'
          PLOT 1 28 -no \setminus
           -t_left 'Tension Line 9 (Ton)' \
           -t_x 'Events (Sec)'
       REPORT
     END
     TOT_CFORCE -EVENT 0.999 %time% 2.0
       REPORT
       VLIST
       STATISTIC 1 2 3 4 8 9 10
     END
     TRAJECTORY-EVENT 0.999 %time% 2.0
       VLIST
       STATISTIC 1 5 6 7 25 26 27 -HARD
       EXTREME 1 5 6 7 25 26 27 -HARD
       PLOT 1 5 25 -N
       PLOT 1 6 26 -N
       PLOT 1 7 27 -N
          PLOT 1 8 28 -N
          PLOT 1 9 29 -N
          PLOT 1 10 30 -N
       REPORT LOCATION
     END
     TOT_CFORCE -EVENT 0.999 %time% 2.0
       REPORT
       VLIST
       STATISTIC 1 2 3 4 8 9 10
```

\$

\$

Ś

Ś

```
END
     TRAJECTORY-EVENT 0.999 %time% 2.0
       VLIST
       STATISTIC 1 5 6 7 25 26 27 -HARD
       EXTREME 1 5 6 7 25 26 27 -HARD
PLOT 1 5 25 -N
       PLOT 1 6 26 -N
       PLOT 1 7 27 -N
          PLOT 1 8 28 -N
PLOT 1 9 29 -N
          PLOT 1 10 30 -N
       REPORT LOCATION
    END
   END
   &DCPTIME Time For Time Post Processing
$&EOFILE
$
&finish
```

LAMPIRAN B-4 OUTPUT RAO KONDISI MENGAPUNG BEBAS

Output MOSES : RAO Kondisi Mengapung Bebas

* * * *	* * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * *	*******	* * * * * * *	*******	* * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * *	* * * * * * * * * * *	
*					*	*** MOSES	* * *			12 A	pril, 2	2014 *	
*	Step 4 - 1	Response Ampl	itude (Operators	-							*	
*	Draft =	11.6 Meters			Trim Ar	ngle = 0.	00 Deg.		GMT =	8.67 Met	ers	*	
*	Roll Gy. 1	Radius = 16.	8 Meter	rs	Pitch G	Sy. Radius	= 82.2	Meters	Yaw Gy	. Radius =	82.2	Meters *	
*	Heading =	90.00 Deg.			Forward	l Speed =	0.00 Kn	ots	Linear	ization Ba	sed on	1/20 *	
*												*	
* * * *	* * * * * * * * *	******	* * * * * * *	*******	* * * * * * *	*******	* * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * *	******	
			+++ M	ΟΤΙΟΝ	RES	SPONSE	ΟP	ERATO	R S +++				
			======		======		======		=====				
			Of Po:	int On Body	FSRU A	At X = 152	.4 Y =	0.0 Z =	11.7				
		Process	is DEE	FAULT: Unit	s Are I	Degrees, Me	ters, a	nd M-Tons	Unless	Specified			
ENCO	UNTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		- Wave	Ampl.	Wave	Amp1.	Wave	Ampl.	Wave	Ampl.	Wave	Amp1.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)	(Sec)	- Ampl.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Pnase	Amp1.	Phase
0.2513	25.00	0.005	176	0.948	90	1.002	0	0.431	89	0.000	0	0.002	-96
0.3142	20.00	0.003	171	0.920	90	1.010	0	0.774	88	0.001	-170	0.004	-97
0.3307	19.00	0.003	170	0.912	90	1.014	0	0.903	88	0.001	-177	0.004	-98
0.3491	18.00	0.003	170	0.903	90	1.019	0	1.078	87	0.002	177	0.006	-99
0.3696	17.00	0.002	173	0.893	90	1.026	0	1.328	86	0.003	170	0.007	-101
0.3927	16.00	0.002	-174	0.884	90	1.035	0	1.719	83	0.005	161	0.010	-105
0.4189	15.00	0.002	-125	0.865	88	1.049	0	2.274	67	0.007	138	0.015	-127
0.4333	14.50	0.003	-119	0.851	87	1.058	0	2.672	58	0.009	124	0.019	-139
0.4488	14.00	0.005	-122	0.824	85	1.069	-1	3.105	46	0.010	105	0.024	-155
0.4654	13.50	0.006	-129	0.777	84	1.083	-1	3.488	29	0.010	82	0.030	-175
0.4833	13.00	0.007	-138	0.712	83	1.100	-2	3.724	10	0.009	53	0.035	162
0.5027	12.50	0.008	-143	0.642	85	1.123	-3	3.695	-11	0.007	14	0.039	139
0.5236	12.00	0.009	-147	0.593	90	1.154	-4	3.372	-32	0.005	-48	0.040	116
0.5464	11.50	0.010	-153	0.576	95	1.193	-7	2.796	-52	0.007	-110	0.037	97
0.5712	11.00	0.011	-160	0.572	98	1.236	-11	2.153	-65	0.011	-138	0.032	85
0.5984	10.50	0.012	-167	0.562	100	1.273	-16	1.647	-74	0.019	-155	0.029	77
0.6283	10.00	0.013	-174	0.542	102	1.285	-24	1.247	-75	0.032	-176	0.026	76
0.6614	9.50	0.015	-178	0.515	104	1.238	-35	0.960	-73	0.047	155	0.026	77
0.6981	9.00	0.016	167	0.482	107	1.083	-48	0.741	-70	0.064	122	0.027	75
0.7392	8.50	0.017	151	0.445	110	0.837	-59	0.571	-66	0.071	101	0.026	71
0.7854	8.00	0.015	143	0.401	115	0.593	-66	0.438	-62	0.054	85	0.025	68
0.8378	7.50	0.012	135	0.352	121	0.402	-68	0.324	-55	0.044	64	0.025	71
0.8976	7.00	0.010	138	0.302	130	0.262	-65	0.232	-47	0.035	63	0.023	72
0.9666	6.50	0.009	147	0.256	142	0.164	-57	0.154	-34	0.024	72	0.020	82
1.0472	6.00	0.021	-4	0.183	156	0.055	-80	0.108	-26	0.101	2	0.020	39
1.1424	5.50	0.012	-58	0.101	-176	0.041	-10	0.063	-17	0.033	-51	0.041	2
1.2566	5.00	0.002	-117	0.074	-102	0.035	0	0.028	-23	0.013	72	0.024	9
1.3963	4.50	0.003	-105	0.059	-103	0.014	18	0.025	48	0.007	146	0.018	96
1.5708	4.00	0.003	-81	0.034	-48	0.014	99	0.012	79	0.007	179	0.012	145
2.0944	3.00	0.003	-88	0.007	-41	0.001	134	0.011	-20	0.002	-10	0.011	4

Output MOSES : RAO Kondisi Mengapung Bebas

* * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * *	* * * * * * * * * * *	* * * * * * *	********	* * * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * *	*******	
*					ł	*** MOSES	* * *			12 A	pril, 2	2014 *	
* St	tep 4 - Res	sponse Ampli	itude (Operators	-							*	
* Di	raft = 11.	.6 Meters			Trim Ar	ngle = 0.0	00 Deg.		GMT =	8.67 Met	ers	*	
* R0	oll Gy. Rad	dius = 16.8	8 Meter	rs	Pitch (By. Radius :	= 82.2	Meters	Yaw Gy	. Radius =	82.2	Meters *	
* Не	eading = 4	45.00 Deg.			Forward	l Speed = (0.00 Kn	ots	Linear	ization Ba	sed on	1/ 20 *	
*	-	_				_						*	
* * * * *	* * * * * * * * * *	* * * * * * * * * * * *	* * * * * * *	*******	* * * * * * *	******	* * * * * * *	* * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * *	******	
			+++ M	ΟΤΙΟΝ	RES	SPONSE	ΟP	ERATO	R S +++				
		=			======		======		=====				
			Of Poi	int On Body	FSRU A	At X = 152	.4 Y =	0.0 Z =	11.7				
		Process	is DEF	FAULT: Unit	s Are I	Degrees, Met	ters, a	nd M-Tons	Unless	Specified			
ЕNCOU	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0.2513	25.00	0.656	124	0.642	128	0.957	40	0.294	118	0.261	-54	0.123	-142
0.3142	20.00	0.610	142	0.586	150	0.896	62	0.501	134	0.401	-35	0.178	-121
0.3307	19.00	0.593	147	0.567	157	0.872	69	0.572	138	0.441	-30	0.193	-115
0.3491	18.00	0.572	153	0.544	164	0.842	77	0.664	143	0.485	-24	0.208	-108
0.3696	17.00	0.545	161	0.515	173	0.803	87	0.788	149	0.532	-16	0.224	-99
0.3927	16.00	0.509	169	0.480	-176	0.755	99	0.970	155	0.581	-8	0.239	-89
0.4189	15.00	0.460	179	0.436	-164	0.696	113	1.276	160	0.626	1	0.255	-76
0.4333	14.50	0.431	-174	0.409	-159	0.663	122	1.532	161	0.644	7	0.262	-69
0.4488	14.00	0.398	-167	0.374	-153	0.625	132	1.922	158	0.658	14	0.270	-61
0.4654	13.50	0.361	-159	0.302	-146	0.583	143	2.094	135	0.668	22	0.275	-54
0.4833	13.00	0.322	-150	0.224	-134	0.537	156	2.256	112	0.675	31	0.271	-47
0.5027	12.50	0.282	-140	0.177	-107	0.488	170	2.024	81	0.679	41	0.252	-37
0.5236	12.00	0.241	-129	0.182	-86	0.430	-173	1.298	48	0.672	52	0.230	-23
0.5464	11.50	0.198	-118	0.154	-76	0.358	-154	0.614	31	0.652	63	0.216	-7
0.5712	11.00	0.151	-107	0.106	-63	0.277	-129	0.264	13	0.613	76	0.196	9
0.5984	10.50	0.102	-100	0.056	-48	0.211	-89	0.184	-33	0.538	89	0.166	28
0.6283	10.00	0.055	-101	0.010	-62	0.210	-38	0.253	-51	0.405	102	0.128	49
0.6614	9.50	0.028	-130	0.033	-164	0.252	1	0.303	-43	0.228	122	0.082	74
0.6981	9.00	0.031	-146	0.059	-138	0.262	33	0.310	-25	0.068	175	0.035	102
0.7392	8.50	0.031	-116	0.065	-101	0.206	70	0.272	0	0.085	-55	0.006	-33
0.7854	8.00	0.024	-51	0.049	-54	0.114	120	0.196	32	0.128	-1	0.035	5
0.8378	7.50	0.015	45	0.027	4	0.054	-146	0.089	70	0.094	55	0.039	63
0.8976	7.00	0.014	173	0.015	144	0.038	-12	0.033	47	0.043	132	0.023	136
0.9666	6.50	0.011	-51	0.017	-82	0.039	103	0.063	75	0.014	-50	0.008	-94
1.0472	6.00	0.026	149	0.032	107	0.076	-47	0.033	159	0.085	141	0.026	105
1.1424	5.50	0.052	20	0.072	18	0.096	-146	0.013	4	0.176	6	0.057	13
1.2566	5.00	0.007	37	0.029	-45	0.003	121	0.008	-14	0.001	2	0.024	-50
1.3963	4.50	0.005	127	0.009	43	0.001	10	0.012	36	0.001	-38	0.007	30
1.5708	4.00	0.003	48	0.006	-46	0.001	-123	0.005	64	0.001	137	0.002	7
2.0944	3.00	0.001	-150	0.001	68	0.000	0	0.003	140	0.001	-86	0.003	-154

Output MOSES : RAO Kondisi Mengapung Bebas

* * * *	********	* * * * * * * * * * * * *	* * * * * * *	********	* * * * * * *	********	* * * * * * *	*******	* * * * * * *	* * * * * * * * * *	*****	********	
*					ł	*** MOSES	* * *			12 A	pril, 2	2014 *	
*	Step 4 - Re	esponse Ampl:	itude (Operators	-							*	
*	Draft = 11	L.6 Meters			Trim Ar	ngle = 0.0)0 Deg.		GMT =	8.67 Met	ers	*	
*	Roll Gy. Ra	adius = 16.8	8 Meter	rs i	Pitch (By. Radius :	= 82.2	Meters	Yaw Gy	. Radius =	82.2	Meters *	
*	Heading =	135.00 Deg.			Forwar	rd Speed =	0.00 K	nots	Linea	rization B	ased or	ı 1/20 ;	*
*												*	
* * * *	* * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * *	*******	* * * * * * *	*******	* * * * * * *	******	* * * * * * *	* * * * * * * * * *	* * * * * * *	********	
			+++ M	OTION	RES	SPONSE	ΟP	ERATO	R S +++				
		:			======			==========	=====				
			Of Poi	int On Body	FSRU A	At X = 152	.4 Y =	0.0 Z =	11.7				
		Process	is DEF	FAULT: Unit:	s Are I	Degrees, Met	cers, a	nd M-Tons	Unless	Specified			
ЕИСО	UNTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	r Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)	(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0 0510		0 651	104	0 640	F 1	0 0 0 5 5	20	0 005	C 1	0 261		0 1 2 0	27
0.2513	25.00	0.651	-124	0.640	20	0.955	- 39	0.295	01	0.201	22	0.129	-3/
0.3142	20.00	0.605	-143	0.582	29	0.889	-62	0.505	45	0.404	35	0.186	- 58
0.3307	19.00	0.590	-149	0.503	∠3 1 F	0.862	-09	0.579	40	0.447	29	0.201	-05
0.3491	17.00	0.571	-150	0.540	15	0.020	- / 0	0.073	24	0.495	12	0.210	- / 2
0.3090	16 00	0.540	-105	0.512	0	0.705	-07	0.002	27 10	0.551	13	0.232	-01
0.3927	15.00	0.513	-175	0.479	-4	0.725	-99	1 201	2 10	0.012	_11	0.247	-92
0.4109	14 50	0.400	160	0.441	-17	0.649	101	1 501	10	0.075	-11	0.250	-105
0.4333	14.50	0.430	164	0.421	-20	0.604	-121	1 924	-10	0.704	-19	0.262	-112
0.4400	12 50	0.401	144	0.399	-50	0.555	-141	2 140	-20	0.728	-20	0.201	-121
0.4034	13.00	0.301	134	0.309	-68	0.429	_152	2.140	-88	0.740	-50	0.233	_140
0.4033	12 50	0.317	122	0.310	-86	0.429	-166	2.292	-132	0.752	-62	0.243	_149
0.5027	12.50	0.205	109	0.210	-98	0.333	176	1 316	-178	0.712	-75	0.235	-160
0.5250	11 50	0.221	95	0.100	-112	0.274	153	0 579	162	0.710	-90	0.225	-176
0.5101	11.00	0.172	76	0.125	-136	0.101	110	0.375	179	0.001	-108	0.210	164
0 5984	10 50	0.125	51	0.058	-173	0 074	-8	0.201	-127	0.524	-129	0.155	143
0.6283	10.00	0.035	12	0.036	121	0.169	-69	0.302	-119	0.365	-153	0.110	117
0.6614	9.50	0.012	-65	0.038	46	0.236	-113	0.365	-132	0.176	-166	0.060	83
0.6981	9.00	0.013	-126	0.045	-8	0.232	-158	0.370	-153	0.123	-127	0.018	6
0.7392	8.50	0.023	-135	0.037	-65	0.145	155	0.311	179	0.196	-134	0.033	-123
0.7854	8.00	0.031	-156	0.019	-149	0.039	124	0.193	153	0.190	-162	0.047	-177
0.8378	7.50	0.023	177	0.020	90	0.045	-154	0.076	145	0.104	170	0.033	121
0.8976	7.00	0.014	-148	0.031	4	0.061	161	0.070	-177	0.045	-165	0.009	-31
0.9666	6.50	0.020	-165	0.016	-125	0.019	84	0.076	143	0.063	-169	0.029	-161
1.0472	6.00	0.034	164	0.034	91	0.081	-38	0.021	117	0.115	151	0.028	107
1.1424	5.50	0.035	-122	0.052	-58	0.061	86	0.024	-177	0.128	-131	0.037	-75
1.2566	5.00	0.010	159	0.018	68	0.007	169	0.011	147	0.017	169	0.016	93
1.3963	4.50	0.002	134	0.017	36	0.003	148	0.004	176	0.006	157	0.009	59
1.5708	4.00	0.006	160	0.005	-147	0.006	-105	0.008	145	0.004	128	0.005	-176
2.0944	3.00	0.001	-174	0.006	101	0.000	0	0.005	147	0.002	-143	0.002	149

LAMPIRAN B-5 OUTPUT RAO KONDISI TERTAMBAT

* * * * * *	* * * * * * * * * *	****	* * * * * * *	******	* * * * * * *	* * * * * * * * * *	* * * * * * *	*****	* * * * * * *	* * * * * * * * * *	* * * * * *	******	
*					*	** MOSES	* * *			10 M	av, 20	14 *	
*					-							*	
*	STS	TRANSFER AN	ALYSIS	: Horizonta	al Dist	ance = 2.5	meter,	FSRU 100	- LNGC	ballast		*	
* Di	raft = 11	.6 Meters		5	Frim An	ale = 0.	00 Deg.		GMT =	8.67 Met	ers	*	
* R0	oll Gv. Ra	dius = 16.8	8 Meter	s I	Pitch G	v. Radius	= 82.2	Meters	Yaw Gv	. Radius =	82.2	Meters *	
* He	eading =	90.00 Deg.			Forward	Speed =	0.00 Kn	ots	Linear	ization Ba	sed on	1/20 *	
*****	********	*********	* * * * * * *	- :*********	******	*******	******	******	******	******	******	*****	
			+++ M	οπτοΝ	RES	PONSE	ΟP	ERATO	R S +++				
		:	=======	==================	======	============	=======	============	======				
			Of Poi	nt On Body	ESRU A	t = x = 160	.8 Y =	0.0.7 =	7.8				
		Process	is DEF	AULT: Units	a Are D	earees. Me	ters.a	nd M-Tons 1	Inless	Specified			
ENCOI	итев	Surge /	10 001	Sway /		Heave /	0010, 0	Roll /	0112000	Pitch /		Yaw /	
		Wave	Amrol	Wave	Ampl	Wave	Amrol	Wave	Ampl	Wave	Amrol	Wave	Ampl
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	ر ۵	Dhage	, Δmp]	Dhage	/ Ampl	Dhage	/ Amn]	Dhage	Ampl	Dhage	, ۵	Dhace
(Rad/ Dec)	(600)	Hupt.	Inasc	Aupr.	Thase	Aupı.	Inasc	Aupr.	Thase	Ampr.	Inasc	Amp1.	THASE
0.2513	25.00	0.052	116	2.366	64	1.041	-27	1.104	64	0.003	-27	0.033	128
0 3142	20 00	0 029	118	1 901	56	1 083	-35	1 636	55	0 003	-51	0 017	137
0 3307	19 00	0.025	119	1 814	54	1 098	-37	1 834	52	0 003	-45	0.015	145
0 3491	18 00	0.023	119	1 733	52	1 118	-40	2 103	49	0 003	-47	0.015	156
0.3191	17 00	0.023	119	1 662	49	1 143	_43	2.103	45	0.005	-57	0.015	167
0.3020	16 00	0.021	118	1 594	44	1 175	-47	3 055	25	0.001	-68	0.017	166
0.3527	15 00	0.020	116	1 511	36	1 216	-52	3 859	17	0.003	-90	0.025	152
0.1109	14 50	0.019	114	1 453	31	1 239	-56	4 373	± / 5	0.009	-98	0.033	141
0.4333	14 00	0.019	111	1 354	24	1 265	-59	4 869	-10	0.005	-110	0.043	126
0.4654	13 50	0.019	100	1 107	16	1 201	-63	5 228	_29	0.011	_124	0.055	108
0.1031	13.00	0.020	111	0 990	9	1 310	-67	5 291	-50	0.013	-128	0.002	88
0.1000	12 50	0.020	120	0.791	5	1 321	-71	5 104	-69	0.021	-132	0.005	71
0.5027	12.00	0.022	94	0.751	10	1 373	-80	4 420	_95	0.039	-167	0.007	4.8
0.5250	11 50	0.021	72	0.371	24	1 201	-00	4.420	-120	0.039	-107	0.004	10
0.5404	11.50	0.019	52	0.404	24	1 296	-100	2.570	-120	0.047	140	0.039	20 16
0.5712	10 50	0.014	10	0.503	20	1 220	-112	1 002	-141	0.000	112	0.049	10
0.5904	10.50	0.008	101	0.515	20	1 252	-125	1 502	-141	0.074	113	0.043	י ד
0.0283	9 50	0.012	101	0.510	20	1 082	-140	1 150	-153	0.104	51	0.039	_9
0.0014	9.50	0.009	99	0.400	22 17	1.002	-154	1.159	-150	0.092	21	0.039	_10
0.0901	9.00	0.013	62	0.455	10	0.001	160	0.093	-150	0.061	21	0.033	-10
0.7392	8.50	0.014	20	0.410	12	0.005	170	0.087	-169	0.008	-21	0.031	-20
0.7854	7 50	0.013	20	0.377	0	0.312	166	0.321	-175	0.038	-51	0.032	- 10
0.0370	7.50	0.012	20	0.332	10	0.305	100	0.300	-175 176	0.040	- 55	0.029	-49
0.0970	7.00	0.001	-19	0.270	-10	0.244	120	0.200	167	0.034	-02	0.030	-03
1 0470	6.50	0.009	-19	0.243	-10	0.159	101	0.107	107	0.031	-99	0.029	- / 0
1 1404	0.UU E EO	0.025	-8	0.246	-22	0.148	101 114	0.095	104	0.038	-6 165	0.049	- 34
1.1424	5.50	0.001	120	0.08/	-32	0.051	114	0.070	111	0.022	-105	0.038	120
1,2500	5.00	0.002	-6/	0.085	-61	0.032	95	0.061	111 0 4	0.012	1	0.018	122
1.3963	4.50	0.002	-6/ 100	0.054	-/4	0.016	50	0.024	84	0.009	104	0.018	133
1.5/08	4.00	0.003	-128	0.030	-103	0.014	40	0.011	23	0.007	124	0.011	90
2.0944	3.00	0.003	-109	0.008	-50	U.UUI	⊥∠4	0.011	-38	0.002	-28	0.011	-13

Output MOSES : RAO Kondisi Tertambat Side by Side

* * * * *	* * * * * * * * * *	* * * * * * * * * * * *	* * * * * * *	* * * * * * * * * * *	* * * * * *	* * * * * * * * * * *	* * * * * * *	* * * * * * * * * *	* * * * * * *	*******	*****	* * * * * * * * * * *	
*						*** MOSES	* * *			10 M	ay, 201	14 *	
*												*	
*	STS	TRANSFER AN	ALYSIS	: Horizonta	al Dis	tance = 2,5	meter,	FSRU 100	- LNGC	ballast		*	
* D	raft = 11	.6 Meters		,	Trim A	ngle = 0.	00 Deq.		GMT =	8.67 Met	ers	*	
* R	oll Gy. Ra	dius = 16.8	8 Meter	rs	Pitch (Gy. Radius	= 82.2	Meters	Yaw Gy	v. Radius =	82.2	Meters *	
* н	eading =	90.00 Deg.			Forward	d Speed =	0.00 Kn	ots	Linear	ization Ba	sed on	1/20 *	
* * * * *	*******	*****	* * * * * * *	*****	* * * * * *	*****	******	*****	* * * * * * *	******	* * * * * *	******	
			+++ M	ΟΤΙΟΝ	RE	SPONSE	ΟP	ERATO	R S +++	-			
		:	======		======				======				
			Of Po:	int On Body	LNGC 1	At X = 158	.2 Y =	0.0 Z =	6.0)			
		Process	is DEB	FAULT: Unit:	s Are 1	Degrees, Me	ters, a	nd M-Tons	Unless	Specified			
ENCOU	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	-(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
		-		-		-		-		-		-	
0.2513	25.00	0.031	-54	2.351	18	1.020	-71	0.945	17	0.003	95	0.037	-38
0.3142	20.00	0.010	-54	1.860	0	1.046	-90	1.236	-1	0.005	65	0.021	-42
0.3307	19.00	0.007	-45	1.761	-б	1.055	-96	1.320	-7	0.005	57	0.019	-42
0.3491	18.00	0.005	-25	1.663	-11	1.066	-102	1.419	-13	0.005	51	0.016	-41
0.3696	17.00	0.005	0	1.564	-18	1.081	-109	1.537	-19	0.005	44	0.015	-40
0.3927	16.00	0.007	10	1.465	-26	1.100	-117	1.680	-28	0.005	42	0.013	-36
0.4189	15.00	0.010	7	1.367	-35	1.125	-127	1.859	-37	0.004	46	0.014	-33
0.4333	14.50	0.011	1	1.319	-40	1.139	-133	1.969	-43	0.005	52	0.014	-33
0.4488	14.00	0.012	-7	1.272	-45	1.156	-139	2.096	-49	0.005	59	0.015	-37
0.4654	13.50	0.013	-18	1.225	-52	1.174	-146	2.246	-55	0.007	65	0.016	-42
0.4833	13.00	0.013	-28	1.177	-59	1.196	-154	2.425	-63	0.010	б4	0.016	-50
0.5027	12.50	0.013	-36	1.129	-66	1.220	-163	2.650	-71	0.013	59	0.015	-56
0.5236	12.00	0.011	-46	1.079	-75	1.247	-173	2.922	-81	0.019	50	0.013	-61
0.5464	11.50	0.010	-52	1.029	-86	1.273	174	3.285	-92	0.025	36	0.011	-59
0.5712	11.00	0.010	-59	0.973	-98	1.299	160	3.732	-107	0.037	15	0.012	-45
0.5984	10.50	0.010	-61	0.890	-113	1.313	143	4.182	-128	0.051	-5	0.020	-47
0.6283	10.00	0.010	-67	0.789	-130	1.304	124	4.725	-153	0.067	-33	0.029	-61
0.6614	9.50	0.012	-75	0.648	-150	1.255	100	5.168	175	0.086	-68	0.043	-87
0.6981	9.00	0.017	-94	0.472	-170	1.144	72	5.278	138	0.102	-111	0.055	-121
0.7392	8.50	0.020	-127	0.308	178	0.966	40	4.882	94	0.108	-158	0.062	-161
0.7854	8.00	0.020	-166	0.258	178	0.753	6	3.923	47	0.099	152	0.062	155
0.8378	7.50	0.019	149	0.263	158	0.622	-26	3.122	7	0.086	107	0.058	115
0.8976	7.00	0.015	96	0.280	124	0.372	-72	1.802	-41	0.067	47	0.051	63
0.9666	6.50	0.012	33	0.251	77	0.238	-121	1.170	-90	0.051	-13	0.047	8
1.0472	6.00	0.008	-39	0.206	19	0.145	175	0.743	-149	0.038	-82	0.043	-60
1.1424	5.50	0.007	-119	0.156	-55	0.082	117	0.459	136	0.029	-173	0.039	-144
1.2566	5.00	0.005	122	0.102	-148	0.042	13	0.216	34	0.021	82	0.034	108
1.3963	4.50	0.003	-30	0.066	83	0.019	-117	0.152	-85	0.014	-52	0.027	-36
1.5708	4.00	0.001	178	0.034	-72	0.019	90	0.080	95	0.010	138	0.016	113
2.0944	3.00	0.001	-38	0.007	51	0.002	-136	0.010	-161	0.001	175	0.001	107

Output MOSES : RAO Kondisi Tertambat Side by Side

LAMPIRAN B-6

OUTPUT GAYA TARIK COUPLING LINE

*** MOSES *** * * * _____ 24 July, 2014 * * SHIP TO SHIP OPERATION MOORING ANALYSIS * * Environment Heading SEA 90 degree Hs=2.23 Tp=7.5 (Time Domain Simulation) * * *

Output MOSES : Gaya Tarik Coupling Line

+++ TIME STATISTICS +++

Description	MAG:TAUT1	MAG:TAUT2	MAG:TAUT3	MAG:TAUT4	MAG:TAUT5	MAG:TAUT6	MAG:TAUT7	MAG:TAUT8	MAG:TAUT9
Mean	1.829	1.373	1.091	40.402	39.988	35.946	44.520	0.720	0.950
Variance	1.817	0.296	0.123	10.442	6.949	1.994	2.111	0.000	0.000
Root Mean Square	2.272	1.477	1.146	40.531	40.075	35.974	44.543	0.720	0.950
Std. Deviation	1.348	0.544	0.351	3.231	2.636	1.412	1.453	0.008	0.012
Skewness	12.042	3.639	2.953	2.560	2.196	1.670	1.663	0.063	-0.188
Kurtosis	216.185	17.504	10.793	9.355	8.087	2.168	2.254	0.982	0.752
Number of Peaks	1085	1118	1115	1135	1135	1154	1157	1122	1134
Av Of 1/3 Highest	3.562	2.289	1.723	47.671	46.239	38.663	47.260	0.737	0.973
Av Of 1/3 Lowest	1.385	1.100	0.901	35.849	35.617	34.436	42.859	0.703	0.927
Av Of 1/100 Highest	20.283	5.986	3.550	67.511	61.129	42.674	51.424	0.757	0.999
Av Of 1/100 Lowest	1.374	1.092	0.894	32.813	32.239	34.013	42.393	0.689	0.906
Av Of 1/1000 Highest	52.823	7.157	3.882	75.858	69.332	43.833	52.461	0.760	1.003
Av Of 1/1000 Lowest	1.369	1.088	0.891	30.427	30.057	33.925	42.280	0.688	0.906
Maximum	52.823	7.157	3.882	75.858	69.332	43.833	52.461	0.760	1.003
Minimum	1.369	1.088	0.891	30.427	30.057	33.925	42.280	0.688	0.906
Pred. Max	56.686	7.593	4.093	78.528	71.541	44.425	53.058	0.763	1.008
Pred. Min	1.334	1.067	0.876	29.676	29.310	33.773	42.112	0.685	0.902

Av Of 1/3 H-M	Mean 1.733	0.916	0.632	7.269	6.251	2.717	2.741	0.017	0.023
Av Of 1/3 L-M	ean -0.445	-0.273	-0.190	-4.553	-4.371	-1.510	-1.661	-0.016	-0.023
Av Of 1/100 H-M	ean 18.454	4.613	2.459	27.109	21.140	6.728	6.904	0.037	0.049
Av Of 1/100 L-M	ean -0.455	-0.281	-0.197	-7.589	-7.749	-1.933	-2.127	-0.031	-0.044
Av Of 1/1000 H-M	ean 50.993	5.784	2.791	35.456	29.344	7.887	7.942	0.040	0.053
Av Of 1/1000 L-M	ean -0.460	-0.285	-0.200	-9.975	-9.931	-2.021	-2.239	-0.032	-0.045
Maximum - Mean	50.993	5.784	2.791	35.456	29.344	7.887	7.942	0.040	0.053
Minimum - Mean	-0.460	-0.285	-0.200	-9.975	-9.931	-2.021	-2.239	-0.032	-0.045
Pred. Max-Mean	54.857	6.220	3.002	38.126	31.553	8.479	8.538	0.043	0.057
Pred. Min-Mean	-0.495	-0.306	-0.215	-10.726	-10.678	-2.173	-2.407	-0.034	-0.048

* *** MOSES *** * * _____ 24 July, 2014 * * SHIP TO SHIP OPERATION MOORING ANALYSIS * * * Environment Heading SEA 90 degree Hs=2.23 Tp=7.5 (Time Domain Simulation) * *

+++ T I M E $\$ S T A T I S T I C S +++

Description

RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT RATIO:TAUT

Mean	0.006	0.005	0.004	0.053	0.053	0.047	0.059	0.002	0.003
Variance	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Root Mean Square	0.007	0.005	0.004	0.053	0.053	0.047	0.059	0.002	0.003
Std. Deviation	0.004	0.002	0.001	0.004	0.003	0.002	0.002	0.000	0.000
Skewness	12.042	3.639	2.953	2.560	2.196	1.670	1.663	0.000	0.000
Kurtosis	216.184	17.504	10.793	9.355	8.087	2.168	2.254	0.000	0.000
Number of Peaks	1085	1118	1115	1135	1135	1154	1157	1122	1134

Av Of 1/3 Highest	0.012	0.008	0.006	0.063	0.061	0.051	0.062	0.002	0.003
	0.0012	0.004	0.003	0.047	0.047	0.045	0.056	0.002	0.000
AV OI 1/3 Lowest	0.005	0.004	0.003	0.04/	0.047	0.045	0.056	0.002	0.003
Av Of 1/100 Highest	0.067	0.020	0.012	0.089	0.080	0.056	0.068	0.002	0.003
Av Of 1/100 Lowest	0.005	0.004	0.003	0.043	0.042	0.045	0.056	0.002	0.003
Av Of 1/1000 Highest	0.173	0.023	0.013	0.100	0.091	0.058	0.069	0.002	0.003
Av Of 1/1000 Lowest	0.004	0.004	0.003	0.040	0.040	0.045	0.056	0.002	0.003
Maximum	0.173	0.023	0.013	0.100	0.091	0.058	0.069	0.002	0.003
Minimum	0.004	0.004	0.003	0.040	0.040	0.045	0.056	0.002	0.003
Pred. Max	0.186	0.025	0.013	0.103	0.094	0.058	0.070	0.003	0.003
Pred. Min	0.004	0.003	0.003	0.039	0.039	0.044	0.055	0.002	0.003
Av Of 1/3 H-Mean	0.006	0.003	0.002	0.010	0.008	0.004	0.004	0.000	0.000
Av Of 1/3 L-Mean	-0.001	-0.001	-0.001	-0.006	-0.006	-0.002	-0.002	0.000	0.000
Av Of 1/100 H-Mean	0.061	0.015	0.008	0.036	0.028	0.009	0.009	0.000	0.000
Av Of 1/100 L-Mean	-0.001	-0.001	-0.001	-0.010	-0.010	-0.003	-0.003	0.000	0.000
Av Of 1/1000 H-Mean	0.167	0.019	0.009	0.047	0.039	0.010	0.010	0.000	0.000
Av Of 1/1000 L-Mean	-0.002	-0.001	-0.001	-0.013	-0.013	-0.003	-0.003	0.000	0.000
Maximum - Mean	0.167	0.019	0.009	0.047	0.039	0.010	0.010	0.000	0.000
Minimum - Mean	-0.002	-0.001	-0.001	-0.013	-0.013	-0.003	-0.003	0.000	0.000
Pred. Max-Mean	0.180	0.020	0.010	0.050	0.042	0.011	0.011	0.000	0.000
Pred. Min-Mean	-0.002	-0.001	-0.001	-0.014	-0.014	-0.003	-0.003	0.000	0.000