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[LETTER

Simple Derivation of the Lifetime and the Distribution of Faces for

a Binary Subdivision Model

SUMMARY  The iterative random subdivision of rectangles is used as
a generation model of networks in physics, computer science, and urban
planning. However, these researches were independent. We consider some
relations in them, and derive fundamental properties for the average life-
time depending on birth-time and the balanced distribution of rectangle
faces.

key words: complex network science, iterative subdivision, random binary
tree, road network, generation of dungeon

1. Introduction

A mathematical model of networks is useful in physics,
computer science, urban planning, etc. There are many
methods for constructing spatial networks by applying a
growing rule or optimization. One of the attractive methods
is based on a recursive geometric growing rule for the divi-
sion of a chosen triangle [1]-[4] or for the attachment which
aims at a chosen edge [5]-[7] in a random or hierarchical
selection. In particular, the fractal-like networks [8] gener-
ated by iterative subdivision of equilateral triangle or square
faces are more efficient with shorter link lengths and more
suitable with lower load for avoiding traffic congestion than
the state-of-the-art complex networks. These typical com-
plex networks are geometric growing models [1]-[7] and
the spatially preferential attachment models [9]-[11] with
various topological structures ranging from river to scale-
free geographical networks [12]. By contrast, the advan-
tages of the fractal-like networks are due to the bounded
path lengths by the r-spanner property [13] and the small
degrees of nodes without overloaded hubs [8]. The sub-
division of squares [8] is generalized to the subdivision of
rectangles into four or two smaller faces [14], [15]. Such a
binary subdivision of rectangle faces is related not only to a
self-organization of networks [14], [15] in complex network
science but also to an object generation in computer graph-
ics, e.g. the map L-system [20] for road network generation
in urban modeling [21]-[23] and the space partitioning for
dungeon generation in a role playing game (RPG) [24].

In addition, the hierarchical structure defined by inclu-
sion relations of faces is equivalent to a binary tree. Binary
tree [18] is a well-known date structure for sorting numbers
in computer science. It is assumed that the input stream of
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query is a permutation of the integers 1,2,..., N, whose or-
derings are at random in a general problem setting. For the
search task, an integer of the input is inserted at a leaf as
the terminal node that satisfies the ordering condition in any
path starting at the root.

In spite of the above potential connections, these re-
searches were independent. Moreover, the theoretical anal-
ysises for a random binary tree [16], [17] are a little difficult
and probably unknown except in a community for mathe-
maticians.

Thus, in this paper, we aim

¢ to make the derivation of fundamental properties more
easily understandable

e to discuss some relations among the findings in the
above different research fields

for the iteratively random subdivision.
2. Binary Subdivision Model

Let us consider the following subdivision model.

Step 0: Set an initial face of rectangle.

Step 1: Ateach discrete time ¢ = 1,2, 3, ..., chose a rectan-
gle uniformly at random.

Step 2: The chosen rectangle face is divided by a line into
smaller two ones which is called as twin faces.

Step 3: Until the break of a given condition, return to Step
1 at the next time.

In Step 3, for example, we consider a condition: the total
number of faces is smaller than a given size.

To simplify the discussion without loss of the funda-
mental properties, we ignore the area ratio of the divided
rectangle faces, therefore we do not care the edge lengths
of the divided rectangle face by a bridge line over the cho-
sen face. Conceptually, the stochastic subdivision of faces
is equivalent to a random binary tree as shown in Fig. 1,
although we do not discuss a search problem for random
queries. The leaves in a random binary tree represent the
rectangle faces, which are classified into adjacent twin faces
generated at a same time and the other faces.

3. Average Lifetime of Faces

We denote n,(f) as the number of rectangle faces counted at
time ¢ for whose birth-time is s. In other words, the birth-
time is the generation time of twin faces by subdivision. Al-
though n4(?) is an integer 0, 1, or 2, in each sample of the

Copyright © 2015 The Institute of Electronics, Information and Communication Engineers



1842
N \E
A B
c
B ] ~\@
D
E|F
B
D
EI|F G
D H

Fig.1  Generation process at ¢ = 1,2, 3 and 4 from top to bottom. (Left)
random subdivision of face. (Right) the corresponding binary tree. The
leaf nodes marked by square and open circle represent the twin faces and
the other faces, called as feets and arms [16], respectively. A, B, ..., F
denotes an identifier of each face.

stochastic process, we consider the average behavior over
many samples. The rate for choosing a face with the birth-
time s is proportional to n4(¢) because of the uniformly ran-
dom selection. Thus, we obtain the expectation

(1
n+ 1) - ny(r) = -9
t+1
and rewrite it to
ns(t+1)=(1—t+l)ns(t), 1<s<y, (D)

where the total number of faces at time ¢ is exactly 7+ 1. The
initial configuration is one face, ¢ = 0.
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By recursively applying the difference Eq. (1) with the
initial condition n(s) = 2, we derive

1
S0 =21 - 2
(D) H( i+l)><

2s s+1 t—2t-1 2s
= ZT. (2)

s+1s+2 t-1 1t

For the average number of faces, our new result of Eq. (2)
gives the time-course of decaying by 1/t with the depen-
dency on the birth-time s.

We consider the expectation time " when the average
number of faces becomes one for the twin faces with a birth-
time s. Since we obtain ¢ = 2s from ny(#') = 1 in Eq. (2),
the average lifetime of more than one face after the births is

Aty=t —s=ys.

Thus, younger faces with a larger s have a longer lifetime.
We emphasize that this iterative stochastic subdivision is
not a Poisson process assumed in the analysis for a ran-
dom quadtree model [19], because the selection probability
of a face is decreasing as time passes even with uniform ran-
domness in increasing the total number of faces. Therefore,
younger faces have less chances for the selection. This is
not independent and identically distributed.

We consider the case that both twin faces generated at
time s remain at next time s + 1. The probability for the
unselection in the total s + 1 faces is

| - 2 s-1 3)

s+1 s+1

Until time ¢, the remaining probability is given by the prod-
uct of Eq. (3)
i-2

gi(0) = T, —=
s—1 s s+1 t-4t-3t-2
s+1s+2s+3 r=21-1 ¢
s(s—=1)
t—-1)"

By summing ¢g,(¢) for all twin faces with birth-times s =
2,3,...,t—1, we derive the rate of twin faces

t—1

s(s— 1) 1 (S Gl :
Zz(t-n=t(,_1)[ZSZ—ZS)z§, “)

s=2 §s=2 s=2

where we use the formulas Y/} s* = %22’_1) -1 and

’s_:lz s = @ — 1. The approximation is valid for a large
t. Since each pair of the twin has two faces, the number
of faces is 2¢/3 averagely. Thus, the rate of other faces is
t/3. These rates are consistent with the asymptotical result
[16] derived by a complicated analysis, and related to the
existing rate n/3 of nodes with degrees 1, 2, and 3 [18] in
a random binary tree. Here, n = 2¢ + 1 denotes the number
of nodes including leaves with degree 1, non-terminal nodes
with degrees 2 or 3, and a root with degree 2. From the rate
of these degrees [18], the expected tree has a balanced shape
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without too deep layers by the dominant long chains of node
degree 2. The balanced tree corresponds to a bell-shape of
the Poisson distribution as mentioned in the next section.

4. Distribution of Layered Faces

Next, we consider the distribution of layered faces. Faces
on the /-th layer are one-to-one corresponding to the leaves
at the depth [ in the binary tree. The number of faces on the
I-th layer can increase until 2/. Figure 2 shows an example
of the layer.

We denote N;(7) as the number of faces that belong to
the /-th layer generated after the selections of / times on the
descendant from the initial face. As mentioned in the ap-
pendix of Ref. [14], we consider the random process by sub-
division in the following continuous-time approximation

—N[( ) =2 XNI,I(I) —Nl(l), [ > 1, (‘5)
dr
dr

The self-similarity in the iterative subdivision of squares
[14] does not affect the analysis of the distribution, because
we treat only the number of faces on each layer without de-
pendence on the shapes.
The solutions of Egs. (5), (6) are Ny = e™* and
I-1

_nl T -7
Ni@) =2 e 1> 1.

The total number of faces is given by

N@) = Ni(@) = 2¢,
1

. . 271
where we use the Taylor series expansion };, % = ¥

Therefore, from p;(t) = Ni(t)/N (1), we obtain the Poisson
distribution with a parameter 27

-1
QO o s 7)

Pz(T)=(l_1)!e , 1>

Note that p; is a function of variable /, and 7 is a auxil-
iary variable to take a temporal snapshot. The mean and the

O,
OO

Fig.2  Example of the layer numbered by [ = 1,2, 3 and 4. (Left) layered
faces. (Right) the corresponding binary tree.
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variance of p; follow 27 « logt by the variable transforma-
tion between a linear time variable ¢ and a logarithmic time
variable T from the relation for the total number of faces
1 +¢ = 2e [14]. Of course they show the asymptotic behav-
ior for a large ¢.

Thus, in the bell-shaped Poisson distribution of layers,
the peak position for the most majority of layers shifts to be
deeper, and the width becomes wider as the divisions are it-
erated. Even if the expanding property can be qualitatively
predicted, the logarithmic time-course is not trivial. This
simply analyzed property of log ¢ is also related to the deep-
est level in a random binary tree [17]. However, the Poisson
approximation of distribution was not derived.

5. Conclusion and Discussion

By using analytical approaches of difference and differen-
tial equations, we have more easily derived the fundamen-
tal properties for the average lifetime of faces and the dis-
tribution of layered faces in the iteratively random binary
subdivision of rectangles which is usually treated as a dis-
crete mathematical problem. We remark that Egs. (2), (4),
(7) hold in more general case divided by non-vertical and
non-horizontal lines with any angles because of no relation
to area and shape of faces.

Our obtained results will be useful for generating road
networks in virtual cities [21] and dungeons in a RPG [24],
automatically. In a dungeon generation, the layered faces is
applicable to a design of corridor placement [24]. In particu-
lar, rooms assigned to twin faces are connected with a corri-
dor. Eq. (4) suggests that such rooms exist averagely in 2/3
of the whole rooms for the uniformly random divisions, and
a game player can directly wander back and forth between
them. When we consider a preferential selection of face ac-
cording to the depth of layer [19] instead of the uniformly
random selection, we can control the rate of twin faces. The
rate becomes larger as a shallow face is chosen for the di-
vision, then balanced similar depths appear. In contrast, it
becomes smaller as a deeper face is chosen, then unbalanced
various depths appear. So, the rate of 2/3 gives a baseline.
On the other hand, the layered faces represent a historical
trace of the construction in a road network. Generally, an
area of face is smaller as the layer becomes deeper. Thus,
long-range access roads tend to be constructed at first, there-
after short-range lanes tend to be added by little and little. A
bridge lane that produces twin faces by subdivision may be
related to increasing the efficiency of traffic through bypaths
on the road network. In the modeling of road networks, we
can generate both T-shaped and +-shaped intersections by
using a probabilistic selection with a constant mixing rate
for quartered and binary divisions of faces, instead of the
uniformly random selection. Conversely, the mixing rate of
quartered and binary divisions may be estimated from real
data of road networks. These base line, historical trace, and
mixing rate can be also discussed in complex network sci-
ence.
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