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Abstract. Effective coordination of inference (à la theorem proving)
and search (à la model checking) is one of the most important and in-
teresting research topics in formal methods. We have developed several
techniques for coordinating inference and search for verification with
proof scores in CafeOBJ. The generate&check methods proposed in this
paper are recent developments for invariant verification of this kind. The
methods are based on (1) state representations as sets of observers, and
(2) systematic generation of finite state patterns which subsume all pos-
sible infinite states.

This paper describes the generate&check methods and their theoret-
ical foundation. The methods and theory are explained with a small
but instructive example of mutual exclusion protocol. The explanation
is intended to be self-contained, and includes necessary basics of the
CafeOBJ language/system also.

1 Introduction

Constructing specifications and verifying them in upstream of software devel-
opment are still the most important challenges in formal software engineering.
It is because quite a few critical bugs are caused at the level of domains, re-
quirements, and/or designs specifications. Proof scores are intended to meet this
challenge [5, 6].

In proof score approach, an executable algebraic specification language (i.e.
CafeOBJ [2] in our case) is used to specify systems and system properties, and a
processor (i.e. rewrite engine or reducer) of the language is used as a proof engine
to prove that the systems satisfy properties of interest. Proof plans are coded
into proof scores, and are also written in the algebraic specification language.
The proof scores are executed by the rewrite engine, and if everything is as
expected, an intended proof has been successfully done. Logical soundness of
this procedure is guaranteed by the fact that rewritings/reductions done by the
rewrite engine is consistant with equational axioms of original specifications [7].

The concept of proof supported by proof scores is similar to that of LP [10].
Proof scripts written in tactic languages provided by proof assistants such as
Coq [1] and Isabel/HOL [12] have similar nature as proof scores. However, proof
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scores are written uniformly with specifications in an executable algebraic spec-
ification language and can enjoy a transparent, simple, and powerful logical
foundation based on equational and rewriting logic [7, 11].

Effective coordination of inference [1, 12] and search [3, 9] is important for
making proof scores more effective and powerful, and we have developed several
techniques for that [15, 6]. The generate&check methods proposed in this paper
are recent developments for invariant verification. The methods are based on (1)
state representations as sets of observers, and (2) systematic generation of finite
state patterns which subsume1 all possible infinite states. These two have been
achieved based on the uniform and transparent logical foundation of proof scores
[7].

The rest of the paper is organized as follows. Section 2 presents a mutual ex-
clusion protocol QLOCK that is used to explain methods and theory throughout
this paper. Section 3 presents a system specification of QLOCK with OTS in the
CafeOBJ language. Section 4 explains transition systems and their invariant ver-
ification and presents a property specification of QLOCK. Section 5 presents a
proof score for QLOCK using the generate&check methods. Explanations on the
correctness of the methods are given throughout the section, and formal proofs
are given in Section 5.3. Section 6 summarizes achievements, explains related
works, and mentions future issues.

2 QLOCK: A Mutual Exclusion Protocol

Mutual excusion protocols can be described as follows:

Assume that many agents (or processes) are competing for a common
equipment (e.g. a printer or a file system), but at any moment of time
only one agent can use the equipment. That is, the agents are mutually
excluded in using the equipment. A protocol (mechanism or algorithm)
which can achieve the mutual exclusion is called “mutual exclusion pro-
tocol”.

A mutual exclusion protocol, called QLOCK, is realized by using a global
queue (first in first out storage) of agent names (or identifiers) as follows.

– Each of unbounded number of agents who participates in the protocol be-
haves as follows:
• If the agent wants to use the common equipment and its name is not in

the queue yet, put its name into the bottom of queue.
• If the agent wants to use the common equipment and its name is already

in the queue, check if its name is on the top of the queue. If its name is
on the top of the queue, start to use the common equipment. If its name
is not on the top of the queue, wait until its name is on the top of the
queue.

1 Terms t1, · · · , tm are defined to subsume terms t′1, · · · , t′n iff for any t′i (i ∈
{1, · · · , n}) there exits tj (j ∈ {1, · · · , m}) such that t′i is an instance51 of tj .

51 The “instance” is defined formally in Definition 1.
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• If the agent finishes to use the common equipment, remove its name from
the top of the queue.

– The protocol should start from the state where the queue is empty.

3 System Specification with OTS

OTS (Obervational Transition System) is a modeling scheme for transition sys-
tems (or state machines). A state of a transition system is identified as a col-
lection of typed values given by observers (or observation operations). A state
transition of the system is modeled as an action that defines the current state
and the next state relation.
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Fig. 1. Global view of QLOCK as an Observational Transition System

QLOCK is modeled in OTS as illustrated in Fig. 1.
For the generate&check methods, generations of finite state patterns that

can subsume all the infinite states is a key procedure, and a state is assumed
to be represented by an appropriate data structure (or configuration). Notice
that this is different from the original OTS modeling scheme where there is no
assumption on the structure of a state [13, 14].

3.1 LABEL and AID

For defining the state configuration of QLOCK, we first need the following two
CafeOBJ modules LABEL and AID.2

-- three labels for indicating the status of each agent
mod! LABEL {

2 ANNEX contains the complete CafeOBJ specification and proof score for QLOCK
explained in this paper.
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-- label literals and labels
[LabelLt < Label]
-- rs: remainder section, the agent’s id is not in the queue yet
-- ws: waiting section, the agent’s id is in the queue
-- cs: critical section, the agent is using the common equipment
ops rs ws cs : -> LabelLt {constr} .
eq (L1:LabelLt = L2:LabelLt) = (L1 == L2) .
}
-- agent identifiers
mod* AID {[Aid]}

A line starts with -- is a comment line3. A keyword mod starts a module
with the following module name (LABEL or AID in this case) and module body.
A module body starts with { and ends with }. A character ! or * following the
keyword mod indicates that the module denote the unique initial (or standard)
model or all the models of the module respectively. Sort (or type) names are
declared between [ and ]. Symbol < indicates that sorts in the left hand side are
subsorts (i.e. subsets) of the sort in the right hand side. The keyword ops is
the plural form of op, and starts a declaration of operators (or function names)
of the same arity (i.e. sequence of argument sorts) and co-arity (i.e. value sort).
Arity and co-arity comes before and after ->. The juxtaposition of arity and
co-arity is called rank. ops and op end with “.” Here rs, ws, and cs are declared
to be operators with null arity and co-arity LabelLt. An operator with null arity
is called constant. Several operator attributes can be declared by putting
corresponding keywords between { and } after the co-arity. Attribute constr

means constructor and indicates that the constants (or operators with null
arity) rs, ws, and cs are constructors.

eq starts an equation declaration, and the left hand side and the right
hand side are declared befor and after “=”. An equation declaration should end
with “.”. The equation in the module LABEL is declaring that (L1:LabelLt =

L2:LabelLt) is equal to (L1 == L2). L1:LabelLt is an on-line variable declara-
tion, and the declared variable L1 of the sort LabelLt is effective until the end
of the equation. Literals generally mean names that literally identify the objects
the names denote. That is, different literals denote different objects. = 4 and
== are built-in binary predicate defined on any sort S, and have a rank “S S

Bool”, that is “LabelLt LabelLt Bool” in this case. Both of = and == return
true if two arguments are reduced to the same term by using all declared equa-
tions as left to right reduction (or rewriting) rules. But if the two reduced terms
t1 and t2 are different, == returns false, but = returns (t1 = t2). This implies
that for constants of sort LabelLt that do not have any other reduction rules, =

checks the literal equality of the name. That is, ((rs = rs) = true), ((rs = ws)

3 A line starts with **, -->, or **> is also a comment line.
4 Notice that the object level Boolean predicate and meta level CafeOBJ equality

operator that composes an equation are represented by the same symbol = but are
different; they are easly distinguished from context.
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= false), etc. The module AID just declares that any set can be the set of sort
Aid.

3.2 QUEUE

Parametrized generic queues are defined by the following module QUEUE.

-- queue (first in first out storage)
mod! QUEUE (X :: TRIV) {
-- elements and their queues, Elt comes from (X :: TRIV)
[Elt.X < Qu]
-- error elements and error queues
[Elt.X < Elt&Err] [Qu < Qu&Err]
-- empty queue
op empQ : -> Qu {constr} .
-- assoicative queue constructors with id: empQ
op (_&_) : Qu Qu -> Qu {constr assoc id: empQ} .
op (_&_) : Qu&Err Qu&Err -> Qu&Err {constr assoc id: empQ} .
-- equality _=_ over Qu&Err
eq (empQ = (E:Elt & Q:Qu&Err)) = false .
ceq ((E1:Elt & Q1:Qu&Err) = (E2:Elt & Q2:Qu&Err))

= ((E1 = E2) and (Q1 = Q2))
if not((Q1 = empQ) and (Q2 = empQ)) .

-- head
op hd_ : Qu&Err -> Elt&Err .
eq hd(E:Elt & Q:Qu&Err) = E .
-- hd(empQ) is not defined intentionally, an error handling method
-- tail
op tl_ : Qu&Err -> Qu&Err .
eq tl(E:Elt & Q:Qu&Err) = Q .
-- tl(empQ) is not defined intentionally, an error handling method
}

A parameter declaration (X :: TRIV) is placed after the module name QUEUE.
A built-in module TRIV is just a renaming of AID and defined as “mod* TRIV

{[Elt]}”. This implies that the parameter for QUEUE can be any set of objects.
ceq starts a declaration of a conditional equation, and declares a condition (i.e.
a Boolean term) after the keyword if.

3.3 OBS, SET, and STATE

A state of QLOCK is defined as a set of observers by the following three modules.

-- observers
mod! OBS {
pr(LABEL)
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pr(QUEUE(AID{sort Elt -> Aid}))
-- there are two kinds of obserbers
[Obs]
-- queue observer
op (qu:_ ) : Qu -> Obs {constr} .
-- agent observer
op (lb[_]:_) : Aid Label -> Obs {constr} .
}
-- generic set
mod! SET(X :: TRIV) {
[Elt.X < Set]
-- empty set
op empty : -> Set {constr} .
-- assicative and commutative set constructor with identity empty
op (_ _) : Set Set -> Set {constr assoc comm id: empty} .
-- (_ _) is idempotent
eq E:Elt E = E .
}
-- a state is defined as a set of observers
mod! STATE {pr(SET(OBS{sort Elt -> Obs})*{sort Set -> State})}

pr( ) indicates a protecting importation, and declares to import a module
without changing its model (or models). QUEUE(AID{sort Elt -> Aid}) defines
the module obtained by instantiating the parameter X of QUEUE by AID with the
renaming of Elt to Aid. QUEUE(AID{sort Elt -> Aid}) and SET(OBS{sort Elt ->

Obs}) denote sets of agent identifiers and sets of observers respectively. *{sort
Set -> State} after SET(OBS{sort Elt -> Obs}) defines the renaming of Set to
State.

3.4 WT, TY, EX, and QLOCKsys

The QLOCK protocol is defined by the following three modules. The transition
rule of the module TY indicates that if the top element of the queue is A:Aid

(i.e. (qu: (A:Aid & Q:Qu))) and the agent A is at ws (i.e. (lb[A:Aid]: ws)) then
A gets into cs (i.e. (lb[A]: cs)) without changing contents of the queue (i.e. (qu:
(A & Q))). The other two transition rules can be read similarly. Notice that the
module WT, TY, EX formulate the three actions explained in the Section 2 precisely
and succinctly. QLOCKsys is just combining the three modules.

-- wt: want transition
mod! WT {pr(STATE)
trans[wt]:

((qu: Q:Qu)(lb[A:Aid]: rs) S:State)
=> ((qu: (Q & A))(lb[A]: ws) S) .

}
-- ty: try transition
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mod! TY {pr(STATE)
trans[ty]:

((qu: (A:Aid & Q:Qu))(lb[A]: ws) S:State)
=> ((qu: (A & Q))(lb[A]: cs) S) .

}
-- ex: exit transition
mod! EX {pr(STATE)
trans[ex]:

((qu: (A1:Aid & Q:Qu))(lb[A2:Aid]: cs) S:State)
=> ((qu: Q)(lb[A2]: rs) S) .

}
-- system specification of QLOCK
mod! QLOCKsys{pr(WT + TY + EX)}

A declaration of a transition rule starts with trans, contains rule’s name
[ ]:, current term and next term before and after => respectively, and ends with
“.”. Notice that because a state configuration is a set (i.e. a term composed of
associative, commutative, and idempotent binary constructors ( )) the second
component of the left hand side (lb[A:Aid]: rs) of the rule wt can match any
agent in a state. This implies that the transition rule wt can define unbounded
number of transitions depending on the number of agents a state includes. The
same holds for the rules ty and ex.

4 Property Specification and Invariants

A majority of systems and problems in many fields can be modeled with transi-
tion systems and their invariants. An invariant of a transition system is defined
to be a predicate on states that holds for all reachable states. A state is defined
to be reachable if it can be reached from an initial state through transitions.

The following is a fairly established way for proving that a state predicate
(i.e. a predicate on states) pg (goal predicate) is an invariant (i.e. true for all
reachable states).

Find state predicates p1, · · · , pn (n ∈ {0, 1, · · · }) that satisfies the following
two conditions.
(t) Let init be a state predicate that specifies the initial states (i.e. init(si)

iff (si is an initial state)), and s be any state, then (init(s) implies
(pg and p1 and · · · and pn)(s)5) holds.

(v) Let t be any transition, and st and s′t be the current state and the next
state of t, then ((pg and p1 and · · · and pn)(st) implies (pg and p1 and
· · · and pn)(s′t)) holds.

Conditions (t) and (v) are called an initial state condition and an invariant
condition, and a state predicate like (pg and p1 and · · · and pn) that satisfies
these two conditions is called an inductive invariant.
5 (pg and p1 and · · · and pn)(s)

def
= (pg(s) and p1(s) and · · · and pn(s))
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It is easly seen that an inductive invariant is an invariant, hence if conditions
(t) and (v) are proved, (pg and p1 and · · · and pn) is an invariant, and all of pg,
p1, · · · , pn are invariants.

Notice that if pg itself is an inductive invariant then n = 0. However, p1,
p2, · · · , pn are almost always needed to be found for getting an inductive in-
variant, and to find them is an important and challenging part of the invariant
verification. Moreover, we think that to describe an inductive invariant as a con-
junction of independent and fundamental state predicates is a quite effective way
to formalize the dynamic behaviors of a system under investigation.

In this section, several state predicates for QLOCK are defined for specifying
initial states and an inductive invariant.

4.1 PNAT+ac and STATEfuns

The modules PNAT+ac and STATEfuns are used to define predicates on State in
the following sections.

-- Peano Style Natural Numbers with _+_
mod! PNAT+ac {
[Nat]
op 0 : -> Nat {constr} .
op s_ : Nat -> Nat {constr} .
-- equality over the natural numbers
eq (0 = s(Y:Nat)) = false .
eq (s(X:Nat) = s(Y:Nat)) = (X = Y) .
-- associative and commutative _+_
op _+_ : Nat Nat -> Nat {assoc comm}
eq 0 + Y:Nat = Y .
eq (s X:Nat) + Y:Nat = s(X + Y) .
}

Notice that associativity and commutativity of + is declared, but it can be
deduced from the two equations for + .

-- elementary functions on states
mod! STATEfuns {pr(PNAT+ac + STATE)
-- variable declarations
vars L1 L2 : Label . vars A1 A2 : Aid .
var S : State . var Q : Qu .
-- the number of queues in a state
op #q : State -> Nat .
...
-- the number of a label in a state
op #ls : State Label -> Nat .
...
-- the number of an aid in a state
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op #as : State Aid -> Nat .
...
-- the number of an aid in a queue
op #aq : Qu Aid -> Nat .
...
}

pr(PNAT+ac + STATE) is same as “pr(PNAT+ac) pr(STATE)”. “...” indicates
omission. A variable declaration starts with var, contains variable and its sort
before and after “:”, and ends with “.”. vars is plural of var and makes it
possible to declare many varialbes of same sort together.

4.2 PNAMEcj, STATEpred1, and INIT

The predicates needed to define well formed states and initial states are defined
using functions defined in PNAT+ac and STATEfuns. Notice that a state (i.e. a
ground6 term of sort State) is well formed if it contains (1) exactly one queue
observer, (2) at least one agent observer, and (3) for any agent id a1 of sort Aid

at most one agent observer of the form (lb[a1]: L:Label).

-- names of predicates on states and conjunction of the predicates
mod! PNAMEcj {pr(STATE)
-- names of predicates on States and sequences of them
[Pname < PnameSeq]
op (_ _) : PnameSeq PnameSeq -> PnameSeq {assoc} .
-- conjunction of predicates indicated in PnameSeq
op cj : PnameSeq State -> Bool .
eq cj(PN:Pname PNS:PnameSeq,S:State) = cj(PN,S) and cj(PNS,S) .
}
-- predicates on states for well formed states and intitial states
mod! STATEpred1 {pr(STATEfuns) ex(PNAMEcj)
-- one queue in a state
op 1q : -> Pname .
eq[1q]: cj(1q,S:State) = (#q(S) = (s 0)) .
-- no duplication of an Aid in a state
op 1a : -> Pname .
...
-- qas pattern, only the state with this pattern is well formed
pred qas : State .
eq qas((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State) = true .
op qas : -> Pname .
eq[qas]: cj(qas,S:State) = qas(S) .
-- well formed states
op wfs : -> Pname . eq wfs = qas 1q 1a .

6 a ground term is a term without variables.
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-- there is exactly one empty queue
op qe : -> Pname .
...
-- any Aid is in rs status, i.e. no ws, no cs
op allRs : -> Pname .
...
}
-- an initial state predicate
mod! INIT {pr(STATEpred1)
op init : -> PnameSeq . eq init = wfs qe allRs .
-- initial state predicate
pred init : State . eq init(S:State) = cj(init,S) .
}

ex( ) indicates an extending importation, and declares to import a module
without changing equality between already exit elements but introducing new
elements of already exist sorts.

Notice that because of the module PNAMEcj, the conjunction of predicates can
be defined by an equation like “eq init = wfs qe allRs .”.

4.3 STATEpred2 and INV

In the following two modules STATEpred2 and INV, an inductive invariant of
QLOCK is developed as a conjunction of six predicates wfs, mx, qep, rs, ws,
and cs. Notice that at this moment it is not known whether it is an induc-
tive invariant; section 5.2 gives a proof score for proving that it is an inductive
invariant.

Notice also that the development of an inductive invariant is inherently in-
teractive activity involving proof score constructions and specification modifi-
cations, and there is no generally effective way for it. However, we think that
describing state predicates (e.g. qep, rs, ws, cs) for characterising all cases that
are indicated by the state configurations (e.g. if queue is empty, if agent is

in rs, if agent is in ws, if agent is in cs) has a good chance to evolve into
an inductive invariant.

-- predicates on states for an inductive invariant predicate
mod! STATEpred2 {pr(STATEpred1)
-- variable declarations
var L : Label . var A : Aid .
var S : State . var Q : Qu .
-- mutual exclusion property: at most one agent is with cs
-- this is the goal predicate
op mx : -> Pname .
eq[mx]: cj(mx,S) = ((#ls(S,cs) = 0) or (#ls(S,cs) = (s 0))) .
-- several fragment predicates for an inductive invariant
ops qep rs ws cs : -> Pname .
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-- if queue is empty
eq[qep]: cj(qep,((qu: Q)(lb[A]: L) S))

= ((Q = empQ) implies
(#ls(((lb[A]: L) S),cs) = 0)) .

-- if agent is in rs
eq[rs]: cj(rs,((qu: Q)(lb[A]: L) S))

= ((L = rs) implies (#aq(Q,A) = 0)) .
-- if agent is in ws
eq[ws]: cj(ws,((qu: Q)(lb[A]: L) S))

= ((L = ws) implies
((#aq(Q,A) = (s 0)) and
((A = hd(Q)) implies (#ls(S,cs) = 0)))) .

-- if agent is in cs
eq[cs]: cj(cs,((qu: Q)(lb[A]: L) S))

= ((L = cs) implies ((A = hd(Q)) and
(#aq(tl(Q),A) = 0)and
(#ls(S,cs) = 0))) .

}
-- an inductive invariant predicate
mod! INV {pr(STATEpred2)
op inv : -> PnameSeq .
eq inv = wfs mx qep rs ws cs .
pred inv : State .
eq inv(S:State) = cj(inv,S) .
}
-- property specification of QLOCK
mod! QLOCKprop{pr(INIT + INV)}

5 Proof Scores for Generate&Check Methods

As explained in Section 4, proving (t) initial state condition and (v) invariant
condition is sufficient for proving that the goal predicate pg is an invariant. For
the QLOCK specification given in Sections 3 and 4, the goal predicate is mx and
the two conditions are given as follows.

(t) Let s be any state (i.e. ground state term or ground term of sort State),
then (init(s) implies inv(s)) holds.

(v) Let t be any transition defined by the trans rules wt, ty, ex, and cnt(t) and
nxt(t) be the current state and the next state of t, then (inv(cnt(t)) implies
inv(nxt(t)) holds.

5.1 Proof score for the initial state condition

If the reduction command in the following CafeOBJ code returns true, it means
that the initial state condition for QLOCK has been proved by using all equations
in the module QLOCKprop as rewriting rules from left to right.
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open QLOCKprop .
op s : -> State .
red init(s) implies inv(s) .
close

Notice that the fresh constant s acts as a variable in the reduction7. Unfor-
tunately, the reduction does not return true, and we need to do case analysis
about the state s.

The idea of the generate&check methods is as follows.

(g) Generate finite number of state terms (with or without variables) sp1, sp2,
· · · , spn that subsume all possible infinite states (i.e. ground state terms).

(c) Check that the state predicate to be proved holds for all the finite state
terms sp1, sp2, · · · , spn.

For QLOCK’s initial state condition, the state predicate to be proved is
(init-c(S:State) def= init(S) implies inv(S)). Because (init(s) = false) for
any ground state term s that is not an instance of the state term ((qu: Q:Qu)

(lb[A:Aid] L:Label) S:State) that subsume all the well formed ground state
terms, the following Method 3 proves the initial state condition.

For describing the Method 3 precisely we need formal definitions of instance
and cover. The definition of “instance” is established common one, but the def-
inition of “cover” is unique even though there are several similar definitions.

Let T (X) denote the set of terms with variables X. An assignment a : X →
T (X) assigns terms in T (X) to the variables X, and it can be naturally extended
to a : T (X) → T (X). For a term s ∈ T (X), a(s) represents the term obtained
by replacing each variable in s by the assigned term8.

Definition 1 [Instance] The term si∈T (X) is defined to be an instance of a
term s∈T (X) iff there exits an assignment a : X→T (X) such that si=a(s). ¤

Definition 2 [Cover] Let C and S be subsets of T (X). C is defined to cover
S iff for any ground instance sgi of any s ∈ S, there exits si ∈ C such that sgi
is an instance of si and si is an instance of s. ¤

Method 3 [Generate&Check-Init]9

(g) Generate state terms sp1, · · · , spn that cover the state term (the term ((qu:

Q:Qu)(lb[A:Aid]: L:Label) S:State) for QLOCK) that subsumes all the well
formed states (ground state terms)10.

(c) Check that init-c(spi) reduces to true for any i ∈ {1, · · · , n}. ¤
7 It is a well know fact called “theorem of constants”[8].
8 The definition here does not treat order-sorted signature explicitly and is rather

casual. More proper and formal definition can be found in [7].
9 Correctness of this method is proved in Proposition 6.

10 Notice that ((A covers B) and (B subsumes C)) implies (A subsumes C).
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By recognizing that the state predicate inv are defined using the predicates
like (Q = empQ), (A = hd(Q)), (L = rs), (L = ws), (L = cs) (Section 4.3), it is nat-
ural to try to generate the covering state terms based on the following case anal-
yses of the state term ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State). (1) whether Q
= empQ or Q = (b1 & q). (2) whether A = b1 or A = b2. (3) which of (L = rs), (L
= ws), or (L = cs) holds. Where b1, b2 are constant literals and q, s are constants
for representing arbitrary objects of specific sorts.

By representing the state term ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State)

as the sequence of arguments (Q:Qu,A:Aid,L:Label,S:State), the covering state
terms generated by the above case anayses can be defined as

[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s)]

that is expanded into the following 12 sequences of arguments. Notice that “;”
enumerate all possible options, and constant literals and constants are used
instead of variable literals and variables thanks to “theorem of conatants”.

[empQ,b1,rs,s] || [empQ,b1,ws,s] || [empQ,b1,cs,s] ||
[empQ,b2,rs,s] || [empQ,b2,ws,s] || [empQ,b2,cs,s] ||
[(b1 & q),b1,rs,s] || [(b1 & q),b1,ws,s] || [(b1 & q),b1,cs,s] ||
[(b1 & q),b2,rs,s] || [(b1 & q),b2,ws,s] || [(b1 & q),b2,cs,s]

Notice the followings. (1) the current fairly simple “expansion algorithm”
generate the second line, but the first line and second line need not be distin-
guished, and the second line is redundant. (2) the third line represents the cases
in which the top of the queue and the agent id is same, and the fourth line
represent the cases in which the two are different. (3) the generated state terms
(i.e. the sequences of arguments) covers the state term ((qu: Q:Qu)(lb[A:Aid]:

L:Label) S:State).
By defining

eq v(Q:Qu,A:Aid,L:Label,S:State)
= init((qu: Q)(lb[A]: L) S) implies inv((qu: Q)(lb[A]: L) S) .

and checking that v(Q,A,L,S) reduces to true for any of the generated 12 ar-
gument sequences (i.e. state terms), the proof of the initial state condition of
QLOCK is completed. The following is a proof score fragment for executing
the proof explained above. When executed, the last reduction command returns
“($):Ind” and shows that the predicate v(Q,A,L,S) reduces to true for all the
generated argument sequences.11

-- generate and check all possible cases for the initial state condition
mod! CKallCasesInit {ex(GENcases(QLOCKinit))
-- Aid constant literals
11 Readers are recommended to execute the CafeOBJ code in the ANNEX with the

CafeOBJ system (http://www.ldl.jaist.ac.jp/cafeobj/download.html) and check that
all reductions return expected results.
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[AidConLt < Aid]
eq (B1:AidConLt = B2:AidConLt) = (B1 == B2) .
ops b1 b2 : -> AidConLt .
-- arbitray constants
op q : -> Qu . op s : -> State .
-- function for generating and checking all possible
-- states of the pattern:
-- ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State)
op gen&ck : -> IndTr .
-- a term of sort IndTr for checking all possible cases
eq gen&ck = ($ | mmi[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s)]) .
pr(FACTtbu)
}
-- reduction for verification of initial state condition
red in CKallCasesInit : gen&ck .

Notice that (1) v(Q,A,L,S) is defined in QLOCKinit, (2) mmi is defined in
GENcases and generates the covering argument sequences (i.e. covering state
terms) by expanding options specified by ” ; ”, (3) v(Q,A,L,S) is checked to
reduce to true for all the cases by reducing gen&ck, (4) FACTtbu contains the
following 2 theorems (that can be proved easily) about basic data types Nat and
Qu that are needed for making the checks successful.

eq ((M:Nat + N:Nat) = 0) = ((M = 0) and (N = 0)) .
eq #aq(Q:Qu & A1:Aid,A2:Aid) = if (A1 = A2) then (s 0) + #aq(Q,A2) else #aq(Q,A2) fi .

5.2 Proof score for the invariant condition

The proof score for the invariant condition is almost same as for the initial state
condition except (1) all the infinite transitions should be subsumed instead of all
the infinite states (i.e. ground state terms) and (2) the predicate to be checked
for each generated case (i.e. covering term) is different.

In the generate&check methods, it is assumed that all transitions are defined
by trans rules. As a matter of fact, for guaranteeing the correctness of the proof
score, all the trans rules should be unconditional. We do not think this is a
serous limitation, for almost always needed conditions can be incorporated into
the right hand side of unconditional rules using built-in if then else fi operator.
Notice that all the QLOCK’s trans rules wt, ty, ex are unconditional.

Let lhs(r) denote the left hand side of a trans rule r. Because any transition
is defined by some trans rule, for any transition ti there exits some trans rule
ri such that cnt(ti) (the current state of ti) is an instance of lhs(ri). This fact
suggests the possibility of subsuming all the infinite transitions by covering the
set of left hand sides of all the finite trans rules.

Let us consider the following CafeOBJ code.

open (QLOCKprop + QLOCKsys) .
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op inv-c : State State -> Bool . vars S SS : State .
eq inv-c(S,SS) =

(not(S =(*,1)=>+ SS
suchThat (not((inv(S) implies inv(SS)) == true)))) .

op s : -> State .
red inv-c(s,SS) .
close

Let “op P : State State -> Bool .” be a predicate, then the CafeOBJ ’s
built-in search predicate:

BSP(S:State,SS:State)
def= (S =(*,1)=>+ SS suchThat P(S,SS))

behaves as follows if S is given, and let RESULT be a Boolean indicator initially
set to false. While {there is an untried pair of (trans rule r, matching m) such
that S is an instance of lhs(r)}12 do the following {do the one step transition
with (r, m), bind the obtained next state to SS, and if P(S,SS) reduces to true

then bind true to RESULT}. BSP(S,SS) reduces to true if RESULT is true and to
false otherwise.

Hence, if inv-c(s,SS) in the above CafeOBJ code reduces to true, it implies
that there is no transition t̂ from the state s such that (inv(cnt(t̂)) implies

inv(nxt(t̂))) does not reduces to true. In other words, any transitions from s

preserves the predicate inv, that is for any transition t from s (inv(cnt(t)) implies
inv(nxt(t))) reduces to true.

Based on above arguments, if we can check that inv-c(s,SS) reduces to true

for all the states (i.e. all the ground state terms), the invariant condition is
proved. As a matter of fact, because there is no transitions from the state that
is not an instance of the left hand side of any trans rule, we can only consider
the state that is an instance of the left hand side of some trans rule.

As a result, the following Method 4 proves the invariant condition.

Method 4 [Generate&Check-Inv]13

(g) Generate state terms sp1, · · · , spn that cover the set of left hand sides of all
the trans rules (i.e. {wt, ty, ex} for QLOCK).

(c) Check that inv-c(spi,SS:State) reduces to true for any i ∈ {1, · · · , n}. ¤

The left hand sides of the three trans rules wt, ty, ex are

((qu: Q:Qu)(lb[A:Aid]: rs) S:State),
((qu: (A:Aid & Q:Qu))(lb[A]: ws) S:State),
((qu: (A1:Aid & Q:Qu))(lb[A2:Aid]: cs) S:State)

and these three state terms can be represented by the three argument sequences

12 Notice that a single trans rule defines two or more transitions from a state with
different matchings. Notice also that a matching determines an assignment.

13 Correctness of this method is proved in Proposition 7.



16 Kokichi Futatsugi

(Q:Qu,A:Aid,rs,S:State),
((A:Aid & Q:Qu),A,ws,S:State),
((A1:Aid & Q:Qu),A2:Aid,cs,S:State)

For checking instances of these argument sequences, inv-c(s,SS) is specified
as follows in the module QLOCKinv.

eq v(Q:Qu,A:Aid,L:Label,S:State,SS:State) =
(not(((qu: Q) (lb[A]: L) S) =(*,1)=>+ SS suchThat

(not((inv((qu: Q)(lb[A]: L) S) implies inv(SS)) == true)))) .

It is seen that
{ [(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s),(SS)] }

covers

{ [(empQ;(b1 & q)),(b1;b2),(rs),(s),(SS)],
[(b1 & q),(b1),(ws),(s),(SS)],
[(b1 & q),(b1;b2),(cs),(s),(SS)] }

and this in turn covers

{ (Q:Qu,A:Aid,rs,S:State),
((A:Aid & Q:Qu),A,ws,S:State),
((A1:Aid & Q:Qu),A2:Aid,cs,S:State) }.

Since covers is a transitive relation (i.e. ((sa covers sb) and (sb covers sc))
implies (sa covers sc)), the above implies that the first covers the third. Notice
that constant literals and constants are used for variable literals and variables
depending on the contexts.

By the above arguments the following main module of the proof score for
the invariant condition is obtained, and the reduction in the last line returns
“($):Ind” as expected. Hence, the invariant condition is proved.

-- a module to generate and check all possible transitions
mod! CKallCasesInv {ex(GENcases(QLOCKinv))
-- Aid constant literals
[AidConLt < Aid]
eq (B1:AidConLt = B2:AidConLt) = (B1 == B2) .
ops b1 b2 : -> AidConLt .
-- constants declarations
op q : -> Qu . op s : -> State .
-- function for generating and checking all possible
-- transitions defined by the module WT, TY, EX
op gen&ck : State -> IndTr .
var SS : State .
eq gen&ck(SS) =

($ | mmi[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s),(SS)]) .
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pr(FACTtbu)
}
-- reduction for verification of invariant condition
red in CKallCasesInv : gen&ck(SS) .

5.3 Correctness of the generate&check methods

This section proves correctness of the the generate&check methods described in
Sections 5.1 and 5.2.

For ss, st ∈ T (X), let (ss
∗→st) denote that there exits a rewriting sequence of

length n ≥ 0 from ss to st by using all the equations available as rewriting rules
from left to right. Let also (ss→st) denote that there exits a one step rewriting.

The following lemma shows a most important property of the cover sets.

Lemma 5 [Cover Lemma] Let C,S ⊆ T (X), C
def= {c1, c2, · · · , cm}, S

def=
{s1, s2, · · · , sn}, and p be a predicate. If (C covers S) and (p(ci)

∗→ true) for all
i ∈ {1, 2, · · · ,m}, then for any j ∈ {1, 2, · · · , n}, for any ground instance sgij of
sj , (p(sgij)

∗→ true).
(proof) Because (C covers S), there exits ck ∈ C and an assignment (a : X →
T (X)) such that sgij = a(ck). For any two terms u, u′ ∈ T (X), (u→u′) implies
(a(u)→a(u′)). Therefore, the assumed rewriting sequence (p(ck) ∗→ true) can be
executed literally on sgij and we get (p(sgij)

∗→ true). ¤

Proposition 6 [Generate&Check-Init] If the (g) and (c) of the Method 3
are achieved successively, then init-c(s) holds for any state (ground state term)
s.
(proof) If a state si is not an instance of ((qu: Q:Qu)(lb[A:Aid]: L:Label)

S:State), init(si) does not holds by definition, hence init-c(si) holds. If a state
sw is an instance of ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State), then by (g),
(c), Lemma 5, and the fact ((init-c(spi) reduces to true) implies (init-c(spi)
∗→ true)), we get (init-c(sw) ∗→ true)). Hence init-c(sw) holds. ¤

Proposition 7 [Generate&Check-Inv] If the (g) and (c) of the Method 4
are achieved successively, then (inv(cnt(t)) implies inv(nxt(t))) holds for any
transition t.
(proof) Since it is assumed that all transitions are defined by unconditional
trans rules, cnt(t) should be an instance of the left hand sides of some trans rule
for any transition t. Therefore, we can check all the transitions by checking all
the states (i.e. ground state terms) that are instances of the left hand sides of
the trans rules. Let (s

rk,ak⇒ s′) denote that there is a transition from a state term
s to a state term s′ with a trans rule rk and an assignment ak. Let rgi be any
ground state term that is an instance of the left hand side of some trans rule.
Any transition from the state rgi can be represented as (rgi

r,a1⇒ rgi′) for some
trans rule r, some assignment a1, and some ground state term rgi′. Notice that
rgi = a1(lhs(r)).
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Because of (g) there exit spj (j ∈ {1, 2, · · · , n}) and two assignments a2 and
a3 such that (rgi = a2(spj)) and (spj = a3(lhs(r))). Since (spj = a3(lhs(r)))
and r is unconditional, we get (spj

r,a3⇒ sp′j) for some state term sp′j , such that
(rgi = a2(spj) = a2(a3(lhs(r))) = a1(lhs(r))) (i.e. a1( ) = a2(a3( ))) and (rgi′

= a2(sp′j)). Hence, if (rgi
r,a⇒ rgi′) then (sph

r,â⇒ sp′h) for some h ∈ {1, 2, · · · , n}
and some assignment â. Moreover, (inv-c(sph,SS:State) ∗→ true) because of (c),
there exits an assignment ã such that ((rgi = ã(sph)) and (rgi′ = ã(sp′h))),
and for any two terms u, u′ ((u→u′) implies (ã(u)→ã(u′))). Therefore, we get
(inv-c(rgi,SS:State) ∗→true), and (inv(cnt(t)) implies inv(nxt(t))) holds for any
transition t from rgi. ¤

Notice that the condition “si ∈ C is an instance of s ∈ S” in Definition 2 is
necessary in Proposition 7, but not in Lemma 5 and Proposition 6.

6 Conclusions

The proposed generate&check methods for invariant verification of transition
systems are summarized as follows.

1. Model and specify a problem/system with OTS (observational transition
system) in which states are represented as sets of observers and transitions
are specified with unconditional trans rules.

2. (g) Generate state terms sp1, sp2, · · · , spm that subsume all the well formed
ground state terms such that (c) init-c(spi) reduces to true for any i ∈
{1, 2, · · · , m}.

3. (g) Generate state terms sp1, sp2, · · · , spn that cover the set of left hand
sides of all the trans rules such that (c) inv-c(spi,SS:State) reduces to true

for any i ∈ {1, 2, · · · , n}.

We have shown that the methods proposed are nicely coded and executed in
the CafeOBJ language/system using the QLOCK example. However, the meth-
ods and theory presented are not specific to QLOCK, but are general enough to
be applied to any specification that satisfies stated assumptions.

There are quite a few researches on search techniques in model checking [3,
9]. It is interesting to observe that what we have done in Method 4 is a search in
state space across all one step transitions, whereas the search for model checking
is along time axis (i.e. transition sequences) as shown in Figure 2.

This paper only shows CafeOBJ specification and proof score for the rather
small QLOCK example. We have, however, already checked that the methods
proposed are effective for more larger example like ABP (Alternating Bit Pro-
tocol [14]). As a matter of fact, “generate&check” methods should be more
important for large problems, for it is difficult to do case analyses manually for
them. Once state configurations are properly designed, large number of cases
(i.e. elements of cover set) are generated and checked easily, and it is an impor-
tant future issue to construct proof scores for important problems/systems of
significant sizes and do experiments for learning efficient way to obtain a cover
set that has high possibility of being checked successfully.
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ANNEX

** ===============================================================
** ======= Specification and Proof Score for QLOCK ===============
** ===============================================================

** ===============================================================
** ================ System Specification =========================
** ===============================================================

-- three labels for indicating status of each agent
mod! LABEL {
-- label literals and labels
[LabelLt < Label]
-- rs: remainder section
-- ws: waiting section
-- cs: critical section
ops rs ws cs : -> LabelLt {constr} .
eq (L1:LabelLt = L2:LabelLt) = (L1 == L2) .
}

-- agent identifiers
mod* AID {[Aid]}

-- ===============================================================
-- queue (first in first out storage)
mod! QUEUE (X :: TRIV) {
-- elements and their queues, Elt comes from (X :: TRIV)
[Elt.X < Qu]
-- error elements and error queues
[Elt.X < Elt&Err] [Qu < Qu&Err]
-- empty queue
op empQ : -> Qu {constr} .
-- assoicative queue constructors with id: empQ
op (_&_) : Qu Qu -> Qu {constr assoc id: empQ} .
op (_&_) : Qu&Err Qu&Err -> Qu&Err {constr assoc id: empQ} .
-- equality _=_ over Qu&Err
eq (empQ = (E:Elt & Q:Qu&Err)) = false .
ceq ((E1:Elt & Q1:Qu&Err) = (E2:Elt & Q2:Qu&Err))

= ((E1 = E2) and (Q1 = Q2))
if not((Q1 = empQ) and (Q2 = empQ)) .

-- head
op hd_ : Qu&Err -> Elt&Err .
eq hd(E:Elt & Q:Qu&Err) = E .
-- hd(empQ) is not defined intentionally, an error handling method
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-- tail
op tl_ : Qu&Err -> Qu&Err .
eq tl(E:Elt & Q:Qu&Err) = Q .
-- tl(empQ) is not defined intentionally, an error handling method
}

-- ===============================================================
-- observers
mod! OBS {
pr(LABEL)
pr(QUEUE(AID{sort Elt -> Aid}))
-- there are two kinds of obserbers
[Obs]
op (qu:_ ) : Qu -> Obs {constr} .
op (lb[_]:_) : Aid Label -> Obs {constr} .
}

-- generic set
mod! SET(X :: TRIV) {
[Elt.X < Set]
-- empty set
op empty : -> Set {constr} .
-- assicative and commutative set constructor with identity empty
op (_ _) : Set Set -> Set {constr assoc comm id: empty} .
-- (_ _) is idempotent
eq E:Elt E = E .
}

-- a state is defined as a set of observers
mod! STATE {pr(SET(OBS{sort Elt -> Obs})*{sort Set -> State})}

-- ===============================================================
-- wt: want transition
mod! WT {pr(STATE)
trans[wt]:

((qu: Q:Qu)(lb[A:Aid]: rs) S:State)
=> ((qu: (Q & A))(lb[A]: ws) S) .

}
-- ty: try transition
mod! TY {pr(STATE)
trans[ty]:

((qu: (A:Aid & Q:Qu))(lb[A]: ws) S:State)
=> ((qu: (A & Q))(lb[A]: cs) S) .

}
-- ex: exit transition
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mod! EX {pr(STATE)
trans[ex]:

((qu: (A1:Aid & Q:Qu))(lb[A2:Aid]: cs) S:State)
=> ((qu: Q)(lb[A2]: rs) S) .

}

-- ===============================================================
-- system specification of QLOCK
mod! QLOCKsys{pr(WT + TY + EX)}

** ===============================================================
** ================ Property Specification =======================
** ===============================================================

-- ===============================================================
-- for defining state predicates

-- Peano Style Natural Numbers with ac-_+_
mod! PNAT+ac {

[Nat]
op 0 : -> Nat {constr} .
op s_ : Nat -> Nat {constr} .
-- equality over the natural numbers
eq (0 = s(Y:Nat)) = false .
eq (s(X:Nat) = s(Y:Nat)) = (X = Y) .
-- associative and commutative _+_
op _+_ : Nat Nat -> Nat {assoc comm}
eq 0 + Y:Nat = Y .
eq (s X:Nat) + Y:Nat = s(X + Y) .

}

-- elementary functions on states
mod! STATEfuns {pr(PNAT+ac + STATE)
-- variable declarations
vars L1 L2 : Label . vars A1 A2 : Aid .
var S : State . var Q : Qu .
-- the number of queues in a state
op #q : State -> Nat .
eq #q(empty) = 0 .
eq #q((qu: Q) S) = (s 0) + #q(S) .
eq #q((lb[A1]: L1) S) = #q(S) .
-- the number of a label in a state
op #ls : State Label -> Nat .
eq #ls(empty,L1) = 0 .
eq #ls(((qu: Q) S),L1) = #ls(S,L1) .
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eq #ls(((lb[A1]: L1) S),L2) =
if (L1 = L2) then (s 0) + #ls(S,L2)
else #ls(S,L2) fi .

-- the number of an aid in a state
op #as : State Aid -> Nat .
eq #as(empty,A1) = 0 .
eq #as((qu: Q) S,A1) = #as(S,A1) .
eq #as(((lb[A1]: L1) S),A2) =

if (A1 = A2) then (s 0) + #as(S,A2)
else #as(S,A2) fi .

-- the number of an aid in a queue
op #aq : Qu Aid -> Nat .
eq #aq(empQ,A1) = 0 .
eq #aq(A1 & Q,A2) =

if (A1 = A2) then (s 0) + #aq(Q,A2)
else #aq(Q,A2) fi .

}

-- names of predicates on states and conjunction of the predicates
mod! PNAMEcj {pr(STATE)
-- names of predicates on States and sequences of them
[Pname < PnameSeq]
op (_ _) : PnameSeq PnameSeq -> PnameSeq {assoc} .
-- conjunction of predicates indicated in PnameSeq
op cj : PnameSeq State -> Bool .
eq cj(PN:Pname PNS:PnameSeq,S:State)

= cj(PN,S) and cj(PNS,S) .
}

-- ===============================================================
-- predicates on states for well formed states and intitial states
mod! STATEpred1 {pr(STATEfuns)ex(PNAMEcj)
-- one queue in a state
op 1q : -> Pname .
eq[1q]: cj(1q,S:State) = (#q(S) = (s 0)) .
-- no duplication of an Aid in a state
op 1a : -> Pname .
eq[1a]: cj(1a,empty) = true .
eq[1a]: cj(1a,((lb[A:Aid]: L:Label) S:State)) =

(#as(S,A) = 0) and cj(1a,S) .
eq[1a]: cj(1a,((qu: Q:Qu) S:State)) = cj(1a,S) .
-- qas pattern, only the state with this pattern is well formed
pred qas : State .
eq qas((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State) = true .
op qas : -> Pname .
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eq[qas]: cj(qas,S:State) = qas(S) .
-- well formed states
op wfs : -> Pname .
eq wfs = qas 1q 1a .
-- there is exactly one empty queue
op qe : -> Pname .
eq[qe]: cj(qe,empty) = false .
eq[qe]: cj(qe,((lb[A:Aid]: L:Label) S:State))

= cj(qe,S) .
eq[qe]: cj(qe,((qu: Q:Qu) S:State))

= (Q = empQ) and (#q(S) = 0) .
-- any Aid is in rs status, i.e. no ws, no cs
op allRs : -> Pname .
eq[allRs]: cj(allRs,S:State) = (#ls(S,ws)= 0) and (#ls(S,cs)= 0) .
}

-- ===============================================================
-- an initial state predicate
mod! INIT {pr(STATEpred1)
op init : -> PnameSeq .
eq init = wfs qe allRs .
-- initial state predicate
pred init : State .
eq init(S:State) = cj(init,S) .
}

-- ===============================================================
-- predicates on states for an inductive invariant predicate
mod! STATEpred2 {pr(STATEpred1)
-- variable declarations
var L : Label . var A : Aid .
var S : State . var Q : Qu .
-- mutual exclusion property: at most one agent is with cs
-- this is the goal predicate
op mx : -> Pname .
eq[mx]: cj(mx,S) = ((#ls(S,cs) = 0) or (#ls(S,cs) = (s 0))) .
-- several fragment predicates for an inductive invariant
ops qep rs ws cs : -> Pname .
-- if queue is empty
eq[qep]: cj(qep,((qu: Q)(lb[A]: L) S))

= ((Q = empQ) implies
(#ls(((lb[A]: L) S),cs) = 0)) .

-- if agent is in rs
eq[rs]: cj(rs,((qu: Q)(lb[A]: L) S))

= ((L = rs) implies (#aq(Q,A) = 0)) .
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-- if agent is in ws
eq[ws]: cj(ws,((qu: Q)(lb[A]: L) S))

= ((L = ws) implies
((#aq(Q,A) = (s 0)) and
((A = hd(Q)) implies (#ls(S,cs) = 0)))) .

-- if agent is in cs
eq[cs]: cj(cs,((qu: Q)(lb[A]: L) S))

= ((L = cs) implies ((A = hd(Q)) and
(#aq(tl(Q),A) = 0)and
(#ls(S,cs) = 0))) .

}

-- ===============================================================
-- an inductive invariant predicate
mod! INV {pr(STATEpred2)
op inv : -> PnameSeq .
eq inv = wfs mx qep rs ws cs .
pred inv : State .
eq inv(S:State) = cj(inv,S) .
}

-- ===============================================================
-- property specification of QLOCK
mod! QLOCKprop{pr(INIT + INV)}

** ===============================================================
** ================ Proof Score ==================================
** ===============================================================

-- the following two modules describe the algorithm
-- for generating a finite set of patterns that cover
-- all possbile cases
-- by expanding alternatives indicated by (_;_)

-- predicate v that is to be checked
-- and indicator information constructor ii
mod* PREDtbC {
-- values and their sequences
[Val < ValSq]
op _,_ : ValSq ValSq -> ValSq {assoc} .
-- predicate to be checed
pred v_ : ValSq .
-- indicator information for analysis
[IndInfo]
op ii_ : ValSq -> IndInfo {constr} .
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** v_ and ii_ shoud have a same arity
** as a sequence of ’Val’s
}

-- generating a finit set of patterns
-- that cover all possible combinations
-- of values in a value sequence
mod! GENcases (X :: PREDtbC) {
-- sequences of values indicating
-- all possible alternatives
[Val < VlSq]
op _;_ : VlSq VlSq -> VlSq {assoc} .
-- sequence of ValSeq or VlSeq
[ValSq VlSq < SqSq]
op _,_ : SqSq SqSq -> SqSq {assoc} .
-- SqSq enclosures and their trees
[SqSqEn < SqSqTr]
op [_] : SqSq -> SqSqEn .
op _||_ : SqSqTr SqSqTr -> SqSqTr .

-- expanding alternatives indicated by (_;_)
-- into (_||_) as much as possible
var V : Val .
var VS : VlSq .
vars SS1 SS2 : SqSq .
eq [((V;VS),SS2)] = [(V,SS2)] || [(VS,SS2)] .
eq [(SS1,(V;VS),SS2)]

= [(SS1,V,SS2)] || [(SS1,VS,SS2)] .
eq [(SS1,(V;VS))] = [(SS1,V)] || [(SS1,VS)] .

-- indicators and their trees
[Ind < IndTr]
op $ : -> Ind .
op _|_ : IndTr IndTr -> IndTr .
-- indicator constructor;
-- [IndInfo] comes from (X :: PREDtbC)
op i : Bool IndInfo -> Ind {constr} .
-- make indicator (mi) using
-- (v_ : ValSq -> Bool) and
-- (ii_ : ValSq -> IndInfo)
-- that come from (X :: PREDtbC)
op mi_ : ValSq -> Ind .
eq mi(VSQ:ValSq) = i(v(VSQ),ii(VSQ)) .

-- make make indicators (mmi):
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-- translating a tree of SqSq (SqSqTr)
-- into a tree of indicators
op mmi_ : SqSqTr -> IndTr .
eq mmi(SST1:SqSqTr || SST2:SqSqTr)

= (mmi SST1) | (mmi SST2) .
-- if all _;_ in SqSq disappear
-- then translate mmi to mi
eq mmi[VSQ:ValSq] = mi(VSQ) .

-- making all indicators with "true" disappear
eq i(true,II:IndInfo) | IT:IndTr = IT .
eq IT:IndTr | i(true,II:IndInfo) = IT .
}

-- ===============================================================
-- facts to be used
mod! FACTtbu {
pr(QLOCKprop)
-- necessary fact about _=_ on Nat
eq ((M:Nat + N:Nat) = 0) = ((M = 0) and (N = 0)) .

-- necessary fact about #aq
eq #aq(Q:Qu & A1:Aid,A2:Aid) = if (A1 = A2) then (s 0) + #aq(Q,A2)

else #aq(Q,A2) fi .
}

--> ==============================================================
--> Verification of the Initial State Condition:
--> (for-all S:State)(init(S) implies inv(S))
--> ==============================================================
--> [0] cj(qas,s) = false .
open (INIT + QLOCKprop) .
op s : -> State .
eq cj(qas,s) = false .
red init(s) implies inv(s) .
close

--> [1] cj(qas,s) = true .
-- in this case, we can only consider a state
-- that is an instance of the pattern:
-- ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State)
--
-- define v_ and ii_ for checking
-- the initial state condition
mod! QLOCKinit {pr(INIT + QLOCKprop)
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[Qu Aid Label State < Val < ValSq]
op _,_ : ValSq ValSq -> ValSq {assoc} .
-- predicate to be checked
op v_ : ValSq -> Bool .
eq v(Q:Qu,A:Aid,L:Label,S:State)

= init((qu: Q)(lb[A]: L) S)
implies inv((qu: Q)(lb[A]: L) S) .

[IndInfo]
op ii_ : ValSq -> IndInfo {constr} .
}
-- generate and check all possible cases
-- for the initial state condition
mod! CKallCasesInit {ex(GENcases(QLOCKinit))
-- Aid constant literals
[AidConLt < Aid]
eq (B1:AidConLt = B2:AidConLt) = (B1 == B2) .
ops b1 b2 : -> AidConLt .
-- arbitray constants
op q : -> Qu . op s : -> State .
-- function for generating and checking all possible
-- states of the pattern:
-- ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State)
op gen&ck : -> IndTr .
-- a term of sort IndTr for checking all possible cases
eq gen&ck = ($ | mmi[(empQ;(b1 & q)),

(b1;b2),
(rs;ws;cs),
(s)]) .

pr(FACTtbu)
}
-- reduction for verification of initial state condition
red in CKallCasesInit : gen&ck .

"{start of comment
-- ===============================================================
[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s)]

=is expanded to=>

[empQ,b1,rs,s] ||
[empQ,b1,ws,s] ||
[empQ,b1,cs,s] ||
[empQ,b2,rs,s] || -- redundant
[empQ,b2,ws,s] || -- redundant
[empQ,b2,cs,s] || -- redundant
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[(b1 & q),b1,rs,s] ||
[(b1 & q),b1,ws,s] ||
[(b1 & q),b1,cs,s] ||
[(b1 & q),b2,rs,s] ||
[(b1 & q),b2,ws,s] ||
[(b1 & q),b2,cs,s]

-- ===============================================================
Hence,

{[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s)]}

covers

{((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State)}

-- ===============================================================
end of comment}"

--> ==============================================================
--> Verification of the Invariant Condition:
--> (for-all (S->S’):State->State(One-Step-Transition))
--> (inv(S) implies inv(S’))
--> ==============================================================

--> [0] cj(qas,s) = false .
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- If ’cj(qas,s) = false’ for any state ’s’, there is no
-- chance for the state ’s’ to match any of the three
-- transition rules wt, ty, or ex. Hence, no transition
-- happens from the state ’s’ with ’cj(qas,s) = false’,
-- and no need to consider this case.
-- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

--> [1] cj(qas,s) = true .
-- in this case, we can only consider a state
-- that is an instance of the pattern:
-- ((qu: Q:Qu)(lb[A:Aid]: L:Label) S:State)
--
-- define v_ and ii_: this module is an actual parameter
-- for the GENcases module
mod! QLOCKinv {pr(QLOCKsys + QLOCKprop)
-- val and ValSeq
[Qu Aid Label State < Val < ValSq]
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op _,_ : ValSq ValSq -> ValSq {assoc} .
-- predicate to be checked
op v_ : ValSq -> Bool .
eq v(Q:Qu,A:Aid,L:Label,S:State,SS:State) =

(not(((qu: Q) (lb[A]: L) S) =(*,1)=>+ SS
suchThat
(not((inv((qu: Q)(lb[A]: L) S) implies inv(SS))

== true)))) .
[IndInfo]
op ii_ : ValSq -> IndInfo {constr} .
}
-- a module to generate and check all possible transitions
mod! CKallCasesInv {ex(GENcases(QLOCKinv))
-- Aid constant literals
[AidConLt < Aid]
eq (B1:AidConLt = B2:AidConLt) = (B1 == B2) .
ops b1 b2 : -> AidConLt .
-- constants declarations
op q : -> Qu . op s : -> State .
--
-- function for generating and checking all possible
-- transitions defined by the module WT, TY, EX
op gen&ck : State -> IndTr .
-- variables to be bound by the built-in predicate:
-- (_=(*,1)=>+_suchThat_)
var SS : State .
eq gen&ck(SS) =

($ | mmi[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s),(SS)]) .
pr(FACTtbu)
}
-- reduction for verification of invariant condition
red in CKallCasesInv : gen&ck(SS) .

"{{start of comment
-- ===============================================================
{[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s),(SS)]}

covers

{[(empQ;(b1 & q)),(b1;b2),(rs),(s),(SS)],
[(b1 & q),(b1),(ws),(s),(SS)],
[(b1 & q),(b1;b2),(cs),(s),(SS)]}

-- ===============================================================
{[(empQ;(b1 & q)),(b1;b2),(rs),(s)(SS)]}
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covers

{(((qu: empQ) (lb[A:Aid]: rs) S:State),(SS))
(((qu: (A:Aid & Q:Qu)) (lb[A:Aid]: rs) S:State),(SS))}

covers

{WT:(((qu: Q:Qu) (lb[A:Aid]: rs) S:State),(SS))}

-- ===============================================================
{[(b1 & q),(b1),(ws),(s),(SS)]}

covers

{TY:(((qu: (A:Aid & Q:Qu)) (lb[A]: ws) S:State),(SS))}

-- ===============================================================
{[(b1 & q),(b1;b2),(cs),(s),(SS)]}

covers

{EX:(((qu: (A1:Aid & Q:Qu)) (lb[A2:Aid]: cs) S:State),(SS))}

-- ===============================================================
Hence,

{[(empQ;(b1 & q)),(b1;b2),(rs;ws;cs),(s),(SS)]}

covers

{WT:(((qu: Q:Qu) (lb[A:Aid]: rs) S:State),(SS)),
TY:(((qu: (A:Aid & Q:Qu)) (lb[A]: ws) S:State),(SS)),
EX:(((qu: (A1:Aid & Q:Qu)) (lb[A2:Aid]: cs) S:State),(SS))}

-- ===============================================================
end of comment}}"

eof


