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Abstract— An innovative framework of imitation between 
dissimilar bodies is proposed to automatically achieve the goal of 
the perceived behavior. Biologically inspired control based on 
central pattern generators currently gains increasing attention to 
embody human-like rhythmic motions to humanoid robots. 
However, this control approach suffers from highly nonlinear 
dynamics of neural systems, difficulty of motion pattern 
generation, uncertainty of behavior between neural systems and 
biomechanics, and so on. To cope with these problems, the 
imitation technique is employed in this work. We first propose the 
self-adjusting adaptor to easily generate an appropriate motion 
pattern by modifying the perceived motion toward attaining the 
goal of the behavior. Secondly, we verify the property of 
entrainment of neural oscillator network in the proposed adaptor 
to duplicate the regenerated motion pattern. In the numerical 
simulations of biped locomotion, the perceived pattern data is 
regenerated to keep the direction of the foot contact force 
identical between the demonstrator and the imitator. Also, the 
neural oscillator is entrained by external signals under stable 
conditions. To the best of the authors’ knowledge, this paper is the 
first work to validate the advantages of neural oscillator networks 
as a tool of imitation. 

Index Terms—Humanoid Robot, Biped locomotion, Imitation 
learning, Self-adjusting adaptor, Neural oscillator 

I. INTRODUCTION

LTHOUGH recent progress in robotics has yielded many 
humanoid robots, they are still very difficult to control. 

This is mainly because that the motion planning strategy which 
helps generate various behaviors is so far undetermined in 
dynamic environments. Behavior can be learned through 
reinforcement or imitation [1]. Reinforcement learning allows a 
robot to improve its behavior based on trial-and-error feedback. 
In contrast, imitation learning lets the designer specify entire 
behaviors by demonstration instead of using low level 
programming or trial-end-error by the robot. Thus, as the 
effective and powerful form of learning, imitation gains 
increasing attention and addresses primarily the following three 
challenges: ‘what to imitate’, ‘how to imitate’ and ‘when to 
imitate’ [2]. What to imitate refers to the problem of 
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determining which of the features of the demonstration are 
relevant for the achievement of the task [3], [4]. ‘How to 
imitate’ is how to recognize and encode human in a way that 
makes it easily transferable to a robot [5]. This work focuses on 
the issue of how-to-imitate with particular emphasis on the 
dissimilar kinematics and dynamics between the demonstrator 
and the imitator and proposes a new framework to reproduce 
the goal of the imitated behavior. 

Many researchers have studied and developed recognition 
tools for imitation [6]-[8]. Especially, Samejima et al.
suggested a framework MOSAIC, where plural dynamics and 
inverse dynamics are implemented to predict and control 
motions [9], [10]. Also Inamura et al. [6] devised the mimesis 
model based on HMM which can imitate the motion of others 
and abstract the time-series motion patterns as symbol 
representation. Our new framework leads to a completely 
different approach that permits a robot to acquire optimal 
behaviors adapted to its body from the perceived demonstration. 
For this, we propose a tool for adaptation process, called 
self-adjusting adaptor, to facilitate imitation mapping between 
dissimilar bodies. What we intend to achieve in the proposed 
adaptor are: (1) how to easily generate a desired trajectory of 
the imitator, (2) how to keep the imitator robust against 
disturbances and changes in a complex environment, (3) how to 
make the imitator’s behavior appropriate to accomplish its 
intended goal considering its kinematics and dynamics. 

Humanoid robots may not be deployed in a wide variety of 
application without having a real-time programming tool. The 
application of imitation to humanoid robot programming has 
not been formalized yet.  Therefore, this paper deals with how 
to generate the behavior of the robot appropriate for its intrinsic 
mechanism more easily and naturally. Within the proposed 
framework for automatic generation of robot behavior, (a) 
robots can learn and acquire any new motions from humans 
(and/or other robots) fast and easily, (b) similar motions can be 
adapted to the robot if both the demonstrator and the imitator 
have similar kinematics, (c) the imitator can find optimal 
motions through learning and repeated pattern recognition, (d) 
there is no need for analysis of nonlinear robot dynamics. Then, 
finally, humanoid robots may be able to behave autonomously 
using external motion patterns acquired by the vision sensor or 
downloading nominal data from its knowledge base. As a first 
step toward formalizing imitation learning, we address biped 
locomotion learning by imitation and present numerical 
simulations to verify the validities of the proposed framework. 

Goal-directed Imitation with Self-adjusting 
Adaptor Based on a Neural Oscillator Network 

Woosung Yang and Nak Young Chong, Member, IEEE

A

4040-7803-9177-2/05/$20.00/©2005 IEEE



II. BEHAVIOR IMITATION BETWEEN DISSIMILAR BODIES

Imitation can be classified into several different levels [2]. In 
the action-level imitation, the imitator carries out exactly the 
same actions as demonstration. In the program-level imitation, 
the imitator carries out an identical program which often has a 
hierarchical system invoking a sequence of subroutines. Thus, 
duplicated actions or programs carried out in inappropriate 
context fail to achieve desired goals. This requires the so-called 
effect-level imitation similar to the functional imitation 
introduced in [12]. Practically, the application of action- or 
program-level imitation to humanoid robots induces 
sophisticated problems in their stability and performance due to 
the different kinematics and dynamics of the demonstrator. 
Thus, we propose a novel method of the program-level 
imitation which can realize the features of effect-level imitation 
as well. 

To simplify the analysis, hereafter we assume that there are 
similarities in kinematic configurations between the 
demonstrator and the imitator. However, the motion trajectory 
of the imitator should be regenerated adequately by considering 
the dissimilarities between their dynamic parameters and length 
ratios of the multi-segmented body parts. Also, the most 
notable observation in this work to produce the same effect of 
behavior is that the direction of the applied force at the point of 
action should be coincident between two bodies. Without this, 
any imitation method may not give exactly the same effect of 
behavior. Fig. 1 illustrates an example of this effect-level 
imitation of biped locomotion, where the direction of the 
applied force of the imitator at the ground contact point should 
be coincident with the demonstrator. 

In this example, if any difference of the distance exists 
between the center of mass of the whole body and the point of 
the action of the force, every joint movement of the imitator is
not exactly the same as those of the demonstrator. Under this 
condition, the direction that the imitator robot is applying the 
force to the ground, which should be coincident with that of the 
demonstrator, ensures that the action of the imitator is similarly 
duplicated as closely as possible. Here, we assume that the 
locomotion of the demonstrator is stable and the location of 
center of mass of the imitator changes along the vertical 

direction to maintain its locomotion stability. Also, because the 
imitator can recognize the difference between the original 
trajectory and the regenerated trajectory, the imitator can 
generate compensated behaviors accordingly to achieve the 
intended goal of the demonstrated motion. Likewise, although 
there are some problems which have not been considered yet, 
the regenerated motion trajectory will help the imitator achieve 
the goal-directed imitation, that is, the effect-level imitation. 

III. SELF-ADJUSTING ADAPTOR FOR PATTERN MODIFICATION

What is focused on in this section is how to imitate the 
external functional movement and behavior in the imitator’s 
intrinsic mechanism. Technically, we develop the 
self-adjusting pattern adaptor through which the external 
motion pattern acquired by the vision sensor is regenerated into 
an appropriate data. This data enters the neural adaptor, where 
some input parameters are controlled autonomously to 
duplicate this data. The oscillator in the neural adaptor can be 
entrained with the input signal under the stable oscillation 
condition. Through this sequence illustrated in Fig. 2, the 
regenerated motion data is mapped into the imitator’s motion 
space. 

To imitate a behavior subject to dynamic constraints, it is 
required to predefine the parameters of the imitator such as the 
mass distribution within the body segments (which is known as 
in the form of body segment parameters), the link length ratio, 
the allowable output torque of the joint actuators, and so on. 
Especially, in the case of imitation between a human and a 
robot, these problems become more complicated. In human 
locomotion if the total distance of the hip to travel is 100%, the 
distance of the hip to travel during the single support phase is 
85% and that of the distance during the double support phase is 
15%. But in robot locomotion, the distance of the hip to travel 
during the single support phase is about 35% primarily because 
of the power limitation of joint actuators [13]. Thus, we have to 
consider the typical mass distribution within the body segments 
for dynamic stability and limitations of the actuator torque of 
the imitator for realization of dynamic motion. A uniform mass 
distribution is assumed in Fig. 3 which illustrates a trajectory of 
biped locomotion of the demonstrator for goal-directed 
imitation in our simulation. From the model in Fig. 3, 

Fig. 1 Keeping the force direction identical in goal-directed imitation 

Fig. 2 Framework of motion imitation through self-adjusting adaptor 
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considering the distance between the center of mass and the 
point of action of the contact force, the imitator can find its joint 
angle trajectories to keep the applying force direction identical 
given by 

(1) 

where R, lR, mR are the joint angel, length, and mass of the 
imitator, and m, lm, mm are the joint angel, length, and mass of 
the demonstrator, respectively. In this example, m1,3+ m2,4

means the direction that the demonstrator applies the force to 
the ground. 

IV. SIMULATION RESULTS FOR LOCOMOTION TRAJECTORY 
ADAPTATION

We performed numerical simulations of the proposed 
imitation method using the self-adjusting adaptor for the 
program-level imitation toward attaining goal-directed 
imitation. The imitator robot is assumed to have the same size 
as the humanoid robot HOAP-II developed by Fujitsu, and the 
two different demonstrators are considered. It can be verified 
from Figs. 4, 6, 8 and 10 that the trajectory generated by the 
self-adjusting adaptor is more stable and close to the 
demonstrator’s trajectory for both of the two demonstrators. 
Especially, if the length ratio of the demonstrator thigh is 
longer than that of the imitator, or the length ratio of the 
demonstrator shank is shorter than that of the imitator, the 
kinematic constraint violates as shown in Fig. 9. Because of this, 
in the regenerated data by the self-adjusting adaptor, the 
trajectory of the foot distance of the imitator is longer than that 
of the demonstrator in Case I, and Case II reveals the opposite 

result. Moreover, the trajectories of the center of mass of the 
demonstrators and the imitator in Figs. 7 and 11 show that the 
regenerated data through the adaptor is valid and usable from 
the viewpoint of the body dynamics. Finally applying this 
algorithm to our humanoid robots, we execute the simulations 
in a 3-D environment on the humanoid robot software platform, 
OpenHRP [20]. Fig. 12 shows the joint angle trajectories of the 
demonstrator robot computed using the inverse kinematics if 
the perceived foot and hip trajectories are given. Fig. 13 shows 
the regenerated data for the imitator robot acquired by the 
proposed self-adjusting adaptor. The simulation verifies one of 
the critical conditions needed to yield the goal-attained 
imitation with dynamic stability.  

A. Case I: The whole length and the mass of the 
demonstrator are greater than those of the imitator 

Fig. 5 Trajectories of joint angles of the demonstrator and the imitator 
with/without adaptor: lm1,3, lm2,4 = 40cm, 60cm; lR1,3, lR2,4 = 10cm, 10cm 

Fig. 4 Trajectories of the height of the hip and foot and the foot distance of the 
demonstrator and the imitator with/without adaptor: lm1,3, lm2,4 = 40cm, 60cm; 
lR1,3, lR2,4 = 10cm, 10cm 

Fig. 3 Trajectory pattern for the locomotion of bipedal robot 
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B. Case II: The whole length and the mass of the 
demonstrator are less than those of the imitator 

C. Regeneration of humanoid locomotion patterns 

Fig. 11 Trajectories of the center of mass of the demonstrator and the imitator 
with/without adaptor: lm1,3, lm2,4 = 6cm, 4cm; lR1,3, lR2,4 = 10cm, 10cm 

Fig. 10 Trajectories of the demonstrator and the imitator with/without adaptor in 
x -y  p l a n e :  l m 1 , 3 , l m 2 , 4  =  6 c m,  4 c m;   l R 1 , 3 , l R 2 , 4  =  10cm,  10

Fig. 9 Trajectories of joint angles of the demonstrator and the imitator 
with/without adaptor: lm1,3, lm2,4 = 6cm, 4cm; lR1,3, lR2,4 = 10cm, 10cm 

Fig. 8 Trajectories of the height of the hip and foot and the foot distance of the 
demonstrator and the imitator with/without adaptor: lm1,3, lm2,4 = 6cm, 4cm; lR1,3,
lR2,4 = 10cm, 10cm 

Fig. 7 Trajectories of the center of mass of the demonstrator and the imitator 
with/without adaptor: lm1,3, lm2,4 = 40cm, 60cm; lR1,3, lR2,4 = 10cm, 10cm 

Fig. 6 Trajectories of the demonstrator and the imitator with/without adaptor in 
x-y plane: lm1,3, lm2,4 = 40cm, 60cm; lR1,3, lR2,4 = 10cm, 10cm 
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V. APPLICATION OF NEURAL OSCILLATOR TO 
SELF-ADJUSTING ADAPTOR

We employ CPGs with neural oscillators which generate 
rhythmic signals as self-adjusting adaptor for imitation. Neural 
oscillators are entrained with external stimuli at a sustained 
frequency. Thus, basically, neural oscillators have been applied 
to CPGs of biologically inspired control architectures for 
humanoid robots with rhythmic motions. Also, neural 
oscillators show stability against perturbations through global 
entrainment among the neural and musculo-skeletal systems 
and the environment [14]. Specifically, a neural oscillator for 
biped locomotion was studied theoretically [15], and was 
applied to a humanoid robot as CPG with reinforcement 
learning [16]. To the best of the authors’ knowledge, it is the 
first time to exploit the property of entrainment of the neural 
oscillator to arbitrarily modified input signals. 

A. Neural oscillator 

The oscillator model consists of two simulated neurons 
arranged in mutual inhibition as shown in Fig. 14 [17], [18]. If 
gains are properly tuned, the system exhibits limit cycle 
behavior. The appearance of a stable limit cycle can be derived 
analytically and describes the firing rate of a real biological 
neuron with self-inhibition. A neural oscillator is represented 
by a set of nonlinear coupled differential equations as 

                                                                                               (2) 

where xe(f)i is the inner state of the i-th neuron and represents the 
firing rate; ve(f)i is a variable which represents the degree of the 
adaptation (modulated by the adaptation constant b ) or 
self-inhibition effect of the i-th neuron; the output of each 
neuron ye(f)i is taken as the positive part of xi, and the output of 
the whole oscillator as Y(out)i; wijyi represents the total input 
from the neurons inside a neural network: the input is arranged 
to excite one neuron and inhibit the other, by applying the 
positive part to one neuron and the negative part to the other; 
the inputs are scaled by the gains ki; Tr and Ta are time constants 
of the inner state and the adaptation effect of the i-th neuron 
respectively; b  is a coefficient of the adaptation effect; wij is a 
connecting weight from the j-th neuron to the i-th neuron; si is 
an external input with a constant rate. Especially, wij ( 0 for i

j and =0 for i=j) is a weight of inhibitory synaptic 
connection from the j-th neuron to the i-th and wei, wfi are also a 
weight from extensor neuron to flexor neuron, respectively. 

Eq. (2) can be rearranged as follows 

Fig. 13 Trajectories of joint angles of the imitator: lR1,3, lR2,4 = 43.25cm, 20cm 

Fig. 12 Trajectories of joint angles of the demonstrator: lm1,3, lm2,4 = 33.25cm, 
30cm Fig. 14 Schematic of neural oscillator 
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Based on Eq. (3), we are able to design the output pattern of the 
neural oscillator. 

B. The function of entrainment of neural oscillator 
This subsection describes the intrinsic property of 

self-entrainment of the neural oscillator to verify if it can be 
used as a tool for adaptation to pattern regeneration. The 
entrainment and input/output properties of the oscillators are 
used to perform a variety of tasks with the same architecture, 
without any modeling of system or its environment [19]. 
According to Matsuoka’s work [17], [18], the entrainment can 
be realized under stable oscillation conditions of the neural 
oscillator. For stable oscillations, if tonic input exists, Tr/Ta

should be in the range 0.1~0.5, for which the natural frequency 
of the oscillator is proportional to 1/Tr. And increasing the input 
gain, ki, causes the output of neural oscillator to be entrained 
with the amplitude and natural frequency of the input signal.  

Figs. 15 and 16 show the output, the Fast Fourier Transform 
(FFT), and phase plane trajectory of the neural oscillator under 
stable conditions mentioned above. Under the same stable 
condition, we tested the response to an arbitrary input to verify 
the property of entrainment of the neural oscillator with 
non-periodic signals. The output of the neural oscillator locked 
onto input signals well as shown in Figs. 17 and 18. This is the 
first observation of the robustness of the neural entrainment 
mechanism, which motivated us to apply the neural oscillator to 
goal-directed imitation requiring perceived pattern 
regeneration. Tuning some other parameters as well, this 
entrained output can be controlled so that it follows given 
desired signals as closely as possible. Thus, the neural 
oscillator in the form of the proposed self-adjusting adaptor 
turns out to be a powerful tool for achieving goal 
directed-imitation. 

VI. CONCLUSIONS

This paper has presented an innovative framework for goal 
directed imitation using the self-adjusting adaptor, which 
employed a neural oscillator network. Existing works on 

Fig. 18 FFT and limit cycle of input-output signals of Fig. 15 

Fig. 17 Entrainment with a non-periodic input signal in self-adjusting adaptor 

Fig. 16 FFT and limit cycle of neural oscillator output of Fig. 13 

Fig. 15 Output of neural oscillator under a stable condition 
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imitation did not clearly address how to implement the 
program-level imitation between dissimilar bodies to achieve 
anticipated behaviors of the intended goal. Our object was thus 
centered around developing a practical methodology to imitate 
motions from dissimilar bodies. For this, the proposed 
self-adjusting adaptor regenerated the perceived motion 
trajectories into a new one which was adapted to the imitator’s 
body considering the foot contact force direction. Particularly, 
the proposed imitation minimized the difference of the foot 
contact force between the demonstrator and the imitator and the 
number of data needed to be perceived. In addition one of the 
most important advantages of using the neural oscillator based 
adaptor is that neural oscillator can entrain with the external 
signals. The property of entrainment of the neural oscillator 
was investigated with different signals by tuning parameters 
under stable conditions.  

From the current simulation results, it can be observed that 
the proposed method transferred perceived data properly into 
the appropriate imitator data which can achieve the goal of the 
perceived behavior. Also, the output of the self-adjusting 
adaptor locks onto the transferred imitation data well. To the 
best of the authors’ knowledge, this is the first time that such a 
biologically inspired approach for imitation has been reported. 
This approach is a unique contribution to the realization of the 
program-level imitation, allowing it to maintain the intended 
goal of the perceived motion. Relating to future research, we 
will extend to various dynamic motions in 3-D environments 
and verify the practical validity of this approach through 
experiments with real robots. 
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