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How TKIP induces biases of internal states
of generic RC4

Ryoma Ito and Atsuko Miyaji?

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi-shi, Ishikawa, 923-1292, Japan
ryoma.ito.shs@gmail.com, miyaji@jaist.ac.jp

Abstract. RC4, designed by Rivest, is widely used including WPA,
which is one of the security protocols for IEEE 802.11 wireless stan-
dard. The first 3-byte RC4 keys in WPA generated by IV are known
since IV can be obtained by observing a packet. In 2014, Sen Gupta
et al. found linear correlations between the keystream byte and known
RC4 key bytes. In 2015, Our previous work extended linear correlations
to include unknown internal states as well as the keystream byte and
known RC4 key bytes. They found more than 150 linear correlations ex-
perimentally, and proved only 6 cases theoretically. In this paper, we will
provide theoretical proof of 15 cases out of their unproven linear correla-
tions. These theoretical results demonstrated how TKIP key generation
procedure in WPA induces biases on internal states different from generic
RC4.

Keywords: RC4, WPA, TKIP, linear correlation

1 Introduction

RC4 is the stream cipher designed by Rivest in 1987, and is widely used in
various standard protocols such as Secure Socket Layer/Transport Layer Secu-
rity (SSL/TLS), Wired Equivalent Privacy (WEP) and Wi-fi Protected Access
(WPA), etc. Due to its popularity and simplicity, RC4 has been intensively ana-
lyzed since its specification was made public on the internet in 1994 [1–11]. RC4
consists of two algorithms: the Key Scheduling Algorithm (KSA) and the Pseudo
Random Generation Algorithm (PRGA). Both the KSA and the PRGA update
a secret internal state S which is a permutation of all N (typically, N = 28)
possible bytes and two 8-bit indices i and j. The KSA generates the initial state
from a secret key K of l bytes to become the input of the PRGA. Once the initial
state is generated in the KSA, the PRGA outputs a pseudo-random sequence
(keystream) Z1, Z2, . . . , Zr, where r is the number of rounds. The KSA and the
PRGA are shown in Algorithms 1 and 2, respectively, where {SK

i , i, jKi } and
{Sr, ir, jr} are {S, i, j} in the i-th and r-th round of the KSA and the PRGA,
respectively; tr is a 8-bit index of Zr. All addition used in both the KSA and
the PRGA are arithmetic addition modulo N .
? Supported by the project “The Security infrastructure Technology for Integrated
Utilization of Big Data” of Japan Science and Technology Agency CREST.
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Algorithm 1 KSA

1: for i = 0 to N − 1 do
2: SK

0 [i]← i
3: end for
4: jK0 ← 0
5: for i = 0 to N − 1 do
6: jKi+1 ← jKi + SK

i [i] +K[i mod l]
7: Swap(SK

i [i], SK
i [jKi+1])

8: end for

Algorithm 2 PRGA
1: r ← 0, i0 ← 0, j0 ← 0
2: loop
3: r ← r + 1, ir ← ir−1 + 1
4: jr ← jr−1 + Sr−1[ir]
5: Swap(Sr−1[ir], Sr−1[jr])
6: tr ← Sr[ir] + Sr[jr]
7: Output: Zr ← Sr[tr]
8: end loop

WPA is the security protocol for IEEE 802.11 wireless networks standardized
as a substitute for WEP in 2003, and uses RC4 for encryption. WPA improves
a 16-byte RC4 key generation procedure known as the Temporary Key Integrity
Protocol (TKIP) to prevent an attack against WEP by Fluhrer et al. [2]. One
of characteristic features in TKIP is that the first 3-byte RC4 keys, K[0], K[1]
and K[2], are generated by the last 16-bit Initialization Vector (IV16), which is
a sequence counter as follows:

K[0] = (IV16 >> 8) & 0xFF,

K[1] = ((IV16 >> 8) | 0x20) & 0x7F,

K[2] = IV16 & 0xFF.

Note that these RC4 key bytes in WPA are known since IV can be obtained by
observing a packet.

In 2014, Sen Gupta et al. showed that there exists a characteristic distribution
related to K[0] + K[1] in WPA [3]. They also found some linear correlations
between the keystream byte and known RC4 key bytes in WPA such as Z1 =
−K[0] − K[1], Z3 = K[0] + K[1] + K[2] + 3, etc. They applied these linear
correlations to a plaintext recovery attack against WPA in the same way as
the attack against SSL/TLS by Isobe et al. [4], and reduced the computational
complexity necessary for the attack. In 2015, We extended linear correlations
to include unknown internal states as well as the keystream byte and known
RC4 key bytes [5]. Here, unknown internal states mean Sr[ir+1], Sr[jr+1], jr+1

and tr+1 for r ≥ 0. Then, more than 150 linear correlations have been found
experimentally, although only 6 correlations have been proved theoretically such
as: S0[i1] = K[0], K[0] − K[1] − 3 or K[0] − K[1] − 1; S255[i256] = K[0] or
S255[i256] = K[1]; Sr[ir+1] = K[0] +K[1] + 1 (0 ≤ r ≤ N).

We focus on these correlations remain unproven theoretically. [5]. Actually,
linear correlations including internal states could contribute to reducing the com-
putational complexity necessary for the state recovery attacks against RC4 pro-
posed in [1, 6, 9] especially with WPA. Furthermore, theoretical proofs on linear
correlations including internal states can make clear how TKIP induces biases
as pointed out above. In the previous results, biases related to the first round in-
ternal state S0[i1] were intensively investigated but other internal states in more
than second round are still unknown. If we see how many round these biases have
been kept in internal states, then key generation procedure in WPA could be
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reconstructed securely while keeping congruity with TKIP. In fact, TKIP should
have been constructed in such a way that it can keep or further enhance original
security level of generic RC4. Our analysis would be also useful to investigate
a generic construction of key generation procedure including IV in such a way
that it can keep or further enhance security level of an original encryption.

In this paper, we will provide theoretical proofs of 15 cases out of remain-
ing linear correlations. Our contributions of 10 theorems can be summarized as
follows:

– Theorems 1, 4 and 5 show that Pr(S0[i1] = −K[0]−K[1]− 3), Pr(S1[i2] =
−K[0] − K[1] + K[2] − 1) and Pr(S1[i2] = K[0] − K[1] + K[2] + x) (x ∈
{−3,−1, 1}) are double probabilities of random association 1

N in WPA.
– Theorem 2 shows that Pr(S0[i1] = K[0] +K[1] +K[2] + 3) is less than half

of the probability of random association 1
N in both generic RC4 and WPA.

– Theorem 3 shows that Pr(S1[i2] = K[0] + K[1] + K[2] + 3) is pretty high
probability in comparison to the probability of random association 1

N in both
generic RC4 and WPA. This probability is induced by Roos’ bias, that is

Pr(S0[i2] = K[0] +K[1] +K[2] + 3) ≈
(
1− 2

N

)
·
(
1− 1

N

)N+3
+ 1

N .

– Theorems 6-10 provide theoretical analysis related to the second round index
j2.

This paper is organized as follows: Section 2 summarizes the previous works
necessary for both theoretical proofs and experiments such as Roos’ biases [10,
11], biases of the initial state of the PRGA in generic RC4 [7], the distribution of
K[0]+K[1] and the initial state of PRGA in WPA [3] and the number of samples
necessary for distinguishing two distributions [8]. Section 3 shows the theoretical
proofs of biases based on linear equations and the experimental results. Section
4 concludes this paper.

2 Preliminary for our proofs and experiments

Let us summarize some previous results which will be used in both theoretical
proofs and experiments. Proposition 1 shows Roos’ biases [11], correlations be-
tween the RC4 key bytes and S0, proved by Paul and Maitra [10]. Proposition
2 shows biases of S0, proved by Mantin [7]. Proposition 3 shows a distribution
of K[0] + K[1] in WPA, proved by Sen Gupta et al. [3]. By combining Propo-
sition 3 with Proposition 1 (Roos’ biases), a characteristic bias on the distribu-
tion of S0[1] is given as Proposition 4 [3]. Finally, Mantin and Shamir showed
Proposition 5 related to the number of samples necessary for distinguishing two
distributions with a constant probability of success [8].

Proposition 1 ([10, Corollary 2]). In the initial state of the PRGA for 0 ≤
y ≤ N − 1, we have

Pr(S0[y] =
y(y+1)

2 +
∑y

x=0 K[x]) ≈
(
1− y

N

)
·
(
1− 1

N

)[ y(y+1)
2 +N ]

+ 1
N .
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Proposition 2 ([7, Theorem 6.2.1]). In the initial state of the PRGA for
0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1, we have

Pr(S0[u] = v) =

{
1
N

((
1− 1

N

)v
+
(
1−

(
1− 1

N

)v)(
1− 1

N

)N−u−1)
if v ≤ u,

1
N

((
1− 1

N

)N−u−1
+
(
1− 1

N

)v)
if v > u.

Proposition 3 ([3, Theorem 1]). For 0 ≤ v ≤ N − 1, the distribution of the
sum v of K[0] and K[1] generated by the temporal key hash function in WPA is
given as follows:

Pr(K[0] +K[1] = v) = 0 if v is odd,

Pr(K[0] +K[1] = v) = 0 if v is even and v ∈ [0, 31] ∪ [128, 159],

Pr(K[0] +K[1] = v) = 2/256 if v is even and

v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255],

Pr(K[0] +K[1] = v) = 4/256 if v is even and v ∈ [64, 95] ∪ [192, 223].

Proposition 4 ([3, Theorem 2]). In the initial state of the PRGA in WPA
for 0 ≤ v ≤ N − 1, we have

Pr(S0[1] = v) = α · Pr(K[0] +K[1] = v − 1)

+ (1− α) · (1− Pr(K[0] +K[1] = v − 1)) · Pr(S0[1] = v)RC4

+ (1−α)
N−1 ·

∑
x 6=v Pr(K[0] +K[1] = x− 1) · Pr(S0[1] = x)RC4.

where, α = 1
N +

(
1− 1

N

)N+2
, and both Pr(S0[1] = v)RC4 and Pr(S0[1] = x)RC4

are taken from Proposition 2.

Proposition 5 ([8, Theorem 2]). Let X and Y be two distributions, and
suppose that the event e occurs in X with a probability p and Y with a probability
p ·(1+q). Then, for small p and q, O( 1

p·q2 ) samples suffice to distinguish X from
Y with a constant probability of success.

3 Newly proved linear correlations

3.1 Biases based on linear equations

In 2014, Sen Gupta et al. found some linear correlations between the keystream
byte and known RC4 key bytes in WPA using the following linear equations for
a, b, c ∈ {0,±1} and d ∈ {0,±1,±2,±3}:

Zr = a ·K[0] + b ·K[1] + c ·K[2] + d for r ≥ 1 [3]. (1)

In 2015, we further extended linear correlations on known RC4 key bytes in both
generic RC4 and WPA to those among unknown state information, known RC4
key bytes and the keystream byte such as

Xr = a · Zr+1 + b ·K[0] + c ·K[1] + d ·K[2] + e for r ≥ 1, (2)
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whereXr ∈ {Sr[ir+1], Sr[jr+1], jr+1, tr+1}, a, b, c, d ∈ {0,±1}, and e ∈ {0,±1,±2,
±3} [5]. Then, 6 correlations out of more than 150 linear correlations have been
shown theoretically as follows:

S0[i1] = K[0],K[0]−K[1]− 3 or K[0]−K[1]− 1;

S255[i256] = K[0] or K[1];

Sr[ir+1] = K[0] +K[1] + 1 for 0 ≤ r ≤ N .

In this paper, we will provide newly theoretical proofs of 15 linear correlations
listed in Table 1. Actually, the first state recovery attack proposed by Knudsen
et al. reconstructs the internal state of RC4 by computing optimum solutions of
four unknown variables in each round such as Sr[ir+1], Sr[jr+1], jr+1 and tr+1

for r ≥ 0 [6]. Therefore, these linear correlations could contribute to finding a
correct internal state of RC4 in WPA.

We often use Roos’ biases shown in Proposition 1 through proofs. Roos’ biases

are denoted by αy = Pr(S0[y] =
y(y+1)

2 +
∑y

x=0 K[x]). We assume through proofs
that the probability of certain events, confirmed experimentally that there are
no significant biases, is that of random association 1

N (e.g. events related to the
internal state). We also assume that the RC4 key K is generated uniformly at
random in both generic RC4 and WPA, except K[0], K[1] and K[2] in WPA
generated by IV using a sequence counter.

3.2 Proof of biases in S0[i1]

In this section, we prove Theorems 1 and 2 theoretically. Theorem 1 shows that
event (S0[i1] = −K[0]−K[1]−3) yields a positive bias in both generic RC4 and

Table 1. Newly proved linear correlations in both generic RC4 and WPA

Xr Linear correlations RC4 WPA Remarks

−K[0]−K[1]− 3 0.005336 0.008437 Theorem 1
S0[i1]

K[0] +K[1] +K[2] + 3 0.001492 0.001491 Theorem 2

K[0] +K[1] +K[2] + 3 0.360357 0.361718 Theorem 3
−K[0]−K[1] +K[2]− 1 0.005305 0.008197 Theorem 4
K[0]−K[1] +K[2]− 3 0.005295 0.008163 Theorem 5
K[0]−K[1] +K[2]− 1 0.005290 0.008171 Theorem 5

S1[i2]

K[0]−K[1] +K[2] + 1 0.005309 0.008171 Theorem 5

K[2] 0.004428 0.005571 Theorem 6
−K[0]−K[1] +K[2]− 2 0.003921 0.004574 Theorem 7
−K[0]−K[1] +K[2] 0.003919 0.005573 Theorem 7
−K[0]−K[1] +K[2] + 2 0.003912 0.004545 Theorem 7
−K[0] +K[1] +K[2] 0.003921 0.005501 Theorem 8
−K[1] +K[2]− 2 0.003911 0.005479 Theorem 9
−K[1] +K[2] + 3 0.003899 0.005476 Theorem 9

j2

K[0]−K[1] +K[2] 0.003918 0.005618 Theorem 10
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WPA. We note that Theorem 1 means the first round internal state S0[i1] can
be guessed in a double probability of random association 1

N by using known K[0]
and K[1] in WPA. Theorem 2 shows that event (S0[i1] = K[0]+K[1]+K[2]+3)
yields a negative bias in both generic RC4 and WPA.

Theorem 1. In the initial state of the PRGA, we have

Pr(S0[i1] = −K[0]−K[1]− 3) ≈

{
2
N α1 +

1
N

(
1− 2

N

)
(1− α1) for RC4,

4
N α1 +

1
N

(
1− 4

N

)
(1− α1) for WPA.

Proof. The probability of event (S0[i1] = −K[0]−K[1]−3) can be decomposed in
two paths: K[0]+K[1] = 126, 254 (Path 1) and K[0]+K[1] 6= 126, 254 (Path 2).
These paths include all events in order to compute Pr(S0[i1] = −K[0]−K[1]−3).
In the following proof, we use S0[1] instead of S0[i1] (i1 = 1) for simplicity.

Path 1. In K[0] +K[1] = 126, 254, event (S0[1] = −K[0]−K[1]− 3) occurs if
and only if S0[1] = K[0] +K[1] + 1. Therefore, we get

Pr(S0[1] = −K[0]−K[1]− 3 | Path 1) = α1.

Path 2. In K[0] + K[1] 6= 126, 254, event (S0[1] = −K[0] − K[1] − 3) never
occurs if S0[1] = K[0] +K[1] + 1. If S0[1] 6= K[0] +K[1] + 1 holds, then we
assume that event (S0[1] = −K[0]−K[1]− 3) occurs with the probability of
random association 1

N . Therefore, we get

Pr(S0[1] = −K[0]−K[1]− 3 | Path 2) = 1
N · (1− α1).

The probability of K[0]+K[1] = 126 and 254 in WPA is 2
N , twice as high as that

of random association, although that in generic RC4 is 1
N since K is generated

uniformly at random. By substituting each Pr(K[0] +K[1] = 126, 254) in both
generic RC4 and WPA, we get

Pr(S0[i1] = K[0]−K[1]− 3)

= Pr(S0[1] = K[0]−K[1]− 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0]−K[1]− 3 | Path 2) · Pr(Path 2)

≈

{
2
N α1 +

1
N

(
1− 2

N

)
(1− α1) for RC4,

4
N α1 +

1
N

(
1− 4

N

)
(1− α1) for WPA.

ut

Theorem 2. In the initial state of the PRGA, we have

Pr(S0[i1]=K[0]+K[1]+K[2]+3) ≈ 1
N

(
1− 2

N

)(
1− 1

N

)N−2
+ 1

N2

(
3− 2

N

)
.

Proof. Since both SK
1 [1] = 1 and SK

2 [2] = 2 hold with high probability from
Algorithm 1, we get

jK1 = K[0], (3)

jK2 = K[0] +K[1] + SK
1 [1] = K[0] +K[1] + 1, (4)

jK3 = K[0] +K[1] +K[2] + SK
1 [1] + SK

2 [2] = K[0] +K[1] +K[2] + 3. (5)
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In this case, SK
3 [2] = K[0]+K[1]+K[2]+3 always holds from step 7 in Algorithm

1, and thus, event (S0[i1] = K[0]+K[1]+K[2]+3) never occurs because SK
r [i1] 6=

K[0] + K[1] + K[2] + 3 always holds for r ≥ 3. Then, the probability of event
(S0[i1] = K[0] + K[1] + K[2] + 3) can be decomposed in two paths: jK1 = 1, 2
(Path 1) and jK1 6= 1, 2 (Path 2). Path 2 is further divided into three subpaths:
jK2 = 2 (Path 2-1), jK2 6= 2 ∧K[2] = 254 (Path 2-2) and jK2 6= 2 ∧K[2] 6= 254
(Path 2-3). These paths include all events in order to compute Pr(S0[i1] =
K[0] + K[1] + K[2] + 3). In the following proof, we use S0[1] instead of S0[i1]
(i1 = 1) for simplicity.

Path 1. If jK1 = 1, then SK
1 [1] 6= 1 from step 7 in Algorithm 1. Thus, SK

3 [2] 6=
K[0] +K[1] +K[2] + 3 always holds since jK3 6= K[0] +K[1] +K[2] + 3 from
Eq. (5). Similarly, if jK1 = 2, then SK

3 [2] 6= K[0] + K[1] + K[2] + 3 always
holds. Then, we assume that event (S0[1] = K[0] +K[1] +K[2] + 3) occurs
with the probability of random association 1

N . Therefore, we get

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 1) ≈ 1
N .

Path 2-1. As with the discussion in Path 1, if jK2 = 2, then SK
3 [2] 6= K[0] +

K[1] +K[2] + 3 always holds. We then assume that event (S0[1] = K[0] +
K[1] +K[2] + 3) with the probability of random association 1

N . Therefore,
we get

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-1) ≈ 1
N .

Path 2-2. Except the cases in Paths 1 and 2-1, Eqs. (3)-(5) always hold since
we get both SK

1 [1] = 1 and SK
2 [2] = 2. Here, if K[2] = 254, then jK2 =

jK3 = K[0] + K[1] + K[2] + 3 holds since K[2] + 3 = 1. Thus, we get both
SK
3 [1] = K[0] + K[1] + K[2] + 3 and SK

3 [2] = 1 from step 7 in Algorithm
1. After the third round of KSA, SK

r [1] = SK
3 [1] for 4 ≤ r ≤ N if jKr 6= 1

during the subsequent N − 3 rounds, whose probability is approximately(
1 − 1

N

)N−3
since we assume that jKr = 1 holds with the probability of

random association 1
N . Therefore, we get

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-2) ≈
(
1− 1

N

)N−3
.

Path 2-3. As with the discussion in Path 2-2, Eqs. (3)-(5) always hold, and
jK2 6= jK3 since K[2] 6= 254 from the assumption in Path 2-3. Thus, event
(S0[i1] = K[0] +K[1] +K[2] + 3) never occurs since SK

3 [2] = K[0] +K[1] +
K[2] + 3 always holds. Therefore, we get

Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-3) = 0.
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In summary, event (S0[i1] = K[0] +K[1] +K[2] + 3) occurs only in Paths 1, 2-1
and 2-2. Therefore, we get

Pr(S0[1] = K[0] +K[1] +K[2] + 3)

= Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 1) · Pr(Path 1)

+ Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-1) · Pr(Path 2-1)

+ Pr(S0[1] = K[0] +K[1] +K[2] + 3 | Path 2-2) · Pr(Path 2-2)

≈ 1
N · 2

N + 1
N · 1

N

(
1− 2

N

)
+
(
1− 1

N

)N−3 · 1
N

(
1− 1

N

)(
1− 2

N

)
= 1

N

(
1− 2

N

)(
1− 1

N

)N−2
+ 1

N2

(
3− 2

N

)
,

where we assume that 4 events, (jK1 = 1), (jK1 = 2), (jK2 = 2) and (K[2] = 254),
occur with the probability of random association 1

N , respectively. ut

3.3 Proof of biases in S1[i2]

In this section, we prove Theorems 3-5 theoretically. Theorem 3 shows that event
(S1[i2] = K[0] + K[1] + K[2] + 3) occurs with pretty high probability in both
generic RC4 and WPA. This high probability is induced by Roos’ bias, that is
α2 = Pr(S0[2] = K[0] +K[1] +K[2] + 3). Theorems 4 and 5 show that 4 events
related to S1[i2] yield a positive bias in both generic RC4 and WPA. We note
that Theorems 3-5 mean the second round internal state of S1[i2] can be guessed
in pretty high probability or double probabilities of random association 1

N by
using known K[0], K[1] and K[2] in WPA. Here, we show only the proofs of
Theorems 3 and 4. Theorem 5 is proved in the same way as Theorem 4. In order
to prove the following theorems, let us denote the results of Theorems 2 and 3 as
β = Pr(S0[1] = K[0]+K[1]+K[2]+3) and γ = Pr(S1[2] = K[0]+K[1]+K[2]+3),
respectively.

Theorem 3. After the first round of the PRGA, we have

Pr(S1[i2]=K[0]+K[1]+K[2]+3) ≈ β ·Pr(S0[1]=2) + α2 ·
(
1− Pr(S0[1]=2)

)
.

Proof. The probability of event (S1[i2] = K[0]+K[1]+K[2]+3) can be decom-
posed in two paths: j1 = 2 (Path 1) and j1 6= 2 (Path 2). These paths include
all events in order to compute Pr(S1[i2] = K[0] +K[1] +K[2] + 3). Note that
j1 = S0[1] from step 4 in Alforithm 2. In the following proof, we use S1[2] instead
of S1[i2] (i2 = 2) for simplicity.

Path 1. In j1 = 2, event (S1[2] = K[0] + K[1] + K[2] + 3) occurs if and only
if S0[1] = K[0] + K[1] + K[2] + 3 from step 5 in Algorithm 2. We assume
that both events (j1 = 2) and (S0[1] = K[0] +K[1] +K[2] + 3) are mutually
independent. Therefore, we get

Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 1) = β.
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Path 2. In j1 6= 2, event (S1[2] = K[0] + K[1] + K[2] + 3) occurs if and only
if S0[2] = K[0] + K[1] + K[2] + 3 from step 5 in Algorithm 2. We assume
that both events (j1 6= 2) and (S0[2] = K[0] +K[1] +K[2] + 3) are mutually
independent. Therefore, we get

Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 2) = α2.

In summary, we get

Pr(S1[i2] = K[0] +K[1] +K[2] + 3)

= Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 1) · Pr(Path 1)

+ Pr(S1[2] = K[0] +K[1] +K[2] + 3 | Path 2) · Pr(Path 2)

≈ β · Pr(S0[1] = 2) + α2 ·
(
1− Pr(S0[1] = 2)

)
,

where the probability of event (S0[1] = 2) is taken from Propositions 2 and 4 in
generic RC4 and WPA, respectively. ut

Theorem 4. After the first round of the PRGA, we have

Pr(S1[i2] = −K[0]−K[1] +K[2]− 1) ≈

{
2
N γ + 1

N

(
1− 2

N

)
(1− γ) for RC4,

4
N γ + 1

N

(
1− 4

N

)
(1− γ) for WPA.

Proof. The probability of event (S1[i2] = −K[0] − K[1] + K[2] − 1) can be
decomposed in two paths: K[0] +K[1] = 126, 254 (Path 1) and K[0] +K[1] 6=
126, 254 (Path 2). These paths include all events in order to compute Pr(S1[i2] =
−K[0]−K[1] +K[2]− 1). In the following proof, we use S1[2] instead of S1[i2]
(i2 = 2) for simplicity.

Path 1. In K[0] + K[1] = 126, 254, event (S1[2] = −K[0] − K[1] + K[2] − 1)
occurs if and only if S1[2] = K[0] +K[1] +K[2] + 3. Therefore, we get

Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 1) = γ.

Path 2. In K[0] + K[1] 6= 126, 254, event (S1[2] = −K[0] − K[1] + K[2] − 1)
never occurs if S1[2] = K[0]+K[1]+K[2]+3. If S1[2] 6= K[0]+K[1]+K[2]+3
holds, then we assume that event (S1[2] = −K[0]−K[1] +K[2]− 1) occurs
with the probability of random association 1

N . Therefore, we get

Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 2) = 1
N · (1− γ).

The probability of K[0]+K[1] = 126 and 254 in WPA is 2
N , twice as high as that

of random association, although that in generic RC4 is 1
N since K is generated

uniformly at random. By substituting each Pr(K[0] +K[1] = 126, 254) in both
generic RC4 and WPA, we get

Pr(S1[i2] = −K[0]−K[1] +K[2]− 1)

= Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 1) · Pr(Path 1)

+ Pr(S1[2] = −K[0]−K[1] +K[2]− 1 | Path 2) · Pr(Path 2)

≈

{
2
N γ + 1

N

(
1− 2

N

)
(1− γ) for RC4,

4
N γ + 1

N

(
1− 4

N

)
(1− γ) for WPA.



10 R. Ito and A. Miyaji

ut

Theorem 5. After the first round of the PRGA for x ∈ {−3,−1, 1}, we have

Pr(S1[i2] = K[0]−K[1] +K[2] + x) ≈

{
2
N γ + 1

N

(
1− 2

N

)
(1− γ) for RC4,

4
N γ + 1

N

(
1− 4

N

)
(1− γ) for WPA.

3.4 Proof of biases in j2

In this section, we prove Theorems 6-10 theoretically. Theorem 6 shows that
event (j2 = K[2]) yields a positive bias in both generic RC4 and WPA. On the
other hand, Theorems 7-10 show that 7 events related to j2 yield positive biases
in WPA but those are not biases in generic RC4. Here, we show only the proof
of Theorem 6. Theorems 7-10 are proved in the same way as Theorem 6. In
order to prove the following theorems, let us denote the result of Theorem 3 as
γ = Pr(S1[2] = K[0] +K[1] +K[2] + 3).

Theorem 6. After the second round of the PRGA, we have

Pr(j2 = K[2]) ≈

{
2
N α1γ + 1

N

(
1− 2

N

)
(1− α1γ) for RC4,

4
N α1γ + 1

N

(
1− 4

N

)
(1− α1γ) for WPA.

Proof. The probability of event (j2 = K[2]) can be decomposed in two paths:
K[0]+K[1] = 126, 254 (Path 1) andK[0]+K[1] 6= 126, 254 (Path 2). These paths
include all events in order to compute Pr(j2 = K[2]). Note that j2 = S0[1]+S1[2]
from step 4 in Algorithm 2.

Path 1. If two events (S0[1] = K[0] + K[1] + 1) and (S1[2] = K[0] + K[1] +
K[2] + 3) occur simultaneously, we get

j2 = S0[1] + S1[2] = (K[0] +K[1] + 1) + (K[0] +K[1] +K[2] + 3)

= 2K[0] + 2K[1] +K[2] + 4.

Then, in K[0] + K[1] = 126, 254, event (j2 = K[2]) occurs if and only if
j2 = 2K[0] + 2K[1] + K[2] + 4, that is both S0[1] = K[0] + K[1] + 1 and
S1[2] = K[0] +K[1] +K[2] + 3 hold simultaneously. We assume that both
events (S0[1] = K[0] +K[1] + 1) and (S1[2] = K[0] +K[1] +K[2] + 3) are
mutually independent. Therefore, we get

Pr(j2 = K[2] | path 1) = α1γ.

Path 2. In K[0] +K[1] 6= 126, 254 event (j2 = K[2]) never occurs if and only
if j2 = 2K[0] + 2K[1] + K[2] + 4. If either S0[1] 6= K[0] + K[1] + 1 or
S1[2] 6= K[0] +K[1] +K[2] + 3 hold, then we assume that event (j2 = K[2])
occurs with the probability of random association 1

N . Therefore, we get

Pr(j2 = K[2] | Path 2) = 1
N · (1− α1γ).
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The probability of K[0]+K[1] = 126 and 254 in WPA is 2
N , twice as high as that

of random association, although that in generic RC4 is 1
N since K is generated

uniformly at random. By substituting each Pr(K[0] +K[1] = 126, 254) in both
generic RC4 and WPA, we get

Pr(j2 = K[2]) = Pr(j2 = K[2] | Path 1) · Pr(Path 1)

+ Pr(j2 = K[2] | Path 2) · Pr(Path 2)

≈

{
2
N α1γ + 1

N

(
1− 2

N

)
(1− α1γ) for RC4,

4
N α1γ + 1

N

(
1− 4

N

)
(1− α1γ) for WPA.

ut

Theorem 7. After the second round of the PRGA for x ∈ {−2, 0, 2}, we have

Pr(j2 = −K[0]−K[1] +K[2] + x)

≈


1
N α1γ + 1

N

(
1− 1

N

)
(1− α1γ) for RC4,

2
N α1γ + 1

N

(
1− 2

N

)
(1− α1γ) if x = −2, 2 for WPA,

4
N α1γ + 1

N

(
1− 4

N

)
(1− α1γ) if x = 0 for WPA.

Theorem 8. After the second round of the PRGA, we have

Pr(j2 = −K[0] +K[1] +K[2]) ≈

{
1
N α1γ + 1

N

(
1− 1

N

)
(1− α1γ) for RC4,

4
N α1γ + 1

N

(
1− 4

N

)
(1− α1γ) for WPA.

Theorem 9. After the second round of the PRGA for x ∈ {−2, 3}, we have

Pr(j2 = −K[1] +K[2] + x) ≈

{
1
N α1γ + 1

N

(
1− 1

N

)
(1− α1γ) for RC4,

4
N α1γ + 1

N

(
1− 4

N

)
(1− α1γ) for WPA.

Theorem 10. After the second round of the PRGA, we have

Pr(j2 = K[0]−K[1] +K[2]) ≈

{
1
N α1γ + 1

N

(
1− 1

N

)
(1− α1γ) for RC4,

4
N α1γ + 1

N

(
1− 4

N

)
(1− α1γ) for WPA.

3.5 Experimental results

We have conducted experiments on Theorems 1-10 in the following environment
in order to confirm the accuracy of theorems: Intel(R) Core(TM) i3-3220M CPU
with 3.30 GHz, 3.8 GiB memory, gcc 4.8.2 compiler and C language. The number
of samples necessary for our experiments is at least O(N3) according to Propo-
sition 5. This is why each correlation has a relative bias with the probability of
at least O( 1

N ). Then, we have used N5 randomly generated RC4 keys in both
generic RC4 and WPA. The number of these samples satisfies a condition to
distinguish each correlation from random distribution with constant probability
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of success. We also evaluate the percentage of relative error ε of experimental
values compared with theoretical values in the same way as [5]:

ε =
|experimental value− theoretical value|

experimental value
× 100(%).

Tables 2 and 3 show experimental and theoretical values and percentage of rel-
ative error ε in both generic RC4 and WPA.

Table 2. Comparison between experimental and theoretical results for generic RC4

Linear correlation Experimental value Theoretical value ε (%)

−K[0]−K[1]− 3 0.005333309 0.005325263 0.151
S0[i1] K[0] +K[1] +K[2] + 3 0.001490745 0.001479853 0.730

K[0] +K[1] +K[2] + 3 0.360360690 0.362016405 0.459
−K[0]−K[1] +K[2]− 1 0.005305673 0.005302926 0.052
K[0]−K[1] +K[2]− 3 0.005295155 0.005302926 0.147
K[0]−K[1] +K[2]− 1 0.005289180 0.005302926 0.260

S1[i2]

K[0]−K[1] +K[2] + 1 0.005309594 0.005302926 0.126

K[2] 0.004430372 0.004401230 0.658
−K[0]−K[1] +K[2]− 2 0.003920799 0.003893028 0.708
−K[0]−K[1] +K[2] 0.003919381 0.003893028 0.672
−K[0]−K[1] +K[2] + 2 0.003910929 0.003893028 0.458
−K[0] +K[1] +K[2] 0.003920399 0.003893028 0.698
−K[1] +K[2]− 2 0.003910053 0.003893028 0.435
−K[1] +K[2] + 3 0.003897939 0.003893028 0.126

j2

K[0]−K[1] +K[2] 0.003917895 0.003893028 0.635

Table 3. Comparison between experimental and theoretical results for WPA

Linear correlation Experimental value Theoretical value ε (%)

−K[0]−K[1]− 3 0.008408305 0.008182569 2.685
S0[i1]

K[0] +K[1] +K[2] + 3 0.001491090 0.001479853 0.754

K[0] +K[1] +K[2] + 3 0.361751935 0.362723221 0.268
−K[0]−K[1] +K[2]− 1 0.008174625 0.008115732 0.720
K[0]−K[1] +K[2]− 3 0.008140906 0.008115732 0.309
K[0]−K[1] +K[2]− 1 0.008147205 0.008115732 0.386

S1[i2]

K[0]−K[1] +K[2] + 1 0.008150390 0.008115732 0.425

K[2] 0.005560613 0.005417633 2.571
−K[0]−K[1] +K[2]− 2 0.004573276 0.004401230 3.762
−K[0]−K[1] +K[2] 0.005562336 0.005417633 2.601
−K[0]−K[1] +K[2] + 2 0.004543826 0.004401230 3.138
−K[0] +K[1] +K[2] 0.005490766 0.005417633 1.332
−K[1] +K[2]− 2 0.005468425 0.005417633 0.929
−K[1] +K[2] + 3 0.005468472 0.005417633 0.930

j2

K[0]−K[1] +K[2] 0.005607004 0.005417633 3.377
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We see that ε is small enough in each case in generic RC4 such as ε ≤
0.730 (%). From this results, we have convinced that theoretical values closely
reflects the experimental values in generic RC4.

We also see that theoretical biases in S0[i1] and j2 in WPA produce slightly
big ε such as 3.762 (%) but those in S1[i2] in WPA is quite small in the same
way as generic RC4. Let us investigate why such differences on the percentage of
relative error are produced between generic RC4 and WPA. Actually, difference
between generic RC4 and WPA exist only in a relation between K[0] and K[1].
Therefore, these difference influence theoretical biases in the early round, but
seem to attenuate in the second or more round as we see in results to S0[i1] and
S1[i2].

4 Conclusion

In this paper, we have focused on linear correlations including unknown internal
states as well as the keystream byte and known RC4 key bytes in both generic
RC4 andWPA, and provided newly theoretical proofs of 15 linear correlations re-
lated to S0[i1], S1[i2] and j2. For example, event (S1[i2] = K[0]+K[1]+K[2]+3)
yields a pretty high probability in both generic RC4 and WPA, influenced
directly by Roos’ bias; and the probability of 5 linear correlations such as
Pr(S0[i1] = −K[0] − K[1] − 3), Pr(S1[i2] = −K[0] − K[1] + K[2] − 1) and
Pr(S1[i2] = K[0]−K[1] +K[2] + x) for x ∈ {−3,−1, 1} is a double probability
of random association 1

N in WPA.

Our theoretical analysis are expected to contribute from the following two
viewpoints. One is to contribute to reducing the computational complexity nec-
essary for the state recovery attacks against RC4 proposed in [1, 6, 9] especially
with WPA since our linear correlations includes internal states. The other is to
contribute to construct a key generation procedure with IV in such a way that
it keeps or further enhance the security level of its original symmetric cipher.
In our analysis, we have seen how TKIP downgrades security level of generic
RC4 theoretically. These discussions could be generalized to reconstruct a key
generation procedure with IV.
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