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Abstract: Most previous studies using the dimensional approach mainly focused on the direct
relationship between acoustic features and emotion dimensions (valence, activation, and dominance).
However, the acoustic features that correlate to valence dimension are very few and very weak. As a
result, the valence dimension has been particularly difficult to predict. The purpose of this research
is to construct a speech emotion recognition system that has the ability to precisely estimate values
of emotion dimensions especially valence. This paper proposes a three-layer model to improve the
estimating values of emotion dimensions from acoustic features. The proposed model consists of three
layers: emotion dimensions in the top layer, semantic primitives in the middle layer, and acoustic
features in the bottom layer. First, a top-down acoustic feature selection method based on this model
was conducted to select the most relevant acoustic features for each emotion dimension. Then, a
button-up method was used to estimate values of emotion dimensions from acoustic features by firstly
using fuzzy inference system (FIS) to estimate the degree of each semantic primitive from acoustic
features, then using another FIS to estimate values of emotion dimensions from the estimated degrees
of semantic primitives. The experimental results reveal that the constructed emotion recognition
system based on the proposed three-layer model outperforms the conventional system.

Keywords: Emotion dimensions, Automatic speech emotion recognition, Multi-layer model,

Fuzzy Inference Systems (FIS).
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1. Introduction

Most previous techniques for automatic speech emo-
tion recognition focus only on the classification of emo-
tional states as discrete categories such as happy, sad,
angry, fearful, surprised, and disgusted [1]. However, a
single label or any small number of discrete categories
may not accurately reflect the complexity of the emo-
tional states conveyed in everyday interaction. In the
real-life, an emotional state has different degrees of in-
tensity and may change over time depending on the sit-
uation from low to high degree. Therefore, an automatic
speech emotion recognition system should be able to de-
tect the degree or the level of the emotional state from
the voice [2]. Hence, a number of researchers advocate
the use of dimensional descriptions of human emotion,
where emotional states are estimated as a point in a
multi-dimensional space [3,4].

In this study, a three-dimensional continuous model
is adopted in order to represent the emotional states

using the emotion dimensions, i.e. valence, activation,
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and dominance. These dimensions are a suitable rep-
resentation, because they are capable of representing
low-intensity as well as high-intensity states [2].

However, although the conventional dimensional
model for estimating emotions from speech signals al-
lows the representation of the degree of emotional state,
it has the following drawbacks: (i) we do not know what
acoustic features are related to each emotion dimension,
(ii) the acoustic features that correlate to the valence di-
mension are less numerous, less strong, and more incon-
sistent [4], and (iii) the values of emotion dimensions
are difficult to estimate precisely only on the basis of
acoustic information [5]. Due to these limitations, it has
been difficult to directly predict the values of the valence
dimension using the acoustic features.

The goal of this paper is to improve the conventional
dimensional method in order to precisely predict values
of the valence dimension as well as improve prediction
of those of the activation and dominance. This will be
achieved by constructing a speech emotion recognition
system which have the ability to accurately estimate
emotion dimensions based on the thee-layer model of
human perception. The aim of constructing this system



is to prove the effectiveness of the proposed three-layer
model. The following section introduces the proposed
emotion recognition approach based on human percep-
tion.

2. Emotion Recognition Strategy

Conventional speech emotion recognition methods are
mainly based on investigating the relationship between
acoustic features and emotion dimensions as a two-layer
model, i.e. acoustic feature layer and emotion dimen-
sion layer. For instance, Grimm et al. attempted to
estimate the emotion dimensions (valence, activation,
and dominance) from the acoustic features by using a
fuzzy inference system (FIS) [6]. However, they found
that activation and dominance were more accurately
estimated than valence. Furthermore, many researchers
also tried to investigate the most relevant acoustic fea-
tures for each emotion dimension by using the corre-
lation between a set of acoustic features and emotion
dimensions [3-5,7]. In all these studies, the valence di-
mension was found to be the most difficult dimension
to estimate. Consequently, some other studies focused
only on exploring acoustic features related to valence
dimension [8,9]. Some emotions related to valence were
found to share similar acoustic features such as happi-
ness and anger, which were characterized by increased
levels of fundamental frequency (F0) and intensity. This
is one reason why acoustic discrimination on valence di-
mension is still problematic i.e. no strong discriminative
acoustic features are available to discriminate between
positive speech (e.g. happiness) and negative speech
(e.g. anger) [7]. Therefore, a number of researchers tried
to discriminate between the positive and negative emo-
tions by combining acoustic and linguistic features to
improve the valence estimation [7,10]. However, the re-
sults on valence estimation remained poor.

Human perception, as described by Scherer [12] who
adopted a version of Brunswik’s lens model originally
proposed in 1956 [13], is a multi-layer process. Huang
and Akagi adopted a three-layer model for human per-
ception. They assumed that human perception for emo-
tional speech does not come directly from a change in
acoustic features but rather a composite of different
types of smaller perceptions that are expressed by se-
mantic primitives or adjectives describing an emotional
voice [14].

The two-layer model has limited ability to find the
most relevant acoustic features for each emotion dimen-
sion, especially valence, or to improve the prediction
of emotion dimensions from acoustic features. To over-
come these limitations, this paper aims to identify the
most relevant acoustic features describing emotion di-
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mension using a novel idea based on human percep-
tion. We attempt to use the above human perception
model proposed by Huang and Akagi [14] to find the
most correlated acoustic features with emotion dimen-
sions through semantic primitives. We assume that the
acoustic features that are highly correlated with seman-
tic primitives will have a significant impact for predict-
ing values of emotion dimensions, especially valence.
The findings can guide the selection of new acoustic
features with better discrimination in the most difficult
dimension.

The feasibility of our three-layer model to improve
emotion dimensions estimation; for valence, activation,
and dominance was investigated. The proposed model
consists of three layers: emotion dimensions (valence,
activation, and dominance) constitute the top layer, se-
mantic primitives the middle layer, and acoustic fea-
tures the bottom layer. A semantic primitive layer is
added between the two conventional layers acoustic fea-
tures and emotion dimensions as shown in Fig. 1.

dm?,t:;:r:..s @nce Activation @ominancg
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Fig. 1 Three layer model.

Therefore, the approach we adopt to estimate values
of emotion dimensions includes the following steps:

e Feature selection: The most relevant acoustic fea-
tures were selected by using a top-down method.
First, the semantic primitives which have high
correlations with each emotion dimension were
selected. Then, the acoustic features which have
high correlations with the selected semantic prim-
itives found in the first step were selected.

e Building a three-layer model for each emotion di-
mension: For example, in the case of valence di-
mension, the three layers are: valence dimension in
the top layer, the highly correlated semantic prim-
itives with valence dimension in the middle layer,
all the highly correlated acoustic features with all
semantic primitives in the bottom layer.

e Emotion dimensions estimation: By using the con-
structed three-layer model, a button-up method
was used to estimate values of emotion dimensions
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from acoustic features as follows. First, FIS was
used to estimate the degree of each semantic prim-
itive from acoustic features, and then another FIS
was used to estimate values of emotion dimension
from the estimated degrees of semantic primitives
in the first step.

The achieve the aim of this paper the following inves-
tigations are required: (1) whether the selecting acous-
tic features based on the proposed three-layer model
of human perception will help us to find the most re-
lated acoustic features for each emotion dimensions, (2)
whether using these selected acoustic features as in-
puts to an automatic emotion recognition system will
improve the accuracy of all emotion dimensions espe-
cially valence, (3) finally, whether the automatic emo-
tion recognition system is effective in the following cases:
speaker-dependent, multi-speaker, and multi-language.

3. Databases and Experimental
Evaluation

To construct an emotion recognition system, the ele-
ments of the proposed model were collected in this sec-
tion. The databases and acoustic features used in this
study are introduced. Moreover, the semantic primitives
and emotion dimensions are evaluated by conducting
two listening tests using human subjects as described in
the below subsections.

3.1. Speech Material and Subjects

In this paper, our aim is to prove a new concept,
not to construct a real-life application, consequently,
acted emotions are quite adequate as a testing data
[15]. Therefore, in order to validate the proposed sys-
tem, we used two acted databases of emotional speech:
one in Japanese (single-speaker) and the other in Ger-
man (multi-speaker).

The Japanese database is the multi-emotion single-
speaker Fujitsu database produced and recorded by Fu-
jitsu Laboratories. A professional actress was asked to
produce utterances using five emotional speech cate-
gories, i.e., neutral, joy, cold anger, sadness, and hot
anger. In the database, there are 20 different Japanese
sentences. Each sentence has one utterance in neutral
and two utterances in each of the other categories. Thus,
there are nine utterances for each sentence and 180 ut-
terances for all 20 sentences. However, one cold anger
utterance is missing so, the total number of utterance
for Japanese database is 179.

The Japanese database is inadequate for validating
our emotion recognition system fully, because it is a sin-
gle speaker database which is only suitable for speaker-
specific task. To investigate the effectiveness of the pro-

posed system for multi-speaker and different languages,
a Berlin database [17] was selected. It comprises of seven
emotional states: anger, boredom, disgust, anxiety, hap-
piness, sadness, and neutral speech. Ten professional
German actors (five female and five male) spoke ten
sentences with emotionally neutral content in the seven
different emotions. These sentences were not equally dis-
tributed between the various emotional states: 69 fright-
ened; 46 disgusted; 71 happy; 81 bored; 79 neutral; 62
sad; 127 angry.

This database was selected because: (1) it is an acted-
speech database the same as the Fujitsu database, (2)
it contains four categories similar to those in the Fu-
jitsu database (happy, angry, sad, and neutral), and (3)
it is a multi-speaker and multi-gender database which
enable us to investigate the effect of speaker and gen-
der variation in speech emotion recognition. To com-
pare the results of the two databases, we used only the
four similar categories. Furthermore, for training pro-
poses, we used sentences equally distributed between
the four emotional states: 50 happy, 50 angry, 50 sad,
and 50 neutral. In total 200 utterances were selected
from the Berlin database: 100 utterances were uttered
by five males and the other 100 by five females divided
equally between the four emotional states.

To evaluate semantic primitives and emotion dimen-
sions, we used listening tests. The Fujitsu database was
evaluated by 11 graduate students, all native Japanese
speakers (nine male and two female). While Berlin
database was evaluated using nine graduate students, all
native Japanese speakers (eight male and one female).
No subjects have hearing impairments.

3.2. Acoustic Features

To construct a speech emotion recognition system,
acoustic features are needed to be investigated. In this
research, the most relevant acoustic features that have
been successful in related works and features used for
other similar tasks were selected. Therefore, 16 acoustic
features that originate from FO, power envelope, power
spectrum, and duration were selected from the work by
Huang and Akagi [14]. In addition to these 16 acoustic
features, five new parameters related to voice quality are
added, because voice quality is one of the most impor-
tant cues for the perception of expressive speech. Acous-
tic features related to duration are extracted by segmen-
tation, and the rest are extracted by the high quality
speech analysis-synthesis system STRAIGHT [18], lead-
ing to extraction of a set of 21 acoustic features that can
be grouped in several subgroups:
FO related features: FO contour and power enve-
lope varied greatly with different expressive speech cat-



egories, both for the accentual phrases as well as for the
overall utterance. For each utterance the measurements
made were FO mean value of rising slope of the FO con-
tour (FO_RS), highest FO (FO_HP), average F0O (FO_AP),
and rising slope of the FO contour for the first accentual
phrase (FO_RS1).
Power envelope related features: in a similar way
to that for the FO contour, for each utterance the mea-
surements were: mean value of power range in accentual
phrase (PW_RAP), power range (PW_R), rising slope of
the power for the first accentual phrase (PW_RS1), the
ratio between the average power in high frequency por-
tion (over 3 kHz), and the average power (PW_RHT);

Power spectrum related features: for spectrum we

used formants, spectral tilt, and spectral balance:

- Formants: measures were the mean value of (first
formant frequency (SP_F1), second formant fre-
quency (SP_F2), third formant frequency (SP_F3)
taken approximately at the midpoint of the vowels
/a/,/e/,/i/,/o/, and /u/. The formants frequen-
cies were calculated with LPC-order 12.

- Spectral tilt (SP_TL): is used to measure voice quality,
and it was calculated from the following equation

SP.TL = Al — A3 (1)

where Al is the level in dB of the first formant,
and, A3 is the level of the harmonic whose fre-
quency is closest to the third formant [19].

- Spectral balance (SP_SB): this parameter serves for
the description of acoustic consonant reduction
[20], and it was calculated according to the fol-
lowing equation

Yfi-E;

where f; is the frequency in Hz, and E; is the spectral

SP_SB =

power as a function of the frequency [21].

Duration related features: total length (DU_TL),
consonant length (DU_CL), and ratio between conso-
nant length and vowel length (DU_RCV).

Voice quality: Voice quality conveys both linguistic
and paralinguistic information, which can be distin-
guished by acoustic source characteristics. Currently in-
vestigation into voice quality has focused on measures
of breathiness, such as HI-H2, where H1 and H2, are the
amplitudes (dB) of the fundamental frequency and the
second harmonic, respectively. As indicated by Menezes
et al. in [11], HI-H2 is concerned with glottal open-
ing. In this study, the mean value of H1-H2 for vowel
/a/,/e/,/i/,/o/, and Ju/ per utterance MH_A, MH_E,
MH_I, MH_O, and MH_U are used as an indication for
voice quality.
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All the 21 acoustic features were extracted for both
Fujitsu and Berlin databases. In order to avoid speaker
dependency on the acoustic features that are used, we
adopt an acoustic feature normalization method, in
which all acoustic feature values are normalized by those
of the neutral speech. This was performed by dividing
the values of acoustic features by the mean value of neu-
tral utterances for all acoustic features.

3.3. Evaluations of Semantic Primitives

In this study, the human perception model as de-
scribed by Scherer [12] is adopted. This model assumes
that human perception is a multi-layer process. It was
assumed that the acoustic features are perceived by a lis-
tener and internally represented by a smaller perception
e.g. adjectives describing emotional voice as reported
by Huang and Akagi [14]. In this study ‘smaller per-
ception’ means an earlier process of perception. These
smaller percepts or adjectives are finally used to detect
the emotional state of the speaker. These adjectives can
be subjectively evaluated by human subjects. Therefore,
the following set of adjectives describing the emotional
speech were selected as candidates for semantic prim-
itives: bright, dark, high, low, strong, weak, calm, un-
stable, well-modulated, monotonous, heavy, clear, noisy,
quiet, sharp, fast, and slow. These adjectives were se-
lected because they reflect a balanced selection of widely
used adjectives that describe emotional speech. They
are originally from the work of Huang and Akagi [14].

For the evaluation, we used listening tests. In these
tests, the stimuli were presented randomly to each
subject through binaural headphones at a comfortable
sound pressure level in a soundproof room. Subjects
were asked to rate each of the 17 semantic primitives
on a five-point scale: “1-Does not feel at all”, “2-Seldom
feels”, “3-Feels a little”, “4-feels”, “5-Feels very much”.
The 17 semantic primitives were evaluated for the two
databases, and then ratings of the individual subject
were averaged for each semantic primitive per utterance.

The inter-rater agreement was measured by means
of pairwise Pearson’s correlations between two sub-
jects’ ratings, separately for each semantic primitive.
For Japanese database, the average of Pearson’s cor-
relation among every pairs of two subjects for all se-
mantic primitives evaluation were ranged between 0.68
and 0.85, moreover, for German database, the average
of correlations were ranged between 0.66 and 0.86. This
result suggests that all subjects agreed from a moderate
to a very high degree.
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3.4. Emotion Dimensions Evaluation

Most existing emotional speech databases have been
annotated using the categorical approach, while, few
databases have been annotated using the dimensional
approach [22]. The Fujitsu and Berlin databases are
categorical databases. Therefore, listening tests are
required to annotate each utterance in the used
databases using the dimensional approach. Thus, the
two databases were evaluated by the listening tests
along three dimensions: valence, activation, and dom-
inance. For emotion dimension evaluation, a 5-point
scale {-2, -1, 0, 1, 2} was used: valence (from -2 very
negative to +2 very positive), activation (from -2 very
calm to +2 very exited), and dominance (from -2 very
weak to +2 very strong).

The subjects used a MATLAB GUI to evaluate the
stimuli. Repetition was allowed. They were asked to
evaluate one emotion dimension for the whole database
in one session. There were three sessions, one for each
emotion dimension. As done in the work of Mori et al.
[23] for emotion dimension evaluation, the basic theory
of emotion dimension was explained to the subjects be-
fore the experiment started. Then they took a training
session to listen to an example set composed of 15 ut-
terances, which covered the used five-point scale, three
utterances for each point in the used scale. In the test,
the stimuli were presented randomly, for each utterance.
Subjects were asked to evaluate their perceived impres-
sion from the way of speaking, not from the content
itself, and then choose score on the five-point scale for
each dimension individually. The average of the sub-
jects’ rating for each emotion dimension was calculated
per utterance.

The average of Pearson’s correlation coefficient
among every pairs of two subjects were as follows: for
Japanese database 0.90, 0.85, and 0.89 for valence, ac-
tivation, and dominance, respectively, and for German
database 0.83, 0.87, and 0.86 for valence, activation, and
dominance, respectively. This indicates that all subjects
agreed to a high degree for all emotion dimension eval-
uation.

4. Selection of Acoustic Features and
Semantic Primitives

This section describes the proposed acoustic features
selection method to identify the most relevant acous-
tic features for emotion dimensions valence, activation,
and dominance. For this purpose, we proposed a thee-
layer model that imitates the human perception to un-
derstand the relationship between acoustic features and
emotion dimensions.

Input Emotion Dimensions (ED)

and Semantic Primitives (SP)
I

Compute correlations between ED and SP

if | Correlation(ED,SP)|20.45

Low correlated SP No

Yes
&
Input Acoustic .
Highly correlated SP
Features (AF) ghly
I

Compute correlations between |
AF and highly correlated SP

o—'{ Low correlated AF

Yes

if | Correlation(SP,AF}|20.45
+

‘ Highly correlated AF ‘

Fig. 2 Process for acoustic feature selection.

4.1. Selection Procedures

Our selection method is based on the following as-
sumptions: 1) semantic primitives which are highly cor-
related with the emotion dimension are given large im-
pact in the estimation of that dimension, and 2) acoustic
features which are highly correlated with the semantic
primitive are given large impact in the estimation of that
semantic primitive. In this study, we consider the cor-
relation highly correlated if its absolute value is grater
than or equal to 0.45. To accomplish this task, the top-

down method shown in Fig 2 was used as follows:

e the correlation coefficients between each emotion
dimension (top-layer) and each semantic primi-
tives (middle layer) were calculated;

e the highly correlated semantic primitives were se-
lected for each emotion dimension;

e the correlation coefficients between each selected
semantic primitive (middle layer) in the second
step and each acoustic feature (bottom layer) were
calculated,

e the highly correlated acoustic features were se-
lected for each semantic primitive.

For each emotion dimension, the selected acoustic fea-
tures in the final step are considered as the most relevant
features to the dimension in the top-layer.

4.2. Correlation between elements of the three-
layer model

First, the correlations between the elements of the top

layer and the middle layer were calculated as follows:
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Table 1 Correlation coefficients between semantic primitives (SP) and emotion dimensions (ED) (German Database).
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g
sz
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% £ =5 . 5 % E £ 2 2 £ 5 5 B E .
SP | & < = Q B e < = o S @ L 0 = = 2 9
ED m A £ 3 & E U b E =2 =T U zZ & w & @®m |#
Valence |0.9 -0.7 0.6 -0.6 0.1 -04 -02 0.1 03 -02 -0.9 0.8 0.1 -04 03 04 -05 |7
Activation |0.7 -0.9 0.9 -0.9 0.9 -1.0 -0.9 0.9 0.9 -0.9 -0.6 0.7 0.9 -1.0 0.9 0.8 -0.8 |17
Dominance 0.6 -0.9 0.8 -0.9 1.0 -1.0 -0.9 0.9 0.9 -0.8 -0.5 0.6 0.9 -1.0 1.0 0.8 -0.8 |17
# 3 3 3 3 2 2 2 2 2 2 3 3 2 2 2 2 3 |4

Table 2 Correlation coefficients between acoustic features (AF) and semantic primitives (SP) (German Database).

3
2 g
s & ¢
h=1 &0 < : ks < o e o
w® £ 08 : £ £ £ I % 5§ ;5 §E £ £ % 3z %
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MH_A -0.6 0.8 -0.7 0.8 -0.8 0.8 0.7 -0.7 -0.7 0.7 0.5 -0.6 -0.8 0.8 -0.8 -0.7 o.7 17
MH_E -0.5 0.6 -0.6 0.6 -0.7 0.7 0.7 -0.7 -0.6 0.6 04 -04 -0.7 0.7 -0.7 -0.6 0.6 15
MH_O -0.5 0.6 -0.6 0.6 -0.6 0.7 0.6 -0.6 -0.6 0.6 0.4 -0.5 -0.6 0.7 -0.6 -0.5 0.6 16
MH_U -04 0.5 -04 05 -04 05 04 -04 -04 0.3 0.3 -04 -04 0.5 -0.5 -0.5 0.5 7
FO_RS 0.5 -0.6 0.7 -0.7 0.7 -0.7 -0.8 0.7 0.8 -0.8 -0.5 04 0.7 -0.7 0.7 04 -04 |14
FO_HP 0.5 -0.6 0.7 -0.6 0.6 -0.6 -0.7 0.7 0.7 -0.7 -04 0.3 0.6 -0.6 0.6 0.3 -0.3 |13
PW_R 0.5 -0.7 0.7 -0.7 0.7 -0.7 -0.8 0.8 0.8 -0.8 -04 04 0.8 -0.8 0.7 0.5 -0.5]|15
PW_RHT |0.1 -0.3 0.3 -0.3 0.6 -04 -0.5 0.6 0.5 -0.5 0.0 0.0 0.6 -0.5 0.5 0.2 -0.2 8
PW_RAP|0.3 -0.3 04 -04 04 -0.3 -04 04 0.5 -0.5 -0.2 0.2 04 -04 04 0.0 -0.1 2
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# 7 8 7 8 7 8 7 7 8 8 3 4 7 9 8 5 7 118

let (") = {xsf)}(n =1,2,...,N) be the sequence of the
rated values of the i*" emotion dimension by the listen-
ing test, i € {valence,activation,dominance}. More-
over, let sU) = {sg)}(n =1,2,...,N) be the sequence
of the rated values of the j** semantic primitive from
another listening test, j € {bright,dark,...,slow}.
Where N is the number of utterances in used database
(N 179 for Japanese and N = 200 for German).
Then the correlation coefficient Ry) between the seman-

tic primitive s) and the emotion dimension z(¥ can be
determined by the following equation:

= 25:1(5]',7:, — 5)(9:53) —z()
VI = 5 D 08 - 702

where 55 and 7() are the arithmetic means for the se-

(4)
R (3)

mantic primitive and emotion dimension, respectively.
Table 1 lists the correlation coefficients between all se-
mantic primitives and all emotion dimensions for the
German database. Where, the numbers in bold repre-
sent the higher correlations demonstrated by the abso-
lute value of the correlation, which is >0.45. In addition,
‘4’ in the last row and last column represents the num-

ber of higher correlations. For example, the number 7
in last column of the valence row indicates that their
are seven semantic primitives highly correlated with va-
lence.

Second, the correlations coefficients between elements
of the middle layer (semantic primitive), and the bottom
layer (acoustic feature) are calculated as follows: Let
fi = {fint(n =1,2,...,N) be the sequence of values
of the m!* acoustic feature, [ = 1,2,...,L, and L be
the number of extracted acoustic features in this study
L = 21. Then the correlation coefficient Rl(j ) between
the acoustic parameter f; and the semantic primitive
5() can be determined by the following equation:

R(J) _ Zr]y:l(fl,n - ﬁ)(séj) - g(j)) (4)
l \/ N _*2\/ N ) 5)y2
Done1 (frn = f1)2\) 2 (s = 5Y)

where f;, and 3) are the arithmetic means for the
acoustic feature and semantic primitive respectively.
Table 2 lists the correlation coefficients between all
semantic primitives and 11 acoustic features that has at
least two highly correlation with semantic primitives,
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for the German database. Similar analysis was done for
the Japanese database in our previous work [16].

4.3. Selection Results

For each emotion dimension, a perceptual three-layer
model was constructed as follows: emotion dimension in
the top layer, the most relevant semantic primitives for
this dimension in the middle layer, and the most rele-
vant acoustic features in the bottom layer. For example,
Figs. 3(a) and 3(b) illustrate the valence perceptual
model for German and Japanese database, respectively.
Where the solid and dashed lines in these figures rep-
resent positive and negative correlations, respectively.
Also, the thickness of each line indicates the strength
of the correlation: the thicker the line, the higher the

correlation.

Valence

(b) Japanese database.

Fig. 3 Valence perceptual model.

In case of valence dimension for the German database
as shown in Fig. 3(a), it is evident that seven semantic
primitives were found highly correlated with valence as
shown in the middle layer in Fig. 3(a). These seven se-
mantic primitives are highly correlated with nine acous-
tic features as shown in the bottom layer in Fig. 3(a).

The valence perceptual model for German and
Japanese language are compared as follows: For both
languages, the valence dimension is found to be posi-
tively correlated with bright, high and clear semantic
primitives, while it is negatively correlated with dark,
low, and heavy semantic primitives. Therefore, the two
languages not only share six semantic primitives but
also similar correlations between the emotion dimen-

sions and the corresponding semantic primitives.

In addition, comparing the relationship between se-
mantic primitives and acoustic features, it is found that
the six semantic primitives that were shared by both
German and Japanese have a similar correlations with
six common acoustic features (MH-A, MH_E, MH_O,
FO_RS, FO_HP, and PW_R). This finding suggests the
possibility of some type of universality of acoustic cues
associated with semantic primitives. Therefore, the pro-
posed method can be used effectively to select the most
relevant acoustic features for each emotion dimension

regardless the used language.

4.4. Discussion

Our model mimics the human perception process for
understanding emotions on the basis of Brunswick’s
lens model [13], where the speaker expresses his/her
emotional state through some acoustic features. These
acoustic features are interpreted by the listener into
some adjectives describing the speech signal, and from
these adjectives, the listener can judge the emotional
state. For example, if the adjectives describing the voice
are dark, slow, low, and heavy, these make the human
listener feel that the emotional state is negative valence
and very weak activation, resulting in it being detected
as a very Sad emotional state in the categorical ap-
proach.

On the other hand, the conventional acoustic features
selection method was based on the correlations between
acoustic features and emotion dimension as a two-layer
model. To investigate the effectiveness of the proposed
feature selection method, the results were compared
with the conventional method. Table 3 lists the correla-
tions coeflicients between acoustic features and emotion
dimensions directly.

From this table, evidently only one acoustic fea-
ture is highly correlated with the valence dimension
(|correlation(SP_F1,Valence)| = 0.55 > 0.45), while
eight acoustic features are highly correlated with the ac-
tivation and dominance dimensions. Therefore, valence
shows a smaller number of highly correlated acoustic
features than the activation and dominance. These re-
sults are similar to those of many previous studies [4].
Due to this drawback, most previous studies achieved a
very low performance for valence estimation using the
conventional approach [6,24].

The most important result is that, using the pro-
posed three-layer model for feature selection, the num-
ber of relevant acoustic features to emotion dimensions
increases. For example, the number of relevant features
for the most difficult dimension valence increases from
one to nine using the proposed method. Moreover, the
number of features increased from eight to nine for ac-



Table 3 Correlation coefficients between acoustic fea-
tures (AF) and emotion dimensions (ED) (German

Database).
8 = £
< 9]
AF > < A #
MH_A -0.33 | -0.82 | -0.81 2
MH_E -0.18 | -0.70 | -0.71 2
MH_I -0.03 -0.19 -0.24 0
MH_O -0.28 | -0.67 | -0.68 2
MH_U -0.25 | -0.47 | -0.47 2
FO_RS 0.21 0.69 0.65 2
FO_HP 0.19 0.59 0.54 2
FO_AP -0.05 -0.14 -0.13 0
FO_RS1 -0.05 -0.10 -0.09 | 0
PW_R 0.23 0.75 0.74 2
PW_RHT -0.25 0.44 0.49 1
PW_RS1 0.08 0.14 0.14 0
PW_RAP 0.08 0.36 0.35 0
SP_F1 -0.55 | -0.49 -0.43 2
SP_F2 -0.03 -0.29 -0.29 | 0
SP_F3 -0.04 -0.04 0.01 0
SP_TL 0.28 0.26 0.26 0
SP_SB -0.02 -0.05 -0.02 | 0
DU_TL -0.28 -0.38 -0.39 | 0
DU_CL -0.24 -0.36 -0.36 0
DU_RCV -0.14 -0.39 -0.37 | 0
# 1 8 8 17

tivation and from eight to ten for dominance. The se-
lected acoustic features can be used to improve emotion
dimensions estimation as described in detail in the next

section.

5. Automatic Emotion Recognition
System

The aim of speech emotion recognition system based
on the dimensional approach can be viewed as us-
ing an estimator to map the acoustic features to real-
valued emotion dimensions (valence, activation, and
dominance). The selected acoustic features from the
previous section are used as an input to the proposed
system to predict emotion dimensions. Emotion dimen-
sion values can be estimated using any estimator such
as K-nearest neighborhood (KNN), Support Vector Re-
gression (SVR), or Fuzzy Inference System FIS. In this
study, for selecting the best estimator among KNN,
SVR, and FIS, pre-experiments not included here indi-
cated that our best results were achieved using an FIS
estimator. Therefore, FIS was used to connect the ele-
ments of the three-layer model. Most statistical method-
ology are mainly based on a linear and precise relation-
ship between the input and the output. However, the
relationships among acoustic features, semantic primi-
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tives, and emotion dimensions are non-linear. Therefore,
fuzzy logic is a more appropriate mathematical tool for
describing this non-linear relationship [6, 14, 25].

5.1. System Implementation
Adaptive-Network-based Fuzzy Inference System
(ANFIS) [25] was used to construct the FIS models that
connect the elements of our recognition system. Each
FIS has a structure of multiple inputs and one output.
Having identified the best acoustic features set, we con-
structed an individual estimator to predict the values
(-2 to 2 rated by the listening test) of each emotion
dimension. As an example, for the German database,
to estimate the valence dimension using the perceptual
model in Fig. 3(a), a bottom-up method was used to
estimate the values (1 to 5 rated by the listening test) of
the seven estimated semantic primitives in the middle
layer from the nine acoustic features in the bottom layer
as shown in Fig. 4. To accomplish this task, seven FISs
were required: one to estimate each semantic primitive.
In addition, one FIS was required to estimate the value
of valence dimension from the seven semantic primi-
tives. Similarly, the activation and dominance can be
estimated using FIS for each semantic primitive and one
FIS for the activation and dominance, respectively.

Semantic primitives

Emotion Dimension

Valence_Fly—@alenca

Fig. 4 Block diagram of the proposed approach for esti-
mating valence based on the three-layer model (imple-
mentation for German database depicted in Fig. 3(a)).

5.2. Effectiveness of the selected features

This subsection aims to investigate whether the se-
lected acoustic features using the proposed method in
Section 4 will improve emotion dimensions estima-
tion. To accomplish this, the proposed automatic emo-
tion recognition system was tested using three different
groups of acoustic features, for each emotion dimension:
(1) highly correlated acoustic features (absolute values
of their correlations with semantic primitives is > 0.45),
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Fig. 5 Mean Absolute Error (MAE) between human evaluation and estimated values of emotion dimensions.

(2) lower correlated acoustic features as shown in Fig.
2, and (3) all the acoustic features.

In order to measure the performance of the proposed
system, the mean absolute error (MAE) between the
predicted values of emotion dimensions and the corre-
sponding average values given by human subjects is used
as a metric of the discrimination associated with each
group. The MAE is calculated in accordance with the
following equation
EL e o) )

N

where j € {walence,activation,dominance}, 551(-]) is

MAEWG) —

the output of the emotion recognition system, and
‘,EEJ)7_2 < {E(])

i

< 2 is the evaluated value by human
subjects as described in Subsection 3.4.

The accuracy of the classifier in terms of five-fold
cross validation was calculated for the two databases.
Figures 5(a) and 5(b) show the MAE for estimating
(valence, activation, and dominance), for Japanese and
German database, respectively, using three groups of
acoustic features (highly correlated, lower correlated,
all). The error bars in these figures represent the stan-
dard errors. Analysis of variance (ANOVA) was con-
ducted to test whether the three groups are statistically
different with respect to the use of correlated acous-
tic features for emotion dimensions estimation. For the
Japanese database, at level 0.001, a significant discrim-
ination among the three groups was observed: valence
(F[2, 534] = 29.30, p < 0.001), activation (F[2, 534] =
59.28, p < 0.001), and dominance (F[2, 534] = 51.14,
p < 0.001). For the German database the results were
significant for all emotion dimensions at level 0.001, the
information of the F-test were as follows: valence F|[2,
597] = 6.95, p < 0.001), activation (F[2, 597] = 30.54, p
< 0.001) and dominance (F[2, 597] = 20.28, p < 0.001).

For both databases, the results reveal that by us-
ing the three-layer model, the MAEs obtained using
the selected acoustical features group (highly correlated
acoustic features) are the smallest in comparison with
that using all the features. This means that our feature
selection method is effective for improving emotion di-

mensions estimation.

5.3.

In this paper, an automatic speech emotion recogni-

System Evaluation

tion system based on a three-layer model was imple-
mented. This section presents the evaluation results for
the proposed system. To investigate how effectively our
system improves emotion dimensions estimation, the
performance of the proposed system was compared with
that of the conventional two-layer system by using two
different languages: Japanese and German, using two
different tasks (1) speaker-dependent, and (2) multi-
speaker.

The most relevant acoustic features for each emotion
dimension were selected using the proposed feature se-
lection method for the two languages as described in
Section 4. These selected features were used as the input
for the conventional system and the proposed system.
The desired output form these systems is the perceived
emotion dimensions by listeners, not the emotions in-
tended by speakers.

5.3.1.

In the speaker-dependent task, the automatic emo-

Evaluation Results for Speaker-dependent Task

tion recognition system was trained and tested using
utterances for one speaker. For a Japanese database,
the two automatic systems (the conventional two-layer
and proposed three-layer systems) were used to esti-
mate the valence, activation, and dominance from the



1.0

2-Layer‘
3-Layer

0.9 |
0.8
0.7
0.6 |
0.5
0.4
0.3 |
0.2
0.1

0.0

Mean Absolute Error

Activation Dominance

Emotion Dimenision

Valence

(a) Japanese Database (Single speaker).

Acoust. Sci. & Tech.

1.0 ‘
2-Layer
09 | 3-Layer

0.8 J
0.7 1
0.6 1
0.5 1
04
0.3
0.2

g

0.1 ¢
Valence Activation Dominance
Emotion Dimenision

Mean Absolute Error

(b) German Database (Speaker dependent).

Fig. 6 MAE between human evaluation and the two systems output for speaker dependency.

selected acoustic features for 179 utterances included
in the Japanese database. The five-fold cross validation
was used to evaluate the automatic systems. The MAEs
for emotion dimensions (valence, activation, and domi-
nance) between the two systems output and human eval-
uation are shown in Fig. 6(a). The error bars represent
standard errors.

The German database contained ten speakers: five
male and five female. Since each speaker made few utter-
ances, the leave-one-out-cross-validation (LOOCV) was
used for evaluation. The proposed system and the con-
ventional two-layer system were evaluated using each
speaker individually. Finally, the mean value for MAE
from all speakers for each emotion dimension was cal-
culated. The results are presented in Fig. 6(b).

Using t-test, at level 0.05, the results for the two
databases are as follows: for Japanese database, va-
lence (t(178)=3.16, p< 0.05), activation (t(178)=2.47,
p< 0.05), and dominance (t(178)=4.99, p< 0.05). These
results are statistically significant for all emotion dimen-
sions. However, for the German database, the results
are statistically significant for valence (£(199)=2.09, p<
0.05) and dominance (£(199)=1.78, p< 0.05), but there
is no significant differences for activation between the
two-layer and the three-layer systems (t(199)=0.23, p-
value=0.41). As can be seen from Figs. 6(a) and 6(b),
the estimation results using the proposed three-layer
system outperforms the conventional two-layer system
for the two-languages for the speaker-dependent task.

5.3.2. Evaluation Results for Multi-Speaker Task

The German database was used to investigate the
effect of multi-speaker on emotion dimension estima-
tion. Thus, the proposed system was validated using the
whole database, and all 200 utterances were used to im-
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plement this system. Five-fold cross validation was used
to evaluate this system. The results for multi-speaker
evaluation are shown in Fig. 7. The error bars repre-
sent standard errors.

The results of the paired t-test at 0.05 signifi-
cant level were as follows: valence (t(199)=2.83, p<
0.05), activation (£(199)=1.93, p< 0.05), and dominance
(t(199)=3.38, p< 0.05). These results are statistically
significant for all the emotion dimensions. These results
reveal that the proposed system outperforms the con-
ventional one in the multi-speaker task.

5.4.

Using the acoustic feature selection method described

Discussion

in Section 4, the most relevant acoustic features were
selected for each emotion dimensions, for the Japanese
and the German databases. To investigate the effective-
ness of the selected acoustic features, the proposed sys-
tem was tested using three different groups of acoustic



R. Elbarougy and M. Akagi:Improving Speech Emotion Dimensions Estimation Using a Three-Layer Model

features: selected, not selected, and all. The best perfor-
mance for emotion dimensions estimation were achieved
using the selected acoustic features group, for each emo-
tion dimension, as demonstrated by the smallest values
of the MAEs, for both German and Japanese databases.

The MAESs for all dimensions, as shown in Figs. 6(a),
6(b), and 7, clearly show that the proposed three-layer
system is effective and gives the best results for all emo-
tion dimensions (valence, activation, and dominance) for
both speaker-dependent and multi-speaker task. How-
ever, the MAEs for the multi-speakers task were higher
than those for the speaker-dependent task.

For the German and the Japanese databases, the over-
all best results were achieved for all emotion dimensions
using speaker-dependent task. For both databases, all
MAE values were very small; the maximum MAE was
0.28 for valence for the Japanese database as shown in
Fig. 6(a). This value indicates that on average the er-
ror between human evaluation and system output is 0.28
which means that the output of the proposed system are
very close to human evaluation.

From this discussion, it is evident that the valence
dimension estimation could be improved by using the
proposed model. Therefore, the most important results
from this study is that the proposed automatic speech
emotion recognition system based on the three-layer
model for human perception was superior to the con-
ventional two-layer system.

6. Mapping Values of Emotion
Dimensions into Emotion Categories

The categorical and dimensional approaches are
closely related, i.e. by detecting the emotional content
using one of these two schemes, we can infer its equiva-
lents in the other scheme. For example, if an utterance
is estimated with positive valence and high activation
we could infer that this is happy, and vice versa. There-
fore, any improvement in the dimensional approach will
lead to an improvement in the categorical approach and
vice versa.

In this section, we want to strengthen our findings
in this study by demonstrating that the dimensional
approach can actually help us to improve the auto-
matic emotion classification. So, the estimated values
of emotion dimensions (valence, activation, and domi-
nance) were used as inputs for Gaussian Mixture Model
(GMM) to predict the corresponding emotional cate-
gory. The classifications results into emotion categories
using acoustic features directly is compared with the
classification results using the estimated values of emo-
tion dimensions as shown in Tables 4 and 5 for the
Japanese and German databases, respectively.

Table 4 Classification results for Japanese database using
GMM classifier:

(a) By mapping acoustic features directly to emotion cate-
gories (Average recognition rate 53.9%).

Category Classification rate (%)
Neutral | Joy | Cold | Sad Hot
Anger Anger
Neutral 30.0 15.0 | 45.0 5.0 5.0
Joy 2.5 40.0 | 12.5 2.5 42.5
Cold Anger 7.7 12.8 | 71.8 5.1 2.6
Sad 0.0 7.5 12.5 | 77.5 2.5
Hot Anger 2.5 45.0 2.5 0.0 50.0

(b) By mapping the estimated emotion dimensions for
speaker-dependent task to emotion categories (Average recog-
nition rate 94.0%).

Classification rate (%)

Category Neutral | Joy | Cold | Sad | Hot
Anger Anger

Neutral 80.0 10.0 5.0 5.0 0.0

Joy 0.0 97.5 2.5 0.0 0.0

Cold Anger 0.0 0.0 100 0.0 0.0
Sad 0.0 0.0 0.0 100 0.0
Hot Anger 0.0 2.5 5.0 0.0 | 92.5

6.1. Classification for Japanese Database

For the Japanese database, first, the acoustic features
were used as input to train the GMM classifier to clas-
sify the Japanese database into five emotion categories:
neutral, joy, hot anger, sadness, and cold anger. More-
over, the estimated values of emotion dimensions were
used as input to train GMM to classify the values of
every point in the space valence-activation-dominance
into one emotion category. The confusion matrix of the
results is shown in Table 4(a) for mapping acoustic
features into categories and in Table 4(b) for mapping
values of emotion dimensions into emotion categories. In
these tables, the numbers represent the percentages of
recognized utterances of the emotion category in the left
column versus the number of utterances for emotions in
the top line.

6.2. Classification for German Database

The results of classification of the German database
into four emotion categories: neutral, happy, angry, and
sad are represented by the confusion matrix as fol-
lows: Table 5(a) for mapping acoustic feature into cat-
egories, Table 5(b) for mapping emotion dimensions
into categories for multi-speaker estimation, and Table
5(c) for mapping emotion dimensions into categories for
speaker-dependent estimation.

6.3. Discussion

Emotion dimensions values are mapped into the given

emotion categories using a GMM classifier. This is a
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Table 5 Classification results for German database using
GMM classifier:

(a) By mapping acoustic features directly to emotion
categories (Average recognition rate 60.0%).

Category Classification rate (%)
Neutral | Happy | Anger | Sad
Neutral 66.0 16.0 0.0 18.0
Happy 120 | 54.0 | 320 | 2.0
Anger 2.0 42.0 54.0 2.0
Sad 16.0 6.0 12.0 | 66.0

(b) By mapping the estimated emotion dimensions
for multi-speaker task to to emotion categories (Av-
erage recognition rate 75.0%).

Category Classification rate (%)
Neutral | Happy | Anger | Sad
Neutral 74.0 10.0 4.0 12.0
Happy 6.0 62.0 32.0 0.0
Anger 2.0 180 | 80.0 | 0.0
Sad 16.0 0.0 0.0 84.0

(¢) By mapping the estimated emotion dimensions for
speaker-dependent task to emotion categories (Aver-
age recognition rate 95.5%).

Category Classification rate (%)
Neutral | Happy | Anger | Sad
Neutral 98.0 0.0 2.0 0.0
Happy 0.0 94.0 6.0 0.0
Anger 0.0 8.0 92.0 0.0
Sad 2.0 0.0 0.0 98.0

remarkable improvement on the recognition rate. For
the Japanese database, the overall recognition rate was
53.9% for direct classification using acoustic features
and 94% using emotion dimensions. For the German
database, the rate of direct classification using acoustic
features was 60%, which increased to 75% and 95.5% us-
ing emotion dimensions for multi-speaker and speaker-
dependent tasks, respectively. The result reveals that
the recognition rate in speaker-dependent tasks is higher
than in multi-speaker tasks. This corresponds with pre-
vious studies indicating that speaker-dependent train-
ing of the estimator achieves the most accurate emotion
classification results [26]. The most important result is
that, the classification using emotion dimensions instead
of acoustic features improves the recognition rate.

7. Conclusion

The aim of this paper is to improve the conventional
dimensional method in order to accurately estimate
emotion dimensions, especially the valence dimension.
Therefore, we first proposed a novel acoustic features
selection method based on a three-layer model of hu-
man perception, for selecting the most relevant acoustic
features to each emotion dimensions. This method was
successfully applied for two different language databases
(Japanese and German), many acoustic features were
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found to be relevant for the valence dimension as well
as for the activation, and dominance.

We then proposed a speech emotion recognition sys-
tem based on the three-layer model to estimate emotion
dimensions (valence, activation, and dominance) from
most related acoustic features. The proposed system
was evaluated using two different languages (Japanese
and German) in two different cases (speaker-dependent
and multi-speaker). It was found that the proposed
system outperforms the conventional two-layer system
in both languages, for speaker-dependent, and multi-
speaker tasks.

Finally, the estimated values of emotion dimensions
were mapped into the given emotion categories using a
GMM classifier for the Japanese and German databases.
For the Japanese database, an overall recognition rate
was 94% using emotion dimensions. For the German
database, the recognition rate was 95.5% for speaker-
dependent tasks.

In the future, in order to obtain a much more reli-
able and rich annotation results for emotion dimension
and semantic primitives using a listening test, we will
study the effect of using a balanced number of subjects
in terms of gender and age. Moreover, we will investigate
the effectiveness of the three-layer model for construct-
ing a cross-language emotion recognition system which
has the ability to detect emotion regardless of the lan-

guage used for training.
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