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Abstract. Specifications of state machines in CafeOBJ are called equa-
tional theory specifications (EQT Specs) which are based on equational
logic, and in Maude are called rewrite theory specifications (RWT Specs)
which are based on rewriting logic. The translation from EQT Specs to
RWT Specs achieves the collaboration between CafeOBJ’s theorem prov-
ing facilities and Maude’s model checking facilities. However, translated
specifications by existing strategies are of inefficiency and rarely used for
model checking in practice. This paper defines a specific class of EQT
Specs called EADS Specs, and proposes a strategy for the translation
from EADS Specs to RWT Specs. It is proved that translated specifica-
tions by the strategy are more efficient than those by existing strategies.

Keywords: Algebraic specification, automatic translation, rewrite the-
ory, equational theory, CafeOBJ, Maude

1 Introduction

Specification translation is a traditional way of achieving the collaboration be-
tween different verification tools, with duplicate effort reduced at the specifica-
tion level. Translations between different formalisms have been widely studied.
For instance, the translation from Z into B [1] integrates the tool PROZ for Z
specifications into PROB; safe Petri Nets are translated into statecharts to en-
able the automated exchange of models between Petri net and statechart tools
[2]; and Raise Specification Language (RSL) is translated into CSPM so that
LTL formulae in RAISE can be model checked by the model checker FDR [3].

CafeOBJ [4] and Maude [5] are two state-of-the-art verification systems based
on algebraic approaches. CafeOBJ is equipped with theorem proving facilities
[6], while Maude with model checking facilities. Whenever a property fails to
be proved in CafeOBJ, a counterexample is desired. In this situation, Maude is
a better alternative than other model checking tools for the following reasons:
(1) it is a sister language of CafeOBJ and has similar syntax, which reduces
duplicate effort at specification level, and (2) the efficiency of Maude model
checking facilities is comparable to those of other prevalent tools like SPIN [7].



Specifications of state machines in CafeOBJ are equational theory specifica-
tions (EQT Specs), and in Maude are rewrite theory specifications (RWT Specs).
There are multiple styles of equational theory or rewrite theory specifications of
state machines. EQT Specs in this paper only refer to a class of specifications
that are developed in OTS/CafeOBJ method [8], and RWT Specs to a sub-class
of rewrite theory specifications where states are represented by sets of observ-
able components and action components (see Section 2.3 for details). Automatic
translation from EQT Specs to RWT Specs is much more preferable because
manually developing an RWT Spec for the state machine that is specified by
an EQT Spec is not only effort-consuming, but at risk of causing inconsistencies
between the EQT Spec and the RWT Spec. Recently, studies on the specification
translation of state machines between the two formalisms have been conducted.
Three strategies have been proposed so far to automate the translation and
translators have been developed [9,10,11]. However, specifications generated by
these strategies are rarely used in practice for model checking due to the low
efficiency of the translated specifications.

This paper proposes a translation strategy for a specific sub-class of EQT
Specs, aiming at generating more efficient model checkable RWT Specs. We
argue that not all EQT Specs can be translated into RWT Specs, and hence
introduce a specific class of EQT Specs called EADS Specs from a practical point
of view. EADS Specs are mainly used to specify a class of asynchronous systems
called Extended Asynchronous Distributed Systems (EADS). We compare the
efficiencies of translated specifications that are obtained in different strategies
with two concrete examples. The experimental result indicates that the efficiency
of translated specifications is significantly improved. The contributions of this
work are manifold: (1) a specific class (EADS Specs) of EQT Specs that are used
for practical verifications are discovered; (2) a translation strategy is proposed
to automate the translation from EADS Specs into RWT Specs; and (3) the
efficiency of translated specifications is significantly improved so that they can
be used by Maude for practical model checking.

The rest of this paper is organized as follows: Section 2 introduces state
machines, EQT Specs and RWT Specs. Section 3 introduces EADS Specs and
explains the reason why EADS Specs are selected. Section 4 describes a strategy
for the translation from EADS Specs into RWT Specs. The efficiency of the
specifications generated by our strategy is evaluated through comparing with
those generated by three existing strategies in Section 5. Section 6 concludes
this paper and mentions ongoing work.

2 Preliminaries

2.1 State machines

A state machine consists of (1) a set U of states, (2) the set I(I ⊆ U) of
initial states, and a set T of transitions. Each u ∈ U is a (possibly infinite)
record {l1 = d1, l2 = d2, . . .} of type {l1 : D1, l2 : D2, . . .}, where D with a
subscript such as Di is a type for data. For convenience, we let li(u) denote li’s
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corresponding value di in state u. Each transition t ∈ T is a binary relation over
states.

Let us consider a mutual exclusion protocol called Qlock to show how to
model dynamic systems with state machines. Multiple processes participate in
Qlock and each process p executes the following program:

Loop
rs: enqueue(queue,p);

ws: repeat until top(queue) = p;
critical section;

cs: dequeue(queue);

The queue records the processes that are requesting to enter the critical section
according to the request order. Initially, all processes are at label rs, and the
shared queue is empty. A process p puts its process identifier at the bottom of
the queue and then waits to enter the critical section. It is allowed to enter the
critical section whenever its identifier is at the top of the queue and it is at the
label ws. The process executes the dequeue operation on the shared queue when
it leaves the critical section.

Let Queue, Label and Pid be types respectively for queues of process identi-
fiers, labels (rs, ws and cs) and process identifiers (p1, p2, . . .). A state machine
MQlock modeling Qlock is as follows:

– UQlock , {u|u : {queue : Queue, pc1 : Label, pc2 : Label, . . .}};
– IQlock , {u0 ∈ UQlock|queue(u0) = empty, pci(u0) = rs for each process pi};
– TQlock , {want1, want2, . . .} ∪ {try1, try2, . . .} ∪ {exit1, exit2, . . .}.
• (u, u′) ∈ wanti iff pci(u) = rs, pci(u

′) = ws, queue(u′) = (pi|queue(u))
and pcj(u

′) = pcj(u) for each process pj s.t. pj 6= pi;
• (u, u′) ∈ tryi iff pci(u) = ws, top(queue(u)) = k, pci(u

′) = cs, queue(u) =
queue(u′) and pcj(u

′) = pcj(u) for each pj 6= pi;
• (u, u′) ∈ exiti iff pci(u) = cs, queue(u′) = dequeue(queue(u)), pci(u

′) =
rs and pcj(u

′) = pcj(u) for each pj 6= pi.

Fig. 1 shows a part of state transitions in MQlock. An arrow labelled by a
transition t from a state u to u′ denotes (u, u′) ∈ t. Elements in queues are
concatenated by |. The rightmost element is taken as the top one in the queue.

2.2 EQT Specs

EQT Specs are based on equational logic in the sense that transitions are speci-
fied with a set of equations. Let Υ be a sort for states. An EQT Spec consists of
(1) a finite set O of observers, (2) a constant init of Υ , representing an arbitrary
initial state, (3) a finite set A of actions, and (4) a family E of sets of equations.
Each observer o is a function symbol whose rank is Υ Do1 . . . Dom → Do. An
observer corresponds to a (possibly infinite) set of data fields in a state in state
machines. Each action a is a function symbol whose rank is Υ Da1 . . . Dan → Υ .
An action a represents a (possibly infinite) set of transitions in state machines.
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u0

u1 u2

u3 u4

u5

want2want1

try1 want2

exit1

exit1

u0 = {queue = empty, pc1 = rs, pc2 = rs, . . .}

want2 try1

u1 = {queue = p1, pc1 = ws, pc2 = rs, . . .}
u2 = {queue = p2, pc1 = rs, pc2 = ws, . . .}
u3 = {queue = p1, pc1 = cs, pc2 = rs, . . .}
u4 = {queue = p2|p1, pc1 = ws, pc2 = ws, . . .}
u5 = {queue = p2|p1, pc1 = cs, pc2 = ws, . . .}

Fig. 1. State transitions in the state machine of Qlock

Each action a is given a function symbol c-a with the same arity of a and Bool
as its coarity, denoting the condition under which a transition represented by
action a takes place. E consists of a set Einit of equations which init must sat-
isfy, and a set Ea of equations for each action a which can be interpreted as the
definition of a set of transitions denoted by a.

We take an EQT Spec SQlock for MQlock as an example. Let Pid, Queue,
and Label be sorts for process identifiers, queues and labels1. Function symbols
enqueue, dequeue and top correspond to basic functions enqueue, dequeue and
top on type Queue. Constants rs, ws and cs are of sort Label, corresponding
to labels rs, ws and cs, respectively.

OQlock , {pc : Υ Pid → Label, queue : Υ → Queue};

AQlock , {want : Υ Pid → Υ, try : Υ Pid → Υ, exit : Υ Pid → Υ};

EQlock , {Einit, Ewant, Etry, Eexit}, where:

Einit , {pc(init, x) = rs, queue(init) = empty}
Ewant , {c-want(υ, y) = pc(υ, y)

.
= rs

SQlock

pc(want(υ, y), x) = (if x
.
= y then ws else pc(υ, x) fi) if c-want(υ, y)

queue(want(υ, y)) = (y|queue(υ)) if c-want(υ, y)
want(υ, y) = υ if ¬c-want(υ, y)}

Etry , {c-try(υ, y) = pc(υ, y)
.
= ws ∧ top(queue(υ))

.
= y

pc(try(υ, y), x) = (if x
.
= y then cs else pc(υ, x) fi) if c-try(υ, y)

queue(try(υ, y)) = queue(υ) if c-try(υ, y),
try(υ, y) = υ if ¬c-try(υ, y)}

Eexit , {c-exit(υ, y) = pc(υ, y)
.
= cs

pc(exit(υ, y), x) = (if x
.
= y then rs else pc(υ, x) fi) if c-exit(υ, y)

queue(exit(υ, y)) = dequeue(queue(υ)) if c-exit(υ, y)
exit(υ, y) = υ if ¬c-exit(υ, y)}

where υ is a variable of Υ , and x, y are of Pid. Symbol
.
= denotes equivalence

relations over data types. Every variable in an equation (or a rewriting rule) is
universally quantified and its scope is in the equation (or the rewriting rule).

1 By convention, symbols like sorts, constants and function symbols at specification
level are differentiated from those at mathematical level by using typewriter font.
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The observer queue specifies the field queue : Queue in the record type in
MQlock, and pc specifies an infinite set of fields {pc1 : Label, pc2 : Label, . . .}.
Constant init together with Einit specifies IQlock. Action want corresponds to
an infinite set {want1, want2, . . .} of transitions. The set Ewant of equations can
be interpreted as the definition of the set of transitions. Actions try and exit

together with Etry and Eexit specify the sets of transitions {try1, try2, . . . , } and
{exit1, exit2, . . . , }. Term want(υ, y) represents a successor of the state denoted
by υ if c-want(υ, y) holds. Otherwise, want(υ, y) is considered equivalent to υ.

States in MQlock are represented by terms of Υ . For example, states u0, u1,
and u4 as shown in Fig. 1 are represented by terms init, want(init, p1), and
want(want(init, p1), p2), respectively. Taking u1 for instance, we have pc1(u1) =
ws. Term pc(want(init, p1), p1) equals ws for the following reasons. According
to the second equation in Ewant with υ being init, x and y being p1, we have

pc(want(init, p1), p1) = (if p1
.
= p1 then ws else pc(init, p1) fi)

if c-want(init, p1)

According to the first equation in Einit, pc(init, p1) is equivalent to rs, which
indicates c-want(init, p1) holds. Because p1

.
= p1 holds, the right-hand side

(RHS) of the equation above equals ws, namely that pc(want(init, p1), p1)
equals ws. Similarly, we have pc(want(init, p1), pi) equals rs for pi(i > 1) and
queue(want(init, p1)) equals p1.

2.3 RWT Specs

RWT Specs are based on rewriting logic in the sense that transitions are specified
by rewriting rules. A state is represented as a set of components denoted by sort
State. Components in a state can be divided into two kinds, namely action
components and observable components whose sorts are AComp and OComp as
subsorts of State. Each action component corresponds to a set of transitions in
state machines, and each observable component to a data field in a state.

An RWT Spec consists of (1) a finite set OC of observable component con-
structors, (2) a finite set AC of action component constructors, (3) a set F of
function symbols for the representation of initial states, with a set EF of equa-
tions for the function symbols in F , and (4) a finite set R of rewriting rules. Each
observable component constructor o[ , . . . , ]: is a function symbol whose rank
is Do1 . . . Dom Do → OComp. We adopt mixfix operators in CafeOBJ and Maude.
An underscore indicates the place where an argument is put. An observable com-
ponent constructor corresponds to a (possibly infinite) set of fields of record type
(i.e. the type of states) in a state machine. An observable component is expressed
by a term whose top is o[ , . . . , ]: . Each action component constructor ac is a
function symbol whose rank is SetDt1 . . . SetDtn → AComp, where SetDti is a
sort for sets of elements of Dti

2. An action component is expressed by a term

2 Basic operations on SetDtk follow the definition of basic set in [5, chap. 5]. Whites-
pace character is defined as concatenation operation which is associative and com-
mutative. Therefore, variable yk of Dtk can be any element of Dtk in a pattern
(yk ysk), where variable ysk is of SetDtk.
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whose top is ac, corresponding to a set of transitions in state machines. One
rewriting rule in R specifies a (possibly infinite) set of transitions. For instance,
the following rewriting rule specifies all transitions in {want1, want2, . . .}

want((y ys)) (queue: q) (pc[y]: l)⇒
want((y ys)) (queue: (y|q)) (pc[y]: ws) if l

.
= rs,

where, q is a variable of sort Queue and l of Label. A state containing the fields
queue = q′ and pci = rs is partially denoted by want(pi ys)(queue: q)(pc[y]: l).
The term is rewritten into want(pi ys)(queue: (pi|q′))(pc[pi]: ws), which means
that the two corresponding data fields in a state are changed into queue = (pi|q′)
and pci = ws. The rewriting rule says that if there is a process y whose label
is rs and a queue is q in a state, there is a successor state where the label of
process y becomes ws and the queue (y|q).

An RWT Spec SQlock that specifies the state machine MQlock is as follows:

OCQlock , {pc[_]:_: Pid Label → OComp, queue:_: Queue → OComp};
ACQlock , {want: SetPid → AComp, try: SetPid → AComp, exit: SetPid → AComp};
FQlock , {init: SetPid → State, mk-pc: SetPid → State};
EFQlock

, {init(ys) = want(ys) try(ys) exit(ys) (queue: empty) mk-pc(ys),
mk-pc(empty-set) = empty-state,
mk-pc(y ys) = (pc[y]: rs) mk-pc(ys)}

RQlock , {rwwant, rwtry, rwexit}, where:
rwwant , want((y ys))(pc[y]: l)(queue: q) ⇒

want((y ys))(pc[y]: ws)(queue: (y|q)) if l
.
= rs,

rwtry , try((y ys))(pc[y]: l)(queue: q) ⇒
try((y ys))(pc[y]: cs)(queue: q) if l

.
= ws and top(q)

.
= y,

rwexit , exit((y ys))(pc[y]: l)(queue: q) ⇒
exit((y ys))(pc[y]: rs)(queue: dequeue(q)) if l

.
= cs

SQlock

The sort SetPid denotes sets of process identifiers. Given a term ps denoting
a set of process identifiers, init(ps) denotes the initial state when the pro-
cesses participate in Qlock. Three rewriting rules rwwant, rwtry and rwexit in
RQlock specify three sets of transitions {want1, want2, . . .}, {try1, try2, . . .}, and
{exit1, exit2, . . .} in MQlock.

3 State Machines Specifiable in RWT Specs

In RWT Specs, segments of states used in rewriting rules consist of one action
component, and a finite collection of observable components. When a rewriting
rule is applied to a state, only a segment of the state that matches the LHS
can be changed and the rest keeps unchanged. Since one observable component
corresponds to an element in a state in state machines, the number of values
that are changed by a rewriting rule must be finite. Hence, if a rewriting rule
can be declared for a transition (u, u′) ∈ t in a state machine, the number of
data fields in u that are different from their corresponding data fields in u′ must
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be finite, and the changes of these data fields from u to u′ depends on a finite
number of data fields in u.

However, the condition is not sufficient. Let us consider a state machine where
states are of type {l0 : N, l1 : N, . . .}. The initial state is {l0 = 0, l1 = 0, l2 =
0, l3 = 0, . . .}. There is only one transition inc s.t. (u, u′) ∈ inc iff for each i : N
if i ≤ l0(s) then li(u

′) = li(u) + 1, otherwise, li(u
′) = li(u). The transition chain

from the initial state is like:

{l0 = 0, l1 = 0, l2 = 0, l3 = 0, . . .} inc−→ {l0 = 1, l1 = 0, l2 = 0, l3 = 0, . . .} inc−→
{l0 = 2, l1 = 1, l2 = 0, l3 = 0, . . .} inc−→ {l0 = 3, l1 = 2, l2 = 1, l3 = 0, . . .} inc−→ . . .

The transition inc cannot be specified in the way of RWT Specs, because the
numbers of changed natural numbers from u to u′ vary for all (u, u′) ∈ inc,
although inc can be specified in equational theories. After each transition, the
number of changed natural numbers is increased and unbounded. Hence, for
each transition t ∈ T in a state machine which is specifiable in an RWT Spec,
there must be only a bounded number of elements changed from u to u′ for each
(u, u′) ∈ t. Moreover, each changed value in u′ must depend upon a bounded
number of elements in u. We call the state machines that satisfy the condition
are double bounded, and corresponding EQT Specs double bounded EQT Specs.
Any state machines that can be specified in RWT Specs are double bounded.

To automatically generate an RWT Spec from an EQT Spec, we first need
to check if the EQT Spec, namely the state machine denoted by it, is double
bounded. However, it is not decidable for all EQT Specs whether they are double
bounded. We have such a concrete EQT Spec which cannot be decided to be
double bounded or not.

Let us consider an EQT Spec SPCP that specifies a state machine of finding
solutions to Post’s Correspondence Problem (PCP)[12]. Let pcp-instance be an
arbitrary instance of PCP on the alphabet {a, b}, and Seq be a sort for sequences
of natural numbers.

– OPCP , {isSolution : Υ Seq→ Bool}
– TPCP , {solve : Υ → Υ}
– EPCP , {Einit, Esolve}
• Einit , {isSolution(init, sq) = false}
• Esolve , {isSolution(solve(υ), sq) = check(pcp-instance, sq)}

where, isSolution(υ, sq) denotes if sq is a solution to pcp-instance in υ, and
solve(υ) denotes a successor of υ. The function symbol check denotes a func-
tion that checks if sq is a solution to pcp-instance. Since it is undecidable if
pcp-instance has solutions according to the undecidability of PCP, it is also
undecidable if the number of values observed by isSolution and changed from
υ to its successor state solve(υ) is bounded.

To automate the translation from EQT Specs into RWT Specs, some con-
straints need to be imposed on EQT Specs. We focus on a specific class of double
bounded EQT Specs called EADS Specs. Without loss of generality, we suppose
that a special sort Pid is predefined for the processes (or principals) in dynamic
systems. All EADS Specs must conform to the following syntax-level constraints:
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1. Each o ∈ O should be declared in the form of o : Υ → Do or o : Υ Pid→ Do;
2. If there exists o ∈ O s.t. o : Υ Pid → Do, the declaration of each a ∈ A

should be one of the following two forms:
(a) a : Υ {Da1 . . . Dan} → Υ , where each Dai cannot be Pid 3;
(b) a : Υ Pid {Da2 . . . Dan} → Υ ;
Otherwise, there is no restriction on the declaration of each a ∈ A;

3. If there exists o ∈ O s.t. o : Υ Pid→ Do, equations declared for t w.r.t o are
in one of the following forms:

(a) for o : Υ → Do and a : Υ {Da1 . . . Dan} → Υ (Dai cannot be Pid):
o(a(υ{, y1, . . . , yn})) = Toa if c-a(υ{, y1, . . . , yn});

(b) for o : Υ Pid→ Do and a : Υ {Da1 . . . Dan} → Υ (Dai cannot be Pid):
o(a(υ{, y1, . . . , yn}), y) = o(υ, y);

(c) for o : Υ → Do and a : Υ Pid {Da2 . . . Dan} → Υ :
o(a(υ, y1{, y2, . . . , yn})) = Toa if c-a(υ, y1{, y2, . . . , yn});

(d) for o : Υ Pid→ Do and a : Υ Pid {Da2 . . . Dan} → Υ :
o(a(υ, y1{, y2, . . . , yn}), y) = (if y

.
= y1 then Toa else o(υ, y) fi) if

c-a(υ, y1{, y2, . . . , yn});
where, Toa is a term which represents the result into which the value observed
by o is changed by action a. If all observers o ∈ O are in the form of o :
Υ → Do, equations must be in form of (3a), but each Dai can be any sort
for data elements.

4. All observers o′ ∈ O (can be o) in Toa and c-a(υ, y1{, y2, . . . , yn}) must be
used in the form of o′(υ{, y1});

5. Only observers, actions and the function symbol c-a associated to each action
a can have Υ in their arity;

6. No actions are used in oa(υ, y1, {y2, . . . , yn}) and c-a(υ, y1{, y2, . . . , yn}).
Assume an EADS Spec specifies a state machineM. Constraint 1 indicates that
there are only two kinds of data fields inM. One is called system-level data field
which is denoted by o : Υ → Do and the other is process-level data field denoted
by o : Υ Pid → Do. Constraint 2 indicates whenever there are process-level
data fields in M, only two kinds of transitions are allowed in M. One is called
system-level transition represented by a : Υ {Da1 . . . Dan} → Υ and the other is
process-level transition represented by a : Υ Pid {Da2 . . . Dan} → Υ . Constraint
3 assures that only a bounded number of values in data fields in a state are
changed by a transition. Equations 3a and 3b indicate that in the dynamic
system only system-level values can be changed by system-level transitions, and
equations 3c and 3d indicate a process-level transition can only change system-
level values and the process’s own values. Constraint 4 indicates a process-level
transition executed by a process can only access the system-level data fields and
the process-level data fields owned by the process. Constraint 5 guarantees that
the number of terms representing data fields in Toa is bounded and the result
of Toa depends on only these terms, namely that the change of each data field
depends upon a bounded number of data fields, so does each condition for each
action. Constraint 6 assures that each action can be interpreted as a transition.

3 Contents in { and } may or may not occur.
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EADS Specs specify a class of asynchronous distributed systems such as
communication protocols and distributed mutual exclusion protocols, and some
class of asynchronous shared-memory systems such as Qlock. These systems
are characterized by the two main features: (1) A system consists of multiple
processes (or principals, etc.) and some shared resources, and (2) Each process
(or principal) has only bounded number of components, and each process is only
allowed to access and modify its own components, besides shared resources.

4 Translation Strategy

The translation from an EADS Spec to an RWT Spec consists of two phases.
The first phase is to construct observable component constructors OC and action
component constructors AC from O and A, and to generate rewriting rules R
from E . The second phase includes optimizations of translated RWT Specs and
the construction of initial states for the optimized RWT Specs.

4.1 Generation of OC and AC

Observable component constructors OC and action component constructors AC
can be directly generated from the declarations of observers O and actions A.
Fig. 2 shows the translation from the declarations of observers and actions to
declarations of both observable and action component constructors.

o : Υ → Do

o : Υ Pid → Do

a : Υ Da1 . . . Dan → Υ

o: : Do → OComp

o[ ]: : Pid Do → OComp

a : SetDa1 . . . SetDan → AComp

O&A OC&AC

Fig. 2. The translation from O and A into OC and AC

4.2 Generation of R

For each action a ∈ A in an EADS Spec S, we construct a rewriting rule to
specify the same set of transitions that are denoted by a in a state machine.

For a ∈ A s.t. a : Υ Da1 . . . Dan → Υ (n ≥ 0), a denotes a set of system-level
transitions, by which only system-level data fields can be accessed. Therefore,
we only need to consider those observers that denote system-level data fields in a
state υ. For o ∈ O s.t. o : Υ → Do, o(υ) denotes the value of a system-level data
field in υ. According to the equation 3a, o(υ) is changed into Toa↓S 4 when c-a(υ)
holds. We introduce a fresh variable do of Do denoting the value denoted by o(υ)

4 Toa↓S represents the canonical form of Toa in context S.
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in a data field. We assume there are m(m ≥ 1) observers s.t. O = {o1, . . . , om}.
A rewriting rule that is constructed from a and Ea is as follow:

a((y1 ys1), . . . , (yn, ysn))(o1: o1(υ)) . . . (om: om(υ))⇒ a(y1 ys1), . . . , (yn, ysn))
(o1: To1a↓S) . . . (om: Toma↓S) if c-t(υ)↓S ,

with terms o1(υ), . . . , om(υ) substituted by do1 , . . . , dom respectively. In the rewrit-
ing rule, each component at LHS has a corresponding successor at RHS. The
action component (if there is) keeps unchanged. The change of observable com-
ponents like from (o : o(υ)) to (o: Toa↓S) exactly denotes the one from o(υ) to
Toa↓S in the original EQT Spec. Note that Toa↓S can be o(υ), which means that
corresponding shared resource is not changed. If o(υ) is also not used by other
observable component, it can be removed from the rewriting rule. This step is
called optimization (see Subsection 4.3 for details). Moreover, if all observers
o ∈ O are declared like o : Υ → Do, Dai in the declaration of a can be any sort,
otherwise, Dai cannot be Pid, according to Constraint 2.

For a ∈ A s.t. a : Υ Pid Da2 . . . Dan → Υ (n ≥ 0), a denotes a process-level
transition. Besides system-level data fields, a process-level transition can access
process-level data fields in the process where the transition takes place. Let y1
be a variable of Pid and y2, . . . , yn be variables of Da2, . . . , Dan respectively.
We consider a process-level transition denoted by a w.r.t. y1 and parameters
y2, . . . , yn. For each o ∈ O s.t. o : Υ → Do, we deal with it similarly like in
the construction of rewriting rules for system-level transitions. For each o ∈ O
s.t. o : Υ Pid → Do, among process-level data fields denoted by o, only those
owned by y1 can be accessed. In the state denoted by υ, the value in a process-
level data field of the process y1 w.r.t. o is denoted by o(υ, y1). According to the
equation 3d, it is changed into Toa↓S in the successor a(υ, y1, y2, . . . , yn) under the
condition that c-a(υ, y1, y2, . . . , yn) holds. We introduce a fresh variable do of Do

corresponding to o(υ, y1). We assume that the first k observers are in the form of
o : Υ → Do and rest of o : Υ Pid→ Do in m observers {o1, . . . , ok, ok+1, . . . , om}.
A rewriting rule specifying a set of system-level transitions denoted by action a
and Ea w.r.t. y1, y2, . . . , yn is as follow:

a((y1 ys1), (y2 ys2), . . . , (yn ysn)) (o1: o1(υ)) (ok: ok(υ))(ok+1[y1]:
ok+1(υ, y1)) . . . (om[y1]: om(υ, y1))⇒ a((y1 ps1), (y2 ys2), . . . , (yn ysn))
(o1: To1a↓S) . . . (ok: Toka↓S)(ok+1[y1]: Tok+1a↓S) . . . (om[y1]: Toma↓S)
if c-t(υ, y1, y2, . . . , yn)↓S ,

with terms o1(υ), . . . , ok(υ), ok+1(υ, y1), . . . , om(υ, y1) substituted by variables
do1 , . . . , dok , dok+1

, . . . , dom , respectively.
For instance, SQlock is an EADS Spec, according to the four restrictions. Fig. 3

shows the translation of the declarations of observers and actions in SQlock into
the declarations of observable component constructors and action component
constructors in SQlock. According to Ewant in SQlock, we construct the following
rewriting rule to specify the set of transitions denoted by the action want:

want((y ys))(pc[y]: pc(υ, y)) (queue: queue(υ))⇒ want((y ys))(pc[y]:
pc(want(υ, y), y)↓SQlock

) (queue: queue(want(υ, y))↓SQlock
if c-want(υ, y)↓SQlock

.

10



pc : Υ Pid → Label

queue : Υ → Queue

want : Υ Pid → Υ

try : Υ Pid → Υ

pc[ ]: : Pid Label → OComp

queue: : Queue → OComp

want : SetPid → TComp

try : SetPid → TComp

OQlock&AQlock OCQlock&ACQlock

exit : Υ Pid → Υ exit : SetPid → TComp

Fig. 3. The translation from OQlock and AQlock into OCQlock and ACQlock

According to Ewant, pc(want(υ, y), y) is reduced to ws, queue(want(υ, y)) to
(y|queue(υ)) and c-want(υ, y) to pc(υ, y)

.
= rs. Consequently, we obtain the

following rewriting rule:

want((y ys))(pc[y]: pc(υ, y)) (queue: queue(υ))⇒ want((y ys))(pc[y]: ws)
(queue: (q|queue(υ))) if pc(υ, y)

.
= rs.

Further, we substitute l for pc(υ, y) and q for queue(υ), then we obtain the
rewriting rule rwwant:

want((y ys))(pc[y]: l) (queue: q)⇒ want((y ys))(pc[y]: ws) (queue: (y|q))
if l

.
= rs.

Similarly, we can construct the rewriting rules rwtry and rwexit for the ac-
tions try and exit in SQlock.

4.3 Optimization of RWT Specs

Generated RWT Specs need to be optimized so that they can be efficiently model
checked in Maude. In Maude, rewriting with both equations and rules takes place
by matching an LHS against a subject term and evaluating the corresponding
condition [5, chap. 1]. Hence, the less complex the LHS and the condition of a
rewriting rule are, the less time it takes to match a term to the LHS and to
evaluate the condition, respectively.

A general way of optimizing rewriting rules is deleting redundant terms.
In an RWT Spec, action components are not changed in rewriting rules. From
the program point of view, it provides necessary variables that guarantee the
rewriting rule is executable, because Maude generally requires variables that
occur in the RHS or condition must occur in the LHS to make rewriting rules
executable [5, chap. 6]. However, some variables in an action component may be
also used by some observable components at the LHS in rewriting rules. In this
situation, these variables in the action component become redundant. We take
the rewriting rule rwwant in SQlock for instance. The variable y in want((y ys))
is also used in (pc[y]: l). Since there is only one parameter taken by the action
component constructor want, deleting x means that we can delete the whole
action component. After deleting want((y ys)), we obtain a simpler rewriting
rule, as follow:

11



(pc[y]: l)(queue: q)⇒ (pc[y]: ws)(queue: (y|q)) if l
.
= rs.

Another case is that when a parameter yk, k ∈ {1, . . . , n} in an action com-
ponent of a occurs in some observable components at LHS of a rewriting rule or
yk occurs neither in any observable components at RHS nor in condition, we can
remove the kth parameter of a, and consequently revise the declaration of a in
AC. If all parameters of a are removed, the action component can be removed.

Redundant observable components in rewriting rules can also be deleted.
An observable component is redundant when the value in it is neither changed
by the transition, nor used by other components or in conditions. A redundant
observable component can be deleted directly from both the sides of rewriting
rules, without changing the meaning of the rewriting rules.

Another optimization is to simplify or delete the condition of a rewriting
rule. The optimization is achieved by equivalent replacement. We assume that
the condition is a conjunction. If a conjunct in the condition is an equivalence
relation in the form of x

.
= T and x occurs in neither T nor the other part of the

condition, where x is a variable and T is a term, we can replace x that occurs
in the both sides of the rewriting rule with T and delete the conjunct from the
condition. For instance, the rewriting rule can be further simplified to be the
following one:

(pc[y]: rs)(queue: q)⇒ (pc[y]: ws)(queue: (q|y)).

An optimized RWT Spec of Qlock is as follow:

OC′
Qlock , {pc[_]:_: Pid Label → OComp, queue:_: Queue → OComp};

F ′
Qlock , {init: SetPid → State, mk-pc: SetPid → State};

E ′
F ′

Qlock
, {init(ys) = (queue: empty) mk-pc(ys),

mk-pc(empty-set) = empty-state,
mk-pc(y ys) = (pc[y]: rs) mk-pc(ys).}

R′
Qlock , {rwwant, rwtry, rwexit}, where:
rwwant , (pc[y]: rs)(queue: q) ⇒ (pc[y]: ws)(queue: (y|q));
rwtry , (pc[y]: ws)(queue: q) ⇒ (pc[y]: cs)(queue: q) if top(q)

.
= y;

rwexit , (pc[y]: cs)(queue: q) ⇒ (pc[y]: rs)(queue: dequeue(q)).

S′
Qlock

AC′
Qlock , ∅;

4.4 Generation of F and EF

The last step is to construct a set F of function symbols and a set of equations EF
for F to specify initial states in an RWT Spec S, according to the specification
of the initial states denoted by init in the original EQT Spec S.

For each o ∈ O in S s.t. o : Υ → Do, the value of the data field corresponding
to o in initial states is o(init)↓S . Consequently, an observable component (o :
o(init)↓S) in S can be constructed to correspond to the data field. For each
observer o ∈ O s.t. o : Υ Pid → Do, the value of the data field corresponding
to o with a process y in initial states is denoted by o(init, y)↓S . Hence, the data
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field can be denoted by the observable component (o[y] : o(init, y)↓S). Given a
set of processes, to construct a set of observable components that represent all
data fields corresponding to o in the initial states, we define an auxiliary function
which is denoted by mk-o : PidSet → State. The following two equations are
declared for mk-o:

mk-o(empty-set) = empty-state,
mk-o(y ys) = (o[y] : o(init, y)↓S) mk-o(ys),

where y is a variable of Pid and ys of SetPid. Let sai(1 ≤ i ≤ n) denote
a set of elements of SetDai that are used in the specified system. The action
component of a in the initial states can be constructed as a(sa1, . . . , san), for
each a : SetDa1 . . . SetDan → TComp.

We suppose OC consists of m observable component constructors, where the
first k constructors are declared as oi: : Doi → OComp for i = 1, . . . , k, and
the rest as oi[ ]: : Pid Doi → OComp for i = k + 1, . . . ,m. We also suppose
OA consists of n action component constructors a1, . . . , an and each aj takes lj
parameters for j = 1, . . . , n. Let {SetD1, . . . , SetDn′} be the set of all sorts that
are taken by at least one component constructor in AC. We declare a function
symbol init s.t. init : SetPid SetD1 . . . SetDn′ → State, and declare the
following equation for init:

init(ys, sd1, . . . , sdn′) = (o1 : o1(init)↓S) . . . (ok : ok(init)↓S) mk-ok+1(ys) . . .
mk-om(ys) a1(sd11, . . . , sd1l1) . . . an(sdn1, . . . , sdnln),

where each sdi(1 ≤ i ≤ n′) is a variable of SetDi, and each sdjw(1 ≤ j ≤ n, 1 ≤
w ≤ lj) is one of sd1, . . . , sdn′ . Consequently, we obtain a set of function symbols
F = {init,mk-ok+1, . . . ,mk-om}, and a set EF of equations that are declared
for init and mk-ok+1, . . . ,mk-on.

We take the construction of F ′Qlock and E ′F ′
Qlock

for S′Qlock as an example.

Since AC′Qlock is empty, we only need to consider OC′Qlock. Sort Pid is taken as
a parameter sort, therefore init is declared as init : PidSet → State, and
we have init(ys) = (queue: queue(init)↓SQlock

) mk-pc(ys). That is init(ys) =
(queue:empty) mk-pc(ys), and the equations declared for mk-pc : PidSet →
State are as follows:

mk-pc(empty-set) = empty-state

mk-pc(y ys) = (pc[y]: rs) mk-pc(ys).

4.5 Principles of defining EADS Specs for efficient RWT Specs

Given an extended asynchronous distributed system, we can develop one or more
EADS Specs, which consequently correspond to different RWT Specs generated
by the proposed strategy. The efficiency of RWT Specs varies according to the
complexity of rewriting rules. Some principles should be followed to develop
EADS Specs from which efficient RWT Specs can be generated: (1) condition
should be in conjunction form if possible, and (2) each conjunct should be in the
form of o(υ{, x1}) .

= T if possible, where T is a term.
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We take rwtry in SQlock for instance. To be able to remove the condition
top(q)

.
= y, we need to revise the condition c-try(υ, y) in SQlock, according to

the two principles. The condition top(q)
.
= y corresponds to top(queue(υ)) = y

in SQlock which means that y is at the top of the shared queue in state υ. An
equivalent condition is queue(υ)

.
= (y | q). Consequently, we need to revise the

declaration of try and Etry, like:

try : Υ Pid Queue → Υ , and
Etry , {c-try(υ, y, q) = pc(υ, y)

.
= ws ∧ queue(υ)

.
= (y | q),

pc(try(υ, y, q), x) = if x
.
= y then cs else pc(υ, x) fi if c-try(υ, y, q),

queue(try(υ, y, q)) = queue(υ) if c-try(υ, y, q),
try(υ, y, q) = υ if ¬c-try(υ, y, q)}

The translated rewriting rule of the modified Etry is:

try((y ys), (q1 qs))(pc[y]: l)(queue: q)⇒ try((y ys), (q1 qs))
(pc[y]: cs)(queue: q) if l

.
= ws and q

.
= (y | q1),

where q1 is a variable of Queue and qs1 of SetQueue. After the optimization, we
obtain a much simpler rewriting rule rwtry:

(pc[y]: ws)(queue: (y | q1))⇒ (pc[y]: cs)(queue: (y | q1))

5 Experimental Results

To the best of our knowledge, three strategies for the translation of specifications
of state machines from CafeOBJ to Maude have been proposed. An implemen-
tation of the most straightforward strategy (called TS1) is described in [11].
Another strategy (called TS2) is proposed and its implementation is described
in [9]. Yet another strategy (called TS3) is proposed in [10] and its implementa-
tion is described in [11]. We take Qlock and NSPK as examples to evaluate the
efficiency of the specifications translated by our proposed strategy by comparing
with the three strategies. The efficiency is measured by the number of states in
the state space from initial states with the same depth and the time that Maude
takes to finish searching these states. We use S†, S‡, S? and S> to denote spec-
ifications generated by TS1, TS2, TS3 and the proposed one in this paper. S∗
denotes manually developed specifications. The experiment has been conducted
on Ubuntu in a laptop with 2x1.20GHz Duo Core processor and 4GB memory.

Table 1 shows that the number of states increases with the increase of depth,
which consequently causes time on model checking to increase. Except in S†Qlock,
the number of states in other specifications is the same with the same depth. This
is because states in S†Qlock are implicitly represented like in EQT Specs, while
states in other specifications are explicitly represented by a set of components.
The time spent in S>Qlock is the least and is the same as the one in S∗Qlock,

indicating that the efficiency of S>Qlock is higher than other translated ones, and
equal to the manually developed one. Searching fails when the depth is 9 in
both S‡Qlock and S?Qlock in a reasonable time, but successfully finishes in S>Qlock,
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Table 1. Times (ms) taken by Maude for checking the mutual exclusion property of
Qlock with 9 processes, and the number of states traversed in different depths.

(a) Time on model checking

S†Qlock S‡Qlock S?
Qlock S>

Qlock S∗Qlock

1 0 0 0 0 0

3 116 64 20 8 8

5 20361 2596 764 268 268

7 – 33458 16373 5336 5336

9 – – – 42072 42072

(b) The number of states traversed

S†Qlock S‡Qlock S?
Qlock S>

Qlock S∗Qlock

1 10 10 10 10 10

3 748 667 667 667 667

5 36262 22339 22339 22339 22339

7 – 339859 339859 339859 339859

9 – – – 1609939 1609939

although the number of the states in the three specifications are the same. This
is because the efficiency of a specification depends upon not only the state space,
but the forms of rewriting rules in the specification, as explained in Section 4.3.

NSPK is a security protocol to achieve mutual authentication between two
principals over network [13]. To generate a rewrite theory specification from the
corresponding equational theory specification of NSPK, the existing translation
strategies require a fixed number of nonces and messages. Hence, we need to fix
both of the numbers of random numbers and principals. However, the number
of messages are huge, which consequently makes the terms representing states
huge. For instance, 3 principals and 2 random numbers lead to 18 nonces and
32076 different messages. Moreover, the huge number of messages drastically
increases the number of rewriting rules in the target specifications, and hence it
becomes impossible to reasonably model check the generated specifications. In
our approach, we do not need to fix the number of nonces and messages thanks
to the optimization, to generate an RWT Spec of NSPK. The generated Maude
specification is denoted by S>NSPK and the manually developed one by S∗NSPK.

Table 2 shows that the time that is spent on searching in S>NSPK is more than
in S∗NSPK , although the number of states in S>NSPK is the same as the one in
S∗NSPK with the same depth. It indicates a translated specification by the pro-
posed strategy may not be the most optimized one because some optimizations
cannot be automatically done. For example, if a condition in a rewriting rule
is in the form of ¬(x

.
= u), we cannot automatically transform the rewriting

rule into an unconditional one. It takes some more time on pattern matching.
However, both of the specifications are comparably efficiently model checked.

Table 2. Times (ms) taken by Maude to model check the secrecy property for NSPK
with 3 principals, and the number of states traversed in different depths.

(a) Time on model checking

1 2 3 4 5

S∗NSPK 0 4 36 716 24617

S>
NSPK 0 4 44 1104 47654

(b) The number of states traversed

1 2 3 4 5

S∗NSPK 7 105 1745 33901 710899

S>
NSPK 7 105 1745 33901 710899
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6 Conclusion and Future Work

We have proposed a specific class of EQT Specs called EADS Specs, and pro-
posed a strategy for the translation from EADS Specs into RWT Specs. Case
studies have been conducted to show the efficiency of translated specifications is
significantly improved. Although the strategy can only deal with EADS Specs,
most of EQT Specs that are developed for practical verifications belong to this
class based on our experience of theorem proving in CafeOBJ.

Regarding the correctness of the translation, we argue that a counterexam-
ple in the generated RWT Spec by the strategy S of an EADS Spec S is also
a counterexample in S. We can prove it by show that for any state transition
chain in S, there is a corresponding chain in S. First, we show that for an ar-
bitrary initial state denoted by t0 in S, there exists a term (which is actually
init) in S, corresponding to t0. Then we assume two arbitrary states denoted
by ti and ti+1 in S and an arbitrary state denoted by υi in S such that ti+1

denotes a successor state of the one by ti and υi corresponds to ti. We can show
there exists a state denoted by υi+1 in S such that υi+1 corresponds to ti+1, and
υi+1 denotes a successor state of υi. Hence, we can claim that S simulates S,
which indicating the correctness of the proposed translation strategy. A detailed
proof in theory for the correctness of the translation is one piece of our future
work. Moreover, A prototype of the present translation strategy has been imple-
mented and successfully applied to Qlock and NSPK. We will further improve
the translator, especially the optimization part, for practical applications.
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