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Convergence Constrained Multiuser

Transmitter-Receiver Optimization in Single Carrier
FDMA

Valtteri Tervo*, Student Member, IEEE, Antti Tolli, Member, IEEE, Juha Karjalainen, Member, IEEE,
Tad Matsumoto, Fellow, IEEE

Abstract—Convergence constrained power allocation (CCPA)
in single carrier multiuser (MU) single-input multiple-output
(SIMO) systems with turbo equalization is considered in this
paper. In order to exploit the full benefit of the iterative receiver,
its convergence properties need to be taken into account also at
the transmitter side. The proposed scheme can guarantee that
the desired quality of service (QoS) is achieved after a sufficient
number of iterations. We propose two different successive convex
approximations for solving the non-convex power minimization
problem subject to user specific QoS constraints. The results of
an extrinsic information transfer (EXIT) chart analysis demon-
strate that the proposed CCPA scheme can achieve the design
objective. Numerical results show that the proposed schemes can
achieve superior performance in terms of power consumption as
compared to linear receivers with and without precoding, as well
as to the iterative receiver without precoding.

Index Terms—Power minimization, soft interference cancella-
tion, MMSE receiver, multiuser detection

I. INTRODUCTION

Frequency domain equalization (FDE) for single-carrier
transmission [1] and multi-carrier schemes based on orthogo-
nal division multiplexing (OFDM) [2] are known as efficient
techniques for tackling the inter-symbol-interference (ISI)
problem in frequency selective fading channels. Both of the
aforementioned techniques can be extended to multiuser com-
munications yielding single-carrier frequency division multiple
access (FDMA) [3] and orthogonal frequency division multiple
access (OFDMA) [4], respectively. In OFDMA all available
subcarriers are grouped into different subchannels' that are
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The bandwidth of each subchannel is less than the coherence bandwidth
of the channel which results in flat fading subchannels.

assigned to distinct users. User separation at the receiver side
is straightforward due to the orthogonality of the subchannels.

Single-carrier FDMA can be viewed as a form of OFDMA
in which an extra discrete fourier transform (DFT) and an
inverse DFT (IDFT) are added at the transmitter and receiver
sides, respectively. The DFT precoder spreads all the symbols
across the whole frequency band forming a virtual single car-
rier structure. The advantage of FDMA compared to OFDMA
is its lower peak-to-average power ratio (PAPR). However,
optimal multi-user detection in single carrier FDMA in the
presence of a frequency selective channel results in a pro-
hibitively high computational complexity. A linear minimum
mean squared error (LMMSE) detector provides an attractive
low complexity scheme for the detection of an FDMA signal in
the presence of ISI and multiuser interference (MUI) utilizing
the circulant structure of channel matrices [5], [6].

An iterative FDE technique can achieve a significant per-
formance gain over linear FDE in ISI channels [6]. In iterative
FDE, the key idea is to utilize the feedback from a soft-output
forward error correction (FEC) decoder that is updated accord-
ing to "turbo" principle. To exploit the full merit of an iterative
receiver, the convergence properties of a receiver based on the
"turbo" principle needs to be taken into account jointly at the
transmitter and the receiver. In [7], an extrinsic information
transfer (EXIT) analysis [8] is utilized to determine optimal
power allocation in a multiuser turbo coded code division mul-
tiple access (CDMA) system. In [9], a convergence analysis for
MMSE based iterative equalizer is performed by using signal-
to-noise power ratio (SNR) variance charts [6]. Furthermore,
the authors in [9] use the convergence analysis to formulate
a transmitter power allocation problem in frequency selective
single-input single-output (SISO) channels with the iterative
receiver mentioned above, assuming the availability of perfect
channel state information (CSI) both at the transmitter and
the receiver. In [10], [11], the impact of precoder design on
convergence properties of the soft cancellation (SC) frequency
domain (FD) minimum mean-squared error (MMSE) equalizer
is demonstrated. In [12], a precoder design for multiuser
(MU) multiple-input multiple-output (MIMO) ISI channels
based on iterative LMMSE detection is considered. The design
criterion of the precoder in [12] is to maximize the signal-to-
interference and noise ratio (SINR) at the end of the iterative
process. In [13], an in-depth analysis of the power allocation
problem in single-carrier MIMO systems with iterative FD-
SC-MMSE equalization has been presented.



The EXIT chart is one of the most powerful tools for
analyzing and optimizing parameters in iterative processing
[14]-[16]. The convergence of an iterative process can be
predicted by investigating the exchange of extrinsic infor-
mation of the soft in / soft out (SftI/SftO) blocks in the
form of mutual information (MI) between transmitted bits and
the corresponding log-likelihood ratios (LLRs). The analysis
can be made independently for each block, which eliminates
the necessity of time consuming chain simulations. When
applied to a joint equalizer and FEC decoder design, the
objective is to guarantee an open convergence tunnel between
the equalizer’s and the decoder’s EXIT functions. To be more
specific, the EXIT function of the equalizer has to be above
the inverse EXIT function of the decoder until so called
MI convergence point, which determines the communication
reliability represented by bit error probability (BEP) achieved
by the iterative equalizer. Therefore, the width of the tunnel
as well as the MI convergence point are the key parameters
when optimizing an iterative process using the EXIT charts
[17], [18].

The contributions of this paper are summarized as follows:
we extend the convergence constrained power minimization
problem [13] to the multiuser (MU) single-input multiple-
output (SIMO) system which results in a joint optimization of
multiple transmitters and the iterative receiver. The presence
of multiple users leads to multidimensional EXIT functions,
which makes the optimization very complex as such. We
present a suboptimal solution referred to as diagonal sampling
in Section IV-B. In [13], only quadrature phase sift keying
(QPSK) modulation is considered. In this paper, we also
derive a heuristic approach for 16-ary quadrature amplitude
modulation (16QAM). The aim is to minimize the power
consumption in single-carrier FDMA with iterative detection
subject to a quality of service (QoS) constraint. This can be
adopted for example in long term evolution (LTE) type of
systems [19]. Unlike in [13] the joint optimization of the
multiple transmitters and the receiver is not convex. Thus,
we use a block coordinate descent (BCD) method [20] where
the non-convex joint optimization problem is split to separate
transmitter and receiver optimization problems. Furthermore,
we show that the MMSE receiver is a power minimizing
receiver and therefore, the objective value in the alternating
optimization converges to a local solution. However, unlike the
power minimization problem with the classical per subcarrier
SINR constraint [21], the problem considered in this paper
cannot be formulated as a convex even for a fixed receiver.
Therefore, two efficient algorithms based on a successive
convex approximation (SCA) method [22] are proposed for
solving the transmitter optimization problem for fixed receive
beamformers.

The rest of the paper is organized as follows: A system
model of a single carrier uplink transmission with multiple
single-antenna users and a base station with multiple antennas
is presented in Section II. In Section III, an iterative frequency
domain equalizer is described. Convergence constrained power
allocation (CCPA) for turbo equalizer is derived in Section IV.
In Section V, algorithms for solving the CCPA problem are
derived. Performance of proposed algorithms is demonstrated
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Fig. 1. The block diagram of the transmitter side of the system model.

through simulations in Section VI. Finally, conclusions are
drawn in Section VIIL

Nomenclature — The following notations are used through-
out the paper: Vectors are denoted by lower boldface letters
and matrices by uppercase boldface letters. The superscripts
H and T denote Hermitian and transposition of a complex
vector or matrix, respectively. C, R, B denote complex, real
and binary number fields, respectively. I denotes N x N
identity matrix. The operator avg{-} calculates the arithmetic
mean of its argument, diag(-) generates diagonal matrix of its
arguments, bdiag{-} generates the block diagonal matrix from
its argument matrices, ® denotes the Kronecker product and
| - || is the Euclidean norm of its complex argument vector.

II. SYSTEM MODEL

Consider uplink transmission with U single antenna users
and a base station with Ny antennas. The transmitter side
of the system model is depicted in Fig. 1. Each user’s data
stream x,, € BReNeNr 4 =1,2,... U, is encoded by FEC
code C,, with a code rate RY < 1. N denotes the number
of bits per modulation symbol and Npg is the number of
frequency bins in discrete Fourier transform (DFT). Encoded
bits ¢* = [c¥,cY,...,cnone]T € BYeNF are bit-interleaved
by multiplying c* by pseudo-random permutation matrix
m, € BNeNFXNoNF regulting in a bit sequence ¢’ = 7r,,cV.
After the interleaving, the sequence ¢’ is mapped with a
mapping function M, (-) onto a 2™¥2-ary complex symbol
b € C,1=1,2,..., N, resulting in a complex data vector
b¥ = [b%, by, ..., b}(,F]T € CNF. Each user’s modulated data
stream is spread across the subchannels by multiplying b* by a
DFT matrix F € CN#*Nr Wy =1,2,...,U,% The elements
of F are given by

1

fm,l — e(i27r(m—1)(l—1)/Np) (1)
VNp
withm,l =1,2,..., Npr. Each user’s data stream is multiplied

with its associated power allocation matrix P2, where P, =
diag([Py1, Pu2; -y Pung]T) € RNFXNFwith P, being
the power allocated to the Ith frequency bin. Finally, before
transmission, each user’s data stream is transformed into the
time domain by the inverse DFT (IDFT) matrix F~! and a
cyclic prefix is added to mitigate the inter-block interference
(IBI).

The receiver side of the system model is depicted in Fig.
2. After the cyclic prefix removal, the signal can be expressed

2The same amount of frequency domain resources are assumed to be
allocated for each user in a cell.
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Fig. 2. The block diagram of the receiver side of the system model.
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r=H,F'P;Fb"+ Y H,F 'P;Fb’+v, (2
yF£u
where H, = [HL H?, ..., HYrR]T ¢ CNrNrxNr jg

the space-time channel matrix for user v and H] =
circ{[hl, 1, Wy oy, By, O1xNp—n, )T} € CNFXNF s the
time domain circulant channel matrix for user w at the
receive antenna 7. The operator circ{} generates a matrix
that has a circulant structure of its argument vector, Np,
denotes the length of the channel impulse response, and h;, ,,
l=12,...,Np, r = 1,2,..., Ng, is the fading factor of
multipath channel. A vector v € CV2NF in (2) denotes white
additive independent identically distributed (i.i.d.) Gaussian
noise vector with variance 0. The signal r is transformed into
the frequency domain by using DFT matrix F, = Iy, ®F €
CNrNeXNRNF resulting in

t =TP2Fyb + Fy,v, 3)

where T' = [['1,Ty,...,Ty] € CVNeNexXUNrF wijth T, =
bdiag{Ty 1,y 2,..., Ty N} € CNeNFXNF being the space-
frequency channel matrix for user u expressed as

r,=Fy,HF )

Lym € CNrXNE s the diagonal channel matrix for the m™"
frequency bin of the u user, Fy = Iy @ F € CUNFXUNr,
and b = [blT,bQT,...,bUT]T € CYNr_ The power alloca-

tion matrix is composed by P = diag(P1,Ps,...,Py) €
RUNFXUNF.

III. RECEIVER

The block diagram of the frequency domain turbo equalizer
is depicted in Fig. 3. Frequency domain signal after the soft
cancelation can be written as

#=%-TP2Fyb, (5)
" 5T T T UNp ;
where b = [b! b2 ,... bV ' € CYr is composed by
bt = [b}, by, ..., b% ]T € CNr. The soft symbol estimate b
is calculated as [13]
by = E{bi} = > b Pr(by =1b,), (6)
b, eB

3In this paper, single cell scenario is considered and the impact of inter-
cell-interference is excluded.

where ‘B is the modulation symbol alphabet, and the symbol
a priori probability can be calculated by [23]

Ng
Pr(by = bi) = [ [ Pr(c/Ngnot)+q = i)
q=1
Ng
1 NQ B o /u
— (5) H(l — 3 q tanh(L(n_l)NQ+q/2))7
q=1
(7
with 54 = 2s;g — 1 and s; = [s;,1,8i2,...,5i,ng]" is the

binary representation of the symbol b;, depending on the map-
ping rule for modulation. L(Z—l) No+q is the a priori LLR of
the bit ¢/ o(n—1)+¢> Provided by the decoder of user u. After
the soft cancelation, the residual and the estimated received
signal of user u are summed up, yielding ¥, € CVrNF a5

[24]

¥, = £+ [,PIFb". ®)
The time domain output of the receive filter for the u'" user
can be written as
bt = F~1( £, ©)
9 vl v?2 v Nr .
where Q, = [Q,,Q,,...,Q, |T € CNeNrxNr jg the

filtering matrix for the u™ user and ﬁ; € CNrxNr g the
filtering matrix for the 7" receive antenna of the u™ user. The
effective SINR of the prior symbol estimates for the ™ user
after FEC decoding can be expressed as

Nr H H
<. 1 Z Riﬁmwu,mﬁ)lu,m‘yu,mwu-,m
U

NF wg’m Ef',mwu,m

; (10)

m=1

where Yu,m € CN=r consists of the diagonal elements of ', ,;,,

i.€., Yy, 18 the channel vector for the m™ frequency bin of

v 1 v 2 v Ngr T
user u. Wym = [[Qu][m,m]a [Qu][m,m] EE) [Qu ][m,m]:| €

CNR is the receive beamforming vector for the m™ frequency
bin of user u, and ¥;,, € CNrXNr s the interference
covariance matrix of the m™ frequency bin given by

U
Yim = ZPl,m’Yl,m'YEmAl + UzINR.
=1

Y

Al = avg{1y, ff)l} is the average residual interference of the
soft symbol estimates and b! = [|b} |2, [b5[?,.. ., |l~)§VF|2]T €
CN7. The scalar A! = avg{1y, — b'} is an approximation
which is reasonably accurate for normalized 2V?-ary PSK as
well as for rectangular 2V@-ary QAM with an appropriate
normalization [13]. For QAM, both the transmitted symbol

vector b" and soft-symbol vector b have to be multiplied by
3

the normalization factor x = 2@ D)

IV. CONVERGENCE CONSTRAINED POWER ALLOCATION

In this section, the joint power allocation and receive
beamforming optimization problem for the iterative receiver
is formulated. The general problem formulation follows from
[13] where CCPA is derived for single user MIMO systems.
However, the major difference compared to [13] is that the
EXIT space now has U + 1 dimensions.
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Fig. 3. The block diagram of frequency domain turbo equalizer.

This section is outlined as follows: first of all, the general
problem formulation for multiuser SIMO systems is provided.
We demonstrate that the convergence is guaranteed as long as
there exists an open tunnel between the U + 1-dimensional
EXIT surfaces until the desired MI point. After that, we
introduce a novel diagonal sampling approach which makes
the problem solvable without performing exhaustive search.
We also show how to transfer the MI constraints to LLR
variance constraints in the case of BPSK and QPSK. Finally,
we apply CCPA to the case of 16QAM and show that the
proposed convergence constraint guarantees the convergence
for 16QAM as well. Gray mapping is assumed as a modulation
mapping throughout the derivation.

A. General Problem Formulation

Let fE denote the average MI between the transmitted
interleaved coded bits ¢’* and the LLRs L, at the output of the
equalizer [13, Eq. (18)]. For notational convenience, equalizer
refers to the combined block of the receive filter and soft
mapper / demapper. Similarly to [13] maximum a posteriori
(MAP) soft demapper / mapper is used in this paper. Moreover,
let f{j denote the a priori MI at the input of the equalizer
and f, : [0,1]Y — [0,1] denote a monotonically increasing
EXIT function of the equalizer of the u'™ user. Similarly,
let IE denote the average MI between the transmitted coded
bits c* and the LLRs L, at the output of the decoder and
fu : [0,1] = [0,1] denote a monotonically increasing EXIT
function of the decoder of the u™ user. The essential condition
for the convergence of the turbo equalizer can be written as

{IEe(o,1] 51;1 : fu(E

FIE) + e (IB),yu=1,2...,0,

JIE TR >
(12)

i.e., for all u, there exists a set of outputs from the decoders
of all the users except u such that the EXIT function of the
equalizer of user w is above the inverse of the EXIT function
of the decoder of user u plus eu(If) which is a function
controlling the minimum gap between the U + 1-dimensional
EXIT function of the equalizer of user w and the inverse of
the decoder’s EXIT function of user u. In other words, the
convergence is guaranteed as long as there exists an open

W
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Fig. 4. An example of 3 dimensional formulation of the problem for user

1.U=2 Np =8, Ng =1, K =11, fBuet — g g pEareet — 9999,
e =01, u=1,2 R.=1/3, Ny =5.

tunnel between the two EXIT surfaces until the convergence
point. The constraint (12) is much more challenging to deal
with than [13] where the EXIT chart is 2-dimensional. This
is illustrated in the case of two users in Fig. 4 where we can
see the impact of the a priori information input from the other
user’s decoder.

We demonstrate that (12) guarantees the convergence: Let
U = 2 and assume that there exists an open tunnel between
the EXIT surfaces until the convergence point as presented in
Fig. 4. Let 5™, 0 < &€ < 1, be the target MI point of
user u after iterations. Furthermore, let 7,, € N be the index of
iteration and Iof’iu denote the MI after iteration 7, such that
IOEM_H > IE‘“ Focusing on the user 1, the condition (12) is
written

AUEIE) > frHIF) + e (IP), (13)

such that for each fﬁil, 0< ffil < ff’mget, there exists at
least one fg}iz, 0< IQEl2 < Ig e that satisfies the condition.
Let the output value after the first activation of the decoder
1 be Iofl, such that (13) holds for some IDQEjz. Due to the
monotonicity of the EXIT function the condition (13) holds
for all indices 75 > 52. Activating the decoder of user 1 again,
the output of the equalizer is then given by fi(IF,, I;:Zg) If
the condition (13) does not hold at the point (IE, IE, [E) =
(IFQ,IQEZQ,fl(IF%IQE;Q)) in the 3-dimensional EXIT chart,
ie. fi (fEQ, I2E;2)) < ffl(Ifg) +e1(IF), there exists at least
one f;h that satisfies (13). Hence, 52 can be increased, i.e.,
decoder 2 can be activated until the condition holds*. This
process can be repeated until the convergence point is reached.

To make the problem tractable, continuous convergence

4f U > 2, all the decoders (excluding the decoder of user 1) can be
activated until (13) holds.



condition (12) is discretized and replaced with

o U
3{15,%, cl0,1]: k; € {1,2,...,1{1}}2.:1 :

f (Ilkl"" Iuk 7"'715,kU)qu_l(IEku)"_euyku»
Vhe =1,2,..., Ky, YVu=1,2...,U. (14)

Note that the indices k., u = 1,2,...,U in (14) denote the
points in the EXIT chart and not the indices of iterations in real
chain simulations. We will use this definition in the remaining
part of the paper.

B. Diagonal Sampling

In this section, we restrict our discussion to the minimum
power problem only, i.e., the objective is to minimize the sum
power with a constraint (14).

To ease the handling of the problem, let K,, = K, Vu =
1,2,...,U, ie., the number of discrete points in the EXIT
chart is the same for all users. Furthermore, let ¢, Jou = €us
Vk, < K and €, x = 0. Moreover, we assume that I Kl >

If;’ku, Vk, =1,2,..., K—1,ie., the indexing is ordered such
that the MI increases with the index.

A 3-dimensional EXIT chart for user 1 is depicted in Fig. 4
for the case of U = 2. jﬁkl /IEku u = 1,2, denotes the a pri-
ori information for the equalizer of the user 1 provided by the
decoder of user u. Double arrows with €1 ,, k1 = 1,2,...,11,
denote the actual gap that is obtained from simulations with
a constraint (14) and are placed at the diagonal sample points
where the condition (14) is checked. Since e€;j, denotes
the minimum gap between the EXIT surfaces it holds that
€1,k, = €1,k,- In this example, we have selected K = 11 even
though in many cases smaller K is enough to guarantee the
convergence. Intuitively, a sufficient value of K depends on
the shape of the decoder EXIT function. However, this is left
as a future study.

The number of constraints in (14) is KU. However, to
find the minimum power solution with the constraint (14),
we need to know how to select the optimal set of sample
points from {IF € [0,1]}Y, for each v = 1,2,...,U. For

finding the best set of sample points, i.e., the path from origin
to the convergence point which leads to a minimum power
consumption, one should be able to check all the possible
paths in U + 1 dimensional EXIT space from origin to the
convergence point and choose the one which gives the best
result. This leads to a combinatorial optimization problem
which is difficult to solve.

If the EXIT surfaces of the decoder and the equalizer
do not intersect at any sampled point, the only active con-
straints are the ones where there is no a priori information
available from the other users. This can be justified by as-
suming that the EXIT function is monotonically increasing
with its arguments, i.e., fu( 1k17"'715k yeen <

r IE L) <
fu(lk,... IEk,...,ng ) if 15, < 1P Vu =

1,2,...,U. In such a case, we can write the constramt (14)
as
fu(0705' '-7OaIukr ’07"'a0) Z fq/,_l(jg,ku) +€’U«;ku7
Yu=1,2...,UVk,=1,2,...,K. (15)

This is the tightest possible constraint and it clearly cannot
provide the best solution because with high probability there
is another sampling which guarantees the convergence with
lower power consumption. However, if the user does not know
the modulation coding scheme (MCS), i.e., FEC codes and
mapping rules for modulation of other users at the transmitter,
one may consider using the constraint (15) to guarantee the
reliable communication.

A pragmatic approach is to check only the points in the
U +1-dimensional EXIT space where all the decoder’s outputs
are equal, i.e., we check the K points on the line from the
origin to the convergence point. In other words, A! in (11)
is equal to A, VI = 1,2,...,U, where Ay is the average
residual interference at the k™ MI index. Thus, we can replace
the U + 1-dimensional EXIT function of the equalizer by 2-
dimensional function f, (IE o Iof’k, . 7Iog’k) = fIP(]F)
and the constraint is written as

FRIE) > N IE) + eur, Ve =1,2,.. . K,Yu=1,2...,U.

(16)

This approximation technique is referred to as diagonal sam-
pling, which is assumed throughout the remaining part of the

paper.

C. BPSK / QPSK

Similarly to [13], the MI constraint of (14) can be trans-
formed to variance constraint using the approximation of the

inverse of the so called J-function [16]
1

1 =\
U2Z:J—1(IZ)~<_Hl10g2(1—123)> , (17)

where 0’% is the LLR variance, Iz is the MI, and the
parameters H;, Hy and Hs can be found by least squares
(LS) curve fitting with the constellation constrained capacity
(CCC) equation [25]. Now, the MI constraint of (16) can be
written as

~2 o2
Uu,k > Uu,k’

VE=1,2,...,K,Yu=1,2...,U, (18)

where 62 , = J'( f™(E)) is the variance of the conditional
LLR distribution at the output of the equalizer of user u
depending on the MI at the output of all the decoders and
ooy = J—l(f’uq(j’g’k) + €,,%) is the variance of the condi-
tional LLR distribution at the input of the decoder of user u
depending on the MI at the output of the decoder of user wu.
In [13], a result presented in [26] is used to find an analytical

expression of the LLR variance at the output of the equalizer
in the case of QPSK. We can use the same result by noting
that A! = Ay in (11) when diagonal sampling is used. The
LLR variance at the output of the equalizer is calculated as
[13, Eq. (17)]

~2 4<u,k‘

O—u,k 1— Cu,kAk . (19)
Substituting (19) to (18) the convergence constraint is written
as

Cok = CumVu=1,2... . UVE=1,2,....K, (20)



where
00.2
u,k

k= ——— 21
fu,k 4—’-00'121‘va]€, ( )

is a constant that depends on the FEC code.

D. A Heuristic Approach for 16QAM

Similarly to QPSK case, the MI at the output of the
demapper can be transformed to the variance of the conditional
LLR distribution by using (17). However, the parameters H,
H, and Hjs are found by fitting the function (17) with the
corresponding 16QAM results [27]. Let Jo and J4 denote the
J-functions for QPSK and 16QAM, respectively. With these
notations, the MI constraint of (16) for 1I6QAM can be written
as

NP = I (AR ) + eun),

VE=1,2,...,K,Yu=1,2...,U. (22)

The difference in system models with different modulation
schemes arises in the soft demapper. To achieve the final form
of the convergence constraint in (20) we used the expression
(19) where Gray mapped QPSK is assumed. With 16QAM, the
mapping between the SINR and the variance of the LLR distri-
butions used for the derivation of (20) does not hold anymore.
However, substituting the parameter values from [27, Table I]
to (17), it can be easily verified that J;'(Iz) > J;'(I2)°,
VIz € [0,1]. Using this result, we can obtain that when
modulation order increases, larger LLR variance is needed to
achieve the same SINR, i.e.,

ory, ¢ U 4Cur

PR 2 05 R UD) = g
We can conclude that for 16QAM the convergence constraint
(20) is conservative, i.e., the resulting EXIT curve of the
equalizer is never above the true f};{k, Vu, k. Hence, the
convergence constraint (20) guarantees the convergence even
with 16QAM. It should be noticed that the difference in
convergence constraint between the QPSK and 16QAM arises
in (21) where &7, is obtained using either J3 Yor It
depending on the modulation.

(23)

V. TRANSMITTER - RECEIVER OPTIMIZATION

In this section, algorithms for solving the transmitter-
receiver (Tx-Rx) optimization problem is presented. In Sec-
tion V-A, the joint Tx-Rx optimization problem is split into
separate transmitter and receiver optimization problems, which
is referred to as alternating optimization. The non-convex Tx
optimization problem for a fixed Rx is considered in Sections
V-B and V-C.

The power minimization problem with the convergence
constraint derived in the previous section is expressed as

minimize t{P}
P,O"
subject to Cuk = &u ks
Vu=1,2...,U,Vk=1,2,... K,
Pym =0,
u=12,...,Um=1,2,... Np,

(24)

SEquality holds when Iz =0 or Iz = 1.

vk
where €2 is the receive filter at the £™ MI index.

A. Alternating Optimization

Our objective is to jointly optimize the power allocation at
the transmitter and the beamforming vectors at the receiver
while the convergence of the iterative receiver is guaranteed.
Differentiating the Lagrangian of (24) with respect to the
receive beamforming vectors and equating to zero yields

H H
0 Pu,mwu,m7u7m7u,mw%m

k H
awu,m wu,m

=0. 25)

z]i',m“du,m
Calculating the derivative in (25) and solving wfim results in

H s
k Wy 28, mWu,m

_ H k /
wu,m _P H H ’Yu,mwu,m Pu,m
uvmwu,7n7u,m7u,mw“7m
k -1 /
X (zi',m) ’Yu,m Pu,my (26)
w,, r,,LEy"-,'m,wu,'m + .
where e T € R™. Further assuming that
u,m@y mYu,mYu,m%Pu,m

727mw57m € R, the optimal receive beamforming vector for
the m™ frequency bin of the u™ user at the k™ MI index is
given by

. k _
Wi,m = nﬁ(zf,m) 1’yu,m\/m»

where E’ff’m denotes the interference covariance matrix for
the m™ frequency bin at the k" MI index and n* € R. The
assumption fyzlmw’fhm € R is justified by the fact that the
receiver wf . can be multiplied by any factor /%, 6 € [0, 2],
such that ejoﬁyg’mwﬁ,m € R without changing the SINR.
Hence, the optimal receiver (27) is actually the MMSE receiver
used in [24, Chapter 5] up to a scalar multiplier leading
to exactly the same SINR. The scaling factor 1* should be
chosen such that it matches with the assumptions made in the
soft demapper. With the notations given in Section III, turbo
equalizer works properly only if the scaling factor 1% is chosen
to be [27] nF = m

The joint transmitter-receiver optimization problem can be
solved by using the alternating optimization where we split the
non-convex joint optimization problem to separate transmitter
and receiver optimization. We start with a feasible initial
guess® P and calculate the optimal receive filter. After

that, the problem (24) is solved for a fixed flk. A monotonic
convergence of the alternating optimization to a local optima
can be justified by the fact that each step improves the
objective. The overall algorithm is presented in Algorithm
1, where P* represents a solution to the problem (24) for
fixed ﬁk and flk* represents the optimal Q' for fixed P.
vk € CNrNrxNrNrF g the covariance matrix of the output
of the soft cancelation given by

27

SF=TP2 AP TV + 2Ly, v, (28)

where Ay, =1y, NFAk. In the following sections, we will be

ok
focusing on solving the problem (24) for fixed €2 , denoted
as power allocation problem (PAP).

Can be found by e.g., using zero forcing algorithm [28].



Algorithm 1 Alternating Optimization.

1) 1 Initialize P = P©
2: repeat

3: Ce}clculate the optimal flk from )
0" _ 1 E\—11 p2
Q, jkavg{ﬁuugiu,k+1(zf) r.p:.

4. Set 2 =€ and solve problem (24)
with variables P.

5. Update P =pP*

6: until Convergence

To ease the handling of (24), we write the problem in
equivalent form by splitting the convergence constraint into
sum SINR and per subcarrier SINR parts as follows:

L
NiF Z tﬁ’m 2 fu’k

m=1
2

k H
k Pu7n|wu,n ’Yu,n
un — SU H A :
Zl:l ‘Plyn|w5,n P)/l,n zAk + 02||wﬁ,n||2
At the optimal point the constraints hold with equality and

hence, we can relax the equality in (29) leading to equivalent
formulation

C .. U N
minimize ) ., > ", Py,

(29)

)

subject to - SN th o > Euk

wu=1,2,...,Uk=12...K,

k H 2
Pun|@y e Yu,nl

ST Pk T P A Twh P 2 b
k=1,2,...,K,u=1,2,...,U,
n=1,2,...,Np,

Pu,n Zoa
u=12,....,Un=12,...,Np.

(30)

B. Successive Convex Approximation via Variable Change
Similarly to [29], we introduce new variables c, ,, € R,

such that P, ,,, = e*»™ Vu=1,2,...,Um=1,2,...,Np.

The PAP with new variables can be equivalently written as

U N
Zu:l Zmil et

NLF Zg@i] tﬁ;m > Eu,k
w=1,2... Uk=12... K,

ecunwh My )2 > ¢k
Sl eftnjwk Hy 2PAgto?||wk |2 = T
k=1,2,.... K,u=1,2,...,U,
n=1,2,...,Np,

minimize
a,t

subject to

(€29
where t = {tﬁ’m cu=1,2,..., Uk =12,.... Km =
1,2,...,Np}, and @ = {aym : u = 1,2,...,Um =
1,2,...,Np}. Taking the natural logarithm of the per sub-
carrier SINR constraint yields

H
Qoym + 21n(|wﬁ,n 7u,n|)
U
H _
—In(Y e lwh vyl Ak + 0P ([w) L]17) > It

=1
(32)

It is well known that logarithm of the summation of the
exponentials is convex. Hence, the left hand side (LHS) of the
constraint (32) is concave. The RHS of (32) can be locally
approximated with its best convex upper bound, i.e., linear
approximation of Int%  at a point % :
k Tk
vk # )=ty (un —fun)

u,n? ‘u,n u,n ik
u,m

(33)

A local convex approximation of (31) can be written as
. U NF  oum
minimize Dot Doy €

subject to SN thon > Nebugu=1,2,...,U,
k=1,2... K,
Qyn +2 1n(|wﬁ,nH7u,n|)_
(S e ful 2B + 02l 12)
Y(tE ) u=12,...U,
k=1,2,...,K,n=1,2,...,Np,
(34
and it can be solved efficiently by using standard optimization
tools, e.g., interior-point methods [30].

The SCA algorithm starts by a feasible initialization fﬁm =
fﬁfg),Vw k,n. After this, (34) is solved to obtain a solution
tﬁf:) which is used as a new point for the linear approx-
imation. The procedure is repeated until convergence. The
SCA algorithm is summarized in Algorithm 2. By projecting
the optimal solution from the approximated problem (34) to
the original concave function (RHS in (32)) the constraint
becomes loose and thus, the objective can always be reduced.
Hence, monotonic convergence of the algorithm is guaranteed.

Algorithm 2 Successive convex approximation algorithm.

1: Set tk = fﬁfg),Vu, k,n.
2: repeat

3:  Solve Eq. (34).
4

5

Update tF = tﬁfi),Vu, k,n.

u,n

: until Convergence.

C. Successive Convex Approximation via Geometric Program-
ming

Another algorithm for solving the PAP can be derived by
using the approach introduced in [31] where the SCA is
implemented via series of geometric programs (GPs) [30].
The inequality of weighted arithmetic mean and weighted
geometric mean states that for any set of ®,,,a,, > 0,
m:1,27...7NF,

35
o > (35)
where & = ng:l ®,,. Choosing ®,, = Z,f;'j{ s tm > 0,
n=11tn

m=1,2,..., Np, and denoting «,, = é , we have

Np Npg t

m\d,
>t > H(§> : (36)

m=1



for all ®,,,t,, >0, m =1,2,..., Np. Therefore, the summa-

tion constraint can be replaced by its monomial underestimate,
ok

with which a local approximation of (24) for fixed €2 can be

derived in the form of GP, as

minimize tr{P} k
TI0E (352) P > Nigu,
wu=1,2...Uk=12,... K,
P%m'wﬁAmH’YU,m'Q Z
(Zlel B=77l|w'ﬁ,mH7l,m|2Ak + 02|w5,m‘2)tﬁ,m7
u=1,2,....Uk=1,2,..., K,
m = 1,2,...,Np,
Pym >0, v=12,...,Um=1,2,...,Np.
(37
Now the objective is a posynomial, the LHSs of the inequality
constraints are monomials and the RHSs are posynomials.
Hence, (37) is in the form of GP, which can be transformed to
a convex optimization problem [30]. Now, Algorithm 2 can be
used by replacing (34) in step 3 by (37). Because the monomial
approximation is never above the approximated summation
(36), the same arguments describing the convergence presented
in Sec. V-B apply also in this case. Hence, it is guaranteed
that SCA with approximation (37) converges monotonically.

subject to

The motivation of introducing two different SCAs, via
variable change and via GP is to give alternative approaches
for the implementation of the optimization algorithm. The
main difference is in the approximated constraints: In (34),
per subcarrier constraint is approximated and the number of
the approximated constraints is UNp K. In (37), sum SINR
constraint is approximated and the number of approximated
constraints is UK.

VI. NUMERICAL RESULTS

In this section, we show the results obtained by simulations
to evaluate the performance of the proposed algorithms. The
following abbreviations for the algorithms are used: SCAVC
stands for the successive convex approximation via variable
change presented in Section V-B and SCAGP denotes the
successive convex approximation via geometric programming
presented in Section V-C. The stopping criterion of Algo-
rithm 1 and Algorithm 2 is that the change in the objective
function becomes less than or equal to a small specific value
between two consecutive iterations. In simulations, we set the
stopping threshold value at 0.05 for Algorithm 1 and 0.01
for Algorithm 2. EP denotes the single carrier transmission
without precoding, i.e., equal power is allocated for all users
across the frequency band, where the power level satisfying
the convergence constraints is found by using the bisection
algorithm [30].

We also simulated the system with the best possible or-
thogonal allocation obtained by performing exhaustive search
(OES) over all possible subcarrier combinations. Orthogonal
in this context indicates that only one user is active in each
subcarrier at a time. The convergence constraint for OES can

be written as

1
N 2

meN 3

PU,mHPYuA,m”z
Puvm||7u,m”2Ak +0?

2 Lk (38)

where N} is the set of frequency bins allocated to user u and
NEANE = @, VI # u, UI_, N& = Np. Clearly, (38) is a
convex constraint Vk, u.

We also considered a receiver structure where spatial zero
forcing (ZF) [28] is concatenated with FD-SC-MMSE (ZF-
SCMMSE). The constraint for ZEFSCMMSE is then written
as N
- P, u,m

1
NF Z Pu,mAk + O'QHWu,m‘

m=1

52 (9

where w,, ,,, is the ZF beamforming vector for the u™ user
at the m™ frequency bin. Clearly, (39) is a convex constraint
Vk,u. It can be seen from (38) and (39) that there is no inter-
user-interference in OES and ZFSCMMSE. Therefore, OES
and ZFSCMMSE are simplified to a single user loading [13].

The results were obtained with the following parameters:
Nr =8, QPSK (Ng = 2) and 16QAM (Ng = 4) with Gray
mapping, and systematic repeat accumulate (RA) code [32]
with a code rate 1/3 and 8 internal iterations. The number of
EXIT samples is either K =1 or K = 5. Incase of K =1
only one of the convergence constraints for each user is taken
into account. More specifically, it means that I5"®" = 0, and
IF, = ™, w = 1,2, k = K. The feedback from the
decoder is not taken into account and hence, it corresponds to
the linear equalizer. In case of K = 5 the points were placed
uniformly along the line from the origin to the convergence
point, i.e., uniformly over [0, I%]. The signal-to-noise ratio
per receiver antenna averaged over frequency bins is defined
by SNR= tr{P}/(NgNrc?). We considered two different
channel conditions, namely, a static 5-path channel where path
gains were generated randomly, and a quasi-static Rayleigh
fading 5-path average equal gain channel.

For verifying the accuracy of the method, EXIT simulations
were carried out in a static channel, and the trajectories were
obtained through chain simulations with a random interleaver
of size 240000 bits. The EXIT curve of the decoder was
obtained by using 200 blocks for each a priori value with
the size of a block being 6000 bits. The EXIT curves of
the equalizer with SCAGP and the decoder as well as the
trajectories for two and four users with QPSK and 16QAM
are depicted in Fig. 5. It is found that when U = 2 and
QPSK is used, the gap between the EXIT curves satisfies the
preset condition and the convergence points are very close to
the preset values. Furthermore, the trajectory matches closely
to the EXIT curves which indicates that the algorithm works
properly. When the modulation order is increased to 16QAM
there exists a slight discrepancy between the EXIT curves and
the trajectory. This is because of the inequality shown in (23).
Due to the conservativeness of the convergence constraint in
the case of 16QAM, the real chain simulation provides larger
MI than the approximated EXIT curves and hence, the actual
trajectory reaches the convergence point. Therefore, since the
constraint in (24) provides an upper bound, the convergence
is guaranteed also with 16QAM.
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Fig. 5. Verification EXIT chart in static channel for SCAGP

with Np = 8 K = 5 Np = U, ;% = 09999,
Vu, ([t phureet fhiget plget) (0.9999,0.9,0.8,0.7) and
(e1,€2,€3,€4) = (0.2,0.1,0.05,0.01). When U = 2, parameters of users 1
and 2 are used.

To obtain further insight of the tradeoff between €, and
the required SNR to satisfy the constraints we tested all the
algorithms shown in this paper in a static channel with various
€4, and evaluated the SNR value and the number of iterations
required to achieve the target point. The results are shown
in Table I. It can be seen that decreasing ¢, from 0.2 to 0.1
requires only one or two more iterations and the required SNR
can be decreased roughly 1 dB, depending on the algorithm
used. The required SNR can be further reduced by about 0.5
dB by decreasing €, to 0.01 while the number of iterations
increased approximately three times.

For QPSK, MI target can be converted to bit error proba-
bility (BEP) by using the equation [8]

— 1/ 7A target —1/ 7E target
. Iy (EEy
Pb%Qerfc<\/2 )L I . (40

2v2

In Fig. 6, required SNR versus BEP is presented,
where four different BEP target values are considered for
v = 1,2, namely 1073, 10~%, 1075, 1076 correspond-
ing to the MI targets (I, [51e) (0.99,0.6185),
(j:;:,ta.rget7 jS,targel) (09987, 0673), (I"S,target7 js,targe[)
(0.9998,0.7892), (15" [2™"=Y) = (0.9998,0.9819), re-
spectively. It can be seen that OES, SCAGP and SCAVC
achieve the best result when K = 5. ZFSCMMSE and EP
with K = 5 are 1.3 dB - 3.6 dB worse in terms of SNR,
depending on the BEP target and the algorithm used.

It is worth noticing that the solution obtained by SCAGP and
SCAVC in this particular case is very close to the orthogonal
solution (OES). This is due to the fact that when A! = 0,
Vi =1,2,...,U in (11) all the interference is canceled and
the optimal receiver is the filter matched to the channel. In
this case, the optimal allocation strategy to maximize (10) is
to allocate power on the strongest bin. However, this would not
necessarily satisfy the constraint in (24) if A, = 1. Thus, the
power has to be distributed to several bins which results in

—6—EP,K=1
—¥— ZFSCMMSE, K=1
—— SCAVC, K=1

SCAGP, K=1
EP, K=5
ZFSCMMSE, K=5

OES, K=5
== SCAVC, K=5
SCAGP, K=5

BEP

M4 16 18
SNR (dB)

Fig. 6. The a posteriori BEP comparison. U = 2, Np = 8, Np = 2,
targets = [1073,107%,1075,1079], ¢, = 0.1, Vu.

higher power consumption. Hence, if the tightest constraint,
ie, Ay = 1, can be satisfied by using only one frequency
bin, it is indeed the best solution. This is the case when the
interference level is low, as shown in the case presented in
Fig. 6. When the number of users increases, interference also
increases and the orthogonal solution may not be feasible. This

can be seen by rewriting (38) into the form of

Z 1 N — & xNrAy,
2 A 2 = 2
mEN Puﬂ’ﬂH'Yu,mH Ap+o

NC2Y)

where N3 is the cardinality of the set A%. From the non-
negativity of the right hand side (RHS) of Eq. (41) we get a
necessary constraint for the minimum number of the frequency
bins that has to be allocated to user u as

NE > & NpAg, VE=1,2,... K. (42)

As it was seen in Section IV, ¢, , and Ag depend on the
channel code used. Thus, we can conclude that the feasibility
of OES algorithm can be controlled by varying the channel
code. The following results are presented for 16QAM only
with R, = 1/3 where the OES algorithm is not feasible due
to (42).

Fig. 7 shows the minimum SNR required to achieve the
corresponding MI target for user 1 for each of the proposed
algorithms for U = 2. It is found that the SNR gain by
precoding with ' = 5 is significant compared to precoding
with K = 1. The SNRs with SCAGP and SCAVC are
approximately equal and they provide the best results in terms
of SNR. As expected, EP with K = 1 requires the highest
SNR among all the algorithms tested.

Fig. 8 shows the minimum SNR required to achieve the
corresponding MI target for user 1 for each of the proposed
algorithms for U = 4. The results are similar to the case of
U = 2: ZFSCMMSE with K = 5 requires more power than
EP with K = 5 when the MI target is low. However, when
MI target increases ZFSCMMSE performs better than EP with
K =5.



TABLE I
REQUIRED SNR AND NUMBER OF ITERATIONS WITH VARIOUS €. THE ELEMENTS IN THE TABLE ARE IN THE FORM OF SNR(DB) / ITERATIONS FOR USER
1 / ITERATIONS FOR USER 2. U = 2, Ng = 2, Ng = 2, K = 5, [ATARGET — (0.9999, Vi, [-TARCET — (.7, JETARGET — (g g

€1 =€z | OES SCAGP SCAVC ZFSCMMSE EP

0.01 456/19/18 | 453/20/18 | 453/18/17 | 6.56/10/10 | 882/3/3
0.1 529/6/6 510/6/5 5.11/6/5 7.08/5/5 882/3/3
0.2 6.80/4/4 6.12/4/4 6.13/4/3 796/3/3 882/3/3
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Fig. 7. SNR using the corresponding MI target for user 1. U = 2, Ny = 8,
Ng =2, Ng = 4, [y™ = 0.8, I = 0.9999, u = 1,2, e, = 0.1,
u=1,2, N;, =5.
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Fig. 8. SNR using the corresponding MI target for user 1. U = 4, Np = 8,
Ngp =4, Ng = 4, 5™ = 0.8, u = 2,3,4, ["*" = 0.9999, Vu,
€w = 0.1, Vu, Ni, = 5.

As seen in Section V, both SCAGP and SCAVC are to
be solved via a series of convex problems. For solving convex
problems, many efficient tools are known in the literature [30].
Hence, the complexity analysis boils down to the comparison
of how many times the optimization problem needs to be
solved for each of the algorithms to achieve the convergence
according to the criteria described at the beginning of this
section. The number of the solver call times that Algorithm
1 needs varies typically between 1 - 9 depending on the
simulation setup. The more users, the more iterations is
needed. The number of the solver call times that Algorithm
2 needs in Algorithm 1 varies between 1 - 13.

The motivation of using single carrier FDMA is its favorable
PAPR properties. The PAPR of EP is only 2.55 dB for l6QAM
due to the equal sizes of DFT and IDFT at the transmitter and
receiver. However, the PAPR is increased when power alloca-
tion is performed across the frequency band. To demonstrate
the trade off between a reduction of the required SNR and
an increase in PAPR, we measured the PAPR at the output
of IFFT in the transmitter and evaluated the complementary
cumulative distribution functions (CCDF) Prob(PAPR > )
for algorithms investigated in this paper. The results are shown
in Fig. 9, where § corresponds to the PAPR value on the
horizontal axis. It can be seen that unequal power allocation
increases the PAPR significantly. Furthermore, with K = 5
the PAPR is higher than with K = 1 because with K = 5,
the power allocation tends to be more orthogonal. However, it
can be seen from Fig. 8 that the required SNR is reduced.

The maximum transmission power is  defined
as Pnw(dB) = Pu(dB) + PAPR(dB), where
P, = %NRXU? denotes the average power of user w.

Let us consider an example where the maximum transmission
power is to be configured according to 8 dB PAPR which
corresponds to 10~2-92 value in CCDF for SCAGP and K = 5.
For that same value of CCDEF, the PAPR is 5.14 dB for
SCAGP and K = 1. Hence, increasing K from one to five the
total power gain is Py (dB)SCACPK=l _ P (dB)SCACPKSS —
15.28dB + 5.14dB — 4.76dB — 8dB = 7.66dB. Therefore,
the increase of K from 1 to 5 significantly increases the
coverage of the precoded transmission. However, SCAGP
with K = 5 requires 6.8 dB lower SNR than EP with K = 5.
Using the same 8 dB example as above, the total power gain
is 6.7 dB - (8 dB - 2.55 dB) = 1.25 dB. However, this is
only the worst case comparison, i.e., DFT and IDFT sizes
are not necessarily equal in practice, and the use of different
sizes of DFT and IDFT results in the increase of PAPR of
EP algorithm [33]. As a conclusion, even with the worst case
comparison, SCAVC and SCAGP can achieve a significantly
larger coverage than EP with a significantly lower average
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Fig. 9. CCDF for user 1. U = 4, Np = 8, Ng = 4, Ng = 4, [""! =
0.9999, JE@Et — 08 4 = 2,3 4, [EWE — 0.9999, Vau, €, = 0.1, Va,
N = 5.

power consumption.

VII. CONCLUSIONS

In this paper, we have derived a convergence constrained
power allocation (CCPA) problem for the iterative frequency
domain multiuser SIMO detector. Furthermore, with our novel
problem derivation the generalization for higher order modula-
tions is straightforward. Moreover, we derived two successive
convex approximations for finding a local solution to the prob-
lem. Numerical results indicate that significant gains in terms
of average power consumption can be achieved compared to
the linear receivers with and without precoding as well as to
the iterative receiver without precoding. Furthermore, it was
shown that the peak-to-average power ratio (PAPR) increase
due to precoding is relatively small compared to the gain in
the average power consumption. Thus, the maximum cell size
is increased by the use of precoding. The algorithms proposed
in this work allow the utilization of the iterative receiver and
its convergence properties also at the transmitter side.
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