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When data owners publish their data to a cloud storage, data integrity and availability become typical problems because the cloud
servers are never trusted. To address these problems, researchers proposed the Proof of Retrievability (POR) protocol which allows
a verifier to check and repair the data stored in the cloud servers. Based on the POR protocol, the network coding technique is
commonly applied to increase the efficiency in data transmission and data repair. However, most previous schemes neither consider
a practical scenario nor use the network coding efficiently. In this paper, a lightweight network coding-based POR scheme, called
MD-POR (Multisource and Direct Repair for Proof of Retrievability) is proposed. Unlike previous schemes, the proposed MD-
POR scheme allows multiple clients who have different secret keys to participate in the scheme. Moreover, the MD-POR scheme
supports the direct repair feature in which a corrupted data can be recovered by the servers without burdening the clients. The
MD-POR scheme also supports public authentication feature in which a third party auditor is employed to check the servers, and
the client is thus free of the responsibility of periodically checking the servers. Furthermore, the MD-POR scheme is constructed
based on a symmetric key setting.

1. Introduction

Since data is increasing exponentially, database owners trend
to publish their data to storage providers called clouds in
order to reduce the burden of data storage and mainte-
nance. Clients can thus access, manage, and share their
data from anywhere via the Internet. However, such ser-
vice providers are untrustworthy and present three basic
challenges to data security: (i) integrity, (ii) availability, and
(iii) confidentiality. In confidentiality, there are two research
approaches: the cryptographic approach (e.g., RSA) and the
information-theoretic approach (e.g., secret sharing scheme).
Compared to the cryptographic confidentiality approach,
the information-theoretic confidentiality approach achieves
a security level determined by a threshold. We choose the
information-theoretic approach because our security analysis
derives purely from information theory. In this paper, we
deal with integrity, availability and information-theoretic
confidentiality.

To check the cloud servers, researchers proposed the
Proof of Retrievability (POR) protocol [1–3] that enables the

servers (provers) to demonstrate to the verifier whether the
data stored in the servers is intact and available and enables
the clients to recover the datawhen an error is detected. Based
on the POR protocol, the integrity and availability assurance
are mainly based on three techniques: replication [4], erasure
coding [5], and network coding [6–9]. In the replication
technique, the client stores file replicas in each server. When
a corrupted server is detected, the client uses one of the
healthy replicas to repair it. However, the drawback of this
technique is high storage cost because the client must store
a whole file in each server. Erasure coding technique is then
applied to reduce the storage cost. Erasure coding allows the
client to store file blocks in each server redundantly instead of
file replica as replication. However, when the corrupted data
is repaired, the client has to retrieve the entire original file
before the client generates new coded blocks. Therefore, its
computation and communication costs are increased during
data repair. Network coding technique is then applied to
improve the efficiency in the data repair.Themain advantage
of network coding is that the client does not need to retrieve
the entire file before the client generates new coded blocks.
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Consequently, in this paper, we focus on the network coding
technique. Our goal is to construct a network-coding POR
which satisfies the following aims.

(i) Practical scenario: the system should consist of multi-
ple clients, each client keeps a different secret key.This
is because in many distributed storage systems today
such as Dropbox, each client has a personal data; and
hence, each client should use his own secret key to
satisfy integrity and confidentiality.

(ii) Lightweight: firstly, the clients should be free of two
heaviest tasks: periodically checking the servers and
repairing the corrupted servers. Secondly, the system
should be constructed in a symmetric key setting
which is a well-known lightweight cryptography
rather than an asymmetric key setting.

Network Coding-Based POR Schemes. A few notable network-
coding PORs were proposed. Dimakis et al. [10] were the first
applying network coding to the distributed storage system.
Li et al. [11] proposes a tree-structure data regeneration for
the network coding to optimize network bandwidth by using
a maximum spanning tree. Chen et al. [12] then adapted
the scheme of Dimakis et al. to propose the Remote Data
Checking for Network Coding-based distributed storage
system (RDC-NC) scheme which provides an elegant data
repair by recoding encoded blocks in healthy servers during
repair. Cao et al. [13] applied the Luby transform (LT) code
for reducing the computation cost because the LT code is
a special network code which works in the finite field of
order two andonly uses exclusive-OR (XOR) operation. Chen
et al. [14] proposed the NC-Cloud scheme to improve the
cost-effectiveness of repair using the functional minimum
storage regenerating (FMSR) code and lighten the encoding
requirement of storage nodes during repair. However, all
these schemes cannot hold our aims. These system models
only have a single client. Furthermore, the check and repair
phases in these schemes bring a lot of burden to the client
because (i) the client has to periodically check the servers and
(ii) when a corrupted server is detected, the healthy servers
provide their blocks to the client; the client then has to verifies
them, computes the new blocks, and sends these new blocks
to the new server. Le and Markopoulou after that proposed
the NC-Audit scheme [15] in which a third party auditor
is employed and is delegated the responsibility to check the
servers instead of the client.The authors also discussed a new
repair mechanism in which the new server can compute the
new blocks by itself without the need of the client. We call
that mechanism as direct repair. Unfortunately, their direct
repair is not completed because they mainly focused on how
to prevent the data leakage from the third party auditor.
Furthermore, their scheme is constructed in an asymmetric
key setting and does not deal with multiple clients.

Contribution. In this paper, a new network-coding POR
named as MD-POR is proposed. To the best of our knowl-
edge, we are the first to propose a symmetric key setting-
based direct repair for the POR; furthermore, the pro-
posedMD-POR scheme also supports multiclient and public
authentication.

(i) Direct Repair. If a corrupted server is detected, the
healthy servers are required to provide their coded
blocks directly to the new server instead of sending
these coded blocks back to the client. Afterwards,
the new server verifies the coded blocks it received
and computes the new coded blocks for itself without
disturbing the client. This mechanism can reduce the
communication cost and the burden for the client.

(ii) Multiclient. To enable multiple clients, our method
does not simply duplicate the process of a single client
to multiple parallel processes for multiple clients.
Instead, in the proposed MD-POR scheme, the pro-
cesses of multiple clients are mixed together without
loosing the data confidentiality of individual clients.
To enable such a multiclient setting, we employ the
InterMac technique [16] which was proposed for
network scenario. The InterMac technique allows
multiple sources to send their packages to the network
using different secret keys and allows the recipients to
verify the packages they received.

(iii) Symmetric Key Setting. The MD-POR scheme uses
only secret keys without any public key, unlike an
asymmetric key setting.

(iv) Public Authentication. Not only the client but also any
entity who has a given information can check the
cloud servers while learning nothing about the secret
key of each client. We employ a third party auditor
(TPA) on behalf of the clients to check the servers
periodically. By delegating the responsibility of check-
ing the servers to the TPA, the clients are free of the
burden of checking the servers. Otherwise, for the
nonexistence of TPA, the clients have to periodically
check the servers, and the public authentication
feature cannot be supported because only the clients
can check the servers. Although theMD-POR scheme
supports public authentication, our method does not
use an asymmetric key setting.

Organization. The system model, the backgrounds of the
Proof of Retrievability, the network coding technique, the
InterMac technique, the notations, and definitions are
described in Section 2. The adversarial model is presented in
Section 3.TheMD-POR scheme is proposed in Section 4.The
security analysis and efficiency analysis are given in Section 5
and Section 6, respectively. The performance evaluation of
the MD-POR scheme is shown in Section 7. The conclusion
and future work are drawn in Section 8.

2. Preliminaries

2.1. SystemModel. Thesystemmodel of theMD-POR scheme
is depicted in Figure 1. There are three types of entities.

(i) Clients: these entities have data to be stored in
the cloud and rely on the cloud for data storage,
computation, and maintenance. These clients can be
either enterprises or individual customers.
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(ii) Cloud servers: the cloud servers are managed and
monitored by a cloud service provider to accommo-
date a service of data storage and have significant and
unlimited storage space and computation resources.
In the cloud storage service, the clients can store
their data into a set of servers in a simultaneous and
distributed manner.

(iii) Third party auditor (TPA): this entity is delegated the
responsibility to check the servers on behalf of the
clients. The TPA is assumed to be trusted to perform
the task of periodically checking the servers.

Originally, the system model which consists of only the
client and the servers without the TPA is enough for data
check. To enable the public authentication feature, the TPA
is employed with an assumption that the TPA is a honest-
but-curious entity. Several previous papers also use the same
assumption of the TPA, for example, [15, 17–19].

2.2. Proof of Retrievability (POR). To check the servers,
researchers proposed the Proof of Retrievability (POR) [1–
3] which is a challenge-response protocol between a verifier
(client) and a prover (server). The POR has four phases as
follows.

(1) keygen(1𝜆): given a security parameter 𝜆, the client
runs this algorithm to generate a secret key (sk) and a
public key (pk). For the symmetric key setting, pk is
set to be null.

(2) encode(sk, 𝐹): the client runs this algorithm to encode
an original file (𝐹) to an encoded file (𝐹󸀠) and then
sends 𝐹󸀠 to the server to store.

(3) check(sk): the client uses his secret key sk to generate
a challenge (𝑐) and sends 𝑐 to the server. The server
then computes a response (𝑟) and sends 𝑟 back to the
client. Finally, the client verifies whether the file 𝐹 is
intact based on 𝑐 and 𝑟.

(4) repair(): the client runs this algorithm only when a
failure is detected in the check phase.The technique of
the repair phase depends on each specific technique,
for example, replication, erasure coding, or network
coding.

To be suitable for our system model, we modify the POR
such that the verifier is the TPA and there are multiple clients
as follows.

(1) keygen(1𝜆): given a security parameter 𝜆, the algo-
rithm generates a set of secret keys {sk𝑖}𝑖∈{1,...,𝑠} for 𝑠
clients and a secret key 𝜅 for the TPA.

(2) encode(sk𝑖, 𝐹𝑖): each client 𝑖 uses his secret key sk𝑖 to
encode his original file 𝐹𝑖 to an encoded file 𝐹󸀠

𝑖
and

then sends 𝐹󸀠
𝑖
to the servers. Each server then linearly

combines all 𝐹󸀠
𝑖
(𝑖 ∈ {1, . . . , 𝑠}) and stores the com-

bined blocks.
(3) check(𝜅): the TPA uses his key 𝜅 to generate a chal-

lenge 𝑐 and sends 𝑐 to the servers. Each server then
computes a response 𝑟 and sends 𝑟 back to the TPA.

Clients Cloud servers

Third party 
auditor (TPA)
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Figure 1: System model.

Finally, the TPA verifies whether each 𝐹𝑖 is intact or
not.

(4) repair(): this algorithm is executed when a failure is
detected in the check phase. The technique of the
repair phase depends on each specific scheme.

2.3. Network Coding. Network coding [6–9] is commonly
used in network transmission to obtain a good trade-off
in term of bandwidth and data repair. Network coding is
proposed firstly for the network scenario. It then is applied
to the distributed storage system scenario.

Fundamental Concept. In the network scenario, suppose that
a source node 𝐶 wants to send its message to a receiver node
𝑅. Before transmitting, 𝐶 breaks the message into 𝑚 blocks
V1, . . . , V𝑚; each file block belongs to F𝑛

𝑞
where F𝑛

𝑞
denotes a

𝑛-dimensional vector space over a finite field F with a prime
𝑞. 𝐶 augments each file block V𝑖 (𝑖 ∈ {1, . . . , 𝑚}) with a vector
of length𝑚 in which a single “1” is in the 𝑖th position and “0’s
are elsewhere. Let 𝑤1, . . . , 𝑤𝑚 be the augmented blocks. Each
augmented block has the following form:

𝑤𝑖 = (V𝑖,
𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖

, 0, . . . , 0) ∈ F
𝑛+𝑚

𝑞
. (1)

These augmented blocks are then sent as packets to
the network. When an intermediate node 𝐼 in the network
receives 𝑡 packets, 𝐼 will generates 𝑡 coefficients, linearly
combines 𝑡 packets using the generated coefficients, and
transmits the result to its adjacent nodes. Consequently, the
receiver node 𝑅 can receive combinations of all augmented
blocks. 𝑅 can recover 𝑚 augmented blocks using any set
of 𝑚 combinations. Suppose that 𝑅 receives 𝑚 packages
𝑦1, . . . , 𝑦𝑚 ∈ F𝑛+𝑚

𝑞
, and 𝑅 solves all 𝑚 augmented blocks

𝑤1, . . . , 𝑤𝑚 ∈ F𝑛+𝑚
𝑞

using the accumulated coefficients which
are contained in the last 𝑚 coordinates of each package 𝑦.
Afterwards, the file blocks V1, . . . , V𝑚 can be obtained from the
first coordinate of each augmented block. Finally, the original
message can be reconstructed by concatenating all file blocks.
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Application in Distributed Storage System. In the network sce-
nario as described above, there are multiple types of entities:
source node, intermediate nodes, and receiver node. How-
ever, when the network coding is applied to the distributed
storage system scenario, there are two types of entities: a client
and servers. Suppose that a client has the original file 𝐹which
consists of𝑚 file blocks (V1, . . . , V𝑚). The client wants to store
redundantly encoded blocks in the servers in a way that the
client can reconstruct the original file 𝐹 and can repair the
encoded blocks in a corrupted server. From these file blocks,
the client firstly creates 𝑚 augmented blocks (𝑤1, . . . , 𝑤𝑚).
The client then chooses 𝑚 coding coefficients (𝛼1, . . . , 𝛼𝑚 ∈

F𝑞) and computes coded blocks using the linear combination
as 𝑐 = ∑

𝑚

𝑖=1
𝛼𝑖 ⋅ 𝑤𝑖 and then stores these coded blocks in the

servers. To reconstruct the original file 𝐹, any𝑚 coded blocks
are required to solve 𝑚 augmented blocks 𝑤1, . . . , 𝑤𝑚 using
the accumulated coefficients contained in the last 𝑚 coordi-
nates of each coded block. After these 𝑚 augmented blocks
are solved,𝑚 file blocks V1, . . . , V𝑚 are obtained from the first
coordinate of each augmented block. Finally, the original file
𝐹 is reconstructed by concatenating the file blocks. Note that
the matrix consisting of the coefficients used to construct any
𝑚 coded blocks should have full rank. Koetter and Medard
[20] proved that if the prime 𝑞 is chosen large enough and
the coefficients are chosen randomly, the probability for the
matrix having full rank is high. Once a corrupted server is
detected, the client repairs it as follows: the client retrieves
coded blocks from the healthy servers and linearly combines
them to regenerate new coded blocks. An example about the
data repair of network coding is given in Figure 2.

2.4. InterMac. Before describing how the InterMacworks, we
explain why it is used in our proposed MD-POR scheme as
follows.We consider a network in which multiple sources are
simultaneously supported and each source owns a different
secret key. The data of each source cannot be checked
alone. Instead, each source uses the secret key to compute
an additional information which is Message Authentication
Code (MAC) for each data block. AMAC is also called as tag.
Each source then transmits the packets consisting of the data
blocks and the corresponding tags to the next adjacent node
in the network. A node in the network will linearly combine
the received blocks and the homomorphic tags.Herein lies the
difficulty of the task: when a recipient node receives a packet,
how can this node verify the received linear blocks based on
the linear homomorphic tags without any information about
any of the secret keys. The traditional methods, that is, MAC
or HMAC, are inadequate to solve this task. Some recent
schemes related to this problem have been proposed, for
example, [21–23]; unfortunately, they all use an asymmetric
key setting, which is not our aim.

The InterMac technique [16] is a suitable technique to
generate such secret keys for multiple sources. The charac-
teristic of this technique is that the key of the source C𝑝
(𝑝 ∈ {1, . . . , 𝑠} where 𝑠 denotes the number of sources) is
orthogonal to all the augmented blocks which do not belong
to C𝑝. This characteristic can help the verifier check the
received packets without needing the information on any of
the secret keys.

Construction. Let 𝑤11, . . . , 𝑤𝑠𝑔 ∈ F𝑛+𝑚
𝑞

be the augmented
blocks that have span 𝜋, and let them represent as row vectors
(where 𝑠 denotes the number of sources, 𝑔 denotes the num-
ber of file blocks per source, and 𝑚 = 𝑠 ⋅ 𝑔). For each 𝑝 ∈

{1, . . . , 𝑠}, let𝑀𝑝 be the matrix whose rows are vectors in the
following set:

{𝑤𝑖𝑗 | 𝑖 = 1, . . . , 𝑠; 𝑖 ̸= 𝑝; 𝑗 = 1, . . . , 𝑔} . (2)

In other words, 𝑀𝑝 is the matrix consisting of the aug-
mented blocks of all other sources except C𝑝. rank(𝑀𝑝) =
𝑚 − 𝑔. Let 𝜋𝑀𝑝 denote the space spanned by the rows of𝑀𝑝.

The null space of𝑀𝑝, denoted as 𝜋
⊥

𝑀𝑝
, is the set of all row

vectors 𝑧 ∈ F𝑛+𝑚
𝑞

forwhich𝑀𝑝𝑧
𝑇 = 0. For any (𝑚−𝑔)×(𝑛+𝑚)

matrix𝑀𝑝, we have

rank (𝑀𝑝) + nullity (𝑀𝑝) = 𝑛 + 𝑚 (3)

known as rank-nullity theorem, where nullity(𝑀𝑝) is the
dimension of 𝜋⊥

𝑀𝑝
. Hence,

dim (𝜋
⊥

𝑀𝑝
) = 𝑛 + 𝑚 − (𝑚 − 𝑔) = 𝑛 + 𝑔. (4)

Let 𝑏1, . . . , 𝑏𝑛+𝑔 ∈ F𝑛+𝑚
𝑞

be a basis of 𝜋⊥
𝑀𝑝

.This basis can be
found by solving𝑀𝑝𝑧

𝑇 = 0. Let 𝐹 be a pseudorandom func-
tion (PRF): K × ([1, 𝑠] × [1, 𝑛 + 𝑔]) → F𝑞. A key 𝑘𝑝 for the
sourceC𝑝 is computed as follows:

(i) 𝑟𝑖 ← 𝐹(𝑘, 𝑝, 𝑖) ∈ F𝑞, ∀𝑖 ∈ {1, . . . , 𝑛 + 𝑔};

(ii) 𝑘𝑝 ← ∑
𝑛+𝑔

𝑖=1
𝑟𝑖𝑏𝑖 ∈ F𝑛+𝑚

𝑞
.

Eventually, a key set {𝑘1, . . . , 𝑘𝑠} is generated in which
each key 𝑘𝑝 where 𝑝 ∈ {1, . . . , 𝑠} is constructed as above.

2.5. Notations andDefinitions. Throughout this paper, the list
of notations and definitions is given in Notation section.

3. Adversarial Model

In the MD-POR scheme, only the clients are trusted because
they are the data owners.The following entities are untrusted
and considered to be adversaries:

(i) attackers outside the system;
(ii) the cloud servers in the system;
(iii) the TPA in the system (the TPA is assumed not to

collude with the servers. We explained about this
assumption in Section 2.1).

Concretely, the adversaries can perform the following the
attacks.

3.1. Mobile Attack. This attack is performed by an adversary
A outside the system. A potentially corrupts all the servers
across the full system lifetime. A restriction on A is that
he/she can control only (ℎ − 𝑙) out of ℎ servers in any given
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Figure 2: From three augmented blocks {𝑤1, 𝑤2, 𝑤3}, the client computes six coded blocks and stores two coded blocks in each of servers
𝑆1, 𝑆2, 𝑆3. Suppose that 𝑆3 is corrupted, the client requires 𝑆1 and 𝑆2 to create new blocks using linear combination, and then the client mixes
them using linear combination to obtain two new coded blocks and stores them in the new server.

time step. Let epoch denote a given time step. In each epoch,
the servers are checked. If a corruption is detected on a certain
server, the blocks stored in that corrupted server will be
repaired from redundancy in the intact servers. Without the
server checks, the adversary A can corrupt all the servers of
the system in ℎ/(ℎ − 𝑙) epochs.

3.2. Curious Adversary. This attack is performed by the TPA
or a new server. In the check phase, the TPA is given a key 𝜅
which is constructed from all the secret keys of the clients. In
the repair phase, a new server is given another key 𝜅󸀠 which is
also constructed from all the secret keys of the clients. When
they are given their keys, these adversaries try to learn the
secret keys because once all secret keys are obtained, these
adversaries can fake a valid response when they are checked.

3.3. Response Forgery. This forgery is performed by the
servers. In the check phase, the verifier checks all the servers
to ensure that they are not corrupted. Each server has to send
a response to the verifier in order to demonstrate that the
server is healthy. However, a checked server may forge the
response to deceive the verifier. If the forged response from
the adversarial server satisfies the verification, that server can
pass the check phase.

3.4. Pollution Attack. This attack is performed by the servers.
The purpose of this attack is to break the linear independence
of the encoded blocks. In a network, if a node is malicious
and forward invalid package, receivers then obtain multiple
packets and cannot tell which of their received packets are
corrupt. In other words, the purpose of this attack is to inject
invalid packets to prevent data recover. In the POR, this attack
happens when amalicious server uses correct data to pass the
check phase but then provides invalid data in the repair phase.
For example, the client encodes the augmented blocks𝑤1,𝑤2,
and𝑤3 to six coded blocks: 𝑐11, 𝑐12 (stored in the server 𝑆1), 𝑐21,
𝑐22 (stored in the server 𝑆2), and 𝑐31, 𝑐32 (stored in the server
𝑆3). In the check phase, suppose that 𝑆3 is detected as being
corrupted. Then, in the repair phase, 𝑆3 should be repaired
using two coded blocks: 𝑐󸀠

31
(which is a linear combination

of 𝑐11 and 𝑐12) and 𝑐
󸀠

32
(which is a linear combination of 𝑐21

and 𝑐22). However, at this time, 𝑆1 is malicious without being
detected because this time is the repair phase, not the check

phase any more. The client still thinks 𝑆1 is healthy; thus, to
recover 𝑆3, the client requests coded blocks from 𝑆1 and 𝑆2
but 𝑆1 will provide an invalid coded blocks 𝑐󸀠󸀠

31
to the client

instead of 𝑐󸀠
31
.

4. The Proposed MD-POR Scheme

Before describing the proposed MD-POR scheme in detail,
the technical roadmap is depicted in Figure 3. The file
blocks are used to generate the augmented blocks. Then,
the augmented blocks are combined with random values
to compute the keys. Meanwhile, the augmented blocks are
linearly combined into the coded blocks using the network
coding. Finally, the coded blocks are tagged using the keys.
The coded blocks and the tags are the outputs. The network
coding is used because it is related to the repair feature
(Section 2.3). The InterMac is used because it is related to the
multiuser feature (Section 2.4). Both the network coding and
the InterMac are constructed based on linear combinations;
therefore, they are suitable to combine together in the
proposed scheme.

Let C1, . . . ,C𝑠 be the set of 𝑠 clients. Each client C𝑖 (𝑖 ∈
{1, . . . , 𝑠}) keeps a secret key 𝑘𝑖 and has a file 𝐹𝑖 = (V𝑖1, . . . , V𝑖𝑔)
where 𝑔 is the number of file blocks. Each file block V𝑖𝑗 ∈ F𝑛

𝑞

(𝑗 ∈ {1, . . . , 𝑔}).C𝑖 creates 𝑔 augmented blocks (𝑤𝑖1, . . . , 𝑤𝑖𝑔)
from 𝑔 file blocks (V𝑖1, . . . , V𝑖𝑔). Each augmented block𝑤𝑖𝑗 has
the form as in [16]

𝑤𝑖𝑗 = (V𝑖𝑗, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑔(𝑖−1)

,

𝑗

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑔

, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑔(𝑠−𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚=𝑠𝑔

) ∈ F
𝑛+𝑚

𝑞
,

(5)

where 𝑖 ∈ {1, . . . , 𝑠}, 𝑗 ∈ {1, . . . , 𝑔}, and𝑚 = 𝑠𝑔.
Each clientC𝑖 uses his secret key 𝑘𝑖 to compute the tag 𝑡𝑖𝑗

for each augmented blocks 𝑤𝑖𝑗. The augmented blocks and
the tags are then linearly combined and transmitted to all
the servers. In every epoch, when the servers are checked
by the TPA, the servers have to combine the coded blocks
and the tags again and send them back to the TPA. The TPA
can finally verify the aggregated coded blocks and the tags
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Figure 3: Technical roadmap.

even though the TPA does not know any secret key {𝑘𝑖} (𝑖 ∈
{1, . . . , 𝑠}).

TheproposedMD-POR scheme is nowdescribed in detail
via each phase of the POR as follows.

4.1. Keygen

4.1.1. Keys for the Clients (Keygen1). Each key 𝑘𝑝 of the client
C𝑝 (𝑝 ∈ {1, . . . , 𝑠}) is constructed in such a way that 𝑘𝑝 is
orthogonal to all the augmented blocks which do not belong
toC𝑝. In a formal statement, 𝑘𝑝 is constructed as

∀𝑖 ∈ {1, . . . , 𝑠} , 𝑖 ̸= 𝑝, 𝑝 ∈ {1, . . . , 𝑠} , 𝑤𝑖𝑗 ⋅ 𝑘𝑝 = 0. (6)

Using the InterMac (Section 2.4), a key set {𝑘1, . . . , 𝑘𝑠} is
created. Then, each 𝑘𝑝 ∈ F𝑛+𝑚

𝑞
is assigned to the client C𝑝

as the secret key, and the sum of all the keys 𝜅 = 𝑘1 + ⋅ ⋅ ⋅ +

𝑘𝑠 ∈ F𝑛+𝑚
𝑞

are assigned to the TPA via a secure channel. The
security of the secret keys will be proved later.

4.1.2. Dynamic Keys for a New Server (Keygen2). When a
repair phase is executed, the new server will be given a key
𝜅󸀠 = (𝑘1+⋅ ⋅ ⋅+𝑘𝑠)+𝑘repair = 𝜅+𝑘repair.The new server will use
the key 𝜅󸀠 to check pollution attack during the repair phase.
𝜅 is already computed in Keygen1. Only 𝑘repair is different in
each repair time. This is to ensure that an adversary cannot
attack the new server to obtain 𝑘repair for passing the pollution
attack check in the later repair phases (we thereafter explain
in Section 5.4). When 𝑘repair is constructed in the first time,
the basis of 𝑏1, . . . , 𝑏𝑛+𝑔 is computed and saved for the later
times. In the next repair times, the basis will be reused to save
the computation cost, and only the random coefficients 𝑟𝑖 are
regenerated again to compute 𝑘𝑝.

𝑟repair has to be orthogonal to all augmented blocks of all
the clients. Keygen2 is quite similar to Keygen1. However, the
different thing is that 𝑝 ∉ {1, . . . , 𝑠}, 𝑝 is randomly chosen
in F𝑞 such that 𝑝 > 𝑠 in every repair time. Since 𝑟repair is
orthogonal to all augmented blocks of all the clients, 𝑀𝑝 is
now the matrix consisting of all the augmented blocks of all
the clients. Put differently, the rows of𝑀𝑝 are vectors in the
following set:

{𝑤𝑖𝑗 | 𝑖 = 1, . . . , 𝑠; 𝑗 = 1, . . . , 𝑔} . (7)

The set consists of 𝑚 = 𝑠𝑔 augmented blocks and each
augmented block belongs to F𝑛+𝑚

𝑞
. For the𝑚×(𝑛+𝑚)matrix

𝑀𝑝, the rank-nullity theorem yields

rank (𝑀𝑝) + nullity (𝑀𝑝) = 𝑛 + 𝑚. (8)

Since rank(𝑀𝑝) = 𝑚, the nullity(𝑀𝑝) is
nullity(𝑀𝑝) = 𝑛 + 𝑚 − 𝑚 = 𝑛. The basis of the null space
of 𝑀𝑝 is now {𝑏1, . . . , 𝑏𝑛}. Let 𝐹󸀠 be another PRF: K×

(P×[1, 𝑛]) → F𝑞, whereP denotes the domain of 𝑝’s space.
The following steps are used to generate the key 𝑘𝑝:

(i) 𝑟𝑖 ← 𝐹(𝑘, 𝑝, 𝑖) ∈ F𝑞, ∀𝑖 ∈ {1, . . . , 𝑛};

(ii) 𝑘𝑝 ← ∑
𝑛

𝑖=1
𝑟𝑖𝑏𝑖 ∈ F𝑛+𝑚

𝑞
.

Let 𝑘repair denote 𝑘𝑝 (to distinguish with the notation 𝑘𝑝
from the Keygen1). The Keygen2 is only executed and 𝜅󸀠 =
𝜅 + 𝑘repair is given to a new server only if a repair phase
happens. The key 𝜅 is already computed in the Keygen1 as a
static information, and only 𝑘repair is different in each repair
time.

4.2. Encode

Step 1. Each client C𝑖 (𝑖 ∈ {1, . . . , 𝑠}) computes 𝑔 tags for 𝑔
augmented blocks:

∀𝑖 ∈ {1, . . . , 𝑠} , ∀𝑗 ∈ {1, . . . , 𝑔} : 𝑡𝑖𝑗 = 𝑤𝑖𝑗 ⋅ 𝑘𝑖. (9)

Step 2. Each client C𝑖 (𝑖 ∈ {1, . . . , 𝑠}) linearly combines the
augmented blocks and the corresponding tags:

∀𝑖 ∈ {1, . . . , 𝑠}:

(i) ∀𝑗 ∈ {1, . . . , 𝑔}, generate 𝑔 coefficients: 𝛼𝑖𝑗
rand
←󳨀󳨀󳨀 F𝑞;

(ii) compute coded block: 𝑤C𝑖
= ∑
𝑔

𝑗=1
𝛼𝑖𝑗 ⋅ 𝑤𝑖𝑗;

(iii) compute tag: 𝑡C𝑖 = ∑
𝑔

𝑗=1
𝛼𝑖𝑗 ⋅ 𝑡𝑖𝑗.

Step 3. Each client C𝑖 sends the pair of (𝑤C𝑖
, 𝑡C𝑖) to all ℎ

servers (𝑆1, . . . , 𝑆ℎ). Each server 𝑆𝑥 where 𝑥 ∈ {1, . . . , ℎ}

creates 𝑑 pairs of coded block 𝑐𝑥𝑦 and corresponding tag 𝑡𝑥𝑦
where 𝑦 ∈ {1, . . . , 𝑑}:

∀𝑥 ∈ {1, . . . , ℎ}, 𝑦 ∈ {1, . . . , 𝑑}, 𝑆𝑥 computes:

(i) ∀𝑖 ∈ {1, . . . , 𝑠}, generate 𝑠 coefficients: 𝛽𝑥𝑦𝑖
rand
←󳨀󳨀󳨀 F𝑞;

(ii) compute coded block: 𝑐𝑥𝑦 = ∑
𝑠

𝑖=1
𝛽𝑥𝑦𝑖 ⋅ 𝑤C𝑖

;
(iii) compute tag: 𝑡𝑥𝑦 = ∑

𝑠

𝑖=1
𝛽𝑥𝑦𝑖 ⋅ 𝑡C𝑖 .

4.3. Check. The TPA is assigned the check responsibility.The
TPA uses the key 𝜅 = 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠 to check ℎ servers
periodically. Note that the TPA is only given the sum 𝜅

without learning each component 𝑘𝑖 where 𝑖 = {1, ⋅ ⋅ ⋅ , 𝑠}.
Assume that the TPA does not collude with any server:

∀𝑥 ∈ {1, . . . , ℎ}:

(i) 𝑆𝑥 computes:

(a) ∀𝑦 ∈ {1, . . . , 𝑑}; generate 𝑑 coefficients 𝛾𝑥𝑦
rand
←󳨀󳨀󳨀

F𝑞;
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(b) combine coded blocks: 𝑐𝑥 = ∑
𝑑

𝑦=1
𝑐𝑥𝑦 ⋅ 𝛾𝑥𝑦;

(c) combine tags: 𝑡𝑥 = ∑
𝑑

𝑦=1
𝑡𝑥𝑦 ⋅ 𝛾𝑥𝑦;

(ii) 𝑆𝑥 sends {𝑐𝑥, 𝑡𝑥} to the TPA;
(iii) TPA computes 𝑡󸀠

𝑥
= 𝑐𝑥 ⋅ 𝜅;

(iv) TPA verifies: 𝑡𝑥 = 𝑡󸀠
𝑥
(∗), and then returns true (this

means that 𝑆𝑥 is healthy), otherwise returns false.

Correctness of the Verification (∗)
Consider

𝑡𝑥 =

𝑑

∑
𝑦=1

𝑡𝑥𝑦 ⋅ 𝛾𝑥𝑦

=

𝑑

∑
𝑦=1

𝑠

∑
𝑖=1

𝛾𝑥𝑦𝛽𝑥𝑦𝑖𝑡C𝑖

=

𝑑

∑
𝑦=1

𝑠

∑
𝑖=1

𝑔

∑
𝑗=1

𝛾𝑥𝑦𝛽𝑥𝑦𝑖𝛼𝑖𝑗𝑡𝑖𝑗

=

𝑑

∑
𝑦=1

𝑠

∑
𝑖=1

𝑔

∑
𝑗=1

𝛾𝑥𝑦𝛽𝑥𝑦𝑖𝛼𝑖𝑗𝑤𝑖𝑗𝑘𝑖,

𝑡
󸀠

𝑥
= 𝑐𝑥 ⋅ 𝜅

=

𝑑

∑
𝑦=1

𝛾𝑥𝑦𝑐𝑥𝑦 (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠)

=

𝑑

∑
𝑦=1

𝑠

∑
𝑖=1

𝛾𝑥𝑦𝛽𝑥𝑦𝑖𝑤C𝑖
(𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠)

=

𝑑

∑
𝑦=1

𝑠

∑
𝑖=1

𝑔

∑
𝑗=1

𝛾𝑥𝑦𝛽𝑥𝑦𝑖𝛼𝑖𝑗𝑤𝑖𝑗 (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠) .

(10)

As described in Section 4.1.1 (Keygen 1), the property of
𝑘𝑝 is that ∀𝑖 ∈ {1, . . . , 𝑠}, 𝑖 ̸= 𝑝, 𝑝 ∈ {1, . . . , 𝑠},𝑤𝑖𝑗 ⋅ 𝑘𝑝 = 0. As a
result, 𝑡󸀠

𝑥
= ∑
𝑑

𝑦=1
∑
𝑠

𝑖=1
∑
𝑔

𝑗=1
𝛾𝑥𝑦𝛽𝑥𝑦𝑖𝛼𝑖𝑗𝑤𝑖𝑗𝑘𝑖. Therefore, 𝑡𝑥 = 𝑡

󸀠

𝑥
.

4.4. Repair. Suppose that the server 𝑆𝑟 is detected as cor-
rupted in the check phase. 𝑆𝑟 is replaced by a new server 𝑆󸀠

𝑟
.

The server 𝑆󸀠
𝑟
requires 𝑙 healthy servers 𝑆𝑥1 , . . . , 𝑆𝑥𝑙 to provide

their combined packets consisting of the coded blocks and
the tags. 𝑆󸀠

𝑟
is given the key 𝜅󸀠 = 𝜅 + 𝑘repair, where 𝑘repair is

generated from the Keygen2, to check the provided packets.

Step 1. Each server 𝑆𝑥 where 𝑥 ∈ {𝑥1, . . . , 𝑥𝑙} linearly
combines its 𝑑 coded blocks and linearly combines its 𝑑 tags.
𝑆𝑥 then sends the aggregated coded block and aggregated tag
to the new server 𝑆󸀠

𝑟
:

∀𝑥 ∈ {𝑥1, . . . , 𝑥𝑙}, 𝑆𝑥 performs:

(i) ∀𝑦 ∈ {1, . . . , 𝑑}, generates 𝑑 coefficients 𝛾𝑥𝑦
rand
←󳨀󳨀󳨀 F𝑞;

(ii) combine coded blocks: 𝑐𝑥 = ∑
𝑑

𝑦=1
𝑐𝑥𝑦 ⋅ 𝛾𝑥𝑦;

(iii) combine tags: 𝑡𝑥 = ∑
𝑑

𝑦=1
𝑡𝑥𝑦 ⋅ 𝛾𝑥𝑦;

(iv) send the package consisting of {𝑐𝑥, 𝑡𝑥} to 𝑆
󸀠

𝑟
.

Step 2. The new server 𝑆󸀠
𝑟
checks whether each server 𝑆𝑥

where 𝑥 ∈ {𝑥1, . . . , 𝑥𝑙} provides a valid packet (pollution
attack), using the key 𝜅󸀠 = (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠) + 𝑘repair.

Given 𝜅󸀠 = (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠) + 𝑘repair, 𝑆
󸀠

𝑟
computes:

(i) compute 𝑡󸀠
𝑥
= 𝑐𝑥 ⋅ 𝜅

󸀠;

(ii) check 𝑡𝑥 = 𝑡
󸀠

𝑥
(∗∗).

Step 3. Thenew server 𝑆󸀠
𝑟
computes 𝑑 coded blocks and 𝑑 tags

for itself:
∀𝑦 ∈ {1, . . . , 𝑑}, 𝑆󸀠

𝑟
computes:

(i) ∀𝑥 ∈ {𝑥1, . . . , 𝑥𝑙}, generate 𝑙 coefficients 𝜃𝑥𝑦
rand
←󳨀󳨀󳨀 F𝑞;

(ii) new coded blocks 𝑐𝑟𝑦 = ∑
𝑥𝑙
𝑥=𝑥1

𝑐𝑥 ⋅ 𝜃𝑥𝑦;

(iii) new tags 𝑡𝑟𝑦 = ∑
𝑥𝑙
𝑥=𝑥1

𝑡𝑥 ⋅ 𝜃𝑥𝑦.

Correctness of the Verification (∗∗) in Step 2. The way to
prove the correctness of this verification is similar to the
correctness of the verification (∗) in the check phase. The
only different thing is that not only 𝑘1, . . . , 𝑘𝑠 but also 𝑘repair
participates in combining the coded blocks and homomor-
phic tags. As described in the Keygen2 (Section 4.1.2), ∀𝑖 ∈
{1, . . . , 𝑠}, 𝑝

rand
←󳨀󳨀󳨀 F𝑞, 𝑝 > 𝑠, and we have 𝑤𝑖𝑗 ⋅ 𝑘𝑝 = 0.

5. Security Analysis

5.1. Security against Mobile Adversaries. To prevent mobile
adversaries, a data repair threshold is given as follows.

Theorem 1. The original files 𝐹1, . . . , 𝐹𝑠 of the clients can
be recovered if in any epoch, at least 𝑙 out of ℎ servers
collectively store 𝑚 = 𝑠𝑔 coded blocks which are linearly
independent combinations of 𝑚 original file blocks; and the
matrix consisting of the accumulated coefficients has full rank
(i.e., rank𝑚).

Proof. Each server 𝑆𝑥 where 𝑥 ∈ {1, . . . , ℎ} contains 𝑑

coded blocks: {𝑐𝑥𝑦} (𝑦 ∈ {1, . . . , 𝑑}). Each coded block
𝑐𝑥𝑦 is computed from 𝑚 = 𝑠𝑔 augmented blocks 𝑤𝑖𝑗

(𝑖 ∈ {1, . . . , 𝑠}, 𝑗 ∈ {1, . . . , 𝑔}) as 𝑐𝑥𝑦 = ∑
𝑠

𝑖=1
∑
𝑔

𝑗=1
𝛽𝑥𝑦𝑖 ⋅

𝛼𝑖𝑗 ⋅ 𝑤𝑖𝑗. To recover the original files, 𝑚 augmented blocks
(𝑤11, . . . , 𝑤1𝑔, . . . , 𝑤𝑠1, . . . , 𝑤𝑠𝑔) are viewed as the variables
that need to be solved. To solve such 𝑚 variables, at least
𝑚 coded blocks are needed such that the coefficient matrix
has full rank because the number of variables in an equation
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systemhas to be less than or equal to the number of independ-
ent equations:

𝑐𝑥𝑦1 =

𝑠

∑
𝑖=1

𝑔

∑
𝑗=1

𝛽𝑥𝑦𝑖1 ⋅ 𝛼𝑖𝑗1 ⋅ 𝑤𝑖𝑗

𝑐𝑥𝑦2 =

𝑠

∑
𝑖=1

𝑔

∑
𝑗=1

𝛽𝑥𝑦𝑖2 ⋅ 𝛼𝑖𝑗2 ⋅ 𝑤𝑖𝑗

...

𝑐𝑥𝑦𝑚 =

𝑠

∑
𝑖=1

𝑔

∑
𝑗=1

𝛽𝑥𝑦𝑖𝑚 ⋅ 𝛼𝑖𝑗𝑚 ⋅ 𝑤𝑖𝑗.

(11)

Therefore, at least 𝑙 servers which collectively store 𝑚 = 𝑠 ⋅ 𝑔

coded blocks in each epoch are required. ⌈𝑚/𝑑⌉ ≤ 𝑙 < ℎ.

5.2. Security against Curious Adversaries. The following theo-
remgives the probability of the adversary to recover the secret
keys and shows that the probability is negligible.

Theorem 2. The secret keys of the clients are secured from the
TPA and the new server.

Proof. The TPA checks ℎ servers (𝑆1, . . . , 𝑆ℎ) in the check
phase using the key 𝜅 = 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠. Similarly, the new
servers 𝑆󸀠

𝑟
check 𝑙 healthy servers in the repair phase using

the key 𝜅󸀠 = (𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠) + 𝑘repair. The problem of security
is now the problem of solving 𝑠 variables (in the case of the
TPA) and 𝑠+1 variables (in the case of 𝑆󸀠

𝑟
) given one equation.

The only method to solve these variables is to try all possible
variable sets and test whether they satisfy this equation by
using trial-and-error method with brute-force search. LetK
denote the key space. Each 𝑘𝑖 (𝑖 ∈ {1, . . . , 𝑠}), 𝑘repair, 𝜅, and
𝜅
󸀠 belong to the finite field F𝑛+𝑚

𝑞
(which has (𝑛 + 𝑚)log

2
𝑞

bit-length), and therefore K = 𝑞𝑛+𝑚. The number of testing
times is (K)

𝑠−1 in the case of the TPA and (K)
𝑠 in the case

of 𝑆󸀠
𝑟
. Therefore, the probability for choosing 𝑠 variables is

1/𝑞(𝑛+𝑚)(𝑠−1) in the case of the TPA and the probability for
choosing 𝑠 + 1 variables is 1/𝑞(𝑛+𝑚)𝑠 in the case of 𝑆󸀠

𝑟
. If 𝑞 is

chosen as a large prime (e.g., 160 bits), 𝑘1, . . . , 𝑘𝑠, and 𝑘repair
cannot be solved in a polynomial time. Ergo, the probability
of TPA and 𝑆󸀠

𝑟
are negligible.

5.3. Security against Response Forgeries. After controlling 𝑆𝑥,
suppose that, in the check phase, the adversary A sends a
pair of forged coded block and forged tag (𝑐󸀠󸀠

𝑥
, 𝑡󸀠󸀠
𝑥
) to the TPA,

instead of a valid pair of (𝑐𝑥, 𝑡𝑥).

Theorem 3. The advantage of a forgery adversary to pass the
check phase is

AdvA (verify) = AdvA (PRF) +
1

𝑞(𝑛+𝑚)𝑠
. (12)

Proof. To be able to generate (𝑐󸀠󸀠
𝑥
, 𝑡󸀠󸀠
𝑥
) which holds the veri-

fication 𝑡󸀠󸀠
𝑥
= 𝑐󸀠󸀠
𝑥
⋅ 𝜅, the adversary A has to obtain 𝜅. Since

the TPA is assumed not to collude with any server and 𝜅 is
sent toA though a secure channel, a possible way forA is to
attack the Keygen1 in which the key 𝑘𝑝 ofC𝑝 (𝑝 ∈ {1, . . . , 𝑠})
is computed as

(i) 𝑟𝑖 ← 𝐹(𝑘, 𝑝, 𝑖) ∈ F𝑞, ∀𝑖 ∈ {1, . . . , 𝑛 + 𝑔};

(ii) 𝑘𝑝 ← ∑
𝑛+𝑔

𝑖=1
𝑟𝑖𝑏𝑖 ∈ F𝑛+𝑚

𝑞
.

The advantage of A on 𝑟𝑖 isAdvA(PRF). Since
𝑘𝑝 ∈ F𝑛+𝑚

𝑞
, the advantage of A on 𝑘𝑝 is 1/𝑞𝑛+𝑚. The

advantage of A on 𝜅 = ∑
𝑠

𝑖=1
𝑘𝑖 is 1/𝑞(𝑛+𝑚)𝑠. There-

fore,AdvA(verify) = AdvA(PRF) + 1/𝑞
(𝑛+𝑚)𝑠. If 𝐹 is

unforgeable and 𝑞 is chosen large enough, for example, 160
bits, the advantage ofA is negligible:AdvA(verify) < 𝜖.

5.4. Security against Pollution Attack. Suppose that the server
𝑆𝑟 is checked as a corrupted server and 𝑆𝑥1 , . . . , 𝑆𝑥𝑙 are checked
as healthy servers in the check phase. Then, 𝑆𝑥1 , . . . , 𝑆𝑥𝑙 are
required to repair 𝑆𝑟 by providing their coded blocks and tags
to the new server 𝑆󸀠

𝑟
. In the repair phase, the adversary A

attacks 𝑆𝑥𝑝 (𝑥𝑝 ∈ {𝑥1, . . . , 𝑥𝑙}) and then provides an invalid
packet to the new server 𝑆󸀠

𝑟
(pollution attack). Similar to

Theorem 2, the advantage of A to pass the pollution attack
check (Step 2 in the repair phase) is

AdvA (pollution) = AdvA (PRF) +
1

𝑞(𝑛+𝑚)(𝑠+1)
. (13)

The different thing is that the advantage of A on 𝜅󸀠 =

𝑘repair + ∑
𝑠

𝑖=1
𝑘𝑖 is 1/𝑞

(𝑛+𝑚)(𝑠+1), not 1/𝑞(𝑛+𝑚)𝑠 as Theorem 2
because the adversary does not own 𝜅󸀠.

We also consider a stronger adversary A who attacks
𝑆
󸀠

𝑟
right after the repair phase to steal 𝜅󸀠 from 𝑆󸀠

𝑟
. A then

uses 𝜅󸀠 to pass pollution attack check in another later repair
phases. However, since 𝑘repair is different in each repair time
as explained in the Keygen2 (Section 4.1.2), the advantage for
A to guess 𝑘repair isAdvA(PRF) + 1/𝑞

(𝑛+𝑚).

6. Efficiency Analysis

Table 1 compares the features and efficiency of the proposed
MD-POR scheme with some previous schemes. The RDC-
NC [12] and NC-Audit [15] schemes are chosen for the
comparison because they have the same scenario as the MD-
POR scheme at most. One notable thing is that because
the RDC-NC and NC-Audit schemes only consider a single
client unlike the MD-POR scheme, we assume that 𝑠 clients
participate in theRDC-NCandNC-Audit schemes so that the
comparisons are fair. However, these 𝑠 clients in the RDC-NC
and NC-Audit schemes can only perform in parallel instead
of simultaneously combination as theMD-POR scheme.That
parameter 𝑠 in the RDC-NC and NC-Audit schemes does not
affect the checking and repairing complexity because only
one client can check and repair the servers.That 𝑠 only affects
the storage cost on server-side and the communication cost
of the encode phase in the RDC-NC and NC-Audit schemes.
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Table 1: Comparison.

RDC-NC [12] NC-Audit [15] MD-POR (our scheme)

Feature

Multiclient No No Yes
Direct repair No Not completed Yes
Symmetric key Yes Yes Yes

public authentication No Yes Yes

Storage complexity
Client-side 𝑂(5(𝑛 + 𝑔)log

2
𝑞) 𝑂((𝑛 + 𝑔)log

2
𝑞) 𝑂((𝑛 + 𝑠𝑔)log

2
𝑞)

Server-side 𝑂(𝑠𝑑ℎ((|𝐹|/𝑔) + 𝑔)) 𝑂(𝑠𝑑ℎ((|𝐹|/𝑔) + 𝑔)) 𝑂(𝑑ℎ((|𝐹|/𝑔) + 𝑠𝑔))

TPA-side N/A 𝑂((𝑛 + 𝑔 + 𝑔𝑑ℎ)log
2
𝑞) 𝑂((𝑛 + 𝑠𝑔)log

2
𝑞).

Encoding complexity

Computation (client) 𝑂(𝑔𝑑ℎ) 𝑂(𝑔𝑑ℎ) 𝑂(𝑔)

Computation (server) 𝑂(1) 𝑂(1) 𝑂(𝑠𝑑ℎ)

Computation (TPA) N/A 𝑂(1) 𝑂(1)

Communication 𝑂(𝑠𝑑ℎ((|𝐹|/𝑔) + 𝑔)) 𝑂(𝑠𝑑ℎ((|𝐹|/𝑔) + 𝑔) + 𝑠𝑔𝑑ℎ) 𝑂(ℎ𝑠((|𝐹|/𝑔) + 𝑠𝑔))

Checking complexity

Computation (client) 𝑂(ℎ) 𝑂(1) 𝑂(1)

Computation (server) 𝑂(ℎ𝑑) 𝑂(ℎ𝑑) 𝑂(ℎ𝑑)

Computation (TPA) N/A 𝑂(ℎ) 𝑂(ℎ)

Communication 𝑂(ℎ((|𝐹|/𝑔) + 𝑔)) 𝑂(ℎ((|𝐹|/𝑔) + 𝑔)) 𝑂(ℎ((|𝐹|/𝑔) + 𝑠𝑔))

Repairing complexity

Computation (client) 𝑂((𝑙 + 1)𝑑) 𝑂(1) 𝑂(1)

Computation (server) 𝑂(𝑑𝑙) 𝑂(𝑑𝑙) 𝑂(𝑑𝑙)

Computation (new server) N/A 𝑂(𝑑𝑙) 𝑂(𝑑𝑙)

Computation (TPA) N/A 𝑂(𝑙) 𝑂(1)

Communication 𝑂((𝑙 + 𝑑)((|𝐹|/𝑔) + 𝑔)) 𝑂(𝑙((|𝐹|/𝑔) + 𝑔) + 𝑙𝑑) 𝑂(𝑙((|𝐹|/𝑔) + 𝑠𝑔))

6.1. Storage Cost

6.1.1. Client-Side. In the RDC-NC scheme, because the client
keeps five secret keys in F𝑛+𝑔

𝑞
, the client storage is 𝑂(5(𝑛 +

𝑔)log
2
𝑞). In the NC-Audit scheme, because the client keeps

only one secret key in F𝑛+𝑔
𝑞

, the client storage is 𝑂((𝑛 +

𝑔)log
2
𝑞). Meanwhile, the MD-POR scheme has 𝑠 keys for 𝑠

clients, each in F𝑛+𝑠𝑔
𝑞

, and thus the storage cost per client is
𝑂((𝑛 + 𝑠𝑔)log

2
𝑞).

6.1.2. Server-Side. The size of a file block is |V| = |𝐹|/𝑔. The

form of an augmented block is 𝑤𝑖 = (V𝑖,
𝑚=𝑠𝑔

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
0, . . . , 0, 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖

, 0, . . . , 0)

as indicated in Section 2.3. In the RDC-NC and NC-Audit
schemes, since 𝑠 = 1, the size of an augmented block is
|𝑤| = |𝐹|/𝑔+𝑔. In theMD-POR scheme, since 𝑠 = 𝑔, the size
of an augmented block is |𝑤| = |𝐹|/𝑔 + 𝑠𝑔. Furthermore, the
size of a coded block is |𝑐| = |𝑤| because each coded block
is a linear combination of augmented blocks. The number
of servers is ℎ. Each server stores 𝑑 coded blocks. 𝑠 clients
are assumed to participate in the RDC-NC and NC-Audit
schemes in parallel.Therefore, the server storage in the RDC-
NC and NC-Audit schemes is 𝑂(𝑠𝑑ℎ(|𝐹|/𝑔 + 𝑔)). The server
storage in the MD-POR scheme is 𝑂(𝑑ℎ(|𝐹|/𝑔 + 𝑠𝑔)).

6.1.3. TPA-Side. The RDC-NC scheme does not have a TPA.
In theNC-Audit scheme, the TPAnot only keeps a key in F𝑛+𝑔

𝑞

for verification (which is 𝑂((𝑛 + 𝑔)log
2
𝑞)) but also stores the

coding coefficients in F𝑞 which are used to compute all coded

blocks (which is 𝑂(𝑔𝑑ℎlog
2
𝑞)). Hence, the total TPA storage

in the NC-Audit scheme is𝑂((𝑛+𝑔+𝑔𝑑ℎ)log
2
𝑞). In theMD-

POR scheme, the TPA is given 𝜅 = 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑠 ∈ F𝑛+𝑚
𝑞

(Section 4.1.1). In other words, 𝜅 ∈ F𝑛+𝑠𝑔
𝑞

. The TPA storage
in the MD-POR scheme is thus 𝑂((𝑛 + 𝑠𝑔)log

2
𝑞).

6.2. Encoding Cost

6.2.1. Computation on Client-Side. In the RDC-NC and
NC-Audit schemes, during the encode phase, each client
combines 𝑔 augmented blocks (which is 𝑂(𝑔)) to create 𝑑ℎ
coded blocks in order to store 𝑑 coded blocks in each of ℎ
servers.The cost in these schemes is thus𝑂(𝑔𝑑ℎ). In theMD-
POR scheme, each client only needs to combine 𝑔 augmented
blocks (which is 𝑂(𝑔)) and distributes the result to all the
servers. The servers will create coded blocks by themselves.
The cost in the MD-POR is thus 𝑂(𝑔).

6.2.2. Computation on Server-Side. In the RDC-NC and NC-
Audit schemes, the servers do not need to do anything and
only need to receive the coded blocks computed by the clients.
The cost in these schemes is thus 𝑂(1). In the MD-POR
scheme, each of ℎ servers combines 𝑠 coded blocks from the
clients and computes 𝑑 coded blocks for itself.The cost in the
MD-POR is thus 𝑂(𝑠𝑑ℎ).

6.2.3. Computation on TPA-Side. In the RDC-NC scheme,
the TPA does not exist. In the NC-Audit and MD-POR
schemes, the TPA does nothing during the encode phase; and
the costs are thus 𝑂(1).
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6.2.4. Communication. In the RDC-NC scheme, the client
creates 𝑑ℎ coded blocks and sends 𝑑 coded blocks to each of ℎ
servers.The size of a coded block in these scheme is (|𝐹|/𝑔+𝑔)
as mentioned in Section 6.1.2. The number of clients is 𝑠.
Therefore, the communication cost is 𝑂(𝑠𝑑ℎ(|𝐹|/𝑔 + 𝑔)). In
the NC-Audit scheme, the communication is also similar to
the RDC-NC scheme. However, the difference is that the
client in the NC-Audit scheme not only sends the coded
blocks to the servers, but also sends all 𝑠𝑔𝑑ℎ coefficients
which are used to create the coded blocks to the servers.
The cost in the NC-Audit scheme is thus 𝑂(𝑠𝑑ℎ(|𝐹|/𝑔 + 𝑔) +
𝑠𝑔𝑑ℎ). In the MD-POR scheme, each of 𝑠 clients sends the
aggregated coded block to each of ℎ servers. The size of a
coded block in the MD-POR scheme is (|𝐹|/𝑔 + 𝑠𝑔) (see (5)).
The cost in the MD-POR scheme is thus 𝑂(ℎ𝑠(|𝐹|/𝑔 + 𝑠𝑔)).

6.3. Checking Cost

6.3.1. Computation on Client-Side. In the RDC-NC scheme,
the client receives the aggregated coded block from each of ℎ
servers and verifies each of them using his/her secret key; the
cost is thus 𝑂(ℎ). In the NC-Audit and MD-POR schemes,
the TPA will check the servers instead of the client. The cost
in the NC-Audit and MD-POR schemes is thus 𝑂(1) on the
client-side.

6.3.2. Computation on Server-Side. In all three schemes, each
of ℎ servers combines its 𝑑 coded blocks to send the result
(an aggregated coded block) back to the verifier. The verifier
is the client in the case of the RDC-NC scheme and is the TPA
in the case of the NC-Audit and MD-POR schemes. The cost
in all three schemes is 𝑂(ℎ𝑑).

6.3.3. Computation on TPA-Side. In the RDC-NC scheme,
the TPA does not exist. In the NC-Audit and MD-POR
schemes, the TPA verifies the aggregated coded block which
is accommodated from each of ℎ servers. Each verification
only takes one operation.The cost in the NC-Audit and MD-
POR schemes is 𝑂(ℎ).

6.3.4. Communication. In the RDC-NC and NC-Audit
schemes, during the check phase, each of ℎ servers sends
its aggregated coded block to the client. The size of that
coded block is (|𝐹|/𝑔 + 𝑔). The cost in these schemes is thus
𝑂(ℎ(|𝐹|/𝑔 + 𝑔)). In the MD-POR scheme, the mechanism
is the same as the RDC-NC and NC-Audit scheme, but the
different thing is that the size of a coded block in the MD-
POR scheme is (|𝐹|/𝑔+𝑠𝑔).The cost in theMD-POR scheme
is thus 𝑂(ℎ(|𝐹|/𝑔 + 𝑠𝑔)).

6.4. Repairing Cost

6.4.1. Computation on Client-Side. In the RDC-NC scheme,
in the repair phase, the client firstly has to check pollution
attack in 𝑙 coded blocks which are provided from 𝑙 healthy
servers (which is𝑂(𝑙)). Thereafter, the client computes 𝑑 new
coded blocks for the new server by combining 𝑙 provided
coded blocks (which is 𝑂(𝑙𝑑)). Hence, the computation cost

on the client-side in the RDC-NC scheme is𝑂((𝑙+1)𝑑). In the
NC-Audit andMD-POR schemes, the client(s) does nothing.

6.4.2. Computation on Server-Side. In the RDC-NC scheme,
each of 𝑙 healthy servers is required to combine its 𝑑 coded
blocks. Therefore, the computation cost on the server-side is
𝑂(𝑑𝑙). The cost in the new server is N/A because the direct
repair feature is not supported in the RDC-NC scheme. In the
NC-Audit and MD-POR schemes, not only 𝑙 healthy servers
combine their coded blocks (which is 𝑂(𝑑𝑙)) but also the
new server computes its 𝑑 new coded blocks by combining
𝑙 provided coded blocks (which is 𝑂(𝑑𝑙)).

6.4.3. Computation on TPA-Side. TheRDC-NC scheme does
not have a TPA. In the NC-Audit scheme, the TPA has to
check pollution attack in 𝑙 provided coded blocks (which is
𝑂(𝑙)). In theMD-POR scheme, theTPAdoes nothing because
the new server will check pollution attack, not the TPA as
theNC-Audit scheme.Therefore, the computation cost on the
TPA-side in the MD-POR scheme is 𝑂(1).

6.4.4. Communication. In the RDC-NC scheme, each of 𝑙
healthy servers sends an aggregated coded block whose size
is |𝐹|/𝑔 + 𝑔 to the client (which is 𝑂(𝑙(|𝐹|/𝑔 + 𝑔))). After
computing 𝑑 new coded blocks, the client sends them to
the new server (which is 𝑂(𝑑(|𝐹|/𝑔 + 𝑔))). As a result,
the communication cost in the RDC-NC scheme is 𝑂((𝑙 +
𝑑)(|𝐹|/𝑔 + 𝑔)). In the NC-Audit scheme, each of 𝑙 healthy
servers also sends an aggregated coded block to the new
server (which is𝑂(𝑙(|𝐹|/𝑔 + 𝑔))). Then, the new server sends
its linear coefficients which are used to compute 𝑑 new coded
blocks from 𝑙 provided coded blocks to the TPA (which is
𝑂(𝑙𝑑)). Therefore, the communication cost in the NC-Audit
scheme is𝑂(𝑙(|𝐹|/𝑔 + 𝑔) + 𝑙𝑑). In the MD-POR scheme, only
each of 𝑙 healthy servers sends an aggregated coded block to
the new server (each coded block has the size |𝐹|/𝑔 + 𝑠𝑔).
Therefore, the communication cost in the MD-POR scheme
is 𝑂(𝑙(|𝐹|/𝑔 + 𝑠𝑔)).

In summary, although the MD-POR scheme supports
many heavy features, its cost of the whole scheme is still
better than the previous schemes. Let 𝑂𝑝(𝐴), 𝑂𝑝(𝐵), and
𝑂𝑝(𝐶) denote the whole computation costs of the RDC-
NC, NC-Audit, and MD-POR schemes, respectively. Let
𝑂𝑚(𝐴),𝑂𝑚(𝐵), and𝑂𝑚(𝐶) denote the whole communication
costs of the RDC-NC, NC-Audit, and MD-POR schemes,
respectively. Let 𝑂𝑠(𝐴), 𝑂𝑠(𝐵), and 𝑂𝑠(𝐶) denote the whole
storage costs of the RDC-NC, NC-Audit, and MD-POR
schemes, respectively. In reality, 𝑑 and 𝑔 are far larger than
𝑠 and ℎ (𝑑, 𝑔 ≫ 𝑠, ℎ), 𝑙 ∈ {1, . . . , ℎ}, and 𝑑 > 𝑔. From
Table 1, the following results are obtained. 𝑂𝑝(𝐴) − 𝑂𝑝(𝐶) =
(𝑔𝑑ℎ + 𝑑) − (𝑠𝑑ℎ + 𝑔) > 0 because 𝑔 ≫ 𝑠. 𝑂𝑝(𝐵) − 𝑂𝑝(𝐶) =
(𝑔𝑑ℎ + 𝑙) − (𝑠𝑑ℎ + 𝑔) > 0 because 𝑔 ≫ 𝑠. 𝑂𝑚(𝐴) − 𝑂𝑚(𝐶) =
(𝑑ℎ𝑠 + 𝑑 − ℎ𝑠)(|𝐹|/𝑔) + 𝑔(𝑠𝑑ℎ + ℎ + 𝑙 + 𝑑 − ℎ𝑠2 − ℎ𝑠 − 𝑙𝑠) > 0

because 𝑑 ≫ 𝑠 and 1 ≤ 𝑙 ≤ ℎ. 𝑂𝑚(𝐵) − 𝑂𝑚(𝐶) = (𝑑ℎ𝑠 −

ℎ𝑠)(|𝐹|/𝑔) + 𝑔(2𝑠𝑑ℎ + ℎ + 𝑙 − ℎ𝑠2 − ℎ𝑠 − 𝑙𝑠) + 𝑙𝑑 > 0 because
𝑑 ≫ 𝑠 and 1 ≤ 𝑙 ≤ ℎ. 𝑂𝑠(𝐴) − 𝑂𝑠(𝐶) = (3𝑛 + 5𝑔)log

2
𝑞 + (𝑠 −

1)𝑑ℎ(|𝐹|/𝑔)−2𝑠𝑔log
2
𝑞 > 0 because |𝐹|/𝑔 = 𝑛log

2
𝑞 and𝑑 > 𝑔.

𝑂𝑠(𝐵) − 𝑂𝑠(𝐶) = (𝑠 − 1)𝑑ℎ(|𝐹|/𝑔) + 𝑔log
2
𝑞(𝑑ℎ − 2𝑠 + 2) > 0

because 𝑑 ≫ 𝑠.
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7. Performance Evaluation

This section evaluates the computation and communication
performances of the proposed MD-POR scheme to show
that it is applicable for a real system. A program written by
Python 2.7.3 is executed using a computer with Intel Core i5
processor, 2.4 GHz, 4GB of RAM, andWindows 7 64-bit OS.
The length of the prime 𝑞 is set to be 160 bits. The number of
clients is set to be 5 (𝑠 = 5) which is also the parameter used in
the performance evaluation of the InterMac in the paper [16].
The number of servers is set to be 10 (ℎ = 10). The number of
coded blocks stored in each server is set to be 100 (𝑑 = 100).
The number of healthy servers which are used for repairing is
set to be 3 (𝑙 = 3). The size of each file block is set to be 223
bits (1MB). Each result is the average of 100 runs.

The experiment results are observed with three sets of
computation performance and a set of communication per-
formance by varying the file size of each client. The com-
putation results are depicted in Figure 4 (encode), Figure 5
(check), and Figure 6 (repair). The communication result is
depicted in Figure 7 (encode, check, and repair).

Computation Performance.The experiment results reveal that
the computation time increases almost linearly as the file
size increases, and each graph has a different slope. Only the
computation time of TPA-side in the check phase is almost
constant. In the encode phase, the slopes of increment in the
graphs of client-side and server-side are approximately 0.04
and 0.002, respectively. Therefore, if the file size is 1 GB, the
computation time on client-side and server-side is estimated
as 41 seconds and 2 seconds, respectively. Note that the
encode phase only is executed one time in the beginning;
meanwhile, the check phase is executed many times during
system lifetime and the repair phase is executed once a
corruption is detected in the check phase. Consequently, the
check and repair phases are more important than the encode
phase. In the check phase, the slopes of increment in the
graphs of server-side and TPA-side are approximately 0.0005
and 0, respectively. Therefore, if the file size is 1 GB, the
computation time on server-side andTPA-side is estimated as
0.52 seconds and 0.02 seconds, respectively. Similarly, in the
repair phase, the slopes of increment in the graphs of healthy
server-side and new server-side are approximately 0.0005
and 0.0014, respectively. Therefore, if the file size is 1 GB, the
computation time on healthy server-side and new server-side
is estimated as 0.52 seconds and 1.47 seconds, respectively.

Communication Performance. The MD-POR scheme is per-
formed with the bandwidth of 300Mbps. The experiment
results reveal that the communication time increases almost
linearly as the file size increases, and each graph in Figure 7
has a different slope.The slopes of increment in the graphs of
the encode phase, the check phase, and the repair phase are
approximately 0.048, 0.008, and 0.006, respectively. There-
fore, if the file size is 1 GB, the communication time of the
encode phase, check phase, and repair phase is estimated as
49.27 seconds, 7.86 seconds, and 5.83 seconds, respectively. In
addition, the size of the response from each server is given as
follows. The response size of 50MB, 75MB, 100MB, 125MB,
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and 150MB file size is 13 KB, 19 KB, 26KB, 32 KB, and 38KB,
respectively.Therefore, if the file size is 1 GB, the response size
is estimated as 264.87KB.

The above results indicate that the computation and
communication performances are very fast evenwhen the file
size is 1 GB.

8. Conclusion and Future Work

In this paper, a network coding-based POR scheme named
MD-PORhas been proposed.TheMD-POR scheme supports
multiclient, symmetric key-based direct repair and public
authentication features. Moreover, the MD-POR scheme
can protect against a strong adversary who can perform
mobile attack, curious attack, response forgery, and pollution
attack. Furthermore, the efficiency analysis based on the
complexity theory shows that although theMD-POR scheme
supports many features, its costs are not bad compared with
the previous schemes. The experiment results reveal that
the computation time increases as the file size increases.
However, the graphs show that the slope of increment for the
MD-POR scheme increases merely. Future work is invested
to implement two previous RDC-NC and NC-Audit schemes
in order to compare with the MD-POR scheme. This paper
have implemented only the MD-POR scheme to show that
its computation cost is applicable for a real system.

Appendix

How the InterMac and the Network Coding
Combine Together

In this appendix, an example is given to explain how the
InterMac and the network coding work together to compute
the keys. Suppose that there are two clients: C1 and C2. The
augmented blocks are 𝑤11 = (2, 1, 0, 0, 0), 𝑤12 = (3, 0, 1, 0, 0),
𝑤21 = (1, 0, 0, 1, 0), and 𝑤22 = (5, 0, 0, 0, 1). All operations
work in F7.

The Key of C1. A matrix 𝑀1 is constructed in a way that it
consists of all augmented blocks which do not belong toC1:

𝑀1 = (
𝑤21
𝑤22

) = (
1, 0, 0, 1, 0

5, 0, 0, 0, 1
) . (A.1)

𝑀1 is then reduced by the Gauss-Jordan elimination to a
row echelon form as follows:

𝑀
󸀠

1
= (

1 , 0, 0, 1, 0

0, 0, 0, 1 , 4

) . (A.2)

Let 𝛿1, . . . , 𝛿5 denote the unknown variables which corre-
spond to the columns of𝑀󸀠

1
. Let 𝛿 = [𝛿1, . . . , 𝛿5]

𝑇. The pivots
which are the values in the squares belong to 𝛿1 and 𝛿4. The
free variables are 𝛿2, 𝛿3 and 𝛿5. Solving 𝑀

󸀠

1
⋅ 𝛿 = 0, we have

𝛿1 + 𝛿4 = 0 and 𝛿4 + 4𝛿5 = 0. Let 𝛿2 = 𝑎, 𝛿3 = 𝑏, and 𝛿5 = 𝑐.
One has

(

𝛿1
𝛿2
𝛿3
𝛿4
𝛿5

)= 𝑎(

0

1

0

0

0

) + 𝑏(

0

0

1

0

0

) + 𝑐(

4

0

0

−4

1

). (A.3)

Because the number of free variables is 3, the number of
elements in the basis is also 3. Namely, the basis is as follows:

{{{{{

{{{{{

{

(

0

1

0

0

0

),(

0

0

1

0

0

),(

4

0

0

−4

1

)

}}}}}

}}}}}

}

. (A.4)

Suppose that the random values are 2, 3, and 2.The key of
C1 is computed as

𝑘1 = 2(

0

1

0

0

0

) + 3(

0

0

1

0

0

)

+ 2(

4

0

0

−4

1

) (mod 7) = (

1

2

3

6

2

).

(A.5)

Here observe that 𝑘1 is orthogonal to 𝑤21 and 𝑤22. In
other words, 𝑘1 ⋅ 𝑤21 = 𝑘1 ⋅ 𝑤22 = 0:

(

1

2

3

6

2

)(1, 0, 0, 1, 0) (mod 7)

= (

1

2

3

6

2

)(5, 0, 0, 0, 1) (mod 7) = 0.

(A.6)
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The key of C2. Similarly, 𝑘2 is also constructed in the same
way as 𝑘1

𝑀2 = (
𝑤11
𝑤12

)

= (
2, 1, 0, 0, 0

3, 0, 1, 0, 0
)

row-ech.
󳨀󳨀󳨀󳨀󳨀󳨀→ 𝑀

󸀠

2
= (

1 , 4, 0, 0, 0

0, 1 , 4, 0, 0

) .

(A.7)

The free variables are 𝛿3, 𝛿4, and 𝛿5.The basis is as follows:

{{{{{

{{{{{

{

(

16

−4

1

0

0

),(

0

0

0

1

0

),(

0

0

0

0

1

)

}}}}}

}}}}}

}

. (A.8)

Suppose that the random values are 2, 2, and 1.The key 𝑘2
is constructed as

𝑘2 = 2(

16

−4

1

0

0

) + 2(

0

0

0

1

0

)

+ 1(

0

0

0

0

1

) (mod 7) = (

4

6

2

2

1

).

(A.9)

𝑘2 is orthogonal to 𝑤11 and 𝑤12: 𝑘2 ⋅ 𝑤11 = 𝑘2 ⋅ 𝑤12 = 0.

The Key of the TPA. The TPA is given the key 𝜅 as follows:

𝜅 = 𝑘1 + 𝑘2 =(

1

2

3

6

2

)+(

4

6

2

2

1

) (mod 7) = (

5

1

5

1

3

).

(A.10)

The Key of the New Server. The new server is given the key
𝜅
󸀠 as 𝜅󸀠 = 𝜅 + 𝑘repair where 𝑘repair is constructed as follows.

Firstly, a matrix𝑀𝑟 is constructed in a way that it consists of
all augmented blocks:

𝑀𝑟 = (

𝑤11
𝑤12
𝑤21
𝑤22

) =(

2, 1, 0, 0, 0

3, 0, 1, 0, 0

1, 0, 0, 1, 0

5, 0, 0, 0, 1

) . (A.11)

𝑀𝑟 is then reduced by the Gauss-Jordan elimination to a
row echelon form as follows:

𝑀
󸀠

𝑟
=
(
(
(

(

1 , 0, 0, 0, 3

0, 1 , 0, 0, 1

0, 0, 1 , 4, 0

0, 0, 0, 1 , 4

)
)
)

)

. (A.12)

The free variable is 𝛿5. The basis is as follows:

{{{{{

{{{{{

{

(

−3

−1

16

−4

1

)

}}}}}

}}}}}

}

. (A.13)

Suppose the random value is 3. 𝑘repair is computed as

𝑘repair = 3(

−3

−1

16

−4

1

) (mod 7) = (

5

4

6

2

3

). (A.14)

𝑘repair is orthogonal to all augmented blocks: 𝑘repair ⋅𝑤11 =
𝑘repair ⋅ 𝑤12 = 𝑘repair ⋅ 𝑤21 = 𝑘repair ⋅ 𝑤22. Then, 𝜅󸀠 is computed
as

𝜅
󸀠
= 𝜅 + 𝑘repair =(

5

1

5

1

3

)+(

5

4

6

2

3

) (mod 7) = (

3

5

4

3

6

).

(A.15)

Notations

𝑠: number of clients
C𝑖: client (𝑖 ∈ {1, . . . , 𝑠})
𝑘𝑖: secret key ofC𝑖
𝐹𝑖: original file ofC𝑖
𝑔: number of file blocks in 𝐹𝑖 of each client (𝑔

is the same in all clients)
𝑖: client index (𝑖 ∈ {1, . . . , 𝑠})
𝑗: file block index (𝑗 ∈ {1, . . . , 𝑔})
V𝑖𝑗: file block (𝑖 ∈ {1, . . . , 𝑠}, 𝑗 ∈ {1, . . . , 𝑔})
𝑤𝑖𝑗: augmented block of V𝑖𝑗

(𝑖 ∈ {1, . . . , 𝑠}, 𝑗 ∈ {1, . . . , 𝑔})
F𝑛
𝑞
: a 𝑛-dimensional vector space over a finite

field F𝑞 where 𝑞 denotes a large prime
𝑚: 𝑚 = 𝑠 ⋅ 𝑔

ℎ: number of servers
𝑙: number of healthy servers which are used

to repair a corrupted server
𝑑: number of coded blocks in each server
𝑥: server index (𝑥 ∈ {1, . . . , ℎ})
𝑦: coded block index in each server

(𝑦 ∈ {1, . . . , 𝑑})

𝑆𝑥: server (𝑥 ∈ {1, . . . , ℎ})
𝑐𝑥𝑦: coded block (𝑥 ∈ {1, . . . , ℎ}, 𝑦 ∈ {1, . . . , 𝑑})
𝑡𝑥𝑦: tag of 𝑐𝑥𝑦 (𝑥 ∈ {1, . . . , ℎ}, 𝑦 ∈ {1, . . . , 𝑑})
TPA: third party auditor
𝜅: key of the TPA
𝜅󸀠: key of the new server
A: adversary.
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