JAIST Repository

https://dspace.jaist.ac.jp/

Title Space-Efficient Algorithm|[for | mage
ASANO, Tet suo; Bl TOU, Shipnya; MOT Ol
Author(s) .
usul , Nobuaki
| EI CE TRANSACTI ONS on Fundamental s «
Citation Electronics, Communicatiops and Comj
Sciences, E91-A(9): 2341-p348
Issue Date 2008-09-01
Type Journal Article
Text version publ i sher
URL http://hdl.handle.net/ 10109/ 8523
Copyright (C)2008 1 EI CE. Tet suo ASAI
Bl TOU, Mitsuo MOTOKI, Nobpaki USUI ,
Rights TRANSACTI ONS on Fundamentpls of EI e«
d Communications and Computpepr Science:
2008, 2341-2348.
http:// www.ieice.org/jpn/frans_onli:
Description

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

2341

| PAPER Special Section on Discrete Mathematics and Its Applications

Space-Efficient Algorithm for Image Rotation

Tetsuo ASANO'®, Member, Shinnya BITOU'", Nonmember, Mitsuo MOTOKI', Member,

SUMMARY This paper presents an algorithm for rotating a subimage
in place without using any extra working array. Due to this constraint, we
have to overwrite pixel values by interpolated values. Key ideas are lo-
cal reliability test which determines whether interpolation at a pixel is car-
ried out correctly without using interpolated values, and lazy interpolation
which stores interpolated values in a region which is never used for output
images and then fills in interpolated values after safety is guaranteed. It is
shown that linear interpolation is always safely implemented. An extension
to cubic interpolation is also discussed.

key words: algorithm, in-place algorithm, space-efficient algorithm, linear
interpolation, cubic interpolation

1. Introduction

Demand for high-performance scanners is growing toward
paper-less society. There are a number of problems to be
resolved in the current scanner technology. One of them
is to detect a direction of a document scanned, i.e., which
side is the top of the document. One way is to use OCR
(Optical Character Recognition) technology to read charac-
ters which is now common to scanners. Of course, we want
to avoid using OCR since it takes time. Another common
problem which we address in this paper is correction of ro-
tated documents. If a document contains only characters,
then OCR is definitely a solution. Since it is costly, a geo-
metric algorithm for such correction is required. It consists
of two phases. In the first phase we detect rotation angle.
Some scanners are equipped with a sensor to detect rotation
angle. If no such sensor is available, we could rely on an-
other algorithm called Hough transform [1], [2] for finding
line components to detect rotation angle. To simplify the
discussion, we assume a hardware sensor to detect rotation
angle.

Once rotation angle is obtained, the succeeding process
is rather easy if sufficient working storage is provided. Sup-
pose input intensity values are stored in a two-dimensional
array af.,.] and another array b[., .] of the same size is avail-
able. Then, at each lattice point (pixel) in the rotated coordi-
nate system we compute an intensity value using appropriate
interpolation (linear or cubic) using intensity values around
the lattice point (pixel) in the input array and then store the

Manuscript received December 24, 2007.
"The authors are with School of Information Science, JAIST,
Nomi-shi, 923-1292 Japan.
"'The authors are with Imaging Engineering Div., Products
Group, PFU Limited, Kahoku-shi, 929-1192 Japan.
a) E-mail: t-asano@jaist.ac.jp
DOI: 10.1093/ietfec/e91-a.9.2341

and Nobuaki USUI'", Nonmember

computed interpolation value at the corresponding element
in the array b[]. Finally, we output intensity values stored
in the array b[]. It is quite easy. This method, however, re-
quires too much working storage, which is a serious draw-
back for devices such as scanners in which saving memory is
a serious demand for their built-in softwares and their costs.
Is it possible to implement the interpolations without using
any extra working storage? This is the question we address
in this paper.

We propose a space-efficient algorithm for correcting
rotation of a document without using any extra working stor-
age. A simple way of doing this is to compute an interpola-
tion value at each pixel in the rotated coordinate system and
store the computed value somewhere in the input array af |
near the point in the original coordinate system. Once we
store an interpolation value at some element of the array, the
original intensity value is lost and it is replaced by the inter-
polation value. Thus, if the neighborhood of the pixel in the
rotated coordinate system includes interpolated values then
the interpolation at that point is not correct or reliable. One
of the key observations is that there is an easily-computable
condition to determine whether interpolation at a given pixel
is reliable or not, that is, whether any interpolated value is
included in the neighborhood or not. Using the condition,
we first classify pixels in the rotated coordinate system into
reliable and unreliable ones. In the first phase we compute
interpolation at each unreliable pixel and keep the interpo-
lation value in a queue, which consists of array elements
outside the rotated subimage. Then, in the second phase we
compute interpolation at every pixel (x, y) in the rotated co-
ordinate system and store the computed value at the (x, y)-
element in the array. Finally, in the third phase for each
unreliable pixel (x, y) we move its interpolation value stored
in the queue back to the (x, y)-element in the array.

This kind of topics may belong to Image Processing or
Computer Vision. Unfortunately, as far as the authors know,
there are few studies in this direction. As images are grow-
ing in size, space-efficient algorithms become more impor-
tant. The algorithm in this paper may be a good source to
other space-efficient algorithms.

There are increasing demands for such space-efficient
algorithms. The work in this paper would open a great num-
ber of possibilities in applications to computer vision, com-
puter graphics, and build-in software design. Image rota-
tion is one of the most important topics for devices such as
scanners. In fact, there are a number of patents such as [3]

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers

2342

proposing a method for rotating images so that the number
of disc accesses is minimized and [4] using JPEG compres-
sion.

This paper is organized as follows. In Sect.2 we give
a mathematical description of our problem after preparing
necessary notations and definitions. Then, in Sect.3 we
present a condition to determine whether interpolation at a
given pixel is reliable or not only using local geometric in-
formation. Using the condition, we give an in-place algo-
rithm for correcting a rotated subimage without using any
extra working storage. In Sect.4 we conclude the paper to-
gether with some open problems.

2. Problem Definition

In this section we formulate a problem mathematically. An
input is an image which contains a subimage rotated by
some angle 6. We assume that the rotation angle is a part
of input. Furthermore, for simplicity of argument we as-
sume that the document is rotated in a counter-clockwise
way. Rotation in the opposite direction can be dealt with in
a symmetric manner.

Refer to Fig. 1. It is an image taken by a scanner. A
document part in the figure is rotated. Given such a rotated
image, we want to correct the rotation. We first execute in-
terpolation at each pixel in the rotated subimage and store
those interpolated values over the input image.

2.1 Input Image and Rotated Subimages

Input image G consists of & X w pixels. Each pixel (x, y) is
associated with an intensity level. The set of all those pixels
(or lattice points in the xy-coordinate system) is denoted by
Gih and its bounding rectangle by G,.

Rotated subimage R consists of H X W pixels, which

e Ames

o
(1) BABE

Fig.1 Animage containing a rotated subimage.

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

form a set R*V’VH of pixels (or lattice points in the XY-
coordinate system). An intensity level at each pixel (X, Y)
is calculated by interpolation using intensity levels in the
neighborhood.

We have two coordinate systems, one for the original
input and the other for the rotated document. They are de-
noted by xy and XY, respectively. The rectangle correspond-
ing to the input image is denoted by G,;, where w and h are
horizontal and vertical dimensions of the rectangle, respec-
tively. By Gih we denote a set of lattice points in the rectan-
gle. More precisely, they are defined by

Gun ={(x,y) |0<x<wand 0 <y < h}, and
Gth={(X,y)|x=0,1,_,_,w_1, and
y=0,1,...,h—1}.

We implicitly assume that intensity values are stored at ar-
ray elements corresponding to lattice points in the set Gih.
Now, we have another rectangle, which is a bounding box
of a rotated image. We denote it by Ry, where W and H
are width and height of the rectangle, respectively. The set
of lattice points in Ry is denoted by R‘;VH. More precise
definitions are given by

Ry ={X,V)0<X<Wand0 <Y < H}, and
Ry ={X. V)X =0,1,...,W -1, and
Y=0,1,... H-1).

Figure 2 illustrates two rectangles, Gy, as ABCD and
RWH as PQRS .

2.2 Output Image and Location Function
An interpolation value calculated at a pixel (X, Y) € R’;VH in

a rotated subimage is stored (or overwritten) at some pixel
s(X,Y) e GZh in the original input image. The function s()

AY
vip
!
STs
H -1
h -1 RVVH G’wh,
X,Y) € R}
(X,V) 4 Gl () Wiy
— 1\ |
W —1 Q — X
Yo P—ﬂ-—.P Q _
A Lo w—1

e

Fig.2 Two rectangles G, and Ryg.

ASANO et al.: SPACE-EFFICIENT ALGORITHM FOR IMAGE ROTATION

determining the location is referred to as a location function.
A simple function is s(X,Y) = (X,Y) which maps a pixel
(X,Y) in R¥,,, to a pixel (X, Y) in G*, . We may use different
location functions, but this simple function seems best for
row-major and column-major raster scans. So, we implicitly
fix the function.

2.3 Correspondence between Two Coordinate Systems

Let (x0, yo) be the xy-coordinates of the lower left corner of
a rotated document (more exactly, the lower left corner of
the bounding box of the rotated subimage). Now, a pixel
(X,Y)in R?VH is a point (x, y) in the rectangle G, with

x=xp+Xcosf—Ysin6, and
y=1yo+ Xsinf + Ycosb.

The corresponding point (x, y) defined above is denoted by
pX,Y).

2.4 Scan Order o(X,Y)

Let o be a scanning order over the pixels in R’:VH. Itisa
mapping from R’;VH to a set of integers {0, 1,..., WH — 1},
that is, o(X, Y) = i means that the pixel (X, Y) is scanned
in the i-th order. If o is a row-major raster scan, o(X,Y) =
X+YXxWwhere X =0,....W—-1land Y =0,...,H - 1.
A column-major raster order is symmetrically characterized
by c(X,Y) =Y+ X X H.

We could also use some angle to scan pixles. More
precisely, we move a line of a specified angle from bottom
to top. Pixels are reported in the order when the line hits
them. If we use a line of a tiny angle counterclockwisely
from the positive x-axis, then the pixels are reported in the
row-major raster order.

2.5 Window N,(x, y) for Interpolation

Following a scan order o, we take pixels in a rotated image
and for each pixel (X, Y) we compute an intensity value at
(X, Y) by interpolation using intensity values of pixels in the
neighborhood of the corresponding point (x,y) = p(X,Y)
in the input image. There are a number of algorithms for
interpolation. The simplest one called the nearest neighbor
algorithm copies an intensity level from the nearest pixel.
Linear interpolation performs interpolation by linear combi-
nation of intensity values at four immediate neighbors. An
algorithm using cubic polynomials for interpolation is called
a cubic interpolation. Window used for the interpolation is
denoted by Ny(x,y), where d is a parameter to determine
the size of the window. The value of d is 1 for linear in-
terpolation and 2 for cubic one. The window N,(x,y) for
interpolation is defined by

Nu(x,y) ={(x',y) e G%, |
lx]-d+1<x <|x]+d,
LyJ—d+1§y’§LyJ+d}.

2343

The set N;(x, y) consists of at most 4d? elements. We
do not describe how linear or cubic interpolation is calcu-
lated.

2.6 Basic Interpolation Algorithm

The following is a basic algorithm for interpolation with a
scan order o~ and location function s().

Basic interpolation algorithm
Phase 1:Scan rotated subimage
foreach (X, Y) € R*;VH in a scan order o~ do
- Calculate a location p(X, Y) = (x, y) in the
xy-coordinate system.
- Execute interpolation at (x, y) using intensity
levels in the window Ny(x, y).
- Store the interpolation value at a pixel s(X, Y)
€ Gih specified by the location function.
Phase 2: Clear the margin
for each (x,y) € G*, do
if no interpolation value is stored at (x, i)
then the intensity level at (x, y) is set to white.

The basic algorithm above is simple and efficient. Un-
fortunately, it may lead to incorrect interpolations since
when we calculate an interpolation value at some pixel we
may reuse intensity levels resulting from past interpolations.
More precise description follows:

Suppose we scan pixels in a rotated subimage R*;VH
and an interpolation value computed at each point (X, Y) is
stored at the pixel specified by the location function s(X, Y).
We say interpolation at (X, Y) € R’:VH is reliable if and only
if none of the pixels in the window Ny(x, y) keeps interpola-
tion value. Otherwise, the interpolation is unreliable. “Un-
reliable” does not mean that the interpolation value at the
point is incorrect. Consider an image of the same inten-
sity level. Then, interpolation does not cause any change
in the intensity value anywhere. Otherwise, if we use in-
terpolated values for interpolation, the computed value is
different from the true interpolation value. We use the ter-
minology “unreliable” in this sense. A pixel (X, Y) is called
reliable if interpolation at (X, Y) is reliable and unreliable
otherwise.

Figure 3 shows how frequently and where unreliable
interpolations occur. The figure (a) is the result when rota-
tion angle is 5 degrees in a counter-clockwise direction with
window of size 1. When we increase the rotation angle to
10 degrees, we have more unreliable pixels as shown in (b).
In the same setting, if we increase the window size from 1
to 2, then the number of unreliable pixels increases further
as shown in (c). All these results are obtained when there is
no left or bottom margin. If we have 3-pixel-wide bottom
margin, i.e., yo = 3, then all unreliable pixels are gone as
shown in (d).

Figure 4 shows effects of other scan orders. The or-
dinary raster order is characterized as left-to-right while
bottom-to-top, that is, it first scans the bottom row from

2344

(c) (d)

Fig.3 Distribution of unreliable pixels. In the figure pixels the region
painted red (or darkly painted part if no color is available) are unreliable.
Image size is 234 x 170, and rotation is counterclockwisely. (a) Row-major
raster with d = 1 with rotation angle = 5 degrees, (b) same but with angle
= 10 degrees, (c) same but with window size = 2, and (d) same but with
yo = 3.

left to right and then moves to its upper row. The figure
(a) shows the result of the row-major raster characterized
as left-to-right while bottom-to-top. Similarly, (b) is the
result for the row-major reverse raster order characterized
as right-to-left while top-to-bottom, and (c) as that for the
column-major raster order characterizied as bottom-to-top
while left-to-right. In the figure (d), pixels are scanned in the
row-major raster order along 45-degree lines characterized
as left-to-right while bottom-to-top along 45-degree lines.

These experimental results suggest that the number of
unreliable pixels heavily depend on a scan order we choose.
It must be related to rotation direction (left or right turn) and
also on rotation angle.

3. Lazy Interpolation and Local Reliability Test

An idea to avoid such incorrect interpolation is to find all
unreliable pixels and keep their interpolation values some-
where in a region which is not used for output image. In the
following algorithm we use a queue to keep such interpola-
tion values.

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

(c) (d)

Fig.4 Distribution of unreliable pixels. In the figure pixels the region
painted red (or darkly painted part if no color is available) are unreliable.
Image size is 234 x 170 and rotation angle is 10 degrees counterclock-
wisely, (a) Row-major raster (left-to-right while bottom-to-top), (b) row-
major reverse raster (right-to-left while bottom-to-top), (c) column-major
raster, and (d) row-major raster along 45-degree lines.

[Lazy Interpolation]
Q: a queue to keep interpolation values at unreliable
pixels.
for each pixel (X, Y) € R’;’VH in a scan order o do
if (X, Y) is unreliable
then push the interpolation value at (X, Y) into
the queue Q.
for each pixel (X, Y) € R’éVH in the order o do
if (X, Y) is unreliable
then pop a value up from the queue Q and
store the value at the pixel s(X, Y).
else calculate the interpolation value at (X, Y)
and store the value at the pixel s(X, Y) € G’:}h.

Here are two problems. One is how to implement the
queue. The other is how to check unreliability of a pixel. It
should be remarked that both of them must be done without
using any extra working storage.

Suppose we scan pixels in a rotated subimage R’éVH ac-
cording to a scan order o~ and interpolation using a window
of size d around each point (X, Y) is calculated and stored at
an array element s(X, Y) specified by the location function.
Now we can define another sequence 7 to determine an or-

ASANO et al.: SPACE-EFFICIENT ALGORITHM FOR IMAGE ROTATION

der of all pixels in Gih to receive interpolated values. That
is, the function 7 is defined so that

7(s(X,Y)) =o0(X,Y)

holds for any (X, Y) € RfVH. Since a rotated subimage is
smaller than the original image, some pixels in the original
image are not used for output image. That is, there are pixels
(x,y) in G*, such that there is no (X, Y) in R}, with (x,y) =
s(X, Y). For such pixels (x, y) we define 7(x, y) = WH. More
precisely, 7 is a mapping from Gih to {0, 1,..., WH} such
that

7(x,y) =i < WH if i-th computed interpolation
value is stored at (x, y) in Gih,

7(x,y) = WH if no interpolation value is stored
at (x, y).

Then, interpolation at (X, Y) is reliable in the sense de-
fined in the previous section if none of the pixels in its asso-
ciated window keeps interpolated value, that is,

7(x,y) = o(X, Y) for each (x,y) € Ny(p(X, Y)).

This condition is referred to as the reliability condition.
3.1 Row-Major Raster Scan

Consider a simple case where o is a row-major raster scan.
Let (x,y) = p(X,Y), that is,

x=xp+Xcosf—Ysinb,
y=1yo+ Xsinf+Ycosb.

If we order those pixels in the interpolation window of size
d around (x,y) in the order of receiving interpolation val-
ues, then the first point is (|x] —d + 1, |y] — d + 1) because
interpolation values are also filled in G’;h in the same row-
major raster order (restricted to the part 0 < x < W and
0 < y < H). If the first part has not received any interpola-
tion value, that is, if 7(lx] —d + 1, ly] —d + 1) > 0(X,),
then the pixel (X, Y) is reliable. Otherwise, it is unreliable.
By the definitions of o and 7, we have a simpler expression
of the condition.

Lemma 1: [Local Reliability Condition] Assuming a
row-major raster order for o and 7, pixel (X, Y) € R’éVH is
unreliable if and only if

(1) xg+ Xcosf—Ysind—d+ 1< X and
Yo+ Xsinf+Ycosf—d<Y, or

2) xg+Xcosf@—Ysinf—d+1< Wand
Yo+ Xsinf+Ycosd-d+1<Y.

Proof By the condition stated above, a pixel (X, Y) is unre-
liable if and only if

2345

(1) xo+Xcos@—Ysinf|—d+1<X-1and
lyo+ Xsinf+ Ycosf|—d+1<Y, or

) |xo+Xcosf—Ysinf]—d+1<W-1and
lyo+ Xsinf+Ycosf|—d+1<Y—-1.

Let a and b be two arbitrary positive real numbers.
Then, |a] > |b] holds if and only if a > [b]. Also,
lal < |b] holds if and only if a < |b] + 1. (If [a] < b
thena—-1<|lal] <b,andsoa < b+ 1. Ifa < b+ 1 then
la] < a < b+ 1. Because of integrality, l[a] <b+1—-1=05.)
Using these inequalities, the above condition can be restated
as in the lemma.

An importance of Lemma 1 is that it suggests a way
of testing reliability of interpolation at each pixel without
using any working array. That is, it suffices to check the two
conditions in the lemma.

By Lemma 1, a pixel (X, Y) is unreliable if and only if

(1) Y > —loeosby | xdil g

sin @ sin 6
Y> lii:oés)é'X + ly—oc_:)(:G or
Q)Y > @by Fowrdd gng
Y > 25X + ?O—_ci:é

By L, L,, L3 and L4 we denote the four lines associated with
the unreliability condition above. They are defined by

.y = —1=cosd Xo—d+1
LY = sin 6 X+ sinf °
.y = sinf_ yo—d
Ly Y = l—cos€X+ 1—cos 6’

.y = cosby Woxord-1
Ly Y = sin 6 sinf

. __ _siné yo—d+1
Ly Y = 1—c0s6X+ 1—cos6*

Then, a pixel (X, Y) is unreliable if and only if the point
(X,Y) is above the two lines L; and L, or above the two
lines L3 and Ly.

3.2 Column-Major Raster Scan

What happens if we use a column-major raster order instead
of row-major order? By similar arguments we have a similar
observation.

Lemma 2: Assuming a column-major raster order for o
and 7, a pixel (X, Y) € R’SVH is unreliable if and only if

(1) xp + Xcos® —Ysind —d < X and
Yo+ Xsinf+Ycosd-d+1<Y, or

2 xo+Xcosf—Ysinf—d+1< X and
H>yy+Xsinf+Ycosf—-d+1>Y.

By Lemma 2, a pixel (X, Y) is unreliable if and only if

(1) Y > -ty 20=d gpg

sin 6 sin 6
Y > PREX + %o:ci:el; or
)Y > -ty 4 0edtl ypg
Y <IN+ Tl

2346

I x

Fig.5 Regions of unreliable pixels, (a) for row-major raster order, and
(b) for column-major raster order.

By L}, L), Lg and L) we denote the four lines above:

L'l; Yy = —l=costy | xo=d

sin@ sin@ *
Ly:Y = 15?029)("' ylo—_cZ:é’
L5 ¥ = —A5X + S5,
Ly v = gt

Figures 5(a) and (b) depict the four lines and the region
of unreliable pixels bounded by them for each of the row-
major and column-major raster orders.

3.3 Lazy Interpolation for d = 1

Now we know how to detect possibility of unreliable pixel
each in constant time. If each pixel is reliable, we just per-
form interpolation. Actually, if the bottom margin y, is
large enough, then the location s(X,) keeping interpolation
value is far from a point (X, Y) and thus it does not affect in-
terpolation around the point. Of course, if the window size
d is large, then interpolations become more frequently unre-
liable.

Here we present an in-place algorithm for correcting
rotation. For the time being we shall concentrate ourselves
in the simpler case d = 1. A key to our algorithm is the local
test on reliability. In our algorithm we scan R*{fVH twice. In

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008

the first scan, we check whether (X, Y) is a reliable pixel or
not each in constant time. If it is not reliable, we calculate
an interpolation value and store it somewhere in Gih using
a pixel outside the rectangle determining the output image.
We call such a region a refuge.

In-place algorithm for correcting rotation

Phase 1: For each (X,Y) € RtVH check whether a pixel
(X, Y) is reliable or not. If it is not, then calculate inter-
polation there and store the value in the refuge F.

Phase 2: For each (X,Y) € RﬁVH check whether a pixel
(X, Y) is reliable or not. If it is not, then update the
value at (X,Y) € Gf}h by the interpolation value stored
in the refuge F.

Otherwise calculate interpolation there and store the
value at (X, Y) € G¥ .

The algorithm above works correctly when d = 1. The
most important is that the total area of refuge available is
always greater than the total number of unreliable pixels.

Theorem 3: The algorithm above correctly computes in-
terpolations for row-major and column-major raster scans
with the location function s(X, Y) = (X, Y).

Proof We do not prove correctness of the algorithm since
it is almost trivial. We only prove that we can always find
a sufficiently large refuge F. Because of similarity we only
prove the theorem for the row-major raster scan.

As described earlier, the region of unreliable pixels is
divided into two regions, one bounded by the two lines L;
and L,, and the other by L, and the left boundary of Ry g.
The two regions are denoted by R; and R, in this order, as
shown in Fig. 5.

We have two rectangles G,y corresponding to an input
image and Rypy to a rotated subimage. With the location
function s(X, Y) = (X, Y), the output image is determined by
rotating Ry clockwisely by the angle 6 and translating it so
that the lower left corner coincides with the lower left corner
of G,,. Drawing the horizontal line through the upper right
corner and vertical line through the lower right corner of
Rwp, we have two regions Fg and Fy4, as shown in Fig. 2,
which can be used as refuge. In other words, we can store
any values there without affecting correct interpolations to
be output.

To ease the proof we assume that there is no margin
between the two rectangles G,;, and Ry, that is, the four
corners of Ryy all lie on the boundary of G,;,. In this case
we have xp = (H — 1)sin6 and yy = 0. Since d = 1, the line
L, passes through (0, H — 1) and L4 does (0, 0).

. _ _ l=cos® Xo
LY = sin 6 X+ sinf’

.y _ _sin@ yo—1
Ly Y = 1—c056X+ 1—cos 6’

.y — _sinf Yo
Ly Y = l—cos9X+ I—cos6°

The angle o between the line Ls and the vertical line is
smaller than 6 because
1 —cos6

tan(o) = ———— < tané.
sin @

ASANO et al.: SPACE-EFFICIENT ALGORITHM FOR IMAGE ROTATION

| Fa 7
h—1 a7
\ %X//** Ly
H- oV /
- : Ly
Fr
0 Rwu
 yd
7 -
l‘[) \ Gwh W — 1 w — 1
/
L 2
Fig.6 The region of unreliable pixels and right and top refuges Fg and

Fa.

Thus, the area of the region (R; in Fig. 5(a)) bounded by L4
and the left boundary is smaller than the refuge Fz bounded
by the line RQ and the right boundary of G, (see Fig. 2).

By the same reason we can also prove that the area of
the region R, bounded by L, and L, is smaller than that of
the region F4 above the line SR in Fig.2. This completes
the proof.

3.4 Lazy Interpolation for d = 2

With a larger window of size d > 2 the algorithm above does
not work due to insufficient area of the refuge. Fortunately,
if the lower margin, yo, is at least d — 1, then the lazy inter-
polation for the column-major raster works correctly. When
yo = d — 1 and d > 2, the unreliable region is the union of
the two regions R; above L] and L} and R, above L and
below L;. The line L) passes through the origin, we can use
the right refuge Fr as before for R;.

What about the region R, bounded by L} and L}? The
line L} is parallel to the horizontal side of the rectangle G,
and the line L} has smaller slope than the upper side of the
rotated rectangle. Hence, the angle between L} and L} is
smaller than 8. This implies that the region R, bounded by
L’ and L has smaller area than the upper refuge F,. See
Fig. 6 for illustration.

In case of insufficient bottom margin, that is, if yy <
d— 1, unfortunately, we cannot use the algorithm above for a
larger window, d > 2 since we may have so many unreliable
pixels even in the case. The idea here is to use a queue to
store interpolation values at unreliable pixels and pop them
up whenever storing them does not cause any harm for in-
terpolations. The region outside the rotated image and the
output image, shown in Fig. 6, can be used for the purpose.

Assume a row-major raster order. Suppose we are go-
ing to calculate interpolation at pixels in a row Y. Then, the
pixel values below the row |yo + Y cos 8] — d (including the
row) are never used for interpolations. Let us call the row
the high limit for Y. If it is greater than the previous high
limit, i.e., [yo + (Y — 1) cos 8] — d, then we can safely store
interpolation values at the row. This observation leads to the

2347

following algorithm.

In-place algorithm 2 for correcting rotation

Q = a queue containing interpolated values, using the
region in the refuge.
foreachrow Y =0to H - 1do
foreachX =0to W -1
Compute interpolation at (X, Y).
if (X, Y) is unreliable
then push the interpolation value at (X, Y)
into the queue Q.
if [yo+ YcosO] —2 > |yg+ (Y —1)cos6] —2
then Y’ = [yo + (Y — 1)cos 8] — 2.
foreachX =0to W -1
if (X, Y’) is unreliable
then store the value popped from Q at
s(X, Y.
else calculate interpolation value at (X, Y”)
and store it at s(X, Y’).

Unfortunately, no formal proof has not been obtained
for correctness of the algorithm above. However, it has
caused no problem for practical applications.

4. Concluding Remarks and Future Works

In this paper we have presented in-place algorithms for cor-
recting rotation of a subimage contained in an image using
interpolation. We have shown that as long as interpolation
is implemented by linear interpolation algorithm we can al-
ways correct any rotation without using any extra working
array. Correctness proof for a larger window used for cubic
interpolation has been left as an open problem.

In this paper we considered two scan orders, row-major
and column-major raster orders. Many other scan orders are
possible. In addition to row- and column major raster scans
we could scan an image at any angle. One of promising
scans is the following: First, find a rotation angle 6. Then,
round it to an angle 6" defined by two pixels in a rotated
subimage. Using this approximate angle, we can scan all
of pixels in the rotated subimage without any extra working
storage.

It is interesting to evaluate and compare those scan or-
ders by the number of unreliable pixels. The best scan order
may depend on margins. In our experience, if the bottom
margin is greater than the left margin then the row-major
raster is better than the column-major one. If the left margin
is larger than the bottom margin, the column-major raster
outperforms row-major raster. But there is no formal proof.

Acknowledgments

The part of this research by T.A. was partially supported
by the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Scientific Research on Priority Areas and
Scientific Research (B).

IEICE TRANS. FUNDAMENTALS, VOL.E91-A, NO.9 SEPTEMBER 2008
2348

Nobuaki Usui graduated from the seismo-
logical observatory, Tohoku university in 1980.
In the year he joined Sumitomo Metal Min-
ing and he moved to Honda Motor Company
in 1987, to Dainippon Screen Mfg. in 1991,
Fujitsu in 1998, and finally to PFU in 2004. His
research interest includes automatic design of
halftone dots including process control, method-

References

[1] T. Asano and N. Katoh, “Variants for Hough transform for line detec-
tion,” Comput. Geom., Theory Appl., vol.6, pp.231-252, 1996.

[2] R.O. Duda and PE. Hart, “Use of the Hough transformation to detect
lines and curves in pictures,” Commun. ACM, vol.15, pp.11-15, 1972.

[3] D. Kermisch, “Rotation of digital images,” United States Patent,
4545069, 1985. ology of decreasing jaggy effect. He is also serv-

[4] F.A. Micco and M.E. Banton, “Method and apparatus for image ro- ing for standadization on ISO/IEC JTC1/SC28
tation with reduced memory using JPEG compression,” United States (Office equipment), ISO/TC42 (Photography),
Patent, 5751865, 1998. and ISO/TC171 (Document management).

Tetsuo Asano was born in Kyoto Prefec-
ture, Japan, in 1949. He got B.E., M.E., and
Ph.D. degrees from Osaka University, Japan, in
1972, 1974, and 1977, respectively. In 1977
he joined Osaka Electro-Communication Uni-
versity as a lecturer and moved to JAIST (Japan
Advanced Institute of Science and Technology)
in 1997. He is now a professor in School of
Information Science. His research interest in-
cludes algorithms and data structures, especially
in computational geometry, combinatorial opti-
mization, computer graphics, computer vision using geometric informa-
tion, and VLSI layout design. He is fellows of Association of Computing
Machinery (2001) and Information Processing Society of Japan (2004).

Shinnya Bitou received master degree from
School of Information Science, JAIST, in 2006,
and joined PFU Inc., in the year. He worked on
this topic for his master dissertation.

Mitsuo Motoki received his B.E., M.E., and
Ph.D. degrees from Tokyo Institute of Technol-
ogy in 1996, 1998, and 2001, respectively. In
2001, he joined Tokyo Women’s Medical Uni-
versity as a post-doctral fellow, and moved to
JAIST (Japan Advanced Institute of Science and
Technology) as a research associate. He is now
an assistant professor at JAIST. His research
interest includes algorithms and computational
complexity. He is a member of ACM and IPSJ.

