
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Fast Search of Audio Fingerprint using K40 GPGPU

Author(s) Nguyen, Mau Toan

Citation

Issue Date 2016-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/13741

Rights

Description Supervisor:井口　寧, 情報科学研究科, 修士

Fast Search of Audio Fingerprint using K40 GPGPU

Nguyen Mau Toan (1410215)

School of Information Science,
Japan Advanced Institute of Science and Technology

August, 2016

Keywords: Audio FingerPrint, Massively Parallel, General-purpose computing on graphics
processing units (GPGPU), Hierarchy Searching, Computer System, K-modes, Locality
Sensitive Hashing.

1 Introduction

Audio fingerprint is the digital fingerprint that can help to identify the audio content. The
most usage of the audio fingerprint is to detect the illegal contents to support the artists to
protect their copyrights. Nowadays, there are millions of audio and video contents uploaded
to the internet, so the searching speed with the big database size is a big problem for all
systems. Audio data can be called a form of big data and we need the special algorithm and
special computer system for tackling these data. There are two main problems in this field:
Extracting the audio fingerprint and searching the fingerprint in the database. The audio
fingerprint extraction should identify the content even if the audio have transformed in many
ways, fingerprint should be easily distinguishable from different audio waveforms (PCM) and
the size of fingerprint should not be too big to store. In term of fingerprint searching, the
accuracy should be considered, this depends much on not only the fingerprint extraction but
also the algorithm of searching. Another important factor for audio fingerprint searching is
speed, when the database is too large (about 30 million legal songs) and there are many queries
(Thousands of illegal songs/tracks are updated to the Internet everyday). It is really necessary
to build a computer system that can store big database and support fast search fingerprint in
parallel.

2 Proposed Method: Hierarchy Massively Parallel Searching

In this thesis, we propose a new hierarchy searching system that can detect the meta information
for fingerprint in real time by combining the advantages of K-modes and Locality Sensitive
Hashing (LSH). Our method includes two main levels. For the first level, we cluster the database
into sub-databases and these can work independently from each other for similar fingerprints
belonging to the same cluster. And in the second level, we deploy searching multiple queries
for local sub-database in single GPGPU device.

Our system is divided into 2 stages: Preprocessing stage and Searching stage. Preprocessing
stage concentrates on building a structured database that optimizes fast searching and ability
of parallelism. In Figure 1, this stage includes continuous 2 levels of clustering database and
generating hash table using K-modes and LSH hash functions, respectively. The number K
in K-modes will follow the number of GPGPU devices in the system. The size of each cluster
after clustering must be below upper bound of the size of its GPGU’s memory. To do that,
we propose a new method called Extended K-modes for helping to define the limited number

Copyright c© 2016 by Nguyen Mau Toan

1

Fingerprint 1

Fingerprint 2

FingerPrint n

K-modes
Cluster

(Algorithm 6)

Fingerprint 1

Fingerprint 3

FingerPrint n1

Fingerprint 2

Fingerprint 4

FingerPrint n2

n1+n2=n

Hashtable
Generation

(Algorithm 1)

Hashtable
Generation

(Algorithm 1)

Hash index

Hash index

 ..

Fingerprint
index

Fingerprint
index

Hash table

Hash index

Hash index

 ..

Fingerprint
index

Fingerprint
index

Hash table

Figure 1: Preprocessing database for Hierarchy Searching for 2 devices

of the fingerprint in every cluster. With n fingerprints at the beginning, we divide into two
clusters with have n1 and n2 fingerprints. After dividing to clusters, each cluster will be used
for restructuring data by deploying buckets with the same local sensitive audio fingerprints on
the same bucket.

LSH (Level 2)

Hash index

Hash index

 ..

Point index

Point index

FP 1

FP 2

FP 3

 .

FP n1

Hash
table

Subnet
Data

LSH (Level 2)

Hash index

Hash index

 ..

Point index

Point index

FP 1

FP 2

FP 3

 .

FP n2

Hash
table

Subnet
Data

K-modes Clustering

(Level 1)
FTF2F1

K-modes model

M
a

s
s
iv

e
ly

 P
a

ra
ll
e
l

Figure 2: Overview Hierarchy Searching for Querying stage

For searching the audio fingerprint in single GPGPU we divided the queries into threads.
Each query fingerprint searching has two steps, the first one is using the LSH hash functions to
detect the buckets that should have its nearest fingerprint. And the second step is finding the
nearest fingerprint in the specific buckets already gotten from first step. The fingerprint must
be divided into 126 sub-fingerprints. The sub-fingerprint has its hash string and is pointed to
a bucket. The LSH will stop when the first sub-fingerprint get the satisfied fingerprint in its
bucket.

2

With the well-organized database in Preprocessing stage, Searching stage takes advantage of
this and makes a high performance system for searching. In Figure 2, the unique Level 1 is the
management of the whole system. When queries come to the system, this Level 1 will find the
closest cluster for every audio fingerprint and store it to devices’ queue. With the indicated
audio fingerprint queries for GPGPU devices, each Level 2 (GPGPU) can self-manage its queries
and its sub-database. When its queue is full, this device can copy its queries to device’s global
memory and start the kernel of parallel searching. Depending on the difference of a number of
cores on each device, we define a queue size for better performance. After finishing one kernel,
the output of fingerprint ID will be sent to Level 1. And Level 1 can send the meta information
for corresponding audio fingerprint queries.

3 Evaluation

We complete building the experiment with massively parallel with 2 GPGPU devices in 1
node and test 2,000 audio fingerprint queries at the same time in disparate GPGPGU devices.
Comparing with previous research of Yang in parallel audio fingerprint using FPGA, our method
can achieve speed of 50 times faster when using the same conditions of database and queries.
Besides, we also experiment with the audio with high distortion to meet all actual case and
calculate the measure for the worst case.

0 0.01 0.02 0.03 0.04 0.05

Audio Fingerprint Distortion

0

10

20

30

40

50

60

T
hr

ou
gh

pu
t S

ea
rc

hi
ng

 T
im

e
(S

ec
on

ds
)

Throughput Searching Time (100K queries)

1 Million FPs Database
10 Million FPs Database

Figure 3: Result: Searching time of hierarchy searching follow the changing of database size and distortion ratio

In Figure 3, with the power of multiple GPGPU devices, we can obtain the meta information
for a query within 2 milliseconds for 10 million songs’ database and we can search 1000 audio
fingerprint queries in parallel.

4 Conclusion and Future work

Our proposed massively parallel searching system can adapt to all GPGPUs computers. And
not only does our method take advantage of all cores of GPGPUs, but it also uses CPU as
the management for cluster queries and distribution queries for GPGPUs. With the searching

3

speed in Evaluation section, our method can be compatible with the real data of millions of
songs/tracks and the searching time can meet difficult requirements of the real world’s cases.

Despite many advantages listed above, our method has still several drawbacks when only
focusing the searching time. First, our database is a good organization and hard to modify. It
makes this database become more static database when we need to add more audio fingerprint
or remove some of them. In the future, we want to re-organize the structure for storing of the
hash table to become a dynamic database that support well for changing data.

The second problem is the increase of miss ratio when we increase the number of GPGPU
devices. We know that the probability of miss ratio depends much on the number of devices.
For this problem, we want to propose an internetwork among GPGPU devices, which will help
to define a near cluster and it can be used when the miss case happens for a query in a GPGPU.

4

