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Abstract Nucleosome, a nucleoprotein structure formed

by coiling 147 bp of DNA around an octamer of histone

proteins, is the fundamental repeating unit of eukary-

otic chromatin. By regulating the access of biological

machineries to underlying cis-regulatory elements, its

mobility has been implicated in many important cel-

lular processes. Although it has been known that var-

ious factors, such as DNA sequences, histone modifi-

cations, etc., cooperatively affect nucleosome mobility,

the contribution of each factor in the common impact

remains unclear. We propose, in this work, a novel com-

putational approach based on Multiple Kernel Learn-

ing (MKL) for quantitatively assessing the effects of

two important factors, i.e., genomic sequence and post-

translational histone modifications (PTMs), on nucleo-

some dynamics. Our result on S.cerevisiae shows that,
epigenetic feature, such as histone modifications, plays

more important role than genomic sequence in regu-

lating nucleosome dynamics. Based on that, we carried

further analysis on each PTM to reveal their combi-

natory effects on nucleosome dynamics and found out

that some pairs of PTMs such as H3K9Ac - H4H14Ac,

H4K5Ac - H4K12Ac and H4K5Ac - H3K14Ac might
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co-operate in altering nucleosome stability in gene reg-

ulation.

Keywords nucleosome dynamics · post-translational

histone modification · multiple kernel learning ·
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1 Introduction

Eukaryotic genomes are packaged inside cell nucleus

under chromatin structure, which has the form like a

bead-on-string fiber containing fundamental units of

nucleosomes. Each nucleosome is formed by wrapping

147bp of DNA around a histone core consisting two

each of four histone proteins H3, H4, H2A, H2B (Luger

et al 1997). There is increasing evidence showing that
chromatin plays more important role far beyond DNA

compaction. By occluding the access of biological ma-

chineries to cis-regulatory elements and/or modifying

the related epigenetic information, it can ubiquitously

and profoundly affect many important biological pro-

cesses, such as transcription, DNA replication, DNA

repair, etc. To overcome the obstacle imposed by chro-

matin, cells have developed complicated pathways (Li

et al 2007; Prost et al 2009). In these pathways, nucle-

osome must be displaced or even removed from chro-

matin to provide access to the underlying DNA se-

quences. Hence, understanding how cells regulate nu-

cleosome stability will give us additional insights into

the mechanisms of those cellular processes.

The dynamics (or stability and mobility, hereinafter

used interchangeably) of nucleosome can be described

as the phenomenon of nucleosome positioning being

non-uniform temporally (Tanaka et al 2010). Such sta-

bility can be affected by the combinatory effects of
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many factors, including DNA sequence, post-translational

histone modifications (PTMs) or chromatin remodel-

ing complexes (Henikoff 2008). First, nucleosomal DNA

sequence preferences probably originate from the se-

quence dependent mechanics of the wrapped DNA it-

self (Windom 2001). A number of previous works both

in in vivo and in vitro have suggested that genomic

signatures are reliable determinants for nucleosome oc-

cupancy (Segal et al 2006; Gupta et al 2008; Tillo and

Hughes 2009). In S.cerevisiae, more specifically, Kaplan

et al. (2009) directly pointed out that intrinsic DNA se-

quence preferences play a dominant role in nucleosome

organization. They are, therefore, likely to be important

to favoring or disfavouring nucleosome eviction or nu-

cleosome dynamics. Besides the DNA sequence itself,

PTMs, the covalent changes occur in the histone tail

domains, can also influence nucleosome positions. Se-

gal and Windom (2009) reckoned that PTMs impacts

on histone positioning may be indirect and modest, but

may be substantial in influencing ATP-dependent chro-

matin remodelling factors, which as trans-factor have

been shown to be closely related to nucleosome posi-

tioning (Jansen and Verstrepen 2011). Also, acetylated

histones are shown to be easily dissociated from DNA

(Zhao et al 2005). Last but not least, chromatin remod-

elling complexes usually cooperate with histone chap-

erones to displace histones from their original positions

(Li et al 2007). These evidences lead to the considera-

tion of combinatory effects of DNA sequence and PTMs

on nucleosome stability.

Recent advancement in profiling techniques, such as

ChIP-Chip and ChIP-Seq, has provided unprecedented

opportunities for investigating the effects of several reg-

ulatory factors on nucleosome dynamics at the same

time. However, to our understanding, previous attempts

on the above mentioned two factors are still modest.

Previous works such as (Rippe et al 2007; Schnitzler

2008) that accessed the co-effects of DNA sequence

and chromatin remodeling complexes on nucleosome

dynamics were experimental. Recently, Le et al. (2009)

proposed a computational approach to qualitatively as-

sess the effects of DNA sequence and histone modifica-

tions on nucleosome dynamics. The problem of to what

extend each factor contributes to the regulation of nu-

cleosome dynamics has not been addressed yet.

In this work, we propose a computational approach for

quantitatively assessing the effects of two important

factors, i.e., genomic sequence and PTMs, on nucleo-

some dynamics. The problem is formulated as a pre-

diction one and solved by the so-called Multiple Kernel

Learning (MKL) framework (Sonnenburg et al 2006).

Our first attempt of adapting the theoretically well-

founded MKL for this particular biological problem may

pave the way for more efforts in considering other regu-

latory elements simultaneously. Moreover, our obtained

results on S.cerevisiae show further evidence that ge-

nomic sequence and epigenetic feature, e.g., PTMs, can

together influence nucleosome stability. More impor-

tantly, the latter plays a more important role than the

former in determining the stability states of nucleo-

some. To further confirm that conclusion, we carried an

analysis on PTMs separately, based on the well-known

hypothesis of histone language (Oliver and Denu 2011)

. The results show that there exists a number of inter-

actions among them, loosely deemed as co-operation,

some of which have been reported in literature. These

are encouraging findings to explaining the dynamics of

nucleosome and offer an insight into epigenetic regula-

tory mechanisms of many important cellular processes.

The rest of this paper is organized as follows: Section

II. presents the proposed approach; Section III. gives

details on experiment; Section IV. discusses further bi-

ological insights along with our findings; Section V. con-

cludes the work.

2 Methodology

The problem is formulated as a binary classification

task, in which the classifiers take two kinds of features,

i.e., genomic (DNA sequence) and epigenetic (PTMs),

as inputs and output nucleosome states of well-positioned
and delocalized, as class labels. By representing different

data sources as their corresponding kernels and learn-

ing optimal weights for each, MKL is not only as effi-

cient as Support Vector Machines (SVMs), a state-of-

the-art classification technique, in the sense of classi-

fication power, but also it enables the combination of

heterogeneous data into a common format and improves

the interpretability of resultant classifiers (Sonnenburg

et al 2006). Also, in another work by MKL author, it

was shown that MKL can be successfully applied to

a large number of biological sequence features (Ratsch

et al 2006). In our work, we represented genomic and

epigenetic data in an appropriate and reasonably in-

formative form, and solved prediction problem under

MKL framework. The aims are two-fold: assessing not

only whether the features can help to predict nucleo-

some state and access the contribution of each kind of

feature to the final outcome, the state of nucleosome.

Details and background are presented in the following

subsections.
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2.1 Data representation

For training purpose, nucleosomal sequences were rep-

resented using two different approaches. The first one,

called spectrum feature, was proposed by Peckham et

al. (2007), which has shown competitive performance

for the task of discriminating “nucleosome forming” se-

quences from “nucleosome inhibiting” sequences and

was applied successfully on human data (Gupta et al

2008). According to this approach, each nucleosomal se-

quence is represented as a 2, 772-entry vector, in which

each entry is a normalized count of the occurrences of

a particular k-mer or its reverse complement, with k=1

up to 6. Sequence elements longer than 6 nucleotides

showed no significant changes the discrimination power

of their classifiers. The second approach, derived from

the work of Tillo and Hughes (2009), argues that the

sequence rules underlying nucleosome occupancy can

be captured by a much simpler model compared to

the model proposed previously by Kaplan et al. (2009),

which used spectrum 5-mer features. This observation

has been supported by various experimental works on

the different nucleosome binding affinities of DNA se-

quences, i.e., some specific DNA sequence properties

are more important for intrinsic nucleosome preference.

For example, G+C content alone can explain 50% of

the variation in nucleosome occupancy in vitro, consis-

tent with the conclusion by (Peckham et al 2007). Poly-

dA/dT sequences are also believed both in vivo to be

rigid and anti-nucleosome forming (Kaplan et al 2009;

Schwartz et al 2009); and in vitro to be highly discrim-

inative with ROC-scores of 0.91 in (Tillo and Hughes

2009). Based on this, we represented each nucleosomal

sequence as a 12-dimension vector, one is its %GC con-

tent and the other eleven are its 4-mer features (Ta-

ble 1). We skipped two physical characteristics, called

propeller twist and slide from original work (Tillo and

Hughes 2009) in our representation. Experiments were

done on both representations for our case of predicting

nucleosome stability, resulting in nearly the same ef-

fectiveness to the classification performances with each

kind of feature (the data were not shown); thus we used

the 12-entry one for further analysis. Lastly, PTMs fea-

ture corresponding to each nucleosome was represented

as a normalized vector of 9 acetylations and 3 histone

methylations (Table 1).

2.2 Support Vector Machines (SVMs) and Kernel

methods

SVMs is a binary supervised classification method which

has a solid theoretical background and performs the

No. Genomic Histone modifications

1 G+C content H3K18Ac

2 AAAA H4K12Ac

3 AAAT H3K9Ac

4 AAGT H3K14Ac

5 AATA H4K5Ac

6 AATT H2AK7Ac

7 AGAA H4K8Ac

8 ATAA H4K16Ac

9 ATAT H2BK16Ac

10 ATTA H3K4Me1

11 GAAA H3K4Me2

12 TATA H3K4Me3

Table 1 Genomic and histone modification features

classification task more accurately than most other al-

gorithms in many applications. It was also successfully

applied to a wide variety of problems in computational

biology, such as protein function prediction, splice site

recognition, etc. Given a training set containing instance-

class pairs (xi, yi), i = 1, 2, · · · , l where xi ∈ Rl and

yi ∈ {−1, 1} is a class label, if the data are linearly sep-

arable, an SVM classifier is a hyperplane wTφ(xi) + b,

where φ(xi) is a function mapping xi into a higher

(maybe infinite) dimensional space, that best separates

the two classes. In case of non separable data, finding

the hyperplane can be transformed into following pri-

mal optimization problem:

Minimize : wTw
2 + C

l∑
i=1

ξi

Subject to: yi
(
wTφ (xi) + b

)
≥ 1− ξi

ξi ≥ 0 i = 1, 2, . . . , l

(1)

This problem is called soft margin optimization, which

is able to deal with errors in the data by allowing some

data points to fall on the wrong side of the separating

hyperplane by introducing slack variables ξi(≥ 0). Its

dual is a quadratic optimization problem:

Minimize : α
TQα
2 − eTα

Subject to: C ≥ αi ≥ 0 i = 1, 2, . . . , l

yTα = 0

(2)

where e is an unit vector, C > 0 is an error penalty pa-

rameter,Qij = yiyjK (xi,xj),K (xi,xj) = 〈φ(xi), φ(xj)〉
is a kernel function, a fundamental concept of a class

of machine learning techniques called kernel methods.
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Mathematically, for a function K : X ×X −→ R to be

a kernel function, it must satisfy two conditions. First,

it must be symmetric, that is K(x,x’) = K(x’,x) and

second, it must be positive definite, that is

l∑
i=1

l∑
j=1

cicjK(xi,xj) > 0

for any l > 0, any choice of l objects x1,x2, . . . ,xl ∈ X
and any choice of non-zero real vector (c1, c2, . . . , cl) ∈
Rl\{0}. There are many kernel functions, so how to se-

lect a good kernel function in an application is also a

critical issue. However, there are several popular ker-

nel functions, such as linear kernel, RBF kernel, poly-

nomial kernel, spectrum kernel, among others. We can,

therefore, choose among them in applications by heuris-

tic selection. With the introduction of kernel functions,

a linear classification algorithm can be used to build

nonlinear classifiers by using “kernel trick” calculation.

Moreover, by transforming each data source into a ker-

nel matrix using a suitable kernel function and then

combining those matrices into one, kernel method pro-

vides the ability to work with multiple, heterogeneous

data sources.

The simplest way to combine multiple kernels is called

unweighed multiple kernel method (UMK), in which each

kernel is assigned an equal weight. It is based on posi-

tive semi-definiteness of kernel function, that is the ad-

dition of several kernel functions is also a kernel func-

tion: given kernel functions K1,K2, . . . ,Kn and the em-

bedding mappings φ1, φ2, . . . , φn then the function K =
n∑
k=1

Kk is a kernel function, too. This method, however,

does not offer an easy way to interpret the decision

function.

2.3 Multiple Kernel Learning (MKL)

MKL framework provides an alternative approach to

combining multiple kernels. It considers convex combi-

nations of n kernels:

K =

n∑
k=1

βkKk (3)

with βk ≥ 0 and

n∑
k=1

βk = 1, where each kernel Kk uses

only a set of features. For appropriately designed sub-

kernels Kk, the optimized combination coefficients can

then be used to infer which features of the examples are

of importance for discrimination. If we are able to ob-

tain an accurate classification by a sparse weighting βk

then the resulting decision function is easy to interpret.

This is an important characteristic missing in current

kernel based algorithms.

To find the optimized coefficients βk, Lanckriet at al.

(2004) reformulated MKL problem as a convex opti-

mization one known as quadratically-constraint quadratic

program (QCQP), that can be solved by general-purpose

optimization toolboxes or by an algorithm based on se-

quential minimization optimization (SMO) proposed by

Bach et al. (2004). These algorithms, however, are only

feasible for small problems. Sonnenburg et al. (2006)

proposed an efficient algorithm that can work with large-

scale data by reformulating the binary classification

MKL problem as a semi-infinite linear program (SILP).

This framework was used for the task of learning MKL

classifiers in our work.

In the MKL problem for binary classification, given N

data points (xi, yi) (yi ∈ {−1, 1}) where xi is trans-

formed by n mappings: φk(x) 7−→ RDk , k = 1 . . . n,

from the input into n feature spaces (Φ1(xi), . . . Φn(xi)),

with Dk denotes the dimensionality of the k-th feature

space, we should solve the following optimization prob-

lem:

MKL Primal for Classification

Minimize : 1
2 (

n∑
k=1

‖wk‖2)2 + C

N∑
i=1

ξi

w.r.t.: wk ∈ RDk , ξ ∈ RN , b ∈ R

s.t. : ξi ≥ 0 and yi(

n∑
k=1

〈wk, Φk(xi)〉+ b) ≥ 1− ξi

(4)

Its dual problem is derived as following (Bach et al

2004):

MKL Dual for Classification

Minimize : γ −
N∑
i=1

αi

w.r.t.: γ ∈ R,α ∈ RN

s.t. : 0 ≤ α ≤ 1C,

N∑
i=1

αiyi = 0

1
2

N∑
i,j=1

αiyiαjyjKk(xi,xj) ≤ γ, k = 1, . . . , n

(5)

where Kk(xi,xj) = 〈Φk(xi), Φk(xj)〉. Finding the so-

lution for problem (5) is equivalent to solving the fol-

lowing semi-infinite linear program (Sonnenburg et al

2006):
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Semi-Infinite Linear Program (SILP)

Maximize : θ

w.r.t.: θ ∈ R,β ∈ Rn

s.t. : 0 ≤ β,
∑
k

βk = 1 and

n∑
k=1

wkSk(α) ≥ θ

for all α ∈ RN , 0 ≤ α ≤ C1 and
∑
i

yiαi = 0

(6)

where Sk(α) = 1
2

N∑
i,j=1

αiyiαjyjKk(xi,xj)−
N∑
i=1

αi. The

optimal weights can be obtained by solving (6).

2.4 Random Forest for feature selection

Random Forest, proposed by L.Breiman and A.Cutler

(2001), is an ensemble of decision tree classifiers. Each

tree is grown as follows:

– If the number of cases in the training set is N , sam-

ple with replacement N cases at random from the

original data. This bootstrapped data is used for

training a tree.

– Given M input variables, a number m << M is

specified such that at each node, m variables are

selected at random out of M and the best split on

these m variables is used to split the node. The value

of m is held constant during the forest growing.

– Each tree is grown to the largest extent possible,

with no pruning.

To classify a new object, the input vector is put through

each of the trees, which gives a classification, i.e., a vote.

The classification having the most votes over all the

trees in the forest is output. In addition to classifica-

tion, Random Forests prove to be useful for feature se-

lection, especially with biological data of heterogenous

attributes (Reif et al 2006; Bryan et al 2001). In this

work, we focused on the capacity of evaluating feature

importance and feature interaction of this method.

For each tree, a number of cases are left out of train-

ing, called the ”out-of-bag”, which are used to estimate

feature importance. If randomly permuting values of a

particular feature m does not affect the predictive abil-

ity of trees on out-of-bag cases, m is assigned a low

importance score, and vice versa. Subtract the number

of votes for the correct class in the variable-m-permuted

out-of-bag data from the number of votes for the correct

class in the untouched out-of-bag data. The average of

this number over all trees in the forest is the raw im-

portance score for variable m. Assuming values of score

from tree to tree are independent, z-score is computed

by dividing raw score by standard error, with corre-

sponding significance level (Breiman 2001).

Also, as defined by Breiman (2001), variables m and

k interact if a split on one variable, say m, in a tree

makes a split on k either systematically less possible or

more possible. This method is reportedly able to un-

cover interactions among genes, proteins, and/or envi-

ronmental factors that do not exhibit strong marginal

effects (Reif et al 2006).

3 Experiment

3.1 Data preparation

Experimental data were retrieved from Yuan et al. (2005)

and Liu et al. (2005), which covered nearly 4% of yeast

genome including chromosome III and 223 additional

promoter regions. The data from Yuan contain 50 bp

DNA fragments tilled every 20bp. For each fragment we

extracted its genomic sequence and hand-called state

showing whether it is well-positioned, delocalized nucle-

osomal sequence or linker region. The data extracted

from Liu contain measured levels of 12 different histone

modifications, including acetylations of H3K9, H3K14,

H3K18, H4K5, H4K8, H4K12, H4K16, H2AK7, H2BK16

and mono-, di- and tri-methylations of H3K4. We then

filtered out the data corresponding to linker regions to

keep only nucleosomal data. Too short nucleosomal se-

quences of less than 4 fragments were also removed. The

resulted sequences were then truncated/extended, cen-

tered on the nucleosome, to windows of 150 bp if they

were longer/shorter than that. Nucleosomes that miss

histone modification values on all their fragments were

removed. Ones with some fragments of missing values

were filled with median of the rest. Each nucleosome

was assigned either as well-positioned if its wrapped

DNA stretches from 6 to 8 fragments or as delocalized

if its wrapped DNA stretches more than 9 fragments.

After these preprocessing steps, we obtained a dataset

containing 1949 well-positioned and 297 delocalized nu-

cleosomes, which were used for further analysis.

3.2 MKL classifiers

In our work, combined kernel was formed as following:

K = β1 ×K1 + β2 ×K2 (7)

where K1 and K2 are sub-kernel functions employed

on genomic and PTMs features, whose representations

are described in Data representation. For the purpose

of model selection, we carried pilot experiments to se-

lect the most suitable kernel function for each kind of

feature, including linear, polynomial (degree 2, 3, and
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4), and RBF kernels. For both 2 types of features, lin-

ear kernel and Radial Basis Function (RBF ) kernel

(K (xi,xj) = exp(−(xi − xi)
2)) performed relatively

better than the others (data not shown). Therefore,

we then took linear and RBF as sub-kernels in MKL.

Shogun toolbox (Sonnenburg et al 2006) was used for

the tasks of training and testing MKL classifiers.

3.3 Performance evaluation

To evaluate the performances of the resulting classi-

fiers, we used 10-fold cross-validation procedure. Ac-

cording to this procedure, each dataset was divided

randomly into 10 subsets. The classifiers were trained

on 9 subsets and tested on the remaining one. This

training-testing procedure was repeated 10 times using

a different hold-out set at each time. To measure the

performances of the classifiers, we utilized the receive-

operator-characteristic (ROC) curve. The quality of the

classifier can be evaluated by calculating the area-under-

the-curve (AUC), i.e., the “ROC score”, which is also

considered a reasonable measure for cases of imbalanced

data. A random classifier achieves the ROC score of 0.5

and a perfect classifier achieves the ROC score of 1.0.

4 Results and discussion

4.1 Genomic sequence and histone modifications

partially contribute to affect nucleosome dynamics

Before going ahead with MKL, we carried two baseline

experiments: SVMs separately for each feature sets and

MKL for both without any weight, equivalent to sim-

ple feature concatenation. The purpose is to confirm

the advantages of our proposed method in comparing

the effect of each feature type. For both experiments,

we employed 10-fold cross-validation as mentioned in

Section 3.3 for evaluation. The results (details not in-

cluded here) showed that (1) the average ROC-score of

genomic-sequence-based SVM was 0.583, and PTMs-

based one 0.605; (2) the MKL without weight reached

ROC-score 0.611 (p < 0.0005 by one-sample t-test).

From this, it is possible to see that using two separate

classifiers does not tell much about the different effects

and unweighed MKL dose not give very good perfor-

mance. Lastly, we also tried to train a MKL with each

single feature as a kernel; however, the output βs are

minimally different thus hard to interpret (details not

included here). Therefore, we used for this work 2 ker-

nels for two types of genomic sequences and PTMs.

Our MKL approach proved to be better in both

terms of performance and differentiation. 10-fold cross

Turn LL LR RR RL

0 0.5 0.685 0.709 0.662

1 0.5 0.614 0.558 0.575

2 0.5 0.648 0.675 0.516

3 0.5 0.719 0.661 0.592

4 0.5 0.616 0.649 0.659

5 0.5 0.5 0.577 0.598

6 0.5 0.613 0.629 0.564

7 0.5 0.5 0.601 0.632

8 0.5 0.622 0.626 0.578

9 0.5 0.5 0.617 0.631

Avg 0.5 0.6017 0.6302 0.6007

LL, LR, RR, RL: Kernel functions for DNA sequence

and post-translational modifications (PTMs) (L: Linear, R:RBF)

Table 2 ROC scores by 10-fold cross validation with differ-
ent combination of kernel functions

validation results with different combinations of kernel

functions are given in Table 2. The average ROC score

was 0.63 (SD ≈ 0.04, p < 0.0001 by one-sample t-test)

with RR combination of kernel functions. This is sig-

nificantly higher than the performance of the random

classifier. The result showed that the combination of ge-

nomic sequence and PTMs can be used to predict nucle-

osome stability state to some extend. This is consistent

with previous investigations (Henikoff 2008; Segal and

Widom 2009), reporting that in vivo besides DNA se-

quence and covalent modifications of histone proteins,

among many other factors such as chromatin remodel-

ing complexes, histone variants, etc., also contribute to

stabilizing/destabilizing nucleosomes.

4.2 The effect of histone modifications on nucleosome

dynamics dominates that of genomic sequence

To derive optimal weights for genomic sequence and hi-

stone modifications, we used the combination of kernel

functions that gave the best ROC score. According to

the average ROC score given by 10-fold cross validation,

RBF kernel was chosen for both kinds of features. Table

3 shows the learnt optimal weights in 10-fold cross val-

idation settings. These results show that, the effect of

post-translational modifications (PTMs)on nucleosome

dynamics seems to dominate that of genomic sequence.

In vivo, beyond the difference in DNA sequence, nu-

cleosomes also differ from each other by their histone
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Turn Sequence HMs

0 0.33821 0.66179

1 0.331211 0.668789

2 0.412726 0.587274

3 0.351609 0.648391

4 0.353926 0.646074

5 0.357932 0.642068

6 0.370565 0.629435

7 0.328962 0.671038

8 0.360982 0.639018

9 0.382251 0.617749

Avg 0.3588374 0.6411626

Table 3 Optimal weights corresponding to PTMs and DNA
sequence

compositions, either by PTMs or histone variants. Such

changes can directly or indirectly affect nucleosome sta-

bility. For example, lysine acetylation is thought to desta-

bilize nucleosome by directly changing its net charge

(Waterborg 2002). Methylation of H3K27 or H3K9 are

known to indirectly increase the stability of H3-containing

nucleosomes by enabling the bindings of non-histone

proteins PRC1 and heterochromatin protein 1 (HP1)

to the methylated sites, respectively (Henikoff 2008).

Previous investigation showed that, hyper-acetylation

or complete removal of histone tails results in a small

yet significant increase in the accessibility (Anderson

et al 2001; Polach et al 2000) and stability (Widlund

et al 2000) of nucleosomal DNA and in small sequence-
dependent changes in positions of some nucleosomes,

although sequences with high affinity are not affected

(Yang et al 2007). This led to the conclusion that, his-

tone modifications might have only modest direct effect

on nucleosome dynamics. Taken together, our obtained

result provides more evidence to elucidate the biologi-

cal roles of histone modifications in regulating nucleo-

some stability. That is, in most cases, histone modifica-

tions may serve as the substrates for recruiting ATP-

remodeling factors, which can then play a critical role

in regulating nucleosome organization (Wan et al 2009).

4.3 Post-translational histone modifications

individually and co-operatively regulate nucleosome

stability

Post-translational histone modifications have long been

known to be a trans-factor regulating various cellu-

lar processes, most importantly repression and activa-

tion of gene expression. Henikoff, in (2008), suggested

that nucleosome destabilization plays an important role

in gene regulation was affirmed; moreover, it occurs

with the co-operation of epigenetic factors, hence, the

hypothesis that these PMTs take part in gene regu-

lation through regulating nucleosome stability. More

concretely, they modulate chromatin structure, for in-

stance, in that histone hyperacetylation may weaken

DNA-histone contacts by neutralizing the positive charge

of the histone tails and decreasing their affinity for neg-

atively charged DNA; and conversely histone deacety-

lation is believed to prevent the access of biological ma-

chineries by restoring positive charge and strengthening

the interactions between DNA and histones (Kurdistani

and Grunstein 2003). These relationships among gene

expression, nucleosome dynamics, and PTMs are possi-

bly inferred either experimentally or computationally.

Using Random Forest method, we evaluated the im-

portance of each histone modification and uncovered

pairwise interactions among them in discriminating nu-

cleosome dynamics.

From Figure 4.3, it is clear that the difference be-

tween the most and the least important one, 28.599

and 42.872 respectively, is considerable (about 50%).

Notably, H4K16Ac highly deacetylated can be found in

open reading frames (ORFs) of highly-expressed genes

(Wirén et al 2005). Both H3K4Me3 H2BK16Ac serve

as binding marks for NF-Y, a binding factor transcrip-

tional regulates genes of Drosophila and mouse (Tue

et al 2011; Hou et al 2010).

From the results in Figure 4.3, we realized that

H3K9Ac - H4H14Ac, H4K5Ac - H4K12Ac, H4K5Ac

- H3K14Ac, H3K9Ac - H4K12Ac pairs might tightly

cooperate in affecting nucleosome dynamics. Evidences

for the cooperations of 3 first pairs among 4 can be

found in literature as the following. Leroy et al. LeRoy

et al (2008) has shown that, H4K5Ac, H4K12Ac, and

H3K14Ac are binding marks of two closely associated

the double bromodomain proteins Brd2 and Brd3, which

are components of chromatin remodeling complexes (CRCs).

Thus, we assume that these PTMs might cooperate

to recruit bromodomain proteins, and CRCs thereof.

Moreover, both Brd2 and Brd3 facilitate RNA poly-

merase II (PolII) to transcribe through nucleosomes

(LeRoy et al 2008), which means that as components of

CRCs they help delocalize nucleosome for the passage of

PolII. Therefore, we can infer that the co-operations of

these two PTM pairs (H4K5Ac - H4K12Ac and H4K5Ac

- H3K14Ac with interaction levels of 25 and 67 respec-

tively) are related to the instability of nucleosome.

Histone deacetylases Clr3 and Sir2 cooperatively func-

tions throughout the genome, including the silent re-
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gions. And, the most significant acetylation sites are

H3K14Ac for Clr3 and H3K9Ac for Sir2 at their ge-

nomic targets (Wirén et al 2005). These two PTMs

are co-regulated, thus they assumably co-operatively

function. It was also observed in (Wirén et al 2005)

that H3K9Ac tends to be enriched and H4K14Ac to

be low in intergenic regions (IGRs) and open reading

frames (ORFs) of highly expressed genes. Our result

showed that H4K14Ac and H3K9Ac (interaction level

of 34) in concert affect nucleosome states. Hence, we

suggest that these two paired PMTs promote gene ex-

pression through regulating nucleosomes in correspond-

ing regions.

Fig. 1 Importance level of histone modifications

Fig. 2 Interactions among histone modifications

5 Conclusion and Discussion

Nucleosome dynamics has been implicated in various

important cellular processes, such as transcription, DNA

repair and DNA replication. In vivo it can be influ-

enced by many factors, such as DNA sequence, covalent

modifications of histone proteins, chromatin remodeling

complexes, etc. However, the contribution of each fac-

tors to the regulation of nucleosome dynamics remains

elusive. In this work, we propose a computational ap-

proach based on Multiple Kernel Learning to quanti-

tatively assess the effects of two important regulatory

factors, i.e., genomic sequence and PTMs, on nucleo-

some dynamics. Our results on S.cerevisiae show that,

though both factors partially contribute to the regula-

tion of nucleosome dynamics, the effect of PTMs seems

to dominate that of genomic sequence. By further ana-

lyzing of PTM pairs, we provide evidence that they also

cooperate to influence nucleosome dynamics. This sug-

gests that, in general, PTMs may serve as the substrates

for recruiting other regulatory factors, such as non-

histone proteins, to chromatin. By that way, they can

express their regulatory effects on cellular processes.

In this paper, we mainly aimed at comparing the ef-

fects of genomic and epigenetic factors, thus formulat-

ing an MKL problem of two kernels. However, looking

more closely into individual factor of these two types

is more meaningful biologically. In that case, the num-

ber of features, hence kernels, may be very large. From

our investigation, infinite kernel learning(IKL) (Özögür

Akyüz and Weber 2008), a model developed from MKL

idea but allowing infinite kernel combinations. Its the-

oretical base in term of learning algorithm is further

improved by the same authors (2009; 2010). From prac-

tical perspective, Gehler and Nowozin (2008) have car-

ried out experiments to compare SMV, MKL, and IKL

on various benchmark datasets and concluded that re-

garding accuracy, for some combining kernel is of no

benefit compared to SMV, for the some others IKL out-

performs SMV/MKL. It is promising; however, we fo-

cus more on the interpretability of the coefficients learnt

and the large number of kernels may in fact cause many

of them to be assigned almost equally small number.

Therefore, we plan to examine biological problem fur-

ther with MKL and IKL in the future.
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Luger K, Mäder A, Richmond R, Sargent D, Richmond

T (1997) Crystal structure of the nucleosome core

particle at 2.8 a resolution. Nature 389:251–260

Oliver S, Denu J (2011) Dynamic interplay between

histone h3 modifications and protein interpreters:

emerging evidence for a ”histone language”. Chem-

biochem 12(2):299–307

Peckham H, Thurman R, Y YF, Stamatoyannopoulos

J, Noble W, Struhl K, Weng Z (2007) Nucleosome

positioning signals in genomic DNA. Genome Res

17(8):1170–1177

Polach K, Lowary P, Widom J (2000) Effects of core

histone tail domains on the equilibrium constants for

dynamic DNA site accessibility in nucleosomes. J Mol

Bio 298:211–223

Prost A, Dunleavy E, Almouzni G (2009) Epigenetic

inheritance during the cell cycle. Nat Rev Mol Cell

Biol 10:192–206

Ratsch G, Sonnenburg S, Schafer C (2006) Learning

interpretable SVMs for biological sequence classifica-

tion. BMC Bioinformatics 7(1:S9)

Reif D, Motsinger A, McKinney B, Crowe J, Moore

J (2006) Feature selection using a random forests

classifier for the integrated analysis of multiple data

types. In: Computational Intelligence and Bioinfor-

matics and Computational Biology, 2006. CIBCB ’06.

2006 IEEE Symposium on, pp 1–8

Rippe K, Schrader A, Riede P, Strohner R, Lehmann E,

Längst G (2007) DNA sequence- and conformation-

directed positioning of nucleosomes by chromatin-

remodelling complexes. Proc National Academy

of Sciences of the United States of America

104(40):15,635–15,640

Schnitzler G (2008) Control of nucleosome positions

by DNA sequence and remodelling machines. Cell

Biochem Biophys 51(2-3):67–80

Schwartz S, Meshorer E, Ast G (2009) Chromatin or-

ganization marks exon-intron structure. Nat Struct

Mol Biol 16(9):990–995

Segal E, Widom J (2009) What controls nucleosome

positions? Trends Genet 25(8):335–43

Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom

A, Field Y, Moore I, Wang J, Widom J (2006)

A genomic code for nucleosome positioning. Nature

442(7104):772–778



10 Bich Hai Ho et al.

Sonnenburg S, Ratsch G, Schafer C, Scholkopf B

(2006) Large scale multiple kernel learning. J Ma-

chine Learning Res 7:1531–1565

Tanaka Y, Yoshimura I, Nakai K (2010) Positional vari-

ations among heterogeneous nucleosome maps give

dynamical information on chromatin. Chromosoma

pp 412–010

Tillo D, Hughes T (2009) G+C content dominates in-

trinsic nucleosome occupancy. BMC Bioinformatics

10(442)

Tue N, Yoshioka Y, Yamaguchi M (2011) NF-Y

transcriptionally regulates the drosophila p53 gene.

Genes 473(1):1–7

Wan J, Lin J, Zack D, Qian J (2009) Regulating period-

icity of nucleosome organization and gene regulation.

Bioinformatics 25(14):1782–1788

Waterborg J (2002) Dynamics of histone acetylation in

vivo. a function for acetylation turnover? Biochem

Cell Biol 8:363–378

Widlund H, Vitolo J, Thiriet C, Hayes J (2000) DNA

sequence-dependent contributions of core histone

tails to nucleosome stability: differential effects of

acetylation and proteolytic tail removal. Biochem

39:3835–3641

Windom J (2001) Role of dna sequence in nucleosome

stability and dynamics. Q Rev Biophys 34(3):269–

324

Wirén M, Silverstein R, Sinha I, Walfridsson J, Lee

H, Laurenson P, Pillus L, Robyr D, Grunstein M,

Ekwall K (2005) Genomewide analysis of nucleosome

density histone acetylation and HDAC function in

fission yeast. EMBO J 24(16):2906–2918

Yang Z, Zheng C, Hayes J (2007) The core histone

tail domains contribute to sequence-dependent nu-

cleosome positioning. J Biol Chem 282(11):7930–8

Yuan G, Liu Y, Dion M, Slack M, LF LW, Altschuler S,

Rando O (2005) Genome-scale identification of nucle-

osome positions in S.cerevisiae. Science 309:626–630

Zhao J, Herrera-Diaz J, Gross D (2005) Domain-wide

displacement of histones by activated heat shock fac-

tor occurs independently of swi/snf and is not corre-

lated with RNA polymerase II density. Mol Cell Biol

25(20):8985–8999


