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Abstract

This paper deals with multi-criteria decision making (MCDM) problems with multiple priorities, in which priority weights associated
with the lower priority criteria are related to the satisfactions of the higher priority criteria. To do so, we first propose a prioritized
weighted aggregation operator based on ordered weighted averaging (OWA) operator and triangular norms (t-norms). In order
to preserve the tradeoffs among the criteria in the same priority level, we suggest that the satisfaction degree regarding each
priority level is viewed as a pseudo criterion. On the other hand, t-norms are used to model the priority relationships between
the criteria in different priority levels. In particular, we show that strict Archimedean t-norms perform better in inducing priority
weights. As Hamacher family of t-norms provides a wide class of strict Archimedean t-norms ranging from the product to weakest
t-norm, Hamacher parameterized t-norms are used to induce the priority weight for each priority level. Furthermore, considering
decision maker (DM)’s requirement toward higher priority levels, a benchmark based approach is proposed to induce priority weight
for each priority level. In particular,  Lukasiewicz implication is used to compute benchmark achievement for crisp requirements;
target-oriented decision analysis is utilized to obtain the benchmark achievement for fuzzy requirements. Finally, some numerical
examples are used to illustrate the proposed prioritized aggregation technique as well as to compare with previous researches.

Key words: Multi-criteria decision making (MCDM), Prioritized aggregation, Ordered weighted averaging (OWA), Triangular
norms (T-norms), Benchmark.

1. Introduction

Multi-criteria decision making (MCDM) problems are
encountered under various situations where a number of
alternatives and actions or candidates need to be chosen
based on a set of criteria or attributes [22]. In MCDM prob-
lems, the final solution must be obtained from a synthesis of
degree of satisfactions for all criteria, per decision alterna-
tive [20]. Central to these problems is the task of aggrega-
tion operations [7]. In general, the type of aggregation used
should reflect the decision maker (DM)’s imperative and
behavior of individual choice [22,38]. Consideration of dif-
ferent relative importances of different criteria is important
as some criteria are more important than others. In this
case, the DM associates different importance weights with
different criteria [7,19,22,24,28,32,34]. There are several ap-
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huynh@jaist.ac.jp (Van-Nam Huynh), nakamori@jaist.ac.jp
(Yoshiteru Nakamori), murahiko@main.ist.hokudai.ac.jp
(Tetsuya Murai).

proaches to incorporating and/or assigning weights to dif-
ferent criteria. Typical is some form of weighted arithmetic
mean, such as quasi-arithmetic means, weighted arithmetic
means, weighted quasi-arithmetic means [7]. These aggre-
gation operations work well in situations in which any dif-
ferences are viewed as being in conflict because the opera-
tor reflects a form of compromise behavior among the var-
ious criteria [22,29]. In general, the importance informa-
tion associated with different criteria plays a fundamental
role in the comparison between alternatives by overseeing
tradeoffs between respective satisfactions of different crite-
ria [38,39].

A concept closely related to the importance of criteria is
the priority of criteria [11,38]. In practical decision making
situations, it is usual for DM(s) to consider different prior-
ities of criteria in MCDM. A typical example is in the case
of buying a car based upon the criteria of safety and cost.
In this case, usually we may not allow compensation be-
tween cost and safety. Simply speaking, by saying criterion
safety has a higher priority than criterion cost, it indicates
that we are not willing to tradeoff satisfaction of criterion
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cost until perhaps we attain some level of satisfaction of
safety [35,38,39]. This kind of MCDM in which a prioriti-
zation of criteria exists, so-called prioritized MCDM, will
be studied in this paper.

Many studies have attempted to include different pri-
orities of criteria into MCDM problems in the literature.
Generally speaking, approaches to prioritized MCDM can
be classified into two categories according to our knowl-
edge. Approaches belonging to the first class aim to use
non-monotonic intersection operator [15,33] and triangu-
lar norms (t-norms) to model the priority relationships
among criteria. For example, Yager [35] uses the weighted
conjunction of fuzzy sets and fuzzy modeling to develop
the operators in fuzzy information structures. Chen and
Chen [9] extend the non-monotonic intersection operator
to present a prioritized multi-criteria fuzzy decision mak-
ing problems based on the similarity measure of general-
ized fuzzy numbers. Luo et al [23] give five methods to con-
struct the priority operators that are used for calculating
the global degree of satisfaction of a prioritized fuzzy con-
straint problem based on Dubois et al [12]. The second class
of approaches tend to use weighted aggregation operators
to model the prioritized MCDM. For example, Yager [38]
shows that the prioritization of criteria can be modeled by
using importance weights in which the weights associated
with the lower priority criteria are related to the satisfac-
tion of the higher priority criteria. Moreover, they provide
some models that allow for the formalization of these pri-
oritized MCDM problems using both the Bellman-Zadeh
paradigm [4] for MCDM and the ordered weighted aver-
aging (OWA) operator. To develop this concept further,
Yager [39] proposes a prioritized averaging/scoring aggre-
gation operator with a strict/weak priority order by means
of the product t-norm. Furthermore, taking DM’s require-
ments into account, Wang and Chen [10] suggest that the
weights of the lower priority criteria depend on whether

each alternative satisfies the requirements of all the higher
priority criteria or not.

In this study, we focus on the second class of priori-
tized MCDM, i.e., priority weighted MCDM [10,38,39]. Al-
though previous research has greatly advanced the prior-
ity weighted MCDM, there are still some limitations and
drawbacks in previous works. First of all, in prioritized
MCDM, we will have a prioritization of criteria. Criteria
in the same priority level should allow different tradeoffs.
However, as we shall see in Section 3, Yager’s method [38,39]
does not preserve this property. Furthermore, as suggested
by Yager [38,39], the product triangular norm is used to in-
duce the priority weight for each priority level. However, as
there are many types of t-norms available, can any t-norm
be used to induce the priority weight? If so, which type of t-
norms are better? Finally, DM(s) may have a requirement
toward the higher priority levels. The method of inclusion
of DM’s requirements into satisfaction function proposed
by Wang and Chen [10] will be too strict for DM to make
decision under prioritized environments. In addition, due
to the vagueness or impreciseness of knowledge, it is diffi-

cult for DMs to estimate their requirements with precision.
Motivated by the above observations, the objective of

this paper is to propose a prioritized aggregation opera-
tor to overcome the limitations and drawbacks of previous
works [10,38,39]. Toward this end, the OWA operator is first
be used to obtain the degree of satisfaction for each prior-
ity level. To preserve the tradeoffs among the criteria in the
same priority level, the degree of satisfaction for each prior-
ity level is viewed as a pseudo criterion. Second, we suggest
that roughly speaking any t-norm can be used to model
the priority relationships between the criteria in different
priority levels. To keep the slight change of priority weight,
strict Archimedean t-norms perform better in inducing pri-
ority weight. As Hamacher family of t-norms provide a wide
class of strict Archimedean t-norms ranging from the prod-
uct to weakest t-norm [26], Hamacher t-norms are selected
to induce the priority weight for each priority level. Finally,
considering DM’s requirement toward the higher priority
levels, a benchmark based approach is proposed to induce
priority weight for each priority level, i.e., “the satisfactions

of the higher priority criteria are larger than or equal to the

DM’s requirements”. We suggest that the weights of lower
priority level should depend on the benchmark achievement
of all the higher priority levels. In particular,  Lukasiewicz
implication is utilized to compute benchmark achievement
for crisp requirements. In case of fuzzy uncertain require-
ments, fuzzy target-oriented decision analysis is utilized to
obtain the benchmark achievement.

The rest of this paper is organized as follows. Sec. 2 in-
troduces some basic aspects of MCDM and t-norms. In
Sec. 3 we propose a prioritized weighted aggregation op-
erator based on OWA operator and t-norms, we also com-
pare our method with Yager’s prioritized aggregation op-
erator [38,39]. In Sec. 4, we propose a benchmark based ap-
proach to inducing the priority weight for each priority level
by taking DM’s requirement toward higher priority levels
in account. Considering the uncertainties of DM’s require-
ments, crisp and fuzzy uncertain benchmarks are studied.
Comparative analysis with [10] are also given to show the
effectiveness and advantages of our proposed approach. Fi-
nally, we provide some concluding remarks and future work
in Sec. 5.

2. Theoretical Background

2.1. Basic Concepts of Multi-criteria Decision Making

A MCDM problem consists of a set of alternatives
A = {A1, · · · , Am, · · · , AM} and a set of criteria C =
{C1, · · · , Cn, · · · , CN} to evaluate each alternative and
rank or select the best alternatives. In their pioneering
work on MCDM, Bellman and Zadeh [4] suggested that
each criterion Cn can be represented as a fuzzy subset
over the alternatives. In particular, if Cn is a criterion we
can represent this as a fuzzy subset Cn over Am such that
Cn(Am) is the degree to which this criterion is satisfied,
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where ∀Cn(Am) ∈ [0, 1]. By using this, an aggregation
function F is used to aggregate each Cn(Am) into an over-
all degree of satisfaction V (Am) with respect to the set of
criteria C such that

V (Am) = F (C1(Am), · · · , Cn(Am), · · · , CN (Am)) (1)

For denotational simplicity, from now on we shall denote
V (·) and Cn(·) to represent V (Am) and Cn(Am), respec-
tively.

The choice of the form for F models the DM’s desired
imperative and individual preference for combining the cri-
teria [22,38]. As suggested by Bellman and Zadeh, if the re-
lationship is that we desire all criteria be satisfied then we
can use V (·) = minn[Cn(·)]. If we need only one criterion
satisfied then we can model this as V (·) = maxn[Cn(·)].

Yager [32] introduced the ordered weighted averag-
ing (OWA) operator to provide a method for aggregating
multiple inputs that lie between the min and max oper-
ators. An OWA operator of dimension N is a mapping
F : RN → R that has an associated weighting N vector
W = (w1, · · · , wn, · · · , wN ) such that

OWA (C1(·), · · · , Cn(·), · · · , CN (·)) =
∑N

n=1
bn(·)wn

where wn ∈ [0, 1],
∑N

n=1wn = 1, for n = 1, 2, · · · , N, bn(·)
is the n-th largest element in the collection C.

The OWA operator provides a class of averaging oper-
ators parameterized by the weighting vector W . The type
of average is determined by the weighting vector W . Some
notable examples are

(i) If W = W∗ where wN = 1 and wn = 0 for n 6= N ,
then

OWA (C1(·), · · · , Cn(·), · · · , CN (·)) = minn[Cn(·)]

(ii) If W = W ∗ where w1 = 1 and wn = 0 for n 6= 1, then

OWA (C1(·), · · · , Cn(·), · · · , CN (·)) = maxn[Cn(·)]

(iii) If W = WN where wn = 1
N

, then

OWA (C1(·), · · · , Cn(·), · · · , CN (·)) =
1

N

∑N

n=1
Cn(·)

Central to the OWA operator is how to obtain OWA
weights. Many techniques are available to calculate the
OWA weights [14]. We could resolve a mathematical pro-
gramming problem [1,14,30,31], associate it with a linguis-
tic quantifier [14,32], or obtain OWA weights via analytic
method [13]. In the first part, Yager [32] introduced two
characterizing measures associated with the weighting vec-
tor W of an OWA operator. The first one, orness measure

of the aggregation, is defined as

Ω = orness(W ) =
∑N

n=1

N − n

N − 1
· wn

and it characterizes the degree to which the aggregation is
like an or operation. It is clear that Ω ∈ [0, 1] holds for any
weighting vector. Recently, the “orness” of OWA operator
is also called “attitudinal character” [37], as it associates
with the subjective preference in decision making and can

be viewed as a measure of optimism of a DM. In this study,
we prefer using “attitudinal character”. The closer Ω to
zero, the more pessimistic of the DM; the closer Ω to one,
the more optimistic of the DM. Three special cases are
– Ω = 0 indicates min operation for aggregation, used to

represent DM’s pessimistic attitudinal character;
– Ω = 0.5 indicates average operation for aggregation, used

to represent DM’s neutral attitudinal character;
– Ω = 1.0 indicates max operation for aggregation, used

to represent DM’s optimistic attitudinal character;
In real applications, it is not easy to specify an Ω value.
Ahn [1] discussed the issue of obtaining OWA operator
weights with constant level of orness/Ω, in which some com-
monly used Ω values are {0, 1/4, 1/3, 1/2, 2/3, 3/4, 1}.

The second one, the dispersion measure of the aggrega-
tion, is defined as

disp(W ) = −
∑N

n=1
wn · ln wn

and it measures the degree to which W takes into account
all information in the aggregation. O’Hagan [25] suggested
a maximum entropy method to determined OWA operator
weights, which formulates the OWA operator weight prob-
lem as a constrained nonlinear optimization model with a
predefined degree of orness (attitudinal character) as its
constraint and the entropy as its objective function. This
approach is based on the solution of the following mathe-
matical programming problem:

Maximize −
∑N

n=1
wn · ln wn (2a)

subject to
∑N

n=1

N − n

N − 1
· wn = Ω, 0 ≤ Ω ≤ 1 (2b)

∑N

n=1
wn = 1, wn ∈ [0, 1], n = 1, 2, · · · , N. (2c)

An Operations Research software package called LINDO 1

can be used to solve this mathematical programming prob-
lem.

2.2. Triangular Norms

Definition A triangular norm (t-norm for short) T is a
mapping from [0, 1]2 to [0, 1], which is increasing in both
arguments, commutative, associative and fulfilling the
boundary condition: ∀x ∈ [0, 1], T(x, 1) = x [2,11,26].
The definition of t-norms does not imply any kind of conti-
nuity. Nevertheless, such a property is desirable from theo-
retical as well as practical points of view. A t-norm is is said
to be continuous if it is continuous as a two-place function.
T-norms can be classified as follows:
– A t-norm T is called Archimedean if it is continuous and

T(x, x) < x, for all x ∈ (0, 1).
– An Archimedean t-norm T is called strict if it is strictly

increasing in each variable for x, y ∈ (0, 1).
– An Archimedean t-norm T is called nilpotent if it is not

strictly increasing in each variable for x, y ∈ (0, 1).

1 http://www.lindo.com/.
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Typical examples of t-norm operators are listed as be-
low [18,19,23].

(i) Minimum operator: TM (x, y) = min(x, y)
(ii) Product operator: TP (x, y) = x · y

(iii)  Lukasiewicz operator: TL(x, y) = max(x + y − 1, 0)
These basic t-norms have some remarkable properties. The
minimum t-norm TM is the largest t-norm. The product t-
norm TP and the  Lukasiewicz t-norm TL are prototypical
examples of two important subclasses of t-norms (of strict
Archimedean and nilpotent Archimedean t-norms, respec-
tively).

3. Prioritized Weighted Aggregation Based on

OWA Operator and T-norms

Assume that a set of criteria C are partitioned into Q dis-
tinct priority levels, H = {H1, · · · , Hq, · · · , HQ}, such that
Hq = {Cq1, · · · , Cqk, · · · , CqNq

}, where Nq is the criteria
number in priority level Hq, and Cqk is the k-th criterion in
priority level Hq. We also assume a prioritization of these
priority levels is H1 ≻ · · · ≻ Hq ≻ · · · > HQ. The total

set of criteria is C =
⋃Q

q=1 Hq. We have for each criterion
Cqk, a value Cqk(·) ∈ [0, 1] indicating degree of satisfac-
tion of a given alternative regarding criterion Cqk. Table 1
shows the priority hierarchy structure of the set of criteria
C. Yager [38,39] classified this priority hierarchy into two
cases:
– strict priority order, if each priority level has only one

criterion this type, i.e. Nq = 1 for q = 1, · · · , Q;
– otherwise the priority order is called weakly ordered

prioritization .

Table 1
Priority hierarchy of a set of criteria C

Priority level Criteria
H1 C11, · · · , C1k, · · · , C1N1

.

..
.
..

Hq Cq1, · · · , Cqk , · · · , CqNq

...
...

HQ CQ1, · · · , CQk , · · · , CQNQ

3.1. A Prioritized Weighted Aggregation Operator

As an OWA operator is similar to a weighted mean,
but with the values of the variables previously ordered in
a decreasing way [19,21]. Thus, contrary to the weighted
means, the weights are not associated with concrete vari-
ables. Consequently, OWA operators satisfy symmetry.
Moreover, OWA operators generalize the arithmetic mean
and the median, and they also exhibit some other inter-
esting properties such as monotonicity, idempotence, and
compensativeness (i.e., the value of an OWA operator is
located between the minimum and the maximum values of
the variables).

Due to these properties, the OWA operator will be
used to obtain degree of satisfaction for each priority

level. Given DM’s attitudinal character Ωq toward priority
level Hq, according to O’Hagan’s OWA weight determina-
tion method as shown in Eq. (2), we can associate with
priority level Hq an OWA weighting vector such that
Uq = {uq1, · · · , uqk, · · · , uqNq

}, where uqk ∈ [0, 1] and∑Nq

k=1 uqk = 1. In addition, let Bq(·) = {bq1(·), · · · , bqNq
(·)}

be the reordered vector of Cq(·) = {Cq1(·), · · · , CqNq
(·)},

where bqk(·) is the k-th largest in priority level Hq. Using
this we can calculate the degree of satisfaction in priority
level Hq as

Satq(·) = OWAΩq
[Hq] =

Nq∑

k=1

bqk(·)uqk (3)

To model the priority relationship, as suggested by
Yager [38,39], the lower priority criteria will become im-
portant with the higher degree of satisfaction of higher
priority level, i.e., the priority weights are dependent upon
the satisfaction of higher priority levels. Motivated by this
observation, we will associate with each priority level a
priority weight Zq(·), which is derived from the degree of
satisfaction of all the higher priority levels. Furthermore,
as t-norms do not allow low values to be compensated
by high values [2,11,26], t-norms are used to induce the
priority weight Zq(·) for each priority level.

In particular, for priority level H1, we have Z1(·) = 1. For
priority level H2, we express the priority weight as Z2(·) =
T(Z1(·), Sat1(·)). For priority level H3, we express the pri-
ority weight as Z3(·) = T(Z2(·), Sat2(·)). More succinctly
and generally, we can induce the priority weight for priority
level Hq as

Zq(·) = T (Zq−1(·), Satq−1(·)) = Tq−1
l=0 Satl(·) (4)

with the understanding that Z0(·) = Sat0(·) = 1.
We now see that for priority level Hq, we have a priority

weight Zq(·). In addition, for each criterion in priority level
Hq, we have a local OWA weight. To preserve the tradeoffs
between criteria in the same priority level, we shall view
the degree of satisfaction of each priority level as a pseudo
criterion. In this way, we can get an aggregated value for
each alternative under these prioritized criteria as

V(·) =
∑Q

q=1
Zq(·)Satq(·) (5)

No matter what type of t-norms is selected, the prior-
ity weight Zq(·) of a priority level depends upon the satis-
faction of all the higher priority levels, such that Zq(·) =

Tq−1
l=0 Satl(·), thus poor satisfaction of all the higher priority

levels leads to lower priority weights for the current priority
level. In addition, the OWA operator are used to aggregate
the criteria in the same priority level. Based on these two
features, we shall call the proposed aggregation operator as
Prioritized OWA operator. 2

2 It should be noted that each priority level Hq may have a different
attitudinal character Ωq . Here for purposes of simplicity, we assume
that each priority level Hq has the same attitudinal character Ωq =
Ω.
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The prioritization of the criteria induces a priority
weighting schema such that the criteria gains more im-
portance only if all the higher priority criteria are higher
satisfied. If one wants to raise the global degree of satisfac-
tion of all criteria, a criterion with a relatively high priority
level must be sufficiently satisfied prior to the criteria in
relatively low priority levels. This is accordance with the
meaning of the word priority in English dictionaries [27].
In fact, the concept of priority has the following two char-
acteristics [23]:

(i) It measures the relative importance among things in
a group to determine only their relative precedence,
and

(ii) the higher the priority of one thing, the earlier the
thing should be handled or the more preferred is the
thing.

3.2. Properties of Proposed Prioritized Aggregation

Operator

Proposition 3.1 The proposed prioritized aggregation op-

erator is monotonic regarding any criteria Clk.

Proof For monotonicity to hold, we have to prove
∂V (·)

∂Clk(·) ≥ 0. Not all the Satq and Zq change with Clk, thus

we express V (·) as

V (·) =

l−1∑

i=1

Zi(·)Sati(·) + Zl(·)Satl(·) +

Q∑

j=l+1

Zj(·)Satj(·)

And then we can obtain ∂V (·)
∂Clk(·) as

∂V (·)

∂Clk(·)
= 0 +

∂Satl(·)

∂Clk

Zl(·) +

Q∑

j=l+1

[
∂Zj(·)

∂Clk(·)
Satj(·)

]

=
∂Satl(·)

∂Clk

Zl(·) +

Q∑

j=l+1

[
∂Zj(·)

∂Satl(·)

∂Satl(·)

∂Clk(·)
Satj(·)

]

Since we use the OWA operator to obtain the degree of
satisfaction for each priority level and OWA is monotonic,

thus we know that ∂Satl(·)
∂Clk(·) ≥ 0.

Since Zj(·) = T(Zj−1(·), Satj−1(·)) ≥ 0 and t-norm in-

creases in both arguments, thus
∂Zj(·)

∂Satl(·)
≥ 0. The product

of monotonic operators is also monotonic, hence we know

that ∂V (·)
∂Clk(·) ≥ 0. 2

Proposition 3.2 Our proposed prioritized OWA operator

guarantees monotonicity regarding DM’s attitudinal char-

acter Ω.

Proof To prove our proposed prioritized OWA operator is
monotonic regarding DM’s attitudinal character, we have
to prove that

∂V (·)

∂Ω
=

∂
(∑Q

q=1 Zq(·)Satq(·)
)

∂Ω
≥ 0

We know that

∂
(∑Q

q=1 Zq(·)Satq(·)
)

∂Ω
=

Q∑

q=1

(
Satq(·)

∂Zq(·)

∂Ω
+ Zq(·)

∂Satq(·)

∂Ω

)

According to the properties of OWA operator, it is

clear that
∂Satq(·)

∂Ω ≥ 0. In addition, we know Zq(·) =
T(Zq−1(·), Satq−1(·)) and t-norm increases in both argu-

ments, thus
∂Zq(·)

∂Ω ≥ 0, hence ∂V (·)
∂Ω ≥ 0. 2

3.3. Illustrative Examples

We shall apply the proposed prioritized OWA aggrega-
tion operator to deal with a car selection problem, adapted
from [10].
Example Assume that John wants to buy a new car con-
sidering the following criteria “C1 Safety”, “C2 Price”,
“C3 Appearance” and “C4 Performance”. We also as-
sume that there are four alternatives of cars A1, A2, A3, A4

and the degrees in which each alternative satisfies each cri-
terion are shown in Table 2. We also assume that the prior-
ity hierarchy specified by John is H1 = {C1}, H2 = {C2},
H3 = {C3, C4}, and H1 ≻ H2 ≻ H3.

Table 2
Satisfaction degree of each criterion regarding each alternative: car
selection

Alt.
Criteria

C1 C2 C3 C4

A1 0.95 0.60 0.70 0.80
A2 0.91 0.75 0.50 0.90
A3 0.95 0.70 0.80 0.70
A4 0.945 0.75 0.30 0.70

For purposes of simplicity, for each priority level Hq we
shall specify the same attitudinal character, such that Ωq =
Ω, where q = 1, 2, 3. We assume that Ω = 0.5. The min-
imum t-norm TM is the largest t-norm. The product t-
norm TP and the  Lukasiewicz t-norm TL are prototypical
examples of two important subclasses of t-norms (of strict
Archimedean and nilpotent Archimedean t-norms, respec-
tively). In this example, these three prototypical t-norms
are used to induce the priority weights. Taking car A1 as an
example. We first consider product t-norm TP , we proceed
as follows:

(i) We first calculate the degree of satisfaction for each
priority level via OWA operator as follows:

Sat1(A1) = OWA0.5{0.95} = 0.95

Sat2(A1) = OWA0.5{0.60} = 0.6

Sat3(A1) = OWA0.5{0.70, 0.80} = 0.75

(ii) We then calculate the priority weight for each priority
level by using product t-norm via Eq. (4):

Z1(A1) = TP (Z0(A1), Sat0(A1)) = TP (1, 1) = 1

Z2(A1) = TP (Z1(A1), Sat1(A1)) = TP (1, 0.95) = 0.95

Z3(A1) = TP (Z2(A1), Sat2(A1)) = TP (0.95, 0.6) = 0.57
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(iii) Finally, we obtain the global prioritized aggregated
value via Eq. (5):

V (A1) =
∑3

q=1
Zq(A1) · Satq(A1)

= 1 · 0.95 + 0.95 · 0.6 + 0.57 · 0.75 = 1.9475

Similarly, the prioritized aggregation values for cars A2,
A3, and A4 by product t-norm can be obtained. We can
also obtain the aggregated value with Minimum t-norm and
 Lukasiewicz t-norm, as shown in Table 3. From Table 3, it
is clearly seen that car A3 is the best choice whatever the t-
norm is. The ranking order of prioritized aggregation values
are as A3 ≻ A2 ≻ A4 ≻ A1, where ≻ denotes “prefer to”.

Table 3
Prioritized aggregation with different t-norms under attitudinal char-
acter Ω = 0.5

T-norms
Alt.

A1 A2 A3 A4

Minimum t-norm TM 1.9700 2.1175 2.1400 2.0286
Product t-norm TP 1.9475 2.0703 2.1137 2.0080

 Lukasiewicz t-norm TL 1.9325 2.0545 2.1025 2.0012

3.4. Choosing Suitable T-norms

In the previous example, we used minimum t-norm,
 Lukasiewicz t-norm and product t-norm to induce the
priority weight for each priority level. As mentioned pre-
viously, in general any t-norm can be used to induce the
priority weight. Are there any differences between these t-
norms? Which type of t-norms perform better in inducing
priority weight? To illustrate this point, we shall discuss
this topic from the following two aspects.
A Special Case

Firstly, let us consider a special case, where only two
levels of priority hierarchy exists, i.e. Q = 2. We observed
that in this case, no matter which t-norm is used, we
always obtain the priority weight Z1(·) = 1 for priority
level H1 and a priority weight Z2(·) = Sat1(·) for priority
level H2. The main reasons for this are as follows:

(i) we assume there is a pseudo hierarchy level H0 with
Z0(·) = Sat0(·) = 1.

(ii) Moreover, any t-norm has the property such that
T(1, x) = x.

An Example

Assume that there are two alternatives A1 and A2. For
the q-th priority level, the priority weight and degree
of satisfactions are shown in Columns 2-3 of Table 4.
According to Eq. (4) and the three typical t-norms, we
can calculate three induced priority weights for priority
level q + 1, as shown in Columns 4-6 of Table 4.

Table 4
The priority weight and degree of satisfactions of q-th priority level
and its induced priority weights

Alt.
q-th priority level Induced weights Zq+1

Weight Zq Satisfaction degree TM TL TP

A1 0.3 0.5 0.3 0 0.15
A2 0.3 0.6 0.3 0 0.18

It is clear that the priority weights of q + 1-th prior-
ity level induced by Minimum t-norm and  Lukasiewicz
t-norm do not reflect the changes of the priority weight
and degree of satisfactions of q-th priority level. We want
to preserve the slight change of priority weight as well
as do not want to ignore the slight change, thus non-
Archimedean t-norms and nilpotent t-norms are not suit-
able to induce the priority weight for each priority level.
The product t-norm is the prototypical example of strict
Archimedean t-norms and can catch the slight change of
of priority weight. This is perhaps the main reason why
Yager [39] and Wang and Chen [10] both use the product
t-norm to induce the priority weight.
Based on the above observations, strict Archimedean t-

norms perform well in reducing the priority weight. As
Hamacher family of t-norms provide a wide class of strict
Archimedean t-norms ranging from the product to weakest
t-norm [26], we shall use Hamacher parameterized t-norm
to induce the priority weight such that

Tγ
H =

Zq−1(·)Satq−1(·)

γ + (1 − γ)(Zq−1(·) + Satq−1(·) − Zq−1(·)Satq−1(·))

= Tγ
H

q−1

l=0 Satl(·), γ ≥ 0.

(6)

If γ = 0, then we can obtain the priority weight inducing
method as

Zq(·) =
Zq−1(·)Satq−1(·)

Zq−1(·) + Satq−1(·) − Zq−1(·)Satq−1(·)
(7)

When γ = 1, the induced priority weight is represented as

Zq(·) = Zq−1(·)Satq−1(·) =

q−1∏

l=0

Satl(·) (8)

with the understanding that Z0(·) = Sat0(·) = 1.
Now let us reconsider the example as shown in Table 2

via the Hamacher parameterized t-norm. According to the
three steps of our proposed prioritized aggregation, we ob-
tain the prioritized aggregated values as shown in Fig. 1,
where γ is set to ∈ [0, 1000]. Obviously Tγ

H is non-increasing
with respect to γ [26]. In addition, the ranking order of pri-
oritized aggregation values may be different with different
γ values. From Fig. 1, it is clearly that the prioritized aggre-
gation values are non-increasing with respect to γ. In our
example, there are two γ values changing the ranking order
of the four alternatives, λI ≈ 16.8295 and λII ≈ 145.8237.
Thus five ranking orders can be obtained:
– When 0 ≤ γ < λI, the ranking result is A3 ≻ A2 ≻ A4 ≻

A1;
– When γ = λI, the ranking result is A3 ≻ A2 ∼ A4 ≻ A1;
– when λI < γ < λII, the ranking result is A3 ≻ A4 ≻

A2 ≻ A1;
– When γ = λII, the ranking result is A3 ∼ A4 ≻ A2 ≻ A1;
– when λII < γ ≤ 1000, the ranking result is A4 ≻ A3 ≻

A2 ≻ A1.
Remark From Fig. 1 we know that different γ values may
lead to different ranking orders. Then a natural question
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Fig. 1. Prioritized aggregated values by means of Hamacher’s t-norm:
γ ∈ [0, 1000]

that arises is how the DM selects optimal alternative with
different γ values. From the theoretical point of view, we
show that the strict Archimedean t-norms perform well
in reducing the priority weight for each priority level. As
Hamacher’s family of t-norms supplies a wide class of t-
norm operators ranging from the probabilistic product to
the weakest t-norm, extending the product t-norm into
Hamacher’s family of t-norms provides a generalization of
previous research. In addition, the γ value can be viewed
as an index to represent strongness of the prioritization in
our prioritized aggregation. The larger the γ value is, the
stronger of prioritization the DM prefers. From the appli-
cable point of view, it is not easy to specify a γ value. In
fact, we can do sensitivity analysis of prioritized aggrega-
tion with respect to different γ values. When DM’s pre-
ferred γ value falls into a range, we can approximately know
the best alternative. If the DM does not provide his/her
subjective preference, two commonly used cases are γ =
0 (Hamacher product t-norm) and γ = 1 (product t-norm).
We can set γ = 1 for default.

3.5. Comparison with previous research

To illustrate the effectiveness and advantages of our for-
mulation of prioritized aggregation, we shall compare our
approach with previous work. Yager [39] proposed a priori-
tized aggregation operator according to the following three
steps:

(i) To calculate the degree of satisfaction for each priority
level by OWA operator as follows:

Satq(·) = OWAΩ[Hq]

(ii) The product t-norm is used to calculate the priority
weight Zq(·) for priority level Hq

Zq(·) = TP (Zq−1(·), Satq−1(·)) =

q−1∏

l=0

Satl(·) (9)

where Z0(·) = Sat0(·) = 1.
(iii) To calculate the overall degree of satisfaction

(a) For strict priority order, where Nq = 1 and q =
1, · · · , N , an averaging aggregation is used as
follows:

V (·) =

∑Q
q=1

[∑Nq

k=1 Zq(·)Cqk(·)
]

∑Q
q=1 Zq(·)

=

∑Q
q=1 Zq(·)Cq(·)
∑Q

q=1 Zq(·)

(10)
(b) For weak priority order, a scoring aggregation is

used as follows:

V (·) =

Q∑

q=1




Nq∑

k=1

Zq(·)Cqk(·)


 (11)

In the first step of both Yager’s prioritized aggregation op-
erator and our prioritized OWA operator, the OWA oper-
ator is used to obtain the degree of satisfaction for each
priority level. To find out some limitations of Yager’s pri-
oritized operator, we compare our operator with Yager’s
operator from the following three aspects:
T-norm selection

In Yager’s aggregation operator, the product t-norm
is used to induce the priority weight for each prior-
ity level. As mentioned previously, we suggested that
roughly speaking, any t-norm can be used to induce the
priority weight for each priority level. To preserve the
slight change of priority weight as well as do not want
to ignore the slight change, we suggest using Hamacher
parameterized t-norm. In this view, Yager’s operator is
one special case of our operator.

Tradeoffs of criteria in the same priority level

Let us consider a special case. If the DM does not spec-
ify the priority hierarchy, it means that the DM agrees
the tradeoffs among all the criteria. In this case, only one
priority level is considered, all the criteria have the same
priority level, we shall use Cn instead of C1n to represent
the n-th criterion. Our proposed prioritized OWA oper-
ator Eq. (5) reduces to the OWA operator [32] such that

V (·) = PRI-OWA(H1)

= OWAΩ (C1(·), · · · , Cn(·), · · · , CN (·)) .
(12)

Whereas, Yager’s prioritized aggregation operator re-
duces to the summation of all criteria, such that

V (·) =

N∑

n=1

Cn(·) (13)

In this regard, Yager’s prioritized aggregation operator
only allows summation tradeoffs for each priority level,
whereas our approach allows OWA tradeoffs. In the liter-
ature, many aggregation operators can be used to realize
the tradeoffs between attributes, by allowing a positve
compensation between scores, i.e. a higher degree of sat-
isfaction of one the the attribute can compensate for a
lower degree of satisfaction of another attribute to a cer-
tain extent [8]. In this study, OWA operator is used to
aggregate the attributes in the same priority level, thus
we shall call this type of tradeoff as OWA tradeoff.

Averaging or Scoring Aggregation

Yager [39](p.267) pointed out that under strictly or-
dered prioritization (only one criterion in each priority
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level), the prioritized aggregation should be represented
as the normalized form; under weakly ordered prioriti-
zation, the prioritized aggregation should be represented
as the scoring type. The main reason is that the normal-
ized form under weakly ordered prioritization dose not
always guarantee monotonicity.

However, as the strictly ordered prioritization and
weakly ordered prioritization are just two special cases
of the prioritization hierarchy, hence they should have
the same properties and type. To keep the general prop-
erties of aggregation operators as well as to keep the
original priority changes, similar with [6,18] we shall use
the scoring type of aggregation.

4. Including Benchmark into Prioritized OWA

Aggregation

We now turn to a possible variation of our formulation
for prioritized OWA aggregation V(·) =

∑Q
q=1 Zq(·)Satq(·)

where

Zq(·) = Tγ
H (Zq−1(·), Satq−1(·)) = Tγ

H

q−1

l=0 Satl(·)

Satq(·) = OWAΩ[Hq]

In this formulation, the priority weight Zq(·) directly de-
pends upon the satisfactions of the criteria in all higher
priority levels. As suggested by Yager [38], as a variation
of this, we can let Zq(·) depend on some function of the
satisfactions of the higher priority criteria. Without loss of
generality, we assume that for any priority level, the DM
specifies a requirement. In particular, we can let E : [0, 1] →
[0, 1] such that E(0) = 0, E(1) = 1, and E(x) ≥ E(y) if
x ≥ y. Using this we can express

Zq(·) = Tγ
H(Zq−1(·), E(Satq−1(·)))

= Tγ
H (E(Sat0(·)), E(Sat1(·)), · · · , E(Satq−1(·)))

= Tγ
H

q−1

l=0 E(Satl(·))

(14)

Roughly speaking, we can view E(Satq(·)) as some kind
of effective or pseudo satisfaction. Here then the score value
associated with criteria can be different in its evaluation of
induced priority weights and the satisfaction degree used
in the aggregation. With the use of function E to trans-
form levels of satisfaction, we are able to model the linguis-
tically expressed DM’s requirements by means of Zadeh’s
paradigm of computing with words. Due to this observa-
tion, DM’s requirement can be viewed as benchmark or ref-

erence level for the degrees of satisfaction of each priority
level, i.e., “the satisfactions of the higher priority cri-

teria are larger than or equal to the DM’s require-

ments” expressed as E(Satq(·) ≥ Gq) = E(Satq(·)). We
shall consider two possible DM’s requirements such that

(i) The DM specifies a certain requirement Gq for prior-
ity level Hq,

(ii) The DM specifies an uncertain requirement G̃q for
priority level Hq.

In the following, we will deal with these two types of bench-
marks respectively.

4.1. Crisp Requirements

Before discussing crisp requirements, we shall recall some
knowledge of R-implications.
Definition An implication operator I is a mapping:
[0, 1]2 → [0, 1], such that [8,26]
– I is non-increasing with respect to its first argument;
– I is non-decreasing with respect to its second argument;
– I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

Basically, there are many implication operators. We shall
use the R-implications. R-implications I are based on the
idea that implication reflects partial ordering on proposi-
tion, i.e., I(x, y) = 1 if and only if x ≤ y. In the standard se-
mantics of t-norm based fuzzy logics, where conjunction is
interpreted by a t-norm, the residuum plays the role of im-
plication (often called R-implication). R-implications can
be obtained by residuum of a continuous t-norm T [26] as
follows,

x → y = sup{z ∈ [0, 1]|T(x, z) ≤ y}, for all x, y, z ∈ [0, 1].
(15)

These implications arise from the intutionistic logic formal-
ism [8]. Typical examples of R-implication operators are

(i) Kleene-Dienes implication:

I(x, y) = max(1 − x, y) (16)

(ii)  Lukasiewicz implication:

I(x, y) = min(1 − x + y, 1) (17)

(iii) Gödel implication:

I(x, y) = 1, if x ≤ y; y, otherwise. (18)

If both the degree of satisfaction and the requirement
are crisp numbers, we can implement E(Satq(·) ≥ Gq) us-
ing the strict implication operator. It is clear that this will
be very sensitive to small changes of both arguments. How-
ever, we can still sustain the benchmark character if we use
an R-implication operator to transform the degrees of satis-
faction. As  Lukasiewicz implication is the one that satisfies
most of the properties pertaining to the logical implication
operators [26], in this study  Lukasiewicz implication was
used as a technique to compute benchmark satisfaction for
crisp requirements. Given DM’s requirement Gq of priority
level Hq, according to  Lukasiewicz implication Eq. (17), we
can define

E(Satq(·) ≥ Gq) = Gq → Satq(·) = min{1−Gq+Satq(·), 1}.
(19)

It is of interest noting that in Section 3, Zq(·) directly
depends on the satisfaction of higher priority criteria. In
this case, the DM’s requirement can be modeled as Gq = 1.
According to Eq. (19), we know that

E(Satq(·) ≥ Gq) = min{1 − Gq + Satq(·), 1}

= min{Satq(·), 1} = Satq(·).
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4.2. Uncertain requirements

Due to the vagueness or impreciseness of knowledge, it
is difficult for DM(s) to estimate their requirements with
precision. In many applications, fuzzy subsets [40] provide
a very convenient object for the representation of uncer-
tain information. The subjective assessments provided by
DM(s) are usually conceptually vague, with uncertainty
that is frequently represented in linguistic forms. To help
people easily express their subjective assessments, the lin-
guistic variables [41,42] are used to linguistically express
requirements.

A fuzzy number G̃ can be conveniently represented by
the canonical form [17]

µ
G̃(g)

=






f
G̃(g)

, g1 ≤ g ≤ g2,

1, g2 ≤ g ≤ g3,

h
G̃(g)

, g3 ≤ g ≤ g4,

0, otherwise.

(20)

where µ
G̃(g)

denotes the membership function of fuzzy num-

ber G̃, f
G̃(g)

is a real-valued function that is monotonically

increasing, and h
G̃(g)

is a real-valued function that is mono-

tonically decreasing. In addition, like most applications, we
assume that functions f

G̃(g)
and h

G̃(g)
are continuous. If

f
G̃(g)

and h
G̃(g)

are linear functions then G̃ is called a trape-

zoidal fuzzy number and denoted by G̃ = (g1, g2, g3, g4). In

particular, G̃ becomes a triangular fuzzy number if g2 = g3.
Many methods can be used to compute E(Satq(·) ≥ G̃q).

One typical method is to use the fuzzy membership func-
tion to represent the degree of preference. As pointed out
by Beliakov and Warren [3], membership functions of fuzzy
sets play the role similar to utility functions–the role of
degrees of preference. Many researchers, including Zadeh
himself, refer to membership functions as ‘a kind of utility
functions’. However, as empirical evidence indicates that
conventional concave attribute utility function often does
not provide a good description of individual preference, and
usually it is difficult for DM(s) to determine their utility
functions [5]. Target-oriented decision analysis lies in the
philosophical root of bounded rationality as well as repre-
sents the S-shaped value function. In particular, fuzzy tar-
gets can be used to represent the uncertain requirements
of DM(s). These considerations lead us to use fuzzy target-
oriented decision analysis [16] to compute E(Satq(·)) for

uncertain requirements G̃q. Toward this end, we define

E(Satq(·) ≥ G̃q) = Pr
(

Satq(·) ≥ G̃q

)
(21)

where Pr
(

Satq(·) ≥ G̃q

)
denotes the probability of “meet-

ing the fuzzy benchmark G̃q”. For simplicity, we shall de-

note Satq(·) and G̃q as X and Y respectively.
The target-oriented decision analysis [5,16] suggested

that

Pr (X ≥ Y ) =

∫
∞

−∞

PX(x)

[∫ x

−∞

PY (y)dy

]
dx (22)

where PX(x) and PY (y) denote the probability distribu-

tions of Satq(·) and G̃q respectively. As Satq(·) is a crisp
number and in our research context the bounded domain
is [0, 1], we can reduce as

Pr
(

Satq(·) ≥ G̃q

)
=

∫ Satq(·)

0

PY (y)dy (23)

To compute this, as suggested by Huynh et al. [16], a direct

and simple way to define Pr
(

Satq(·) ≥ G̃q

)
is making use

of Yager’s method [36] for converting a possibility distribu-
tion into an associated probability distribution via the sim-
ple normalization. Particularly, the possibility distribution
µ

G̃(g)
of the benchmark G̃q is first converted into its asso-

ciated probability distribution, denoted by P
G̃q

, as follow

P
G̃(g)

=
µ

G̃(g)∫ g4

g1

µ
G̃(g)

dg
(24)

Then we can obtain the probability of “meeting the fuzzy
benchmark G̃q” as follows

Pr
(

Satq(·) ≥ G̃q

)
=

∫ Satq(·)

0 µ
G̃(g)

dg
∫ g4

g1

µ
G̃(g)

dg
(25)

4.3. A Comparative Analysis

To show the effectiveness and advantages of our ap-
proach, we shall use the same example (car selection)
introduced in Section 3 to compare our approach with
related research.

4.3.1. Wang and Chen’s Approach

Wang and Chen [10] suggested that the weights of lower
priority criteria depends on whether each alternative sat-
isfies the requirements of all the higher priority criteria or

not . They proposed two benchmark achievement accord-
ing to two cases.

(i) For criteria in priority level Hq, a degree of satisfac-
tion Satq(·) is calculated as follows 3

Satq(·) = OWAΩ[Hq] (26)

(ii) Then an importance weight Zq(·) for priority level Hq

by means of product t-norm is calculated as follows

Zq(·) =

q−1∏

l=0

E(Satl(·)) = Zq−1(·)E(Satq−1(·)) (27)

where Z0(·) = Sat0(·) = 1. To obtain the benchmark
achievement E(Satq(·)), Wang and Chen considered
two cases:

3 In fact, Wang and Chen [10] applied the fuzzy linguistic quanti-
fier [32] method to determine the OWA weighting vector. To clarify
the main differences between our work and Wang&Chen, we shall use
the same weight determination method proposed by O’Hagan [25].
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(a) The DM wants that a good solution must have
at least Gq degree of satisfaction such that

E(Satq(·)) = 1, if Satq(·) ≥ Gq; 0, otherwise.
(28)

(b) The decision maker wants that a good solution
must have at least Gq and as high as possible

degree of satisfaction such that

E(Satq(·)) = Satq, if Satq(·) ≥ Gq; 0, otherwise.
(29)

(iii) To calculate the overall degree of satisfaction as fol-
lows

V (·) =

Q∑

q=1

Zq(·)Satq(·) (30)

4.3.2. A comparative analysis

In both our approach and Wang and Chen’s work [10],
OWA operator is used to obtain the degrees of satisfaction
for each priority level. For purposes of simplicity, we shall
assume that DM’s attitudinal character Ω = 0.5. The main
difference between our approach and Wang and Chen are
twofold.

(i) First, more than product t-norm, we proposed using
Hamacher parameterized t-norm to induce the prior-
ity weight for each priority level. As product t-norm
is one special case of Hamacher parameterized t-norm
where γ = 1, and in previous section we have already
discussed the t-norm selection problem, here in or-
der to distinguish the main difference between our
approach from Wang and Chen’s approach, we shall
just use product t-norm.

(ii) Second, instead of strict threshold method, we pro-
pose using  Lukasiewicz implication to compute
benchmark achievement. In addition, due to the
uncertainty of DM’s requirements, target-oriented
decision decision analysis is used to solve the fuzzy
requirement.

Let us reconsider the same example as shown in Table 2.
Assume that John wants to buy a car having a requirement
for the satisfaction of criterion safety. We also assume that
John specifies his attitudinal character as Ω = 0.5. Consid-
ering the uncertainty of requirement, we do comparative
analysis from the following three aspects.
Benchmark: at least G1

Assume that John specifies his requirement toward the
criterion safety as G1, here specify three possible values,
as shown in the first column of Table 5. According to
Wang and Chen’s approach (Eq. (26), Eq. (27), Eq. (28)
and Eq. (30)), we can obtain the aggregation values with
different G1 values, as shown in Columns 2-5 of Table 5.
With the three steps of our prioritized OWA aggregation
operator and the benchmark achievement Eq. (19) we can
easily obtain the aggregation values as shown in Columns
6-9 of Table 5.

Table 5
Prioritized aggregated value under different crisp requirements

At least G1

Wang and Chen Our proposed method
A1 A2 A3 A4 A1 A2 A3 A4

G1 = 0.91 2.0000 2.1850 2.1750 2.0700 2.0000 2.1850 2.1750 2.0700
G1 = 0.95 2.0000 0.9100 2.1750 0.9450 2.0000 2.1340 2.1750 2.0644
G1 = 0.96 0.9500 0.9100 0.9500 0.9450 1.9895 2.1213 2.1628 2.0531

Looking at the second row of Table 5 where G1 = 0.91,
it is clearly seen that both Wang and Chen’s approach
and our approach get the same result as A2 ≻ A3 ≻
A4 ≻ A1. Secondly, we consider the case G1 = 0.96, the
fourth row of Table 5. We can see that the prioritized
aggregation values are different. Taking alternative A1

and A3 as an example, from Table 2 we know that the
degrees of satisfaction of criterion safety are C1(A1) =
C1(A3) = 0.95. Using Wang and Chen’s approach we
know that satisfaction of criterion safety does not satisfy
the requirement G1 = 0.95 at all, i.e. the priority weights
of lower priority criteria are all 0, thus A1 and A2 induce
the same aggregation value. However, the satisfactions of
lower priority criteria of alternative A3 are higher than
those alternative A1, and 0.95 is slightly less than G1 =
0.96, thus Wang and Chen’s approach [10] is too strict.
By using our approach, it is clearly seen that the ranking
order of alternatives is A3 ≻ A2 ≻ A4 ≻ A1.

The main difference of benchmark achievement in in-
ducing priority weight between our approach and Wang
and Chen’s approach is illustrated in Fig. 2(a).It is clear
that when the degree of satisfaction of criterion safety is
higher than requirement G1, we will obtain the same re-
sult with Wang and Chen. If the degree of satisfaction of
criterion safety is less than requirement G1, Wang and
Chen’s approach will be too strict.

Benchmark: at least G1 and as high as possible

Now let us consider the second type of requirement.
Column 1 of Table 6 shows the requirement values.
According to Wang and Chen’s approach (Eq. (26),
Eq. (27), Eq. (29) and Eq. (30)), we can obtain the
aggregation value with different G1 values, as shown in
Columns 2-5 of Table 6.

To model at least G1 and as high as possible, we can
use fuzzy number to represent this uncertainty, denoted
as G̃1 = (G1, G1, 1, 1). It is in fact an interval number
[G1, 1], in which a uniform probability distribution can be
obtained by means of the possibility-probability conver-
sion method in Eq. (24). And then according to Eq. (25)
and our prioritized aggregation operator we can obtain
the prioritized aggregation values as shown in Columns
6-10 of Table 6.

We will analysis the difference between our approach
and Wang and Chen via Fig. 2(b). The red line in
Fig. 2(b) shows the benchmark achievement by means of
fuzzy target-oriented decision analysis under the require-
ment G̃1 = (G1, G1, 1, 1). The green line in Fig. 2(b)
represents Wang and Chen’s approach. According to
Fig. 2(b), it is clear that when the degree of satisfaction
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Table 6
Prioritized aggregated value under different fuzzy uncertain requirements

at least G1, as Wang and Chen’s method Our proposed method
high as possible A1 A2 A3 A4 A1 A2 A3 A4

G1 = 0.91 1.9475 2.0703 2.1137 2.0081 1.4167 0.9100 1.4944 1.3825
G1 = 0.95 1.9475 0.9100 2.1137 0.9450 0.9500 0.9100 0.9500 0.9450
G1 = 0.96 0.9500 0.9100 0.9500 0.9450 0.9500 0.9100 0.9500 0.9450

of criterion safety is slightly less than the benchmark
G1, the induced degree of satisfaction E(Sat1(·)) will be
zero, which will be too strict; when the degree of satis-
faction of criterion safety is more than the benchmark
G1, the induced degree of satisfaction E(Sat1(·)) will be
Sat1(·). Whereas our approach is more consistent than
Wang and Chen’s approach. In addition, our approach
usually constrain the benchmark achievement into an
interval range [0, 1].

Benchmark: Fuzzy at least G1

Due to the vagueness or impreciseness of knowledge, it
is difficult for DMs to estimate their requirements with
precision. Fuzzy min target (fuzzy at least) is the target
commonly used in decision making. We can model the
fuzzy min G1 as G̃1 = (0, G1, 1, 1). In the previous case,
we considered the requirement “at least G1 and as high
as possible” via target-oriented decision analysis. The
fuzzy target (G1, G1, 1, 1) is a special case of fuzzy at least
G1. By means of the possibility-probability conversion
method in Eq. (24) we can obtain the induced probabil-
ity distribution function of fuzzy min target. And then
according to Eq. (25) we obtain the target achievement
function. Finally, according to our prioritized aggrega-
tion operator, we can easily obtain the aggregation val-
ues as shown in Columns 2-5 of Table 7, in which A3 is
always the optimal alternative.

Table 7
Prioritized aggregated value under different fuzzy min requirements

Fuzzy min G1

Our proposed method
A1 A2 A3 A4

(0, 0.91, 1, 1) 1.9037 1.9744 2.0626 1.9565
(0, 0.95, 1, 1) 1.9000 1.9685 2.0583 1.9522
(0, 0.96, 1, 1) 1.8991 1.9675 2.0573 1.9513

Fig. 2(c) graphically depicts the fuzzy requirement and
its associated target achievement function. It is clear
from the red line in Fig. 2(c), the benchmark achieve-
ment reflects Simon’s bounded rationality and the S-
shaped value function. This is main reason why we utilize
fuzzy target-oriented decision model to calculate fuzzy
benchmark achievement.

5. Concluding Remarks

In this paper, we have concerned ourselves with multi-
criteria decision making (MCDM) problems where there ex-
ists a prioritization of criteria, in which the priority weights
associated with the lower priority are related to the sat-
isfactions of the higher priority criteria. We have builded
upon the work of [10,38,39] and extended it in a number
of directions. First, the OWA operator is used to obtain

the degree of satisfaction for each priority level. To pre-
serve the tradeoffs between the criteria in the same prior-
ity level, the degree of satisfaction regarding each priority
level is viewed a pseudo criterion. Second, we suggest that
roughly speaking any t-norms can be used to model the pri-
ority relationships between the criteria in different prior-
ity levels. To preserve slight change of the priority weight,
strict Archimedean t-norms perform better in inducing pri-
ority weight. As Hamacher family of t-norms provide a wide
class of strict Archimedean t-norms ranging from the prod-
uct to weakest t-norm [26], Hamacher t-norms are selected
to induce the priority weight. Third, considering DM’s re-
quirement toward higher priority levels, a benchmark based
approach has been proposed to induce priority weight for
each priority level. In particular,  Lukasiewicz implication
is used as a technique to compute benchmark achievement
for crisp requirements. In case of fuzzy uncertain require-
ments, as target-oriented decision analysis lies in the philo-
sophical root of bounded rationality as well as represents
the S-shaped value function, fuzzy target-oriented decision
analysis [16] is utilized to obtain the benchmark achieve-
ment. In contrast to Wang and Chen’s [10] work, our ap-
proach can catch the slight changes of DM’s requirement
as well as coincide with the intuition of DM.
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[7] T. Calvo, A. Kolesarova, M. Komornikova, R. Mesiar,
Aggregation operators: Properties, classes and construction
methods, in: T.Calvo, G. Mayor, R. Mesiar (eds.), Aggregation
Operators: New Trends and Applications, vol. 97 of Studies
in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg,
2002, pp. 1–104.

[8] C. Carlsson, R. Fullér, Benchmarking in linguistic importance
weighted aggregations, Fuzzy Sets and Systems 114 (1) (2000)
35–41.

11



0 G1 1
0

1

B
en

ch
m

ar
k 

ac
h

ie
ve

m
en

t

Lukasiewicz implication

Wang and Chen’s threhold

(a) At least G1

0 G1 1
0

1

B
en

ch
m

ar
k 

ac
h

ie
ve

m
en

t

Proposed target achievement

Wang and Chen’s approach

(b) At least G1 and as high as possible

0 G1 1
0

1

P
ro

b
ab

ili
ty

 a
n

d
 P

o
ss

ib
ili

ty Fuzzy requirement

Target achievement

(c) Fuzzy min G1

Fig. 2. Benchmark achievement

[9] S.-J. Chen, S.-M. Chen, A Prioritized Information Fusion
Method for Handling Fuzzy Decision-Making Problems, Applied
Intelligence 22 (3) (2005) 219–232.

[10] S.-M. Chen, C.-H. Wang, A generalized model for prioritized
multicriteria decision making systems, Expert Systems with
Applications 36 (3) (2009) 4773–4783.

[11] M. Detyniecki, Fundamentals on aggregation operators, Tech.
rep., University of California, Berkeley (2001).

[12] D. Dubois, H. Fargier, H. Prade, Possibility theory in
constraint satisfaction problems: handling priority, preference
and uncertainty, Applied Intelligence 6 (4) (1996) 287–309.

[13] D. Filev, R. R. Yager, Analytic properties of maximum entropy
OWA operators, Information Sciences 85 (1995) 11–27.

[14] D. Filev, R. R. Yager, On the issues of obtaining OWA operator
weights, Fuzzy Sets and Systems 94 (2) (1998) 157–169.

[15] K. Hirota, W. Pedrycz, Nonmonotonic Fuzzy Set Operations: A
Generalization and Some Applications, International Journal of
Intelligent Systems 12 (1997) 483–493.

[16] V.-N. Huynh, Y. Nakamori, M. Ryoke, T. Ho, Decision making
under uncertainty with fuzzy targets, Fuzzy Optimization and
Decision Making 6 (3) (2007) 255–278.

[17] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and
Applications, Prentice-Hall, Upper Saddle River, NJ, 1995.
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operators based on minimization, Information Sciences 178 (4)
(2008) 1133–1140.

[25] M. O’Hagan, Aggregating template or rule antecedents in real-
time expert systems with fuzzy set logic, in: Proceedings of
22nd Annual IEEE Asilomar conference on signals, systems,
computers, Pacific Grove, Montréal, Canada, 1988.
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