

FINAL PROJECT - MO 091336

LOCAL STRESS AND FATIGUE LIFE ANALYSIS OF BOLDER CONSTRUCTION ON FSO LADINDA DUE TO THE INFLUENCE OF SIDE BY SIDE OFFLOADING PROCESS

Muhammad Athoillah NRP. 4310 100 040

SUPERVISORS :

Ir. Mas Murtedjo, M.Eng. Ir. Handayanu M, Sc. Ph. D.

DEPARTEMENT OF OCEAN ENGINEERING Faculty of Marine Technology Sepuluh Nopember Institute of Technologi Surabaya 2014

TUGAS AKHIR - MO 091336

ANALISIS TEGANGAN LOKAL DAN UMUR KELELAHAN KONSTRUKSI BOLDER PADA FSO *LADINDA* AKIBAT PENGARUH SIDE BY SIDE OFFLOADING PROCESS

Muhammad Athoillah

NRP. 4310 100 040

DOSEN PEMBIMBING :

Ir. Mas Murtedjo, M.Eng. Ir. Handayanu M, Sc. Ph. D.

JURUSAN TEKNIK KELAUTAN Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2014

ANALISA TEGANGAN LOKAL DAN UMUR KELELAHAN KONSTRUKSI BOLDER PADA FSO *LADINDA* AKIBAT PENGARUH *SIDE BY SIDE OFFLOADING PROCESS* Nama Mahasiswa : Muhammad Athoillah NRP : 4310100040 Jurusan : Teknik Kelautan – FTK ITS Dosen Pembimbing : Ir. Mas Murtedjo, M. Eng Ir. Handayanu M, Sc. Ph. D.

ABSTRAK

FSO Ladinda merupakan konversi dari kapal tanker yang dibangun tahun 1974 dan berubah fungsi sebagai FSO pada tahun 1984. Karena FSO ini merupakan konversi dari kapal tanker yang sebelumnya tidak digunakan untuk offloading process maupun bongkar muatan di perairan lepas pantai. Maka dalam tugas akhir ini akan dilakukan analisa tegangan lokal dan umur kelelahan konstruksi bolder pada FSO Ladinda akibat pengaruh side by side offloading process. Analisa ini dilakukan karena konstruksi bolder merupakan mooring system equipment yang menerima beban paling besar saat side by side offloading process, sehingga dapat diketahui bahwa struktur tersebut masih aman untuk beroperasi. Dengan mengetahui prilaku gerak antara FSO dan tanker akibat beban gelombang pada kondisi free floating, akan didapatkan nilai tension hawser terbesar yang menghubungkan antara FSO dan tanker. Selain itu, akan diketahui nilai kekuatan memanjang kapal untuk mendapatkan nilai distribusi tegangan pada kontruksi bolder di FSO akibat gerakan struktur. Setelah itu dilakukan analisa tegangan lokal konstruksi bolder dengan beban tension hawser terbesar dan distribusi tegangan akibat gerakan FSO. Dari hasil tegangan lokal, dilakukan perhitungan umur kelelahan konstruksi bolder dengan menggunakan metode S-N Curve berdasarkan hukum kegagalan palmgren miner dengan mengestimasi kumulatif kegagalan fatigue menggunakan metode deterministic. Dari hasil pemodelan numerik yang dilakukan, diketahui bahwa prilaku gerak terbesar pada FSO dan tanker yaitu sebesar 4.543 deg/m dan 4.798 deg/m untuk gerakan roll pada light condition. Untuk hasil tension hawser terbesar yaitu 197.83 kN pada taut 5 dengan konfigurasi spring line pada arah 180[°] dengan safety factor 0.8, dimana hasil ini tidak memenuhi syarat yang dianjurkan oleh ABS yaitu 1.82. Sedangkan distribusi tegangan pada konstruksi bolder akibat gerakan struktur yaitu untuk tegangan maksimum sebesar 24 MPa dan deformasi sebesar 0.00141 m. Dari input beban tersebut, didapat tegangan von mises pada konstruksi bolder sebesar 115 MPa dan deformasi sebesar 0.201 m. Hasil ini masih lebih kecil jika dibandingkan dengan tegangan ijin dan deformasi yang dianjurkan oleh ABS yaitu 225 MPa dan 4 mm. Berdasarkan tegangan maksimum tersebut, diperoleh hasil umur kelelahan konstruksi bolder yaitu 61 tahun selama umur operasi dengan beban lingkungan 100 tahunan.

Kata Kunci : tegangan lokal, umur kelelahan, offloading process, side by side.

(halaman ini sengaja di kosongkan)

LOCAL STRESS AND FATIGUE LIFE ANALYSIS OF BOLDER CONSTRUCTION ON FSO LADINDA DUE TO THE INFLUENCE OF SIDE BY SIDE OFFLOADING PROCESS

Name	: Muhammad Athoillah
NRP	: 4310100040
Department	: Teknik Kelautan – FTK ITS
Supervisors	: Ir. Mas Murtedjo, M. Eng
	Ir. Handayanu M, Sc. Ph. D.

ABSTRACT

FSO Ladinda is a conversion of the tanker which was built in 1974 and changed its functions as the FSO in 1984. Because of this FSO is a conversion from a tanker which previously not used for offloading and unloading process at the offshore. In this paper, local stress and fatigue life that occur in bolder construction because it is the mooring system equipment which receives the greatest burden when the side by side offloading process. So it can be known to determine whether the structure is still safe to operate. This case study begins with motion analysis of FSO and the tanker due to the wave load in free floating condition, then the maximum tension of hawser connecting Tanker to FSO will be known. In addition, it will be known the longitudinal strength of FSO to determine stress distribution on a bolder construction due to the motion of the global structure. Based of the maximum tension of hawser and stress distribution, local stress analysis of bolder construction on the FSO will be done. From the results of the local stress, the calculation will be known for the fatigue life analysis of bolder construction by using S-N curve method based of palmgren miner rules with estimate the cumulative fatigue damage using the method of deterministic. Based on the modeling, it is known that the dominant motion for FSO and the tanker is 4.543 deg/m and 4.798 deg/m in roll at light condition. Based on the simulation carried out to obtain the maximum tension, the maximum hawser tension obtained on the rope 5 with the configuration of spring line is 197.82 kN at heading 180° and the safety factor is 0.82. That safety factor was not requires by ABS, which is 1.82. While, the stress distribution on bolder construction due to the motion global structure is for the maximum stress of 24 MPa and deformation of 0.00141 mm. from the input of load, obtained the maximum stress on bolder construction of 115 MPa and the deformation of 0.201 m. This stress and deformation is less than the allowable maximum stress required by ABS, 225 MPa and 4 mm. based on the maximum stress, obtained the result of fatigue life in bolder construction is 61 year as long as the operation environmental load for about 100 years.

Keywords : local stress, fatigue life, side by side, offloading process

(halaman ini sengaja di kosongkan)

LEMBAR PENGESAHAN

ANALISA TEGANGAN LOKAL DAN UMUR KELELAHAN KONSTRUKSI BOLDER PADA FSO *LADINDA* AKIBAT PENGARUH *SIDE BY SIDE OFFLOADING PROCESS*

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat

Memperoleh Gelar Sarjana Teknik

pada

Program Studi S-1 Jurusan TeknikKelautan

Fakultas Teknologi Kelautan

Institut Teknologi Sepuluh Nopember

Oleh:

MUHAMMAD ATHOILLAH NRP. 4310 100 040

Disetujui oleh Pembimbing Tugas Akhir :

1. Ir. Mas Murtedjo, M. Eng. (Pembimbing 1)

SURABAYA, AGUSTUS 2014

Kata Pengantar

Puji syukur penulis ucapkan kepada Allah SWT yang telah memberikan segala rahmat dan hidayah sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul, "Analisis Tegangan Lokal dan Umur Kelelahan Konstruksi Bolder pada FSO Ladinda Akibat Pengaruh Side by Side Offloading Process" ini dengan tepat waktu dan tanpa halangan yang berarti.

Tugas Akhir ini disusun sebagai syarat untuk mendapatkan gelar sarjana (S-1) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember Surabaya. Tugas Akhir ini berisi tentang analisis gerakan pada FSO *Ladinda* dan Tanker MS Pacific Leo, kemudian dicari *tension hawser* terbesar yang menghubungkan antara Tanker dengan FSO untuk dipakai sebagai pembebanan pada pemodelan lokal struktur sehingga didapatkan hasil tegangan maksimum dan dilanjutkan dengan perhitungan umur kelelahan struktur untuk mengetahui apakah struktur masih aman untuk beroperasi dengan beban lingkungan 100 tahunan selama umur operasi.

Penulis mengharapkan saran dan kritik dari para pembaca demi perbaikan dan kesempurnaan penyusunan dan penulisan berikutnya. Semoga Tugas Akhir ini bermanfaat bagi perkembangan teknologi di bidang rekayasa kelautan, bagi pembaca pada umumnya dan bagi penulis sendiri pada khususnya..

Surabaya, Agustus 2014

Penulis

(halaman ini sengaja di kosongkan)

DAFTAR ISI

HALAM	IAN JUDUL	i
LEMBA	R PENGESAHAN	iii
ABSTRA	АК	iv
ABSTRA	АСТ	V
DAFTA	R ISI	vi
DAFTA	R GAMBAR	vii
DAFTA	R TABEL	xi
DAFTA	R LAMPIRAN	X
BAB I P	ENDAHULUAN	1
1.1	Latar Belakang Masalah	1
1.2	Perumusan Masalah	5
1.3	Tujuan	5
1.4	Manfaat	6
1.1	Batasan Masalah	6
1.5	Sistematika Penulisan	
BAR II	FINIALIAN PUSTAKA DAN DASAR TEORI	
2 1	Tinjayan Dustaka	0
2.1	Dasar Taori	
2.2	2.2.1. Tearing county Known	11
	2.2.1 Teori Gerak Kapal	11
	2.2.2 Gaya Gerombang	12
	2.2.5 Tretaining Rapar ternadap Trian Gerombang	13
	2.2.5 Gerakan Sway Murni	
	2.2.6 Gerakan <i>Heave</i> Murni	15
	2.2.7 Gerakan <i>Roll</i> Murni	16
	2.2.8 Gerakan Pitch Murni	17
	2.2.9 Gerakan Yaw Murni	18
	2.2.10 Gerakan Couple Six Degree of Freedom	18
	2.2.11 Offloading Process	19
	2.2.12 Kriteria Side by Side Offloading Process	20
	2.2.13 Sistem Tambat	22
	2.2.14 Response Amplitudo Operator (RAO)	24
	2.2.15 Analisa Dinamis Berbasis Ranah Frekuensi	24

	2.2.16 Tali Tambat antar Multi Body	25
	2.2.17 Spektrum Gelombang	27
	2.2.18 Analisa Dinamis Berbasis Ranah Waktu	28
	2.2.19 Gerakan Relatif	29
	2.2.20 Tegangan Geser	
	2.2.21 Tegangan von Mises	
	2.2.22 Metode Analisa Umur Kelelahan	
	2.2.23 Kurva S-N	34
	2.2.24 Analisa Umur Kelelahan	36
BAB II	I METODOLOGI PENELITIAN	
3.1	Metode Penelitian	
3.2	Prosedur Penelitian	40
3.3	Pengumpulan Data	43
BAB IV	/ ANALISIS DAN PEMBAHASAN	58
4.1	Pemodelan Struktur	58
	4.1.1 Pemodelan pada Software Maxsurf	58
	4.1.1.1 Pemodelan FSO Ladinda	59
	4.1.1.2 Validasi Model FSO Ladinda	60
	4.1.1.3 Pemodelan Tanker MS Pacific Leo	63
	4.1.1.4 Validasi Model Tanker MS Pacific Leo	65
	4.1.2 Pemodelan pada Software MOSES	66
	4.1.2.1 Pemodelan MOSES FSO Ladinda	66
	4.1.2.2 Validasi Model MOSES FSO Ladinda	67
	4.1.2.3 Pemodelan MOSES Tanker MS Pacific Leo	o71
	4.1.2.4 Validasi Model MOSES Tanker MS Pacific	: Leo71
	4.1.3 Lines Plan	73
4.2	Skenario Analisa Gerakan Struktur	74
	4.2.1 Skenario Analisis	74
	4.2.2 Skenario Pembebanan	74
4.3	Analisa Gerakan Struktur pada Kondisi Free Floating	75
	4.3.1 RAO FSO Ladinda	75
	4.3.1.1 Full Condition	75
	4.3.1.2 Half Condition	78
	4.3.1.3 Light Condition	81

LAMPIRAN	
DAFTAR PUSTAKA	108
5.2 Saran	107
5.1 Kesimpulan	106
BAB V KESIMPULAN DAN SARAN	106
4.10 Analisa Umur Kelelahan Konstruksi Bolder	104
4.9 Analisa Tegangan Lokal Konstruksi Bolder	102
4.8 Meshing dan Sensitivity Analysis	
4.7 Pembebanan pada Analisa Lokal	100
4.6 Analisa Distribusi Tegangan Global	96
4.5 Pemodelan pada MSC Patran / Nastran	94
4.4 Analisa Tegangan Tali Tambat (Hawser)	89
4.3.2.2 Light Condition	86
4.3.2.1 Full Condition	83
4.3.2 RAO Tanker MS Pacific Leo	

(halaman ini sengaja di kosongkan)

DAFTAR TABEL

Tabel 2.1 Kriteria Operabilitas Side by Side Offloading Process
Tabel 2.2 Data pada kurva S-N
Tabel 3.1 Ukuran Utama FSO Ladinda
Tabel 3.2 Ukuran Utama Tanker MS Pacific Leo
Tabel 3.3 Data Lingkungan di Selat Lalang
Tabel 3.4 Data Mooring Hawser
Tabel 3.5 Sudut dari Konfigurasi Tali Tambat
Tabel 3.6 Data Fender
Tabel 3.7 Koordinat Fender
Tabel 3.8 Data Konstruksi Bolder
Tabel 3.9 Data Koordinat Konstruksi Bolder di FSO Ladinda
Tabel 3.10 Data Koordinat Fairlead/ Bollard di Tanker MS Pacific Leo56
Tabel 4.1 Ukuran Utama FSO Ladinda
Tabel 4.2 Validasi data hidrostatis FSO Ladinda full condition61
Tabel 4.3 Validasi data hidrostatis FSO Ladinda <i>light condition</i> 62
Tabel 4.4 Ukuran Utama Tanker M.S. Pacific Leo
Tabel 4.5 Validasi data hidrostatis Tanker M.S. Pacific Leo65
Tabel 4.6 Validasi displacement hasil output software MOSES FSO Ladinda.69
Tabel 4.7 Validasi displacement hasil output MOSES Tanker72
Tabel 4.8 Skenario analisa gerakan struktur pada kondisi free floating74
Tabel 4.9 Skenario analisa gerakan struktur
Tabel 4.10 Nilai maksimum RAO FSO Ladinda full condition77
Tabel 4.11 Nilai maksimum RAO FSO Ladinda half condition
Tabel 4.12 Nilai maksimum RAO FSO Ladinda light condition
Tabel 4.13 Nilai maksimum Shuttle Tanker full condition
Tabel 4.14 Nilai maksimum Shuttle Tanker light condition
Tabel 4.15 Hasil simulasi pada arah pembebanan gelombang 0^0
Tabel 4.16 Hasil simulasi pada arah pembebanan gelombang 45 ⁰ 92
Tabel 4.17 Hasil simulasi pada arah pembebanan gelombang 90 ⁰ 92
Tabel 4.18 Hasil simulasi pada arah pembebanan gelombang 180 ⁰ 92
Tabel 4.19 Hasil perhitungan safety factor tension hawser terbesar
Tabel 4.20 Input Shear Force dan Bending Moment pada FSO Ladinda98

Tabel 4.21 Tabulasi hasil variasi kerapatan meshing	101
Tabel 4.22 Hasil perhitungan untuk umur kelelahan struktur	105

DAFTAR GAMBAR

Gambar 1.1 FSO (Floating Storage and Offloading System) Ladinda3
Gambar 1.2 mooring wishbone arm system attach to tripod SPOLS
Gambar 1.3 side by side offloading process
Gambar 1.4 Perangkat saat Sistem Offloading side by side4
Gambar 2.1 Sistem offloading dan mooring system equipment11
Gambar 2.2 Enam derajat kebebasan pada kapal12
Gambar 2.3 Definisi arah datang gelombang terhadap <i>heading</i> kapal14
Gambar 2.4 Ilustrasi gerakan heave15
Gambar 2.5 Ilustrasi kondisi <i>rolling</i> kapal pada saat <i>still water</i> 17
Gambar 2.6 Ilustrasi kondisi <i>pitch</i>
Gambar 2.7 Turret Mooring System
Gambar 2.8 Tower Yoke Mooring System
Gambar 2.9 Konfigurasi coupling line saat side by side
Gambar 2.10 Sistem koordinat
Gambar 2.11 Gaya yang bekerja sejajar terhadap penampang30
Gambar 3.1 <i>Flowchart</i> Penyelesaian Tugas Akhir
Gambar 3.2 mooring wishbone arm system attach to tripod SPOLS45
Gambar 3.3 side by side offloading process
Gambar 3.4 General Arrangement FSO Ladinda47
Gambar 3.5 General Arrangement Tanker MS Pacific Leo
Gambar 3.6 Perangkat saat side by side Offloading Process
Gambar 3.7 Konfigurasi Tali Tambat saat Proses side by side Offloading51
Gambar 3.8 Yokohama Pneumatic Rubber Fender
Gambar 3.9 Konfigurasi Fender53
Gambar 3.10 Konstruksi Bolder54
Gambar 3.11 Konfigurasi bolder56
Gambar 4.1. Hasil pemodelan FSO Ladinda tampak isometric59
Gambar 4. 2. Hasil pemodelan FSO Ladinda tampak depan (body plan)59
Gambar 4.3. Hasil pemodelan FSO Ladinda tampak samping (sheer plan)60
Gambar 4.4. Hasil pemodelan FSO Ladinda tampak atas (halfbreadth plan).60
Gambar 4.5. Hasil output data hidrostatis dari software Maxsurf61
Gambar 4.6. Hasil output data hidrostatis <i>software</i> Maxsurf62

Gambar 4.8. Hasil pemodelan Tanker tampak depan (body plan)......63 Gambar 4.10. Hasil pemodelan Tanker tampak atas (halfbreadth plan)......64 Gambar 4.12. FSO Ladinda hasil output software MOSES tampak isometric66 Gambar 4.13. FSO Ladinda hasil output software MOSES tampak atas......66 Gambar 4.14. FSO Ladinda Hasil Output software MOSES Tampak Depan.67 Gambar 4.15. File .log hasil running MOSES untuk FSO full condition......67 Gambar 4.16. File .log hasil running MOSES untuk FSO half condition.....68 Gambar 4.17. File .log hasil running MOSES untuk FSO light condition....68 Gambar 4.18. Data hidrostatis FSO Ladinda output software MOSES......69 Gambar 4.19. Tanker hasil *output* MOSES tampak isometric......71 Gambar 4.20. Tanker hasil output MOSES tampak atas......71 Gambar 4.21. Tanker hasil *Output* MOSES Tampak Depan......71 Gambar 4.22. File .log hasil running MOSES untuk Tanker full condition...72 Gambar 4.25. Maxsurf *Lines Plan* Tanker MS Pacific Leo......73 Gambar 4.26 Grafik RAO gerakan surge FSO Ladinda full condition.......75 Gambar 4.27 Grafik RAO gerakan sway FSO Ladinda full condition.......76 Gambar 4.28 Grafik RAO gerakan heave FSO Ladinda full condition......76 Gambar 4.30 Grafik RAO gerakan pitch FSO Ladinda full condition.......77 Gambar 4.31 Grafik RAO gerakan yaw FSO Ladinda full condition......77 Gambar 4.32 Grafik RAO gerakan surge FSO Ladinda half condition.......78 Gambar 4.33 Grafik RAO gerakan sway FSO Ladinda half condition.......78 Gambar 4.34 Grafik RAO gerakan heave FSO Ladinda half condition......79 Gambar 4.37 Grafik RAO gerakan yaw FSO Ladinda half condition.......80 Gambar 4.38 Grafik RAO gerakan surge FSO Ladinda light condition.......81 Gambar 4.39 Grafik RAO gerakan sway FSO Ladinda light condition.......81 Gambar 4.40 Grafik RAO gerakan heave FSO Ladinda light condition......81

Gambar 4.41 Grafik RAO gerakan roll FSO Ladinda light condition82
Gambar 4.42 Grafik RAO gerakan pitch FSO Ladinda light condition82
Gambar 4.43 Grafik RAO gerakan yaw FSO Ladinda light condition82
Gambar 4.44 Grafik RAO gerakan surge Shuttle Tanker full condition83
Gambar 4.45 Grafik RAO gerakan sway Tanker full condition
Gambar 4.46 Grafik RAO gerakan heave Tanker full condition
Gambar 4.47 Grafik RAO gerakan roll Tanker full condition
Gambar 4.48 Grafik RAO gerakan pitch Tanker full condition85
Gambar 4.49 Grafik RAO gerakan yaw Tanker full condition
Gambar 4.50 Grafik RAO gerakan surge Tanker light condition
Gambar 4.51 Grafik RAO gerakan sway Tanker light condition
Gambar 4.52 Grafik RAO gerakan heave Tanker light condition
Gambar 4.53 Grafik RAO gerakan roll Tanker light condition
Gambar 4.54 Grafik RAO gerakan pitch Tanker light condition
Gambar 4.55 Grafik RAO gerakan yaw Tanker light condition
Gambar 4.56. Arah pembebanan gelombang90
Gambar 4.57. Pemodelan pada <i>software</i> MOSES tampak <i>isometric</i> 90
Gambar 4.58. Pemodelan pada <i>software</i> MOSES tampak <i>starboard</i> 90
Gambar 4.59 Pemodelan pada <i>software</i> MOSES tampak <i>portside</i> 91
Gambar 4.60 Pemodelan pada <i>software</i> MOSES tampak <i>bow</i> 91
Gambar 4.61 Pemodelan pada <i>software</i> MOSES tampak <i>stern</i> 91
Gambar 4.62 Pemodelan pada <i>software</i> MOSES tampak <i>top</i> 91
Gambar 4.63 Foto existing Konstruksi Bolder pada FSO Ladinda94
Gambar 4.64 Hasil pemodelan Global pada MSC Patran/ Natran94
Gambar 4.65 Hasil pemodelan Lokal Konstruksi Bolder95
Gambar 4.66 <i>Material property</i> untuk pemodelan struktur lokal95
Gambar 4.67 Pemodelan pada <i>software</i> Maxsurf96
Gambar 4.68 Input Beban Gelombang pada Pemodelan96
Gambar 4.69 Validasi yang Digunakan pada Hasil Pemodelan97
Gambar 4.70 Output Grafik Shear Force dan Bending Moment97
Gambar 4.71 <i>Output Shear Force</i> dan <i>Bending Moment</i>
Gambar 4.72 (a) (b) (c) Distribusi tegangan maksimum pada FSO Ladinda98
Gambar 4.73 Konfigurasi beban pada pemodelan lokal100
Gambar 4.74 Model elemen dengan <i>meshing</i> 0.019 m101

Gambar 4.75 Sensitivitas model konstruksi bolder	102
Gambar 4.76 Letak tegangan maksimum pada konstruksi bolder	102

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Indonesia memiliki sumber daya alam yang sangat berpotensi, salah satunya sumber daya alam fosil berupa minyak bumi dan gas. Peningkatan eksplorasi dan produksi minyak bumi dan gas pun terus digalakkan untuk mencapai target produksi. Dalam seminar Petrogas Day (2012), menyatakan bahwa pertumbuhan ini mengejar pertumbuhan konsumsi energi rata-rata yang mencapai 7% dalam 10 tahun terakhir. Semakin meningkatnya kebutuhan dunia akan minyak dan terus berkurangnya sumber minyak yang berada di perairan laut dangkal, berdampak pada semakin pesatnya pencarian sumber minyak di laut dalam. Seiring berjalannya waktu, pengembangan teknologi eksplorasi dan eksploitasi minyak bumi di perairan dalam wilayah lepas pantai atau *offshore* semakin digencarkan.

Berhubungan dengan hal tersebut, maka dapat dipastikan operator migas akan banyak fasilitas marine memerlukan untuk menunjang kegiatan operasionalnya. Salah satu yang juga mutlak untuk dimiliki bagi operator migas di wilayah offshore adalah FSO (Floating Storage and Offloading). FSO pada dasarnya adalah bangunan apung (floating structure) berbentuk kapal atau tongkang, secara fisik menyerupai tanker namun diam di tempat dan tidak untuk berlayar. FSO umumnya berkapasitas besar karena difungsikan sebagai fasilitas untuk mengakomodasi aktivitas penyimpanan migas di dalam tangki-tangkinya sebelum produk tersebut ditransfer ke kapalkapal tangki pengangkut untuk didistribusikan ke daratan.

Gambar 1.1 FSO (Floating Storage and Offloading System) Ladinda (Sumber ; <u>www.bakrie-brothers.com</u>)

Pada tugas akhir ini, akan dilakukan analisa tegangan lokal dan umur kelelahan mooring system equipment pada FSO Ladinda akibat pengaruh side by side offloading process. FSO Ladinda merupakan konversi dari kapal tanker yang dibangun tahun 1974 dan berubah fungsi sebagai FSO pada tahun 1984. Sejak tahun 1984 kapal tanker konversi ini mulai beroperasi di Selat Lalang, Malaka Strait, Riau. Saat beoperasi FSO ini di tambat dengan menggunakan tower yoke mooring system berupa SPOLS (Single Point Offshore Loading System) dan untuk operasional offloading menggunakan sistem side by side. Karena FSO ini merupakan konversi dari kapal tanker yang sebelumnya tidak terdapat proses offloading maupun bongkar muat di perairan lepas pantai, maka diperlukan analisis untuk mengetahui pergerakan dan tegangan yang terjadi pada struktur FSO yang menerima beban paling besar saat proses side by side offloading process sehingga dapat dikatakan bahwa struktur tersebut masih aman untuk beroperasi.

Gambar 1.2 mooring wishbone arm system attach to tripod SPOLS (Single Point Offshore Loading System) (Sumber ;PT. Energi Mega Persada)

Gambar 1.3 side by side offloading process (Sumber ;PT. Energi Mega Persada)

Saat side by side offloading process, sistem penambatan antara shuttle tanker ke FSO digunakan beberapa perangkat. Awal mulanya tali tambat dipasangkan pada winch shuttle tanker yang kemudian tersambung pada fairlead/ bollard shuttle tanker. Kemudian tali tambat tersebut terhubung pada konstruksi Bolder yang merupakan mooring system equipment saat proses offloading pada FSO Ladinda. Konstruksi Bolder ini yang menerima beban yang paling besar saat side by side offloading process.

Gambar 1.4 Perangkat saat Sistem Offloading side by side (Sumber: www.psikasoma.lt)

Dengan memodelkan FSO dan *shuttle tanker* dalam kondisi *free floating*, akan diketahui respon struktur akibat eksitasi gelombang dari FSO dan *shuttle tanker*. Kemudian dicari *tension hawser* terbesar saat kondisi *side by side offloading process*. Setelah itu, dilakukan analisa kekuatan memanjang kapal untuk mendapatkan *shear force* dan *bending moment* akibat beban gelombang, dari hasil *shear force* dan *bending moment* akibat beban gelombang, dari hasil *shear force* dan *bending moment* akan dilakukan analisa distribusi tegangan global akibat pengaruh gerakan struktur. Nilai *tension hawser* terbesar dan distribusi tegangan global tersebut digunakan sebagai beban dalam analisa tegangan lokal pada konstruksi bolder yang merupakan *mooring system equipment* untuk *side by side offloading process* dengan menggunakan metode elemen hingga (FE *analysis*), sehingga dapat dianalisa umur kelelahan dari konstruksi tersebut dengan menggunakan metode S-N Curve berdasarkan hukum kegagalan *palmgren miner (miner's rule)* dengan menggunakan metode *deterministic*.

1.2 Perumusan Masalah

Tujuan dari tugas akhir ini adalah :

- 1. Bagaimana karakteristik respon struktur FSO *Ladinda* dan *shuttle tanker* akibat beban gelombang pada saat *free floating* ?
- 2. Berapa besar *tension hawser* yang menghubungkan antara FSO *Ladinda* dengan *shuttle tanker* ketika *side by side offloading process*.?
- 3. Bagaimana distribusi tegangan yang terjadi pada konstruki bolder akibat pengaruh gerakan struktur ?
- 4. Berapa besar tegangan lokal maksimum pada konstruksi bolder (*mooring system equipment*) FSO *Ladinda* akibat pengaruh *side by side offloading process*.
- 5. Berapa umur kelelahan konstruksi bolder (*mooring system equipment*) FSO Ladinda akibat pengaruh *side by side offloading process*.

1.3 Tujuan

Tujuan dari tugas akhir ini adalah :

- 1. Mengetahui karakteristik respon struktur FSO *Ladinda* dan *shuttle tanker* akibat beban gelombang pada saat *free floating*.
- 2. Mengetahui besar *tension hawser hawser* yang menghubungkan antara FSO *Ladinda* dengan *shuttle tanker* ketika *side by side offloading process*.
- 3. Mengetahui distribusi tegangan yang terjadi pada konstruki bolder akibat pengaruh gerakan struktur
- 4. Mengetahui besar tegangan lokal maksimum pada konstruksi bolder (mooring system equipment) FSO Ladinda akibat pengaruh side by side offloading process.
- 5. Mengetahui umur kelelahan konstruksi bolder (*mooring system equipment*) FSO Ladinda akibat pengaruh *side by side offloading process*.

1.4 Manfaat

Penelitian ini diharapkan dapat bermanfaat bagi industri ekplorasi dan eksploitasi minyak dan gas bumi di Indonesia terutama bagi perusahaan Energi Mega Persada yang memiliki beberapa fasilitas marine sebagai penunjang produksi. Secara spesifik manfaat penelitian ini adalah :

- 1. Dapat mengetahui prosedur cara menganalisis dan menghitung karakteristik respon struktur FSO *Ladinda* dan *shuttle tanker* pada saat *free floating* akibat beban gelombang, serta *tension hawser* terbesar yang menghubungkan antara keduanya.
- 2. Dapat mengetahui prosedur cara menganalisis dan menghitung umur kelalahan struktur lokal pada konstruksi bolder FSO.
- Sebagai referensi bagi perusahaan Energi Mega Persada dalam penentuan umur kelelahan (*fatigue*) pada *mooring system equipment* FSO *Ladinda* akibat pengaruh *side by side offloading process* sehingga dapat dikatakan bahwa struktur tersebut masih aman untuk beroperasi.

1.5 Batasan Masalah

Agar lebih memudahkan analisis dan dapat dicapai tujuan yang diharapkan, maka perlu diberikan batasan-batasan sebagai berikut:

- 1. Penelitian ini merupakan studi kasus pada Kapal FSO *Ladinda* milik Energi Mega Persada dan Tanker MS Pacific Leo milik CNOOC (*China National Offshore Oil Coorporation*).
- 2. Beban yang bekerja adalah beban gelombang, beban angin dan beban arus.
- 3. *Heading* pembebanan pada *head sea, beam sea,* dan *following sea*.
- 4. Analisis motion dengan gerakan 6 degree of freedom.
- 5. FSO yang di tinjau menggunakan sistem mooring wishbone arm system attach to tripod SPOLS pada FSO Ladinda.
- 6. Proses offloading dilakukan dengan skema side by side.
- Konfigurasi tali tambat (*hawser arrangement*) mengacu pada data yang diperoleh dari PT. Energi Mega Persada
- 8. Tali tambat antara FSO dan Tanker (*coupling line*) menggunakan tipe *syntethic rope*

- 9. Riser tidak dimodelkan dan pergerakan hose diabaikan.
- 10. Analisa stabilitas tidak dilakukan.
- 11. Analisis gerakan struktur FSO dan *shuttle tanker* dilakukan dalam kondisi *free-floating*.
- Skema kondisi yang digunakan saat side by side offloading process yaitu
 FSO Full Load Tanker Light Load, FSO Half Load Tanker Full Load,
 FSO Half Load Tanker Light Load, FSO Light Load Tanker Full Load.
- 13. Beban yang digunakan untuk analisa tegangan dan umur kelelahan struktur yaitu *tension hawser* terbesar dan distribusi tegangan pada konstruksi bolder akibat gerakan struktur.
- 14. Analisa *Fatigue* pada struktur FSO menggunakan metode S-N Curve berdasarkan hukum kegagalan *palmgren miner (miner's rule)* dengan mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* menggunakan metode *deterministic*.

1.6 Sistematika Penulisan

Sistematika penulisan laporan tugas akhir ini adalah sebagai berikut:

BAB I PENDAHULUAN

Dalam bab ini menjelaskan tentang latar belakang penelitian yang akan dilakukan, perumusan masalah, tujuan yang ingin dicapai dalam penulisan tugas akhir ini, manfaat yang diperoleh, batasan masalah untuk membatasi analisis yang dilakukan, dan sistematika penulisan.

BAB II TINJAUAN PUSTAKA DAN DASAR TEORI

Bab ini berisi tinjauan pustaka dan dasar teori, yaitu hal-hal yang menjadi acuan dari penelitian tugas akhir ini. Persamaan-persamaan dan *codes* yang digunakan dalam pengerjaan tugas akhir ini diuraikan dalam bab ini.

BAB III METODOLOGI PENELITIAN

Bab metodologi penelitian menjelaskan langkah-langkah pengerjaan untuk menyelesaikan tugas akhir ini dan metode-metode yang digunakan.

BAB IV ANALISIS HASIL DAN PEMBAHASAN

Pada bab ini membahas permodelan FSO dan *shuttle tanker* dengan menggunakan *software* Maxsurf Pro untuk mengetahui hidrostatik struktur,

menggunakan *software* Moses untuk analisis gerakan FSO dan *shuttle tanker* pada saat *free floating*, analisis gerakan FSO dan *shuttle tanker* pada saat tertambat, dan menggunakan *software* MSC Patran/Nastran untuk permodelan konstruksi Bolder pada FSO. Selain hal tersebut, juga dilkakukan pembahasan analisis hasil permodelan yang telah dilakukan pada penelitian ini.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

FSO (*Floating Storage and Offloading System*) merupakan struktur terapung yang berfungsi menyimpan dan menyalurkan minyak dan gas bumi tanpa dilengkapi dengan fasilitas pemrosesan. Menurut *OCIMF Tandem Mooring Offloading Guidelines for CTs at F(P)SO Facilities,* FSO serupa dengan FPSO, yang membedakan hanya minyak atau gas tidak diproses di kapal. Jadi, FSO dapat didefinisikan sebagai suatu sistem terapung yang beroperasi untuk:

- Menerima hasil proses *crude oil* atau gas dari fasilitas pemrosesan eksternal,
- Menyimpan crude oil yang telah diproses,
- Menyalurkan *crude oil* atau gas ke *shuttle tanker*.

Dengan semakin banyaknya penggunaan FSO di wilayah offshore, maka kebutuhan terhadap jumlah FSO juga akan semakin meningkat. Pengadaan FSO untuk melayani kebutuhan di wilayah offshore dapat dilakukan dengan membangun kapal baru (*new-build*) atau dengan melakukan konversi terhadap kapal-kapal bekas. Kelebihan dan kekurangan dalam bangunan baru atau konversi kapal bekas meliputi biaya dan waktu produksi, desain dan konstruksi kapal, serta penentuan umur lelah kapal. Pengadaan FSO dengan membuat bangunan kapal baru (*new-build*) akan menguntungkan jika FSO digunakan untuk jangka waktu operasional lebih dari 15 tahun. Namun, jika FSO didesain untuk jangka waktu operasional kurang dari 15 tahun, maka pengadaan FSO sebaiknya dilakukan dengan mengonversi kapal bekas. Paik (2007) menyatakan bahwa, kapal-kapal bekas yang biasa dikonversi menjadi FSO adalah kapal tanker karena bentuk lambung kapal tanker sama dengan kapal-kapal yang digunakan sebagai FSO. Kapal-kapal tanker yang dikonversi rata-rata kapal yang berusia tua.

Meskipun bentuk konstruksi lambung yang biasa digunakan sebagai FSO sama dengan bentuk lambung kapal tanker, namun terdapat beberapa perbedaan diantara keduanya. Kapal tanker umumnya melakukan bongkar muat pada kondisi air tenang di pelabuhan, sementara FSO selalu melakukan bongkar muat di lepas pantai yang kondisinya selalu terkena beban lingkungan yang signifikan, yaitu beban angin dan gelombang. Untuk selanjutnya beban gelombang tersebut akan menjadi beban yang mendominasi pada FSO dan menjadi beban siklis karena sifatnya berulang. Karena sifat FSO yang diam di tempat dan tidak berlayar, maka jumlah beban siklis yang diterima oleh FSO lebih besar daripada jumlah beban siklis yang diterima oleh kapal tanker. Paik (2007) menguraikan tentang metode dalam menentukan desain beban lingkungan dan beban pada saat operasional, beban yang biasa digunakan adalah beban gelombang. Untuk desain beban gelombang pada kapal tanker, beban gelombang yang digunakan adalah gelombang 20 tahunan atau 25 tahunan. Sedangkan desain beban gelombang untuk FSO pada umumnya digunakan beban gelombang 100 tahunan.

Studi kasus yang akan dibahas dalam tugas akhir ini yaitu FSO *Ladind*a yang merupakan konversi dari kapal tanker. Karena FSO ini merupakan konversi dari kapal tanker yang sebelumnya tidak terdapat proses *offloading* maupun bongkar muat di perairan lepas pantai, maka diperlukan analisis untuk mengetahui pergerakan dan tegangan yang terjadi pada struktur FSO yang menerima beban paling besar saat *offloading process* yaitu *mooring system equipment* sehingga dapat dikatakan bahwa struktur tersebut masih aman untuk beroperasi. Pada tugas akhir ini, skema yang diteliti adalah skema *side by side*. Van der Valk (2005) mengungkapkan bahwa, *mooring* dengan skema *Side by side* pada dua buah bangunan apung menunjukkan ketidaklayakan jika kondisi lingkungan yang terjadi sangat ganas.

Gambar 2.1 Sistem offloading dan mooring system equipment di FSO Ladinda (Sumber: PT. Energi Mega Persada)

Ada beberapa tujuan pokok dalam analisis *mooring* pada skema *side by side*, yaitu: untuk menentukan gaya tarik tali tambat, gaya yang terjadi pada *fender* antara FSO dengan *Shuttle Tanker*, dan gerakan relatif dari titik tertentu pada bangunan apung yang ditinjau. Kemudian dari beberapa analisis tersebut, didapatkan hasil yang nantinya akan digunakan sebagai *input* desain pada sistem transfer FSO (*hoses* atau *loading arm*), *bollard* atau *fairlead*, dimensi *fender* dan posisi penempatannya (DNV, 2011).

2.2 Dasar Teori

2.2.1 Teori Gerak Kapal

Setiap struktur apung yang bergerak di atas permukaan laut selalu mengalami gerakan osilasi. Gerakan osilasi ini terdiri enam macam gerakan dengan tiga gerakan translasional dan tiga gerakan rotasional dalam tiga arah. Macam-macam gerakan ini meliputi:

- a. *Surging* : Gerak osilasi translasional pada sumbu-x
- b. *Swaying* : Gerak osilasi translasional terhadap sumbu-y
- c. *Heaving* : Gerak osilasi translasional terhadap sumbu-z
- d. *Rolling* : Gerak osilasi rotasional terhadap sumbu-x
- e. *Pitching* : Gerak osilasi rotasional terhadap sumbu-y
- f. Yawing : Gerak osilasi rotasional terhadap sumbu-z

(Sumber: http://ftkceria.wordpress.com)

Hanya tiga macam gerakan yang merupakan gerakan osilasi murni yaitu *heaving, rolling,* dan *pitching*, karena gerakan ini bekerja di bawah gaya atau momen pengembali ketika struktur tersebut dari posisi kesetimbangannya. Untuk gerakan, *surging, swaying,* dan *yawing,* struktur tidak kembali menuju posisi kesetimbangannya semula, kecuali terdapat gaya atau momen pengembali yang menyebabkannya bekerja dalam arah berlawanan.

2.2.2 Gaya Gelombang

Syarat pemilihan teori untuk perhitungan gaya gelombang didasarkan pada perbandingan antara diameter struktur (*D*) dengan panjang gelombang (λ) sebagai berikut:

 $\frac{p}{\lambda} > 1$ = gelombang mendekati pemantulan murni, persamaan morison tidak valid

 $\frac{D}{\lambda} > 0.2$ = difraksi gelombang perlu diperhitungkan, persamaan morison tidak valid

 $\frac{D}{\lambda} < 0.2$ = persamaan morison valid

Indiyono (2003) menjelaskan beberapa teori yang digunakan pada perhitungan gaya gelombang, diantaranya yaitu :

a. Teori Morison

Persamaan morison mengasumsikan bahwa gelombang terdiri dari komponen gaya inersia dan *drag force* (hambatan) yang dijumlahkan secara linier. Persamaan morison lebih tepat diterapkan pada kasus struktur dimana gaya hambatan merupakan komponen yang dominan. Hal ini biasanya dijumpai pada struktur yang ukurannya (D) relatif kecil dibandingkan dengan panjang gelombangnya (λ).

b. Teori Froude-Krylov

Froude-Krylov digunakan bilamana gaya hambatan relatif kecil dan gaya inersia dianggap lebih berpengaruh, dimana struktur dianggap kecil. Teori ini mengadopsi metode tekanan gelombang *incident* dan bidang tekanan pada permukaan struktur. Keuntungan dari teori ini adalah untuk struktur yang simetris, perhitungan gaya dapat dilakukan dengan persamaan terangkai (*closed-form*) dan koefisien-koefisien gayanya mudah ditentukan.

c. Teori Difraksi

Bilamana suatu struktur mempunyai ukuran yang relatif besar, yakni memiliki ukuran yang kurang lebih sama dengan panjang gelombang, maka keberadaan struktur ini akan mempengaruhi timbulnya perubahan arah pada medan gelombang disekitarnya. Dalam hal ini difraksi gelombang dari permukaan struktur harus diperhitungkan dalam evaluasi gaya gelombang.

2.2.3 Heading Kapal terhadap Arah Gelombang

Selain faktor gelombang, terdapat juga faktor gelombang papasan, dimana gelombang tersebut berpapasan terhadap kapal. Dalam ilustrasinya di perlihatkan sebagai berikut :

$$V_w = \omega_\theta (1 - \frac{v}{v_w} \cos \mu).$$
 (2)

dengan:

 T_{θ} = Periode *Encountering* (s)

 $V_w = \text{Kecepatan Gelombang}(m/s)$

V = Kecepatan Kapal (knot)

 μ = Sudut Datang Gelombang

Sebagai gambaran arah kapal terhadap arah gelombang untuk kondisi *Head Sea, Following Sea, Beam Sea* dapat dilihat pada gambar di bawah ini :

Gambar 2.3 Definisi arah datang gelombang terhadap *heading* kapal (Sumber: Bhattacharyya 1972)

2.2.4 Gerakan Surge Murni

Surge merupakan gerak translasi kapal dengan sumbu X sebagai pusat gerak. Persamaan umum pada kapal kondisi surging adalah: $a\ddot{\mathbf{x}} + b\dot{\mathbf{x}} + c\mathbf{x} = F_o \cos \omega_e t$(3)

dengan:

ax	: Inertial force
bż	: Damping force
сх	: Restoring force

 $F_o \cos \omega_e t$: Exciting force

2.2.5 Gerakan Sway Murni

Sway merupakan gerak translasi kapal dengan sumbu Y sebagai pusat gerak. Persamaan umum kapal pada kondisi *swaying* adalah:

 $a\ddot{\mathbf{y}} + b\dot{\mathbf{y}} + c\mathbf{y} = F_o \cos \omega_e t \dots (4)$

dengan:

aÿ	: Inertial force
bÿ	: Damping force
сy	: Restoring force
$F_{o} \cos \omega_{e} t$: Exciting force

2.2.6 Gerakan Heave Murni

Pada *heaving* gaya ke bawah akibat dari berat kapal membuat kapal tercelup ke air lebih dalam dan kembali ke awal hingga diperoleh kesetimbangan kapal. Ketika gaya *buoyancy* lebih besar akibat kapal tercelup, kapal akan bergerak vertikal ke atas, ketika posisi kapal telah setimbang kapal akan tetap naik dikarenakan ada pengaruh momentum.

Gambar 2.4 Ilustrasi gerakan heave

(Sumber: Murtedjo 1999)

Dengan keterangan gambar sebagai berikut:

Δ	: Displacement kapal
G	: Titik tangkap gaya berat (Titik Berat)
В	: Titik tangkap gaya tekan keatas (Titik Bouyancy)
γV	: Gaya tekan keatas
W_0L_0	: <i>Water line</i> keadaan awal

W_1L_1	: Water line keadaan heave
a _z ż	: Tambahan gaya tekan keatas karena added mass
$\boldsymbol{\delta}_{z}$: Besar jarak simpangan <i>heave</i>

Maka dapat dituliskan persamaan umum pada kapal kondisi heaving adalah :

 $a\ddot{z} + b\dot{z} + cz = F_o \cos \omega_e t$(5) dengan: $a\ddot{z}$: Inertial force $b\dot{z}$: Damping force cz : Restoring force $F_o \cos \omega_e t$: Exciting force

2.2.7 Gerakan Roll Murni

Kapal menjalani gerakan harmonis sederhana terhadap koordinat axis secara transversal maupun longitudinal. *Rolling* merupakan gerak rotasional dengan sumbu X sebagai pusat geraknya. Gerakan ini akan berpengaruh terhadap initial velocity sehingga perlu dilakukan perhitungan terhadap momen gaya.

Rumus umum dari persamaan gerak akibat rolling ialah:

 $a\ddot{\emptyset} + b\dot{\emptyset} + c\emptyset = M_o \cos \omega_e t....(6)$

Dengan:

Мо	= Amplitudo momen eksitasi (m)
ω	= Frekuensi gelombang <i>encountering</i> (hz)
aÖ	= Inertial moment
ЬÖ	= Damping Moment
сØ	= Restoring Moment
$M_o \cos \omega_e$	t = Exciting moment

Gambar 2.5 Ilustrasi kondisi *rolling* kapal pada saat *still water* (Sumber: Murtedjo 1999)

``**`**

2.2.8 Gerakan Pitch Murni

Konstruksi benda apung dapat mengalami *simple harmonic motion* yang berupa gerakan dalam arah sumbu transversal maupun arah sumbu longitudinal apabila benda apung tersebut mengalami perpindahan posisi keseimbangannya dan kemudian dilepaskan atau pada benda apung tersebut dikenakan suatu kecepatan awal sehingga bergerak menjauh dari posisi keseimbangannya. *Pitching* merupakan gerak rotasional dengan sumbu Y sebagai pusat gerak. Karena gerak *pitching* akan berpengaruh terhadap kesetimbangan posisi, maka momen yang terjadi akibat pitching perlu diperhitungkan. Rumus umum dari persamaan gerakan akibat pitching adalah:

 $a\ddot{\theta} + b\dot{\theta} + c\theta = M_o \cos \omega_e t.$ (7)

dengan:

Мо	= amplitudo momen eksitasi (m)
ω _e	= frekuensi gelombang <i>encountering</i> (hz)
aθ	= Inertial Moment
ЬÖ	= Damping Moment
сθ	= Restoring Moment
$M_o \cos \omega_e t$	= Exciting Moment

(Sumber: Murtedjo 1999)

2.2.9 Gerakan Yaw Murni

Gerak *yaw* merupakan gerak rotasional kapal dengan sumbu Z sebagai pusat gerak. Sama halnya seperti pada gerak *rolling* dan *pitching*, gerak ini pun akan berpengaruh terhadap kesetimbangan posisi kapal, sehingga perlu memperhitungkan momen gaya. Persamaan umum gerak kapal untuk *yawing* ialah:

 $a\ddot{\varphi} + b\dot{\varphi} + c\varphi = M_o \cos \omega_e t....(8)$

dengan:

Мо	= amplitudo momen eksitasi (m)
ωε	= frekuensi gelombang <i>encountering</i> (hz)
а 	= Inertial Moment
b 	= Damping Moment
с ф	= Restoring Moment
$M_o \cos \omega_c$	t = Exciting Moment

2.2.10 Gerakan Couple Six Degree of Freedom

Karena bangunan apung yang ditinjau terdiri dari enam mode gerakan bebas (*six degree of freedom*), dengan asumsi bahwa gerakan-gerakan osilasi tersebut adalah linier dan harmonik, maka persamaan diferensial gerakan kopel dapat dituliskan sebagai berikut:

$$\sum_{n=1}^{6} \left[\left(M_{jk} + A_{jk} \right) \xi_k + B_{jk} \xi_k + C_{jk} \xi_k \right] = F_j e^{iwt}, \ j = 1$$
.....(9)

dengan:

 M_{jk} = komponen matriks massa kapal A_{jk}, B_{jk} = matriks koefisien massa tambah dan redaman C_{jk} = koefisien-koefisien gaya hidrostatik pengembali F_j = amplitudo gaya eksitasi dalam besaran kompleks $F_1, F_2,$ dan F_3 adalah amplitudo gaya-gaya eksitasi yangmengakibatkan surge, sway, dan heave, sedangkan F_4, F_5 , dan F_6 adalah amplitudo momen eksitasi untuk roll, pitch, dan yaw.

2.2.11 Offloading Process

Offloading adalah proses pemindahan atau pengeluaran muatan, dari satu struktur ke struktur yang lain. Siklus *offloading* mempunyai beberapa batasan operasi, yaitu: *pilot boarding, tugs connecting, berthing, mooring, offloading,* dan *unberthing*. Poldervaart (2006) menguraikan bahwa siklus *offloading* dapat dibagi menjadi 3 fase, dan tiap fase terdiri dari beberapa operasi, yaitu:

1. Apporoach/ berthing

- Initial approach adalah prosedur awal ketika posisi Shuttle Tanker mendekati FSO dengan jarak yang jauh. Operasi ini berakhir ketika posisi Shuttle Tanker sudah dalam posisi sejajar dengan FSO pada radius 100 – 150 meter.
- Hold station adalah posisi yang menjelaskan bahwa Shuttle Tanker berada sejajar dengan FSO dengan jarak 100 – 150 meter dan tetap berada diposisi tersebut hanya dengan bantuan *tug boat*.
- *Parallel berthing* adalah posisi ketika Shuttle Tanker bergerak mendekati FSO secara perlahan dengan bantuan *tug boat*.
- *Fender kissing* adalah saat pertama kali terjadinya tumbukan pada *fender*.

- *Mooring* adalah saat pengikatan dan pemberian *pre-tension* pada tali tambat.
- *Loading arm connection* adalah kegiatan menyambungkan *loading arm* pada FSO ke *manifold* pada Shuttle Tanker.
- 2. Offloading
 - Proses ini berlangsung ketika tali tambat dan *fender* bekerja optimal dan dipastikan bahwa *loading arm* berada pada *operating envelope*.
- 3. Depart/Sail away
 - *Disconnection* adalah operasi ketika *loading arm* dilepaskan dari *manifold*.
 - Unmooring adalah kegiatan saat tali tambat dilepaskan.
 - *Sail away* adalah proses menjauhnya Shuttle Tanker dari FSO dengan bantuan tug boat maupun dengan menggunakan sistem penggerak *Shuttle Tanker*.

2.2.12 Kriteria Side by Side Offloading Process

Berdasarkan sejumlah penelitian yang telah dilakukan oleh Olson (1977), Hong (2009), (Jeong 2010), serta (Kim 2012), baik secara numeris maupun tes model, dihasilkan batasan-batasan operasi pada saat *side by side offloading process*. Pada fase *approach* atau *berthing* dan *depart* atau *sail away* digunakan kriteria yang dikemukakan oleh Olson (1977). Sedangkan ketika fase *offloading* digunakan kriteria yang disampaikan oleh Hong (2009), (Jeong 2010), serta (Kim 2012). Pada fase *offloading* terdapat tiga elemen penting untuk analisis operabilitas, yaitu: gaya tali tambat, gaya pada fender, serta gerakan relatif Shuttle Tanker terhadap FSO. Kriteria operabilitas tali tambat disampaikan oleh Hong (2009) yang mengacu pada OCIMF (1997). Kemudian, kriteria operabilitas fender disampaikan oleh Hong (2009) dan Jeong (2010). Lalu, kriteria operabilitas gerakan relatif Shuttle Tanker terhadap FSO disampaikan oleh Hong (2009) dan Kim (2012).

FASE	KETERANGAN	KRITERIA OPERABILITAS
Approach/ Berthing	Posisi paralel antara Shuttle Tanker dan FSO	(Olson, 1977) Double amplitude roll: 12,8°
	Shuttle Tanker mendekati FSO dengan bantuan tug boat	Double amplitude pitch: 6°
	FSO dan Shuttle Tanker menyentuh fender, pemasangan tali tambat dan loading arm	Kecepatan vertikal di <i>deck:</i> 2.13 m/s
Offloading	Tali tambat dalam batas aman (OCIMF, 1997) & (Hong, 2009)	nylon: 40% dari Breaking Strength chain: 55% dari Breaking Strength Beban maksimal yang diperbolehkan 1354 kN
	Fender 4,5 m dalam batas aman (Jeong, 2010) & (Hong, 2009)	Beban maksimal yang deperbolehkan 2492 kN
	Gerakan relatif antara FSOdengan Shuttle Tanker pada posisi loading arm dan manifold dalam batas aman	(Hong, 2009) Longitudinal: ± 2 meter Transversal: $\pm 2,5$ meter Vertikal: ± 2 meter (Kim, 2012) Longitudinal: ± 4 meter Transversal: ± 2 meter Vertikal: ± 2 meter
Depart/Sail away	Pelepasan sistem transfer minyak	(Olson, 1977) Double amplitude roll: 12,8°
	Pelepasan sistem tambat Shuttle Tanker menjauhi	Double amplitude pitch: 6° Kecepatan vertikal
	FSO	di <i>deck:</i> 2.13 m/s

Tabel 2.1 Kriteria Operabilitas Side by Side Offloading Process

Pada Tabel 2.1 terdapat perbedaan kriteria operabilitas pada fase *offloading* untuk gerakan relatif. Hal ini dapat disebabkan karena perbedaan desain dan karakter dari *loading arm* yang digunakan. Naciri (2007) menyatakan bahwa simulasi *time* menunjukkan bahwa operasi *offloading* mungkin dilakukan pada gelombang dengan tinggi signifikan maksimal 3 meter.

2.2.13 Sistem Tambat

Sistem penambatan pada FSO dapat dikategorikan menjadi dua jenis, yaitu: *weathervaning* dan *non-weathervaning*. *Weathervaning* adalah respon bangunan apung yang bebas berputar terhadap beban lingkungan. *Turret mooring system* dan *tower yoke mooring system* termasuk dalam sistem tambat *weathervaning*, sedangakan *jetty mooring system* dan *spread mooring* termasuk dalam sistem tambat *non-weathervaning*. Pada *spread mooring system*, skema tandem menjadi lebih baik karena osilasi *stern* lebih tereduksi dengan baik.

1. Turret Mooring System

Turret mooring system, seperti digambarkan pada Gambar 2.6, menggungakan sembilan sampai 12 tali tambat yang berfungsi sebagai penstabil bangunan apung serta sistem *riser* yang berfungsi sebagai media penyalur natural gas ke *onshore*. de Pee (2005) menyatakan bahwa, kedalaman minimum untuk *turret mooring system* adalah 50 meter. Namun pada perairan yang lebih tenang, kedalaman 35 meter masih mampu beroperasi dengan baik.

Gambar 2.7 *Turret Mooring System* (sumber : www.offshoremoorings.org)

2. Tower Yoke Mooring System

Liu (2007) mengunkapkan, sistem tambat *Tower yoke*, seperti digambarkan pada Gambar 2.7, terdiri dari *tower* yang dipancangkan ke dasar laut dan rangkaian penghubung atau *yoke* yang berfungsi sebagai penghubung antara *tower* dengan bangunan apung. de Pee (2005) Kedalaman yang cocok untuk sistem ini berkisar dari 18 sampai 40 meter. *Pipeline* penyalur natural gas dari terminal menuju *onshore* diikatkan pada kaki *tower*, sehingga menjaga *pipeline* dari gerakan yang tidak diinginkan.

Gambar 2.8 Tower Yoke Mooring System (Sumber : Liu, 2007)

2.2.14 Response Amplitudo Operator (RAO)

Response Amplitude Operator (RAO) atau disebut juga dengan *transfer function* merupakan fungsi respon gerakan dinamis struktur yang terjadi akibat gelombang dalam rentang frekuensi tertentu. RAO merupakan alat untuk mentransfer gaya gelombang menjadi respon gerakan dinamis struktur. Menurut Chakrabarti (1987), persamaan RAO dapat dicari dengan rumus sebagai berikut:

$$RAO = \frac{Amplitudo Respon Gerakan}{Amplitudo Gelombang} = \frac{R_a}{\zeta_a} \dots \dots (10)$$

dimana,

R _a	: Amplitudo respon gerakan [ft]
ζα	: Amplitudo gelombang [ft]

Spektrum respons didefinisikan sebagai respons kerapatan energi pada struktur akibat gelombang. Spektrum respons merupakan perkalian antara spektrum gelombang dengan RAO kuadrat, secara matematis dapat ditulis sebagai berikut:

dengan:

$$S_{R} = \text{spektrum respons (m2-sec)}$$

$$S(\omega) = \text{spektrum gelombang (m2-sec)}$$

$$RAO(\omega) = transfer function$$

$$\omega = \text{frekuensi gelombang (rad/sec)}$$

2.2.15 Analisis Dinamis Berbasis Ranah Frekuensi (*Frequency Domain Analysis*) untuk Gerakan Struktur Kondisi *Free Floating*

Dari hasil yang diperoleh untuk koefisien hidrodinamik dan gaya gelombang yang bekerja pada bangunan apung, maka persamaan gerak untuk *single body* dapat dituliskan sebagai berikut :

$$\sum_{k=1}^{6} \left[(M+A)\ddot{\eta} + B\dot{\eta} + C\eta \right] = Fe^{-iw_{\varepsilon}t}$$
(12)

dengan,

•

М	= Massa struktur (generalized mass)			
А	= Massa tambah (<i>added mass</i>)			
В	= Koefisien redaman (<i>damping</i>)			
С	= Koefisien pengembali (restoring)			
F	= Amplitudo gelombang dan komponen momen yang			
didefinisikan sebagai komponen dari Fe^{-iwet}.				

Dengan mengembangkan persamaan gerak untuk *single body* dapat untuk mendefinisikan persamaan gerak untuk *multi body*, yaitu $\sum_{k=1}^{6} [(M^{1} + A^{11} + \dots + A^{1N})\ddot{\eta} + (B^{11} + \dots + B^{1N})\dot{\eta} + C^{1}\eta] = F^{1}e^{-iw_{e}t}$

$$\sum_{k=1}^{6} [(M^{N} + A^{N1} + \dots + A^{NN})\ddot{\eta} + (B^{N1} + \dots + B^{NN})\dot{\eta} + C^{N}\eta] = F^{N}e^{-iw_{g}t}$$
(13)

Superscipt pada persamaan tersebut menunjukkan nomer moda antara jumlah bangunan apung *N* tertentu.

Jika bangunan apung berosilasi akibat gelombang harmonik maka respon struktur yang terbentuk adalah sebagai fungsi harmonik. Analisis berbasis ranah frekuensi dilakukan untuk menentukan respon bangunan struktur pada gelombang reguler yang disajikan dalam bentuk *Respon Amplitude Operator*.

2.2.16 Tali Tambat antar Multi Body (Coupling Line)

Dalam kondisi *side by side offloading* yang terhubung oleh tali tambat, gerakan masing-masing bangunan apung akan mempengaruhi bangunan apung yang lainnya. Perhitungan tali tambat dapat dituliskan sebagai berikut,

$$\Delta l = \frac{T}{k} \tag{14}$$

dengan Δl adalah perpanjangan tali tambat, *T* adalah tegangan tali tambat dan *k* adalah kekakuan aksial efektif. Kekakuan aksial efektif dapat dihitung berdasarkan persamaan,

$$\frac{1}{k} = \frac{l}{EA} + \frac{1}{k_0} \tag{15}$$

dengan $\frac{1}{k_0}$ adalah fleksibilitas sambungan, *E* adalah modulus elastisitas dan A adalah luasan area penampang. Dengan mengetahui perpanjangan tali tambat pada tiap-tiap tali dapat untuk menghitung tegangan tali tambat. Jika material damping turut diperhitungkan maka persamaan menjadi,

$$F = \frac{C_W \Delta l}{l \Delta t} \qquad (16)$$

Gambar 2.9 Konfigurasi coupling line saat side by side offloading(OCIMF, 2008)

2.2.17 Spektrum Gelombang

Menurut Djatmiko (2012), sebuah gelombang reguler memuat energi yang diidentifikasikan pada setiap unit atau satuan luas permukaannya ekuivalen dengan harga kuadrat amplitudonya, seperti yang ditunjukkan pada persamaan di bawah ini,

dengan,

dE_T	= energi total
dA	= luas permukaan
dE_p	= energi potensial
dE_k	= energi kinetik
ζ0	= amplitudo gelombang

Penjumlahan energi dari seluruh komponen gelombang reguler per satuan luas permukaan dapat diekspresikan sebagai kepadatan spektrum gelombang atau lebih dikenal dengan istilah spektrum gelombang.

Bersamaan dengan semakin meningkatnya intensitas studi yang dilakukan mengenai respon gerak pada gelombang acak telah banyak dihasilkan spektrum gelombang yang beragam sesuai dengan kondisi lingkungan yang dianalisis. Jenis-jenis spektrum gelombang yang biasa digunakan dalam perhitungan adalah model Pierson-Moskowitz (1964), ISSC (1964), Scott (1965), Bretschneider (1969), JONSWAP (1973), ITTC (1975) dan Wang (1991). Spektrum gelombang yang digunakan dalam analisis ini mengacu pada soektrum gelombang JONSWAP karena karakteristik perairan Indonesia yang tertutup/kepulauan sehingga cocok dengan karakter spektrum JONSWAP.

Spektrum JONSWAP didasarkan pada percobaan yang dilakukan di North Sea. Persamaan spektrum JONSWAP dapat dituliskan dengan memodifikasi persamaan spektrum Pierson-Moskowitz, yaitu :

dengan,

$$\gamma = \text{parameter puncak } (peakedness parameter)$$

$$\tau = \text{parameter bentuk } (shape parameter) \text{untuk}$$

$$\omega \le \omega_0 = 0,07 \text{dan } \omega \ge \omega_0 = 0,09$$

$$\alpha = 0,0076 (X_0)^{-0,22}, \text{ untuk } X_0 \text{ tidak diketahui } \alpha = 0,0081$$

$$\omega_0 = 2\pi \left(\frac{g}{U_\omega}\right) (X_0)^{-0,33}$$

$$X_0 = \frac{g X}{U_\omega}$$

Perhitungan nilai parameter puncak (γ) dapat ditentukan dengan menggunakan persamaan Toursethaugen (1985) sebagai berikut,

dengan,

T_p = periode puncak spektra H_s = tinggi gelombang signifikan

2.2.18 Analisis Dinamis Berbasis Ranah Waktu (Time Domain Analysis)

Jika suatu sistem linear dan beban gelombang yang bekerja hanya terdiri dari *first order* maka beban yang diterima maupun respon yang dihasilkan juga dalam bentuk linear sehingga dapat diselesaikan dengan analisis dinamis berbasis ranah frekuensi (*frequency domain analysis*). Sedangkan jika terkandung di dalamnya faktor-faktor non linear, seperti beban gelombang *second order, nonlinear viscous*

damping, gaya dan momen akibat angin dan arus maka perhitungan *frequency domain analysis* menjadi kurang relevan. Oleh karena itu untuk mengakomodasi faktor-faktor non linear tersebut maka persamaan gerak dari hukum kedua Newton diselesaikan dalam fungsi waktu atau yang lebih dikenal dengan istilah analisis dinamis berbasis ranah waktu (*time domain analysis*). Persamaan tersebut dideskripsikan sebagai,

 $[m + A (\omega)]\ddot{x} + C(\omega)\dot{x} + D_1\dot{x} + D_2f(\dot{x}) + Kx = q_{WI} + q_{WA}^1 + q_{WA}^2 + q_{CU} + q_{xet}$ (20)

dengan,

q_{WI}	= beban seret angin (<i>wind drag force</i>)
q_{WA}^1	= beban gelombang first order
q_{WA}^2	= beban gelombang second order
q _{cv}	= beban arus
q_{xet}	= beban eksternal lainnya

2.2.19 Gerakan Relatif

Gerakan relatif arah longitudinal, lateral, dan vertikal antara bangunan apung A dan B pada posisi tertentu dapat dituliskan menjadi tiga komponen (Kim, 2003), yaitu:

$$\begin{aligned} & \frac{L_R}{\varsigma_a} = \frac{1}{\varsigma_a} \left[(\xi_1 + z_A \xi_5 - y_A \xi_6) - (\xi_7 + z_B \xi_{11} - y_B \xi_{12}) \right] \\ & \frac{H_R}{\varsigma_a} = \frac{1}{\varsigma_a} \left[(\xi_2 + x_A \xi_6 - z_A \xi_4) - (\xi_8 + x_B \xi_{12} - z_B \xi_{10}) \right] \\ & \frac{V_R}{\varsigma_a} = \frac{1}{\varsigma_a} \left[(\xi_3 - x_A \xi_5 + y_A \xi_4) - (\xi_9 - x_B \xi_{11} + y_B \xi_{10}) \right] \end{aligned}$$

Dimana (Xa, Ya, Za)dan (Xb, Yb, Zb) adalah posisi koordinat terhadap titik acuan pada masing-masing banguan apung.

Gambar 2.10 Sistem koordinat (Kim, 2003)

2.2.20 Tegangan Geser

Tegangan geser (*shear stress*) adalah intensitas gaya pada suatu titik yang sejajar terhadap penampang, yang didefinisikan sebagai:

$$v = \frac{V}{A}$$
 atau $\frac{gaya\,geser}{luas} \left[\frac{N}{m^2}\right]$ (21)

Dengan V adalah gaya yang bekerja dalam arah sejajar terhadap penampang dan A adalah luas penampang.

Gambar 2.11 Gaya yang bekerja dalam arah sejajar terhadap penampang (Sumber: Popov 1996)

2.2.21 Tegangan Von Misses

Kapal harus mampu menahan beban – beban operasional tambahan yang terjadi dengan aman, yaitu tegangan yang terjadi tidak boleh melebihi tegangan yang diijinkan, serta pelat kapal, pelat bilah, agar tidak kehilangan stabilitasnya (tidak mengalami *buckling*).

Untuk menghitung tegangan kita memakai persamaan :

dengan:

Mx = momen bending (ton.m)

Y = jarak normal bidang (m)

I = momen inersia bidang (m²)

Jadi harus ditentukan y yang merupakan jarak "titik berat bagian yang dihitung tegangannya" terhadap sumbu netral (garis mendatar yang melalui titik berat penampang), dan menghitung momen inersia penampang $I_{(x)}$. Karena penampang melintang kapal mempunyai banyak bagian, maka menghitung momen inersianya tak dapat dihitung dengan memakai rumus dasar ($I=^{1}/_{12}$ b.h³) dan sebaiknya dilakukan dalam bentuk tabulasi. Seperti telah dijelaskan didepan, akibat beban momen lengkung yang bekerja pada badan kapal, maka bagian penampang kapal yang mengalami tekanan dan posisinya mendatar (horizontal) dimasukkan kedalam perhitungan momen inersia harus sudah diperhitungkan lebar efektifnya, dengan cara seperti pada uraian didepan. Pada element tiga dimensi, bekerja tegangan-tegangan searah sumbu x, y,dan z. Pada tiap-tiap sumbu dapat diketahui tegangan utama(σ_1 , σ_2 , σ_3) yang dihitung dari komponen tegangan dengan persamaan sebagai berikut(Ansys 13.0):

dengan:

 σ_0 = tegangan utama yang bekerja pada sumbu

 σ_x = tegangan arah sumbu x

 σ_y = tegangan arah sumbu y

 σ_z = tegangan arah sumbu z

 σ_{xy} = tegangan arah sumbu xy

 σ_{xz} = tegangan arah sumbu xz

 σ_{yz} = tegangan arah sumbu yz

Penggabungan tegangan-tegangan utama pada suatu element merupakan suatu cara untuk mengetahui nilai tegangan maksimum yang terjadi pada node tersebut. Salah satu cara mendapatkan tegangan gabunngan adalah dengan menggunakan formula tegangan *Von Mises*:

$$\sigma_{eq} = \frac{1}{2} \sqrt{\left(\sigma_{x} - \sigma_{y}\right)^{2} + \left(\sigma_{y} - \sigma_{z}\right)^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6\left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}\right)}$$
.....(24)

dengan:

 σ_{eq} = tegangan ekuivalen (*von mises stress*)

- σ_x = tegangan normal sumbu *x*
- σ_y = tegangan normal sumbu y
- σ_z = tegangan normal sumbu z
- τ_{xy} = tegangan geser bidang yz
- τ_{yz} = tegangan geser bidang zx
- τ_{zx} = tegangan geser bidang xy

2.2.22 Metode Analisa Umur Kelelahan

Secara umum terdapat dua metode pendekatan yang dipakai dalam analisa umur kelelahan yaitu metode pendekatan S-N curve (berdasarkan dari pengujian) dan metode pendekatan *fracture mechanic*. Dalam tahap desain struktur, metode pendekatan S-N curve merupakan metode yang paling sering digunakan dan metode yang dianggap paling tepat pada tahap tersebut. Sedangkan metode *fracture* *mechanic* adalah metode analisa fatigue dengan pendekatan kriteria, ukuran cacat pada material (*acceptable flaw size*) berserta perambatan kelelahan retak sehingga metode ini cocok digunakan untuk perencanaan inspeksi dan strategi perbaikan.

Analisa fatigue dengan metode S-N curve pada sambungan struktur dilakukan berdasarkan hukum kegagalan palmgren miner (miner's rule). Menurut white dan ayyub (1987) miners's rule merupakan hipotesis kumulatif kerusakan berdasarkan konsep *strain energy*. Konsep *strain energy* menyatakan bahwa kerusakan terjadi ketika total *strain energy* pada siklus (n) dari variable amplitudo pembebanan adalah sama dengan total dari siklus N dari konstan amplitudo pembebanan.

Menurut Paik dan Thayambali (2007) analisa fatigue dengan menggunakan pendekatan S-N curve dapat dilakukan dengan tiga, yaitu :

- 1. Mendefinisikan histogram siklik rentang tegangan
- 2. Memilih kurva S-N yang sesuai dengan karakteristik material
- Menghitung kumulatif kerusakan fatigue (cumulative fatigue damage)

Metode pendekatan S-N curve mempunyai 4 metodologi dalam mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* yaitu metode *deterministic*, metode *simplified fatigue analysis*, metode *spectral* dan metode *time domain fatigue*. Diantara keempat metode tersebut, metode yang paling banyak digunakan dalam berbagai rules klasifikasi terutama anggota IASC seperti ABS, GL, LR dan bahkan CSR adalah metode *simplified fatigue* dengan pendekatan empiris parameter didtribusi weibull (Bai, 2003). Pada penelitian ini metode S-N Curve dengan *Simplified Fatigue Analysis*.

Untuk analisis kelelahan dengan menggunakan metode *simplified fatigue assessment* akan didapatkan hasil yang lebih akurat, karena adanya faktor parameter bentuk dari distribusi *Weibull* dalam *Simplified fatigue assessment*. Blagojevic (2010) menyebutkan bahwa untuk menghitung umur kelelahan dari struktur kapal, dibutuhkan *long-term stress distribution* dari struktur. Penelitian tentang beban gelombang yang mengenai badan kapal menunjukkan bahwa *long-term distribution of stress range* dapat direpresentasikan dengan parameter bentuk Weibull ini sangat signifikan. Hasil dari penelitian menyebutkan bahwa dengan perubahan kecil dari parameter bentuk Weibull tersebut berpengaruh besar terhadap nilai *fatigue damage* yang dihasilkan.

2.2.23 Kurva S-N

Bentuk dari kurva S-N dapat ditentukan dari persamaan berikut :

 $NS^m = A$ or $\log N = \log A - m \log S$ (25)

dimana,

N = cycles to failure

S = stress range

A = intercept of the log axis

m = slope of the S-N curve

Data pada kurva S-N diperoleh dari Department of Energy, "Guidance Notes" Revision Drafting Panel, August 1983, Issue N Offshore Installations: Guidance on Design and Construction. New Fatigue Design Guidance for Steel Welded Joints in Offshore Structures Det norske Veritas, *Fatigue Strength Analysis for Mobile Offshore Unit*, Classification Notes No. 30.2, 1984. Dengan spesifikasi sebagai berikut :

T : All tubular joints

B,C,D,E,F,F2,G,W : All other joints depending on

a) Geometrical arrangement of the detail

b) The direction of fluctuating stress relative to the detail

c) The method of fabrication and inspection of detail

(see also Appendix A)

Tabel 2.2 Data	pada	kurva S-N
----------------	------	-----------

CLASS	log A	m
В	15.3697	4.0
С	14.0432	3.5
D	12.6007	3.0
Е	12.5169	3.0
F	12.2370	3.0
F2	12.0900	3.0
G	11.7525	3.0
W	11.5662	3.0
Т	12.6606	3.0

Data pada kurva S-N tersebut diperoleh dari material uji coba dengan ketebalan sebagai berikut

t = 32 mm untuk tubular joint (T class)

t = 22 mm untuk joint yang lain

untuk menentukan kurva S-N dengan ketebalan yang berbeda maka koreksi yang digunakan adalah sebagai berikut

$$N = N_0 \left(\frac{t_0}{t}\right)^{m/4}$$

because $N_0 = \frac{A}{S^m}$
hence $N = \frac{A}{S^m} \left(\frac{t_0}{t}\right)^{m/4}$(26)

Dimana dari koreksi tersebut dapat ditentukan bahwa struktur yang tebal dengan tegangan tinggi akan lebih cepat mengalami kegagalan

karena struktur tersebut memiliki beban yang berat. Begitu sebaliknya untuk struktur yang tipis dengan tegangan tinggi.

2.2.24 Analisa Umur Kelelahan

Perhitungan kelelahan sambungan struktur didasarkan pada hukum kegagalan kumulatif Palmgren-Miner, yang dinyatakan dalam persamaan:

dimana :

ni = jumlah siklus rentang tegangan dengan harga Si yang sebenarnya terjadi pada sambungan akibat beban eksternal.

Ni = jumlah siklus rentang tegangan dengan harga Si yang menyebabkan kegagalan sambungan yang ditinjau. Harga besaran ini dapat diperoleh dari kurva S-N untuk jenis sambungan yang sesuai.

Si = rentang tegangan; 2 (dua) kali amplitudo tegangan yang terjadi pada sambungan.

Sesuai dengan hukum Palmgren-Miner, kegagalan sambungan akan terjadi jika indeks kerusakan D mencapai harga 1.0. Dalam analisis kelelahan deterministic untuk suatu *marine structure*, digunakan sekumpulan periodik gelombang tunggal dengan tinggi *Hi* dan periode *Ti* gelombang tertentu, dimana i = 1,2,3,...,i. Karena *fatigue damage* mengacu pada waktu/periode *TR*, maka prosedur analisis diilustrasikan sebagai

berikut :

- Menghitung jumlah kejadian ni untuk tiap iterasi *i* dari kumpulan data kejadian.
- Menghitung jumlah siklus kegagalan Ni untuk rentang tegangan D
 SCF . Si (Hi) berdasarkan desain kurva S-N.
- 3. Menghitung cumulative fatigue damage berdasarkan hukum Miner

 Selanjutnya, rasio *cumulative fatigue damage (DM)* dapat diubah ke dalam perhitungan umur kelelahan menggunakan persamaan di bawah ini *(Common Structural Rules for Double Hull Oil Tanker,* 2010). Dalam pola ini, umur kelelahan yang didapat harus mendekati atau lebih besar dari *design life* kapal.

 $fatiguelife = \frac{designlife}{DM}$(28)

(halaman ini sengaja di kosongkan)

BAB III

METODOLOGI PENELITIAN

3.1 Metode Penelitian

Pada penelitian ini, model yang digunakan adalah model numerik yang dibuat dengan bantuan *software*. Sedangkan untuk metodologi penelitiannya, secara umum dapat digambarkan dalam bentuk diagram alir (*flowchart*) sebagai berikut :

Gambar 3.1 Flowchart Penyelesaian Tugas Akhir

3.2 Prosedur Penelitian

Alur dalam pengerjaan tugas akhir ini adalah sebagai berikut :

1. Studi literatur

Studi literatur pada tugas akhir dilakukan untuk mengkaji dasar teori berkaitan dengan analisa umur kelelahan konstruksi mooring *system equipment* pada FSO *Ladinda* dengan menggunakan metode S-N *Curve* berdasarkan hukum kegagalan *palmgren miner (miner's rule)* dengan mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* menggunakan metode *deterministic* dari berbagai buku, materi perkuliahan, jurnal, penelitian sebelumnya termasuk laporan tugas akhir terdahulu yang memiliki keterkaitan topik serupa.

- 2. Pengumpulan Data
 - Data FSO Ladinda
 - Data Tanker MS Pacific Leo
 - Data lingkungan
 - Data sistem tali tambat kapal
 - Data sistem fender kapal
 - Data konstruksi bolder di FSO Ladinda dan Tanker MS Pacific Leo
- 3. Pemodelan dengan software Maxsurf

Pemodelan ini bertujuan untuk mendapatkan koordinat-koordinat bentuk *body* FSO dan Tanker serta untuk mendapatkan data hidrostatik model.

4. Validasi model software Maxsurf

Setelah model FSO dan Tanker dibuat pada *software* Maxsurf, dilakukan validasi berdasarkan data hidrostatik. Jika validasi data dianggap salah, maka model akan di desain ulang sampai menyerupai *body* asli dengan batas *error* tidak melebihi 5%

5. Pemodelan FSO dan Tanker pada software MOSES

Pemodelan ini dilakukan setelah didapatkan *control point* untuk struktur FSO dan Tanker, berdasarkan koordinat-koordinatnya dari pemodelan *software* Maxsurf.

6. Validasi model software MOSES

- Setelah model FSO dan Tanker dibuat pada *software* MOSES, dilakukan validasi berdasarkan data hidrostatik dan displacement *ouput software* MOSES. Jika validasi data dianggap salah, maka model akan di desain ulang sampai menyerupai *body* asli dengan batas *error* tidak melebihi 5%
- Analisa Gerakan dengan *software* MOSES *Running* MOSES dilakukan untuk mendapatkan RAO dari struktur terhadap beban gelombang pada kondisi *free floating*.
- 8. Analisa tension hawser terbesar dengan software MOSES Setelah didapatkan RAO pada kondisi free floating, selanjutnya dilakukan pemodelan side by side offloading process pada MOSES. Modelnya pun meliputi FSO dan Tanker sekaligus input data lingkungan dan mooring property. Data lingkungan berupa beban gelombang 100 tahunan di Selat Lalang dan mooring property berupa jenis, diameter, dan panjang mooring hawser. Setelah itu dicari tension terbesar pada hawser yang menghubungkan FSO dan Tanker. Dari hasil tension hawser terbesar tersebut, dihitung safety factor untuk mengetahui bahwa nilai tersebut memenuhi / tidak memenuhi dari ketentuan ABS.
- 9. Analisa kekuatan memanjang FSO Ladinda

Analisa ini dilakukan dengan menggunakan bantuan *software* Maxsurf Pro, dimana data yang di *input*kan yaitu berupa beban *deadweight* dan *lightweight* dari FSO serta beban gelombang yang digunakan. Hasil dari *running software* Maxsurf Pro ini, di dapatkan *shear force* dan *bending moment* pada tiap *longitudinal position*.

10. Analisa distribusi tegangan pada konstruksi bolder

Dari hasil *shear force* dan *bending moment* pada tiap *longitudinal position,* dimodelkan secara global struktur FSO Ladinda sesuai *bulkhead section* pada *software* MSC Patran / Nastran dari hasil *shear force* dan *bending moment* terbesar di *longitudinal position* konstruksi bolder. Analisa ini digunakan untuk menentukan distribusi tegangan pada konstruksi bolder akibat gerakan struktur.

11. Analisa tegangan lokal pada Konstruksi Bolder

Tegangan lokal konstruksi bolder pada FSO *Ladinda* dilakukan dengan *running software* MSC Patran / Nastran. Beban yang digunakan dalam analisa lokal ini yaitu beban *tension hawser* terbesar dan distribusi tegangan pada konstruksi bolder akibat gerakan struktur. Kemudian dilakukan analisis terhadap tegangan *von mises* pada konstruksi bolder yang didapat. Analisis dilakukan dengan mengacu pada standar yang digunakan, yaitu *American Bureau of Shipping* untuk mengetahui apakah struktur tersebut sesuai dengan kriteria atau tidak.

12. Analisa umur kelelahan konstruksi bolder

Dari hasil tegangan maksimum pada konstruksi bolder yang didapat, dilakukan analisa umur kelelahan konstruksi bolder. Dalam analisa umur kelelahan konstruksi bolder, digunakan metode S-N Curve berdasarkan hukum kegagalan *palmgren miner (miner's rule)* dengan mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* menggunakan metode *deterministic*.

3.3 Pengumpulan Data

3.3.1 Sejarah FSO Ladinda

Name	: FSO <i>LADINDA</i>				
Туре	: Moored Oil Storage Barge				
Name 1	: Giewont. II				
Name 2	: Panditha Natha Sagara – IOC				
Name 3	: Hudbay Riau (HR)				
Name 4	: Lasmo Riau				
Built In	: Kiel, Germany October 1974				
Yard No.	: 80				
Conversion	: ROBIN SHIPYARD (PTE) LTD IMODCO				
DRAWING NO.	1176-4-1-N-01				
Class	: Llyod's Register of Shipping				
IMO No.	: 7361269 100 AT Oil Storage Barge for Service at				
Malacca Strait La	lang Field				
Port of Registry	: Jakarta				
Flag	: Indonesia				
Owner	: PT. Emha Tara Navindo				
Operator	: Kondur Petroleum S.A / EMP				
History :					
The Hudbay Riad	a (HR) was an oil tanker name was TT Giewont II.				

Operated by Poland. She had been modified in Singapore to be a storage barge (the main engine, propeller removed) under supervison of Lloyd Register of Shipping.

The ship yard where she was modified, was ROBIN SHIPYARD (PTE) LTD.

31 May, 1984, 12.30 hrs

The HR departed Singapore bound for Lalang Field. She was towed by 4 tugs of the Selco Coy. The tugs were Salverites, Salveritastile, Salvain and Salnenus.

3 June, 1984, 11.40 hrs

The HR arrived at Lalang Field, SPOLS area.

4 June, 1984, 21.35 hrs

The HR secured was on the SPOLS

5 June, 1984, 20.58 hrs

5 units of Yokohama fenders were installed on the starboard side of HR.

12 June, 1984, 09.17 hrs

Commence loading Lalang Crude into HR cargo tanks received from the production flow station

15 – 16 July, 1984

The first shipment was 536,821 net bbls, loaded into MT. World Kudos, a Liberian flag tanker with dwt 88,460 Ton

The consignee of shipment was BP Australia LTD and discharged in Kwinana, Australia.

25 July, 1984

The Lalang Field was officially inaugurated by the President of the Republic of Indonesia with a daily production of 25,000 barrel per day.

1984 – 1991 : Hudbay Riau operator HUDBAY OIL

1991 – 1995 : Lasmo Riau operator LASMO OIL

12 October 1995 : Ladinda operator KONDUR PETROLEUM SA.

03 February 2005 : Ladinda was change the flag from panama to Republic Indonesia

August 2005

Ladinda Lifting schedules for Lalang Oil : 3 times per months.

Since 2 months share capacity with Petrochina : 4 times/ month received GERAGAI crude from shuttle tanker, *Offloading Process* 1 times/months export Geragai crude

Up to 30 July 2005.

Mooring Tower System – Elevation was called SPOLS (Single Point Offshore Loading System). The SPOLS comprises a jacket with an innovative mooring arm which is connected to LADINDA. The arrangement of this SPOLS is particularly suitable for condition likely

to be encountered in the Lalang Field with the currents change their direction every 6 hours.

Gambar 3.2 mooring wishbone arm system attach to tripod SPOLS (Single Point Offshore Loading System) (Sumber ;PT. Energi Mega Persada, 2014)

Gambar 3.3 *side by side offloading process* (Sumber ;PT. Energi Mega Persada, 2014)

3.3.2 Data FSO Ladinda

Berikut ini adalah data FSO Ladinda :

Tabel 3.1 Ukuran Utama FSO Ladinda

		Kondisi	Kondisi
Ukuran Kapal	Unit	Maksimum	Minimum
		Operasi	Operasi
Length, LOA	m	284	I
Length, LBP	m	272	
Breadth, B	m	43.4	
Depth, D	m	20.6	
Draft, T	m	15.725	2.41
Displacement	Ton	161810	21614
LCG	m	144.11 from AP	123.03 from AP
KG (VCG)	m	10.76	12.57
Yaw Radius of Gyration	m	0.1	0
LCB	m	143.83 from AP	146.11 <i>from</i> AP
LCF	m	138.176 from AP	145.52 from AP
КВ	m	7.72 <i>from</i> BL	1.35 from BL
КМ	m	17.69 <i>from</i> BL	53.35 <i>from</i> BL
Midship Section Coefficient		0.995	I
Water Plane Coefficient		0.923	
Prismatic Coefficient		0.84	
Block Coefficient		0.83	
Cargo Tank Capacity	Bbls	1.012.000	
Production Level	Bpd	25.000	
General Arrangement	FSO	Ladinda	terlampir

3.3.3 General Arrangement FSO Ladinda

Gambar 3.4 General Arrangement FSO Ladinda (sumber : PT. Energi Mega Persada, 2014)

3.3.4 Data Shuttle Tanker (Tanker MS Pacific Leo)

Shuttle tanker yang digunakan adalah Tanker M.S. Pacific Leo yang pernah melakukan proses *side by side offloading process* di Lalang terminal dengan FSO *Ladinda*. Tanker M.S. Pacific Leo ini merupakan salah satu tanker terbesar yang pernah melakukan proses *side by side offloading process* di Lalang terminal dengan FSO *Ladinda*.

Berikut ini adalah data ukuiran utama Tanker M.S. Pacific Leo : **Tabel 3.2** Ukuran Utama Tanker MS Pacific Leo

		Kondisi	Kondisi
Ukuran Kapal	Unit	Maksimum	Minimum
		Operasi	Operasi
Vessel's Name		Pacific Leo	
Type of vessel		Oil Tanker	
Type of hull		Double Hull	
Length, LOA	m	246.78	
Length, LBP	m	235	
Breadth, B	m	42	
Depth, D	m	21.3	
Draft, T	m	14.798	2.3
Displacement	Ton	123872	16725
Cargo Tank Capacity	m3	120257.5	
Total Cargo Tank		7 tank	
General Arrangement	Tanker	M.S Pacific Leo	terlampir

3.3.5 General Arrangement Tanker M.S. Pacific Leo

Gambar 3.5 General Arrangement Tanker MS Pacific Leo (sumber : PT. Energi Mega Persada, 2014)

3.3.6 Data Lingkungan

Data lingkungan yang digunakan yaitu kondisi lingkungan yang paling berpengaruh di Selat Lalang, dimana lokasi FSO *Ladinda* beroperasi.

Berikut ini adalah data lingkungan Perairan di Selat Lalang :

Tabel 3.3	Data	Lingkungan	di Selat	Lalang
-----------	------	------------	----------	--------

Parameter		Unit	100 – Tahunan
Gelombang	Tinggi (Hs)	m	6.5
	Periode (Ts)	m	5
Angin	Kecepatan (Vw)	knots	22
	Waktu Durasi	hrs	1
Arus	Kecepatan (Vc)	m/s	2.41
	Kedalaman	m	10.51

(sumber : PT. Energi Mega Persada, 2014)

3.3.7 Sistem Tali Tambat Kapal

Berikut ini adalah data tali tambat yang digunakan saat *side by side process* antara Tanker M.S. Pacific Leo dan FSO *Ladinda*.

No	Data	
1.	Type of Rope	Synthetic rope
2.	Material of Rope	Nylon
3.	Nominal Rope Diameter	88 mm
4.	Minimum Breaking Strength (MBS)	158 ton
5.	Length	
	Tail Rope	11 m
	Mooring Rope	275 m
7.	Mass	591 kg / 100 m
8.	Rope Standard	BS EN 12385-4:2004
9.	Third party authority (if required):	Lloyd's Register
10.	Identification / markings:	Part number XL709 – 4567
11.	Design Mooring Force	200 ton

 Tabel 3.4 Data Mooring Hawser

Konfigurasi tali tambat pada saat operasi *offloading* terdiri dari: 3 *head line* pada haluan, 2 *breast line* dan 2 *spring line* pada bagian tengah, dan 2 *stern line* pada bagian haluan. Dengan sudut yang dibentuk dari tiap konfigurasi tali tambat sebagai berikut :

Tabel 3.5 Sudut dari Konfigurasi Tali Tambat

No.	Konfigurasi Tali Tambat	Sudut yang Di Bentuk
1.	3 <i>head line</i> pada haluan	70 deg
2.	2 braest line pada bagian tengah	45 deg
3.	2 spring line pada bagian tengah	15 – 20 deg
4.	2 stern line pada bagian buritan	4 deg

Gambar 3.6 Perangkat saat *side by side Offloading Process* (Sumber: *www.psikasoma.lt*)

Gambar 3.7 Konfigurasi Tali Tambat saat Proses *side by side Offloading Process* tampak atas

3.3.8 Sistem Fender Kapal

Berikut ini adalah data properties fender yang digunakan di FSO *Ladinda* :

Tabel 3.6 Data Fender

No	Data	
1.	Туре	Fender Net Type / Type 1
2.	Vendor Data	Yokohama Pneumatic Rubber Fender
3.	Initial Internal Pressure	50 kPa (Pneumatic 50)
4.	Size	3300 mm Diameter x 6500 mm Length
5.	Quantity	5 pcs
6.	Standart	ISO 17357 2002

(sumber : PT. Energi Mega Persada, 2014)

Terdapat 5 buah fender yang digunakan saat operasi untuk meredam tumbukan yang akan terjadi selama operasi *offloading*. Tiap Fender diletakkan di kedalaman sesuai dengan sarat kapal yang terjadi. Sehingga dalam operasi fender di letakkan pada kedalaman z = 15. 725 meter. Berikut ini adalah koordinat dari tiap fender di FSO Ladinda dengan koordinat O (0,0,0) pada bagian buritan kapal (ilustrasi gambar terlampir), dimana koordinat cartesian X (horizontal memanjang), Y (vertical memanjang), dan Z (tinggi).

Tabel 3.7 Koordinat Fender

No	Koordinat di FSO Ladinda	X	Y	Z
1.	Fender 1	73 m	23.35 m	15.725 m
2.	Fender 2	113.6 m	23.35 m	15.725 m
3.	Fender 3	162.3 m	23.35 m	15.725 m
4.	Fender 4	215 m	23.35 m	15.725 m
5.	Fender 5	243.4 m	22.05 m	15.725 m

(sumber : PT. Energi Mega Persada, 2014)

Gambar 3.8 Yokohama Pneumatic Rubber Fender (Sumber ;PT. Energi Mega Persada, 2014)

Gambar 3.9 Konfigurasi Fender (Sumber ;PT. Energi Mega Persada, 2014)

3.3.9 Konstruksi Bolder

Berikut ini adalah data Konstruksi Bolder di FSO *Ladinda* : **Tabel 3.8** Data Konstruksi Bolder

No	Data	
1.	Jenis Bolder	Double Bollard
2.	Jumlah di FSO Ladinda	9 Buah
3.	Safety Working Load (SWL)	200 ton
4.	Material Baja	ASTM A36
5.	Yield Strength	250 MPa

⁽sumber : PT. Energi Mega Persada, 2014)

Berikut ini adalah ukuran dimensi dari konstruksi Bolder d FSO Ladinda

1. <i>A</i>	4 =	= 60 cm	7. G	=	62 cm
2. I	3 =	= 2 cm	8. H	=	10 cm
3. (C =	= 61 cm	9. I	=	22 cm
4. I) =	= 200 cm	10. J	=	144 cm
5. I	E =	= 27 cm	11. K	=	53 cm
6. I	7 =	200 cm			

Gambar 3.10 Konstruksi Bolder (Sumber ;PT. Energi Mega Persada, 2014)

Konstruksi Bolder terletak pada *main deck* FSO Ladinda dengan ketebalan 150 mm, plat di *main deck* 13 mm (mengalami penurunan menjadi 12.8 mm) dan girder dengan type W 12 X 50 spacing 0.6 m. (sumber : PT. Energi Mega Persada, 2014)

Berikut ini adalah koordinat dari konstruksi bolder di FSO *Ladinda* dengan koordinat O (0,0,0) pada bagian buritan kapal (ilustrasi gambar terlampir), dimana koordinat cartesian X (horizontal memanjang), Y (vertical memanjang), dan Z (tinggi).

Koordinat	X	Y	Z
Bolder 1A	278.32 m	8.68 m	22.6 m
Bolder 1B	277.02 m	10.127 m	22.6 m
Bolder 2	266.96 m	15.693 m	22.6 m
Bolder 3	199.72 m	20.7 m	20.6 m
Bolder 4A	143 m	20.7 m	20.6 m
Bolder 4B	141 m	20.7 m	20.6 m
Bolder 5	85.2 m	20.7 m	20.6 m
Bolder 6A	5.6 m	11.624 m	20.6 m
Bolder 6B	4.3 m	13.02 m	20.6 m

Tabel 3.9 Data Koordinat Konstruksi Bolder di FSO Ladinda

(sumber : PT. Energi Mega Persada, 2014)

Proses penambatan yang dilakukan saat *side by side offloading process* dua bangunan apung antara Tanker M.S. Pacific Leo dan FSO *Ladinda* yaitu awal mulanya tali tambat dipasangkan pada *winch* shuttle tanker yang kemudian tersambung pada *fairlead/ bollard* shuttle tanker, kemudian tali tambat tersebut terhubung pada konstruksi bolder FSO *Ladinda* yang pada akhirnya terkoneksi pada *Quick release Hook* (QRH) FSO *Ladinda*. Berikut ini adalah koordinat bollard di Tanker M.S. Pacific Leo yang terkoneksi di FSO *Ladinda* dengan koordinat O (0,0,0) pada bagian buritan kapal (ilustrasi gambar terlampir), dimana koordinat cartesian X (horizontal memanjang), Y (vertical memanjang), dan Z (tinggi).

Koordinat	Х	Y	Z
fairlead/ bollard 1A	238.818 m	11 m	21.3 m
fairlead/ bollard 1B	230.857 m	15 m	21.3 m
fairlead/ bollard 2	222.897 m	17 m	21.3 m
fairlead/ bollard 3	168.5 m	20.212 m	21.3 m
fairlead/ bollard 4A	148.5 m	20.212 m	21.3 m
fairlead/ bollard 4B	74.2 m	20.212 m	21.3 m
fairlead/ bollard 5	54.2 m	20.212 m	21.3 m
fairlead/ bollard 6A	12 m	16 m	21.3 m
fairlead/ bollard 6B	6 m	10.601 m	21.3 m

Tabel 3.10 Data Koordinat Fairlead/ Bollard di Tanker MS Pacific Leo

(sumber : PT. Energi Mega Persada, 2014)

Berikut ini adalah konfigurasi antara bolder di FSO *Ladinda* dan Tanker MS Pacific Leo.

Gambar 3.11 Konfigurasi bolder antara FSO Ladinda dengan Tanker MS Pacific Leo tampak atas dan tampak samping

3.3.10 Jumlah Kejadian Side by Side Offloading Process

Total production and lifting record (12 June 1984 – 15 September 2005)

1.	Production Lalang Crude Oil	: 207,812,441 NBBLS
2.	Daily Production Currently	: 9,500 NBBLS
3.	Lifting	
	Domestic	: 82,082,350 NBBLS
	Export	: 124,695,133 NBBLS
	Total	: 206,777,483 NBBLS
4.	Shipment	
	Domestic	: 377
	Export	: 497
	Total	: 874

5. Total time / lifting (secured alongside FSO Ladinda – Hose disconnected) : 12 hours

BAB IV

ANALISIS DAN PEMBAHASAN

Pada bab ini akan dibahas hasil-hasil pemodelan dan perhitungan yang didapatkan dari simulasi dengan bantuan software sesuai dengan metodologi penelitian. Pertama kali dilakukan pemodelan pada software Maxsurf untuk memperoleh koordinat-koordinat struktur yang selanjutnya digunakan untuk pemodelan selanjutnya. Pemodelan pada software Maxsurf dilakukan untuk mendapatkan hidrostatis model untuk divalidasikan dengan data hidrostatis yang ada. Pembahasan dimulai dengan verifikasi pemodelan yang telah dilakukan dengan membandingkan hasil pemodelan dengan data referensi. Pembahasan kedua ialah analisis perilaku gerak struktur saat *free floating* pada gelombang regular yang ditunjukkan oleh RAO (Response Amplitude Operator). Pembahasan ketiga adalah analisis hasil simulasi dari sistem lengkap FSO dan Tanker saat side by side offloading process. Hasil-hasilnya berupa tension hawser terbesar yang menghubungkan FSO dan Tanker. Pembahasan keempat adalah analisa kekuatan memanjang kapal untuk mendapatkan shear force dan bending moment akibat beban gelombang, dimana dari hasil tersebut akan dilakukan analisa distribusi tegangan global pada konstruksi bolder akibat pengaruh gerakan struktur. Pembahasan kelima adalah analisa hasil tegangan lokal konstruksi bolder pada FSO Ladinda. Kemudian pembahasan terakhir ialah pembahasan hasil umur kelelahan konstruksi bolder pada FSO Ladinda akibat pengaruh side by side offloading process.

4.1 Pemodelan Struktur

4.1.1 Pemodelan pada *Software* Maxsurf

Pemodelan awal *body* FSO dan Tanker menggunakan *software* Maxsurf bertujuan untuk mendapatkan koordinat-koordinat bentuk *body* FSO dan Tanker, serta untuk mendapatkan data hidrostatik model. Pemodelan dengan menggunakan *software* Maxsurf dilakukan dengan memasukkan data ukuran utama FSO dan Tanker pada *software* Maxsurf, maka didapatkan koordinat-koordinat FSO dan Tanker yang selanjutnya digunakan untuk melakukan pemodelan di *software* MOSES 7.0

4.1.1.1 Pemodelan FSO Ladinda

Pemodelan FSO *Ladinda* dilakukan pada dua kondisi, yaitu kondisi *full condition* dan *light condition*. Data yang digunakan sebagai input pemodelan FSO *Ladinda* pada *software* Maxsurf antara lain:

		Kondisi Maksimum	Kondisi Minimum
Ukuran Kapal	Unit	Operasi	Operasi
Length, LOA	m	284	
Length, LBP	m	272	
Breadth, B	m	43.4	
Depth, D	m	20.6	
Draft, T	m	15.725	2.41

Tabel 4.1 Ukuran Utama FSO Ladinda

Hasil pemodelan FSO *Ladinda* seperti tampak pada gambar-gambar berikut ini:

Gambar 4.1. Hasil pemodelan FSO *Ladinda* pada *software* Maxsurf tampak isometric

Gambar 4. 2. Hasil pemodelan FSO *Ladinda* pada *software* Maxsurf tampak depan (*body plan*)

Gambar 4.3. Hasil pemodelan FSO *Ladinda* pada *software* Maxsurf tampak samping (*sheer plan*)

Gambar 4.4. Hasil pemodelan FSO *Ladinda* pada *software* Maxsurf tampak atas (*halfbreadth plan*)

4.1.1.2 Validasi Model FSO Ladinda

Validasi model dilakukan dengan membandingkan data hidrostatis hasil pemodelan dengan data hidrostatis FSO *Ladinda* yang sudah ada. Hidrostatis merupakan faktor yang mempengaruhi pergerakan bangunan struktur apung. Validasi FSO *Ladinda* dilakukan pada *full condition* dan *light condition*.

Gambar 4.5. Hasil output data hidrostatis dari software Maxsurf

Density (Sea Water)	1.025	tonne/m^3			
Toleransi	5	%			
	Dete	M	Koreksi	T I ! 4	T.1
	Data	Maxsuri	(%)	Unit	1 oleransi
Displacement	161810.00	160765	0.01	tonne	Memenuhi
Volume	154630.19	156868.22	-0.01	m^3	Memenuhi
Draft to Baseline	15.73	15.73	0.00	m	Memenuhi
Immersed depth	15.73	15.73	0.00	m	Memenuhi
Lwl	280.80	280.82	0.00	m	Memenuhi
<i>Beam</i> wl	43.40	43.40	0.00	m	Memenuhi
Prismatic Coeff	0.84	0.822	0.02		Memenuhi
Block Coeff	0.83	0.818	0.01		Memenuhi
Midship Area Coeff	1.00	0.995	0.00		Memenuhi
Waterpl. Area Coeff	0.92	0.908	0.02		Memenuhi
LCB from zero pt	143.83	143.893	0.00	m	Memenuhi
LCF <i>from zero</i> pt	138.18	138.895	-0.01	m	Memenuhi
KB	7.75	8.153	-0.05	m	Memenuhi
KMt	17.69	18.217	-0.03	m	Memenuhi
	50			50	
Precision	stations	Medium	50 stations	stations	Memenuhi

Tabel 4.2 Validasi data hidrostatis FSO Ladinda full condition

dromax Professional - D:\Lecture\SEMESTER 8\Maxsurt\FSO Ladinda LL\FS	O Ladinda	LLmsd		
Edit View Case Analysis Display Window Help				
💣 🖬 🗼 🗃 🗮 🗮 🔍 🖓 🕂 🍏 Upright Hy	drostati	c 🔹 Loadcase1 🔹	Intact 🔹 🥸	000 0
			r	
	90.			
UTATE	-			×
Plan 🗖 🗏 🖾	R	esults	- X	🛃 Graph 😑 Σ
		Draft Amidsh. m	2.410	
	1	Displacement tonne	22087	Weijass Wit and
	2	Heel to Starboard degrees	0.0	3.2
	3	Draft at FP m	2.410	E 2.8
	4	Draft at AP m	2.410	5 2.4
	5	Draft at LCF m	2.410	Õ
	6	Trim (+ve by stern) m	0.000	
	7	WL Length m	265.295	1.6
	8	WL Beam m	43.400	1.2 5000 10000 15000 20000 25000 30000 35000 40000 45000 500
	9	Wetted Area m ²	10033.093	Displacement tonne
	10	Waterpl. Area m ²	9467.454	9100 9200 9300 9400 9500 9600 9700 9800 9900 10000 101
	11	Prismatic Coeff.	0.800	Area m ²
	12	Block Coeff.	0.776	1 15 2 25 3 35 4 45 5 55
	13	Midship Area Coeff.	0.970	LCB, LCF, KB m
	14	Waterpl. Area Coeff.	0.822	58 58.4 58.8 59.2 59.6 60 60.4 60.8 61.2 61.6 6
	15	LCB from Amidsh. (+ve fwd) m	5.762	KMt m
	16	LCF from Amidsh. (+ve fwd) m	4.589	1864.8 1865.2 1865.6 1866 1866.4 1866.8 1867.2 1867.6 1868 1868.4 186
	17	KBm	1.241	KML m
	18	KG m	0.000	94.4 94.8 95.2 95.6 96 96.4 96.8 97.2 97.6 98 98
	19	BMtm	59.556	Immersion tonne/cm
	20	BML m	1866.372	1466 1466.4 1466.8 1467.2 1467.6 1468 1468.4 1468.8 1469.2 1469.6
	21	GMT m	60.797	Moment to Trim tonne.m
	22	GML III	1867.613	Draft = 0.000 m Disp. = 0.000 tonne
	23	Kill m	1967.612	
	24	Net III	1007.013	
	25	MTc tonne m	97.000 1420 077	
	20	PM at 1dec - CMt Dien sin(1) tonna m	22435 107	
	28	Max deck inclination deg	23435.187	
	29	Trim angle (+ve by stern) deg	0.0	
	24 25 26 27 28 29	Nut, m immersion (TPc) tonne/cm MTc tonne.m RM at 1deg = GMt.Disp.sin(1) tonne.m Max deck inclination deg Trim angle (+ve by stern) deg	1007 013 97.060 1468.877 23435.197 0.0	
	41	Hydrostatics & Stability & Equilib	• ٭ ل	Ub Loadcased (Loadcase? (Load

Gambar 4.6. Hasil output data hidrostatis software Maxsurf

Density (Sea Water)	1.025	tonne/m^3			
Toleransi	5	%			
			Koreksi		
	Data	Maxsurf	(%)	Unit	Toleransi
Displacement	21614.00	22087	-0.02	tonne	Memenuhi
Volume	21337.18	21553.79	-0.01	m^3	Memenuhi
Draft to Baseline	2.41	2.41	0.00	m	Memenuhi
Immersed depth	2.41	2.41	0.00	m	Memenuhi
Lwl	265.30	265.30	0.00	m	Memenuhi
Beam wl	43.40	43.40	0.00	m	Memenuhi
LCB from zero pt	146.11	147.76	-0.01	m	Memenuhi
LCF from zero pt	145.52	146.589	-0.001	m	Memenuhi
KB	1.18	1.24	-0.05	m	Memenuhi
KMt	61.60	60.83	0.01	m	Memenuhi
	50			50	
Precision	stations	Medium	50 stations	stations	Memenuhi

Tabel 4.3 Validasi data hidrostatis FSO Ladinda light condition

4.1.1.3 Pemodelan Tanker M.S. Pacific Leo

Untuk *Shuttle Tanker*, data yang digunakan adalah Tanker M.S. Pacific Leo yang pernah melakukan proses *offloading system* di Lalang terminal dengan FSO Ladinda. Ukuran utama Tanker M.S. Pacific Leo sebagai *input* pada Maxsurf adalah sebagai berikut :

 Tabel 4.4 Ukuran Utama Tanker M.S. Pacific Leo

		Kondisi	Kondisi
Ukuran Kapal	Unit	Maksimum	Minimum
Length, LOA	m	246.78	
Length, LBP	m	235	
Breadth, B	m	42	
Depth, D	m	21.3	
Draft, T	m	14.798	2.3

Hasil pemodelan Tanker M.S. Pacific Leo seperti tampak pada gambar-gambar berikut ini:

Gambar 4.7. Hasil pemodelan Tanker pada *software* Maxsurf tampak isometric

Gambar 4.8. Hasil pemodelan Tanker pada *software* Maxsurf tampak depan (*body plan*)

Gambar 4.9. Hasil pemodelan Tanker pada *software* Maxsurf tampak samping (*sheer plan*)

Gambar 4.10. Hasil pemodelan Tanker pada *software* Maxsurf tampak atas (*halfbreadth plan*)

4.1.1.4 Validasi Model Tanker M.S. Pacific Leo

Berikut ini adalah validasi model untuk Tanker M.S. Pacific Leo

Density (Sea Water)	1.025	tonne/m^3			
Toleransi	5	%			
	Data	Maxsurf	Koreksi (%)	Unit	Toleransi
Displacement	123872.00	125955.00	-0.02	tonne	Memenuhi
Volume	122702.17	122862.94	0.00	m^3	Memenuh
Draft to Baseline	14.80	14.80	0.00	m	Memenuh
Immersed depth	14.80	14.80	0.00	m	Memenuh
Lwl	246.78	243.33	0.01	m	Memenuh
Beam wl	42.00	42.00	0.00	m	Memenuh
Cb	0.80	0.81	-0.01		Memenuh

Tabel 4.5 Validasi data hidrostatis Tanker M.S. Pacific Leo

Gambar 4.11. Hasil output data hidrostatis dari software Maxsurf

4.1.2 Pemodelan pada Software MOSES 7.0

Berdasarkan tabel-tabel dari validasi pemodelan *software* Maxsurf diatas, dapat dilihat bahwa hasil yang diperoleh dari pemodelan *software* Maxsurf untuk FSO *Ladinda* baik kondisi *full condition* maupun *light condition* dan Tanker memiliki kesesuaian dengan data yang ada dengan perbedaan atau *error* kurang dari 5% atau 0.05. Dengan demikian, hasil pemodelan *software* Maxsurf untuk FSO dan Tanker valid untuk digunakan sebagai *input* pada pemodelan *software* MOSES. Pemodelan *software* MOSES dilakukan sebelum melakukan analisis perilaku gerak struktur. Data-data yang diperlukan untuk memodelkan struktur pada *software* MOSES adalah data *offset* struktur yang digunakan program untuk mengidentifikasi *body* struktur, untuk menghitung luas, volume, dan *displacement*, sehingga proses tersebut dapat digunakan sebagai salah satu validasi MOSES. Data lain yang dibutuhkan antara lain *draft* struktur dan radius girasi.

4.1.2.1 Pemodelan Software MOSES FSO Ladinda

hasil *output* MOSES untuk FSO *Ladinda* dapat dilihat pada gambar-gambar berikut ini:

Gambar 4.12. FSO Ladinda hasil output software MOSES tampak isometric

Gambar 4.13. FSO Ladinda hasil output software MOSES tampak atas

Gambar 4.14. FSO Ladinda Hasil Output software MOSES Tampak Depan

4.1.2.2 Validasi Model Hasil Output Software MOSES FSO Ladinda

validasi model dari *software* MOSES dilakukan dengan membandingkan *displacement* hasil *output software* MOSES dengan *displacement* yang diketahui dari data. Selain itu, validasi juga dilakukan pada hidrostatis *output software* MOSES dengan data hidrostatis yang sebenarnya. Validasi displacement dilakukan pada FSO *Ladinda* kondisi *full condition, half condition* maupun *light condition* dengan koreksi harus lebih kecil dari 0.05.

+++ B U O Y A N C Y AND WEIGHT F 0 R F 5 0 +++ Process is DEFAULT: Units Are Degrees, Meters, and KN Unless Specified Results Are Reported In Body System Roll Angle = 0.00 Pitch Angle = Draft = 15.72 0.00 Wet Radii Of Gyration About CG K-X = 3.35 K-Y = 45.62 K-Z = 45.50 GMT = 7.72 GML = 391.50 /-- Center of Gravity ---/ Sounding % Full Name Weight ---Y-----z------X---Part FSO LOAD_GRO 161800.5 142.21 0.00 10.50 Total 161800.5 0.00 10.50 142.21 Buoyancy 161800.3 142.21 0.00 8.16 HYDRODYNAMICS •g_press -heading 0 45 90 180 Setting Tanaka Name for FSO to FSO Setting Pressure Name for FSO to FSO Time to Generate 3051 Panels For FSO CP= 1.13 Time For 3D Diff. Time For 3D Diff. 3051 Panels, Freq. 1 CP= 121.06 3051 Panels, Freq. 2 CP= 118.81 3051 Panels, Freq. 3 Time For CP= 3D Diff. 119.24 Time For 3D Diff. 3051 Panels, Freq. 4 CP= 118.14 3051 Panels, Freq. 5 3051 Panels, Freq. 6 3051 Panels, Freq. 7 Time For 3D Diff. Time For 3D Diff. 118.15 117.93 CP= CP= Time For 3D Diff. CP= 117.86

Gambar 4.15. File .log hasil running MOSES untuk FSO full condition

+++ BUOYANCY AND WEIGHT FOR FSO+++

Process is DEFAULT: Units Are Degrees, Meters, and KN Unless Specified Results Are Reported In Body System

Draft = 7.86	Roll Angle = 0.00	0 Pitch Angle = 0.00
W	et Radii Of Gyration	About CG
K-X = 3.14	4 K-Y = 47.57	K-Z = 47.47
GM	T = 12.89 GML	= 606.15
Name Weight LOAD_GRO 74568.5	/ Center of Gravit XY Part FS0 145.00 0.00	ty/ Sounding % Full Z 9.86
Total 74568.5 Buoyancy 74568.6 YDRODYNAMICS _press -heading 0 45 90 Sec	145.00 0.00 145.00 0.00 180 tting Tanaka Name for	9.86 4.03
Set	ting Pressure Name fo	or FSO to FSO
Time to Generate 2227 Time For 3D Diff. Time For 3D Diff.	Panels For FSO 2227 Panels, Freq. 1 2227 Panels, Freq. 2 2227 Panels, Freq. 2 2227 Panels, Freq. 4 2227 Panels, Freq. 6 2227 Panels, Freq. 6 2227 Panels, Freq. 7 2227 Panels, Freq. 7 2227 Panels, Freq. 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Gambar 4.16. File .log hasil running MOSES untuk FSO half condition

+++ BUOYANCY AND WEIGHT FOR FSO +++

Process is DEFAULT: Units Are Degrees, Meters, and KN Unless Specifie Results Are Reported In Body System

Draft = 2.41 Roll Angle = 0.00 Pitch Angle = 0.00 Wet Radii Of Gyration About CG K-X = 4.01 K-Y = 39.48 K-Z = 39.28 GMT = 48.90 GML = 1853.86

	Name	Weight	/ Center	r of Gravi Y	ty/	Soundin	g % Full
	LOAD_GRO	21614.5	146.14	0.00	12.57		
	Total Buoyancy	21614.5 21614.5	146.14 146.14	0.00	12.57 1.24		
>HYDROI >g_pres	DYNAMICS ss -headin	g 0 45 90	180	ca Namo fo	r FEO to	550	
		===	ting Press	ure Name f	or ESO to	===== 0 ES0	
		====				=====	
Tir Tir Tir Tir Tir Tir Tir Tir	ne to Gene ne For 3D ne For 3D ne For 3D ne For 3D ne For 3D ne For 3D ne For 3D	rate 1790 Diff. Diff. Diff. Diff. Diff. Diff. Diff.	Panels For 1790 Pane 1790 Pane 1790 Pane 1790 Pane 1790 Pane 1790 Pane 1790 Pane	r F50 ls, Freq. ls, Freq. ls, Freq. ls, Freq. ls, Freq. ls, Freq. ls, Freq.	1 : 2 : 3 : 4 : 5 : 6 : 7 :	CP= CP= CP= CP= CP= CP= CP= CP=	0.56 25.48 25.03 24.85 24.98 25.04 25.04 25.04

Gambar 4.17. File .log hasil running MOSES untuk FSO light condition

Tabel 4.6 Validasi displacement hasil output software MOSES FSO Ladinda

	Data	Moses	Koreksi
FSO full condition	161810	161800.5	0.00006
FSO half condition	74422.1	74568.5	-0.00196
FSO light condition	21614	21614.5	-0.00002

iydrostatic(1) - Notepad			
Edit Format View Help			
	+++ H Y D R O S T A T I C	PROPERTIES +++	
	For Bod	FSO	
Pr	ocess is DEFAULT: Units Are Degrees,	Meters, and M-Tons Unless Specified	
/ Condition//-)	Displac-/ / Center of Buoyancy/	W.P. / /C. Flotation / / Metacentric Heights	-/
Draft Trim Roll	XYZ	AreaXYKMTKMLBMTBML	
1.00 0.00 0.00	8560.56 147.41 0.00 0.51 9470.39 147.24 0.00 0.57	8847. 145.74 0.00 131.76 4295.15 131.25 4294 8903 145.63 0.00 120.85 3927 46 120.29 3926	63 89
1.20 0.00 0.00	10385.88 147.10 0.00 0.62	8957, 145.54 0.00 111.79 3619.54 111.17 3618	92
1.30 0.00 0.00	11306.83 146.96 0.00 0.67	9007. 145.46 0.00 104.10 3356.33 103.43 3355	66
1.50 0.00 0.00	13163.19 146.74 0.00 0.77	9099, 145.34 0.00 91.81 2930.59 91.04 2929	81
1.60 0.00 0.00	14098.22 146.65 0.00 0.82	9143. 145.30 0.00 86.84 2756.02 86.02 2755	20
1.70 0.00 0.00	15037.65 146.56 0.00 0.88	9184. 145.28 0.00 82.46 2600.84 81.58 2599	97
1.80 0.00 0.00	15981.19 146.49 0.00 0.93 16929.12 146.42 0.00 0.93	9224. 145.2/ 0.00 /8.5/ 2402.52 //.04 2401 9264 145.26 0.00 75.09 2338.65 74.12 2337	59 67
2.00 0.00 0.00	17880.86 146.36 0.00 1.03	9303. 145.25 0.00 71.98 2227.11 70.95 2226	08
2.10 0.00 0.00	18836.39 146.30 0.00 1.08	9341. 145.24 0.00 69.17 2126.10 68.09 2125	02
2.20 0.00 0.00	19/96.01 146.25 0.00 1.13	93/9, 145.23 0.00 66.62 2034.18 65.48 2033 0415 145.22 0.00 64.25 1050.02 63.06 1048	04 RA
2.40 0.00 0.00	21725.54 146.16 0.00 1.24	9431. 145.22 0.00 61.69 1871.44 60.45 1870	20
2.50 0.00 0.00	22693.36 146.12 0.00 1.29	9446. 145.22 0.00 59.31 1798.81 58.02 1797	52
2.60 0.00 0.00	23662.56 146.08 0.00 1.34	9460. 145.22 0.00 57.11 1731.49 55.77 1730	15
2.80 0.00 0.00	25604.50 146.01 0.00 1.44	9482. 145.19 0.00 53.17 1610.08 51.73 1608	64
2.90 0.00 0.00	26577.11 145.98 0.00 1.50	9492. 145.17 0.00 51.41 1555.43 49.92 1553	94
3.00 0.00 0.00	27550.66 145.95 0.00 1.55	9502, 145.15 0.00 49.78 1504.46 48.23 1502	91
3.10 0.00 0.00	28525.14 145.93 0.00 1.60	9511. 145.13 0.00 48.20 1450.82 40.00 1455 0550 145 10 0.00 46.83 1413 34 45 18 1410	22
3.30 0.00 0.00	30477.30 145.87 0.00 1.70	9529. 145.08 0.00 45.50 1370.43 43.80 1368	73
3.40 0.00 0.00	31454.54 145.85 0.00 1.75	9538. 145.06 0.00 44.26 1331.17 42.51 1329	42
3.50 0.00 0.00	32432.91 145.83 0.00 1.80	9547. 145.04 0.00 43.09 1294.24 41.29 1292	44
3.60 0.00 0.00	33412.03 145.80 0.00 1.85 24202 45 145.70 0.00 1.01	9556. 145.01 0.00 41.99 1259.44 40.14 1257 0565 144.00 0.00 40.06 1226.58 20.05 1224	59
3.80 0.00 0.00	35373.84 145.76 0.00 1.96	9574. 144.97 0.00 39.98 1195.52 38.02 1193	57
3.90 0.00 0.00	36355.73 145.73 0.00 2.01	9583. 144.94 0.00 39.06 1166.16 37.05 1164	15
4.00 0.00 0.00	37338.77 145.71 0.00 2.06	9592. 144.91 0.00 38.19 1138.29 36.13 1136	23
4.10 0.00 0.00	38322.22 145.69 0.00 2.11	9601. 144.89 0.00 37.36 1111.82 35.25 1109	/1
4.30 0.00 0.00	40292.76 145.65 0.00 2.21	9619. 144.84 0.00 35.84 1062.59 33.63 1060	38
4.40 0.00 0.00	41279.17 145.63 0.00 2.26	9627. 144.81 0.00 35.13 1039.70 32.87 1037	44
4.50 0.00 0.00	42266.88 145.61 0.00 2.31	9636. 144.79 0.00 34.46 1017.85 32.15 1015	53
4.60 0.00 0.00	43235.20 145.39 0.00 2.3/	9045, 144.70 0.00 33.82 990.98 31.40 994 0653 144.73 0.00 33.21 077.02 30.80 074	61
4.80 0.00 0.00	45234.30 145.56 0.00 2.47	9662. 144.71 0.00 32.63 957.91 30.17 955	44
4.90 0.00 0.00	46225.49 145.54 0.00 2.52	9670. 144.68 0.00 32.08 939.59 29.56 937	07
5.00 0.00 0.00	4/21/.39 145.52 0.00 2.57	96/9. 144.65 0.00 31.55 922.01 28.98 919	44
			Ln1 Col1

Gambar 4.18. Data hidrostatis FSO Ladinda output software MOSES

-18

** 1			
Hvdros	tatic	Data	

	 	-
	-	-

Draft	Displ.	LCB	LCF	KB	KM	Trim	Factor
from BL [m]	[m^3]	from AP [m]	from AP [m]	from BL [m]	from BL [m]	[-]	
1.975	17175.7897	146.24	145.52	.96775	72.18	.122	
2.175	19041.4123	146.17	145.52	1.06575	66.81	.133	
2.375	20913.8438	146.11	145.52	1.16375	61.88	.144	
2.575	22794.0569	146.06	145.52	1.26175	57.39	.155	
2.775	24682.0514	146.01	145.52	1.35975	53.35	.166	
2.975	26576.8548	145.96	145.248	1.45775	49.75	.178	
3.175	28486.2486	145.92	145.248	1.55575	47.1	.189	
3.375	30399.5331	145.88	145.248	1.65375	44.64	.2	
3.575	32317.6811	145.85	145.248	1.75175	42.37	.211	
3.775	34240.6926	145.81	145.248	1.84975	40.29	.222	
3.975	36168.5675	145.78	145.248	1.94775	38.39	.233	
4.175	38102.2785	145.75	145.248	2.04575	36.87	.244	
4.375	40040.8531	145.73	145.248	2.14375	35.44	.255	
4.575	41982.3456	145.7	145.248	2.24175	34.1	.266	
4.775	43927.729	145.67	144.976	2.33975	32.86	.277	
4.975	45877.0031	145.65	144.976	2.43775	31.71	.288	
5.175	47836.0042	145.62	144.976	2.53575	30.74	.3	
5.375	49795.0052	145.59	144.976	2.63375	29.82	.311	
5.575	51755.9517	145.57	144.976	2.73175	28.96	.322	
5.775	53717.8708	145.54	144.976	2.82975	28.15	.333	
5.975	55680.7626	145.52	144.976	2.92775	27.4	.345	
6.175	57642.6817	145.5	144.976	3.02575	26.74	.356	
6.375	59607.5189	145.49	144.976	3.12375	26.11	.367	
6.575	61573.3288	145.47	144.976	3.22175	25.52	.379	
6.775	63542.0568	145.46	144.704	3.31975	24.96	.39	
6.975	65511.7574	145.44	144.704	3.41775	24.44	.401	
7.175	67485.3488	145.42	144.704	3.51575	23.97	.413	
7.375	69459.9129	145.4	144.704	3.61375	23.52	.424	
7.575	71436.4224	145.39	144.704	3.71175	23.1	.436	
7.775	73413.9046	145.37	144.704	3.80975	22.7	.447	
7.975	75393.3322	145.35	144.704	3.90775	22.33	.458	
8.175	77373.7325	145.33	144.704	4.00575	22	.47	
8.375	79355.1054	145.32	144.704	4.10375	21.68	.481	
8.575	81338.4238	145.3	144.704	4.20175	21.38	.492	
8.775	83323.6875	145.28	144.432	4.29975	21.1	.503	
8.975	85310.8966	145.26	144.432	4.39775	20.83	.514	
9.175	87298.1057	145.25	144.432	4.49575	20.59	.525	
9.375	89288.2329	145.23	144.432	4.59375	20.37	.536	
9.575	91280.3054	145.21	144.432	4.69175	20.15	.546	
9.775	93275.2961	145.19	144.16	4.78975	19.95	.557	
9.975	95272.2321	145.17	144.16	4.88775	19.76	.567	
10.175	97275.0043	145.14	144.16	4.98575	19.58	.577	
10.375	99278.7491	145.12	143.888	5.08375	19.42	.587	
10.575	101283.467	145.09	143.888	5.18175	19.27	.597	
10.775	103290.13	145.07	143.888	5.27975	19.12	.606	
10.975	105296.793	145.04	143.616	5.37775	18.99	.615	
11.175	107291.783	145.03	143.616	5.47575	18.86	.624	
11.375	109293.583	145.02	143.344	5.57375	18.75	.633	
11.575	111304.136	144.99	143.072	5.67175	18.64	.641	
11.775	113321.499	144.96	143.072	5.76975	18.54	.649	
11.975	115346.643	144.93	142.8	5.86775	18.45	.657	
12.175	117393.186	144.88	142.528	5.96575	18.36	.664	
12.375	119440.702	144.82	142.256	6.06375	18.28	.671	
12.575	121488.218	144.77	141.984	6.16175	18.21	.678	
12.775	123537.68	144.72	141.984	6.25975	18.14	.685	
12.975	125587.141	144.67	141.712	6.35775	18.08	.692	
13.175	127622.012	144.64	141.44	6.45575	18.03	.698	

4.1.2.3 Pemodelan Software MOSES Tanker M.S. Pacific Leo

hasil *output software* MOSES untuk Tanker M.S. Pacific Leo dapat dilihat pada gambar-gambar berikut ini :

Gambar 4.19. Tanker hasil output MOSES tampak isometric

Gambar 4.20. Tanker hasil output MOSES tampak atas

Gambar 4.21. Tanker Hasil Output MOSES Tampak Depan

4.1.2.4 Validasi Model Hasil Output Software MOSES Tanker

validasi model dari MOSES dilakukan dengan membandingkan displacement hasil output software MOSES dengan displacement yang diketahui dari data. Validasi displacement dilakukan pada Tanker M.S. Pacific Leo kondisi *full condition* dan *light condition* dengan koreksi harus lebih kecil dari 0.05.

ASTATUS B_W
+++ BUOYANCY AND WEIGHT FOR ST+++
Process is DEFAULT: Units Are Degrees, Meters, and KN Unless Specified Results Are Reported In Body System
Draft = 14.80 Roll Angle = 0.00 Pitch Angle = 0.00
Wet Radii Of Gyration About CG
K-X = 4.92 K-Y = 26.29 K-Z = 25.83
GMT = 2.19 GML = 299.80
/ Center of Gravity/ Sounding % Full Name WeightXYZ Part ST LOAD_GRO 123913.0 124.00 0.00 15.41
Total 123913.0 124.00 0.00 15.41 Buoyancy 123914.3 124.00 0.00 7.67

>&STATUS B_W						
+++ B	υογΑΝΟ	Y ANI	D WEI	GHT F	OR ST	+++
=====						
Process is D	EFAULT: Uni Resul	ts Are Deo ts Are Rej	grees, Met ported In	ers, and Body Syst	KN Unles em	s Specified
Draft =	2.30	Roll Ang	le = 0.0	0 Pit	ch Angle =	0.00
	We	t Radii Of	f Gyration	About CG		
К-	X = 0.63	K-Y	= 31.01	K-Z	= 31.00	
	GMT	= 56.49	9 GML	= 1459.2	9	
Name	Weight	/ Center X art ST	r of Gravi Y 	ty/	Sounding	% Full
LOAD_GRO	16723.0	127.13	0.00	1.98		
Total Buoyancy	16723.0 16723.1	127.13 127.13	0.00	1.98 1.18		
2111DROD TRAFILES	0.45.00					

Gambar 4.23. File .log hasil running MOSES untuk Tanker light

condition

Tabel 4.7 Validasi displacement hasil output MOSES Tanker

	Data	Moses	Koreksi
Tanker full condition	123872	123913	-0.00033
Tanker light condition	16725	16723	0.00012

4.1.3 Lines Plan

Hasil pemodelan dari *software* Maxsurf yang telah divalidasi sebelumnya, perlu dibuat rencana garis atau *lines plan* dari model-model tersebut. *Lines plan* yang dibuat ialah *lines plan* FSO *Ladinda* dan Tanker MS Pacific Leo. *Lines plan* dibuat berdasarkan *offset* model hasil *output software* Maxsurf yang telah divalidasi.

Gambar 4.24. Maxsurf Lines Plan FSO Ladinda

Gambar 4.25. Maxsurf Lines Plan Tanker MS Pacific Leo

4.2 Skenario Analisa Gerakan Struktur

4.2.1 Skenario Analisis

Skenario analisis gerakan struktur yang dilakukan dalam pembahasan tugas akhir penulis terdiri dari kondisi mengapung bebas (*free floating*) dan kondisi tertambat (*moored*) *side by side offloading process* dengan variasi beban muatan dan beban gelombang pada struktur FSO *Ladinda* dan Tanker MS. Pacific Leo. Berikut ini adalah tabel skenario analisis yang menjelaskan tentang variasi beban pada analisa gerakan struktur.

Tabel 4.8 Skenario analisa gerakan struktur pada kondisi free floating

<i>Free Floating</i> (arah pembebanan : 0°,45°, 90° dan 180°)					
FSO Ladinda	Kondisi Full Load	Sarat FSO, T = 15.725			
	Kondisi Half Load	Sarat FSO, T = 7.8625			
	Kondisi Light Load	Sarat FSO, $T = 2.41$			
Tanker MS Pacific	Kondisi Full Load	Sarat Tanker, $T = 14.798$			
Leo	Kondisi Light Load	Sarat Tanker, $T = 2.3$			

Tabel 4.9 Skenario analisa gerakan struktur pada kondisi *side by side offloading process*

Moored : Side by Side (arah pembebanan : 0°,45°, 90° dan 180°)					
Skenario	FSO Ladinda	Tanker			
Kondisi 1	Full Load	Light Load			
Kondisi 2	Half Load	Full Load			
Kondisi 3	Half Load	Light Load			
Kondisi 4	Light Load	Full Load			

4.2.2 Skenario Pembebanan (Environmental Loading)

Skenario pembebanan yang dilakukan dalam analisa struktur ini, khususnya untuk beban lingkungan adalah sebagai berikut :

- a. Beban angin, arus dan gelombang arah 0° (*Head sea*)
- b. Beban angin, arus dan gelombang arah 45° (*Beam sea*)
- c. Beban angin, arus dan gelombang arah 90° (*Beam sea*)
- d. Beban angin, arus dan gelombang arah 180° (*Following sea*)

4.3 Analisis Gerakan Struktur pada Kondisi Free Floating

Setelah melakukan pemodelan struktur FSO dan Tanker langkah selanjutnya adalah analisis gerakan FSO dan Tanker pada kondisi *free floating*. Analisis gerakan ini dibantu dengan menggunakan *sofware* MOSES. *Running* dengan *software* MOSES menghasilkan *amplitude* respon gerak masing-masing struktur. Analisis RAO *motion* ini dilakukan untuk mengetahui karakteristik gerakan kapal pada mode gerakan *surge*, *sway*, *heave*, *roll*, *pitch* dan *yaw*. Grafik fungsi transfer (RAO/ *Response Amplitude Operator*) digambarkan sebagai grafik fungsi antara respon gerakan suatu bangunan apung akibat eksitasi yang terjadi. Setiap arah eksitasi mengakibatkan respon gerakan yang berbeda. Dari grafik RAO dapat dilihat bahwa sumbu x merupakan fungsi frekuensi (ω) dan sumbu y merupakan fungsi RAO. Analisis gerakan FSO dan Tanker pada kondisi *free floating* dilakukan dalam empat arah pembebanan. Arah pembebanan untuk analisis ini adalah *head seas* (0°), *quartering seas* (45⁰), *beam seas* (90°) dan *following seas* (180°).

4.3.1 RAO FSO Ladinda

4.3.1.1 Full Condition

Gambar 4.26 Grafik RAO gerakan surge FSO Ladinda full condition

Gambar 4.28 Grafik RAO gerakan heave FSO Ladinda full condition

Gambar 4.29 Grafik RAO gerakan roll FSO Ladinda full condition

Gambar 4.30 Grafik RAO gerakan pitch FSO Ladinda full condition

Gambar 4.31 Grafik RAO gerakan *yaw* FSO *Ladinda full condition* Tabel 4.10 Nilai maksimum RAO FSO *Ladinda full condition*

Moda	Unit	RAO Maksimum				Mov
Gerakan		0 deg	45 deg	90 deg	180 deg	Iviax
Surge	m/m	0.886	0.656	0.021	0.891	0.891
Sway	m/m	0.015	0.642	0.948	0.008	0.948
Heave	m/m	0.911	0.957	1.285	0.907	1.285
Roll	deg/m	0.177	2.256	3.724	0.185	3.724
Pitch	deg/m	0.656	0.679	0.101	0.698	0.698
Yaw	deg/m	0.012	0.275	0.041	0.009	0.275

Berdasarkan grafik dan tabel di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0.891 (m/m) yaitu pada *heading* 180°, *sway* tertinggi pada *heading* 90° sebesar 0.948 (m/m), dan *heave* tertinggi sebesar 1.285 (m/m) pada *heading* 90°. Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 3.724 (deg/m), *pitch* maksimum sebesar 0.698 (deg/m) pada *heading* 180°, dan *yaw* maksimum sebesar 0.275 (deg/m) pada *heading* 45°. RAO tertinggi untuk semua moda gerakan terjadi pada frekuensi(ω) rendah, yaitu antara 0.3-0.4 rad/s.

Gambar 4.32 Grafik RAO gerakan surge FSO Ladinda half condition

Gambar 4.34 Grafik RAO gerakan heave FSO Ladinda half condition

Gambar 4.36 Grafik RAO gerakan pitch FSO Ladinda half condition

Gambar 4.37 Grafik RAO gerakan yaw FSO Ladinda half condition

Moda Gerakan	Unit		May			
		0 deg	45 deg	90 deg	180 deg	Iviax
Surge	m/m	0.884	0.656	0.014	0.883	0.884
Sway	m/m	0.002	0.643	0.958	0.001	0.958
Heave	m/m	0.908	0.955	1.227	0.909	1.227
Roll	deg/m	0.015	1.058	4.373	0.01	4.373
Pitch	deg/m	0.67	0.718	0.095	0.662	0.718
Yaw	deg/m	0.002	0.266	0.073	0.001	0.266

Tabel 4.11 Nilai maksimum RAO FSO Ladinda half condition

Berdasarkan grafik dan tabel di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0.884 (m/m) yaitu pada *heading* 0°, *sway* tertinggi pada *heading* 90° sebesar 0.958 (m/m), dan *heave* tertinggi sebesar 1.227 (m/m) pada *heading* 90°. Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 4.373 (deg/m), *pitch* maksimum sebesar 0.718 (deg/m) pada *heading* 45°, dan *yaw* maksimum sebesar 0.266 (deg/m) pada *heading* 45°. RAO tertinggi untuk semua moda gerakan terjadi pada frekuensi(ω) rendah, yaitu antara 0.3491-0.4189 rad/s.

4.3.1.3 Light Condition

Gambar 4.38 Grafik RAO gerakan surge FSO Ladinda light condition

Gambar 4.40 Grafik RAO gerakan heave FSO Ladinda light condition

Gambar 4.43 Grafik RAO gerakan yaw FSO Ladinda light condition

Moda Gerakan	Unit	RAO Maksimum				Mox
		0 deg	45 deg	90 deg	180 deg	Iviax
Surge	m/m	0.89	0.656	0.026	0.89	0.89
Sway	m/m	0.046	0.652	0.965	0.022	0.965
Heave	m/m	0.916	0.957	1.256	0.915	1.256
Roll	deg/m	0.212	0.946	4.543	0.05	4.543
Pitch	deg/m	0.69	0.731	0.141	0.662	0.731
Yaw	deg/m	0.031	0.254	0.093	0.018	0.254

Tabel 4.12 Nilai maksimum RAO FSO Ladinda light condition

Untuk RAO FSO *light condition, surge* terbesar terjadi pada frekuensi 0.3696 rad/s dengan arah pembebanan 180°. *Sway* terbesar terjadi pada frekuensi 0.2513 rad/s dengan arah pembebanan 90°. *Heave* terbesar pada frekuensi 0.2513 rad/s pada arah 90°. *Roll* terbesar pada frekuensi 0.3307 rad/s dengan arah 90°. *Pitch* terbesar pada frekuensi 0.2513 rad/s dengan arah pembebanan 45°. *Yaw* terbesar pada frekuensi 0.2513 rad/s dengan arah pembebanan 45°. Gerakan paling dominan adalah *roll* yang memiliki nilai RAO terbesar yaitu 4.543. RAO tertinggi untuk semua moda gerakan terjadi pada frekuensi(ω) rendah, yaitu 0.3491 – 0.4333 rad/s.

4.3.2 RAO Tanker M.S. Pacific Leo

4.3.2.1 Full Condition

Gambar 4.44 Grafik RAO gerakan surge Tanker full condition

Gambar 4.45 Grafik RAO gerakan sway Tanker full condition

Gambar 4.46 Grafik RAO gerakan heave Tanker full condition

Gambar 4.47 Grafik RAO gerakan roll Tanker full condition

Gambar 4.48 Grafik RAO gerakan pitch Tanker full condition

Gambar 4.49 Grafik RAO gerakan yaw Tanker full condition

Moda	Unit	RAO Maksimum				Moy
Gerakan	Unit	0 deg	45 deg	90 deg	180 deg	IVIAX
Surge	m/m	0.883	0.65	0.022	0.884	0.884
Sway	m/m	0.002	0.641	0.947	0.002	0.947
Heave	m/m	0.902	0.948	1.355	0.901	1.355
Roll	deg/m	0.057	2.386	3.518	0.061	3.518
Pitch	deg/m	0.679	0.742	0.104	0.684	0.742
Yaw	deg/m	0.002	0.294	0.045	0.002	0.294

Tabel 4.13 Nilai maksimum Shuttle Tanker full condition

Berdasarkan grafik dan tabel di atas dapat dilihat bahwa *surge* tertinggi ialah sebesar 0.884 (m/m) yaitu pada *heading* 180°, *sway* tertinggi pada *heading* 90° sebesar 0.947 (m/m), dan

heave tertinggi sebesar 1.355 (m/m) pada *heading* 90°. Untuk gerak osilasi rotasional *roll* maksimum pada *heading* 90° sebesar 3.518 (deg/m), *pitch* maksimum sebesar 0.742 (deg/m) pada *heading* 45°, dan *yaw* maksimum sebesar 0.294 (deg/m) pada *heading* 45°. RAO tertinggi untuk semua moda gerakan terjadi pada frekuensi(ω) rendah, yaitu 0.3491 rad/s.

4.3.2.2 Light Condition

Gambar 4.50 Grafik RAO gerakan surge Tanker light condition

Gambar 4.51 Grafik RAO gerakan sway Tanker light condition

Gambar 4.52 Grafik RAO gerakan heave Tanker light condition

Gambar 4.53 Grafik RAO gerakan roll Tanker light condition

Gambar 4.55 Grafik RAO gerakan yaw Tanker light condition

Moda Gerakan	Unit		Mox			
		0 deg	45 deg	90 deg	180 deg	Iviax
Surge	m/m	0.892	0.657	0.017	0.894	0.894
Sway	m/m	0.003	0.655	0.965	0.002	0.965
Heave	m/m	0.919	0.957	1.235	0.917	1.235
Roll	deg/m	0.019	1.519	4.789	0.008	4.789
Pitch	deg/m	0.687	0.725	0.094	0.708	0.725
Yaw	deg/m	0.002	0.267	0.057	0.002	0.267

Tabel 4.14 Nilai maksimum Shuttle Tanker light condition

Untuk RAO Tanker *light condition, surge* terbesar terjadi pada frekuensi 0.3696 rad/s dengan arah pembebanan 180°. *Sway* terbesar terjadi pada frekuensi 0.2513 rad/s dengan arah pembebanan 90°. *Heave* terbesar pada frekuensi 0.2513 rad/s pada arah 90°. *Roll* terbesar pada frekuensi 0.3307 rad/s dengan arah 90°. *Pitch* terbesar pada frekuensi 0.2513 rad/s dengan arah pembebanan 45°. *Yaw* terbesar pada frekuensi 0.2513 rad/s dengan arah pembebanan 45°. Gerakan paling dominan adalah *roll* yang memiliki nilai RAO terbesar yaitu 4.789. RAO tertinggi untuk semua moda gerakan terjadi pada frekuensi(ω) rendah, yaitu antara 0.3491 – 0.4833 rad/s.
4.4 Analisis Tegangan Tali Tambat (Hawser)

Tujuan pokok dalam analisis *mooring* pada skema *side by side*, yaitu: untuk menentukan gaya tarik tali tambat dan gerakan relatif dari titik tertentu pada bangunan apung yang ditinjau. Kemudian dari beberapa analisis tersebut, didapatkan hasil yang nantinya akan digunakan sebagai *input* desain pada sistem transfer FSO (*hoses* atau *loading arm*), *bollard* atau *fairlead*, dimensi *fender* dan posisi penempatannya (DNV, 2011).

Analisis tegangan tali tambat (*hawser*) saat kondisi *side by side offloading process* pada konstruksi bolder di FSO *Ladinda* dilakukan untuk mendapatkan tegangan terbesar *hawser* sebagai input pemodelan selanjutnya. Analisis ini mengacu pada standar *American Bureau of Shipping* (ABS), dimana *safety factor* dari tegangan tali tambat (*hawser*) yang didapatkan dengan membagi *Minimum Breaking Load* dengan *tension* yang didapatkan dari hasil simulasi. Hasil perbandingan tersebut harus lebih besar dari ketentuan ABS, yaitu 1.67 untuk *mooring* dan 1.82 untuk *hawser*.

Analisis tegangan tali tambat (*hawser*) dan gerakan relatif dilakukan menggunakan bantuan *software* MOSES dengan simulasi *time domain* selama 3600 detik. Skenario analisis ini dilakukan dalam empat kondisi yaitu :

- 1. FSO Ladinda Full Condition Tanker MS Pacific Leo Light Condition
- 2. FSO Ladinda Half Condition Tanker MS Pacific Leo Full Condition
- 3. FSO Ladinda Half Condition Tanker MS Pacific Leo Light Condition
- 4. FSO Ladinda Light Condition Tanker MS Pacific Leo Full Condition

Kondisi ini dibuat karena kapasitas FSO *Ladinda* yang sebesar 1000 *barrel* sedangkan nantinya Tanker MS Pacific Leo yang akan melaksanakan *offloading* bermuatan 500 *barrel*. Untuk arah pembebanan gelombang terhadap *heading* kapal dilakukan dalam empat arah, yaitu 0⁰, 45⁰, 90⁰, dan 180⁰. Untuk lebih jelasnya dapat dilihat pada gambar di bawah ini.

Gambar 4.56. Arah pembebanan gelombang terhadap heading kapal tampak atas

Skenario beban lingkungan dalam analisis ini dilakukan dalam kondisi 100 tahunan. Kondisi ini dibuat karena *mooring* dengan skema *side by side* pada dua buah bangunan apung menunjukkan ketidaklayakan jika kondisi lingkungan yang terjadi sangat ganas (Van der Valk, 2005). Meskipun demikian, kondisi perairan yang cukup tenang memungkinkan skema *side by side* untuk dilakukan karena sesuai dengan peralatan dan beberapa prosedur yang disetujui. Sehingga perlu dilakukan simulasi dalam kondisi lingkungan ekstrim untuk memperhitungkan umur kelelahan dari *mooring system* yang digunakan saat *side by side offloading process*.

Berikut ini adalah hasil pemodelan pada *sofware* MOSES pada kondisi *side by side offloading process*.

Gambar 4.57. Pemodelan pada software MOSES tampak isometric

Gambar 4.58. Pemodelan pada software MOSES tampak starboard

Gambar 4.59 Pemodelan pada software MOSES tampak portside

Gambar 4.60 Pemodelan pada software MOSES tampak bow

Gambar 4.61 Pemodelan pada software MOSES tampak stern

Gambar 4.62 Pemodelan pada software MOSES tampak top

Setelah dilakukan simulasi dengan *software* MOSES selama 3600 detik didapatkan *tension hawser* terbesar pada setiap sudut pembebanan seperti ditujukkan pada tabel-tabel berikut ini:

	Tension								
Tali Tambat	1) FSO FC- ST LC (kN)	2) FSO HL- ST FC (kN)	3) FSO HL- ST LC (kN)	4) FSO LC- ST FC (kN)					
Taut 1	6.46	6.51	6.62	5.28					
Taut 2	5.72	6.04	5.95	4.83					
Taut 3	3.83	3.96	3.89	3.12					
Taut 4	1.34	1.02	1.23	0.77					
Taut 5	38.27	77.49	42.6	44.92					
Taut 6	9.7	11.57	10.31	9.79					
Taut 7	1.91	70.93	40.29	16.14					
Taut 8	20.4	21.54	22.57	18.04					
Taut 9	20.23	19.91	23.86	16.15					

Tabel 4.15 Hasil simulasi pada arah pembebanan gelombang 0^0

Tabel 4.16 Hasil simulasi pada arah pembebanan gelombang 45⁰

		Tension								
Tali Tambat	1) FSO FC- ST LC (kN)	2) FSO HL- ST FC (kN)	3) FSO HL- ST LC (kN)	4) FSO LC- ST FC (kN)						
Taut 1	9.86	6.78	10.17	6.91						
Taut 2	7.62	5.91	7.77	5.97						
Taut 3	4.78	3.71	4.77	3.76						
Taut 4	1.44	0.91	1.43	0.89						
Taut 5	43.34	41.18	47.7	41.16						
Taut 6	9.2	9.16	9.37	9.14						
Taut 7	1.33	9.16	1.3	0.92						
Taut 8	28.7	22.35	30.09	22.77						
Taut 9	33.15	22.4	35.16	22.89						

Tabel 4.17 Hasil simulasi pada arah pembebanan gelombang 90⁰

		Tension									
Tali Tambat	1) FSO FC- ST LC (kN)	2) FSO HL- ST FC (kN)	3) FSO HL- ST LC (kN)	4) FSO LC- ST FC (kN)							
Taut 1	31.31	13.07	33.04	12.53							
Taut 2	11.03	9.17	11.46	8.91							
Taut 3	5.79	5.28	5.89	5.2							
Taut 4	88.9	2.24	2.2	1.83							
Taut 5	8.53	59.95	82.68	54.91							
Taut 6	8.53	9.27	8.62	9.25							
Taut 7	1.34	2.43	1.47	2.09							
Taut 8	68.31	42.31	62.53	41.05							
Taut 9	71.24	49.91	80.23	49.89							

		Tension								
Tali Tambat	1) FSO FC- ST LC (kN)	2) FSO HL- ST FC (kN)	3) FSO HL- ST LC (kN)	4) FSO LC- ST FC (kN)						
Taut 1	90.93	15.07	122.88	65.61						
Taut 2	14.21	11.32	15.38	16.38						
Taut 3	6.47	7.03	7.13	6.66						
Taut 4	1.71	10.77	5	5.98						
Taut 5	144.79	85	197.83	149.88						
Taut 6	8.71	11.39	8.99	10.09						
Taut 7	1.41	1.41	2.01	14.08						
Taut 8	78.4	28.6	67.52	129.6						
Taut 9	101.56	31.16	90.19	124.94						

Tabel 4.18 Hasil simulasi pada arah pembebanan gelombang 180⁰

Tabel 4.19 Hasil perhitungan safety factor tension hawser terbesar

Line	Tension	Heading	Kondisi	Kondisi Minimum Breaking		Safety Factor ABS
	(k N)	(deg)		Load (kN)	Factor	1.82
Taut 1	122.88	180	3) FSO HL-ST LC	158	1.29	Tidak Memenuhi
Taut 2	16.38	180	4) FSO LC-ST FC	158	9.65	Memenuhi
Taut 3	7.13	180	3) FSO HL-ST LC	158	22.16	Memenuhi
Taut 4	88.9	90	1) FSO FC-ST LC	158	1.78	Tidak Memenuhi
Taut 5	197.83	180	3) FSO HL-ST LC	158	0.80	Tidak Memenuhi
Taut 6	11.57	0	2) FSO HL-ST FC	158	13.66	Memenuhi
Taut 7	70.93	0	2) FSO HL-ST FC	158	2.23	Memenuhi
Taut 8	129.6	180	4) FSO LC-ST FC	158	1.22	Tidak Memenuhi
Taut 9	124.94	180	4) FSO LC-ST FC	158	1.26	Tidak Memenuhi

Berdasarkan tabel di atas dapat diketahui bahwa *hawser* pada taut 5 yang menghubungkan antara FSO Ladinda dan Tanker MS Pacific Leo memiliki nilai *tension* paling besar yaitu 197.83 kN dengan *safety factor* 0.8 yang berarti lebih kecil dari *safety factor* yang dianjurkan oleh ABS. Hasil *tension hawser* terbesar tersebut merupakan pengaruh dari sudut yang dibentuk oleh konfigurasi *spring line* dan juga pengaruh dari gerakan *surge, heave,* beban muatan struktur akibat *heading* pada sudut 180°. Hal ini menunjukkan bahwa *hawser* dalam kondisi tidak aman untuk beroperasi dalam kondisi beban lingkungan 100 tahunan untuk proses *side by side offloading process*. Nilai *tension hawser* terbesar ini nantinya akan digunakan untuk pembebanan pada pemodelan lokal konstruksi bolder.

4.5 Pemodelan pada MSC Patran / Nastran

Sebelum dilakukan analisa tegangan dan umur kelelahan konstruksi bolder di FSO Ladinda terlebih dahulu dibuat model pada MSC Patran / Nastran. Model yang dibuat meliputi model konstruksi global dan model konstruksi lokal. Model konstruksi global digunakan untuk analisa distribusi tegangan secara global pada FSO Ladinda akibat pengaruh kekuatan gerakan struktur, sedangkan model konstruksi lokal digunakan untuk analisa tegangan lokal konstruksi bolder di FSO Ladinda akibat pengaruh tension hawser dan distribusi tegangan akibat gerakan struktur. Pemodelan pada MSC Patran / Nastran dibuat berdasarkan dimensi yang didapatkan dari data ukuran asli construction profile di FSO Ladinda. Jenis material konstruksi girder, plat, konstruksi bolder di FSO menggunakan Baja ASTM A36 dengan yield strength sebesar 250 MPa. Data foto existing konstruksi bolder dan hasil pemodelan global dan lokal konstruksi bolder dan dilihat pada gambar berikut ini.

Gambar 4.63 Foto existing Konstruksi Bolder pada FSO Ladinda

Gambar 4.64 Hasil pemodelan Global pada MSC Patran/ Natran

Gambar 4.65 Hasil pemodelan Lokal Konstruksi Bolder pada MSC Patran/ Natran

Pemodelan pada MSC Patran / Nastran ini dilakukan berdasarkan lokasi bolder yang mana menerima beban *tension* paling besar. *Tension* paling besar terdapat pada taut 5 dengan posisi pada bolder 4 yang terletak pada antara *section* 77 – 78. Pada pemodelan global dilakukan berdasarkan *transverse section* dimana posisi bolder 4 berada yaitu pada *section* 75 – 80. Sedangkan untuk pemodelan lokal, konstruksi bolder ditempatkan pada *main deck* FSO *Ladinda* dengan ketebalan 150 mm dan tebal pelat di *main deck* 13 mm. Struktur yang dimodelkan pada MSC Patran / Nastran meliputi konstruksi bolder beserta dudukannya, *deck*, kontruksi melintang (*deck transverse*) dan konstruksi memanjang (*stiffeners*) di *main deck*. Luasan struktur yang dimodelkan pada MSC Patran / Nastran untuk distribusi tegangan pada analisa lokal ini mengacu pada ketentuan ABS "*Safehull-Dynamic Loading Approach for FPSO Systems*" sekaligus dilakukan pemilihan material untuk struktur, yaitu Baja ASTM A36.

Gambar 4.66 Material property untuk pemodelan struktur lokal

4.6 Analisa Distribusi Tegangan Global

Distribusi tegangan pada pemodelan struktur global konstruksi bolder ini dihasilkan oleh input gaya dan momen yang didapat dari perhitungan pada *software* Maxsurf. Pembebanan gelombang periode 100-tahunan digunakan untuk mengetahui titik yang mengalami tegangan paling kritis akibat pengaruh gerakan struktur. Gaya dan momen diinputkan pada lokasi longitudinal dari konstruksi bolder di FSO *Ladinda* di sarat operasi untuk mendapatkan distribusi tegangan pada FSO *Ladinda* akibat gerakan struktur. Besar respons struktur FSO akibat beban gelombang yang dicari adalah *vertical shear force* dan *vertical bending moment*. Berikut ini adalah hasil pemodelan pada *software* Maxsurf untuk kekuatan memanjang struktur kapal.

Gambar 4.67 Pemodelan pada software Maxsurf

Gambar 4.68 Input Beban Gelombang pada Pemodelan

dromax Profess	Konal - [Loader	ssell	alay Mind	and the last	-							Hormony D Hormony
TIL CUIC VIEW	its //L		piay wind	ow hep					0.00	~ ~		21
			at at 1	an Olice	ongitudinai	Streng + Loa	ucaser	-1	Intact	 6 0	00.0	
	. * 5		- 3 0		7 🖪 🗸		000	000 00 00				
0741	Del											
Inco News	Descentite.	-			Fwd.	West Day		-				
Hern Hause	adapticy	tonne	m	m	Limit	m	m					
Depan	t	11683	95.000	0.000	95.000	15,725	0.000					
Tengah	1	105147	143.000	95.000	190.000	15 725	0.000					
Belakang	1	23366	190,000	190.000	284,000	15,725	0.000					
Tank 1	50%	26943	142,798			3.985	0.000					
	Total Weight=	167139	LCG=146.			VCG=13.832	TCG=0.000					
I cancarat i	Loadcase? J	Loadcas	193 A Loade	ase4/								

Gambar 4.69 Validasi yang Digunakan pada Hasil Pemodelan

Gambar 4.70 Output Grafik Shear Force dan Bending Moment

1

Gambar 4.71 Output Shear Force dan Bending Moment

Berikut nilai *shear force* dan *bending moment* akibat gerakan struktur, dimana yang akan diinput pada analisa global distribusi tegangan di FSO *Ladinda* yaitu nilai yang terbesar

		Lokasi		
No	Koordinat	Longitudinal	Shear Force	Bending Moment
	Bolder (m)	(m)	(N)	(N.m)
1.	282.80	278.32	260.77	-735.44
2.	281.50	278.32	260.77	-735.44
3.	263.90	261.28	1137.62	-12491.74
4.	199.72	198.80	2993.83	-162164.88
5.	143.00	142.00	-351.14	-251132.11
6.	141.00	142.00	-351.14	-251132.11
7.	85.42	85.20	-3137.48	-127856.16
8.	3.80	5.68	-148.96	-439.05
9.	2.50	5.68	-148.96	-439.05

Tabel 4.20 Input Shear Force dan Bending Moment pada FSO Ladinda

Dalam analisa distribusi tegangan ini, beban yang diinputkan adalah nilai *shear force* dan *bending moment* terbesar, dimana terletak pada bolder 4. Pemodelan global yang dilakukan berdasarkan lokasi bolder 4 sesuai dengan *tranverse section* FSO Ladinda seperti pada gambar 4.72. Pada analisa ini *constraint* pada pemodelan yang digunakan yaitu salah satu bulkhead di *fix*, bulkhead lainnya diberikan engsel dengan beban *shear force* arah sumbu z dan *bending moment* arah sumbu y bekerja pada bulkhead tersebut. Berikut ini hasil distribusi tegangan maksimum pada lokasi bolder 4.

Gambar 4.72 (a) (b) (c) Distribusi tegangan maksimum pada FSO *Ladinda* akibat pengaruh gerakan struktur

Hasil distribusi tegangan maksimum yang terjadi pada *transverse section* lokasi bolder 4 menggunakan ukuran *meshing* 0.5 m, ukuran *meshing* yang besar digunakan karena ukuran *meshing* yang lebih kecil tidak dapat dilakukan akibat keterbatasan perangkat komputer yang digunakan. Berdasarkan *meshing* dan pembebanan yang dilakukan, dari *running* didapatkan hasil tegangan maksimum sebesar 24 MPa dan deformasi maksimum sebesar 0.00141 mm. Distribusi tegangan dan deformasi terbesar terjadi pada sambungan antara dudukan konstruksi bolder dengan deck FSO *Ladinda*. Nilai ini yang akan digunakan sebagai beban untuk analisa lokal konstruksi bolder.

4.7 Pembebanan pada Analisa Lokal

Pada analisa lokal konstruksi bolder dengan menggunakan *software* MSC Patran / Nastran ini digunakan 2 pembebanan yaitu hasil dari analisa global berupa deformasi sebesar 0.00141 mm dan beban *tension hawser* terbesar untuk setiap kondisi hasil simulasi dengan menggunakan *software* MOSES, dimana nilai *tension hawser* terbesar ada pada taut 5 yang berada pada konstruksi bolder 4 di FSO *Ladinda*. Karena *tension* yang didapatkan dari simulasi merupakan gaya dengan sudut tertentu, maka perlu diperhitungkan sudut yang dibentuk untuk melakukan pembebanan pada kontruksi bolder. Konfigurasi beban tersebut dapat dilihat pada ilustrasi Gambar 4.73.

Gambar 4.73 Konfigurasi beban pada pemodelan lokal

Pada Gambar 4.73, tinggi FSO *Ladinda* adalah 20.6 m dan tinggi Tanker ialah 21.3 m. Berdasarkan perhitungan, didapatkan θ sebesar 12.98⁰ dan α sebesar 15⁰. setelah diketahui kedua sudut tersebut, maka dapat dihitung gaya yang akan digunakan sebagai *input* beban pada pemodelan lokal konstruksi bolder. Hasil perhitungan dari gaya pada konstruksi bolder ialah sebagai berikut :

Fx =
$$491.21 \text{ kN}$$

Fy = 1833.22 kN

$$Fz = 402.58 \text{ kN}$$

Pada analisa ini beban yang mengenai konstruksi bolder adalah beban horizontal memanjang arah sumbu -X, beban vertikal memanjang arah sumbu -Y dan beban vertikal arah sumbu - Z. Dan untuk constraint yang digunakan dalam pemodelan ini yaitu semua bagian konstrusi di bawah bolder di berikan fix.

4.8 Meshing dan Sensitivity Analysis

Sensitivity Analysis dilakukan untuk mengecek apakah tegangan yang dihasilkan dari hasil *running* sudah benar atau sudah mendekati nilai kebenaran. Pada Tugas Akhir ini, uji *sensitivity* dilakukan dengan cara variasi kerapatan *meshing*. Berdasarkan variasi kerapatan *meshing* tersebut akan didapatkan hasil *equivalent stress* atau yang lebih dikenal dengan *Von Mises Stress*. Dari beberapa hasil tegangan yang dihasilkan dianalisis hingga didapat perbedaan hasil yang kurang dari 5%.

Pada Tugas Akhir ini dilakukan *running* dengan 8 kondisi kerapatan *meshing*.

Gambar 4.74 Model elemen dengan meshing 0.019 m

Gambar di atas merupakan contoh *mesh* pada struktur. *Meshing* dilakukan dengan kerapatan 0.024; 0.023; 0.022; 0.021; 0.02; 0.0196; 0.019 ; dan 0.019 m. Berdasarkan variasi *mesh* yang dilakukan, didapatkan tabulasi *mesh* sebagai berikut:

Condition	Mesh Sizing(m)	Nodes	Elements	Max Stress (Pa)	Error
1	0.0244	139357	132802	9.87E+07	
2	0.0233	152945	146074	1.02E+08	-3%
3	0.0222	167165	159978	1.05E+08	-3%
4	0.0213	182017	174514	1.08E+08	-3%
5	0.0200	205482	197501	1.12E+08	-4%
6	0.0196	213617	205482	1.14E+08	-2%
7	0.0193	221914	213617	1.15E+08	-1%
8	0.0191	230365	221914	1.16E+08	-1%

Tabel 4.21 Tabulasi hasil Maximum von MisesStress untuk variasi kerapatan meshing

Gambar 4.75 Sensitivitas model konstruksi bolder

Berdasarkan Tabel 4.21 dan grafik pada Gambar 4.75 dapat disimpulkan bahwa struktur bolder pada FSO *Ladinda* dapat dengan baik dimodelkan pada ukuran *mesh* 0.026 meter karena hasil perhitungan *error* untuk *mesh* ini kurang dari 5%.

4.9 Analisa Tegangan Lokal Konstruksi Bolder

Berikut ini adalah hasil tegangan *Von Mises* dan deformasi maksimum untuk 4 kondisi *side by side offloading process* yang dilakukan pada FSO *Ladinda*.

Gambar 4.76 Letak tegangan maksimum pada konstruksi bolder tampak isometri, s*tiffener* bagian belakang bolder, *stiffener* bagian depan bolder

Pada analisa ini *constraint* pada pemodelan yang digunakan yaitu semua bagian di bawah *deck* di *fix* dengan beban *tension hawser* arah sumbu x, y, z dengan luasan sesuai dengan lokasi tali di konstruksi bolder. Sedangkan untuk beban deformasi di inputkan pada ujung-ujung bagian *deck* sesuai dengan luasan yang di modelkan.

Berdasarkan hasil *running* menggunakan *software* MSC Patran / Nastran, menunjukkan bahwa tegangan maksimum terjadi pada 8 titik di struktur bolder yang telah dimodelkan, yaitu 4 titik pada *stiffener* konstruksi bolder bagian belakang dan 4 titik pada *stiffener* bagian depan. Tegangan maksimum pada titik tersebut terletak pada bagian ujung dan tengah *stiffener* konstruksi bolder di FSO Ladinda. Tegangan maksimum terjadi pada sambungan yang menghubungkan konstruksi bolder dengan dudukan konstruksi bolder.

Berdasarkan hasil *meshing* dan pembebanan yang dilakukan dari *running* didapatkan hasil tegangan maksimum sebesar 115 MPa dan deformasi maksimum sebesar 0.201 mm. Berdasarkan material yang digunakan, yaitu baja A36 dengan nilai *yield* strength 250 MPa dan mengacu pada ketentuan ABS *"Safehull-Dynamic Loading Approach for FPSO Systems"* yang menganjurkan tegangan von Mises tidak boleh melebihi 90% dari *yield* strength material, yaitu 225 MPa, maka struktur ini dapat dikatakan aman untuk beroperasi.

Untuk deformasi, nilai deformasi terbesar yang terjadi pada struktur yang telah dimodelkan adalah sebesar 0.201 milimeter. Nilai ini masih lebih kecil jika dibandingkan dengan syarat deformasi maksimum yang tercantum dalam ABS "*Shipbuilding and Repair Quality Standard for Hull Structures during Construction*" yaitu 4 mm. Dengan demikian, struktur dapat dinyatakan aman untuk terus beroperasi.

4.10 Analisa Umur Kelelahan Konstruksi Bolder

Perhitungan umur kelelahan dalam tugas akhir ini menggunakan metode S-N Curve berdasarkan hukum kegagalan *palmgren miner (miner's rule)* dengan mengestimasi kumulatif kegagalan *fatigue (cumulative fatigue damage)* menggunakan metode *deterministic*.

Berikut ini adalah persamaan umum perhitungan umur kelelahan struktur menggunakan metode *deterministic*.

$$D = \sum_{i=1}^{m} \frac{n_i}{N_i} = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \dots + \frac{n_m}{N_m}$$

- ni = jumlah siklus (rentang) tegangan dengan harga S_i yang sebenarnya terjadi pada sambungan akibat beban eksternal (gelombang)
 Waktu yang dibutuhkan untuk siklus offloading selama umur
 - = operasi

Periode gelombang yang terjadi

Ni = jumlah siklus (rentang) tegangan dengan harga S_i yang menyebabkan kegagalan sambungan yang ditinjau. Harga besaran ini dapat diperoleh dari diagram S-N untuk jenis sambungan yang sesuai

Jenis sambungan yang digunakan untuk analisa umur kelelahan konstruksi bolder yaitu jenis sambungan T (*Tubular Joint*). Berdasarkan *Fatigue Analysis with S-N Curve in Air Det norske Veritas, Fatigue Strength Analysis for Mobile Offshore Unit, Classification Notes* No. 30.2, 1984. Untuk sambungan T (*Tubular Joint*) memiliki nilai m = 3 dan Log a = 12.614. Penentuan nilai Ni menggunakan metode S-N *Curve* adalah sebagai berikut :

$$NS^{m} = A$$

or
$$\log N = \log A - m \log S$$
$$N = N_{0} \left(\frac{t_{0}}{t}\right)^{m/4}$$
because $N_{0} = \frac{A}{S^{m}}$
hence $N = \frac{A}{S^{m}} \left(\frac{t_{0}}{t}\right)^{m/4}$

Perhitungan umur kelelahan konstruksi bolder dilakukan dengan variasi pengurangan tebal konstruksi bolder berdasarkan *Det norske Veritas, Fatigue Strength Analysis for Mobile Offshore Unit, Classification Notes* No. 30.2, 1984. Berdasarkan formulasi perhitungan umur kelelahan struktur di atas, didapatkan hasil sebagai berikut :

Tebal Fatigue Life Tegangan ni Ni Damage No. Konstruksi Maksimum (Mpa) (Cycle) (Cycle) Cumulative (Tahun) 100% 115 7776000 15956147 0.487335704 61.5592081 1 2 90% 123 7776000 13040859 0.596279726 50.31195707 3 80% 132 7776000 10551149 0.736981359 40.70659271 4 70% 141 7776000 8656936 0.898239289 33.39867268 5 27.74040315 60% 150 7776000 7190312.5 1.081455083

Tabel 4.22 Hasil perhitungan untuk umur kelelahan struktur

Dari hasil perhitungan umur kelelahan struktur, diperoleh hasil bahwa konstruksi bolder memiliki harga D < 1 sehingga konstruksi bolder tersebut dapat dikatakan aman untuk melakukan *side by side offloading process* dengan umur kelelahan struktur 61 tahun (2 kali *design life*) dan konstruksi bolder memiliki harga D > 1 ketika mengalami pengurangan tebal konstruksi sebesar 60 % dengan umur kelelahan 28 tahun selama umur operasi dengan beban lingkungan 100 tahunan.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan yang dapat dibuat berdasarkan pengerjaan Tugas Akhir ini adalah:

- 1. Respon struktur FSO *Ladinda* dan Tanker MS Pacific Leo akibat beban gelombang pada saat *free floating*, adalah sebagai berikut :
 - RAO FSO *Ladinda*, nilai terbesar terjadi pada kondisi *light* dengan *surge* terbesar 0.89 m/m, *sway* terbesar 0.965 m/m, *heave* terbesar 1.285 m/m, *roll* terbesar 4.543⁰/m, *pitch* terbesar 0.731⁰/m, *yaw* terbesar 0.275 m/m.
 - RAO Tanker MS Pacific Leo terbesar terjadi pada kondisi *light* dengan nilai *surge* 0.894 m/m, *sway* 0.965 m/m, *heave* 1.355 m/m, *roll* 4.798⁰/m, *pitch* 0.742 ⁰/m, *yaw* 0.294 m/m.
- 2. Hasil tension hawser terbesar yang menghubungkan antara FSO Ladinda dengan Tanker MS Pacific Leo dari hasil simulasi side by side offloading process terjadi pada taut 5 dimana posisi bolder 4 berada dengan nilai sebesar 197.83 kN dan sudut pembebanan 180⁰. Hawser memiliki Minimum Breaking Load sebesar 158 kN sehingga dengan tension yang didapatkan dari hasil simulasi, memiliki safety factor 0.8. Safety factor ini kurang dari 1.82 yang dianjurkan oleh American Bureau of Shipping. Dengan demikian dapat disimpulkan bahwa hawser dalam kondisi tidak aman melakukan proses side by side offloading system dengan beban lingkungan 100 tahunan.
- 3. Berdasarkan hasil pemodelan struktur global *transverse section* pada lokasi bolder 4, dengan input besar respons struktur berupa *vertical shear force* dan *vertical bending moment* terbesar, didapatkan distribusi tegangan pada konstruki bolder akibat pengaruh gerakan struktur yaitu tegangan maksimum sebesar 24 MPa dan deformasi maksimum sebesar 0.00141 mm.

- 4. Berdasarkan hasil pemodelan struktur lokal konstruksi bolder dengan pembebanan sesuai *tension hawser* terbesar hasil simulasi sebelumnya dan deformasi maksimum sebesar 0.00141 mm, maka didapatkan tegangan maksimum konstruksi bolder sebesar 115 MPa dengan deformasi 0.201 mm. Nilai tegangan maksimum tersebut masih lebih kecil jika dibandingkan dengan tegangan ijin yang dianjurkan oleh ABS "*Safehull-Dynamic Loading Approach for FPSO Systems*" sebesar 225 MPa. Dan Nilai deformasi yang dihasilkan juga masih lebih kecil jika dibandingkan dengan syarat deformasi maksimum yang tercantum dalam ABS "*Shipbuilding and Repair Quality Standard for Hull Structures during Construction*" yaitu 4 mm. Dengan demikian, dapat disimpulkan bahwa konstruksi bolder masih aman untuk beroperasi.
- 5. Dari hasil perhitungan umur kelelahan struktur, diperoleh hasil bahwa konstruksi bolder memiliki harga D < 1 sehingga konstruksi bolder tersebut dapat dikatakan aman untuk melakukan *side by side offloading process* dengan umur kelelahan struktur 61 tahun (2 kali *design life*) dan konstruksi bolder memiliki harga D > 1 ketika mengalami pengurangan tebal konstruksi sebesar 60 % dengan umur kelelahan 28 tahun selama umur operasi dengan beban lingkungan 100 tahunan.

5.2 Saran

- 1. Perlu dilakukan analisis yang lebih detail dengan cara memvariasikan sudut pembebanan yang lebih kecil intervalnya.
- Untuk analisa lebih spesifik dalam penentuan umur kelelahan konstruksi bolder pada FSO *Ladinda*, perlu mempertimbangkan factor kondisi lingkungan sepeti korosi.
- Perlu dilakukan analisa umur kelelahan dengan menggunakan metode lain untuk membandingkan hasil yang lebih akurat.

Daftar Pustaka

- API RP 2SK 3th edition, 2005, *Recommended Practice for Design and Analysis of Station Keeping Systems for Floating Structures*, Washington DC.
- ABS, 1996, Rules for Building and Classing Single Point Moorings, USA: American Bureau of Shipping.
- ABS, 2001, 'Safehull-Dynamic Loading Approach' for Floating Production, Storage and Offloading (FPSO) Installations, USA: American Bureau of Shipping ABS Plaza.
- ABS, 2004, *Guide For Building and Classing Floating Production Installations*, USA: American Bureau of Shipping.
- ABS, 2001, 'hipbuilding and Repair Quality Standard for Hull Structures during Construction, USA: American Bureau of Shipping ABS Plaza.
- Bhattacharyya. R., 1978, *Dynamics of Marine Vehicles*, New York: John Wiley & Sons Inc.
- Chakrabarti, S.K., 1987, *Hydrodynamics of Offshore Structures*, USA: Computational Mechanics Publications Southampton.

De Pee, A., (2005), *Operability of a Floating LNG Terminal*, TU Delft, Shell Global Solutions.

Djatmiko, E. B. and Murdijanto, 2003, *Seakeeping: Perilaku Bangunan Apung di atas Gelombang*, Surabaya: Jurusan Teknik Kelautan, Institut Teknologi Sepuluh Nopember.

DNV (2010), Environmental Conditions and Environmental Loads, Det Norske Veritas, Norway

- DNV-OS-E301, 2004, Positioning Mooring, Norway: Det Norske Veritas.
- DNV-OSS-102, 2003, Rules for Classification of Floating Production and Storage Units, Norway: Det Norske Veritas.
- Hong, P.Y. (2009), An Experimental and Numerical Study on the Motion Characteristics of Side-by-Side Moored LNG-FPSO and LNG carrier, 19th ISOPE Conference, Osaka, Japan.
- Hughes, Joseph M., 1997, *Close Proximixity Study Shuttle Tanker Operations*, U.K : Poseidon Maritime Ltd.

- Jeong, H. (2010), *Offloading Operability Analysis of Side-by-Side Moored LNG FPSO*, 19th ISOPE Pacific/Asia Offshore Mechanics Symposium, Busan, Korea.
- Kim, M.S. (2003), *Relative Motions between LNG-FPSO and Side-by-Side positioned LNG Carrier in Waves*, HSC-05.
- Kurnianto, Pradetya., 2010, Perkiraan Umur Konstruksi FPSO Konversi dari Tanker dengan Analisa *Fatigue*, Surabaya : Tugas Akhir Jurusan Teknik Perkapalan Institut Teknologi Sepuluh Nopember.
- Murtedjo, Mas., 1999, Handout Teori Bangunan Apung, Surabaya: ITS.
- OCIMF (1994), *Prediction of Wind and Current Loads on VLCCs*, 2nd Edition, Oil Companies International Marine Forum.
- OCIMF (1997), *Mooring Equipment Guidelines*, 2nd Edition, Oil Companies International Marine Forum.
- OCIMF (2009), Ship to Ship Transfers Considerations Applivable to Reserve Lightering Operations, Oil Companies International Marine Forum, London, United Kingdom.
- Olson, S.R. (1977), A Methodology for Quantifying the Operational Effects of Ship Seakeeping Characteristics, Center for Naval Analyses, Virginia.
- Pashalls, Chris., 2004, Latest Developments for Offshore FMC Loading Systems, Franch : Transfer Systems
- Soedjono, J. J., 1989, Kuliah Perencanaan Sistem Bangunan Laut 1, Surabaya: Jurusan Teknik Kelautan.
- Taggart, Robert., 1980, *Ship Design and Construction*, New York: The Society of Naval Architecture and Marine Engineers

Watson, David D.G.M., 1998, Practical Ship Design, UK: Elsevier Science Ltd

BIODATA PENULIS

Muhammad Athoillah dilahirkan di Kota Gresik pada 29 Juni 1992. Lahir dari keluarga yang sederhana yang merupakan anak ke 5 dari 6 bersaudara pasangan Syamsul Huda dan Nur Muchsinah. Penulis menempuh pendidikan SD, SMP dan SMA di Gresik. Setelah itu, tahun 2010 penulis melanjutkan pendidikan di Jurusan Teknik Kelautan ITS Surabaya melalui PMDK regular. Selama di bangku perkuliahan penulis aktif di berbagai organisasi

mahasiswa, kegiatan sosial, dan kegiatan-kegiatan yang lain baik di tingkat nasional maupun internasonal. Penulis merupakan salah satu tim Maritime Challenge Indonesia yang mewakili Indonesia dalam Ajang Atlantic Challenge International di Bantry, Irlandia yang berhasil meraih trophy Spirit of Atlantic Challenge. Penulis juga aktif dalam kegiatan pengabdian masyarakat, salah satunya sebagai pendiri Desa Binaan Maritime Challenge di Desa Klampis Madura dengan penerapan teknologi pengolahan air bersih D- Werc (Destilation Water Treatment Concept) yang bekerjasama dengan PT. PJB. Penulis juga pernah mengikuti kegiatan seminar internasional dalam rangka publikasi paper penelitian penulis terkait inovasi konsep pengolahan pencemaran limbah industri di Denpasar, Bali. Setelah itu, penulis mengakhiri masa perkuliahan dengan mengikuti program beasiswa tugas akhir di perusahaan minyak PT. Energi Mega Persada, Mallaca Strait, Riau dengan mengambil bidang Hidrodinamika struktur lepas pantai. Motto penulis ialah be the best what ever you are. Penulis yakin jika setiap orang selalu melakukan kebaikan untuk orang lain dan dirinya sendiri. Allah SWT pasti memberikan kemudahan dalam kehidupannya.

Contact Person: athoillah_m@rockemail.com

DAFTAR LAMPIRAN

- LAMPIRAN A DATA STRUKTUR FSO LADINDA DAN TANKER
- LAMPIRAN B INPUT PEMODELAM DI SOFTWARE MOSES
- LAMPIRAN C INPUT HIDROSTATIK DI SOFTWARE MOSES
- LAMPIRAN D INPUT RAO DI SOFTWARE MOSES
- LAMPIRAN E INPUT PEMODELAN SBS DI SOFTWARE MOSES
- LAMPIRAN F OUTPUT HIDROSTATIK DI SOFTWARE MAXSURF
- LAMPIRAN G OUTPUT HIDROSTATIK DI SOFTWARE MOSES
- LAMPIRAN H PEMODELAN LOKAL KONSTRUKSI BOLDER

(halaman ini sengaja di kosongkan)

LAMPIRAN A DATA STRUKTUR FSO LADINDA DAN TANKER MS PACIFIC LEO

CONSTRUCTION PROFILE FSO LADINDA

LINES PLAN FSO LADINDA

TRANSVERSE SECTION FSO LADINDA

GENERAL ARRANGEMENT TANKER MS PACIFIC LEO

and a second second second	1.00	15- 11	8854.345	48,117	783.35	12.88
ed'i casear oir r'	1.4	88-93	4447,248	CI,112	-83135	11.58
all a summer that a	P	79- 84	8111,159	111270	-89,84	12,87
quit reess out it.	3	PB- 28	8703.368	41,11.8	188,54	12.17
and a later with the	1.2	72-78	8951,044	44,175	~43.71	12.85
10.1 CREWS OIL 1.	3	72- 18	3913.141	56,000	-41,71	12,45
NO.4 EANDS OIL F.	P	85- 13	8824,413	34,133	-18,23	18,85
	1	85- 11	8909,014	14,116	-18,12	122.85
so;s reaso oit r.	1.5	581.01	8915,880	54,818	1,11	12,88
	3	58-65	2221,015	55,061	7,25	12,85
	10	31- 38	8915,183	10,310	32.72	12,15
eo.e camps one t.	11	51- 18	8891.138	10101	10,75	32,89
	LF	10-11	1042.000	33,715	11,14	31.47
SOLT TABLE OIL T.	1.0	48- 91	8143,718	12,119	111.11	11,41
	10	421 44	21877, 111	17,118	14,39	13,98
SLOP TABE	12	42-44	828.483	5,848	14,42	11.18
	1.2	42- 44	958,844	8,985	74, 25	15.34
FIFE CINE LINE C.F.	1.1		115,700	741		+
TETEL			1111120.000	112,116		

		TEME		TN.		1.00
FORE PERK TANK	1.5	91-F.L.	2193,18	2255.49	-112.88	1.6.3
NO 1 10 10 17	11	81-31	3765,88	2828,48	-44,58	· *,1
PROAT WE WA TA		- 04 - 13	1788.54	1829,11	-14,11	
HO.0 W. H. T.		TH- 18	2838,12	2141.01	-44,21	. T.:
	- 3	19- 88.	1011-11	2551,47	-88,28	1.7.2
0.3.8.8.7.	- 12	· · · · · · · · · · · · · · · · · · ·	1112.58	5220.09	-11,87	1.042
100123 PL 81 11	1.3	101-28	11122248	1000.00		1.0.4
100 G # 1 #	- 17	41- 88	1114211	5285.08	19,91	1.0.1
House and the state	1.1.2	11-34	1154,25	5281.51	15,94	1.0.2
100 A 10 A 1	1.7	43- 81	3387,98	1011,14	82.27	1.848
West War Bar Ta	13	435.31	1388.30	3021.400	42,37	0.753
10214 W. L. T.	.14	36-41	51032280	101.00	11,112,13	
APT PEAK TARK	1.2	B. K 12	178,18	· \$82.67	111,84	

A LUBBLEATING BILL TANK CLUBB OFLI 10.11.11.1

 IMME
 PESTITION
 GAMACITY

 IMME
 PESTITION
 GAMACITY

 L. 0, THEF TAME
 C 11-18
 SI

 SPT CA. THEF TAME
 C 11-18
 SI

 SPT CA. THEFT
 P
 H
 H

 SPT CA. THEFT
 P
 H
 H
 10.6 8.0 m m 97.10 1.44 WEIGH 31,44

* CTRILTANK UTSIS FILLD

				 CTRIE.TANK LLENSE FULLI 							
# PRESIGNATES TANK (LOOK PALL) ER (1, 000						- Filler		PESITING	EP6495126	11	
		PR017100	CAPACITY	WEIGHT	80	8.0	HOME:		PLOT	- R ¹ -	
10482.		75445	n ² .	19			ELEAN DERIVE TA		11-11	11.56	
BATER C.	19	1. + 12	111.24	172.34	1.15, 37	19.15	F.O. OVERFLOW T.	T.	28-38	10,04	
WATER T.	18	3 - 12	199,81	1.00,01	131,55	19.06	BILOR SLATER T.	1	24 - 33	111111	. 9
WASER F.	11	1.1.1.1.2	111.20	111.14	1.01.37	10,13	\$11.002 TANK	1.1	10-31	11411	1.1
TETAL	-		164.20	520,119			377 0000. W. T.	1.0	· · · · · · · · · · · · · · · · · · ·	17,14	1.1
	H WATES TANK HARE. BATES C. BATES C. BATES T. BATES T. TETAL	H WATTER FAMIL 1100 HARE 7, 1 P WATER 7, 1 P WATER 7, 1 P WATER 7, 1 T TUTAL	H WATTER TARK (LOOK FULL) HARE PRETTON WATER C. P. 1 - 22 WATER T. P. 2 - 22 WATER T. 2 - 2	H WATER TANK HOUSE H WATER TANK HOUSE H H H H H H H H H H H H H H H H H H H	HIGHTIN FLOOD FULL PERFIT OWNER PERFIT OWNER WEIGHT WEIGHT WEIGHT WEIGHT PERFIT <	HIGH THE FAMILY INCOME VILLI III IIII MART HIGH THOM COMPACTIVY WIGHT BIO Present N' 07 00 Wight BIO N' 07 00 BIO N' 00	HYBERTER FAMIL IEE + L. 000 MART. PREFETOR CAPARITY MELART EG 50 MART. PREFETOR CAPARITY MELART EG 50 50 MART. PREFETOR CAPARITY MELART EG 50 50 MART. PREFETOR CAPARITY MELART 60 50 50 MART. PREFETOR CAPARITY 171,24 171,24 117,24 51,05 MART. PL > 12 171,24 117,24 116,27 54,01 MART. C 12 171,24 117,24 116,27 54,01 MART. C 12 117,24 117,24 116,27 54,01 MART. C 120,48 106,04 116,27 54,01	HIGH THE TABLE LOOK FOLL BE (1, 000) TOTAL BE (1, 000) TOTAL MARE PREFIX OF CAPACITY W1 Gar BE (1, 000) TOTAL BL MARE PREFIX OF CAPACITY W1 Gar BE (1, 000) TOTAL BL MARE PREFIX OF CAPACITY W1 Gar BE (1, 000) TOTAL BL TOTAL BL TOTAL TOTAL TOTAL BL BL TOTAL BL TOTAL BL TOTAL BL BL TOTAL BL	HUMATE PERFORM CONSTITUTION CARGE 1 YF WILDING Disk Disk Disk MARE PERFORM NO Bit Look NOME NOME MARE PERFORM NO Bit NO NOME NOME MARE PERFORM NO NO NO NO NO MARE PERFORM NO NO NO NO NO NO MARE PERFORM NO NO NO NO NO NO NO NO MARE PERFORM NO NO	MART PERFORM Mart and toold rotal Start and toold rotal Mart and toold rotal <th< td=""><td>HIGH TOTAL III III IIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></th<>	HIGH TOTAL III III IIIIIIIIIIIIIIIIIIIIIIIIIIIII

1005 X 1 FT 1 DARLEY ALL WITH MARKET THAT

1 842 84

to be a second to be

LINES PLAN TANKER MS. PACIFIC LEO

LAMPIRAN B

INPUT PEMODELAN DI SOFTWARE MOSES

MODEL FSO LADINDA

\$		
\$		
\$ mode	elled by Muhamma	ad Athoillah
\$	2	
\$ Name	e of ship	: LADINDA
\$ Class	ification	· ARS
¢ Cluse	ar	·FMD
\$ Build	lor	. LAVII
¢ Duik		•
φ ¶ Duina	in al montiou lana .	
5 Princ	(Len ath assentil)	. 294 M
\$ LOA	(Length overall)	: 284 M
(931./59 FT)		
\$ beam	mld	: 43.4 M
(142.388 FT)		
\$ depth	n mld	: 20.6 M
(67.585 FT)		
\$ displ		: tonnes
\$ Full 1	load draft (moulde	d) :
15.725 m		
\$ Freeb	ooard (Full)	: 2.41
m	~ /	
\$		
\$		
\$		
φ		
¢		
φ Prdaviaa alm	n aaaho y limam	- 0
	n -cecho y -milen	10
&device -pri	device	
\$		
&set demo =	= .false	
& set ano $=$ \cdot	-ano yes	
& set ano $=$		
& set plot $=$.	true.	
& set one $=$.	true.	
&set two $=$.true.	
&set three = .	.true.	
& set four $=$	true.	
& set five =	true.	
\$		
Ψ &MACPOS	UPLOT NAMES	
& CELEC .	N CEI 04 NAME	c
	IN -SEL 70INAIVIE	J J
		DEEN
&DEVICI		KEEN
&SUBTTI	LE %SUBT PICI	URE ISO
&PICT IS	O -parent :N	
&LOCAL	DUM = &GET(Y)	(ES/NO)
&IF &STI	RING(MATCH %	DUM% YES)
&THEN		
&ENDIF		
&SUBTI7	LE %SUBT PICT	TURE TOP
&PICT TO	OP	~ -
&LOCAL	DUM = &GET(Y)	YES/NO)
alocal	$\mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} $	

&IF &STRING(MATCH %DUM% YES) &THEN &ENDIF **&SUBTITLE %SUBT PICTURE BOW** &PICT BOW &LOCAL DUM = &GET(YES/NO) &IF &STRING(MATCH %DUM% YES) &THEN &ENDIF **&SUBTITLE %SUBT PICTURE STARB** &PICT STARB &LOCAL DUM = &GET(YES/NO) &IF &STRING(MATCH %DUM% YES) &THEN &ENDIF &ELSE &DEVICE -PRIMARY DEVICE &SUBTITLE %SUBT PICTURE ISO &PICT ISO -parent :N **&SUBTITLE %SUBT PICTURE TOP** &PICT TOP &SUBTITLE %SUBT PICTURE BOW &PICT BOW &SUBTITLE %SUBT PICTURE STARB &PICT STARB &ENDIF &ENDMACRO \$ \$ &surface \$ \$ \$PGEN -PERM 1. -LOC 0 0 0 -DIFTYP 3DDIF \$-CS_CURR 1 1 1 BLOCK LADINDA -LOCATION 0 0 0 0 0 0 PLANE 0 -CART 0 11.444 \ 1.447 11.867 \ 2.893 12.531 \ 3.89 13.104 \ 4.34 13.382 \ 5.787 14.351 \ 7.233 15.462 \ 7.541 15.725 \ 8.68 16.819 \ 10.127 18.859 10.954 20.6 PLANE 5.68 -CART 0 10.976 \ 1.447 11.105 \ 2.893 11.261 \ 3.879 11.428 \ 4.34 11.521 \

		5.787 11.941 7 233 12 523		PLANE	22.72	-CART	0	0
		8.392 13.104 8.68 13.267 10.127 14.25 11.573 15.665 11.624 15.725 13.02 17.89 14.236 20.6		Y		1.447 2.893 4.198 4.34 4.944 5.067 5.151	0.177 0.616 1.319 1.444 5.242 4.295 2.621	$\langle \rangle \rangle \langle \rangle$
PLANE	11.36	-CART 0 1.447 9.984 2.893 10.209 4.34 10.469 4.42 10.483 5.787 10.798 7.233 11.222 7.865 11.42 8.68 11.649 10.127 12.289 11.553 13.104 11.573 13.117 13.02 14.201 14.356 15.725 14.467 15.879 15.913 18.52 16.669 20.6	9.883	PLANE	28.4	5.787 6.852 7.233 8.68 10.127 11.573 11.918 13.02 14.4 14.467 15.913 16.818 17.36 18.419 18.807 19.458 -CART	6.897 7.862 8.128 8.99 9.722 10.348 10.483 10.915 11.432 11.456 12.308 13.104 13.746 15.725 16.798 20.6	
PLANE	17.04	-CART 0 1.447 1.107 1.718 5.242 2.195 4.578 2.243 1.72 2.256 7.862 2.697 2.621 2.893 8.337 4.34 9.084 5.787 9.705 7.233 10.236 8.054 10.483 8.68 10.665 10.127 11.096 11.332 11.432 11.573 11.509 13.02 12.19 14.467 13.091 14.484 13.104 15.913 14.429 16.736 15.725 17.36 16.95 18.3 20.6				1.447 2.893 4.34 5.787 5.834 7.233 7.98 8.399 8.68 8.924 10.127 11.332 11.573 13.02 14.467 15.175 15.913 16.779 17.36 18.456 18.807 19.651 20.253 20.337	0.023 0.09 0.389 0.853 0.869 1.702 2.621 3.901 4.78 5.242 6.778 7.862 8.053 9.119 10.066 10.483 10.923 11.443 11.856 13.104 13.66 15.725 19.496 20.6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

	34.08	-CART 0	0	PLANE	45.44	-CART () 0	
(1 447 0 00	04 \	1		1 447 0	001 \	
		2 893 0.0	21			2 893 0	0.001 (
		4 34 0.00	69 \			4 34 0	0.004 (
		5 787 0 28	8			5 787 0	0.012 (
		7 233 0 5	37			7 233 0) 103	
		7 378 0 56	62 \			8.68 0) 184	
		8.68 0.93	35			10.127 0).258	
		10.127 1.53	33			10.731 0).288	
		11.357 2.62	21			11.573 0).392	
		11.573 2.90	62			13.02 0).634	
		11.839 3.52	2			14.467 1	.083	
		12.78 5.24	42			15.913 2	2.025	
		13.02 5.6	19 \			16.447 2	2.621	
		14.467 7.52	26			16.682 2	2.943	
		14.782 7.80	62			17.36 4	.186 \	
		15.913 8.9	78 \			17.942 5	5.242	
		17.36 10.2	271			18.807 6	5.789	
		17.6 10.4	483 \			19.401 7	7.862 ∖	
		18.59 11.4	444 \			20.253 9).677 \	
		18.807 11.0	654			20.533 1	0.483	
		19.722 13.1	104 \			20.804 1	1.444 \	
		20.253 14.0	612 \			21.103 1	3.104 \	
		20.507 15.7	725 \			21.367 1	5.725 \	
		20.932 20.0	6			21.509 2	20.6	
ρίανε	30.76	CADTO	0	ρί ανε	51 12	CAPTO	0	
	39.70	-CAKI U	0		51.12	-CARI (0	
	59.70	1.447 0.00	02 \		51.12	1.447 C).001 \	
	39.70	1.447 0.00 2.893 0.00	02 \ 09 \		51.12	1.447 0 2.893 0).001 \).003 \	
	39.70	-CART 0 1.447 0.00 2.893 0.00 4.34 0.02	02 \ 09 \ 25 \		51.12	1.447 0 2.893 0 4.34 0).001 \ 0.003 \ 0.007 \	
	39.70	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08	02 \ 09 \ 25 \ 82 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0).001 \).003 \).007 \).014 \	
	33.10	-CART 0 1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22	02 \ 09 \ 25 \ 82 \ 29 \		51.12	-CART 0 1.447 0 2.893 0 4.34 0 5.787 0 7.233 0).001 \).003 \).007 \).014 \).043 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.01 5.787 0.08 7.233 0.22 8.68 0.30	02 \ 09 \ 25 \ 82 \ 29 \ 67 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0).001 \ 0.003 \ 0.007 \ 0.014 \ 0.043 \ 0.095 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.01 5.787 0.08 7.233 0.22 8.68 0.36 8.947 0.39	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0).001 \).003 \).007 \).014 \).043 \).095 \).139 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.35 10.127 0.60	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0).001 \).003 \).007 \).014 \).043 \).095 \).139 \).181 \	
	33.10	-CART 0 1.447 0.00 2.893 0.00 4.34 0.01 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \		51.12	-CART 1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0).001 \ 0.003 \ 0.007 \ 0.014 \ 0.043 \ 0.095 \ 0.139 \ 0.181 \ 0.208 \	
	33.10	-CART 0 1.447 0.00 2.893 0.00 4.34 0.01 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0).001 \ 0.003 \ 0.007 \ 0.014 \ 0.043 \ 0.095 \ 0.139 \ 0.181 \ 0.208 \ 0.25 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0	0.001 0.003 0.007 0.014 0.043 0.095 0.139 0.181 0.208 0.225 0.427	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0	0.001 0.003 0.003 0.007 0.014 0.043 0.095 0.139 0.139 0.181 0.208 0.25 0.427 0.796	
	33.10	-CART 0 1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \ 08 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 13.02 0 14.467 0 15.913 0 17.36 1	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.043 \ 0.095 \ 0.139 \ 0.139 \ 0.181 \ 0.208 \ 0.25 \ 0.427 \ 0.796 \ 624 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.01 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02 15.69 5.24	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.218 2	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.043 \ 0.043 \ 0.139 \ 0.181 \ 0.208 \ 0.225 \ 0.427 \ 0.796 \ 2.621 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02 15.69 5.24 15.913 5.60	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 17.36 1 18.239 2 18.318 2 18.807 2	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.043 \ 0.095 \ 0.139 \ 0.181 \ 0.208 \ 0.225 \ 0.427 \ 0.796 \ 624 \ 2.738 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.03 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02 15.69 5.24 15.913 5.60 17.36 7.69	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \ 62 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.318 2 18.807 3 19.403 5	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.0143 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.208 \ 0.225 \ 0.427 \ 0.427 \ 0.427 \ 0.424 \ 2.621 \ 2.738 \ 3.73 \	
	33.10	-CART 0 1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.00 14.543 3.20 15.69 5.24 15.913 5.60 17.36 7.69 17.492 7.86 18.807 0.52	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \ 62 \ 77 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.318 2 18.807 3 19.493 5 20.253 7	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.0143 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.208 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.2624 \ 0.2738 \ 0.2422 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.36 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02 15.69 5.24 15.913 5.60 17.36 7.69 17.492 7.86 18.807 9.57 19.431 10	$02 \ \ 09 \ \ 25 \ \ 29 \ \ 29 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 92 \ \ 94 \ \ 94 \ \ 94 \ \ 94 \ \ 94 \ \ 94 \ \ 94 \ \ 91 \ \ 91 \ \ 91 \ \ \ 91 \ \ \ 91 \ \ \ 91 \ \ \ 91 \ \ \ 91 \ \ \ 91 \ \ \ \$		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.318 2 18.807 3 19.493 5 20.253 7 20.497 7	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.208 \ 0.208 \ 0.255 \ 0.427 \ 0.427 \ 0.427 \ 2.621 \ 2.738 \ 3.73 \ 4.48 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02 15.69 5.24 15.913 5.60 17.36 7.69 17.492 7.80 18.807 9.57 19.431 10.4 19.974 11	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \ 62 \ 77 \ 483 \ 444 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 17.36 1 18.239 2 18.318 2 18.493 5 20.253 7 20.497 7 21 115	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.1427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.423 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.02 15.69 5.24 15.913 5.60 17.36 7.69 17.492 7.80 18.807 9.57 19.431 10.4 19.974 11.4	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 92 \ 05 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \ 62 \ 77 \ 483 \ 444 \ 048 \ 048 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.318 2 18.807 3 19.493 5 20.253 7 20.497 7 21.115 1	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.427 \ 0.423 \ 0.444 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.00 15.69 5.24 15.913 5.60 17.36 7.69 17.492 7.86 18.807 9.57 19.431 10.4 19.974 11.4 20.253 12.0	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \ 62 \ 77 \ 483 \ 444 \ 048 \ 104 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.318 2 18.807 3 19.493 5 20.253 7 20.497 7 21.115 1 21.26 1 21.416 1	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.1427 \ 0.427 \ 0.427 \ 0.427 \ 0.421 \ 0.422 \ 0.423 \ 0.443 \ 1.444 \	
	33.10	1.447 0.00 2.893 0.00 4.34 0.02 5.787 0.08 7.233 0.22 8.68 0.30 8.947 0.39 10.127 0.60 11.573 0.94 13.02 1.59 14.153 2.62 14.467 3.00 14.543 3.20 15.69 5.24 15.913 5.60 17.36 7.69 17.492 7.86 18.807 9.57 19.431 10.4 19.974 11.4 20.253 12.0 20.583 13.3 21.045 15	02 \ 09 \ 25 \ 82 \ 29 \ 67 \ 92 \ 05 \ 4 \ 94 \ 21 \ 74 \ 08 \ 42 \ 05 \ 91 \ 62 \ 77 \ 483 \ 444 \ 048 \ 104 \ 725 \		51.12	1.447 0 2.893 0 4.34 0 5.787 0 7.233 0 8.68 0 10.127 0 11.573 0 12.528 0 13.02 0 14.467 0 15.913 0 17.36 1 18.239 2 18.318 2 18.807 3 19.493 5 20.253 7 20.497 7 21.115 1 21.26 1 21.416 1 21.563 1	0.001 \ 0.003 \ 0.007 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.014 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.139 \ 0.208 \ 0.225 \ 0.427 \ 0.427 \ 0.427 \ 2.621 \ 2.738 \ 3.73 \ 5.242 \ 7.148 \ 7.444 \ 3.104 \	

PLANE	56.8	-CART	0	0	PLANE	68.16	-CART	0	0
		1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.174 14.467 15.913 17.36 18.807 19.513 19.528 20.253 20.468 21.104 21.456 21.678 21.678 21.699	0.002 0.004 0.007 0.011 0.019 0.05 0.076 0.101 0.125 0.143 0.161 0.305 0.665 1.599 2.589 2.621 4.562 5.242 7.862 10.483 11.444 13.104 15.725 20.6				1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 16.448 17.36 18.807 20.253 20.944 20.999 21.46 21.678 21.7 21.7 21.7 21.7 21.7	0.002 0.005 0.007 0.009 0.012 0.02 0.029 0.037 0.045 0.045 0.053 0.061 0.064 0.119 0.369 1.283 2.406 2.621 5.242 7.862 8.994 10.483 11.444 13.104 15.725 20.6	ンンンンンンンンンンンンンンンンンンンン
PLANE	62.48	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.467 15.913 17.36 18.807 20.253 20.358 20.406 21.072 21.474 21.657 21.7 21.7	0 0.002 0.005 0.008 0.011 0.015 0.03 0.046 0.074 0.087 0.097 0.121 0.275 0.755 2.285 2.482 2.621 5.242 7.862 10.483 11.444 12.968 13.104 15.725 20.6		PLANE	73.84	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.242 17.36 18.807 20.253 21.35 21.399 21.675 21.7 21.7 21.7 21.7 21.7 21.7	0 0.002 0.003 0.005 0.007 0.009 0.012 0.017 0.022 0.026 0.031 0.035 0.039 0.043 0.785 2.35 2.621 5.242 6.194 7.862 10.483 11.444 13.104 15.725 20.6	\mathbf{O}

PLANE	79.52	-CART	0	0	PLANE	90.88	-CART	0	0
		1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 17.908 18.807 20.253 21.606 21.638 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.01 0.012 0.013 0.015 0.017 0.018 0.07 0.486 2.311 2.621 3.995 5.242 7.862 10.483 11.444 13.104 15.725 20.6				1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		21.7	20.0	0	PLANE	96.56	-CART	0	0
PLANE \	85.2	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0				1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	こくこうとうとくとくとくとくとくとく
PLANE	102.24	-CART	0	0	PLANE	113.6	-CART	0	0
-------	--------	---	---	------------------	------------	--------	---	---	---
\		1.447	0	\	/		1.447	0	١
		2.893	0	\ \			2.893	0	ì
		4 34	Ő				4 34	Õ	ì
		5 787	0				5 787	0	$\langle \rangle$
		7 233	0				7 233	0	\mathbf{i}
		8.68	0				8.68	0	1
		10 127	0				10 127	0	1
		10.127	0				10.127	0	1
		12.02	0				12.02	0	1
		13.02	0				13.02	0	/
		14.40/	0	1			14.40/	0	/
		15.913	0				15.913	0	/
		1/.30	0	1			1/.30	0	/
		18.362	0				18.362	0	/
		18.80/	0.015	\ \			18.80/	0.015	/
		20.253	0.321	\ \			20.253	0.321	/
		21.7	2.289	1			21.7	2.289	/
		21.7	2.621	/			21.7	2.621	/
		21.7	5.242	/			21.7	5.242	/
		21.7	7.862	\			21.7	7.862	\
		21.7	10.483	\			21.7	10.483	\
		21.7	11.444	\			21.7	11.444	/
		21.7	13.104	\			21.7	13.104	\
		21.7	15.725	\			21.7	15.725	\
		21.7	20.6				21.7	20.6	
PLANE	107.92	-CART	0	0	PLANE	119.28	-CART	0	0
PLANE	107.92	-CART 1.447	0 0	0	PLANE	119.28	-CART 1.447	0 0	0
PLANE	107.92	-CART 1.447 2.893	0 0 0	0	PLANE	119.28	-CART 1.447 2.893	0 0 0	0 \ \
PLANE	107.92	-CART 1.447 2.893 4.34	0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34	0 0 0 0	0 \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787	0 0 0 0 0	0 \ \ \	PLANE \	119.28	-CART 1.447 2.893 4.34 5.787	0 0 0 0 0	0 \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233	0 0 0 0 0 0 0	0	PLANE \	119.28	-CART 1.447 2.893 4.34 5.787 7.233	0 0 0 0 0 0 0	0 \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68	0 0 0 0 0 0 0 0	0	PLANE \	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68	0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127	0 0 0 0 0 0 0 0 0 0	0	PLANE \	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127	0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573	0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE \	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573	0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02	0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02	0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE \	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0		PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0	PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	\mathbf{O}
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	\mathbf{O}
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	\mathbf{O}
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	\mathbf{O}
PLANE	107.92	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		PLANE	119.28	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	\mathbf{O}

PLANE	124.96	-CART	0	0	PLANE	136.32	-CART	0	0
\		1 447	0	١	/		1 447	0	١
		2 893	0				2 803	0	$\langle \rangle$
		2.075 1 31	0				2.075 1 31	0	
		4.34 5 797	0				4.34 5 797	0	1
		J.101 7 022	0				J.101 7 022	0	/
		1.233	0				1.233	0	/
		8.08	0				8.08	0	/
		10.127	0	\ \			10.127	0	/
		11.573	0	\			11.573	0	1
		13.02	0	/			13.02	0	\
		14.467	0	\			14.467	0	/
		15.913	0	/			15.913	0	\
		17.36	0	\			17.36	0	\
		18.362	0	\			18.362	0	\
		18.807	0.015	\			18.807	0.015	\
		20.253	0.321	\			20.253	0.321	\
		21.7	2.289	Ň			21.7	2.289	Ń
		21.7	2.621	Ň			21.7	2.621	Ň
		21.7	5.242	\ \			21.7	5.242	Ń
		21.7	7 862				21.7	7 862	ì
		21.7	10 483				21.7	10.483	\mathbf{i}
		21.7	11 444				21.7	11 444	
		21.7	12 104				21.7 21.7	12 104	1
		21.7	15.104				21.7	15.104	1
		21.7	13.723	1			21.7	13.723	١
		21.7	20.0				21.7	20.0	
PLANE	130.64	-CART	0	0	PLANE	142	-CART	0	0
١		1.447	0	\	1		1.447	0	\
		2.893	0	\			2.893	0	\
		4.34	0	\ \			4.34	0	1
		5.787	0	Ň			5.787	0	Ň
		7.233	0	Ň			7.233	0	Ň
		8.68	0	Ň			8.68	0	Ň
		10 127	0	1			10 127	0	Ń
		11 573	0				11 573	Õ	1
		13.02	0				13.02	0	1
		14 467	0				14 467	0	$\langle \rangle$
		15.407	0				14.407	0	1
		15 013	\cap				15 013		\
		15.913	0				15.913	0	Ň
		15.913 17.36	0 0 0				15.913 17.36	0	, ,
		15.913 17.36 18.362	0 0 0				15.913 17.36 18.362	0 0 0	\ \ \
		15.913 17.36 18.362 18.807	0 0 0.015				15.913 17.36 18.362 18.807	0 0 0.015	\ \ \
		15.913 17.36 18.362 18.807 20.253	0 0 0.015 0.321				15.913 17.36 18.362 18.807 20.253	0 0 0.015 0.321	$\langle \rangle$
		15.913 17.36 18.362 18.807 20.253 21.7	0 0 0.015 0.321 2.289				15.913 17.36 18.362 18.807 20.253 21.7	0 0 0.015 0.321 2.289	$\langle \rangle$
		15.913 17.36 18.362 18.807 20.253 21.7 21.7	0 0 0.015 0.321 2.289 2.621				15.913 17.36 18.362 18.807 20.253 21.7 21.7	0 0 0.015 0.321 2.289 2.621	$\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$ $\langle \rangle$
		15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242				15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242	$\langle \rangle$
		15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862				15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862	$\langle \rangle$
		15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483				15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483	$\langle \rangle$
		15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483 11.444				15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483 11.444	\cdot
		15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483 11.444 13.104				15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483 11.444 13.104	\cdot
		15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483 11.444 13.104 15.725				15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0.015 0.321 2.289 2.621 5.242 7.862 10.483 11.444 13.104 15.725	\cdot

PLANE	147.68	-CART	0	0	PLANE	159.04	-CART	0	0
\		1 447	0	1	١		1 447	0	١
		2 803	0				2 803	0	1
		2.075 1 31	0				2.075 1 31	0	`
		4.34 5 787	0				5 787	0	`
		J.101 7 722	0				J.101 7 022	0	`
		1.233	0				1.233	0	`
		ð.0ð	0				8.08	0	/
		10.127	0	1			10.127	0	/
		11.5/3	0	\ \			11.5/3	0	\
		13.02	0	\ \			13.02	0	1
		14.467	0	\			14.467	0	\
		15.913	0	/			15.913	0	\
		17.36	0	\			17.36	0	\
		18.362	0	\			18.362	0	\
		18.807	0.015	/			18.807	0.015	\
		20.253	0.321	\			20.253	0.321	\
		21.7	2.289	\			21.7	2.289	\
		21.7	2.621	\			21.7	2.621	\
		21.7	5.242	\			21.7	5.242	\
		21.7	7.862	\			21.7	7.862	\
		21.7	10.483	\ \			21.7	10.483	Ň
		21.7	11.444	Ň			21.7	11.444	Ň
		21.7	13.104	\ \			21.7	13.104	Ň
		21.7	15 725	1			21.7	15 725	Ň
		21.7	20.6	1			21.7	20.6	`
		21.7	20.0				21.7	20.0	
PLANE	153.36	-CART	0	0	PLANE	164.72	-CART	0	0
,		1.447	0	\	,		1.447	0	\
		2.893	0	\			2.893	0	\
		4.34	0	\			4.34	0	\
		5.787	0	\			5.787	0	\
		7.233	0	\ \			7.233	0	Ň
		8.68	0	\ \			8.68	0	Ň
		10.127	0	Ň			10.127	0	Ň
		11.573	0	Ň			11.573	0	Ň
		13.02	0	\ \			13.02	0	Ň
		14.467	0	\ \			14.467	0	Ň
		15.913	0	1			15.913	0	Ň
		17 36	0				17 36	Ő	Ň
		18 362	0				18 362	0	Ň
		18 807	0.015				18 807	0.015	`
		20.253	0.015				20.253	0.321	`
		20.233	2 280				20.233	2 289	1
		21.7	2.207				21.7	2.207	1
		21.7 21.7	2.021 5.242				21.7	5 242	1
		21./ 21.7	J.242 7 860				21./ 21.7	J.242 7 862	/
		21./ 21.7	1.002				21./ 21.7	1.002	/
		21./ 21.7	10.403				21./ 21.7	10.403	1
		21./	11.444				21./ 21.7	11.444	/
		21./	15.104	/			21./	15.104	1
		017	15 705	1			017	15 705	1
		21.7	15.725	/			21.7	15.725	/

PLANE	170.4	-CART	0	0	PLANE	181.76	-CART	0	0
1		1.447	0		١		1.447	0	\
		2.893	0	\ \			2.893	0	\
		4.34	0	\ \			4.34	0	\
		5.787	0	\			5.787	0	\
		7.233	0	\			7.233	0	\
		8.68	0	\			8.68	0	\
		10.127	0	\			10.127	0	\
		11.573	0	\			11.573	0	\
		13.02	0	\			13.02	0	\
		14.467	0	\			14.467	0	\
		15.913	0	\			15.913	0	\
		17.36	0	\			17.36	0	\
		18.362	0	\			18.362	0	\
		18.807	0.015	\			18.807	0.015	\
		20.253	0.321	\			20.253	0.321	\
		21.7	2.289	\			21.7	2.289	\
		21.7	2.621	\			21.7	2.621	\
		21.7	5.242	\			21.7	5.242	\
		21.7	7.862	\			21.7	7.862	\
		21.7	10.483	\			21.7	10.483	\
		21.7	11.444	\			21.7	11.444	\
		21.7	13.104	\			21.7	13.104	\
		21.7	15.725	\			21.7	15.725	\
		21.7	20.6				21.7	20.6	
					PLANE	187.44	-CART	0	0
PLANE	176.08	-CART	0	0	\				
\							1.447	0	\
		1.447	0	\			2.893	0	\
		2.893	0	\			4.34	0	\
		4.34	0	\			5.787	0	\
		5.787	0	\			7.233	0	\
		7.233	0	\			8.68	0	\
		8.68	0	\			10.127	0	\
		10.127	0	\			11.573	0	\
		11.573	0	\			13.02	0	\
		13.02	0	\			14.467	0	\
		14.467	0	\			15.913	0	\
		15.913	0	\			17.36	0	\
		17.36	0	\			18.362	0	\
		18.362	0	\			18.807	0.015	\
		18.807	0.015	\			20.253	0.321	\
		20.253	0.321	\			21.7	2.289	/
		21.7	2.289	1			21.7	2.621	/
		21.7	2.621	1			21.7	5.242	/
		21.7	5.242	1			21.7	7.862	/
		21.7	/.862	1			21.7	10.483	/
		21.7	10.483	1			21./	11.444	/
		21.7	11.444	1			21.7	15.104	/
		21./	15.104	1			21.7	15./25	/
		21./	15.725	/			21./	20.6	
		21./	20.6						

PLANE	193.12	-CART	0	0	PLANE	204.48	-CART	0	0
		1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $				1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	~~~~~~~~~~~~~~~~~~~~~~~~~
PLANE	198.8	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.362 18.807 20.253 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		PLANE	210.16	-CART 1.447 2.893 4.34 5.787 7.233 8.68 10.127 11.573 13.02 14.467 15.913 17.36 18.276 18.276 18.807 20.253 21.606 21.637 21.7 21.7 21.7 21.7 21.7 21.7 21.7	0 0 0 0 0 0 0 0	\mathbf{O}

PLANE	215.84	-CART	0	0					
\					PLANE	227.2	-CART	0	0
		1.447	0	\	\			_	
		2.893	0	\			1.447	0	\
		4.34	0	\			2.893	0	/
		5.787	0	\			4.34	0	/
		7.233	0	\			5.787	0	\
		8.68	0	\			7.233	0	\
		10.127	0	\			8.68	0	\
		11.573	0	\			10.127	0	\
		13.02	0	\			11.573	0	\
		14.467	0	\			13.02	0	\
		15.913	0	\			14.467	0	/
		17.36	0	/			15.913	0	\
		17.862	0	/			16.184	0	\
		18.807	0.103	\			17.36	0.262	\
		20.253	0.817	\			18.807	1.363	\
		21.212	2.341	\			19.457	2.444	\
		21.27	2.621	\			19.527	2.621	\
		21.607	5.242	\			20.253	5.22	\
		21.7	7.191	\			20.259	5.242	\
		21.7	7.862	\			20.853	7.862	/
		21.7	10.483	\			21.239	10.483	\
		21.7	11.444	\			21.341	11.444	\
		21.7	13.104	\			21.475	13.104	\
		21.7	15.725	\			21.612	15.725	\
		21.7	20.6				21.694	20.6	
PLANE	221.52	-CART	0	0	PLANE	232.88	-CART	0	0
Ι		1.447	0		Ι		1.447	0	١
		2.893	0	\ \			2.893	0	Ň
		4.34	0	1			4.34	0	Ň
		5.787	0	\ \			5.787	0	Ň
		7.233	0	1			7.233	0	Ň
		8.68	0	1			8.68	0	Ň
		10.127	0	1			10.127	0	Ň
		11.573	0	\ \			11.573	0	Ň
		13.02	0	\ \			13.02	0	Ň
		14.467	0	\ \			14.467	0	Ň
		15.913	0	Ň			14.896	0	Ň
		17.184	0	Ň			15.913	0.202	Ň
		17.36	0.014	\ \			17.36	1.182	Ň
		18.807	0.413	\ \			18.243	2.498	Ň
		20.253	1.888	Ň			18.296	2.621	Ň
		20.5	2.389	Ň			18.807	4.293	Ň
		20.571	2.621	Ň			19.072	5.242	Ň
		21.158	5.242	Ň			19.749	7.862	Ň
		21.519	7.862	Ň			20.253	10.353	Ì
		21.672	10.483	\ \			20.276	10.483	Ń
		21.692	11.444	\ \			20.434	11.444	Ì
									Ň
		21.7	12.943				20.705	13.104	\
		21.7 21.7	12.943 13.104	\			20.705 21.061	13.104 15.725	\
		21.7 21.7 21.7	12.943 13.104 15.725				20.705 21.061 21.494	13.104 15.725 20.6	/

PLANE	238.56	-CART	0	0	PLANE	249.92	-CART	0	0
\		1 4 4 7	0		/		1 4 4 7	0	1
		1.447	0	\ \			1.44/	0	1
		2.893	0	\ \			2.893	0	1
		4.34	0	\ \			4.34	0	1
		5./8/	0	\ \			5.787	0	1
		7.233	0	N N			7.233	0	\ \
		8.68	0	\ \			8.68	0	1
		10.127	0	1			9.89	0	\
		11.573	0	1			10.127	0.033	\
		13.02	0	\			11.573	0.502	\
		13.361	0	\			13.02	1.962	\
		14.467	0.221	1			13.379	2.621	\
		15.913	1.2	\			13.392	2.648	\
		16.844	2.552	/			14.213	5.242	\
		16.874	2.621	/			14.467	6.117	\
		17.36	4.022	\			14.955	7.862	\
		17.738	5.242	\			15.707	10.483	\
		18.471	7.862	\			15.913	11.164	\
		18.807	9.227	/			16	11.444	\
		19.084	10.483	/			16.593	13.104	\
		19.281	11.444	/			17.36	14.929	\
		19.637	13.104	/			17.718	15.725	\
		20.168	15.725	/			18.807	18.213	\
		20.253	16.162	\			19.728	20.6	
		21.015	20.6						
					PLANE	255.6	-CART	0	0
PLANE	244.24	-CART	0	0	/				
/							1.447	0	\
		1.447	0	/			2.893	0	\
		2.893	0	/			4.34	0	\
		4.34	0	/			5.787	0	\
		5.787	0	/			7.233	0	\
		7.233	0	/			8.003	0	\
		8.68	0	\			8.68	0.121	\
		10.127	0	\			10.127	0.896	\
		11.573	0	\			11.394	2.621	\
		11.671	0	\			11.417	2.672	\
		13.02	0.31	\			11.573	3.166	\
		14.467	1.432	\			12.142	5.242	\
		15.2	2.606	\			12.837	7.862	\
		15.207	2.621	\			13.573	10.483	\
		15.913	4.672	\			13.876	11.444	\
		16.091	5.242	\			14.467	12.741	\
		16.848	7.862	\			14.641	13.104	\
		17.36	9.762	\			15.913	15.454	\
		17.552	10.483	\			16.07	15.725	\
		17.805	11.444	\			17.36	17.929	\
		18.266	13.104	\			18.777	20.6	
		18.807	14.88	\					
		19.07	15.725	\	PLANE	261.28	-CART	0	0
		20.253	19.879	\	\				
		20.43	20.6		-		1.447	0	\
							2.893	0	\
							4.34	0	\

		5 787	0	١			7 233	13 901	\
		6.002	0				8.68	15 597	
		0.002	0 210				0.00	15.307	1
		1.233	0.518				0.000	13.723	1
		8.68	1.543	\			10.127	17.126	\
		9.255	2.621	\			11.573	18.64	\
		9.286	2.7	\			13.02	20.231	\
		9.939	5.242	\			13.342	20.6	
		10.127	6.064	\	PLANE	278.32	-CART	0	2.186
		10 537	7 862	1	\				
		11 186	10.483	1	l,		0 469	2 621	\
		11.100	11 444				0.407	2.021	1
		11.400	11.444				0.39	2.039	1
		11.5/3	11.6/3	\			0.705	5.242	1
		12.369	13.104	\			0.738	7.862	\
		13.02	14.15	\			0.786	10.483	\
		14.096	15.725	\			0.918	11.444	\
		14.467	16.24	\			1.447	12.032	\
		15.913	18.222	\			2.379	13.104	\
		17.36	20.421	Ň			2.893	13.71	Ň
		17 472	20.6	1			4 34	15 297	Ň
NE	266.06		0	0			1.54	15 725	1
	200.90	-CARI	0	0			4.755	16.750	1
1		1 4 4 7	0	1			5./8/	10./39	1
		1.44 /	0	\ \			1.233	18.091	1
		2.893	0	\			8.68	19.355	\
		3.892	0	\			10.083	20.6	
		4.34	0.079	\					
		5.787	0.898	\					
		6.909	2.621	\ \	PLANE284	-cart	0	20.6	
		6 948	2 738	1					
		7 233	1 083	1	END BLOCK				
		7.443	5 242		LIND BLOCK				
		7.445	7.962		DI OCK Distform			0000	0.0
		7.884	1.802		BLOCK Platfor	m -LOC	ATION	0000	00
		8.47	10.483	\					
		8.68	11.239	\	END BLOCK				
		8.741	11.444	\					
		9.753	13.104	\	&subtitle				
		10.127	13.636	\	union ladinda Pl	atform l	FSO		
		11.573	15.481	\	delete block La	dinda Pl	atform		
		11.775	15.725	Ň	$\stackrel{-}{\text{set subt}} = \text{unic}$	n FSOL	adinda		
		13.02	17.18	1	suplot ESO				
		14 467	18.05		¢				
		15 602	20.6	1	¢				
NIC	272 (4	13.095 CADT	20.0	0	ው				
INE,	272.04	-CAKI	0	0	\$				
\			_		\$				
		1.447	0	\	\$				
		1.449	0	\	\$				
		2.893	0.556	\	\$				
		4.267	2.621	\	\$				
		4.316	2.782	\	rename FSO				
		4.34	2.903	\ \	& set subt $= FS$	SO			
		4 632	5 242	\	emit FSO $_box$	lv FSO			
		4.052	7 867		emit ESO enio	19 I DU	vno 244	if" \	
		4.71J 5 070	10 492		ennt roo-ple		ype sud	11 \	
		J.2/8	10.483	1		-use_na	me yes \	·	
		5.465	11.444	\	-compar	t "-desc	r This is	s Extra "	
		5.787	11.973	\	&fini				
		6.613	13.104	\					

PLA

PLA

MODEL TANKER MS. PACIFIC LEO §-----

_____ \$ \$ modelled by Muhammad Athoillah \$ \$ Name of ship : Shuttle Tanker Classification \$: \$ Owner : \$ Builder : \$ \$ Principal particulars : \$ LOA (Length overall) : 246.78 M \$ beam mld : 42 M \$ depth mld : - M \$ displ : tonnes \$ Full load draft (moulded) : 14.798 m \$ Freeboard (Full) : - m \$ \$ \$-----\$ & device -clr n -cecho y -limerr 0 &device -pri device \$ & set demo = .false &set ano = -ano yes & set ano =&set plot = .true. &set one = .true. &set two = .true. &set three = .true. &set four = .true. &set five = .true. \$ &MACRO SUPLOT NAMES &SELEC :N -SEL %NAMES &IF %DEMO &THEN &DEVICE -PRIMARY SCREEN &SUBTITLE %SUBT PICTURE ISO &PICT ISO -parent :N &LOCAL DUM = &GET(YES/NO) &IF &STRING(MATCH %DUM% YES) &THEN &ENDIF **&SUBTITLE %SUBT PICTURE TOP** &PICT TOP &LOCAL DUM = &GET(YES/NO) &IF &STRING(MATCH %DUM% YES) &THEN &ENDIF **&SUBTITLE %SUBT PICTURE BOW**

&PICT BOW &LOCAL DUM = &GET(YES/NO) &IF &STRING(MATCH %DUM% YES) &THEN &ENDIF **&SUBTITLE %SUBT PICTURE STARB** &PICT STARB &LOCAL DUM = &GET(YES/NO) &IF &STRING(MATCH %DUM% YES) &THEN &ENDIF &ELSE &DEVICE -PRIMARY DEVICE **&SUBTITLE %SUBT PICTURE ISO** &PICT ISO -parent :N **&SUBTITLE %SUBT PICTURE TOP** &PICT TOP &SUBTITLE %SUBT PICTURE BOW &PICT BOW **&SUBTITLE %SUBT PICTURE STARB** &PICT STARB &ENDIF &ENDMACRO \$ \$ &surface \$ \$ \$PGEN -PERM 1. -LOC 0 0 0 -DIFTYP 3DDIF \$-CS CURR 111 BLOCK ST -LOCATION 0 0 0 0 0 0 PLANE 0 -CART 0 11.833 \ 1 12.114 \ 2 12.509 \ 3 13.002 \ 4 13.578 \ 5 14.237 \ 6 15.006 \ 7 15.916 \ 8 16.943 9 18.149 \ 10 19.909 \ 10.601 21.3 PLANE 7.961 -CART 0 10.794 \ 1 10.909 \ 2 11.05 3 11.201 \ 4 11.362 \ 5 11.528 \ 6 11.693 \

		7 8	11.859 12.189		PLANE	31.842	-CART	0	0
		9	12.67	Ň	,		1	0.001	\
		10	13.265	\ \			2	0.006	Ń
		11	13 973				3	0.017	Ň
		12	1/ 86/				J 1	0.017	1
		12	14.004				4 5	0.050	`
		15	10.001	1			5	0.087	/
		14	17.551	1			6	0.228	/
		15	19.949	/			7	0.374	\
		15.364	21.3				8	0.535	\
							9	0.781	\
PLANE	15.921	-CART	0	0.45			10	1.073	\
\							11	1.522	\
		1	0.707	\			12	2.364	Ì
		2	1.297	Ň			13	4.064	Ň
		3	8 078	\ \			14	5 904	Ň
		1	8 81/				15	7 407	\mathbf{x}
			0.356				15	8 6/3	1
		5	9.550				10	0.043	`
		0	9.020	1			1/	9.792	/
		/	10.248	1			18	10.952	1
		8	10.617	\			19	12.354	/
		9	10.937	\			20	15.557	\
		10	11.234	\			20.438	21.3	
		11	11.53	\					
		12	11.809	\	PLANE	39.803	-CART	0	0
		13	12.255	Ň	\				
		14	12.908	\ \	,		1	0	١
		15	13 74	1			2	0.002	Ň
		16	1/ 057				2	0.002	
		10	16.05				J 1	0.005	1
		17 00	10.95	١			4 5	0.01	1
		17.99	21.5				5	0.019	/
	••		0	0			6	0.038	1
PLANE	23.882	-CART	0	0			7	0.101	/
/							8	0.16	/
		1	0.021	\			9	0.215	\
		2	0.065	\			10	0.267	\
		3	0.166	\			11	0.354	\
		4	0.448	\			12	0.505	\
		5	0.79	\			13	0.712	\
		6	1.303	Ň			14	1.054	Ň
		7	2.319	\ \			15	1.653	Ň
		8	5 483	1			16	2 651	Ň
		0	6 883				17	2.001 A 483	1
		9 10	0.005				17	4.405	`
		10	7.809	1			18	0.433	/
		11	8.6/	\ \			19	8.411	/
		12	9.397	\			20	11.14	/
		13	10.061	1			20.211	12.025	/
		14	10.666	\			20.366	12.95	/
		15	11.255	\			20.485	13.875	\
		16	11.852	\			20.579	14.798	\
		17	12.736	\			20.579	14.8	\
		18	14.145	\			20.825	21.3	
		19	16.82	\ \					
		19.563	21.3		PLANE	47.764	-CART	0	0
									-
					1				

1	0.001	\			21	12.95	\
2	0.002	\			21	13.875	\
3	0.004	\			21	14.798	\
4	0.006	\			21	14.8	\
5	0.009	\backslash			21	21.3	
6	0.014	\backslash					
7	0.023	\	PLANE	63.685	-CART	0	0
8	0.053	\	\				
9	0.077	Ň	·		1	0.001	\
10	0.1	Ň			2	0.003	Ň
11	0.121	Ň			3	0.004	Ň
12	0.142	Ň			4	0.005	Ň
13	0.163	Ň			5	0.007	Ň
14	0.229	Ň			6	0.008	Ň
15	0.354	\ \			7	0.009	Ň
16	0.584	\ \			8	0.012	Ň
17	1 039				9	0.016	Ň
18	1.057				10	0.019	Ň
19	3 837				11	0.023	\ \
20	6 975				12	0.023	$\langle \rangle$
20 105	0. <i>713</i> 7 <i>1</i>				12	0.027	
20.105	7. 4 8 325				13	0.03/	
20.300	0.525				14	0.034	
20.47	9.23 10.175				15	0.037	1
20.399	10.175				10	0.04	1
20.701	11.1				1/	0.039	\
20.762	12.023				10	0.102	1
20.850	12.93				19	0.40	\
20.00	13.8/3				20	1.200	\
20.914	14./98				21	1.4	\
20.914	14.8	1			21	8.325	/
20.989	21.3				21	9.25	1
CADE	0	0			21	10.1/5	1
-CART	0	0			21	11.1	1
	0.000				21	12.025	1
1	0.002	\ \			21	12.95	\
2	0.004	\backslash			21	13.875	\
3	0.005	\			21	14.798	\
4	0.007	\ \			21	14.8	\
5	0.01	\			21	21.3	
6	0.012	\			~		
7	0.015	\	PLANE	71.645	-CART	0	0
8	0.023	\	\				
9	0.034	\			1	0	\
10	0.043	\			2	0.001	\
11	0.052	\			3	0.001	\
12	0.061	\			4	0.001	\
13	0.07	\			5	0.002	\
14	0.078	\			6	0.002	\
15	0.087	\			7	0.002	\
16	0.135	\			8	0.003	\
17	0.256	\			9	0.003	\
18	0.538	\			10	0.004	\
19	1.199	\			11	0.004	\
20	2.943	\			12	0.005	\
21	12.025	\			13	0.006	\

PLANE 55.724

		14 15 16 17 18 19 20	0.006 0.007 0.007 0.008 0.022 0.161 0.667	\ \ \ \			21 21 21 21 21 21 21	12.025 12.95 13.875 14.798 14.8 21.3	\ \ \ \
		21	3.7		PLANE	87.567	-CART	0	0
		21 21	4.625		\		1	0	١
		21	6.475	\			2	0	ì
		21	7.4	\			3	0	ì
		21	8.325				4	0	ì
		21	9.25	\ \			5	0	ì
		21	10.175	\backslash			6	0	Ň
		21	11.1	Ň			7	0	Ň
		21	12.025	\ \			8	0	Ň
		21	12.95	Ň			9	0	Ń
		21	13.875	\			10	0	\
		21	14.798	\			11	0	\
		21	14.8	\			12	0	\
		21	21.3				13	0	\
							14	0	/
PLANE	79.606	-CART	0	0			15	0	/
\			0	,			16	0	/
		1	0				I7 10	0	/
		2	0				18	0.006	/
		3	0				19	0.12	/
		4 5	0				20	0.585	/
		5	0				21	2.113	1
		0 7	0				21	J.7 4.625	1
		8	0				21	4.025	
		9	0				21	6 475	$\langle \rangle$
		10	0				21	74	$\langle \rangle$
		11	0				21	8.325	ì
		12	0	\ \			21	9.25	ì
		13	0	\`			21	10.175	Ń
		14	0	\ \			21	11.1	Ň
		15	0	\backslash			21	12.025	\
		16	0	\			21	12.95	\
		17	0	\			21	13.875	\
		18	0.006	\			21	14.798	\
		19	0.12	\			21	14.8	/
		20	0.585	\ \			21	21.3	
		21	2.775	\		05 507	GADE	0	0
		21 21	3.7 4.625		PLANE	95.527	-CART	0	0
		21	5.55	Ň	1		1	0	\
		21	6.475	\			2	0	Ň
		21	7.4	\			3	0	Ň
		21	8.325	\			4	0	\
		21	9.25	\			5	0	\
		21	10.175	\			6	0	\
		21	11.1	\			7	0	\

	8	0	21	5.55
	9	0	21	6.475
	10	0	21	7.4
	11	0	21	8.325
	12	0	21	9.25
	13	0	21	10.175
	14	0	21	11.1
	15	0	21	12.025
	16	0	21	12.95
	17	0	21	13.875
	18	0.006	\ 21	14.798 \
	19	0.12	\ 21	14.8 \
	20	0.585	\ 21	21.3
	21	2.775	/	
	21	3.7	\ PLANE 111.448-C	ART 0 0
	21	4.625	\ \	
	21	5.55	\ 1	0 \
	21	6.475	\ 2	0 \
	21	7.4	\ 3	0 \
	21	8.325	\ 4	0 \
	21	9.25	\ 5	0 \
	21	10.175	\ 6	0 \
	21	11.1	\ 7	0 \
	21	12.025	\ 8	0 \
	21	12.95	\ 9	0 \
	21	13.875	\ 10	0 \
	21	14.798	\ 11	0 \
	21	14.8	\ 12	0 \
	21	21.3	13	0 \
			14	0 \
PLANE	103.488-CART	0	0 15	0 \
\			16	0 \
	1	0	\ 17	0 \
	2	0	\ 18	0.006 \
	3	0	\ 19	0.12 \
	4	0	\ 20	0.585 \
	5	0	\ 21	2.775 \
	6	0	\ 21	3.7 \
	7	0	\ 21	4.625
	8	0	21	5.55
	9	0	21	6.475
	10	0	21	7.4
	11	0	21	8.325
	12	0	21	9.25
	13	0	21	10.175
	14	0	21	
	15	0	21	12.025
	10	0	21	12.93
	I / 10	0.006	\ \ \	13.8/3
	18	0.000	\ \ 21	14./98
	19	0.12	\ \ 21	14.0 \ 21.2
	20	0.303	1 21	21.3
	21	2.77	$\mathbf{PI} \Delta \mathbf{NF} = 110 400 \mathbf{C}$	ARTO O
	21	2.7 4.625		U
	<i>L</i> 1	7.040	1 1	

	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\21\end{array} $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		DIANE	125 22	17 18 19 20 21 21 21 21 21 21 21 21 21 21	0 0.006 0.12 0.585 2.775 3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3	
	21 21 21	4.625 5.55			155.55	1	0)
	21	6.475				2	0	/
	21	/.4				3 4	0	/
	21	0.525				4	0	1
	21	9.23				5	0	
	21	10.175				7	0	
	21	12.025	\backslash			8	0	Ì
	21	12.95	Ň			9	0	Ì
	21	13.875	Ň			10	0	Ì
	21	14.798	\			11	0	\
	21	14.8	\			12	0	\
	21	21.3				13	0	/
		0	0			14	0	/
PLANE I.	27.37 -CART	0	0			15	0	/
/	1	0	١			10	0	
	2	0				18	0.006	1
	3	0	\backslash			19	0.12	Ì
	4	0	Ň			20	0.585	Ì
	5	0	Ň			21	2.775	Ì
	6	0	\			21	3.7	\setminus
	7	0	\			21	4.625	\
	8	0	\			21	5.55	/
	9	0	/			21	6.475	/
	1U 11	0				21 21	/.4 8 225	/
	11	0				21 21	0.525 0.25	/
	12	0				21	9.25 10 175	1
	14	0				21	1111	1
	15	0				21	12.025	1
	16	0	\			21	12.95	Ì

	21	13.875	\		10	0	\
	21	14.798	\		11	0	\
	21	14.8	\		12	0	\
	21	21.3			13	0	\
					14	0	\
PLANE	143.291-CART	0	0		15	0	\
\					16	0	\
	1	0	\		17	0	\
	2	0	\		18	0.006	\
	3	0	\		19	0.12	\
	4	0	\		20	0.585	\setminus
	5	0			21	2.775	\
	6	0	\ \		21	3.7	Ň
	7	0	Ň		21	4.625	Ň
	8	0	Ň		21	5.55	Ň
	9	0	\ \		21	6.475	Ň
	10	0			21	74	Ň
	11	Ő			21	8 325	ì
	12	0			21	9.25	Ň
	12	0			21	10 175	1
	13	0			21	11.1	1
	14	0			21	12.025	
	15	0			21	12.023	1
	10	0			21	12.93	`
	1/	0			21	13.8/3	/
	18	0.006			21	14./98	/
	19	0.12			21	14.8	١
	20	0.585			21	21.3	
	21	2.175					
	0.1	0.7			150 010 010	T 0	0
	21	3.7	\ \	PLANE	159.212-CAR	Т 0	0
	21 21	3.7 4.625	\ \ \	PLANE	159.212-CAR	Т 0	0
	21 21 21	3.7 4.625 5.55	\ \ \	PLANE	159.212-CAR 1	T 0 0	0
	21 21 21 21	3.7 4.625 5.55 6.475		PLANE	159.212-CAR 1 2	T 0 0 0	0 \ \
	21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4		PLANE	159.212-CAR 1 2 3	T 0 0 0 0	0 \ \ \
	21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325		PLANE	159.212-CAR 1 2 3 4	T 0 0 0 0 0	0 \ \ \
	21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25		PLANE	159.212-CAR 1 2 3 4 5	T 0 0 0 0 0 0	0 \ \ \ \
	21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175		PLANE	159.212-CAR 1 2 3 4 5 6	T 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1		PLANE	159.212-CAR 1 2 3 4 5 6 7	T 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025		PLANE \	159.212-CAR 1 2 3 4 5 6 7 8	T 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9	T 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8		PLANE \	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \
	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 13.875 14.798 14.8 21.3 0	0	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 13.875 14.798 14.8 21.3 0 0 0 0	<pre> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</pre>	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0 0 0 0 0 0 0 0	<pre> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</pre>	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \mathbf{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 13.875 14.798 14.8 21.3 0 0 0 0 0 0 0 0		PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \mathbf{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0 0 0 0 0 0 0 0	<pre></pre>	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \mathbf{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21 21 21 21 2	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \ \	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \mathbf{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0 0 0 0 0 0 0 0	0 \ \ \ \ \ \ \ \ \ \ \ \ \	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \mathbf{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PLANE	21 21 21 21 21 21 21 21 21 21	3.7 4.625 5.55 6.475 7.4 8.325 9.25 10.175 11.1 12.025 12.95 13.875 14.798 14.8 21.3 0 0 0 0 0 0 0 0	<pre></pre>	PLANE	159.212-CAR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 21 21 21 21 21	T 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} \mathbf{O} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

	21 21	7.4 8.325			3 4	0 0	\ \
	21	9.25			5	0	Ì
	21	10.175	\ \		6	0	Ì
	21	11.1	\ \		7	0	Ň
	21	12.025			8	0	\ \
	21	12.95			9	0	\ \
	21	13 875			10	0	\ \
	21	14 798			11	0	\ \
	21	14.8			12	0	\ \
	21	21.3	1		12	0	1
	21	21.5			13	0	
PI ANE	167 173-CART	0	0		15	0	
	107.175-CART	0	0		16	0	$\langle \rangle$
1	1	0	\		17	0	Ň
	2	0	Ň		18	0.006	Ň
	3	0	Ň		19	0.12	Ň
	4	0	Ň		20	0.585	Ň
	5	0	Ň		21	2.775	Ň
	6	0	\ \		21	3.7	Ì
	7	0	1		21	4.625	Ň
	8	0			21	5.55	\ \
	9	0			21	6.475	Ì
	10	Ő			21	74	\
	11	Ő			21	8 325	\ \
	12	0			21	9.25	1
	12	0			21	10 175	
	13	0			21	11.1	1
	14	0			21	12 025	
	15	0			21	12.025	
	10	0			21	12.95	
	17	0 006			21	17.075	
	10	0.000			21	14.790	
	20	0.12			21	21.3	١
	20	0.383			21	21.3	
	21	2.115		DLANE	183 004 CAPT	0	0
	21	J.7 1 625			163.094-CART	0	0
	21	4.025		/	1	0	١
	21	5.55			1	0	1
	21 21	0.+73 7 /			$\frac{2}{3}$	0	
	21 21	7. 4 8 375			5 1	0	\
	21	0.525			4 5	0	
	21	9.23			5	0	1
	21	10.175			0	0	1
	21	12.025			8	0	
	21	12.023			0	0	1
	21	12.95			9	0	1
	∠1 21	13.8/3			10	0	1
	21 21	14./98			11	0	1
	21 21	14.ð 21.2	/		12	0	1
	21	21.3			15	0	1
DLANE	175 122 CADT	0	0		14	0	/
	1/3.133-CART	0	U		15	0	1
/	1	0			10	0	1
		0			1/	0 017	1
	2	U	/		18	0.017	\

	$ 19 \\ 20 \\ 21 \\ 21 \\$	$\begin{array}{c} 0.173\\ 0.737\\ 4.625\\ 5.55\\ 6.475\\ 7.4\\ 8.325\\ 9.25\\ 10.175\\ 11.1\\ 12.025\\ 12.95\\ 13.875\\ 14.798\\ 14.8\\ 21.3 \end{array}$			7 8 9 10 11 12 13 14 15 16 17 18 19 20 20.068 20.211 20 22.11	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
PLANE	191.054-CAR	Т 0	0		20.334 20.444	11.1 12.025	
\					20.541	12.95	\`
	1	0	\		20.628	13.875	\
	2	0	\		20.703	14.798	\
	3	0	\		20.703	14.8	\
	4	0	\ \		20.965	21.3	
	5	0	1		206 076 CADT		0
	6 7	0		PLANE	206.976-CART	0	0
	/	0		/	1	0	1
	0 0	0			2	0	
	10	0			3	0	
	10	0			4	0	
	12	0 0			5	0	
	13	0	\`		6	0	\ \
	14	0	Ň		7	0	Ň
	15	0	Ň		8	0	Ň
	16	0	\		9	0	\
	17	0.011	\		10	0	\
	18	0.203	\		11	0	\
	19	0.808	\		12	0	\
	20	2.278	\		13	0	\
	21	11.1	\ \		14	0.194	\
	21	12.025	\ \		15	0.798	1
	21	12.95	\ \		16	1.836	\ \
	21	13.875	1		17	4.514	1
	21	14./98			18	8.279	1
	21	14.0 21.2	/		19	19.140	
	21	21.3			20 20.371	21.3	1
PLANE	199.015-CAR	Т 0	0				
\				PLANE	214.936-CART	0	0
	1	0	\	\			
	2	0	\ \		1	0	\
	3	0	\		2	0	\
	4	0	\ \		3	0	1
	5	0	\		4	0	1
	6	0	/		5	0	/

	6	0	\			11	14.984	\
	7	0	1			12	16.346	Ň
	8	0				13	17 629	Ň
	9	0				14	18 936	Ň
	10	0				15	20.367	
	10	0 112				15 621	20.307	١
	11	0.112				15.021	21.5	
	12	1 428		DIANE	228 816	CADT	0	0.012
	13	2 409			230.010	-CARI	0	0.012
	14	5.400		١		1	0 144	1
	15	0.8/3				1	0.144	1
	10	10.080				2	0.82	1
	1/	14.1	N N			3	2.603	1
	18	16.902	\ \			4	12.04	1
	19	19.881	/			5	13.488	\
	19.419	21.3				6	14.809	\
						7	16.055	\
PLANE	222.897-CART	0	0			8	17.196	\
\						9	18.269	\
	1	0	\			10	19.321	\
	2	0	\			11	20.393	\
	3	0	\			11.821	21.3	
	4	0	\					
	5	0	\	PLANE	246.779	-CART	0	
	6	0	\ \	21.298	\			
	7	0	Ň		,	0.146	21.3	
	8	0.102	Ň					
	9	0.528	\ \	PLANE	246.78	-CART	0	21.3
	10	1 488			2.0170	01111	0	2110
	11	3 757						
	12	7 817		END BLOCK				
	12	11.61		LIND BLOCK				
	13	12 888		& sot subt - Sh	ttla Tanl	or		
	14	15.000		α set subt $=$ Sitt		XCI		
	15	13./03		suplot S1				
	10	17.343		Ф Ф				
	17	19.345	/	\$				
	17.993	21.3		\$				
	220 055 C + D -	0	0	\$				
PLANE	230.857-CART	0	0	\$				
\				\$				
	1	0	\	\$				
	2	0	\	\$				
	3	0	/	rename ST				
	4	0	\	& set subt = S	Т			
	5	0.169	\	emit ST -body	y ST			
	6	0.813	\	emit ST -piec	e "-difty	pe 3ddif	"\	
	7	2.117	\	<u>^</u>	-use_na	me yes \	l.	
	8	6.68	\	-compa	rt "-desc	r 'This is	s Extra "	•
	9	11.486	\ \	&fini				
	10	13.473	\ \					
			1					

LAMPIRAN C

INPUT HIDROSTATIK DI SOFTWARE MOSES

&title hydrostatic property of FSO &SUBTI HIDROSTATIC FSO FL &devi -cecho ves -oecho NO -PRIMA DEV -auxin fso(fl).ppo inmo &DIMEN -DIMEN METERS M-TONS &instate FSO -condi 15.725 0.0 0.0 **MEDIT** &DESCRIBE BODY FSO \$#WEIGHT 161810 &weight -compute FSO 10.76 15.62 81.06 81.06 END MEDIT \$ \$ & apply @ \$ \$ **&SUBTI HIDROSTATIC FSO FL** \$ hstati equi -num 500 -echo yes &stat -hard &stat comp -h &stat draft -h end hstati CFORM 1 0 0 -draft 0.1 284 REPORT END &PLTMODEL VESSEL PIC ISO PIC STARBOARD PIC BOW PIC TOP **END** &eofile \$ \$ rarm 1 80 -win 100 -num 1000 report END &fini

HIDROSTATIK TANKER

&title hydrostatic property of ST &SUBTI HIDROSTATIC STFL &devi -cecho yes -oecho NO -PRIMA DEV -auxin stfl.ppo inmo &DIMEN -DIMEN METERS M-TONS &instate ST -condi 14.798 0.0 0.0 MEDIT &DESCRIBE BODY ST \$#WEIGHT 123872 &weight -compute ST 15.41 18.67 70.24 70.24 END_MEDIT \$ \$ & apply @ \$ \$ **&SUBTI HIDROSTATIC STFLL** hstati equi -num 500 -echo yes &stat -hard &stat comp -h &stat draft -h end hstati CFORM 1 0 0 -draft 0.1 284 REPORT END &PLTMODEL VESSEL PIC ISO PIC STARBOARD PIC BOW PIC TOP **END** &eofile \$ \$ rarm 1 80 -win 100 -num 1000 report END &fini

LAMPIRAN D

INPUT RAO DI SOFTWARE MOSES

```
$
$
        Response Amplitude Operators
$
$
$
$**********
*******
          set basic parameters
$
&dimen -DIMEN METERS M-TONS
& device -oecho no -query no -primary device
-auxin fso(fl).ppo
&TITLE - Response Amplitude Operators
$
$********
*****
          READ MODEL
&parameter -depth 25
&apply -load_group -percent fso(fl)
$
INMODEL
$
$********
*******
         set transit condition
$sarat
&INSTATE -CONDITION 15.725
$
$***********
*******
          plot of model
$
&PLTMODEL VESSEL
 PIC ISO
 pic side
 pic top
 pic bow
 pic starb
END
$
$**********
*******
          compute weight for cond.
$kg
&WEIGHT -COMPUTE 10.76 15.62 81.06
81.06
$
$
&EQUI -default
&STATUS B W
$**********
*******
          enter hydrodynamics menu
$
HYDRODYNAMICS
$
```

****** stability trans. \$ g_press -heading 0 45 90 180 end \$ \$****** ******* frequency response \$ freq_resp ******* response \$ 5 rao -period 3 3.5 4 4.5 / 7 5.5 6 6.5 7.5 \ 9.5 8 8.5 9 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 \ 18 ******* graph rao &subti VESSEL MOTIONS &DIMEN -DIMEN METERS K-NTS fp_std &BODY(CG) equ_sum MATRICES -FILE YES REPORT **END** \$ \$********** ******* std post processing \$ fr_point &body(cg) report end end \$ \$***** ******* all done \$ &FINISH

HIDROSTATIK TANKER MS PACIFIC LEO

```
$
$
        Response Amplitude Operators
$
$
*******
         set basic parameters
$
&dimen -DIMEN METERS M-TONS
& device -oecho no -query no -primary device
-auxin stfl.ppo
&TITLE - Response Amplitude Operators
$
$*********
*******
         READ MODEL
&parameter -depth 25
&apply -load group -percent stfl
$
INMODEL
$
$********
*******
         set transit condition
$sarat
&INSTATE -CONDITION 14.798
$
$***********
*******
         plot of model
$
&PLTMODEL VESSEL
 PIC ISO
 pic side
 pic top
 pic bow
 pic starb
END
$
*******
         compute weight for cond.
$kg
&WEIGHT -COMPUTE 15.41 18.67 70.24
70.24
$
$
&EQUI -default
&STATUS B W
*******
         enter hydrodynamics menu
$
HYDRODYNAMICS
$
$**********
*******
         stability trans.
$
```

g_press -heading 0 45 90 180 end \$ ******* frequency response \$ freq resp \$ ******* response \$ rao -period 3 3.5 4.5 5 4 \ 5.5 6.5 7 6 7.5 \ 8 8.5 9 9.5 10 \ 10.5 11 11.5 12 12.5 \ 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 \ 18 \$************* ******* graph rao &subti VESSEL MOTIONS &DIMEN -DIMEN METERS K-NTS fp_std &BODY(CG) equ_sum MATRICES -FILE YES REPORT **END** \$ ******* std post processing \$ fr_point &body(cg) report end end \$ ****** all done \$ &FINISH

LAMPIRAN E INPUT PEMODELAN SBS DI SOFTWARE MOSES

\$ \$ ----- MOORING ANALYSIS OF CONDENSAT FSO MOORED TO -----\$ -----IN-LINE 100-YEAR RETURN PERIODS ------\$ \$ \$******* SET BASIC PARAMETERS \$ &device -auxin FSO(HL).dat -auxin STFL.dat -oecho no -primary device &dimen -DIMEN METERS M-TONS ¶meter -depth 25 \$ water depth (meter/feet) \$ **GEN. DATABASE** \$ **INMODEL** &TITLE SHIP TO SHIP OPERATION MOORING ANALYSIS SET PARAMETERS \$ &SET HEAD = 0 \$ environment heading (degree) &SET Hs = 2 \$ significant wave height (meter/feet) &SET Tp = 5 \$ peak period (second) &SET Gamma = 2 \$ gamma for Jonswap Wave Spectrum &SET TIME = 3600 \$ simulation time (second) \$ \$******** Set Ground \$ &dimen -save -dimen meters m-tons &DATA SOIL TANAH DEPTH 25 END &DESCRIBE BODY GROUND MEDIT *TY1 309.0 0.0 20.6 **END** SET INIT. CONDITIONS \$ &INSTATE -LOCATE FSO 0.00 0.00 -7.8625 \ -LOCATE ST 31.22 -46.00 -14.798 \$ \$************ SET WEIGHTS \$ \$&WEIGHT -compute FSO 74422.1 \ -compute ST 123872 \$ &WEIGHT -compute FSO 9.86 3.14 47.57 47.47 \ -compute ST 15.41 4.92 26.29 25.83 &dcptime Time to Ballast \$ \$ &select :interest -select *@ &describe interest -associate :interest \$

MEDIT

\$----- Define taut bollard connections FSO 284 X 43.4 X 20.6

meter										
&DESCRIBE bodY FSO										
*VSL1	284	0	20.6							
*TAT1	282.8	-3.8	20.6							
*TAT2	281.5	-5.1	20.6							
*TAT3	263.9	-15.3	20.6							
*TAT4	199.72	-19.1	20.6							
*TAT5	143	-19.1	20.6							
*TAT6	141	-19.1	20.6							
*TAT7	85.42	-15.3	20.6							
*TAT8	3.8	-3.8	20.6							
*TAT9	2.5	-7.6	20.6							
*M1A	73	21.7	13.35							
*M2A	113.6	21.7	13.35							
*M3A	162.3	21.7	13.35							
*M4A	215	21.7	13.35							
*M5A	243.4	21.7	13.35							
ф.										

\$----- Define taut bollard connections ST 247.78 X 42 X 21.3

meter

&DESCRIBE	bodY S	Т	
*TAB1	240.8	6.2	21.3
*TAB2	222.7	12.3	21.3
*TAB3	198.6	14.8	21.3
*TAB4	168.5	18.5	21.3
*TAB5	148.5	18.5	21.3
*TAB6	74.2	18.5	21.3
*TAB7	54.2	18.5	21.3
*TAB8	12	6.2	21.3
*TAB9	6	6.2	21.3
*M1	104.22	25	14.2
*M2	144.82	25	14.2
*M3	193.52	25	14.2
*M4	246.22	25	14.2
*M5	274.62	25	14.2
~rope1 h_cat	88 exact	-b_tensi	ion 158 -len 50
~rope2 h_cat	88 exact	-b_tensi	ion 158 -len 50
~rope3 h_cat	88 exact	-b_tensi	ion 158 -len 50
~rope4 h_cat	88 exact	-b_tensi	ion 158 -len 30
~rope5 h_cat	88 exact	-b_tensi	ion 158 -len 80
~rope6 h_cat	88 exact	-b_tensi	ion 158 -len 80
~rope7 h_cat	88 exact	-b_tensi	ion 158 -len 30
~rope8 h_cat	88 exact	-b_tensi	ion 158 -len 40
~rope9 h_cat	88 exact	-b_tensi	ion 158 -len 40
CONNECTO	R TAUT	1 ~rope	1 *TAB1 *TAT1
CONNECTO	R TAUT	2 ~rope	2 *TAB2 *TAT2
CONNECTO	R TAUT	'3 ~rope	3 *TAB3 *TAT3
CONNECTO	R TAUT	4 ~rope	4 *TAB4 *TAT4
CONNECTO	R TAUT	75 ~rope	5 *TAB5 *TAT5
CONNECTO	R TAUT	6 ~rope	6 *TAB6 *TAT6
CONNECTO	R TAUT	7 ~rope	7 *TAB7 *TAT7
CONNECTO	R TAUT	8 ~rope	8 *TAB8 *TAT8

CONNECTOR TAUT9 ~rope9 *TAB9 *TAT9 \$----- Define fender connections ~FEDO LINK COMP CONNECTOR FD1 ~FEDO *M1 *M1A CONNECTOR FD2 ~FEDO *M2 *M2A CONNECTOR FD3 ~FEDO *M3 *M3A CONNECTOR FD4 ~FEDO *M4 *M4A CONNECTOR FD5 ~FEDO *M5 *M5A \$----- Define tower mooring connections ~YOKE FIX CONNECTOR A1 ~YOKE *VSL1 *TY1 END &dcptime Time to Connect \$ &connector TAUT@ -l_horizontal 15.8 \$ &subti Initial Position of FSO and ST &stat b_w -h &stat config -h plots \$ &SUBTI Initial Position of FSO and ST &picture iso -connector yes &picture side -connector yes &picture top -connector yes &picture bow -connector yes \$ \$************** Mooring Tables \$ **\$CONN DESIGN** TABLE TAUT@ \$ \$ REPORT \$ END \$END **\$&DCPTIME** Time To End Mooring Design **Frequency Domain** \$ hydrodynamics \$&PARA - M DIS 2.94 g_press FSOdb -speed 0.0 -heading 0 \$a tanaka FSO -tm tanaka 4 -heading 0 \$a_mdrift FSO -md_phase 90 -heading 0 end \$ \$******** Find Equilibrium \$ &ENV SEA -sea JONSWAP %head% %Hs% (%Tp%)/1.2958 %Gamma% -CURRENT 2.41 %head% -WIND 22 %head% -TIME %time% 1.0 &equi-iter max 1500 &subti Environment Heading SEA %head% degree Hs=%Hs% Tp=%Tp% (Frequency Domain Simulation) \$ \$******** LOOK AT STATE &STATUS F_CONNECT -H

```
&STATUS Force
&stat cl_flex -h
&stat g_connect -h
&stat spread -h
&stat config -h
$&stat b_w -h
$&dcptime Time For Equilibrium
NOW FIND EQUI.
$
&EQUI -OMEGA 1
$
plots
$
&SUBTI EQUILIBIRUM SBS FSO AND ST MODEL
&picture iso -connector yes
&picture side -connector yes
&picture top -connector yes
&picture bow -connector yes
$
Define Report Points
$
&select :interest -select *@
& describe interest -associate : interest
$
$
RAOs
$
freq_resp
 rao -HEADING %head%
 fr_point &BODY(CG FSO)
  VLIST
  PLOT 1 3 5 7 -T_LEFT 'Translation RAO'\
            -RAX 9 11 13 -T_RIGHT 'Rotational RAO'\
        -T_MAIN 'VESSEL MOTION'
  REPORT
 END
 SP_POINT -sea JONSWAP %head% %Hs% (%Tp%)/1.2958 %Gamma%
  VLIST
  PLOT 1 4 5 6 7 8 9 -T_LEFT 'SPECTRA RESPONSE' $-N
  report
 END
$
$******
                                         Frequency Domain Post
$
 equ_sum
 &DESCRIBE bodY FSO
 fr_point 148.69 0.22 9.86
 REPORT
 end
 &DESCRIBE bodY ST
 fr_point 142.5 0.12 10.5
 REPORT
 end
 st_point
  REPORT
```

```
end
 st_cforce
  REPORT
 END
END
 $&DCPTIME Time To End FRQPOST
$*********
                                            COMPUTE TDOM
$
tdom -no_cap
$&dcptime Time For Time Domain
&subti Environment Heading SEA %head% degree Hs=%Hs% Tp=%Tp% (Time Domain
Simulation)
$
$********
                                            REPORT TDOM RESULTS
$
PRCPOST
  CF MAGNITUDE -EVENT 0 3600 2.0
   VLIST
   STATISTIC 1 14 16 18 20 22 24 26 28 30 -HARD
   EXTREME 1 14 16 18 20 22 24 26 28 30 -HARD
   PLOT 1 14 -N
   PLOT 1 16 -N
   PLOT 1 18 -N
   PLOT 1 20 -N
   PLOT 1 22 -N
   PLOT 1 24 -N
   PLOT 1 26 -N
   PLOT 1 28 -N
   PLOT 1 30 -N
   REPORT
  END
  TOT CFORCE -EVENT 0 %time% 1.0
   REPORT
   VLIST
   STATISTIC 1 2 3 4 8 9 10
  END
  TRAJECTORY-EVENT 0 %time% 1.0
   VLIST
   STATISTIC 1 5 6 7 8 9 10 25 26 27 28 29 30 -HARD
   EXTREME 1 5 6 7 8 9 10 25 26 27 28 29 30 -HARD
   PLOT 1 5 25 -N
   PLOT 1 6 26 -N
   PLOT 1 7 27 -N
   REPORT LOCATION
  END
 END
 &DCPTIME Time For Time Post Processing
$&EOFILE
$
PLOT MOVIE
$
$&PICTURE ISO -RENDER SOLID -MOVIE AVI 1.0 1.0
$&PICTURE BOW -RENDER SOLID -MOVIE AVI 1.0 1.0
$&PICTURE STERN -RENDER SOLID -MOVIE AVI 1.0 1.0
$&PICTURE TOP -RENDER SOLID -MOVIE AVI 1.0 1.0
```

&finish

LAMPIRAN F

OUTPUT HIDROSTATIK SOFTWARE MAXSURF

Draft Amidsh. m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Displacement tonne	198170	185212	174927	162181	152077	139575	129695	117507	107942	96248
Heel to Starboard degrees	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Draft at FP m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Draft at AP m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Draft at LCF m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Trim (+ve by stern) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WL Length m	282.829	282.075	281.533	280.894	280.388	279.777	279.322	278.798	272.583	267.113
WL Beam m	43.400	43.400	43.400	43.400	43.400	43.400	43.400	43.400	43.400	43.400
Wetted Area m ²	19931.732	19248.468	18702.885	18022.908	17478.308	16795.689	16273.041	15556.769	14917.950	14189.234
Waterpl. Area m ²	11370.477	11274.850	11192.925	11083.510	10989.728	10857.732	10738.416	10554.013	10331.057	10123.725
Prismatic Coeff.	0.833	0.830	0.827	0.822	0.819	0.814	0.810	0.806	0.819	0.831
Block Coeff.	0.830	0.826	0.823	0.819	0.815	0.810	0.806	0.801	0.814	0.824
Midship Area Coeff.	0.996	0.996	0.996	0.995	0.995	0.995	0.994	0.994	0.993	0.993
Waterpl. Area Coeff.	0.926	0.921	0.916	0.909	0.903	0.894	0.886	0.872	0.873	0.873
LCB from Amidsh. (+ve fwd) m	1.056	1.276	1.502	1.850	2.182	2.665	3.101	3.666	4.072	4.421
LCF from Amidsh. (+ve fwd) m	-1.807	-2.365	-2.752	-3.077	-3.202	-3.147	-2.767	-1.820	0.155	1.981
KB m	9.890	9.294	8.816	8.220	7.742	7.146	6.670	6.076	5.606	5.026
KG m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BMt m	8.478	8.964	9.394	9.992	10.531	11.291	11.977	12.954	13.829	15.200
BML m	345.394	360.917	374.427	392.952	409.241	430.991	449.665	472.162	481.691	508.645
GMt m	18.369	18.258	18.210	18.212	18.273	18.437	18.646	19.030	19.435	20.225
GML m	355.284	370.211	383.244	401.172	416.983	438.137	456.335	478.238	487.297	513.670
KMt m	18.369	18.258	18.210	18.212	18.273	18.437	18.646	19.030	19.435	20.225
KML m	355.284	370.211	383.244	401.172	416.983	438.137	456.335	478.238	487.297	513.670

Draft Amidsh. m	8.929	7.144	6.920	5.804	2.679	2.456	1.563	1.339	1.116	0.000
Displacement tonne	87037	68907	66662	55501	24701	22529	13938	11830	9745	0.0000
Heel to Starboard degrees	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Draft at FP m	8.929	7.144	6.920	5.804	2.679	2.456	1.563	1.339	1.116	0.000
Draft at AP m	8.929	7.144	6.920	5.804	2.679	2.456	1.563	1.339	1.116	0.000
Draft at LCF m	8.929	7.144	6.920	5.804	2.679	2.456	1.563	1.339	1.116	0.000
Trim (+ve by stern) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WL Length m	265.568	264.170	264.139	264.385	265.800	265.383	263.371	262.728	261.989	253.744
WL Beam m	43.400	43.400	43.400	43.400	43.400	43.400	42.984	42.741	42.425	0.000
Wetted Area m ²	13648.080	12634.682	12512.120	11902.878	10184.938	10059.062	9523.811	9370.407	9203.205	0.000
Waterpl. Area m ²	9998.304	9812.385	9793.719	9708.337	9501.146	9473.682	9257.160	9164.027	9049.434	0.000
Prismatic Coeff.	0.832	0.829	0.828	0.823	0.801	0.800	0.796	0.795	0.793	0.000
Block Coeff.	0.825	0.821	0.820	0.813	0.780	0.777	0.769	0.767	0.766	0.000
Midship Area Coeff.	0.992	0.990	0.990	0.988	0.973	0.971	0.965	0.965	0.966	0.000
Waterpl. Area Coeff.	0.867	0.856	0.854	0.846	0.824	0.823	0.818	0.816	0.814	0.000
LCB from Amidsh. (+ve fwd) m	4.623	4.884	4.908	5.016	5.635	5.739	6.374	6.619	6.925	-135.411
LCF from Amidsh. (+ve fwd) m	2.960	4.119	4.205	4.505	4.526	4.576	4.929	5.086	5.300	-135.411
KB m	4.566	3.652	3.538	2.970	1.379	1.265	0.805	0.690	0.574	0.000
KG m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BMt m	16.577	20.422	21.047	24.915	53.556	58.447	90.007	103.696	122.389	0.000
BML m	542.494	650.606	669.165	786.097	1683.895	1832.754	2831.723	3276.554	3890.135	0.000
GMt m	21.142	24.074	24.586	27.885	54.936	59.711	90.812	104.386	122.963	0.000
GML m	547.060	654.258	672.704	789.067	1685.274	1834.018	2832.528	3277.243	3890.710	0.000
KMt m	21.142	24.074	24.586	27.885	54.936	59.711	90.812	104.386	122.963	0.000
KML m	547.060	654.258	672.704	789.067	1685.274	1834.018	2832.528	3277.243	3890.710	0.000

HIDROSTATIK TANKER MS PACIFIC LEO

Draft Amidsh. m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Displacement tonne	166040	155190	146579	135909	127451	116987	108717	98519	90546	80777
Heel to Starboard degrees	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Draft at FP m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Draft at AP m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Draft at LCF m	18.975	17.859	16.966	15.850	14.957	13.841	12.948	11.831	10.939	9.822
Trim (+ve by stern) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WL Length m	245.390	244.791	244.358	243.824	243.403	242.906	242.537	242.102	234.781	231.658
WL Beam m	42.000	42.000	42.000	42.000	42.000	42.000	42.000	42.000	42.000	42.000
Wetted Area m ²	16988.861	16396.330	15923.764	15334.490	14864.213	14271.367	13821.012	13191.036	12624.692	12021.873
Waterpl. Area m ²	9521.596	9440.421	9370.376	9277.688	9199.040	9086.320	8987.097	8817.762	8615.371	8466.470
Prismatic Coeff.	0.831	0.828	0.825	0.821	0.817	0.812	0.809	0.804	0.824	0.831
Block Coeff.	0.828	0.824	0.821	0.817	0.813	0.808	0.804	0.799	0.819	0.824
Midship Area Coeff.	0.996	0.996	0.996	0.995	0.995	0.995	0.994	0.994	0.993	0.992
Waterpl. Area Coeff.	0.924	0.918	0.913	0.906	0.900	0.891	0.882	0.867	0.874	0.870
LCB from Amidsh. (+ve fwd) m	1.336	1.553	1.769	2.092	2.396	2.830	3.216	3.706	4.007	4.260
LCF from Amidsh. (+ve fwd) m	-1.554	-1.988	-2.236	-2.442	-2.505	-2.383	-1.955	-0.869	1.196	2.485
KB m	9.883	9.286	8.809	8.212	7.735	7.139	6.663	6.070	5.602	5.024
KG m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BMt m	7.922	8.375	8.774	9.333	9.836	10.544	11.182	12.081	12.895	14.189
BML m	258.696	270.210	280.203	293.926	306.065	322.045	336.085	350.875	355.360	378.507
GMt m	17.805	17.662	17.583	17.545	17.571	17.682	17.844	18.151	18.497	19.213
GML m	268.579	279.496	289.012	302.138	313.800	329.184	342.747	356.945	360.962	383.531
KMt m	17.805	17.662	17.583	17.545	17.571	17.682	17.844	18.151	18.497	19.213
KML m	268.579	279.496	289.012	302.138	313.800	329.184	342.747	356.945	360.962	383.531
Immersion (TPc) tonne/cm	97.615	96.783	96.065	95.115	94.309	93.153	92.136	90.400	88.325	86.798

Draft Amidsh. m	8.929	7.813	6.920	5.804	4.911	3.795	2.902	1.786	0.000
Displacement tonne	73067	63535	55979	46609	39167	29915	22560	13480	0.0000
Heel to Starboard degrees	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Draft at FP m	8.929	7.813	6.920	5.804	4.911	3.795	2.902	1.786	0.000
Draft at AP m	8.929	7.813	6.920	5.804	4.911	3.795	2.902	1.786	0.000
Draft at LCF m	8.929	7.813	6.920	5.804	4.911	3.795	2.902	1.786	0.000
Trim (+ve by stern) m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
WL Length m	230.489	229.670	229.532	229.838	230.730	231.131	231.096	229.227	220.490
WL Beam m	42.000	42.000	42.000	42.000	42.000	42.000	42.000	41.729	0.000
Wetted Area m ²	11566.128	11021.356	10596.699	10069.735	9647.363	9111.856	8686.732	8128.267	0.000
Waterpl. Area m ²	8374.492	8282.388	8220.466	8152.341	8105.769	8059.148	8002.478	7831.591	0.000
Prismatic Coeff.	0.831	0.830	0.827	0.822	0.815	0.808	0.802	0.797	0.000
Block Coeff.	0.824	0.822	0.818	0.811	0.803	0.792	0.781	0.770	0.000
Midship Area Coeff.	0.992	0.991	0.989	0.987	0.985	0.980	0.974	0.966	0.000
Waterpl. Area Coeff.	0.865	0.859	0.853	0.845	0.836	0.830	0.824	0.819	0.000
LCB from Amidsh. (+ve fwd) m	4.408	4.545	4.627	4.715	4.784	4.952	5.200	5.765	-116.665
LCF from Amidsh. (+ve fwd) m	3.181	3.761	4.063	4.289	4.325	4.173	4.233	4.548	-116.665
KB m	4.565	3.994	3.539	2.971	2.518	1.950	1.494	0.920	0.000
KG m	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
BMt m	15.485	17.542	19.681	23.306	27.408	35.367	46.289	74.268	0.000
BML m	405.583	452.502	503.556	592.303	695.879	901.407	1175.626	1879.811	0.000
GMt m	20.050	21.535	23.219	26.277	29.926	37.317	47.783	75.188	0.000
GML m	410.148	456.496	507.095	595.274	698.397	903.356	1177.120	1880.731	0.000
KMt m	20.050	21.535	23.219	26.277	29.926	37.317	47.783	75.188	0.000
KML m	410.148	456.496	507.095	595.274	698.397	903.356	1177.120	1880.731	0.000

LAMPIRAN G OUTPUT HIDROSTATIK DI MOSES

+++ HYDROSTATIC PROPERTIES+++

For Body FSO

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

1.00 0.00 0.00 0.51 8847. 145.74 0.00 131.76 4295.15 131.25 4294.63 8560.56 147.41 0.00 1.10 0.00 0.00 9470.39 147.24 0.00 0.57 8903. 145.63 0.00 120.85 3927.46 120.29 3926.89 1.20 0.00 0.00 10385.88 147.10 0.00 111.79 3619.54 111.17 3618.92 0.00 0.62 8957. 145.54 1.30 0.00 0.00 11306.83 146.96 0.67 9007. 145.46 0.00 104.10 3356.33 103.43 3355.66 0.00 1.40 0.00 0.00 97.51 3128.92 12232.64 146.85 0.00 0.72 9054. 145.39 0.00 96.79 3128.20 1.50 0.00 0.00 13163.19 146.74 0.00 0.77 9099. 145.34 0.00 91.81 2930.59 91.04 2929.81 1.60 0.00 0.00 14098.22 146.65 0.82 9143. 145.30 0.00 86.84 2756.02 86.02 2755.20 0.00 1.70 0.00 0.00 15037.65 146.56 0.88 9184. 145.28 0.00 82.46 2600.84 81.58 2599.97 0.00 1.80 0.00 0.00 15981.19 146.49 0.93 9224. 145.27 78.57 2462.52 0.00 0.00 77.64 2461.59 1.90 0.00 0.00 16929.12 146.42 75.09 2338.65 0.00 0.98 9264. 145.26 0.00 74.12 2337.67 2.00 0.00 0.00 17880.86 146.36 1.03 9303. 145.25 0.00 71.98 2227.11 70.95 2226.08 0.00 2.10 0.00 0.00 18836.39 146.30 0.00 1.08 9341. 145.24 0.00 69.17 2126.10 68.09 2125.02 19796.01 146.25 2.20 0.00 0.00 0.00 1.13 9379. 145.23 0.00 66.62 2034.18 65.48 2033.04
2.30	0.00	0.00	20759.55	146.20	0.00	1.19	9415. 145.22	0.00	64.25 1950.02	63.06	1948.84
2.40	0.00	0.00	21725.54	146.16	0.00	1.24	9431. 145.22	0.00	61.69 1871.44	60.45	1870.20
2.50	0.00	0.00	22693.36	146.12	0.00	1.29	9446. 145.22	0.00	59.31 1798.81	58.02	1797.52
2.60	0.00	0.00	23662.56	146.08	0.00	1.34	9460. 145.22	0.00	57.11 1731.49	55.77	1730.15
2.70	0.00	0.00	24632.92	146.05	0.00	1.39	9471. 145.21	0.00	55.07 1668.68	53.67	1667.29
2.80	0.00	0.00	25604.50	146.01	0.00	1.44	9482. 145.19	0.00	53.17 1610.08	51.73	1608.64
2.90	0.00	0.00	26577.11	145.98	0.00	1.50	9492. 145.17	0.00	51.41 1555.43	49.92	1553.94
3.00	0.00	0.00	27550.66	145.95	0.00	1.55	9502. 145.15	0.00	49.78 1504.46	48.23	1502.91
3.10	0.00	0.00	28525.14	145.93	0.00	1.60	9511. 145.13	0.00	48.26 1456.82	46.66	1455.22
3.20	0.00	0.00	29500.71	145.90	0.00	1.65	9520. 145.10	0.00	46.83 1412.24	45.18	1410.59
3.30	0.00	0.00	30477.30	145.87	0.00	1.70	9529. 145.08	0.00	45.50 1370.43	43.80	1368.73
3.40	0.00	0.00	31454.54	145.85	0.00	1.75	9538. 145.06	0.00	44.26 1331.17	42.51	1329.42
3.50	0.00	0.00	32432.91	145.83	0.00	1.80	9547. 145.04	0.00	43.09 1294.24	41.29	1292.44
3.60	0.00	0.00	33412.03	145.80	0.00	1.85	9556. 145.01	0.00	41.99 1259.44	40.14	1257.59
3.70	0.00	0.00	34392.45	145.78	0.00	1.91	9565. 144.99	0.00	40.96 1226.58	39.05	1224.68
3.80	0.00	0.00	35373.84	145.76	0.00	1.96	9574. 144.97	0.00	39.98 1195.52	38.02	1193.57
3.90	0.00	0.00	36355.73	145.73	0.00	2.01	9583. 144.94	0.00	39.06 1166.16	37.05	1164.15
4.00	0.00	0.00	37338.77	145.71	0.00	2.06	9592. 144.91	0.00	38.19 1138.29	36.13	1136.23
4.10	0.00	0.00	38322.22	145.69	0.00	2.11	9601. 144.89	0.00	37.36 1111.82	35.25	1109.71
4.20	0.00	0.00	39307.03	145.67	0.00	2.16	9610. 144.86	0.00	36.58 1086.61	34.42	1084.45
4.30	0.00	0.00	40292.76	145.65	0.00	2.21	9619. 144.84	0.00	35.84 1062.59	33.63	1060.38
4.40	0.00	0.00	41279.17	145.63	0.00	2.26	9627. 144.81	0.00	35.13 1039.70	32.87	1037.44
4.50	0.00	0.00	42266.88	145.61	0.00	2.31	9636. 144.79	0.00	34.46 1017.85	32.15	1015.53
4.60	0.00	0.00	43255.26	145.59	0.00	2.37	9645. 144.76	0.00	33.82 996.98	31.46	994.61
4.70	0.00	0.00	44244.31	145.57	0.00	2.42	9653. 144.73	0.00	33.21 977.02	30.80	974.61

4.80 0.00 0.00 45234.30 145.56 0.00 2.47 9662. 144.71 0.00 32.63 957.91 30.17 955.44 4.90 0.00 0.00 46225.49 145.54 0.00 2.52 9670. 144.68 0.00 32.08 939.59 29.56 937.07 5.00 0.00 0.00 47217.39 145.52 2.57 9679. 144.65 0.00 31.55 922.01 28.98 919.44 0.00 5.10 0.00 0.00 48210.10 145.50 0.00 2.62 9687. 144.63 0.00 31.04 905.12 28.42 902.50 5.20 0.00 0.00 49203.83 145.48 0.00 2.67 9695. 144.60 0.00 30.56 888.90 27.88 886.23

HIDROSTATIK TANKER MS PACIFIC LEO +++ HYDROSTATIC PROPERTIES +++

For Body ST

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

/--- Condition ---//- Displac-/ /-- Center Of Buoyancy --// W.P. / /C. Flotation / /---- Metacentric Heights ----/ Draft Trim Roll ---X--- ---Y--- Area ---X--- --Y--- -KMT- -KML- -BMT- -BML-

1.00	0.00	0.00	7179.46	128.17	0.00	0.52	7441.	126.81	0.00	124.75	3226.95	124.23	3226.44
1.10	0.00	0.00	7944.48	128.03	0.00	0.57	7483.	126.69	0.00	114.09	2950.48	113.53	2949.92
1.20	0.00	0.00	8713.75	127.91	0.00	0.62	7523.	126.58	0.00	105.24	2719.26	104.62	2718.64
1.30	0.00	0.00	9486.96	127.80	0.00	0.67	7561.	126.50	0.00	97.72	2522.38	97.05 2	2521.71
1.40	0.00	0.00	10263.82	127.70	0.00	0.72	7594.	126.46	0.00	91.27	2351.07	90.55	2350.35
1.50	0.00	0.00	11043.88	127.61	0.00	0.77	7626.	126.42	0.00	85.68	2201.94	84.91	2201.17
1.60	0.00	0.00	11827.41	127.53	0.00	0.82	7655.	126.38	0.00	80.79	2070.56	79.96	2069.74
1.70	0.00	0.00	12613.48	127.46	0.00	0.88	7684.	126.35	0.00	76.48	1954.31	75.60	1953.44
1.80	0.00	0.00	13402.76	127.39	0.00	0.93	7711.	126.32	0.00	72.64	1850.42	71.71	1849.50
1.90	0.00	0.00	14194.40	127.33	0.00	0.98	7736.	126.29	0.00	69.20	1757.01	68.22	1756.04
2.00	0.00	0.00	14988.89	127.27	0.00	1.03	7760.	126.27	0.00	66.11	1672.58	65.08	1671.55
2.10	0.00	0.00	15785.46	127.22	0.00	1.08	7783.	126.25	0.00	63.32	1595.88	62.24	1594.80
2.20	0.00	0.00	16584.74	127.18	0.00	1.13	7806.	126.23	0.00	60.79	1525.78	59.65	1524.64
2.30	0.00	0.00	17385.89	127.13	0.00	1.18	7827.	126.23	0.00	58.47	1461.42	57.29	1460.24

2.40	0.00	0.00	18189.51	127.09	0.00	1.24	7847. 126.22	2 0.00	56.36	1402.13	55.12	1400.89
2.50	0.00	0.00	18994.82	127.06	0.00	1.29	7867. 126.21	0.00	54.42	1347.54	53.13	1346.26
2.60	0.00	0.00	19802.37	127.02	0.00	1.34	7886. 126.20	0.00	52.63	1297.07	51.29	1295.73
2.70	0.00	0.00	20611.91	126.99	0.00	1.39	7905. 126.19	0.00	50.98	1250.32	49.59	1248.93
2.80	0.00	0.00	21423.40	126.96	0.00	1.44	7922. 126.17	0.00	49.40	1206.87	47.96	1205.43
2.90	0.00	0.00	22235.97	126.93	0.00	1.49	7932. 126.16	5 0.00	47.81	1166.26	46.32	1164.77
3.00	0.00	0.00	23049.46	126.90	0.00	1.54	7942. 126.15	5 0.00	46.33	1128.44	44.78	1126.89
3.10	0.00	0.00	23864.28	126.88	0.00	1.60	7951. 126.13	3 0.00	44.95	1093.09	43.35	1091.49
3.20	0.00	0.00	24680.28	126.85	0.00	1.65	7961. 126.12	2 0.00	43.65	1059.98	42.01	1058.34
3.30	0.00	0.00	25496.51	126.83	0.00	1.70	7970. 126.11	0.00	42.44	1028.95	40.75	1027.25
3.40	0.00	0.00	26313.86	126.81	0.00	1.75	7979. 126.10	0.00	41.31	999.77	39.56	998.02
3.50	0.00	0.00	27132.46	126.78	0.00	1.80	7987. 126.08	3 0.00	40.24	972.24	38.44	970.44
3.60	0.00	0.00	27951.90	126.76	0.00	1.85	7996. 126.07	0.00	39.23	946.23	37.38	944.38
3.70	0.00	0.00	28771.77	126.74	0.00	1.90	8004. 126.06	5 0.00	38.28	921.62	36.38	919.71
3.80	0.00	0.00	29592.72	126.72	0.00	1.96	8012. 126.04	0.00	37.39	898.28	35.43	896.32
3.90	0.00	0.00	30414.49	126.71	0.00	2.01	8019. 126.03	3 0.00	36.54	876.15	34.53	874.14
4.00	0.00	0.00	31237.31	126.69	0.00	2.06	8027. 126.01	0.00	35.73	855.14	33.67	853.08
4.10	0.00	0.00	32060.64	126.67	0.00	2.11	8034. 126.00	0.00	34.97	835.18	32.86	833.07
4.20	0.00	0.00	32884.28	126.65	0.00	2.16	8041. 125.98	3 0.00	34.25	816.21	32.09	814.05
4.30	0.00	0.00	33709.00	126.64	0.00	2.21	8049. 125.96	5 0.00	33.56	798.14	31.35	795.93
4.40	0.00	0.00	34534.92	126.62	0.00	2.26	8056. 125.94	0.00	32.90	780.90	30.64	778.63
4.50	0.00	0.00	35361.24	126.60	0.00	2.31	8063. 125.92	2 0.00	32.28	764.46	29.97	762.14
4.60	0.00	0.00	36187.84	126.59	0.00	2.36	8070. 125.90	0.00	31.69	748.74	29.32	746.38
4.70	0.00	0.00	37015.43	126.57	0.00	2.42	8077. 125.88	3 0.00	31.12	733.71	28.71	731.29
4.80	0.00	0.00	37844.10	126.56	0.00	2.47	8083. 125.86	5 0.00	30.58	719.32	28.12	716.85

4.900.000.0038673.07126.540.002.528090.125.840.0030.07705.5627.55703.045.000.000.0039502.72126.530.002.578097.125.810.0029.58692.3727.01689.805.100.000.0040333.41126.510.002.628104.125.790.0029.11679.7126.49677.095.200.000.0041164.49126.500.002.678111.125.770.0028.66667.5625.99664.89

LAMPIRAN H CAD PEMODELAN LOKAL KONSTRUKSI BOLDER

Mooring Arrangement FSO Ladinda

Koordinat bolder di FSO Ladinda

Koordinat	X	Y	Z
Bolder 1A	278.32 m	8.68 m	22.6 m
Bolder 1B	277.02 m	10.127 m	22.6 m
Bolder 2	266.96 m	15.693 m	22.6 m
Bolder 3	199.72 m	20.7 m	20.6 m
Bolder 4A	143 m	20.7 m	20.6 m
Bolder 4B	141 m	20.7 m	20.6 m
Bolder 5	85.2 m	20.7 m	20.6 m
Bolder 6A	5.6 m	11.624 m	20.6 m
Bolder 6B	4.3 m	13.02 m	20.6 m

- Properti pada Pemodelan Lokal Deck Transverse : 2000 x 12 (FB 250 x20) mm Dengan jumlah 3
 - Stiffeners : FB 400 x 26 mm -Dengan jumlah 6

Hasil Pemodelan

