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Carleton University, Ottawa, Canada
E-mail: vida@cs.mcgill.ca

R. Flatland
Siena College, Loudonville, USA
E-mail: flatland@siena.edu

F. Hurtado
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2 Ballinger et al.

Abstract For a fixed integer k ≥ 0, a k-transmitter is an omnidirectional
wireless transmitter with an infinite broadcast range that is able to penetrate
up to k “walls”, represented as line segments in the plane. We develop lower
and upper bounds for the number of k-transmitters that are necessary and
sufficient to cover a given collection of line segments, polygonal chains and
polygons.

Keywords Coverage · guarding · transmitters · art gallery · visibility

1 Introduction

Illumination and guarding problems generalize the well-known art gallery
problem in computational geometry [19,20]. The task is to determine a min-
imum number of guards that are sufficient to guard, or “illuminate” a given
region under specific constraints. The region under surveillance may be a poly-
gon, or may be the entire plane with polygonal or line segment obstacles. The
placement of guards may be restricted to vertices (vertex guards) or edges
(edge guards) of the input polygon(s), or may be unrestricted (point guards).
The guards may be omnidirectional, illuminating all directions equally, or may
be represented as floodlights, illuminating a certain angle in a certain direction.

Inspired by advancements in wireless technologies and the need to offer
wireless services to clients, Fabila-Monroy et al. [13] and Aichholzer et al. [2]
introduce a new variant of the illumination problem, called modem illumi-
nation. In this problem, a guard is modeled as an omnidirectional wireless
modem with an infinite broadcast range and the power to penetrate up to k
“walls” to reach a client, for some fixed integer k ≥ 0. Geometrically, walls are
most often represented as line segments in the plane. In this paper, we refer
to such a guard as a k-transmitter, and we speak of covering (rather than
illuminating or guarding). We address the general problem introduced in [13,
2], reformulated as follows:
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k-Transmitter Problem: Given a set of obstacles in the plane, a tar-
get region, and a fixed integer k ≥ 0, how many k-transmitters are
necessary and sufficient to cover that region?

We consider instances of the k-transmitter problem in which the obstacles are
line segments or simple polygons, and the target region is a collection of line
segments, or a polygonal region, or the entire plane. In the case of plane cover-
age, we assume that transmitters may be embedded in the wall, and therefore
can reach both sides of the wall at no cost. In the case of polygonal region cover-
age, we favor the placements of transmitters inside the region itself; therefore,
when we talk about a vertex transmitter, the implicit assumption is that the
transmitter is placed just inside the polygonal region, and so must penetrate
one wall to reach the exterior.

1.1 Previous Results

For a comprehensive survey on the art gallery problem and its variants, we refer
the reader to [19,20]. Also see [12,10,7] for results on the wireless localization
problem, which asks for a set of 0-transmitters that need not only cover a given
region, but also enable mobile communication devices to prove that they are
inside or outside the given region. In this section, we focus on summarizing
existing results on the k-transmitter problem and a few related issues.

For k = 0, the k-transmitter problem for simple polygons is settled by the
Art Gallery Theorem [8], which states that bn3 c guards are sufficient and some-
times necessary to guard a polygonal region with n vertices. Finding the mini-
mum number of 0-transmitters that can guard a given polygon is NP-hard [18,
19]. For k > 0, Aichholzer et al. [13,2] study the k-transmitter problem in
which the target region is represented as a monotone polygon or a mono-
tone orthogonal polygon with n vertices. They show that n

2k k-transmitters
are sufficient, and d n

2k+4e k-transmitters are sometimes necessary1 to cover a
monotone polygon. They also show that d n

2k+4e k-transmitters are sufficient
and necessary to cover any monotone orthogonal polygon. The authors also
study simple polygons, orthogonal polygons and arrangements of lines in the
context of very powerful transmitters, i.e, k-transmitters where k may grow
as a function of n. For example, they show that any simple polygon with n
vertices can always be covered with one transmitter of power d 2n+1

3 e, and this
bound is tight up to an additive constant. In the case of orthogonal polygons,
one dn3 e-transmitter is sufficient to cover the entire polygon. The problem of
covering the plane with a single k-transmitter has been also considered in [15],
where it is proved that there exist collections of n pairwise disjoint equal-
length segments in the Euclidean plane such that, from any point, there is
a ray that meets at least 2n/3 of them (roughly). While the focus in [13,
2,15] is on finding a small number of high power transmitters, our focus in
this paper is primarily on lower power transmitters. This direction of research

1 The bound dn/(2k + 2)e stated in Theorem 7 from [2] is a typo.
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is partly motivated by practical applications, generally related to low k val-
ues, and partly by the celebrated art gallery theorem on guarding polygons,
which corresponds to k = 0. The next natural step is to improve upon existing
bounds for k = 0, by allowing k = 1 (for the case of line segments), or k = 2
(for transmitters placed interior to a polygon), before moving on to arbitrarily
large values for k.

The concept of visibility through k segments has also appeared in other
works. Dean et al. [11,17,14] study vertical bar k-visibility, where k-visibility
goes through k segments. Aichholzer et al. [1] introduce and study the notion
of k-convexity, where a diagonal may cross the boundary at most 2(k − 1)
times.

1.2 Our Results

We consider several instances of the k-transmitter problem. If obstacles are
disjoint segments in the plane, where each segment has one of two slopes, and
the target region is the entire plane, we show that d 12 ((5/6)log(k+1)n + 1)e
k-transmitters are always sufficient and d n+1

2k+2e k-transmitters are sometimes
necessary to cover the target region. We generalize this result to the case where
each segment has one of γ slopes, for some fixed integer γ > 0, and show
that 2n

3 (1 − 1
d10γ/3e )

log(k+1) k-transmitters suffice to cover the target region.

If the target region is the plane and the obstacles are lines and line segments
that form a guillotine subdivision (defined in §2.2), then n+1

2 1-transmitters
suffice to cover the target region. We next consider the case where the obstacles
consist of a set of nested convex polygons. If the target region is the boundaries
of these polygons, then bn7 c + 3 2-transmitters are always sufficient to cover
it. On the other hand, if the target region is the entire plane, then bn6 c + 3
2-transmitters suffice to cover it, and b n14c + 1 2-transmitters are sometimes
necessary. All these results (detailed in §2) use point transmitters, with the
implicit assumption that transmitters on a boundary segment are embedded
in the segment and can reach either side of the segment at no cost.

In §3 we move on to the case where the target region is the interior of
a simple polygon. In this case, we restrict the placement of vertex and edge
transmitters to the interior of the polygon. We show that n

6 2-transmitters
are sometimes necessary to cover the interior of a simple polygon. In §3.2 we
introduce a class of spiral polygons, which we refer to spirangles, and show
that bn8 c 2-transmitters are sufficient, and sometimes necessary, to cover the
interior of a spirangle polygon. In the case of arbitrary spiral polygons, we
derive an upper bound of bn4 c 2-transmitters, matching the upper bound for
monotone polygons from [2].

2 Coverage of Plane with Obstacles

We begin with the problem of covering the entire plane with transmitters, in
the presence of obstacles that are disjoint segments (§2.1), a guillotine sub-
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division (§2.2), or a set of nested convex polygons (§2.3). Throughout this
manuscript, by a segment, we mean a line segment. There is no restriction on
the placement of transmitters (on or off a segment). In the case of a transmitter
located on a line segment itself, the assumption is that the segment does not
act as on obstacle for that transmitter, in other words, that the transmitter
has the power of a k-transmitter on both sides of the segment.

2.1 Disjoint Line Segments

We begin with an overview of our approach for the case of 1-transmitters. Let S
be a set of n disjoint segments in the plane. The main idea is to remove from S
a set I of segments that are independent in the sense that no line goes through
two of them consecutively, i.e. no two segments of I are weakly visible in S.
We then take a set of conventional transmitters (i.e. 0-transmitters) for the
remaining segments S \ I. By upgrading these transmitters to 1-transmitters
we cover the whole plane with respect to the original segments S, as justified
in Lemma 1 below. Thus one ingredient of the proof will be a bound on the
size of a set of 0-transmitters. For each m ≤ n, let ∅(m) denote the number of
0-transmitters sufficient to cover the plane in the presence of any subset of m
segments of S. The bounds we use are reported in Theorem 3 below.

To carry out the above plan, we must guarantee a large independent set
I. We will do this by coloring an appropriately defined graph and taking
the largest color class. More precisely, we will construct a plane graph (an
embedded planar graph) in which we want one color class of a cyclic coloring :
a coloring of the vertices such that any two vertices incident to the same
face have different colors. The minimum number of colors required in a cyclic
coloring depends on the maximum face degree, ∆∗ (where the degree of a face
is the number of edges incident to it). Let cc(∆∗) denote the maximum, over
all plane graphs of face degree ∆∗, of the minimum number of colors in a cyclic
coloring of the graph. Cyclic coloring of plane graphs is a well-studied problem
in graph theory. The bounds on cc(∆∗) that we use are reported in Theorem 2
below.

To complete our overview, we give a bit more detail on the connection
between cyclic coloring and our problem of finding an independent set of seg-
ments in S, and we explain how our bounds depend on the number of distinct
slopes of the line segments in S. We first extend (in an arbitrary order) each
end of each segment of S until it extends to infinity or hits another segment
or an extension of one. The resulting subdivision of the plane, X(S), has n+1
faces. Observe that if a set of k-transmitters covers the plane with respect
to the extended segments X(S) then it covers the plane with respect to the
original segments S. From the planar subdivision X(S), we will define a plane
graph with vertex set S, and with the property that two segments of X(S) are
weakly visible in X(S) if and only if they are incident to a common face in the
plane graph. Thus one color class of a cyclic coloring of the graph corresponds
to an independent set of segments in X(S), which was our goal. Furthermore,
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faces of the graph will correspond to faces of the planar subdivision, so the
maximum face degree in the planar subdivision will be equal to the maximum
face degree in the graph.

Finally, the maximum face degree in X(S) is related to the number of
distinct slopes of the segments in S. The slope of a segment is the angle
formed by the line supporting that segment with the x-axis, when moving
counterclockwise from the x-axis to the supporting line. If all segments in S
have one of γ slopes, for some fixed integer γ > 0, then the planar subdivision
X(S) has face degree ∆∗ ≤ 2γ.

Having discussed all the main ingredients of our result, we now turn to the
details. Our main technical result in this section is:

Theorem 1 For a set, S, of n disjoint segments, let ∆∗ denote the maximum
face degree in an extension of S. Then ∅(n(1 − 1

cc(∆∗) )) 1-transmitters can

cover the plane in the presence of S.

The results of this section follow from Theorem 1, so we pause to discuss
the consequences of this theorem, before proving it. The smaller the value
cc(∆∗), the better the bound on the sufficient number of 1-transmitters in
Theorem 1. A similar statement holds for ∅(m). The following are the best
known bounds for the two quantities.

Theorem 2 [16,3–6] For all positive ∆∗, b 32∆
∗c ≤ cc(∆∗) ≤ d 53∆

∗e; and, if
∆∗ ∈ {3, 4, 5, 8}, then cc(∆∗) ≤ d 53∆

∗e − 1.

Note that the case ∆∗ = 3 is equivalent to the famous four color theorem. The
case ∆∗ = 4 is Ringel’s problem that was solved by Borodin [3,4].

The following theorem states the best known bounds for ∅().

Theorem 3 [9,19] Let S be a set of n disjoint segments. The plane can be
covered by b 23nc 0-transmitters in the presence of S. If each segment in S has
one of two slopes (e.g., horizontal or vertical), then dn+1

2 e 0-transmitters are
sufficient to cover the plane in the presence of S.

If all segments in S have one of γ slopes, for some fixed integer γ > 0, then any
extension of S has face degree ∆∗ ≤ 2γ. Then the following corollary follows
from Theorems 1, 2 and 3 above.

Corollary 1 Let S be a set of n disjoint segments in the plane, where each
segment has one of γ fixed slopes. Then the plane can be covered by 2

3 (1 −
1

d10γ/3e )n 1-transmitters in the presence of S.

If all segments in S have one of two slopes, then ∆∗ ≤ 4 and thus cc(∆∗) ≤ 6
by Theorem 2. This together with the second part of Theorem 3 yields the
following corollary.

Corollary 2 Let S be a set of n disjoint segments in the plane, where each
segment has one of two slopes. Then the plane can be covered by d 5n+6

12 e 1-
transmitters in the presence of S.
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To see that the bound in Corollary 2 is stronger than what can be obtained
with 0-transmitters only, consider the construction in Figure 1, which requires
at least n−2

2 0-transmitters to cover the plane in its presence.

. . .

Fig. 1 A set with n = 8k + 2 segments that requires 4k 0-transmitters. Each of the 4k
shaded faces must have a 0-transmitter, and no two such faces share a common point.

For the case of more than two slopes, the triangular division from Figure 2
can be used to show that the bound from Corollary 1 is stronger than what
can be obtained with 0-transmitters. Each segment has one of three slopes.

Each of the 2(n−3)
3 shaded triangular faces must have a 0-transmitter interior

or on its boundary, and no two shaded triangular faces share a common point.

It follows that 2(n−3)
3 0-transmitters are necessary to guard the plane in the

presence of these n segments. (Compare it with the 3n
5 bound obtained for

γ = 3 from Corollary 1).

...

Fig. 2 At least 2(n− 3)/3 0-transmitters are necessary to cover the plane.

In the remainder of this section we prove Theorem 1. We start with a
useful lemma, after a few definitions. Two segments s, t ∈ S are weakly visible
if there is a point p interior to s and a point q interior to t such that the
segment pq does not properly cross any segment in S. Equivalently, for the
case of extended segments, s and t are weakly visible in X(S) if some face in
X(S) is incident to both of them. Two segments that are not weakly visible
are called independent.

Lemma 1 Let I ⊂ S be a set of pairwise independent segments, and let T be
a set of 0-transmitters that covers the plane in presence of S \ I. Then T is a
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set of 1-transmitters that covers the plane in presence of S. That is, the plane
can be covered by ∅(S \ I) 1-transmitters in the presence of S.

Proof Suppose that a 0-transmitter at point p, covers a point q in the presence
of S \ I. Then the segment pq does not properly cross any segment in S \ I. It
cannot properly cross two or more segments of I, because otherwise two such
consecutive segments would be weakly visible (and therefore not independent).
Thus a 1-transmitter at p covers q in the presence of S. ut

We show how to cover the plane in the presence of the extended (interior-
disjoint) segments X(S): if a set of k-transmitters covers the plane with respect
to X(S), then it covers the plane with respect to the original segment set S.
Lemma 1 suggests that, in order to prove Theorem 1, all we need is to find
a large set of independent segments in X(S). We can obtain such a set by
coloring the segments in X(S) with a small number of colors, such that each
pair of segments colored with the same color are independent. In the proof of
Theorem 1, we will find such a coloring with the help of cyclic colorings and
the related results of Theorem 2. We are now ready to prove Theorem 1.

Proof (Theorem 1) Define the following graph H: For each face f of X(S),
add a vertex to each edge on the boundary of f , and connect two such vertices
whenever they correspond to two consecutive edges on f . Call these edges
of H type-1 edges. Also, for each extended segment in X(S), connect every
pair of vertices of H that are consecutive along that segment. See Figure 3.
Call these edges type-2 edges of H. Note that H is a plane graph. Let H ′ be

(a) (b) (c)

Fig. 3 (a) Extended set X(S) (b) Type-1 (solid) and type-2 (dashed) edges in H (c) Graph
H′.

the plane graph obtained by contracting all the type-2 edges in H. It can be
verified that the largest degree of an internal face in H ′ is ∆∗. Thus H ′ has
a cyclic cc(∆∗)-coloring. Two segments in X(S) are independent if and only
if their corresponding vertices in H ′ do not lie on the same face and are not
adjacent. Thus X(S) has a set I of at least n/cc(∆∗) pairwise independent
segments. Then Lemma 1 implies that ∅(n − n/cc(∆∗)) 1-transmitters can
cover the plane in presence of X(S). The same bound applies immediately to
S, as desired. ut
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The results of Corollaries 1 and 2 can be generalized to k-transmitters as
follows.

Theorem 4 Let S be a set of n disjoint segments in the plane, where each
segment has one of two slopes. Then d 12 ((5/6)log(k+1)n + 1)e k-transmitters
suffice to cover the plane in the presence of S, and d n+1

2k+2e k-transmitters are
sometimes necessary.

Proof The lower bound is realized by parallel segments: one k-transmitter can
only cover 2(k+ 1) of the n+ 1 regions. The proof for the upper bound builds
on the proof technique for k = 1. We repeatedly remove independent sets from
S, and extend the remaining segments after each removal. Let R0 be S and,
for i = 1, 2, . . ., let Si be a maximal independent set of segments in X(Ri−1).
Let Ri = S − (∪ij=1Sj). Then Ri has cardinality at most (5/6)in.

Lemma 2 If T is a set of 0-transmitters that covers the whole plane with
respect to Ri, then T is a set of (2i − 1)-transmitters that covers the whole
plane with respect to S = R0.

Proof We prove by induction on j = 0, . . . , i that T is a set of (2j − 1)-
transmitters that covers the whole plane with respect to Ri−j . The base case
j = 0 is true by the statement of the lemma. Assume that the inductive claim
holds for j − 1, for some j > 0. Let q be a point in the plane covered by a
(2j−1−1)-transmitter, placed at a point p ∈ Ri−j+1. Then the line segment pq
crosses at most 2j−1−1 segments of Ri−j+1, and therefore at most 2j−1 faces.
Imagine adding back the segments of Si−j+1, to obtain Ri−j . By definition,
the segments of Si−j+1 are independent in Ri−j . This implies that the line
segment pq can cross at most one segment of Si−j+1 in each face. The total
number of segments of Ri−j crossed by pq is thus 2j−1− 1 + 2j−1 = 2j − 1. In
other words, a (2j − 1)-transmitter at p in Ri−j covers the same area as the
original (2j−1 − 1)-transmitter at p in Ri−j+1. ut

We use this lemma to complete the proof of the theorem. Since we have
the power of k-transmitters, we can continue removing independent sets up
to i = log(k + 1) times (k = 2i − 1). Then Ri has size (5/6)log(k+1)n, and
the number of 0-transmitters needed to cover the plane with respect to Ri
is d 12 ((5/6)log(k+1)n + 1)e. By Lemma 2, this is precisely the number of k-
transmitters we need to cover the plane with respect to S. ut

An analysis similar to the one used in the proof of Theorem 4 can be used to
generalize the result of Corollary 1 to k-transmitters:

Theorem 5 Let S be a set of n disjoint segments in the plane, where each
segment has one of γ fixed slopes. Then the plane can be covered by 2n

3 (1 −
1

d10γ/3e )
log(k+1) k-transmitters in the presence of S.
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2.2 Guillotine Subdivisions

A guillotine subdivision S is obtained by inserting a sequence s1, . . . , sn of line
segments (possibly rays or lines), such that each inserted segment si splits a
face of the current subdivision Si−1 into two new faces yielding a new subdi-
vision Si. We start with one unbounded face S0, which is the entire plane.

. . .

Fig. 4 A guillotine subdivision with n = 6k + 2 segments that requires 4k 0-transmitters.
Each of the 4k shaded faces must have a 0-transmitter, and no two such faces share a
common point.

As the example in Figure 4 shows, a guillotine subdivision with n segments
can require 2(n−2)/3 0-transmitters. In this section, we show that no guillotine
subdivision requires more than (n + 1)/2 1-transmitters. We begin with a
lemma:

Lemma 3 Let F be a face in a guillotine subdivision. If there are 1-transmitters
on every face that shares an edge with F then these 1-transmitters see all of
F .

Proof Consider the segment si whose insertion created the face F . Before the
insertion of si, the subdivision Si−1 contained a convex face that was split by
si into two faces F and F ′ (Figure 5a). No further segments were inserted into
F , but F ′ may have been further subdivided, so that there are now several
faces F ′1, . . . , F

′
k, with F ′j ⊆ F ′ and F ′j incident on si for all j ∈ {1, . . . , k}

(Figure 5b).

F ′

F

si

F

F ′
1
F ′
2

F ′
3

F ′
4

F̃ ′
1

F̃ ′
2
F̃ ′
3

F̃ ′
4

(a) (b) (c) (d)

Fig. 5 The proof of Lemma 3.

We claim that the 1-transmitters in F ′1, . . . , F
′
k cover the interior of F . To

see this, imagine removing si from the subdivision and instead, constructing
a guillotine subdivision S̃ from the sequence s1, . . . , si−1, si+1, . . . , sn (Fig-
ure 5c). In this case, each face F ′j in S becomes a larger face F̃ ′j in S̃ and
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together
⋃k
j=1 F̃

′
j ⊇ F . Finally, we observe that each 1-transmitter in S in face

F ′j covers at least F̃ ′j , so together, the 1-transmitters in F ′1, . . . , F
′
k cover all of

F (Figure 5d). ut

Theorem 6 Any guillotine subdivision can be covered with at most (n+ 1)/2
1-transmitters.

Proof Consider the dual graph T of the subdivision. T is a triangulation with
n+1 vertices. Let M be any maximal matching in T . Consider the unmatched
vertices of T . Each such vertex is adjacent only to matched vertices (otherwise
M would not be maximal). Let G be the set of 1-transmitters obtained by
placing a single 1-transmitter on the primal edge associated with each edge
e ∈M . Then |G| = |M | ≤ (n+ 1)/2. For every face F of S, F either contains
a 1-transmitter in G, or all faces that share an edge with F contain a 1-
transmitter in G. In the former case, F is obviously covered. In the latter case,
Lemma 3 ensures that F is covered. Therefore, G is a set of 1-transmitters
that covers all faces of F and has size at most (n+ 1)/2. ut

2.3 Nested Convex Polygons

The problems analyzed in this section are essentially two:

1. How many 2-transmitters are always sufficient (and sometimes necessary)
to cover the edges of a set of nested convex polygons?

2. How many 2-transmitters are always sufficient (and sometimes necessary)
to cover the plane in the presence of a set of nested convex polygons?

2.3.1 Some notation.

We call a set of k convex polygons {P1, P2, . . . , Pk} nested if P1 ⊇ P2 ⊇ · · · ⊇
Pk. The total number of vertices of the set of polygons {P1, P2, . . . , Pk} is n.

Given such a set, we use the term layers for the boundaries of the polygons
and rings for the portions of the plane between layers, i.e., the the i-th ring is
Ri = Pi − Pi+1, for i = 1, . . . , k − 1. In addition, R0 = R− P1 and Rk = Pk.

We assume that vertices on each layer have labels with indices increas-
ing counterclockwise. Given a vertex vj ∈ Pi, we call the positive angle
∠vj−1vjvj+1 its external visibility angle. (Positive angles are measured counter-
clockwise, and negative angles are measured clockwise.) Its internal visibility
angle is the negative angle ∠vj−1vjvj+1.

We begin with a simple lemma that will assist us in our subsequent analysis.

Lemma 4 Placing a 2-transmitter at every other vertex in a given layer i
guarantees to completely cover layers i− 3, i− 2, i− 1 and i, as well as rings
i− 3, i− 2 and i− 1.
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j+2vjv

Fig. 6 External visibility angles of two vertices vj , vj+2 of layer i. Only layers i− 3, i− 2,
i− 1 and i are shown.

Proof The fact that layer i is covered is obvious. As for the previous layers,
notice that the convexity of Pi guarantees that the external visibility angles
of any vertex pair vj and vj+2 overlap, as illustrated in Figure 6. Since vj ∈
Pi ⊆ Pi−1 ⊆ Pi−2 ⊆ Pi−3 and the polygons are convex, all rays from vj within
its external visibility angle traverse exactly two segments before reaching layer
i− 3. ut

2.3.2 A particular case.

We first study the special case when all layers (convex polygons) have an even
number of vertices.

Lemma 5 bn/8c + 1 2-transmitters are always sufficient to cover the edges
of any nested set of convex polygons with a total of n vertices, if each of the
polygons has an even number of vertices.

Proof If the number of layers is k ∈ {1, 2, 3}, one transmitter trivially suffices.
If k ≥ 4, from the pigeonhole principle one of i ∈ {1, 2, 3, 4} is such that the
set Gi = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 4)} has no more than bn/4c vertices
(in fact, the number of vertices in Gi must be even since each layer has an
even number of vertices). Place one 2-transmitter at every other vertex of each
Pj ∈ Gi, i.e., in Pi, Pi+4, . . . , Pi+4m, where m = |Gi| − 1. From Lemma 4, the
transmitters on a layer cover their own layer and the three preceding layers
(if they exist). Since every fourth layer has transmitters starting with layer
i ∈ {1, 2, 3, 4}, all layers from 1 up to i+ 4m are covered. On the other hand,
i+4m ∈ {k, k−1, k−2, k−3}. If i+4m = k, all layers are covered; otherwise,
placing one more 2-transmitter in the interior of Pk completes the job, giving
a total of at most bn/8c+ 1 2-transmitters. Figure 7a shows an example. ut

As illustrated in Figure 7a, the location of the transmitters established in
Lemma 5 does not guarantee that all rings are covered. Figure 7b shows a
specific example that leaves some portions of the white rings uncovered.

Lemma 6 bn6 c + 1 2-transmitters are always sufficient to cover the plane in
the presence of any nested set of convex polygons with a total of n vertices, if
each of the polygons has an even number of vertices.
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(a) (b)

Fig. 7 (a) Location of the at most bn/8c + 1 2-transmitters to cover all the edges. The
shaded rings are guaranteed to be covered. The white rings are not necessarily covered. (b)
The shaded region is not covered by the 2-transmitters located at the red vertices. Only the
three involved layers are shown.

Proof An argument analogous to that of Lemma 5 establishes that the plane
is entirely covered if a 2-transmitter is located at every other vertex on each
polygon in the class G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 3)}, i ∈ {1, 2, 3}
having less than or equal to bn3 c vertices, with the possible help of an additional
2-transmitter in the interior of Pk. An example is depicted in Figure 8a. ut

2.3.3 General case.

In this section we study the general case, independent of the parity (odd, even)
of the vertex count in each layer.

(a) (b)

Fig. 8 (a) Location of the at most bn
6
c + 1 2-transmitters to cover the entire plane. (b)

External and internal visibility from a 2-transmitter located in a vertex of layer i. Only
layers i− 3, i− 2, i− 1, i, i+ 1, i+ 2 and i+ 3 are shown.

Lemma 7 Placing a 2-transmitter at each vertex of a given layer i guarantees
to completely cover layers i− 3, i− 2, i− 1, i, i+ 1, i+ 2 and i+ 3, as well
as rings i− 3, i− 2, i− 1, i, i+ 1 and i+ 2.



14 Ballinger et al.

Proof The fact that layers i−3, i−2, i−1, i and rings i−3, i−2 and i−1 are
covered is a consequence of Lemma 4. As for the remaining layers and rings,
notice that, in the internal visibility angle of a 2-transmitter vj ∈ Pi, visibility
is determined by the supporting lines from vj to layers i+ 1, i+ 2 and i+ 3,
as illustrated in Figure 8b. Having a 2-transmitter on each of the vertices of
layer i, combined with the fact that all polygons are convex, guarantees total
covering of layers i+ 1, i+ 2 and i+ 3 and rings i, i+ 1 and i+ 2. ut

Theorem 7 bn7 c+ 3 2-transmitters are always sufficient to cover the edges of
any nested set of convex polygons with a total of n vertices.

Proof We first show that, if the number of layers is k ∈ {1, 2, 3, 4, 5, 6}, then
three 2-transmitters suffice to cover all polygon edges. The argument is as
follows. One 2-transmitter in the interior of Pk takes care of covering the
interior layers k, k − 1 and k − 2. The exterior layers 1, 2 and 3 can be
covered using only two 2-transmitters, as follows. Consider the leftmost and
the rightmost vertices of layers 1, 2 and 3. If any of the polygon edges incident
to these vertices is vertical, then rotate the entire configuration so as to avoid
this situation (note that such a rotation always exists). Therefore, we may
assume that each of P1, P2 and P3 has exactly 2 extreme (leftmost, rightmost)
vertices, for a total of 6 extreme vertices. Consider the 6 edges incident to these
6 vertices, which belong to the lower chains of the corresponding polygons. The
intersection of the halfplanes they define is below P1 and trivially not empty,
so we can place one 2-transmitter in it. Similarly, we can place another 2-
transmitter in the analogous intersection region for the edges in the upper
chains. These two 2-transmitters entirely cover layers 1, 2 and 3.

If k ≥ 7, from the pigeonhole principle one of i ∈ {1, 2, 3, 4, 5, 6, 7} is such
that the set G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 7)} has no more than
bn7 c vertices. Place one 2-transmitter at each vertex of each Pj ∈ G. From
Lemma 7, for a certain value of m ∈ Z all edges in the following layers are
covered: i−3, i−2, i−1 (if they exist), i, . . . , i+7m, i+7m+1, i+7m+2 and
i+ 7m+ 3 (if they exist). In the worst case, the only layers that may remain
uncovered are 1, 2 and 3, as well as k − 2, k − 1 and k. As in the case k < 7,
three 2-transmitters can take care of covering these layers. The total number
of 2-transmitters used is therefore at most bn7 c+ 3. ut

Again, as in Lemma 5, the transmitter placement from Theorem 7 guar-
antees that all edges are covered, while some rings remain uncovered.

Theorem 8 bn6 c+3 2-transmitters are always sufficient to cover the plane in
the presence of any nested set of convex polygons with a total of n vertices.

Proof The proof is similar to that of Theorem 7, but locating the 2-transmitters
at all vertices of every 6th layer (as opposed to every 7th layer in Theorem 7).

ut
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2.3.4 Tighter bounds for small values of n

For small values of n, 3 extra 2-transmitters (used in the bounds of Thms. 7
and 8) may contribute to an increase in the number of transmitters used. In
this section we seek better bounds for small values of n.

Lemma 8 The vertices of any triangulation of a given ring Ri can be colored
with 3 colors, such that each triangle has a vertex of each color, by duplicating
at most two vertices.

Proof The dual graph of the triangulation is necessarily a cycle. To break the
cycle, slice the triangulation along an arbitrary edge shared by two adjacent
triangles, and duplicate the endpoints of that edge. Then the dual cycle turns
into a path, and we can 3-color the vertices of the triangulation in a straight-
forward manner, starting from an arbitrary vertex, until the path of triangles
gets completed. See Figure 9 for an illustration. ut

Fig. 9 Left: Slicing the cycle of triangles. The dual graph of the triangulation is shown
with dashed edges and unfilled vertices. Right: 3-coloring the triangulation path.

For simplicity, we stretch the standard definition of a k-coloring of a graph, and
call the coloring referred to by Lemma 8 a 3-coloring of a ring triangulation.

Lemma 9 Placing one 2-transmitter at each vertex in the smallest color class
of a 3-colored triangulation of a ring R = Pi − Pi+2 guarantees to completely
cover layers i− 1, i, i+ 1 and i+ 2, as well as rings i− 1, i, and i+ 1.

Proof The situation is illustrated in Figure 10. Rings i and i+1, as well as layer
i+2 are contained in the triangulation. Placing a 2-transmitter at each vertex
of the smallest color class, ensures that each triangle will have a 2-transmitter
at one of its vertices (since each triangle has a vertex of each color). Hence we
need only argue that a triangle of the triangulation can be fully covered by a
2-transmitter placed at any one of its vertices. Let v be a vertex of a triangle
T in the triangulation, and let p be any point in T . The only obstruction to v
seeing p is layer i + 1. Now because layer i + 1 is convex, segment vp crosses
layer i+ 1 at most once if v is on layer i+ 2 and at most twice if v is on layer
i. Hence v can see p under 2-transmission.
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layer i
layer i-1

layer i+2

Fig. 10 Covering layers i− 1, i, i+ 1 and i+ 2, as well as rings i− 1, i and i+ 1, from the
vertices of the least popular color.

Finally we must argue that we will also have covered ring i− 1. Each edge
vj−1vj of layer i supports a triangle T of the triangulation whose third vertex,
u belongs to layer i + 2. Extend the edges uvj−1 and uvj until they each hit
layer i− 1. The edge extensions define a visibility cone in ring i− 1, as shown
in Figure 11 (left). A transmitter placed at any vertex of T can see the entire

Fig. 11 Left: the visibility cone of a triangle. Right: the union of such visibility cones fully
covers ring i− 1.

cone. We showed above that it can see all of T . To see that it covers the
rest of the cone, consider any point p that is in the cone but not in T . If the
transmitter is at a vertex v on layer i + 2, then it follows that v can see p
from an analogous argument to the one above, except that now segment vp
crosses layers i+ 1 and i exactly once each. If the transmitter is at a vertex v
on layer i, then segment vp crosses no layers since it doesn’t pass through T .
Furthermore the union of the cones (i.e. taking the cone for each edge in layer
i) fully covers ring i − 1, as illustrated in Figure 11 (right). This shows that
ring i− 1 is also covered. ut
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Theorem 9 b 2n9 c + 1 2-transmitters are always sufficient to cover the edges
of any nested set of convex polygons with a total of n vertices.

Proof If the number of layers is k ∈ {1, 2, 3}, one transmitter trivially suffices.
If k ≥ 4, from the pigeonhole principle one of i ∈ {1, 2} is such that the set
G = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 2)} has no more than bn2 c vertices.
Consider only the layers in G. Triangulate every other ring in the resulting set
of nested layers, starting from the first ring, using chords connecting vertices
of different layers (see Figure 12).

Fig. 12 Triangulating every other ring in G. Layers with filled vertices are in G, layers
with unfilled vertices are not in G.

From Lemma 8, all the selected rings can be 3-colored by duplicating at
most two vertices per ring. Since there are bn2 c vertices in total, and each ring
must at least have 6 vertices, at most bn6 c vertices get duplicated, giving rise
to a total of at most bn2 c+ bn6 c ≤ b

2n
3 c colored vertices. From the pigeonhole

principle, the least popular of the 3 colors must have at most b 13b
2n
3 cc = b 2n9 c

vertices. Place one 2-transmitter at each of these vertices, plus possibly one
2-transmitter in the interior of Pk.

Let us now prove that these 2-transmitters cover the entire set of layers.
Notice that each of the triangulated rings is formed by some layers i and i+2.
From Lemma 9, layers i− 1, i, i+ 1 and i+ 2 are covered. Layers lying in the
exterior or in the interior of the configuration of rings must also be taken care
of. Notice that at most one layer (not belonging to G) can lie in the exterior
of a triangulated ring, and Lemma 9 guarantees that this layer is covered. As
for the interior, in the worst case G may end up with three uncovered layers
(see Figure 13a). In this case, one more 2-transmitter located in the interior
of Pk will complete the job. ut

Theorem 9 guarantees that the entire set of layers is covered, however some
of the rings may not be fully covered. We achieve different bounds for the case
of covering the entire plane in Theorem 10.



18 Ballinger et al.

(a) (b)

Fig. 13 (a) Covering the interior layers. (b) Triangulating the rings of G (filled vertices)
containing the layers of H (unfilled vertices).

Theorem 10 b 8n27 c+ 1 2-transmitters are always sufficient to cover the plane
in the presence of any nested set of convex polygons with a total of n vertices.

Proof The proof is a slight modification of that of Theorem 9. In this case, we
consider the class H = {Pj | j ∈ {1, . . . , k}, j ≡ i(mod 3)} for i ∈ {1, 2, 3}
having at least dn3 e vertices, and let G be the set of the remaining layers. The
rings to be triangulated are those of G embedding the layers of H in their
interior (refer to Figure 13b). In this case, G contains at most b 2n3 c vertices
and the coloring of the triangulations of the rings may require the duplication
of at most two points per layer. Hence, the number of vertices of the smallest
color class is less or equal than b

(
b 2n3 c+ 2b 16

2n
3 c
)

1
3c ≤ b

8n
27 c.

Again, the layers lying in the exterior of the configuration of rings cannot
produce an occlusion to transmission, since there cannot be more than one.
Hence, R0 is covered. As for the most interior rings, one more 2-transmitter,
located in the interior of Pk, guarantees that they are covered. ut

2.3.5 Lower bounds

Lemma 10 For any nested set H of convex polygons with a total of n vertices,
b n14c 2-transmitters are sometimes necessary to cover the edges of the polygons
in H, and b n14c+ 1 2-transmitters are sometimes necessary to cover the plane
in the presence of H.

Proof These lower bounds are established by the example from Figure 14,
which shows seven nested regular t-gons, with t even (so n = 7t). Consider the
set S of midpoints of alternating edges of the middle convex layer (marked ui
in Figure 14). The gap between adjacent layers controls the size of the visibility
regions of the points in S (by symmetry, all visibility regions have identical
size). A small enough gap guarantees that the visibility regions of the points
in S are all disjoint, as illustrated in Figure 14 for t = 10. (Note, however, that
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u1

u2

u3

u4u5

A1

A0

Fig. 14 b n
14
c+ 1 2-transmitters are necessary to cover the plane in the presence of these

seven nested convex layers.

this claim holds for any t ≥ 4.) This means that at least t/2 2-transmitters
are necessary to cover all points in S (one transmitter in the visibility region
of each point). So the number of 2-transmitters necessary to cover all edges is
at least t/2 = n/14.

Consider now the small area marked A1 in Figure 14, bounded by two vis-
ibility rays from u1 and u2, and exterior to the outmost convex layer. Because
the visibility regions of u1 and u2 are disjoint, A1 is non-empty. Note that, from
among all 2-transmitters covering S, only the transmitters covering u1 and u2
can potentially cover A1 as well. If neither of these two transmitters covers
A1, then one extra transmitter is necessary to cover A1, thus establishing the
lower bound of the lemma. If at least one of these two transmitters covers A1,
then such a transmitter cannot cover the region A0 interior to the innermost
convex layer, because A0 and A1 are separated by 7 closed polygonal walls.
Also note that there are exactly t/2 triangular regions Ai (one Ai clockwise to
each ui), and that a transmitter covering ui cannot simultaneously cover both
Ai and Ai−1 (here we use A0 as an alias for At/2). These imply that t/2 + 1
transmitters are necessary to cover all of ui, Ai, plus the interior region A0.
This establishes the second lower bound of the lemma. ut

Table 1 summarizes our results on nested convex polygons.

3 Coverage of Simple Polygons

This section addresses the problem of covering a polygonal region P with 2-
transmitters placed interior to P . Therefore, when we talk about a vertex or
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Target Number of 2-transmitters

Region Upper Bound Lower Bound

Edges min{bn/7c+ 3, b2n/9c+ 1} (Thms. 7,9) bn/14c (Lem. 10)

Plane min{bn/6c+ 3, b8n/27c+ 1} (Thms. 8,10) bn/14c+ 1 (Lem. 10)

Table 1 Covering results for nested convex polygons.

an edge transmitter, the implicit assumption is that the transmitter is placed
just inside the polygonal region, and so must penetrate one wall to reach the
exterior.

3.1 Lower Bounds For Covering Polygons

p p

Fig. 15 A family of polygons requiring at least n/6 interior 2-transmitters to cover. For
labeled point p located in the tip of a barb (shown magnified on the right with the arms
shortened), the locus of all interior points from which a 2-transmitter can cover p is shown
shaded.

Theorem 11 There are simple polygons that require at least n
6 2-transmitters

to cover when transmitters are restricted to the interior of the polygon.

Proof Figure 15 shows the construction for a n = 36 vertex polygon, which
generalizes to n = 6m, for any m ≥ 2. It is a pinwheel whose n/3 arms
alternate between spikes and barbs. Consider an interior point p at the tip of
a barb. The locus of all interior points from which a 2-transmitter can cover
p includes the spike counter-clockwise from the barb, the barb containing p,
and a small section of the pinwheel center. This region is shown shaded for the
point p labeled in Figure 15. Observe that this shaded region is disjoint from
the analogous regions associated with the other barb tips. Hence no two barb
tips can be covered by the same 2-transmitter. Since there are n/6 barbs, the
lower bound is obtained. ut
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3.2 Spirangles

Two edges are homothetic if one edge is a scaled and translated image of the
other. For any integer t > 2, a t-spirangle is a polygonal chainA = a1, a2, ..., am
that spirals inward about a center point such that every t edges it completes a
2π turn, and each edge pair aiai+1, ai+tai+1+t is homethetic, for 1 ≤ i ≤ m−t.
(The condition t > 2 reflects the fact that two edges cannot complete a 2π
turn.)

We assume that the spiral direction is clockwise. A t-sided convex polygon
may be thought of as generating a family of t-spirangles where the ith edge
of each spirangle is parallel to the (i mod t)th edge of the polygon, for i =
0, 1, 2, . . .. See Figure 16a for a 4-spirangle example and a polygon generating
it.

A homothetic t-spirangle polygon P is a simple polygon whose boundary
consists of two nested t-spirangles A = a1, a2, ..., am and B = b1, b2, ..., bm
generated by the same t-sided convex polygon, plus two additional edges a1b1
and ambm joining their endpoints. We assume that chain B is nested inside of
chain A, as shown in Figure 16b. We refer to A as the convex chain and B as
the reflex chain in reference to the type of vertices found on each.

a1

a2

a3

a4

a5

a6

(a)

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a  = b0 1

b2

b3

b4

b5

b6

b7
b8

b9

b10

12b  = a11

(b)

a7
a8

a9

a10

a11

a6

Fig. 16 Definitions (a) A 4-spirangle and corresponding convex polygon (b) Edge-
homothetic spiral polygon (left) and quadrilaterals entirely visible to a 2 -transmitter placed
at a6 (right).

Property 1 Let P be a homothetic spirangle polygon, composed of a convex
spirangle A = a1, a2, . . ., and a reflex spirangle B = b1, b2, . . .. Then ai and bi
see each other, and the set of diagonals {aibi | i = 1, 2, . . .}, induces a partition
of P into quadrilaterals. Furthermore, the visibility region of the 2 -transmitter
placed at ai includes six quadrilaterals: two quadrilaterals adjacent to ai−tbi−t,
two adjacent to aibi, and two adjacent to ai+tbi+t. See right of Figure 16b.

Theorem 12 bn8 c 2-transmitters are sufficient, and sometimes necessary, to
cover a homothetic t-spirangle polygon P with n vertices.
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Proof Recall that t ≥ 3 (by definition) and n ≥ 2(t+1) ≥ 8, therefore bn/8c ≥
1. The algorithm that places transmitters at vertices of P to cover the interior
of P is fairly simple, and is outlined in Table 2.

Homothetic t-Spirangle Polygon Cover(P )

Let A = a1, a2, . . . am be the convex spirangle of P , with a1 outermost.
Let B = b1, b2, . . . bm be the reflex spirangle of P .

1. If m ≤ t+ 2 (or equivalently, the total turn angle of A is ≤ 2π):
Place one transmitter at am, and return (see Figure 17a).

2. Place the first transmitter at vertex at+2 (see a7 in Figure 17b).
3. Starting at at+2, place transmitters at every other vertex of A, up to a2t+1

(i.e., for a 2π turn angle of A, but excluding a2t+2).
4. Let aj be the vertex hosting the last transmitter placed in step 3.

(j = 2t+ 1 for t odd, j = 2t for t even.)
Let P1 be the subpolygon of P induced by vertices a1, . . . , aj+t+1 and
b1, . . . , bj+t+1 (shaded left of Figure 17b).

Recurse on P \ P1: Homothetic t-Spirangle Polygon Cover(P \ P1).

Table 2 Covering the interior of a homothetic spirangle polygon with 2-transmitters.

(c)

a7

a1

a2

a7

a16
a9a11

a17

(a)

a7

a1

a2

a1

a6

a8

(d)

a2

a1

a11
a4

a6

a7

(b)

a9

a2
a7

Fig. 17 Covering spirangles with 2-transmitters: (a) A t-spirangle (t = 5) with 2t+4 edges
covered with one transmitter. (b) A t-spirangle (t = 5) with 8t edges. (c) A t-spirangle
(t = 5) with 6t + 4 edges covered with t/2 + 1 transmitters. (d) A t-spirangle (t = 4) with
6t edges covered with t/2 transmitters.

We now turn to proving that the algorithm described in Table 2 covers the
interior of P . If the total turn angle of A is no greater than 2π, then one 2-
transmitter placed at an innermost vertex suffices, as illustrated in Figure 17a.
Such a transmitter can reach any point interior to P by passing through at
most two edges of P . If the total turn angle of A is greater than 2π, the
algorithm skips the first 2π turn, places transmitters at every other vertex
of the second 2π turn, then skips the third 2π turn before recursing. This
procedure is depicted in Figures 17b and 17c. By Property 1, a transmitter
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placed at a vertex ai covers all six quadrilaterals incident to ai−t, ai and ai+t
(see left of Figure 17c). It follows that the entire P gets covered.

To obtain an upper bound on the number of transmitters, we charge four
quadrilaterals (eight spirangle edges) to each transmitter ai – those adjacent
to aibi and ai−tbi−t (see top of Figure 17b). It may appear that we could
charge to ai the two quadrilaterals adjacent to ai+tbi+t as well, however it
may be that the spirangle does not extend this far (i.e., the total turn angle
of the spirangle is less than 6π).

In any iteration of the recursion, the last transmitter may be charged with
one quadrilateral that has already been charged to the first transmitter (see
a7, a11 in Figure 17b, both of which are charged with quadrilateral a6a7b7b6).
Moreover, transmitters placed in the final iteration may likewise be charged
with quadrilaterals already charged to transmitters in a previous iteration.
However, since transmitters are placed at every other vertex, and since each
iteration (except possibly the last) skips the first 2π turn, no other such col-
lisions may occur. Then each transmitter is in charge of precisely eight edges,
yielding a bound of bn8 c transmitters.

u1

u2

u3

u4u5

Fig. 18 bn
8
c+ 1 2-transmitters are necessary to cover the edges of this spirangle polygon.

The fact that this bound is tight is established by the spirangle polygon
example from Figure 18, which shows a 4π turn spirangle polygon P corre-
sponding to a t-sided regular polygon. The total number of vertices of P is
n = 4t+ 2. This is a worst-case scenario in which transmitters do not get the
chance to use their full coverage potential, since the total turn angle of the
spirangle is between 2π and 6π.

The argument here is similar to the one used in the proof of Lemma 10.
Consider the set S of midpoints of alternating outermost edges (marked ui
in Figure 18b). The gap between the turns controls the size of the visibility
regions of the points in S. A small enough gap guarantees that the visibility re-
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gions of the points in S are all disjoint, meaning that at least t/2 2-transmitters
are necessary to cover all points in S (one transmitter in the visibility region
of each point). So the number of 2-transmitters necessary to cover all edges is
t/2 = n/8. ut

The following lemma establishes a lower bound for the case when the total
turn angle of the spirangle is arbitrarily large.

Lemma 11 There are homothetic 3-spirangle polygons that require d n10e 2-
transmitters.

Proof This lower bound is established by the triangular spirangle polygon P
from Figure 19b. We show inductively that at least d n10e 2-transmitters are
necessary to cover the interior of P . Let A = a1, . . . , am be the convex 3-
spirangle of P , with a1 an outermost vertex. Similarly, let B = b1, b2, . . . , bm
be the reflex 3-spirangle of P . For i = 0, 1, . . ., define layer Li to be the
spirangle subpolygon of P induced by the subchains (a3i+1, a3i+2, a3i+3, a3i+4)
and (b3i+1, b3i+2, b3i+3, b3i+4). Thus, adjacent layers share two vertices, one a-
vertex and one b-vertex.

p

q r

s

(a)

(c)

p

(b)

b11

a1

a4
a7

b7

t

Fig. 19 Homothetic 3-spirangles require d n
10
e transmitters (a) Visibility area V(p) (b)

Maximum area covered by transmitters visible to p, q, and r (c) Coverage by the algorithm
from Table 2.

Consider now three points p, q, r placed halfway along the three outer edges
of layer L0. The locus of all points visible from p, denoted V (p), can be obtained
by extending from p tangents to the convex and reflex chains of L1. These
tangents delimit the area V (p), shaded in Figure 19a. Note that V (p), V (q)
and V (r) have pairwise non-empty intersections (shaded in a darker color in
Figure 19b), however the three of them share no common point. This implies
that at least two transmitters are necessary to cover all three of p, q and r,
and these transmitters must be placed in the area V (p, q, r) = V (p) ∪ V (q) ∪
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V (r). We take one step further and delineate the visibility region V 2(p, q, r)
of all points in V (p, q, r). Note that V 2(p, q, r) can be obtained by restricting
our attention to vertices of V (p, q, r). Using the same approach of extending
tangents from vertices of V (p, q, r)\L0 to the reflex and convex chains of L2, we
determine that V (p, q, r) can see the entire layer L2, plus a small piece of layer
L3 extending past the diagonal a11b11 (see entire shaded area in Figure 19b).
The actual size of this L3 piece is irrelevant to our analysis. The important
observation is that the removal of V 2(p, q, r) leaves an edge-homothetic spiral
polygon with n− 20 edges.

We have established p, q and r require at least two transmitters placed
in the area V (p, q, r), and that those transmitters can cover no points out-
side of V 2(p, q, r). Inductively, we can argue that P \ V 2(p, q, r) requires
dn−2010 e = d n10e − 2 transmitters. Summing up these transmitters with the
two transmitters placed in the area V (p, q, r), yields the lower bound claimed
by the theorem. Figure 19c shows the coverage of a 3-spirangle polygon with
d n10e transmitters, produced by the upper bound algorithm from Table 2. ut

3.3 Arbitrary Spirals

A spiral polygon P consists of a clockwise convex chain and a clockwise reflex
chain that meet at their endpoints. A trivial bn4 c upper bound for the number
of 2-transmitters that are sufficient to cover P can be obtained as follows. Pick
the chain Γ of P with fewer vertices (i.e., Γ is the reflex chain of P , if the
number of reflex vertices is less than the number of convex vertices, and the
convex chain of P otherwise). Then simply place one 2-transmitter at every
other vertex of Γ . By definition, the visibility ray from one 2-transmitter can
cross the boundary of P at most twice. Note however that, even under the
restriction that transmitters be placed interior of P , the visibility ray of one
transmitter can leave and re-enter P , as depicted in Figure 20a for transmitter
labeled a. Then arguments similar to the ones used in Lemma 4 show that the
union of the external visibility angles of all these 2-transmitters cover the
entire spiral. So we have the following result:

Lemma 12 bn4 c 2-transmitters placed interior to an arbitrary polygonal spiral
P are sufficient to cover P .

We remark on two special situations. In the case of transmitters placed at
every other reflex vertex of P , 0-transmitters are sufficient to cover the interior
of P ; and in the case of transmitters placed at every other convex vertex of
P , 1-transmitters are sufficient to cover P , if they are placed outside of P .

An improved upper bound can be established for non-degenerate spirals,
which we define as spirals in which each 2π-turn of each of the convex and
reflex chain of P is homothetic to a convex polygon (i.e., it contains at least 3
vertices).
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Lemma 13 Let P be a polygonal spiral whose every 2π turn subchain has at
least 3 vertices. Then d 2n9 e 2-transmitters placed interior to P are sufficient
to cover the interior of P (in fact, the entire plane).

Proof We distinguish two situations, depending on the relative number of re-
flex and convex vertices. If the number of convex vertices does not exceed
b 4n9 c, then we place a 2-transmitter at every other convex vertex of P , for
a total number of b 2n9 c 2-transmitters. Arguments similar to the ones above
show that the entire plane is covered in this case.

R0

R1

R2

)c()b(

a

b

c

a

b

c

d
split ray

(a)

a

split ray

Fig. 20 Transmitters marked with a small circle (a) External visibility angle of a (b) The
dark area is not covered by a and b (c) P is covered.

If the number of convex vertices is greater than b 4n9 c, then the number of
reflex vertices is at most b 5n9 c. In this case, we partition P into “layers” P1,
P2, P3, . . ., using a split ray that starts at the last (innermost) vertex and
passes through the first (outermost) vertex of the reflex chain of P . Let Ri be
the reflex chain of Pi. See Figure 20b. We divide these reflex chains into two
sets Si = {Rj | j ≡ i(mod 2)}, for i = 0, 1. By the pigeonhole principle, one of
these sets (call it S) has no more than b 5n18 c vertices. We place 2-transmitters
at every other reflex vertex of each chain Rj ∈ S, starting with the first vertex
of Rj ; if Rj has an even number of vertices, we add one extra 2-transmitter at
the last vertex of Rj . We claim that the transmitters placed on Rj cover the
layers Pj and Pj−1 (if j > 1).

To see this, note that the visibility angles of the 2-transmitters placed at
every other vertex of Rj overlap so that collectively they cover a contiguous
region of each of Pj and Pj−1, starting at the split ray and extending clockwise
(see Figure 20c). If Rj has an odd number of vertices, then the visibility angles
of the first and last transmitters on Rj also overlap so that Pj and Pj−1 are
entirely covered. Otherwise, there may be end pieces of Pj and Pj−1 that
remain uncovered, unless an extra transmitter is placed at the last vertex of
Rj (see, for example, the chain R2 with 6 reflex vertices from Figure 20b, in
which the transmitters a and b do not cover the dark region of P1). Let c be
the last vertex of Rj . The edge of P extending clockwise from c must cross the
split ray, since Rj starts and ends on the split ray (by definition). This implies
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that the visibility angle of the 2-transmitter at c overlaps the visibility angle
of the first transmitter on Rj , and the apex of the shared angle is on the other
side of the split ray. This shows that c and the first transmitter on Rj cover a
contiguous region of Pj and Pj−1, and similarly c and the previous transmitter
on Rj cover a contiguous region of Pj and Pj−1. Therefore, Pj and Pj−1 are
entirely covered.

The total number of 2-transmitters used is b 5n36 c + d `2e, where ` is the
number of layers. By our non-degeneracy assumption, each layer has at least 6
vertices (at least 3 reflex vertices and at least 3 convex vertices), which implies
` ≤ n

6 (the last innermost layer could be covered with a single 2-transmitter,
so we do not count it here). This gives us a total of at most b 5n36 c+d

n
12e, which

is upper bounded by d 2n9 e. ut

4 Conclusion

In this paper we study the problem of covering (“guarding”) a target region in
the plane with k-transmitters, in the presence of obstacles. We develop lower
and upper bounds for the problem instance in which the target region is the
plane, and the obstacles are lines and line segments, a guillotine subdivision,
or nested convex polygons. We also develop lower and upper bounds for the
problem instance in which the target region is the set of rings created by nested
convex polygons, or the interior of a spiral polygon. Our work leaves many
interesting problems open. The two main open problems are (1) developing an
upper bound on the number of k-transmitters required to cover the interior of
a simple polygon, and (2) generalizing the lower bound result of Theorem 11
for arbitrary k. Along the way, progress can be made on closing the three
gaps left open by our work: (i) the gap between the lower and upper bound
for the case of disjoint line segments in the plane (Theorem 5), (ii) the gap
between the b n14c lower bound and the bn6 c upper bound for the case of nested
convex layers, and (iii) the gap between the bn8 c lower bound and the bn4 c
upper bound for spiral polygons. Investigating the k-transmitter problem for
other classes of polygons (such as orthogonal polygons) also remains open.

Acknowledgements We thank Joseph O’Rourke for the pinwheel example from Figure 15
and for initiating this line of work.
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