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Preface

Bose—Einstein condensation was discovered in atomic gas systems, where
Bose condensate occupies 100% of the total system at zero temperature. Liquid helium
systems have been investigated based on the Landau theory, where the superfluid
component of liquid helium is background flow. According to the Landau theory, it is
doubtful that the superfluid component is a Bose condensate.

In experiments, the probability of helium atoms with zero momentum is a few
percent of the total liquid helium at ultra-low temperatures. However, the superfluid
component occupies 100% of the liquid helium at zero temperature, as macroscopic
observations indicate. These two properties of liquid helium mean that the set of helium
atoms with zero momentum is not a good approximation of the ground state. What state
represents the superfluid component of liquid helium?

We introduce a quasi-particle representing an eigenstate of the total
Hamiltonian. We designate the quasi-particle a “dressed boson”. It is the most
straightforward answer to the question posed above: the superfluid component is a Bose
condensate of dressed bosons.

Experimental data of thermodynamic quantities differ greatly from the
theoretical values of the Landau theory near the A point. The specific heat has a
logarithmic singularity at the A point in the experimental data; however, the theoretical
result of the Landau theory has no singularity.

In the present article, the diagonalized form of the total Hamiltonian is



examined and is clarified to have a nonlinear form for the distribution function of the
dressed bosons. The nonlinear form produces logarithmic divergence of the specific heat.
Many theoretical approaches have used a linear form in a total energy of a

Bose system as

E=X¢gn;,
I

where I; is the quasi-particle number in quantum level i, and where &; is the energy per

quasi-particle. This familiar form maintains the order of energy from small to large. That

is to say, the energy of level 1 is smaller than that of level 2 always if & <&,. The

property changes drastically for a nonlinear form of a total energy as

E=Xnmeg + X finn;+--.
i i,j

The energy of a quasi-particle (dressed boson) is definable as
é:‘9i +X fin + X fng+-oe,
i ] J

which depends upon the other dressed boson numbers. Consequently, the energy of the
dressed boson with quantum level i varies depending on the distribution of dressed boson
number. This nonlinear dependence yields level inversion; that is to say, which
momentum level of the dressed boson has a minimum energy depends upon the choice of
the distribution of dressed boson number. The level with momentum zero has minimum
energy for some distribution. However, when the distribution of dressed boson number
changes into a specific distribution, a level with a non-zero momentum has minimum
energy. This level inversion produces Bose condensation of the dressed bosons with
non-zero momentum. The stability of the moving superfluid component is established on
the basis of this level inversion. Many other surprising effects arise from the nonlinearity.

In almost all cases for many body problems, the total energy is nonlinearly
dependent upon the distribution function of quasi-particle number. Accordingly, the
developed method explained in this book is widely applicable to investigation of the

statistical physics of many body problems.
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l. Introduction

Since Kamerlingh Onnes liquefied helium gas in 1908, surprising properties of
liquid helium have been revealed [1]. Particularly, after the A-transition was discovered,
striking behavior of liquid helium has been found in the lower temperature phase (which
is called helium II). Helium II comprises two components: a non-viscous component
called the superfluid component and a viscous component called the normal-fluid
component. These two components flow while interpenetrating each other. Each
component has an independent velocity, although these two components are mutually
mixed uniformly. The two velocities do not average out, even over time. In addition, the
entropy value of each component does not take on the mean value: the superfluid
component maintains entropy zero and the normal-fluid component maintains all the
entropy of the whole liquid helium II. In addition to these properties, superfluid helium
exhibits many characteristic phenomena: the fountain effect, the mechano-caloric effect,
heat superconductivity and so on.

Many theoreticians have remained fascinated by these phenomena and have
made efforts to clarify their origin [2-3]. Traditional theories related to liquid *He are
classified into London’s theory and Landau’s theory. Actually, F. London [2] neglected
interatomic potentials among helium atoms, and investigated the statistical physics of the
system. Subsequently, he arrived at the result that Bose—Einstein condensation occurs at
some finite temperature. He regarded this condensate of non-interacting helium atoms as
the superfluid component. According to his theory, the velocity of the condensate must be
equal to the velocity of the center of mass of liquid helium, which does not agree with the
experimental results.

On the other hand, Tisza and Landau [3] independently proposed a two-fluid
model. Landau developed this theory, in which he assumed the existence of a background
flow inside the liquid helium II, which he named the superfluid component. In addition,
he assumed that the residual component (normal fluid component) comprises a set of
quasi-particles representing quantized modes of density waves, which he named the
phonon and the roton. This theory explained the superfluidity of liquid helium and
concurred with the specific heat near temperature zero. Many theoreticians followed

Landau’s method in their investigations of liquid helium.



Some calculated the single excitation energies of the quantized density wave
(elementary excitation) approximately from the total Hamiltonian of liquid helium [4-7].
Bogoliubov [4] assumed macroscopic occupation of helium atoms with momentum zero
and replaced the creation and annihilation operators with momentum zero to a c-number
(classical number, not quantum number). He obtained an excitation spectrum like that of
a phonon. Bogoliubov’s transformation violates the number conservation law of helium
atoms, although his work is very important to clarify the existence of phonons in an
interacting bosen system. Based on Bogoliubov’s theory, Miller, Pines and Nozieres [6]
tried to take account of the backflow, which was first considered by Feynman and Cohen
[6]. Feenberg [6] calculated the expansion series of the excitation energy systematically
using the correlation functions. Sunakawa, Yamasaki, and Kebukawa [6] derived the
same result on the basis of the density fluctuation and velocity operators. Sasaki and
Matsuda [7] obtained the same result through unitary transformation.

The single particle excitation energy has been thus obtained using various
perturbational approaches. However, it is necessary to clarify the structure of the total
energy for a case with a macroscopic number of excitations because the number of
excitations is macroscopically large at a nonzero temperature in a real liquid helium
system. Several works have examined the structure of multiple excitations. For example,
R. Balian and C. de Dominicis [4] used a self-consistent Bogoliubov transformation, and
developed the old theory. However, the theory violates the number conservation law.
Therefore, the number of quasi-particles is not equal to the number of helium atoms.
Accordingly, the traditional theories of liquid helium present many difficulties.

About 30 years ago, one of the present authors exactly diagonalized the total
Hamiltonian of one-dimensional (1D) interacting boson system with a repulsive delta
function potential using unitary transformation [10, 11]. The result shows that the total
energy of the multi-excitation is not equal to the sum of the energies of single excitation.
In other words, the functional form of the total energy has a nonlinear form for the
distribution function of quasi-particle number. This nonlinearity can be derived only from
the Galilean covariance of the total energy. Therefore, nonlinearity also appears in almost
all interacting many-body systems because the Galilean covariance holds. Therefore, it is
necessary to investigate the statistical physics with a nonlinear form of the total energy.

The investigation is executed in this book. The nonlinearity produces many important



behaviors in thermodynamic functions.
Experimental data at 1.6 K <T <2.17 K in liquid helium differ greatly from the
calculated results according to the Landau theory. As an example, the values of specific

heat are shown in the following figure.
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Fig. 1.1 Specific heat of superfluid helium

The dots indicate the experimental data of liquid helium, and the curve shows the
calculated value of the Landau theory. Consequently, Landau’s results deviate to a great
degree from the experimental data at 1.6 K<T<2.17 K. The total energy of the Landau
theory depends linearly on the number distribution function of elementary excitations.
This property is not good in the actual system of liquid helium. We consider the nonlinear
effect and develop the treatment of nonlinear properties. Thereby, we can clarify how the
nonlinear structure produces the experimental behavior of liquid helium.

In this book, we assume the following two postulates. We can theoretically
derive the qualitative characteristics of superfluid helium merely using the two

postulates.

(Postulate 1)
A unitary transformation U exists from the non-interacting states to the eigenstates of the

total Hamiltonian in a liquid helium system.



It is noteworthy that the explicit form of U is never used herein; only the
existence of U. This postulate is true because of the hermitian property of H and because
of the property that no bound-state exists: no molecule is composed of plural helium
atoms. These properties confirm the existence of a unitary transformation from the
complete set of free states to the complete set of the eigenstates of H. In a previous paper
[7], we demonstrated the approximated form of U up to the second order in the
perturbation series for a 3D system. Moreover, in a 1D many-boson system, we obtained

the exact form of U (see reference [10]).

(Postulate 2)
Single excitation energy from the ground state has a phonon-like spectrum in a small
momentum region.

The detected dispersion curve of the elementary excitation exhibits
phonon-like behavior in a small momentum region. Therefore, Postulate 2 agrees with

the experimental results.

It is noteworthy that these two postulates are true in a 1D many-boson system
with a repulsive delta function potential. The proofs have been presented in the relevant
literature [10, 11], where the unitary transformation exactly diagonalizes the total
Hamiltonian of the 1D system. This is summarized in Appendix 1.

Using the two postulates described above, we can introduce a new concept, i.e.
"dressed boson" whose creation and annihilation operators are defined as follows:
Transform the creation and annihilation operators of a helium atom by the inverse unitary
transformation of U. Then, new creation and annihilation operators are obtained. These
new operators create or annihilate a quasi-particle, which represents the eigenstate of the
total Hamiltonian of liquid helium. This quasi-particle is called the "dressed boson",
which is the key to clarification of the mysterious mechanism of superfluid helium.

In chapter II, we will examine a diagonalized form of the total Hamiltonian.
The functional form is nonlinear with respect to the momentum distribution function of
the dressed bosons because the interactions among *He atoms are Galilean invariant. The
nonlinear term is determined concretely using the experimental data of elementary

excitation energy in neutron scatterings and using the latent heat per helium atom. This

10



explicit form of the nonlinear term produces the remarkable properties of liquid helium.

In chapter III, we will derive coupled integral equations that determine the
momentum-distribution of the dressed bosons at equilibrium. At temperatures higher
than the A point, these equations have only one solution. On the other hand, for
temperatures lower than the A point, these equations have infinitely many solutions, even
in fixing of the values of temperature, total number, and total momentum. The multiple
solutions include a Bose condensate of the dressed bosons: a macroscopic number of
dressed bosons with only one momentum value. Moreover, the condensed momentum
value can be an arbitrary value within some range. The Bose condensate represents the
superfluid component, and the residual dressed bosons represent the normal fluid
component. Therein, even when the velocity of the normal fluid is fixed to a single value,
many solutions exist in which the Bose condensed momenta differ from one another.
Consequently, the velocity value of superfluid component can be chosen to be any value
independent of the normal fluid velocity. For that reason, the solutions of momentum
distribution of the dressed bosons reproduce the two-fluid model, which will be discussed
in detail in chapter VIIL.

H. Kojima et al. [9] measured the decreasing rate of superfluid velocity. They
prepared liquid helium II, whose superfluid component flows with an initial velocity
through a toroidal channel, and whose normal-fluid component has velocity zero. Then,
the superfluid velocity did not decrease for the case of the initial superfluid velocity
smaller than 33 cm/s. That is to say, the superfluid component flows permanently in this
case. The superfluid velocity would decrease to 60 cm/s after 10'° years in their
experimental result when the initial velocity was 67.7 cm/s. Accordingly the two-fluid
states are extremely stable. The solutions obtained in the nonlinear theory have local
maximum entropies. Therefore, the nonlinear theory well explains the stability of the two

fluid states in liquid helium.

It is clarified in this book that the nonlinear theory produces the properties of
liquid helium as
1) Existence of the A-transition.
2) Two interpenetrating fluids coexist at a temperature lower than the A- transition.

3) Any solution representing a two-fluid state has a local maximum entropy among the

11



thermal fluctuated states.
4) The fountain effect in superfluid helium. Dressed bosons satisfy the London equation.

5) Superfluidity and zero entropy for the superfluid component.

We can calculate the thermodynamic functions of liquid helium numerically
using the concrete form of the nonlinear term determined in chapter II and using the
iteration method presented in chapter III. We execute the calculations and obtain the
theoretical results in good agreement with the experimental data for entropy and heat
capacity. Moreover, examining the nonlinear properties in detail, we evaluate the specific
heat near the A point. The numerical result has logarithmic divergence at the A point. The
reason for the appearance of the logarithmic singularity is also clarified in an analytical
method. We theoretically obtain the phase diagram between He II and He I, the critical
index of the Bose-condensed number at the A point, etc. via the nonlinear theory.

Accordingly, the nonlinear theory presented in this book engenders the

theoretical explanation for the macroscopic behavior of liquid helium.
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I1. General Form of Total Energy

2.1 Unitary transformation

The total Hamiltonian H of liquid helium is given as

2
* 1 *
H :zg—a a,+— ¥ g(k)ag, a2, 2.1
p

PP 2V p.g.k

%
where m is the mass of a helium atom, ap and ap respectively signify the creation and

annihilation operators, g (k) is the inter-atomic potential between helium atoms, V is the
volume of the system, and p,q,K are the momenta whose values satisfy the periodic

boundary conditions in a cubic box with side length L (V = L?):

p, =(27/L)xinteger, p, = (271/L)xinteger, p, = (271/L)x integer,
q, = (27/L)xinteger,q, = (27%/L)xinteger, - 22

7 = Planck's constant/(27) -

*
The operators ap and ap are the creation and annihilation operators satisfying the

commutation relations
[ap’aq]zgp,q’[ap’aq]:[ap’aq]zo’ 23)

where 5pyq represents Kronecker’s delta function.

In this chapter, we examine the general form of the total energy of liquid
helium system via the unitary transformation U diagonalizing the total Hamiltonian H.

Actually, the existence of U is ensured by the fundamental requirement of quantum
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physics, although the explicit form of U is unknown because of difficulty of the
many-body problem. All eigenstates of H can be written using the transformation from

free states of helium atoms (see Postulate 1 in chapter I), as

*

eigen state> = Ua;I a;2 a,f} eay

0), 24)

where ‘0> denotes the vacuum state of the system, and where N is the total number of

helium atoms. New creation and annihilation operators are defined as
* -1 -1
A, =Ua,U™ A, =Ua U™ (2.5)

These new operators indicate creation and annihilation operators of a quasi-particle with
an interaction cloud. We designate this quasi-particle as a "dressed boson" hereinafter.

We rewrite the eigenstate (2.4) using the dressed boson operators, thereby obtaining

cigen state) =Ua) U ~Ua, U'Ua ---a, U™U[0) = A' AL A, A U[0). (2:6)

Because the vacuum state ‘0> is the eigenstate of H, we get

uj0)=0) @7

Substitution of that equation into the right-hand-side of Eq. (2.6) yields

14



eigenstate) = A) A) A - A, |0)- (2.8)

Therefore, the direct products of the dressed boson operators express all the eigenstates of
liquid helium. Accordingly, the operator A; creates a quasi-particle representing an

eigenstate of H. Using the dressed boson operators; we can rewrite the eigenequation of

H as the following.

0) (2.9)

H AR A [0) = E(Lpy.np ) A A, A,

This equation indicates that the total energy of the liquid helium depends only upon the

number distribution of the dressed bosons in momentum space. That is to say, the

eigenenergy E is expressed with the number distribution {np} as
E=E({n,})- (2.10)

where

N, =AA (2.11)
is the number of dressed bosons with momomtum p.
2.2 Galilean covariant form of total energy

The total Hamiltonian H is Galilean covariant. Therefore the diagonal form of

H is the sum of the kinetic energy K of the center of mass and Galilean invariant terms X.

H=K+X (2.12)
2
:S—M (2.13)
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In Eq. (2.13), M is the total mass and Q is the total momentum of liquid helium.

Because of the total momentum conservation, we obtain the following relations.
Q:zqaa 7U2qaqaqu "=y qA;quzqnq (2.14)
q

Hamiltonian H conserves the total number of helium atoms; therefore, the unitary

transformation U diagonalizes H and N simultaneously.
N = 2%% UZ%aU‘ %% (2.15)

Accordingly, the total number of helium atoms is equal to the total number of the dressed

bosons. Substitution of Eqs.(2.14) and (2.15) into Eq. (2.13) yields

;pnpo;qn Z[ 1p*+a? hyn, 72%(Pfqynp”q : (2.16)

K= =_Pd 3P,
2M 2M 2M Z P

where

m=M/N 2.17)

is the mass of the helium atom. Then, the diagonal form of the total Hamiltonian H is

expressed as the following.

2
H=K+X :zs—m » 2|1\/I Lp-q) n,n, + X = Z—n + (Galilean invariant terms)
E P

(2.18)

Galilean invariant terms are described only by relative momenta of dressed bosons. They

are expressed using arbitrary functions fg as

16



(Galileaninvariantterms) = ﬁz (p-q) n,n +N1 zf:;(p—Q>p—k)npnan T (2.19)

p.q p.a.k

The function fq indicates the coefficient of term where s dressed bosons mutually
correlate. Tt is also noteworthy that f; does not exist because the relative momenta
cannot be made of only one momentum. Galilean invariant terms are nonlinearly
dependent upon number operators of dressed bosons. According to (2.18) and (2.19), the
total energy of liquid helium has the following form.

p

E= Zo=m +—Zf (P-a)nyn, +N— > fp-ap-Kknngn +- (2.20)
b2

The correlation with many particles decreases when the system becomes dilute. The
terms f; f, f5--- are smaller than f, because a three particle collision is a rare case
for diluteness of liquid helium compared with an ordinary liquid. We can therefore

neglect higher terms. Thereby we obtain

p’
E= —n +—3 f 2.21
Tom szq (P—a)nn @221)

As the details are examined in Sec. 2.5, the function form f(k)— f (0) is related directly
to |k| for a small value of |k| . The property is derived from Postulate 2 in chapter I to
yield a phonon-like behavior in the excitation of dressed boson. The nonlinear form of
(2.21) produces characteristic properties of liquid helium: temperature dependence of
thermodynamic functions, two fluid mechanism, and so on. The mechanism will be

examined in greater detail in chapters II1-XI.

In a 1D system, we have exact quantum solutions for interacting of many
bosons. The total energy of the system also has a nonlinear form. The details are
discussed in section 2.3. (Readers who are only interested in properties of liquid helium

can skip sections 2.3 and 2.4.).
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2.3 Exact form of total energy in a one-dimensional system
We have an exact solution for an interacting many-boson system. The system
is a 1D many-boson system via a repulsive delta-function potential. The eigenenergies
were obtained by Girardeau, Lieb, and Liniger [5]. The diagonalization of the total
Hamiltonian via the unitary transformation was solved by Sasaki and Kebukawa [10].
The Hamiltonian is
=y — p g Z a8, .a,a (2.22)
5 2m apdp + 2L p p+k“q-k“p“q > :
where m is the mass of a boson and L is the length of the 1D space. The diagonal form of

the Hamiltonian is

2 . Alp—d v, o *N(N2 -
H=xP aA+3 e q|ApApAlAl+ﬁ(ﬂhJM (223)

b 2m pa 2mL I 3
for an infinitely large coupling constant g, where
B 2 e
A, =Ua U™, and Aj=UaU"". (2.24)

The unitary transformation U is described explicitly in Appendix I. In a finite coupling

constant value, the diagonal form is expanded by (1/g) as the following.

H _gzpn:A;Aerl{_ 20" +(2h2 ] 3;\1}2@ a) A AAA,

2m| Lmg Lmg

2 2?2 il — 2 2
RS PR L TS (i i W > L q‘A;ApA;Aq +(@) N(n:-1)
2m Lmg Lmg o L L 3

+ Order(l/ g’ )

(2.25)
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This result shows that the nonlinear form (2.21) is reasonable. More details are presented

in Appendix I.

2.4 Calculation of single excitation energy in liquid Helium

A liquid helium system in three-dimensional (3D) space cannot be solved
exactly. Many investigations have been carried out to find an approximate form of the
single excitation energy for the Hamiltonian (2.1) [4-7].

One is the Bogoliubov theory [4]. Therein, almost all bosons are considered to

have momentum zero; the operators a, and a; are replaced by the c-number m as
a, >N and a, >+/N . (2.26)

Then, the total Hamiltonian is approximately equal to the following form.

H = N—Q + Hj + higher order terms 2.27)
vV 2
k? . N o x a .
Hg=>—aa, +— k\a,a_, +a.a, +a_.a_ +a_.a 2.28
B %kak ZVEQ()(k-k K +aa —kk) (2.28)

We call Hg a Bogoliubov Hamiltonian. This Bogoliubov Hamiltonian does not
conserve the total boson number because the replacement from the operators g, and ag
to the c-number +/ N violates the total number conservation. This simple Hamiltonian

can be diagonalized as the following.

2
ZE CC =Y —— k> (A1) (2.29)

k=0 8m /’ik2
a, =cosh(2 f (k))c, —sinh(2 f (k))c’, (2.30a)
a, =cosh(2f (k))e; —sinh(2 f (k))c_, (2.30b)

19



ES =k?/(2mA,) (2.31)

cosh(2f (k)= (44, ) *(1+ 4, ), sinh(2f(k))=(44.)"(1-2,)
(2.32)

/2

A =k(k? + amN g(k)/(2v )] 233)

The excitation energy in the Bogoliubov theory EkB is proportional to the momentum k
for a small value of k. It is theoretically clarified that the elementary excitation energy has
a phonon-like behavior at a small momentum.

Subsequently, many physicists tried to improve the Bogoliubov theory. The
backflow effect is considered by Feynman and Cohen, and is investigated based on the
Bogoliubov theory by Miller, Pines, and Nozieres [6]. Feenberg calculated the expansion
series of the excitation energy systematically on the basis of correlation functions.
Nishiyama also investigated a new formulation using the number density operator and the
phase operator [6].

Sunakawa, Yamasaki, and Kebukawa [6] rewrote the total Hamiltonian of
liquid helium using the density fluctuation operator and its velocity operator. Hereafter,
we call that theory the SYK theory. They evaluated the single excitation spectrum for a
potential with square shape. As Fig. 2.1 shows, their numerical calculation of the
excitation energy showed good agreement with the experimental data. Their operators
indicate the creation and annihilation operators of density wave mode. Therefore the total
number of the modes in SYK theory does not relate with the total number of helium

atoms. Consequently, it is difficult in their theory to discuss Bose condensation.
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Fig. 2.1 Elementary excitation energy ( E, /kg )

Dots signify the experimental values of the excitation energy in neutron scatterings. The blue curve
represents the calculation result of Sunakawa et al. The curve shown with a dashed line portrays the result

obtained using the Bogoliubov theory.

Sasaki and Matsuda [7] attempted to improve the SYK theory. Sasaki and
Matsuda found the unitary transformation satisfying number conservation in perturbation

method up to the second order. The unitary transformation produces the dressed boson

operators a. Q- Then the total number conservation holds as

Qyay+ X apa, = X 8,8, , (2.34)
p=0 allp

which was shown in (4.32) of reference [7]. Accordingly, the Bose condensate of dressed
bosons appears at a sufficiently low temperature. The dressed boson excitation energy
from momentum zero to p is equal to the excitation energy of the density mode in SYK
theory.

The single particle excitation energy has been approximately obtained in

various perturbational approaches. It is necessary to determine properties of multiple
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excitations to study the thermodynamic functions of liquid helium. That property is

examined in subsequent sections.
2.5 Determination of Galilean invariant term in energy using experimental data

The ground state of the system is expressed as
| Ground state) =U a; )" 0) = (A; )"0 (2.35)
The eigenequation of H is

H(a )" 0) = Eq ('] 0), and (2,362

Ec = f(ON, (2.36b)

which are readily derived from Eq. (2.21). This equation indicates that the value — (o) is

the latent heat per atom at zero Kelvin.
f (O) = — (latent heat per atom at zero Kelvin) (2.37)

The single excitation state is

‘ single excitation state> = A; (A; )N?1 ‘ O> . (2.38)

Because the number distribution of the single excitation state is {no =N-1Ln, = 1}, the

total energy can be expressed as the following.
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E:p—2+ﬁ(f(0)(Nfl)2+ F()N 1)+ F(-p)N ~1)+ f(p—p))

2m (2.39)

< 1N+ 2 2(1)- 10)

In that equation, we used 1/N ~ 0 and the spherical symmetric property of the function
f(p) in (2.21). Comparison of two energies (2.36b) and (2.39) gives the energy increase

2

as ;)—-0— Z(f (p)— f(O)). This increasing energy indicates the single excitation energy
m

&2 =21 o(t(p)-(0) (2.40)

The energy was detected by neutron scattering experiments in liquid helium [1,

8, 25]. Therefore, the Galilean invariant term is expressed as the following.
£(p)=2 (2 —p*/(2m))+ 1 (0) (2.41)

The function form of f (p) is thus determined from experimental data of the elementary
excitation energy 53 and the latent heat —f (O) per atom at the temperature T =0 .
The energy spectrum of elementary excitation is measured using neutron
scattering experiments [8, 25]. These experimental values are presented in Table 1. We
can apply the experimental values of 1.1 K for gg (which is the excitation energy at zero
Kelvin) because the experimental energy spectrum does not vary for changing of

temperature value in the region lower than 1.3 K.
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Table I Experimental data of elementary excitation energy

o1
(The unit of p/(lOth) is A ; the unit of gg/kB is K.)

p/l107) gg/kB p/(1077) gg/kB p/(1077) Eg/kB p/(10"7) ‘Eg/kB
00894 16131 03 5.65 11 138 194 8.63
00946 17175 04 74 113 1382 194 8.609
0115 21005 04036 7.6361 12 1375 195 8.65
0121 22514 04082  7.7173 13 135 195 8.633
0139 26111 04187 7.9146 14 12.95 1.96 8.683
0143 26343 04232 7.9958 15 12.2 1.96 8.672
01594 29709 04355  8.1815 16 1.2 197 8.695
01767 32958 04498 8.3788 17 1025 2 8.95
01818 3.3887 04643 8.6457 18 9.25 2.1 10
01938 3.6324 04785  8.8662 188 8.694 22 11.65
0199 37368 04926 9.1099 1.89 8.657 23 1355
02 37 05 9.15 19 8.7 24 155
0211 39689 05605  10.1544 19 8.654 25 16.45
02162 4.085 06 10.75 19 8.634 26 17
02278 42822 06243 11.0015 1.91 8.635 2.7 173
02329 43867 06965  11.8023 1.91 8.616 28 175
02445 46072 07 11.75 1915 8.611 29 17.7
02495 47116 07649 124173 1.92 8.626 3 17.85
02611 49205 08 1272 1.92 8.61 3.1 18
02776 52339 08 1265 1.925 8.606 32 1815
02825 53267 083  12.8815 1.93 8.626 33 183
0.2938 5524 08925  13.2297 1.93 8.606 34 18.35
02988 56284 09 1315 1.935 8.63 35 184
03 5.57 1 1355 1.935 8.612 36 18.45

0
We find the analytical form of € which fits the experimental data. The momentum

region is divided into five regions: phonon, maxon, roton, high-momentum region 1, and
high-momentum region 2. The function forms for each region are chosen as the

following.
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(Phonon region)

0

=0 P for 0<p<p, (2.42)

(Maxon region)
)= kB(go +0,(p—pu V +93(p—pu S +84(p—pu ) +95(p— Py )5)

for p,<p<p, (2.43)

(Roton region)

(P=po)’

ep=A+
2mxr

for p,<p<p; (2.44)

(High momentum region 1)

gp=by+¢ (p—py)+b, (p—pyf +by(p—py)  for py<ps<p,

(2.45)

(High momentum region 2)
ey =dy+d, (p—p,)+d, (p—p,f for p,<p<3.6x10"% (2.46)

We abbreviate the momentum region larger than 3.6x10'°7 . These function forms have
several properties: (1) The excitation energy in the phonon region has the first sound
velocity. (2) The shape near the roton minimum is a parabolic curve. (3) In the
high-momentum region 1, the velocity is in agreement with the first sound velocity.

Therefore, we adopt the following values for several parameters.
C, = 238[m/s] (2.47)

This value is used in (2.42) and (2.45).
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The roton parameters are

A=8.61kg (2.48)
Py =1.92x10"7 (2.49)
r=0.153 (2.50)

Table I shows that the maximum energy in the maxon region is 13.82 Kg at momentum

1.13x10' 7 . We apply these values as

g, =13.82 (2.51)

Py =1.13x10" 7 (2.52)

The function form of (2.46) fits the experimental data for the parameter values as

d, =16.7526x kg (2.53)
d, =3.22877xkg /(10°) (2.54)
d, =—1.56968x|<B/(1o“’h)z (2.55)

Three boundaries between four momentum regions are given as

p,=0.5x10" 1 (2.56)

p, =1.78x10" & (2.57)
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p, =2.55x10" h (2.58)

The remaining boundary is determined as follows: Equation (2.45) shows that the
velocity of high-momentum region 1 becomes the first sound velocity Cj at p=p;.

Accordingly, the roton energy is expected to have the same derivative at the boundary

p = p; to hold a smooth connection at the boundary. Accordingly, the value of p; is

Py =2.1495x10" 71 . (2.59)

The continuous connection at P = p; leads to the following value of parameter b, .

2
by :A+(p3r;—f‘;):10.696><k8. (2.60)

The parameters (,, 0,, §, and g, are determined so that the phonon curve and roton

curve connect smoothly to the maxon curve at p=p; and p = p, : the function value

and the derivative are connected to both curves. In addition, the values of b, and b3 are
determined by the conditions for smooth connection at p = p, . The numerical results

are the following.

g, =—1o.8805/(101°h)2 (2.61)
0s =—1.81497/(101°h)3 (2.62)

g, = 0.966809/(10"7) (2.63)

g5 =7.19044/(10 1 f .64
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b, =14.4344xkg /(10°°) 2.65)

by =—55.0058x kg /(104 (2.66)

Therefore, all the parameters have been determined. The analytical forms of
(2.42)—(2.46) show good agreement with the experimental data of the elementary

excitation energies, as presented in Fig. 2.2.

Elementary Excitation Energy /kp

17.35

15

12.5

10

7.5

5

. Momentum

|reciprocal of angstrom |

0.3 1 1.5 o 2.3 3 3.9

Fig. 2.2 Elementary excitation energy (&, / Kg)

The dots express the excitation energies detected in neutron scatterings. The curve also expresses the
function defined by (2.42)—(2.46). The unit for the vertical axis scale is K; the horizontal axis expresses

p/(] 010 h) in the unit of the reciprocal of angstrom.

Using the explicit forms (2.42)—(2.46) and the parameter values (2.47)—(2.66),
we determined the function form f(p). In other words, the Galilean invariant term is

determined concretely. The value of f (0) is shown on page 393 of reference [24]:

£(0)~-7.16xkg . (2.67)

Consequently, the nonlinear term is expressed as
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t(p)=L(c,p-p>/2m))-7.16k,  for 0<p<p, (2.68a)

£(0)=Lkglgo + 02(p— Py )+ 95(p—put F + 5a(p— P ) +95(p— P )')
~1p?/(2m)-7.16kg

for p,<p<p, (2.68b)

2
f(p):%[A+(pzm—E°r)—pz/(Zm)j—7.l6kB for p<p<py, (2680

f(p):%(b()“:l (p— p3)+bz (p— p3)2 +b; (p— 93)3)
10 fam)~7.16ks for py<psp, (268

()= (dy +0, (= pa)+ 0 (p— p,  —p/(2m))-7.16k,

for p, < p<3.6x10"% (2.68¢)

The parameter values are shown in Eqgs. (2.47)—(2.66).

The excitation energy of dressed boson depends upon T via the nonlinear
dependence (which is discussed in detail in subsequent chapters) when the temperature
becomes high. The nonlinear mechanism was investigated by the authors in several

previous studies [12], [19], [20], [22], and [27].
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I11. Temperature Dependence of the Excitation Energy

Nonlinearity in Eq. (2.21) produces the temperature dependence of the
excitation energy. We examine the dressed boson energy. The energy of one dressed
boson is an increase value of the total energy when one dressed boson is added to the
system. Therefore, the dressed boson energy is defined as

o, =% 3.1

Substitution of (2.21) into (3.1) yields

p*> 2 1
a)p(T):m+W§f(p—q)nq—W&th(s—t)nsnt, (3.2)

where we have used f(p—q)=f(q—p). The dressed boson energy depends upon the

distribution {n }, as is readily apparent in Eq. (3.2). The distribution {n } varies with

q q
the change of temperature: the dressed boson energy is temperature-dependent. This

nonlinear effect has been examined in the literature [12].

3.1 Dressed Boson distribution
We examine the number distribution of dressed bosons in this section. The
calculation method determining the distribution function is explained separately in two

casesof T <T, and T >T, .

311Caseof T <T,
The energy @, depends upon the number distribution of the other dressed

bosons. This property produces a two-fluid state with different velocities of the
superfluid component and the normal fluid component for T <T, . The complex
mechanism will be examined in chapter VIII. We study the case for v, =0 and v =0
in this chapter, where Vv, and V, respectively represent the velocities of normal fluid

and superfluid components.
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For v, =V, =0, the number distribution of dressed bosons in a thermal

equilibrium is given as the following.

n = 1 (3.3)

L exp((wp (T )— ,u)/(kBT ))—1

wy(T)= u (for T <T,) (3.4)

Therein, g is the chemical potential and Kg is Boltzmann’s constant. This distribution

is a well-known form in boson system, except the nonlinear mechanism of Eq. (3.2). The

derivation is explained in details in chapter VIII. The chemical potential x is nearly
equal to @, when a temperature T is lower than the A transition temperature T, .

Therein, N, becomes a macroscopic number (for T < T, ). Consequently, Bose—Einstein

condensation of the dressed bosons appears.

The dressed boson energy in the Bose condensate is @ ; therefore the

excitation energy from the Bose condensate is the difference between @, and @) .

2

s()=0,1)-oT)=TsTx(ifp-a)- fl-ahn, 69

Hereinafter, we call an excitation from the Bose—Einstein condensate excitation from

BEC. We denote the excitation energy from BEC as ep(T); then we obtain the

simultaneous equations as the following.

31



n - 1 (3.6)

o)=L 20O 2 5 ) (g

3.6b
2m N N g0 a (3.6b)

We cannot exactly solve these simultaneous equations because of their nonlinearity.

Nevertheless, it is possible to find approximate solutions, as explained in section 3.2.

At T =0, all dressed bosons have momentum of zero (N, = N ). Accordingly,

Eq. (3.6b) becomes
~2m - (3.7)

where we have used (2.41). In this case, the number of dressed bosons becomes

1

M= exple? /(kyT))-1

Consequently, the momentum distribution of dressed bosons near zero Kelvin is equal to

(near zero Kelvin). 3.9)

the number distribution of the elementary excitations in the Landau theory. The dressed

boson energy with momentum zero at zero Kelvin is

2 1
w0(0)= N f (O)no _W

f(0)n,n, = £(0)- 3.9

This concept does not exist in the Landau theory. This value is the chemical potential of
liquid helium at zero Kelvin. The excitation energy @, — @, from the Bose-Einstein
condensate depends upon the temperature value when the temperature becomes high. The

dependence is calculated in section 3.2.
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312Caseof T>T,
In this case, the value of n, is not a macroscopic number. Therefore, the

simultaneous equations are the following.

n o= 1 (3.10a)
P exp((a)p (T)- y)/(kBT ))— 1

p> 2 1
%(T)=2— WEf(IO—q)nq—Wsyztf(S—t)nsnt (3.10b)

There is no singularity in the simultaneous equations (3.10a,b) because of @, (T) > u
for T >T, . These simultaneous equations are solvable approximately. The method is

discussed below.

3.2 Integral equation for determining dressed boson energy
3.2.1 Integral equation

We substitute (3.6a) into (3.6b) to rewrite the simultaneous equations to an

integral equation as in the following expression.

()= 2 2STOR 254 ) t(q)

2
P om N N & exple, (T)/(kyT))-1
(3.11)

There is no singularity in the summation (3.11) because the term at =0 is removed

from the summation. For that reason, we can rewrite the summation into integration as

1

5 )=2 s 2(1()- f(O))n0+’\l(§7\7/m)3 G e-a)- 1Ca)

(3.12)
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where we have used momentum interval 2772/L and V =L’ . The number n, of the

condensed dressed bosons is

1 &q > (3.13)

V
ko ey g

which is derived from number conservation (2.15). Substitution of (3.13) into (3.12)

yields the equation shown below.

+Né—jh)3m<f(p—q>—f(—q»

d’q

1
expleg (T)/(kaT))-1
Substituting the function form (2.41) into (3.14), we obtain the following expression.

2

02 \Y 1 \
R e G Era =l
sy Mg ~0-ar/Cm)-af v om)

1 :
oxple, )T 1"

(3.15)

These two integrations in (3.15) are gathered into an integration as shown below.

1
expleg (T)/(kyT))-1

, Vv , . . 1 3
=4 +mm(ﬂw ~ & TEp +2P .q/(zm))exp(gq (T)/(k,T))-1 4

—

< [[]le0 o~ e~ et~ (p-a)F /2m) + 0 [(2m)+ p* /(2m))

d’q

(3.16)
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The term including 2p e q/ (2m) disappears by integration of (3.16) because the dressed

boson energy &, (T) is spherically symmetric for the momentum vector. Then we obtain

0 \ 0 0 0 1 3 .
& (T)=¢ +Wm(ﬂw " _gp)exp(gq (T)/(ksT))-1 g O

where d’q=dgdtg’dq and t =cosd = pe q/( pq). Performing integration by angle

@, the result is as shown below.

1

. w 0 o 1 2
8p(T): I .[ ( VP -2pateg” ~% —gpjdt eXp(Eq(T)/(kBT))_l T

q=0 t=-1

(3.18)

We define the kernel function as

1
K(p,q)= 0 — &0 — &l |dt
(p.a) tjl[‘g/ipz_zpqnqz €q 5pj : (3.19)

Making use of the kernel (3.19), integral equation (3.18) takes the following form.

24 (3.20)
))_ 1 q q

We can approximately solve this integral equation using an iteration method. The details

are explained in subsequent sections.
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3.2.2 Approximate solution in the first order

The excitation number from the Bose—Einstein condensate is very small when the

temperature is very low, i.e. lower than 1.3 K. Therefore, we can apply Eg for &, (T) of

the right-hand-side of (3.20); then obtain the first approximation of &, (T) We describe

the first approximation energy by &; ( p ,T) and obtain the following expression:

2 [ K(p.q) g’dg- (2D

1
)=y
gl(p ) gp+N(27z'h)3 & expgg/(kBT)—l

In this case, we obtain the first approximation of the distribution function for dressed

bosons as the following.

1 .
W)= e YT o

We can use the approximation forms of (3.21) and (3.22) for evaluating thermodynamic
functions in a low-temperature region. Higher order approximations are examined in the

next section.

3.2.3 Approximate solution in higher order

Iteration is useful to solve the integral equation of (3.20). Replacing &, (T) in the
right-hand-side of (3.20) with & (p,T) , we obtain the second order solution &, ( p ,T) as

follows.

(3.23)

w7
&(pT)=¢ +—— [ K(p.a)

TR AR AR SR

The second order distribution function of dressed bosons is given as
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1

(P e (T i1

(3.24)

The j-th order approximation is obtainable from using the (j-1)-th order approximation,

as follows.
22V 1
e (p.T)=ed+——— [ K(p,q) q’°dg 623
]( ) P N(Z/Z’h)3 a0 ( }exp(gj—l (q:T )/(kBT ))_1
1
n, (p,T)— (3.26)

- exp(é‘j ( p,T )/(kBT ))_ 1

Long calculation time is necessary to evaluate & j(p,T) and n j(p,T) because
the integrations in (3.19) and (3.25) are very complicated. The second order
approximations (3.23) and (3.24) are calculated numerically; thereafter the theoretical
values of the entropy and specific heat are calculated using the second order approximate

values explained in chapters IV and V.

The excitation energy of the dressed boson depends on the temperature via the
nonlinear effect. The velocity of the dressed boson becomes small and vanishes at the 4
point when the temperature approaches the A point. That property was discussed first in

the relevant literature [27]. Details are examined in Sec. 5.4.
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V. Calculation of Entropy

The entropy of liquid helium is given as the following equation.

S=Kkg Z {log(l +n, )+ n, 10g(l + np'] )} .0
P

In that equation, Kg is the Boltzmann constant, and n, is the number distribution of

dressed bosons. The derivation of (4.1) is explained in detail in sections (8.6) and (8.15)

of chapter VIII. Substitution of (3.6a) into (4.1) gives

T
S= kBZ{log(H np)+ g|: (T)np} 4.2)
p

B

The total entropy S has a macroscopic magnitude; in fact, it is proportional to the total

number N. The entropy of superfluid component S, is given by the term with p=0

on the right-hand-side of Eq. (4.2) as the following.

Ssuper = k8{10g(1 + n0)+ gls (I)no} — kB 10g(1 + nO) (4.33)
B
Seuper /N —55—0 (4.3b)

Therefore, the entropy of superfluid component is not a macroscopic value. For that
reason, all entropy belongs to the normal fluid component (which comprises dressed
bosons with nonzero momentum). The summation in (4.2) can be changed to integration,

as the following expression shows.
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. T j zj {10g(1+ n, )+ 22 (I)np }sin@ d0dg p*dp

“4)

The spherical symmetric property gives

©

T
{log 1+n, (T)np}pzdp (4.5)

0 B

We substitute (3.6a) into (4.5), and obtain

S =k,

Y T{l [ exple, (T)/(kT)) ] &,(T)

(2mn) o8 exple, (T)/(k,T))-1 N KT np}pzdp . (4.6)

—ky x{ log(1—exp(- & (T)/(kBT)))Jfgp(T)np}pZdP

" (2mn)' kT

Then, the entropy per unit mass is expressed from (4.5) or (4.6) as the following.

S 4z % &,(T)
=k log(l P 24 (4.72)
i~ ot on - e

kgT

S T{ log exp & (T)/(kT )))+ 8P(T)np}p2dp

(4.7b)
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Therein, p =mN /V is the mass density of liquid helium. We calculate the entropy

using the approximate solution described in chapter II1.

4.1 Evaluation using iteration method

We execute the calculation of entropy using second order approximations
(3.23) and (3.24), which necessitates a very long computing time to obtain the kernel
function K(p ,q) , the first order energy gl(p ,T) , and the second order energy &, ( p ,T) .
When we calculate the integrations in (3.19), (3.21), (3.23), and (4.7a) numerically, the
necessary CPU time is extremely long and the result cannot be obtained within any
reasonable time. Therefore, we consider another method for obtaining the approximate

values using a computer program.

We produce value tables for K(p,q), El(p,T), and gz(p,T) using a
1

computer. We calculate the kernel K(p,q) in the region of 0< p/A<3.6 A and

1 -1

o

0<q/n<3.6 A numerically for the interval of 0.01 A . Then, we obtain a list of

about 10° values of them. These values are stored in computer memories. It is worth

ol o1
noting at this point that the contributions from p/2>3.6 A or q/A>3.6 A are
negligibly small; for that reason, we abbreviate the momentum region. Next, we produce
a computer program producing an approximate value of the kernel for arbitrary momenta
(p, ) via the list of about 10° values. Using this program, we can numerically calculate
gl(p,T) using only a short CPU time. We can then produce a list of function values of
sl(p,T) for about 10* points of (p, T). The list of sl(p,T) enables the calculation of
ez(p,T) in (3.23) with a short CPU time. We can also produce a list of function values
of sz(p,T) for about 10* points of (p, T).
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The second order approximation value of the entropy per unit mass is

expressed as

S 4 7 &(p.T) s (4.8)
mN _kB (27[h)3p£{10g(1+n2(p’1—))+ kBT nz(pﬁT)}p dp

Consequently, we can evaluate the entropy per unit mass described in (4.8) using the list

of function values of sz(p,T) . The numerical results are portrayed in Fig. 4.1 and 4.2.

log,, S

-2

Fig. 4.1 Entropy of liquid helium on a logarithmic scale.

Dots indicate the experimental data. The curve expresses the calculation results obtained using the nonlinear

theory.
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Entropy [J/(g*K)]

T[K]

0.2 1 1.3 2

Fig. 4.2 Entropy of liquid helium on a linear scale.

Dots indicate the experimental data. The curve shows calculation results obtained using the nonlinear theory.

The vertical axis of Fig. 4.1 is a logarithmic scale; the vertical axis of Fig. 4.2 is a linear
scale. As portrayed in those figures, the calculation values show good agreement with the
experimental data for the region of T <2.1 K. This calculation is executed using the

Mathematica program (The source list is shown in end of this book).

It is noteworthy that the present calculation incorporates only the experimental
data of excitation energy obtained at 1.1 K. In marked contrast, traditional theories have
used the data of excitation energy obtained at several different temperatures or have
adjusted parameter values for different temperatures to fit the experimental data. Our
calculation in this section uses no such an artificial method. Nevertheless, the present

results show good agreement with experimental data of the entropy for 0<T<2.1 K.

4.2 Traditional theories
4.2.1 Landau Theory

Landau calculated thermodynamic functions by applying the excitation energy

gg . The theoretical value of the entropy is expressed as the sum of phonon part S,
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(reference [3] Khalatnikov, page 11) and roton part S, (reference [3] Khalatnikov, page
12).

The entropy of phonon part per unit mass is

S _167° ( kel ’
B )
27he

= 4.9
mN  45p 62

where C is the phonon velocity and O is the mass density of liquid helium. The roton part

per unit mass is expressed as

S, i 2poz(/ukB-I-)1/2e7A/(kBT) A i
—NB /2 3 + 5
mN p(27)"n keT 2

where A is the roton minimum energy, M is the effective mass of roton, and p,, is the

(4.10)

momentum of roton minimum. The total entropy per unit mass is as shown below.

5 3 2 1/2 -A/(kgT)
S _Sw+S, _l6r ks[ kBTj kg 2P0 (ukgT )28 ( A 3] (@.11)

= —_— _+_
mN - mN 45p °(27hc p27)*n’ keT

We use the parameters shown below.

¢ =238 [m/s] (4.12a)

0 = 1455 [kg/m’] (4.12b)

A/kg =8.606[K] (4.12¢)

1 =0.16xm=1.063x10" [kg] (4.12d)
o -1

D,/(10°7)=1.92[A ] (4.12¢)

where m is the mass of helium atom. The temperature dependence of Landau’s entropy is

portrayed in Fig. 4.3 and 4.4.
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Entropy [1/(g*K)]
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Fig. 4.3 Entropy of Landau Theory for temperatures lower than 1.1 K

Calculated values are expressed by the curve. Dots show the experimental data.

Entropy [1/{g-K)]
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Fig. 4.4 Entropy of Landau Theory for temperatures higher than 1.0 K

Calculated values are expressed by the curve. Dots show the experimental data.

Figure 4.3 shows that Landau’s calculation results of entropy have good agreement with
the experimental data obtained at less than 1.1 K. Nevertheless, Landau’s entropy is
approximately 60% of the experimental value at 2.1 K, as portrayed in Fig. 4.4. To

improve the Landau theory for the region of T >1.1K , many researchers have
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introduced the temperature dependence of excitation energy. We explain their works in

later sections of this article.

4.2.2 BCY Theory
To take account of the temperature dependence of excitation energy, P. J.
Bendt, R. D. Cowan, and J. L. Yarnell extended Landau’s theory [13]. We designate their
calculation BCY calculation. The momentum range was divided into four intervals: the
phonon region, maxon region, roton region, and high-momentum region. Respective

forms of the excitation energy for each momentum region are expressed as follows:

The excitation energy in phonon region is given as
£,(T)=v,(T)p- (4.13)

where v 1(T) represents the velocity of the first sound. The excitation energy in maxon

region is given by a parabolic curve as
&,(T)= ks(a—l1~5(p/(101°h)—1-113)2)7 (4.14)

where parameter a is determined from the conditions of continuous connection among

different momentum regions.

In the roton region (1.58< p/(lOth)S 2.18 ), the excitation energy is

calculated using interpolation of the experimental data of neutron scatterings at 1.1 K and

1.8 K. In other words:
8p(T)=interpolati0n formula of the experimental data-  (4.15)

The roton minimum energy A(T) is applied to the following interpolation formulas

(a—f):(page 1390 in [13]).
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Formula (a): A(T )/kg =8.68—0.0084 T’ (4.162)

Formula (b): A(T )/kg =8.69—-0.0155T° (4.16b)
Formula (c): A(T)/kg =8.70-0.0289T° (4.16¢)
Formula (d): A(T )/kg =8.67-1.564(p,/p) (4.16d)
Formula (e): A(T )/ky =8.68-5.35x10 N__;.ion (4.16¢)
Formula (f): A(T )/k, =8.66—-5.93x10 N, (4.16f)

These coefficients were determined to fit the experimental data of excitation energy at 1.1
and 1.8 K. Formulas (c) and (d) yielded better agreement with entropy measurements

than the other formulas written in Ref. [13].

The excitation energy in high-momentum region was defined as
£,(T)=v,(T)p-b- (4.17)

Parameter b is also determined according to the continuous condition between different
regions. The phonon velocity used the value at each temperature. Consequently, the
energy dependence is complicated, as described above. Then, they evaluated the
theoretical values of entropy and specific heat. The result of entropy calculation is
portrayed in Fig. 4.5; it shows good agreement with the experimental data for
T<14K.
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Fig. 4.5 BCY calculation results for the entropy of liquid helium

The curve expresses the results of BCY theory. Dots show experimental values of entropy.

For 1.4K <T <2.2K, their result differs from the experimental data. The entropy
value of the BCY calculation is about 70% of the experimental value at 2.1 K. The BCY

calculation uses many temperature dependences, as described above.

4.2.3 BD Theory
To explain the experimental results for higher temperature, J. S. Brooks and R.
J. Donnelly improved the theoretical calculation of entropy and specific heat of liquid
helium. We designate their theory as BD theory. Their results were obtained through a

lengthy series of investigations [14].

They obtained the numerical values of excitation energies £ (T) by making use

of various experimental data. For better understanding of the details of pressure
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dependence and temperature dependence, reference [14] is helpful. We present their

result for entropy in Fig. 4.6.
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Fig. 4.6 Entropy of the BD theory

Large dots signify the experimental data. Small dots show results obtained using the BD theory. The scale of

entropy is measured in units of [J/(g ‘K)]

Their results show good agreement with experimental data. It is noteworthy
that their results are derived from use of the experimental data obtained at many different
temperatures. In contrast, our theoretical results in section 4.1 are derived from

experimental data at a temperature 1.1 K only.

The calculated entropy values of the BD theory deviate from the experimental
data near the A transition. Deviations are more readily apparent in the specific heat than in

entropy. That fact is discussed in the next chapter.
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V. Specific heat

A logarithmic divergence appears in experimental data of specific heat at the

temperature T, of the A transition (see Sec. 5.3). However, the calculated functions of
the traditional theories have no singularity (see Sec. 5.1). We investigate the singularity

on the basis of the nonlinear theory presented in Sec. 5.5.

The derivative of (4.7a) gives the isobaric specific heat per unit mass.

CP:T[é(S/mN)jP:Tk 4z (5(1/,3)} T{log(l+np)+é’Tnp}p2dp

ar ®my\ a s
Tk 4z T 1 @ + a(‘gp/(kBT)) n +87p@ pldp
" m) pyl1+n, (T ), o o keT LT ),
(5.1)

Here, the derivatives are performed under a constant pressure. Differentiation of (3.6a) by

the temperature yields

(mpJ (Dexple, /(k,T)) [a(sp (i T ))] , (52)

B (exp(&‘p /(kBT ))_ 1)2

which gives the following.

1 ( a, J _ lexple, /(k,T))~1) (= Dexple, /(,T)) [ﬁ(sp/ (ksT ))j
1+n, o exp(sp J(kgT )) (exp(ezp /(kBT ))— 1)Z Z p (5.3)

ar
=(=1)n, (Mmj

ar

a

Substitution of this equation into the second integral of (5.1) yields the following.

4r é’(l/P)J i %p 2
C, =Tk 7 logll+n_)J+——n d
’ 8(27#1)3( o Pg ogfi+1,) kT * PP a0

dr T € A
+Tk S I e 2 O
B(27zﬁ)3p'([kBT[ﬁrjpp P

On page 101 of reference [19], we expressed the heat capacity of liquid helium with total
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mass M as

(5.4b)

where V is the volume of liquid helium.

Using the derivative of dressed boson number (5.2), Eq. (5.4a) is rewritten as follows.

(272%)3 [ g/rp)lﬂmg(nn )+anp}p2dp 5

tx_j o Cbole 1) (20 1)

(27rh)3p Ky (exp( p/ (kT ) )Z a

p =TKg

+Tky

oc—3

We execute differentiation é’(gp / (kBT ))/ O, and obtain the following.

— (M) oty

B(Zfrhf T ey

Te,, exp (¢,/(k,T)) [ & 1 [58 ]P]pzdp

) py kT (exple, /(k,T))-1F L koT?  koT

(5.6)

Using the number distribution (3.6a), the isobaric specific heat per unit mass is described

Cp =Tk, i (0’)(;]_/"))) f{log(l +n, )+ kijl' np} p*dp
B

Po

+(2:7‘1) pl( " Fereley /& T)Hk TJZ"B‘G(?JJpde

Thereby, the isobaric specific heat of liquid helium per unit mass is expressed using the

. (57

excitation energy from the Bose—Einstein condensate and the number distribution of the
dressed bosons in the nonlinear theory. The numerical calculations are executed in Sec.
5.2 and 5.6.
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5.1 Various calculation methods
Many physicists have calculated the specific heat using their own methods. We
first explain the traditional calculations of specific heat before explaining the results of

the nonlinear theory.
5.1.1 Calculation of Specific Heat using Landau Theory

Landau calculated the specific heat by applying the elementary excitation energy
e‘g . His excitation energy is independent of the temperature. Therefore, the

right-hand-side of (5.7) can be evaluated. He obtained the approximate analytic forms for

phonon part C, and roton part C, per unit mass as follows: (see page 11 and 12 in

Khalatnikov’s book [3]).
5 3
Cpr = 167 Ke kgT 5.8)
15p 27hc

C, =kg

2
2poz(/UkBT)VzﬁfA/(kBT) [ A J +i+i (5.9)
4

p(27z)3/2 n E kT

The specific heat per unit mass is given as the sum of two contributions: (5.8) and (5.9).

5 3 2 /2 —A/(kgT) 2
C=Cy+C, == kB[ kBT] skg 2Po ltksT)"e [kATj A3
B

15p 27he ,0(271')3/27’”13 ke E 4

(5.10)
Therein, the parameter values are already shown in (4.12). Landau’s results are drawn in
Figs. 5.1 and 5.2. The results show good agreement with the experimental data for

T <1.0K, as presented in Fig. 5.1.
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Fig. 5.1 Specific heat of the Landau theory for T <1.1K
The dots represent the experimental data [15]. The curve expresses Landau’s calculation results for the

specific heat of liquid helium. The scale of specific heat is [J/(g ‘K)].
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Fig. 5.2 Specific heat of the Landau theory in units of [J/(g ‘K)] for T >21.0 K

Dots express experimental data [15]. The curve shows Landau’s results.

Landau’s results deviate from the experimental values for T >1.3 K under the

saturated vapor pressure, as portrayed in Fig. 5.2. Many researchers have made efforts to
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decrease the disagreement between theoretical values and experimental values for

T >1.3 K . Two approaches among them are explained in the following sections.

5.1.2 Calculation of Specific Heat using BCY Theory
As described in chapter IV, P. J. Bendt, R. D. Cowan, and J. L. Yarnell
calculated the specific heat via use of the temperature dependence of excitation energy.
Their results are improved to be better fitting with the experimental data than in the

Landau theory. The calculated values are depicted in Fig. 5.3.

Cs [V(g*K)]

3

BCY Theory

0.5 1 1.5 2 T[K]

Fig. 5.3 Calculated values of specific heat in BCY theory in units of [J/(g'K)]

The curve shows the theoretical result. The dots express experimental values [15].

However, the result of BCY theory is still smaller than 50% of the experimental data of
specific heat at 2.1 K.

5.1.3 Calculation of Specific Heat using BD Theory
In addition, J. S. Brooks and R. J. Donnelly considered the temperature and
pressure dependences for single excitation energy of liquid helium. Their calculated
values of specific heat are presented in Fig. 5.4, which show good agreement with

experimental data for T <2.0K .
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Fig. 5.4 Specific heat calculated using BD theory on the scale of [J/(g - K)]
Large red dots represent experimental values [15]; small black dots show calculated values of the specific

heat in BD theory

Their roton parameters are adjusted so that their results fit the experimental values.
However, the results deviate by approximately 10% from experimental data at
T =2.1K . The deviation increases approaching the A transition. They have used only
regular functions without singularity. On the other hand, the experimental behavior
shows a logarithmic divergence at T =T, ~2.172 K . Accordingly, BD theory cannot
explain the logarithmic divergence.

We discuss the origin of the singularity in sections 5.3-5.6. Then, it is clarified
that the nonlinear structure of the total energy causes the logarithmic singularity of the

specific heat.

5.2 Evaluation for T<2.15 using the iteration method

The nonlinear theory has clarified that the excitation energy from the
Bose—Einstein condensate of the dressed bosons varies with temperature. As discussed in
chapter III, the kernel function K(p,q) can be calculated numerically based on Eq.
(3.19) using the analytical forms (2.42)—(2.46). Thereafter, we numerically calculated the
first order solutions El(p,T) and nl(p,T) using Eq. (3.21) and Eq. (3.22), and also the
second order solutions 52(p,T) and nz(p,T) using Eq. (3.23) and Eq. (3.24). The

calculation has already been completed in chapter IV to obtain the entropy values. Using
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these numerical values of the second order energy gz(p,T) and the second order
distribution function nZ(p,T), we can calculate the second order approximation values

of specific heat.
C :Tksi(ﬁj | {log(l+nz(p,T))+an(p,T)}pzdp

@an) (T Joy kyT

+(;‘,,”thT(m(p,T))2expcsz(p:)/(kBT){[fz(p’”jzkB—EZ(P’T)(%(F”TU ]pZap

kT KT ar

(5.11)

The evaluated results are presented in Fig. 5.5.
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=z

Fig. 5.5 The second order results of specific heat via the nonlinear theory
The curve shows calculated values of IOgm(Cp /[ (g K)]) of the nonlinear theory. Red dots indicate the

experimental data [15].

As presented in this figure, the theoretical values of the second order show good
agreement with experimental data for T <2.1K . It is noteworthy that the present
calculation uses the experimental values of excitation energy only for 1.1 K. Of course

the iteration method is insufficient in close vicinity of the A transition temperature. We
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discuss the origin of the logarithmic divergence in Secs. 5.5 and 5.6.

5.3 Logarithmic divergence of specific heat at the 4 point

The experimental data of specific heat have a logarithmic divergence at the 4
point [15]. We portray that behavior in Fig. 5.6, where the scale of specific heat is
[J/(mol'K)]. Therefore the values in Fig. 5.6 are approximately four times larger than the

values shown previously in Figs. 5.1-5.4.
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Fig. 5.6 Experimental data of Specific Heat for saturated vapor pressure

The unit of Cs is J/mol-K. The horizontal axis shows Jog | (1 — (T/T; ))

It is difficult to measure the specific heat in close vicinity of the A point, i.e. in the
region of 1— (T /T 2 ) <107 . Gravity acts on liquid helium on the earth. Accordingly, the

upper part of liquid helium has pressure that is less than in the lower part of liquid helium.
This pressure gradient yields deviation of the A transition temperatures. In other words,
the lower part of liquid helium has a A transition temperature value that is smaller than in
the upper part. To eliminate this deviation, microgravity or zero gravity technology is

necessary to measure the specific heat, for instance, the environment on the space shuttle.
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Those data were obtained in the space shuttle by Lipa et al. [16]. The experimental results
are presented in Fig. 5.7. (The authors extend particular appreciation to professor Lipa for

these data.). The temperature dependence shows logarithmic divergence at the A point.

Cg [JmoleK)]
120,

100
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"o oo 1- (/7))
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Fig. 5.7 Experimental results of specific heat in space shuttle by Lipa et al. [16]

Specific heat values Cg are shown in units of [J/mol-K] on the vertical axis. The horizontal axis shows

IOgm (1 - (T/TA )) :

Landau theory and its improved theories (BCY theory and BD theory) cannot
explain the logarithmic singularity of specific heat at the A point. Moreover, our second
order solution in the previous section is insufficient to explain the singularity. Infinitely

numerous iterations are necessary to obtain the singularity.

Deriving this singularity, we will examine the energy spectrum near the A4
point in the next section. According to the examination of the spectrum, the cause of the
singularity is clarified in section 5.5. The specific heat near the A point is calculated

numerically using the nonlinear theory described in section 5.6.
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5.4 Dressed boson energy near the A point

The elementary excitation energy is measurable in inelastic scatterings of
neutron or in Brillouin scatterings of laser light. The detected energy value for a small
momentum is more precise in Brillouin scattering experiments of laser light than in
inelastic neutron scattering experiments. Therefore, we reexamine the data of spectrum in

Brillouin scattering in greater detail.

There are many experimental measurements of Brillouin scatterings in liquid
helium [17]. We present one datum in Fig. 5.8. The data were measured by Vaughan,
Vinen, and Palin as on page 533 of reference [17]. Therein four peaks are detected whose
two central peaks represent the second sound peaks (Stokes peak and anti-Stokes peak)
and whose remaining two peaks indicate the first sound peaks. The detected width of the
second sound peak is almost equal to the instrumental width: the intrinsic width of the
second sound is extremely small. The width of the second sound peak was also detected
by Winteling, Holmes, and Greytak; its value is less than 1.5 MHz for TA -T <0.1[K],
as shown on page 429 of reference [17]. The value 1.5 MHz is the instrumental width;
therefore the intrinsic width of second sound is smaller than 1.5 MHz. It is readily
apparent in Fig. 5.8 that the second sound width is less than the width of the first sound
peak near the A point.

4T /l\(;\ , T

Fig. 5.8 Spectrum of Brillouin scattering in liquid helium [17]

Data measured at | = T/I — 00005[ K] .
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In these measurements [17], the second sound width is smaller than one-sixth
of the width of the first sound. Accordingly, the lifetime of the second sound is six times
longer than the lifetime of the first sound because the lifetime is directly related to the
inverse of the width. That is to say, the second sound mode is more stable than the first

sound mode.

In the Landau theory, the theoretical width of the second sound peak becomes
infinitely large at the 4 point. The discrepancy between Landau’s result and the
experimental result suggests that the second sound peak detected in Brillouin scattering
represents an elementary excitation, i.e. excitation of the dressed boson from
Bose—Einstein condensate. The nonlinear theory of this article also supports that

supposition. We explain it below.
The excitation energy of dressed boson from Bose—Einstein condensate &, is

equal to 53 at T =0. The excitation energy from BEC has a value that differs from 88

when the temperature becomes high. We first examine the functional form of the
excitation energy from BEC for a very small value of p. The summation in (3.2) can be

rewritten to an integration, except =0 because of smallness of momentum interval
(27m/L):

W”I p—a)n,dcosédeq’dq - X (-12)

where n, represents the number of dressed bosons in the Bose—Einstein condensate, and

Xis independent of momentum p as
X =—5 fs-thn, - (5.13)
N< st

We use the approximation form of f(p—g) in a small momentum as
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f(p-q)=1el, +Orderl(p—q) J+ £(0)=cjp—q| + Order{(p—q)’ )+ £(0)

s

where C is the phonon velocity at zero Kelvin. The integral region in (5.12) is divided into
a small momentum region ¢ < (, and a large momentum region ¢ >, , Where (4 is

an adequately small momentum. Consequently, we obtain

G=Qa

p> N, v R
=—+—-Cp|+ cp—qn,dcosédeq d
% om N i N(27h) qL” ip—qInydcos gy q, 510
PAVAR
+ n,dcos@gg dg+Y
N(2h) qiﬂ praicostiea’d
where Y is the constant part independent of p. The first integral in (5.14) is
=0 G=Qa t=1
2da = 2
N(2;zﬁ* ”J.c\p qjn,dcos deq’dg = 7‘1]'01{:: p® —2pqt+q*dt n,q’dq
v "¢ o+ -lp-d | .
= n,q-d
CNQm) L 3pq a4
(5.15)

Therein, we examine only the case of p <, because of the smallness of p. We can also

use the approximate function form for a small momentum ¢ as

Ny ~—E— (5.16)

where the value of U represents the velocity of the excitation in a small momentum. This

value is determined later. Accordingly, the integral in (5.15) is equal to

v P [ —lp-d o 2kT oopara quczp +6p0” 4o

dg =
NQm) 2 3pq 4= N ) 3pu !
= Order(p )+ Order(p3 )+ (constant value)
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The second integral in (5.14) is expressed as the following.

2V
N(Q27)

T”[f(*q)*a peq+pp’ +---]nqdcosad¢q2dq

=0

Néi\jzﬁ)s T”f(p—q)nqdcosai(pqqu =
q=qa

= Order( p’ )+ (constant value)

These calculation results imply the following expansion.
n
, = WO cp|+ Ordet(p2 )+ (constant value)

Consequently, the velocity of the dressed boson for a small momentum is directly

related to N as

n 2
wp—a)(,:ﬁcp+0rde1(p ) (5.17)
Therefore, the velocity of the excitation from BEC is expected to decrease when the
temperature approaches the A point. This property shows agreement with the property of
the second sound; it was first examined in reference [27]. Accordingly, it is reasonable
that we consider the excitation of the dressed boson from BEC to be the second sound

mode for a small momentum near the A point. The reasons are summarized below:

1. The excitation mode of the dressed boson from BEC is expected to disappear in
T >T, because of disappearance of Bose condensate. The second sound mode also

disappearsin T >T, .

2. The velocity of the dressed boson from BEC in a small momentum is expected to
decrease when the temperature approaches the A point. Moreover, the velocity for a very

small momentum approaches zero at the A point because of Eq. (5.17) and

ny ?Tz) 0. The velocity of the second sound mode has the same property.
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3. The width of the second sound peak in Brillouin scattering is extremely small near the

A point; therefore, the mode represents the elementary excitation.

Consequently, we consider the second sound to be the dressed boson excitation
from BEC. Then, the dressed boson energy near the A point can be determined using the
experimental data. The experimental results given in reference [18] show that the second

sound velocity U near the A point depends on the temperature as

u=c,(1-7/T,)" +D(-T/T,)". (5.18)

According to our viewpoint for the second sound, the excitation energy &, from BEC

has the same velocity as Eq. (5.18). For a large momentum p, &, is proportional to p2

because the kinetic energy occupies a main part of the total energy. Consequently, the

function form of excitation energy from BEC might be equal to

g,=c,p(l-(T/T,)+ap*)" + Dp(i-(T/T,)+bp*)". (5.19)

where C, and D are determined from experimental data of the second sound velocity,
and where a and b are parameters. This energy form certainly has the second sound

velocity as

i 2|, 0-(1/7, )1+ 07,

at p=0. We therefore determined the functional form of &, for a small momentum near

the A point. This form is used in the phonon region. The discussion in the next section
clarifies that the theoretical form of specific heat has a logarithmic divergence at the 4

point.
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5.5 Origin of the logarithmic divergence in specific heat

The theoretical form of specific heat is derived from Eq. (5.7). We examine the

last integration of Eq. (5.7), which is
T )Zexp p/ (k,T) ( jsz_‘gP(&PJ p’dp-
P35 kT kgT \ T b

The logarithmic singularity of specific heat is produced from the integral including the

last derivative as

o Tl Hewole T T2 | g 50

(2ﬂh) Po 2l

This integral region is divided into a small momentum region and a large momentum

region, as presented in the following.

7 L) E L
+-4?T<np>2[exp<ep/<m>>1;3(ﬂ v

(2m) oy a

We can use the energy form of (5.19) for the first integral in (5.21) because ¢, is small.

We can also use the following approximations for a small value of p near the A point.

o e, T2 - [%]1 522
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&, =Cp(1=(T/T,)+ap*)"+ Dp(1~ (T/T, )+ bp?)

~C, p(l—(T/Ti)+ ap3)l/3

o€ -1 _
) olbetmre

Accordingly, the integrand of (5.21) is nearly equal to the following.

1/2

(np)z[exp(gp/(kBT ))‘:)T[?l = [k TJ pf( —(1/1,)+ap*)

Q

_;B (1 —(T/T,)+ ap")_1

These approximations yield the following expression.

X :(—475 J'—kB( (T/T )+ap3)’] pdp

T e T 52

X=(2;7;pk [1 g( T/T )+ap )]p 0
o o, ol (T2 52| e

We write only a singular term at the A transition temperature as

47k

X=- —21lo T/T, 1 .
o) 5 9a 0~ (/T )+ regularpert

(5.22b)

(5.22¢)

(5.23)

(5.24)

(5.25)

This theoretical result shows that the logarithmic divergence of the specific heat is

derived from the nonlinear property of the total energy, as presented in Eq. (2.21). On the
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other hand, the logarithmic singularity does not exist in the theoretical results of the
Landau theory, BCY theory, or BD theory because their phonon velocity at the A point is

not zero.

5.6 Evaluation of specific heat in nonlinear theory near the 4 point

We next calculate the temperature dependence of the specific heat near the 4
point on the basis of the nonlinear theory. The theoretical value of the isobaric specific
heat per unit mass is given as shown in Eq. (5.7) where the integration range is separable
into four momentum regions: phonon, maxon, roton, and higher momentum. We use four
functional forms of the excitation energy from BEC, two of which are the same
functional forms for the roton region and for high-momentum region as those in the BD
theory. (We obtain almost same result even if we use the second order energy form (3.23)
for roton region and for high-momentum region.) For the phonon region, we use Eq.
(5.19). Moreover, the function parameters in the maxon region are determined such that
the excitation energy and its tangent are connected continuously to both neighbor curves.

The integrations in Eq. (5.7) are evaluated using a computer in the temperature
range 0< (1 - (T/T/JL )) <0.04 , the results of which are presented in Fig. 5.9 (see
reference [19]). The mathematica program of this calculation is attached in end of this
book. The upper curve expresses our calculated values of specific heat. Dots in Fig. 5.9
portray the experimental data [15] of specific heat for a saturated vapor pressure. Our
calculation is performed under pressure P=0.05 bar. The difference between saturated
vapor pressure and P=0.05 bar is negligibly small. The middle curve and the lower curve

in Fig. 5.9 depict the results of the BD theory and the BCY theory respectively.
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Fig. 5.9 Calculation result of the nonlinear theory for the specific heat
The upper curve portrays the calculation result of the nonlinear theory. The middle curve and the lower curve
represent the results of the BD theory and the BCY theory respectively. Small red dots indicate the data of
Lipaetal [16]. Large blue dots represent the data of references [15]. The specific heat values Cg are shown in

units of [J/(mol-K)]. The horizontal axis shows Jog (1 — ('|'/'|'/1 ))

As that figure depicts, the result of the nonlinear theory agree well with the experimental
data for ( < (1 _ (T i ))< 0.04 : the nonlinear theory produces logarithmic divergence
of specific heat at the A point. On the other hand, the curve of BD theory depicts no
divergent behavior. Consequently, the present theory is inferred to explain the
temperature dependence of specific heat in superfluid helium well for the whole
temperature region. The second order solution in Sec. 5.2 is applicable to
0<T <2.1[K] ; and the present method in this section is applicable to
2[K]<T <T,-

The transition temperature for Bose-Einstein condensation of dressed bosons
is simultaneously calculated and the result is 2.172 K using the same parameter values as
in the calculation of specific heat mentioned above. It can be seen in the mathematica

program attached in this book.
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V1. Bose-Einstein condensate of dressed bosons
The properties of a Bose—Einstein condensate are studied for nonlinear theory.

6.1 Number of condensed dressed bosons near the 4 point
Using the method explained in sections 5.5 and 5.6, we examine the
Bose-condensed number of dressed bosons near the A point. The dressed boson number

in the Bose—Einstein condensate and the dressed boson number in the excited states are

denoted respectively as Ngyoor and Ny - The number Ny is defined as

N orma = (2Vm)3 J;)O:pw) n,4zp’dp (6.1)
where

n, =(exp|(@, — u)/(k;T)]-1) - and (6.2)

p=w, (for T<T,) (6.3)

The number N is defined as

super

Nsuper =Ny (6.4)
The total number conservation of dressed bosons gives the following relation as
Nsuper + Npormar =N (6.5)

That is to say, the total number of dressed bosons is equal to the total number of helium

atoms N in liquid helium. The excited dressed boson number approaches N at the A point,

and Ng . approaches zero, as shown in the following.
Nnormal T N (663.)
N super fl{) 0 (66b)
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We can evaluate the integration (6.1) using the same method as that used in
sections 5.5 and 5.6. Near the A point, we adopt the excitation energy from BEC in the
phonon region as

Oy — U=y —B) =&, =
—c,p(l—(T/T,)+ap*)"* + Dp(i—(T/T,)+bp*)"
(for 0< p<q). 6.7)
Coefficients C, and D are determined as explained in Sec. 5.4. All functional forms are
adopted to be equal to those of chapter 5. The integration (6.1) is also separable into four
regions. Consequently, the integration can be calculated numerically using a computer.

The temperature dependence of Nygma /N is portrayed in Fig. 6.1.
N N

normeal
1
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Fig. 6.1. The red curve shows the calculated values of Npgma /N

It is shown here that the value of N . /N is certainly equal to 1.0 at the A4 point, namely at

(l—T/Tl):0~

In the integration in (6.1), the contribution from the phonon region is 87.0%, the
contribution from the roton region is 8.8%, the contribution from the maxon region is
2.7%, and the contribution from the high-momentum region is 1.5% at the A point.

Accordingly, the total fraction of dressed bosons with nonzero momenta becomes 100%
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of liquid helium at the A point. That is to say, the Bose condensate of dressed bosons with
momentum zero disappears at the 4 point.

It is illustrative to examine the number of excitations in the Landau theory.
The total excitation number of the Landau theory is approximately 14% of the total
number of helium atoms at the A4 point. Accordingly, it remains unclear in terms of the
Landau theory whether the A transition results from Bose—Einstein condensation.

The number of dressed bosons inside the Bose-Einstein condensate,
Ngyper =My » has a temperature dependence near the A point as depicted in Fig. 6.2 (see

reference [20]).

log lﬂ(nﬂf«’\f']

-7 & K -4 -3 -z
log, (1-(117,))

Fig. 6.2 Dots represent the calculated values of log, O(Nsuper / N )

The function form of (-1/1,)" is plotted as a black line, which well fits the calculated
value of n,/N . Therefore, the critical exponent of N,/N is equal to 1/3. This
mechanism is reexamined via an analytic method presented in the next section.

6.2 Critical index of condensed dressed boson number near the A point

We use the functional form of energy as in chapter V: Eq. (5.22b) is applied to the

dressed boson energy as
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0y -y ~ pylt+ap’)’ 6.8)

where
t=1-T/T,, (6.9)
for a small momentum region (0 < p < p, ) and for a vicinity of the A point. We divide

the integral (6.1) into two regions, 0 < p< p; and p; < p,as

Nnormal _ 4zm Ps 2 * 2 , (610)
N _(2zzh)3pU°(p*0)npp [, np dpj
where
m/p=V/N . (6.11)

Therein, m is the mass of a helium atom and p is the mass density of liquid helium. The
dressed boson number in the first region is nearly equal to the following.

_ 1 N ke T (6.12)
" expllo, - @, )/(k,T))-1 " pe,(t+ap’)’
Substitution of this equation into (6.10) yields

Nogwat _ 4zm | e KT . i
N h (Zﬂﬁ)}p{'[o(iﬁo) pcz(t+ap3)]/3 p dp+Jpsnpp dp

n

(6.13)
The first integral shows a singular behavior at the A point, but the second integral has no
singularity. Therefore, the second integral can be expanded into a Maclaurin series of t

as
j:nppzdpzeo+G,t+0rder(t2)- (6.14)
The first integral is expressed using the hyper geometric function as

p,’ Hypergeometric2F12,1,% -(a p,’ )i | (6.15)
2t

s 1
Lp e p’dp=

This value is expanded to the following series:
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1

no 1 p  TEYFG) " 1 6.16
J.O m pzdp = al/3 +ﬁw+gm+order(tz) ’ ( )

3 S

where F(X) is the Gamma function. The second term on the right-hand-side of (6.16) has
a singular value for its derivative by t at t =0 . This expansion is explained in detail in

Appendix II. Substitution of (6.14) and (6.16) into (6.13) yields the following expansion.

N orma dzm [ kT, (p, T(=3)rs e i
e L R
A 2

3

The fraction N /N becomes 1 at the A point because the Bose-Einstein condensate

disappears at T, . This property is expressed by the equation shown below.

4zm [k, T
1:”73 B A[F’;}}GO (6.18)
(2m) p,\ ¢, \a
The fraction of condensed dressed boson number for the total number is
(=) B
&: 1— Nnunna] - _ Ar m3kBT/L ( 3) (3)%+Order(t) . (619)
NN )T e () a”

The function depends upon the temperature as tV? , which means that the critical index of
Ny/N is 1/3. The result shows good agreement with the numerical calculation, as

depicted in Fig. 6.2.

This temperature dependence no/N o (1-T/T,)”* shows that the dressed boson
velocity is directly related to (1-7/7,)” based on Eq. (5.17). Consequently, this

analytical result reproduces that the second sound velocity is directly related to
(1-T/7,)” near the A point.
6.3 No friction against macroscopic body

The Landau theory has clarified that the background flow cannot be excited using

a collision against a macroscopic body. We also examine a collision of the dressed bosons

against a macroscopic body. The dressed bosons inside the Bose condensate cannot be
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excited but the dressed bosons outside the Bose condensate can transfer to the other

momentum state by a collision against a macroscopic body. This mechanism is examined
as follows: The macroscopic body has a velocity V, an initial energy E; and an initial

momentum B, as

E, L2 (6.20)
2
P.=Mv, (6.21)

where M and V respectively signify the mass and the velocity of the macroscopic body.

We consider the case in which this macroscopic body loses momentum ( by the
collision. The final energy E; and the final momentum P; ofthe macroscopic body are

given as
P; =P,—q ,and (6.22)
Mv-q)’ q’
E :( =E —-veg+——~FE. —Ve s 6.23
f M i q M i q ( )
where the final equality in (6.23) is derived from neglecting the value q2 / (ZM ) because

q is a microscopic value and M is a macroscopic value. When the initial momentum of the
dressed boson is described by p, and the final momentum of the dressed boson is

described by pg, the energy-momentum conservation is expressed as the following.

Pi +pg =Pi+pa (6.24)

Ei +ap, =Ei+a,, (6.25)
Then, we obtain the following equation from (6.22-25).
Ps=Pa+d (6.26)

Gpy =0y, +VoG (6:27)

PB

The transition of a dressed boson from momentum p, to Pg is drawn in Fig. 6.3.
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T

Fig. 6.3 Transition of the dressed bosons by a collision against a macroscopic body
This figure shows the case of py =p, = (. The horizontal axis indicates px/(l()loh). The dressed

boson at point C cannot transfer to any state. The dressed boson at point A can transfer to point B.

In Fig. 6.3, the gradient value of the arrows is (V cos 49) where € is the angle between
Vv and (. The dressed boson with p, # 0 can transfer to momentum pg (at point B)
via a collision against a macroscopic body. However, there is no transition of the dressed
bosons with zero momentum (P = 0 ) for a velocity value smaller than the critical value
V.. The critical velocity is the gradient of a tangential line from point C to the roton
curve. This criterion is the same as that of Landau’s mechanism. However, it is
noteworthy that no quasi-particle exists at p=0 in the Landau theory because the
density wave has no quantized mode at zero momentum. Landau assumed the
background flow. The background flow is not excited via a collision against a
macroscopic body; therefore, the background flow has been considered to be the
superfluid component of liquid helium.

On the other hand, all dressed bosons are in the eigenstates of the total
Hamiltonian. Only the dressed bosons in the Bose condensate have no friction against a

macroscopic body, as shown clearly in Fig. 6.3. Therefore, the dressed bosons in the Bose
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condensate are the superfluid component, and the dressed bosons with nonzero
momentum are the normal fluid component (Later in chapter VIII, we examine the case
in which Bose condensation occurs at nonzero momentum: the case of running
superfluid.). Consequently the superfluid component comprises the dressed bosons in a
Bose condensate.

The ratio of the dressed boson number with zero momentum to the total
number of helium atoms, N, / N, signifies the number fraction of superfluid component

to the total liquid helium:

75 =ny/N . (6.28)

The number fraction of normal fluid component is
=Y n,/N. 6.29
=X / (6.29)

The temperature dependences of the number fractions were calculated in Sec. 6.1 and 6.2.
It is noteworthy here that the quantities 7], and 77, are not mass fractions, but number

fractions. The following equation is derived from the total number conservation.

Ns + 1 :%(no +p§0 an =%=1 (6.30)
In that equation, we used (2.15). These number fractions have typical values at T =0
and T=T,.

7, =0, n,=1 (atT=0) (6.31)

m=1n,=0 @t T=T,) (6.32)

The Bose condensate of the dressed bosons occupies 100% of the total number at
zero Kelvin. The dressed bosons inside the Bose condensate cannot receive a friction
force from a macroscopic body. Consequently, the dressed bosons with zero momentum
are the superfluid component. Accordingly, Eq. (6.31) means that the superfluid
component occupies 100% and the normal component disappears at zero Kelvin.

On the other hand, at the A point, the fraction of Bose condensate of dressed
bosons, 7, disappears and the value of 7, becomes 1: the normal fluid component of
dressed bosons occupies 100% of liquid heliumat T=T,.

Number n, is not equal to the number of helium atoms with zero momentum.
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As presented in chapter II, the dressed boson operator A; is defined by the unitary
transformation U from the operator a; of helium atom as

A =UaU™" . (6.33)
The operator is approximately expressed as
A =aay+xg(rslajasa,,  +- , (6.34a)
r,s

where
azl . (6.34b)

Therefore, the dressed boson number in the Bose condensate is

Ny = AV A = [aaz +x9(rs)araza,,, +---j(aa0 +>g(t.uar,,aa, +) #aya, .
rs tu

(6.35)
As described above, the dressed boson number with zero momentum is not equal to the
number of helium atoms with zero momentum. The experimental data show that the
number of helium atoms with zero momentum is a few percent of the total number of
helium atoms at an ultra-low temperature.

Next we point out features of a one-dimensional (1D) boson system. The

difference between A; A, and aga0 is remarkable in a 1D boson system with

delta-functional potential. The expected values of A(*)A0 and a(*)ao are, in the case of

infinitely large coupling constant for the ground state:

(G|AVA|G)/N ——1 and (6.36)
(Glagay|G)/N —=—0- (6.37)

where |G> is the ground state.
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VII. A transition and phase diagram

7.1 Transition temperature of Bose-Einstein condensation

The phase diagram of liquid helium can be determined based on the nonlinear
theory by calculating the temperature at which 77, becomes 1. That is to say, we evaluate
the temperature value at which the dressed boson condensation disappears. The
difference value @, —u iszerofor T <T, (@, isthe lowest energy of a dressed boson
and w is the chemical potential) because the Bose condensate exists (see Eq. (3.4), and
see (8.28) for more details). At T >T,, @, —u becomes a positive value because the
Bose-FEinstein condensate disappears. This property is presented schematically in Fig.

7.1.

@y —H

T, -1

Fig. 7.1 Schematic figure for behavior of @, — 1

The temperature dependence of N g /N and ng/N is portrayed schematically in
Fig. 7.2, where the value of N oo /N is equal to 1 for T>T,.

Fraction of nonnal fluid component
N N

normal ¢

Fig. 7.2. The fraction of Bose condensate and the fraction of normal fluid component

The blue curve represents n, /N of Bose condensate; the dashed curve represents N normar /N
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London calculated the transition temperature, the result of which is
approximately 3.2 K for saturated vapor pressure [21]. It is noteworthy that the Bose
condensate in London’s theory is not superfluid because London’s bosons with zero
momentum are excited via a collision against a macroscopic body. On the other hand, the
condensed dressed boson described in the present theory cannot be excited by collision
against a macroscopic body because of its nonlinear form of energy, as clarified in Sec.
6.3.

The lowest energy is zero in London’s theory. Therefore, London’s chemical
potential is equal to zero for T <T, . This result does not agree with the experimental
data. In the nonlinear theory, w, (T) depends upon the temperature. Therefore, the
chemical potential x = a)O(T) depends also upon T for T <T, . This property shows
good agreement with the experimental result.

The fraction N, gue /N in the nonlinear theory has been calculated
numerically in Sec. 6.1 for T <T, . The fraction value depends upon the temperature. We
find a value of transition temperature where the fraction N, /N becomes 1. For

pressure P=0.05 bar, we obtain the value T, as
T,=2.172K for P =0.05bar. 7.1

After changing the pressure value, we evaluate the transition temperature of
Bose—Einstein condensation of the dressed bosons. Thereby, we obtain the phase diagram
of He I and II (helium I represents a normal liquid for T >T, . Helium II represents a

superfluid state for T <T). The numerical result is portrayed in Fig. 7.3 (see reference

[22)).
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bar
+ experimental data

23

London theory

a

zZ0

calculated value in
this paper

Landau theory

Fig. 7.3 Phase diagrams of the three theories
The red curve shows results obtained using the nonlinear theory; the black curve represents results obtained

using the London theory. For the Landau theory, the transition temperature is calculated in reference [21]

London’s result shows that the transition temperature becomes large for the
increment of pressure value. The experimental value of the A transition temperature
decreases for the increment of pressure value. The calculation results of the nonlinear
theory show good agreement with experimental data. The decrement of T, for the
increment of pressure results from a nonlinear form of the total energy and by decrement
of the roton minimum energy for the increment of pressure.

In the Landau theory, the A transition is not caused by Bose—Einstein

condensation. The excitation number NnL:t‘:::I“The"W depends upon the temperature. The

normal

temperature dependence of [\ Lendau Theory / N is depicted schematically in Fig. 7.4.

Fig. 7.4 Temperature dependence of |\ bandauTheory / N

normal

The value of N “Lo‘"*r‘l‘ndzl" Theory / N at the A point is approximately 0.14.
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As might be apparent in Fig. 7.4, | LandauTheory / N is only 14% at the A point. In addition,

normal

N Landau Theory
normal

/ N islargerthan I for T > Ty where Ty is the temperature at the point B.

It might be difficult to consider the case of N::“d*‘““e‘"y / N > 1, although the number

rmal

Landau Theory

o is not directly related to the total number of helium atoms. In the Landau

theory, the transition temperature is determined by the calculation of mass density, which

is explained in section 7.2.
7.2 A transition temperature in Landau Theory

Landau calculated the mass density of normal fluid, which is described by

Pn (see reference [3]). The functional form is presented on page 15 of Khalatnikov’s

book [3].

E 2
45m Py

3T Tkt
Rough dependence of p, upon the temperature is portrayed in Fig. 7.5.

(7.2)

ip"-ljn dau

Fig. 7.5 Temperature dependence of p,  in the Landau theory

M/V is the mass density of liquid helium

The transition temperature in the Landau theory is determined as the
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temperature at which the calculated value of p, is equal to MV ( p,, M, and V
respectively denote the mass density of normal fluid component, the total mass, and the
volume of liquid helium). The value is shown as approximately 2.8 K on page 195 of the

book by Landau and Lifshitz [21].

T =2.8[K] (7.3)

By that logic, the calculated value of p,, is greater than the total mass density M/N of
liquid helium for T >T ;2" 1t is difficult to conceive of a normal fluid having a mass

that is greater than the total mass of liquid helium. Therefore, the Landau theory is

inapplicable to a liquid helium system for T > T, .
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VI11. Two-fluid mechanism caused by nonlinear energy form

In Landau’s work, elementary excitations are considered to be density waves
in liquid helium. Accordingly, Landau’s elementary excitations with momentum zero
never exist. Landau’s normal fluid component is constructed by the excitation modes, but
his superfluid component is a background flow. The substantial existence of the
background flow is unknown.

On the other hand, in the present theory, dressed bosons with momentum zero
exist as described above. The total number of dressed bosons is conserved and is equal to
the total number of helium atoms. This number conservation causes the Bose—Einstein
condensation of dressed bosons. Moreover, the condensation occurs at any momentum
value inside some region. This property is derived from the nonlinear form of the total

energy of liquid helium. We first examine the distribution function of the dressed bosons.
8.1 Determination of the distribution function of the dressed bosons

By the present theory, the total number N, the total energy E, and the total
momentum P, of the dressed bosons are conserved. We consider a micro-canonical

ensemble of the dressed bosons where N, E, and P, are fixed to each value. Next we

find the momentum distribution of the dressed bosons at equilibrium.
First, we count the quantum levels. The momentum interval from p, to
p, + Ap, contains Ap, L/(Qﬂh) levels where L is the side length of the cubic container

filled with liquid helium. Therefore, the number of quantum levels, X, inside the

momentum region Ap,Ap,Ap, becomes

X = Ap,Ap,Ap, (L/(270)) = Ap,Ap,Ap,V [ (27 (8.1)
where V = is the volume of the container. Next, we designate the number of the

dressed bosons inside the momentum region Ap,Ap,Ap, by Y as

Y = X X xng o, (8.2)

Px<sx<Px+Apx Py<Sy<py+Apy Pz<S7<Pz+Apz
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where the running variables (SX,Sy,SZ) have values within the momentum range

Py S < Py +Ap,, Py <s,<p,+Ap,,and p, <s, < p, +Ap,. Accordingly, the

mean number of dressed bosons per quantum level is

3
(Zﬂh) > xng o, (8.3)

n=Y/X =t
ApXApyApZV Px <Sx<Px+Apx Py<sy<py+Apy Pz <s;<pz+Ap;

p

where the upper line in N, denotes the mean value. Here, the momentum region

Ap,Ap,Ap, is sufficiently small, but contains an enormous number of levels. These two

conditions are satisfied simultaneously because the value of V is a macroscopically large
value.

The Y dressed bosons are distributed among the X levels. To quantify the
modes of the distributions, first we determine the number of all possible ways of

distribution expressed by AQ), which is equal to
AQ = (X +Y =1)/{(X =1)v1}, (8.4)

where we have used the bosonic property that any number of dressed bosons can occupy
a single quantum level. Taking the logarithm of both sides of Eq. (8.4), we obtain
log(AQ)~ (X +Y )log(X +Y)—X log X —Y log¥Y
=X log(1+Y/X)+Y log(l+ X/Y)
= X[log(1+Y/X )+(Y/X )log(1+ X /Y )]
:W[log<l+ )+ (o, ol + ;)

where we have used Eqgs. (8.1)—(8.4) and Stirling’s formula. The total number of the

, (8.5)

distribution modes Q is the multi-product of AQ) as
Q=T1AQ,

which gives

logQ = ZIOgAQ .

82



Summing up Eq. (8.5) over the whole momentum space, we obtain the total number of
the distribution ways as
—\ [— —\-1
~ . 8.6
logQ = leog(1+np)+(np)log(1+(np) )J (8.6)
all states
The total number of dressed bosons N, the total energy E, and the total momentum P,y

are given as

(8.7)

N =Xn,,
p

Pyt = %pﬁ , (8.8)

E= Zp—np+ Zf p- qnpnq+ Zf P—0,p—K)npNgNic +- -

p.gk
(8.9)
where we have used Eq. (2.20) for the total energy. Although we can exchange (8.9) to a
simpler form (2.21), we study the most general case in section 8.1.
We find the distribution function in which the number of states, Q , becomes a

maximum value under fixing the values of N, E and P, . The maximization derives the

following relation by making use of Lagrange multipliers.

75(1()%9) =4 i—yﬁi—u.LPﬂ (8.10)
on on on

on, o

Therein the functional derivatives are the following.

o) iof. ) e
P
%: @y (8.12a)
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@, =——+—

| o (8.12b)
+N—Zf(p q.p— k)nan+ Zf q-p,q—k)ngnk
q.k
+%Zf3(k—q,k—p)ﬁqﬁk——3Zf3(s—q,s—k)ﬁsﬁqﬁk 4o
N q.k N s,q.k
N (8.13a)
on,
Pt _
sn, "

(8.13b)

It is noteworthy in Eq. (8.12b) that we neglect the total number dependence of functions
f,, fy, f,,+-. Substitution of (8.11), (8.12a) and (8.13a,b) into (8.10) gives

log(l—i-(a)_l): ﬁ(a)p —y—uop) , (8.14a)
which yields

1 , (8.14b)
" explplw, —u-uep)-1

>

where f,— fu,— fu are the Lagrange multipliers. The well-known relation between
the entropy S and the number of states Q is

S =kylogQ, (8.15)

where Kg is Boltzmann’s constant. Accordingly, the distribution function {n, } has a

local maximum entropy when it satisfies (8.12b) and (8.14b)

We examine the physical meanings of the Lagrange multipliers
L.— Pu,— pu . The following relation is derived using Eq. (8.10) when the distribution

function {E } of the liquid helium changes slightly by { sn, }
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which yields
&8 =Ky BIE — uN —U s P, }.
Therefore, for U =0, we obtain

SE :Lég + uN (8.16a)
kp /8

B

where we have fixed the volume of liquid helium, namely 6V = 0. As is well known, the

thermodynamic relation gives
dE =—PdV +TdS + ¢dN .(8.16b)

Comparison of (8.16a) and (8.16b) yields the following.

p= 71_, 4= chemicalpotential (8.17)

Therefore, knowing the physical meaning of the Lagrange multipliers, the distribution
function of the dressed boson { E} is determined using the following simultaneous

equations.

P 1 (8.18a)
P exp((wp —i—Ue p)/(kBT ))—1

o, 5— zq: L,(p—a)ng +— Zf q-p)n zgfz(s—t)ﬁsﬁt

1 - -
T fg(p—q,p—k)nqnw—Nz > f,@-p.a-k)nen«
q.k a,k

(8.18b)

1 _ 2 - - -
+WZf3(k—q,k—p)nan—mzf3(s—q,s—k)nannk 4o
q.k

s.q.k

The coupled integral equation (8.18 a, b) has a single solution for T >T, .
However, infinitely many solutions satisfy the coupled integral equation (8.18 a, b) for
T <T, because there are infinitely many values for the condensed momentum. To better
elucidate this mechanism, we examine the following simple example in which there are
only two quantum levels with a nonlinear form of energy. Which level has lower energy

depends upon the distribution of bosons in the two levels.
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8.2 Explanation of level inversion

We study this simple system which includes only two levels. The total energy

of the system is given as
E=En +E;n, + f,nn,, (8.19)

in which n; and n, are boson numbers belonging to level 1 and 2, respectively, and the

following inequalities hold:

E,<E, and f,>0. (8.20)

The energy (8.19) would become a linear form with respect to the boson numbers if the
coefficient f;, were equal to zero. Then, the energy of level 1 would always be lower
than that of level 2 because of the inequality E; <E,.

On the other hand, when f;, >0, the total energy has a nonlinear form. In this

case, which of level 1 or 2 has a lower energy depends upon the number distribution
{nl,nz}. This fact is understood by studying the boson energy. The value of @ is

defined as the energy increase, when we add one bose particle to level i (i=1 or 2):
@, =0E/on, =E, + f,n,, @, =0E/on, =E, + f;;n, . (8.21)

As the number n, becomes larger, the energy @, becomes large because of f, >0,
reaches the value of @, , and finally becomes larger than @, . Consequently, the energy
magnitudes of the two levels are reversed by increasing the occupation number at the

higher level, as presented Fig. 8.1.
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Fig. 8.1 Number dependence of dressed boson energies for two levels

w, is smaller than @, when n, >n,

This example shows the level inversion mechanism which results from nonlinear form of
the energy. A similar inversion between energy magnitudes of levels also occurs in the

present theory because the total energy (2.20) has a nonlinear form.

8.3 Various values of momentum at which dressed bosons condense

Galilean invariant terms of the total energy have nonlinear forms. Therefore
Egs. (8.18a) and (8.18b) are never separated from each other. These nonlinear terms

produce multiple solutions that satisfy the coupled integral equation (8.18a, b) for
T<T,.

To elucidate this mechanism more precisely, we consider a case at an ultra-low
temperature. We restrict ourselves to the following number distribution { ny }, where

almost all dressed bosons have momentum Q:
HQ ~1, namely, N —HQ << EQ . (8.22)

The condensed momentum Q can have any value within some momentum range. We

explain this mechanism in the energy form of (2.21). In this case, the dressed boson
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energy @, is expressed as in Eq. (3.2).

p> 2 i _—
%(T)=%+W§ f(p-a)ng —ng(s—t)nsnt (8.23)

The summations in Eq. (8.23) are approximately equal to the following form because ﬁQ

is large.
2
%= §7m+ﬁ f(p-QJne _Ni f(Q-Q)ngnq + (smallterms) (8.24)

Therein, the Galilean invariant term f is expressed as Eq. (2.41).

(p)=1{e) —p*/2m))+ 10) (825)

Then, Eq. (8.24) becomes the following.

2

wpzp7+nWQ(537Q—(p—Q)2/(2 )) 221 f(0)- [an f(0)+ (smallterms)

2m N
(8.26)

We present the momentum dependence of @, schematically in Fig. 8.2.
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Fig. 8.2 Momentum dependence of dressed boson energy @, .

The dashed line represents g +Uep

As might be readily apparent from this figure, ((ap —H—Ue p) has a minimum value at

p = Q ; the value is approximately zero.

(0 —p—ueQ)=0 (827)

We examine this value more precisely. Equation (8.18a) is written at p =Q as follows.
@ _ 1
expl(og — - Q)/(k,T))-1
o KT
@q—pu—UeQ

Therefore, the chemical potential £ relates to the dressed boson energy as follows.

kgT
p=mg—UeQ-—== (8.28)
Mo
. . kBT . 23 . .
In that equation, the magnitude of —= 1is an order of 10". Accordingly, the chemical
Mo
. . kgT
potential £/ deviates from &g —U e Q Dby an extremely small value ——==.
n
Q
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We consider another value of the condensed momentum which is expressed by

Q' . In this case, we obtain another energy form as the following expression.

— — — 2
o, = % + %(ES’Q' -(p-QY /(2m))+ % f(0)- [nl\?] f(0)+ (smallterms)
(8.29)

The form of (8.29) differs from that of (8.26) because of Q' # Q . Accordingly, we can
consider infinitely many solutions corresponding to infinitely many values of the
condensed momentum.

It has been clarified that infinite multiple solutions exist in the coupled integral
equation (8.18a, b) under fixing of the values of Tandu . That is to say, the condensed
momentum value of Q can be taken to be an arbitrary value within some momentum

region (This restriction within the region is necessary to satisfy positiveness of

@, — g —U O(p —Q) ). Therefore, we can choose any value for two vectors U and Q.

This mechanism produces a two-fluid state with two arbitrary velocities of the superfluid
component and the normal fluid component. As presented Fig. 8.2, the dressed bosons
with momentum Q have minimum energy because of the level inversion mechanism via
Bose condensation at Q.

In London’s theory, the Bose condensate must have the same value as the
velocity of the center of mass because no level inversion appears. Consequently, the
nonlinear mechanism is important for explaining the properties of superfluid helium.

The following is also worth noting. A running superfluid component can be
produced experimentally using the following process. A vessel filled with He I (normal
liquid) is rotated at a constant angular velocity. Accordingly, the liquid helium has a
constant angular velocity. Then, after the liquid helium is cooled by vaporization of the
liquid helium, the temperature becomes lower than the A temperature (T <T,). The
superfluid component appears, and has non-zero velocity. Thereafter, the vessel is
stopped. Then the normal fluid component also stops because of the viscosity of the
normal fluid component. Therefore, we can produce the state in which the superfluid

velocity differs from the normal fluid velocity.
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8.4 Iteration method

In this section, we find the approximate solutions corresponding to the
two-fluid state of He II using iteration.

Eq. (8.27) yields the following equation.
a)p—,u—uop:a)p—a)Q—UO(p—Q) (8.30)

Using Eq. (8.23), we obtain
p’-Q* 2 -
a)p(T)—wQ(T):TwLWZ(f(p—q)—f(Q—q))nq. (831)
q
Consequently, we can rewrite the coupled integral equation (8.18a, b) to the following
equations.
n— _ 1
" expll, — g ~ue(p-Q))/(ksT))-1
@y(T)-@g(T)-ue(p-Q)
2 2
P ue =@+ x(f(p-a)- fQ-a)he (320

(for p=Q) (8.32a)

2m

We can solve the coupled integral equation via iteration similarly to that
explained in sections 3.2.2 and 3.2.3. We choose the zero-th order energy (i.e. the starting

form of the energy in the iteration) as
2

o) =il o~ (p-QF flem)s £(0). (8:33)

n
which is derived from Eq. (8.26) for WQ =1. It is noteworthy that the form depends

upon the momentum value Q in the Bose condensate.

The zero-th order distribution function is given by altering the energy form

@, (T) to that of @] in Eq. (8.32a).
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o = 1 (for p=Q) (8.34)
P exp((a)g - a)g —Ue (p - Q))/(kBT ))—1

This distribution function depends upon two vectors: Q and u. We introduce the first

order functions as follows.

®(p.T)-o@QT)-us(p-Q)

2_N"2
P uep-Q 3 (1o-a)- f@-alf @39

2m
+(f(p-Q)~f(0))

0
2n)
N

Therein, the zero-th approximation number of the dressed bosons in the Bose condensate
is given as
0 0
npg=N-% ng , (8.36)
q#Q
which is nearly equal to N at an ultra-cold temperature. Then, the first order form of the

distribution function is given as the following expression.

: . 1 (for p=Q)
(p.T) exp((@,(p, T)-,(Q,T)-ue(p-Q))/(k,T))-1

(8.37)

We express the (E +1) -th order forms of the functions using the ¢ —th order

forms.

a)“l(p,T)—a)“l(Q,T)—u '(D—Q)

:%‘”'(p“m%qgf@ﬂ)— fQ-a)n,(@T) (838
+(1p-Q)- 1(0)222.T)

Therein, the £—th approximation number of the condensed dressed bosons is given as

n(QT)=N —q;Qm(q,T) : (8.39)

Then, the (( + 1)7th order form of the distribution function is expressed as
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_ 1 . (8.40)
exp((a)m (p’ T )_ @y (Q’ T )_ Ue (p - Q))/(kBT ))_1

nﬁ+1(p5T)

These relations (8.38), (8.39), and (8.40) depend on the values of T, N, V, u, and Q.
Incidentally, in the bulk limit, these functions depend upon N/V. We can thereby express
the higher order forms in our iteration method. We assume convergence of the series in

the limit of £ —> 00 ; then we obtain the following functions.

a)p(T,N/V,u,Q):Eian)f(p,T) for T<T, (8.41)

n,(T,NNV,u,Q)= lim n(p,T) forT<T, (8.42)

These functions are the solutions of the coupled equation (8.18a, b). Using the iteration
method, we can adopt an arbitrary value of Q in fixing the values of T, N, V, and u.

Consequently, we obtain infinitely multiple solutions for the coupled integral equation
(8.18a,b)at T <T,.

On the other hand, no Bose condensate exists at T >T, in the coupled
equation (8.18a, b): no condensed momentum Q exists. Therefore, the coupled equations

(8.18a, b) have only one set of solutions.

@,(T, NV, u)=lim o, (p,T) for T >T, (8.43)

n, (T, N/V,u):gim n,(p,T) for T>T, (8.44)

We have discussed determination of the number distribution of dressed bosons in both

cases of T <T, and T >T, . Accordingly, the present theory is applicable to a liquid

helium system for any temperature region: He I and He II. On the other hand, the Landau

theory cannot treat a liquid helium system at T >T,. The next chapter will address

nonlinear properties of the solutions.
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IX. Properties of the solutions

The solutions of the coupled equations (8.18a) and (8.18b) have important

properties, which are summarized in 9.1-9.5.

9.1 Existence of the A transition

As described in previous chapters, each solution contains the Bose condensate
at an ultra-cold temperature, but the condensate disappears at a high temperature.

Therefore, the A transition is derived naturally from the nonlinear theory.

9.2 Superfluidity

The Bose condensate of the dressed bosons gives no friction against a rigid body
because the condensed dressed bosons cannot transfer to the other momentum in a
collision against a macroscopic rigid body. This mechanism is derived from the nonlinear
energy form, as discussed in Sec. 6.3. Therefore, the superfluid component in liquid
helium comprises the condensed dressed bosons. The lack of a friction against a rigid

body is apparent in Fig. 8.2 for the condensed dreesed bosons with momentum Q .

9.3 Coexistence of two interpenetrating fluids
(Why are the two fluid-states so stable?)

It is a surprising fact that the superfluid component flows permanently in spite

of penetration of the normal fluid component. This phenomenon was described by

Kojima et al. [9] using a vessel similar to that portrayed in Fig. 9.1.
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1
This wvessel is filled with ligquid helium

Fig. 9.1 Measurement of persistent current velocity for the superfluid component

The vessel has a narrow annular cavity (inner radius = 5.01 cm, outer radius = 5.48 cm,

depth = 0.50 cm) that is packed with AlL,O; powder (grain size 170 ~ 325 /ox)‘ First the

vessel is filled with He I and is rotated at a constant angular velocity. Then, the liquid
helium is cooled by vaporization of the liquid helium; the temperature becomes lower
than the A transition temperature (T <T, ). Thereafter, the vessel is stopped. Using
fourth-sound techniques, H. Kojima et al. [9] measured the decreasing rate of superfluid
velocity. In their paper, the highest decay rate observed is 0.63% per decade. The current
decay is 11% during a time interval equal to the age of the earth if this decay rate
continues indefinitely. Therefore, the persistent currents of superfluid are indeed
persistent. Accordingly, two-fluid states of superfluid helium are extremely stable.

This phenomenon is clearly explained using the nonlinear theory because
infinitely many solutions appear at T <T, . The distribution function of the dressed
bosons depends upon the two vectors U and Q as in Eq. (8.42) or (8.18a,b). This property
implies that there are infinitely numerous equilibrium states with two velocities of
superfluid component and normal fluid component that mutually differ. The distribution

function of dressed bosons satisfies the coupled integral equations. The coupled

95



equations represent the condition maximizing the entropy. Therefore, the solutions have
local maximum entropy. This nonlinear mechanism ensures the excellent stability of

two-fluid states with two different velocities.

9.4 Zero entropy of the superfluid component

In our theory, the superfluid component comprises a macroscopically large
number of the dressed bosons with only one momentum value. This non-spreading of the
momentum-distribution yields that the superfluid component has entropy zero. As

examined in chapter IV, the Bose condensate of the dressed bosons has entropy of

S, = kg log(1+n,)

super
However, this value is extremely small in comparison to the total entropy S.

Ssuper/s W)O (91)

All entropy of superfluid helium belongs to the normal fluid component, which

comprises the dressed bosons outside the Bose condensate, as shown in Eq. (4.4).

/S ———>1 ©2)

Snomlal

That is to say, the entropy of Bose-condensed dressed bosons is zero.

The momentum-distribution of helium atoms was measured in neutron
scattering experiments. The results showed that helium atoms with zero momentum
comprise a few percent of all helium atoms. Some researchers have asserted that this
percentage is the ratio of Bose condensate to the total helium atoms. However, the helium
atoms with zero momentum are not in the eigenstate of the total Hamiltonian because the
atoms interact mutually. Therefore, this percentage does not represent the ratio of the real
Bose condensate to the total liquid helium. In the nonlinear theory, the dressed bosons

with momentum zero constitute 100% of the total dressed bosons at the temperature zero.
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This situation is also clearly apparent in a 1D boson system. As shown in
Eqs.(A1.17) and (A1.18) in Appendix I, the original free bosons with momentum zero do
not constitute any fraction of the total bosons in the ground state. Nevertheless, the

dressed bosons with momentum zero constitute 100% of the ground state.

9.5 Galilean covariance of the distribution functions

All solutions of the coupled equations (8.18a, 8.18b) are Galilean covariant.

We prove this covariance for the two casesof T <T, and T >T, .

(Firstcase: T <T,)
In the previous chapter, we used iteration method to obtain the solutions. We

consider one solution with vectors u and Q.

@, =w,(T,NNV,u,Q)=limw,(p.T) (9.3a)

n, =n, (T, N/V,u,Q):Eimn,(p,T) (9.3b)

We also write the second solution for the other vectors U’ and Q.

w,; = wp(T NN ,u',Q') (9.3¢c)

m, =n,(T,NNV U, Q) (9.3d)
Therein, the vectors U’ and Q' are related to the following.

u=u+v 9.9

Q'=Q+mv 9:5)

The coupled equations (8.32 a, b) are

N = 1 , (9.6a)
P exp((a)p —wg—Uu .(p_Q))/(kBT ))_1
@, — wg —u0(p—Q)
p’-Q°

:T—u-(p—QF%%(f(p—Q)— fQ-a)n,

(9.6b)
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- 1 ,and (9.6¢)
P exp((a); - wy —u’O(p—Q’))/(kBT ))—l
o~y ~Ue(p-Q)

N . (9.6d)
_P’-Q _u'.(p_Q')+%%(f(p—Q)—f(Q’_Q))né

2m

We use the momenta p+mv and ¢+ MV in (9.6¢c, 9.6d) and then obtain the following
expressions.
n;;+mv = 1 (97)
exp((a)mmv —wy —U'e (p +mv-Q ))/(kBT ))—l

a)F’Hm\,—a)(’gv—u’O(p-i—mv—Q’)

2 2
:%_““(pmv—q) ©.8)
v s (Hprmv—(am) Qe+ m)

When we substitute the relations (9.4) and (9.5) into Eq. (9.8), we obtain these

expressions.
Oy — 0y —U' e (p+mV-Q)
P -Qramve(p-Q) ¢
2m

t 2 (1p-a)- 1Q-a.n,
" Tom (b-Q)

+2 5 (f(p-0)- F(Q-a)yum

N g+mv

p-Q)

! =n

This equation is identical to (9.6b) using the assumption of NG, =Ng .

Oy — Dy —U o (p+mv-Q’)

9.9
:a)p—a)Q—UO(p—Q) ©9)
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Substitution of (9.9) into (9.7) produces the following relation.

n... . =n (9.10)

’
p+mv P

This relation (9.10) is exactly the same as the assumed equation. Therefore the
assumption is certainly correct. These relations (9.9) and (9.10) confirm the Galilean

covariance between the solutions of the coupled equations (8.18a, 8.18b).

(Second case: T >T,)

Next we examine Galilean covariance in the second case. We respectively use

the solutions (8.43) and (8.44) for @, and n, .

@, =0, (T,NNV ,u)=lim o, (p,T) (9.11a)

n, =n, (T.N/V,u)=limn, (p.T) (9.11b)
In the case of U’ =U+ V, we obtain another solution.

oy =, (T,NNV U) ©.11¢)

n, =n,(T,NNV ) (9.11d)

Using the energy form of (3.2), the coupled integral equations are satisfied as shown.

_ 1 (9.12a)
P exp((wp —f—Ue p)/(kBT )-1

n

o =ﬁ+izf(p—q)n —sz(s—t)nn (9.12b)
P 2m N q 9Nzt st
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0o 1 9.12¢)

P exp((a)' —u'—u'e p)/(kBT ))—1

w,P
2m

. Zf(IO an, ——Zf(s t)nin; 9.12d)

Equation (9.12d) is rewritten as the following.

2
. p+mv) 2 | L
wp+mv:'( Z_m) +W§f(p+mV_Q)nq _F&th(S—t)nsnt
_p L2 o
- 2m tvep+ 2mv + N qEnv f(p q)nQ+mV N SZf(S t) S+mvnt+mv

They give the following expressions.

w;;+mv _/u’_u'.(p*'mv)
2

P vep+lmvio
_2m+v p+2mv i —u'e(p+mv)

q+mv

, 1
+W x f(p_q)nq+mv _N_sz;(f(s t) s+mvnt+mv

:p—z—y —u-p—lmv —mueyv
2m 2

, 1
+W z f(p_q)nq+mv _N_sz f(S t) s+mvnt+mv

q+mv

It is noteworthy that the value of chemical potential #' in Eq. (9.12¢) differs from that of
4 in (9.12a). The value of g is defined as

1
y’:,u—Emvz—muov . 9.13)

We can derive the following relation if we assume the relation Ny, =n, .

w[,Hmv _ﬂ'_u’.(p"' mv)

o - p—uep (9.14)
—%p

Substitution of (9.14) into (9.12c¢) reproduces the assumed relation as

n;wmv =Np. 9.15)
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Accordingly, (9.14) and (9.15) are satisfied by the solutions of the coupled integral
equation (8.18a, 8.18b). As a result, Galilean covariance is verified for the coupled

integral equations derived in the nonlinear theory.
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X. Contribution of dressed bosons in several phenomena

The Landau theory is based on the excitation modes of phonons and rotons, the
total number of which is not conserved. For that reason, there is no chemical potential for
Landau’s elementary excitation modes. However, the dressed bosons in the nonlinear
theory have chemical potential, the value of which is expressed by Eq. (8.28).

y:wQ—UOQ—KéTsz—UOQ (for T <T)) (10.1)

No

When both the superfluid component and normal fluid component have zero velocity, Eq.
(10.1) becomes

U=, (for T <T,), (10.2)
which has already been obtained in Eq. (3.4). The relation between the chemical potential
1 and the energy of the dressed bosons in the Bose condensate produces the characteristic
phenomena in superfluid helium. We discuss London’s relation in Sec. 10.1 and Wyatt’s

quantum evaporation in Sec.10.2.
10.1 London’s relation in the fountain effect

We consider a U-tube whose center part is packed with fine powder, as

illustrated in Fig. 10.1. Therein the powder size is a few hundred angstroms.

Vi heater

This part is packed with fine powder

Fig. 10.1 Schematic figure depicting the fountain effect
Both sides of the U-tube are filled with He II. We designate the left side as

“part 1” and call the right side part “part 2”. The normal fluid component cannot pass
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through the central channel of the U-tube because of the fine powder. Only the superfluid
component can pass through the central channel because of its non-viscosity. The two
liquid heliums inside part 1 and part 2 have different temperatures and different pressures
from each other when we apply an electric current to the heater in Fig. 10.1. The two
liquid heliums reach quasi-equilibrium. We respectively designate the temperatures and
pressures at positions Aand Bas T, and T,,and P, and P, . Positions A and B have the
same height as that shown in Fig. 10.1. The heights of two liquid surfaces for part 1 and
part 2 differ. Therefore, the pressures P, and P, are related as
P, =P + pg¢, (10.3)

where g is the acceleration of gravity and ¢ is the height difference of liquid surfaces
presented in Fig. 10.1. Therein we have neglected a small variation of the mass density
p caused by pressure dependence. At that time, the temperatures T, and T,, and the
pressures P, and P, are mutually related. We will derive the relation between these four
values on the basis of the microscopic viewpoint of the nonlinear theory.

In the experiment presented in Fig. 10.1, both values of u and Q are zero.

u=0and Q=0 (10.4)
Therefore, the chemical potentials £ and u, at positions A and B are given by Egs.
(10.2) and (8.41).

= (T, N, /V, ,0,0) (10.52)
1, =y (T,,N, )V, ,0,0) (10.5b)

The Bose-condensed dressed bosons can pass through the central channel of the
U-tube; then the connected system reaches a quasi-equilibrium state. At the
quasi-equilibrium, the energy of a dressed boson inside the Bose condensate in part 1 is
expected to be equal to that in part 2. (If the energy of condensed dressed bosons at A is
greater than that at B, then the condensed dressed bosons transfer from A to B, and vice
versa.) We can express this equality of the dressed boson energies in the Bose

condensates.
a)O(Tl,Nl/VI,0,0)20)0(T2,N2/V2,0,0) (10.6)
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This relation and Eqgs. (10.5a,b) give the following equation.
= (10.7)

In that equation, the chemical potentials depend on the temperature and pressure.

= ,U(Tl ' Pl) (10.82)
= u(T,,P,) (10.8b)
The thermodynamic relations are well known to yield the following.
du = [@j aT +(@j dp
a ) x); (10.9)
=—(S/N )T +(v/N)dP

Therein, (S/ N) and (V / N) are the entropy and volume per particle (i.e. per dressed

boson). This equation derives the following relation.

ﬂ(Tzrpz):ﬂ(Tl +AT,R +AP)
= u(T,,R)~(S/N)AT +(v/N)aP

where the temperature differnce and pressure difference between part 1 and part 2 are

(10.10)

expressed as
AT =T,-T,,and AP=P,-PR. (10.11)

Therein we have assumed the differences AT and AP to be small. Substitution of
(10.7) into (10.10) yields
—(S/N)AT +(V/N)AP =0. (10.12)

Denoting the number density and the entropy per dressed boson as 77 and S,

respectively, we obtain the following equalities.

n=NN (10.13a)
s=S/N (10.13b)
AP

= =5 10.13¢
AT o7 ( )

This relation was obtained by H. London [23] from phenomenological
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considerations. We derived this relation from the Bose condensation of dressed bosons on
the basis of the nonlinear theory. Regarding the experiment illustrated in Fig. 10.1, the

pressure difference AP is given by Eq. (10.3). Substitution of (10.3) into (10.13c)

yields

el =sn(T,-T,) . (10.14)
The relation between the mass density and the number density is

p=mn . (10.15)
It is substituted into Eq. (10.14); then the following equation is derived as

mg/=s(T,-T,) . (10.16)

In F. London’s theory (neglecting the inter-atomic potentials), the chemical
potential is always zero. In that view, his chemical potential does not depend upon the
temperature and the pressure. In Landau’s theory, the number of excitations is not
conserved. For that reason, the theory does not engender H. London’s relation (10.13c).
On the other hand, in the new viewpoint presented herein, relation (10.13c) is derived
naturally from the nonlinear property of the dressed boson energy.

Actually, H. London’s relation engenders the famous “fountain effect”
phenomenon illustrated in Fig. 10.2. The powder absorbs the radiation from the left-hand
side and is warmed. Therefore, the warmed superfluid helium has higher pressure, and a

fountain of liquid helium gushes, as presented in Fig. 10.2.
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Vessel

\
Liquid He II

Radiatio

Powder Cotton wool

Fig. 10.2 Fountain effect in superfluid helium

10.2 Refraction and reflection of the dressed boson beam at a gas-liquid boundary

Wyatt et al. discovered the phenomenon of quantum evaporation. In the
phenomenon, a phonon or a roton in superfluid helium ejects a “He atom into the helium
gas through a single quantum-process (see Ref. [24]). We can explain that phenomenon in
terms of the nonlinear theory. The dressed boson throws off its interaction cloud at the
gas-liquid boundary when one dressed boson in the superfluid helium approaches the
liquid surface. Then, the dressed boson becomes a *He atom and rushes out of the liquid
helium into the vapor. It is our explanation for quantum evaporation.

We first examine a reversal process of the quantum evaporation. Figure 10.3
shows the surface between superfluid and gas of helium at Z=0. A helium atom with
energy E rushes into liquid helium at Z=0 X=0. Its momentum value is ps. The atom
interacts with other helium atoms and is dressed with the interaction cloud when the

helium atom enters the superfluid helium.
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Fig. 10.3 Triple refraction at the boundary between a superfluid and gas

The helium atom has an energy value E between E; and E, defined in Eq. (10.19).

The energy is expected to be conserved at the liquid—gas boundary. That is to say, the
energy of the atom inside the gas is equal to an energy of eigenstate inside superfluid
helium, i.e. the energy of the dressed boson.

At an ultra-low temperature, the dressed boson energy is expressed as

oy =ey+1(0), (10.17)

which is derived from Egs. (3.5), (3.7), and (3.9) (it is also derived from (8.33)). The

value of f (0) is presented in reference [24] as

£(0)~-7.16xkg . (10.18)
We show the energy of dressed boson and the energy of helium atom in a gas in Fig. 10.4.
The helium atom in gas has only kinetic energy because of the negligibly slight

interaction.

107



energy/kp
15 ¢

10¢

E/ky
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Fig. 10.4 Energy of dressed boson in liquid helium and energy of helium atom in a dilute

gas

We consider one example with an energy value E in the region E,<E<E, where
E, = roton energy + f(0), E, =maxon energy + f(0) .(10.19)

In this case, dressed bosons of three kinds have energy value E, as presented in Fig. 10.4.

2
P —p Wy = O,
2m

o (10.20)

s =
Therefore, the helium atom A in Fig. 10.4 changes to the dressed boson B or C or D at the

liquid-gas boundary. The group velocity is expressed as

ow, (10.21)

groop velocity =

This value is positive for B and D, but is negative for C in Fig. 10.4. Accordingly, the
velocity direction of dressed boson at B and D is the same direction as its momentum;
however, the velocity direction at C is the opposite direction of its momentum, as

portrayed in Fig. 10.3. The momentum magnitudes of the dressed bosons B, C, and D are
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obtained as ga, gs, and gc respectively from Fig. 10.4. The surface between the liquid and
gas gives the helium atom a force that is vertical to the surface. Therefore, the momentum
of the direction Z is not conserved, but the parallel momentum to the surface is conserved.
This conservation yields the following relation.

P, sing, =0y siné, =0 sinf, =0y, sind, (10.22)

We calculate the angles for an example as follows: The example is the case of E=5kg and
@ =15° . Using energy conservation (10.20), we can obtain the momentum magnitudes

as follows:

-1 -1 -1 -1
Pa/hi=09A , qg/h~07A , qc/hi~15A , Qp/h~22A (10.23)

-1
where A indicates the reciprocal of angstrom. Then, (10.22) gives
sinf, = p,sing, /4y, sinb. = p,sing, /4., siné, = p,sing, /q, - (10.24)

Substitution of @, = 15° gives the values of angles as follows.

O ~19°, 6 =9°,6, = 6° (10.25)

Quantum evaporation is the reverse process of that discussed above, as
discovered by Wyatt et al. [24]. In a boundary between liquid and gas, triple refraction
occurs when a beam of helium atoms has an appropriate energy and direction. Similarly,
there is a triple reflection of a dressed boson beam at a boundary between the superfluid
helium and a solid wall. In the triple refraction and triple reflection, the branching ratios
are calculable from the interaction at the boundary. The branching ratio with a large
momentum transfer is predicted to be smaller than that with a small momentum transfer.
More comprehensive investigation is explained in Ref. [29], where the ratios of the

transmission rates are calculated and the triple reflection is also discussed.
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XI. Thermodynamic functions

In this chapter, we express various thermodynamic functions in terms of the

distribution function of dressed bosons in the case of u=Q=0.

Entropy S is obtainable using Eq. (4.1).
S :kBZ{log<1+ np)+ n, log(1+np71)} (1.1
P

The total energy is expressed as Eq. (2.21) as (a more general case has the energy form
(2.20))

2

p

E=y Lt
Z2m

1
> ”p*ﬁp’zqf(p_q)”p”q : (11.2)

We calculate the free energy F of the present system.
F=E-TS
11.3)
PP (
=>=—n,+—> f(p-qg,n
P 'l
o 2m N o3

- kBTZ{log(I +n, )+ n, 1og(1 + npf1 )}
p

Therein the factor 10g(1 + np") is expressed as

togli+n, ™ )= (@, — )/, T) » (11.4)

which is derived from (3.3) or (8.18a) in the case of u=Q=0. Substitution of this equation

into (11.3) yields the following expression.
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(11.5)

—keT Y logll+1, )= S w,n, + 4N
p p

The Gibbs free energy is equal to N . The chemical potential is equal to @, for

the case of T <T, . Accordingly,

G=,uN:Na)O(T):ZZf(q)nq_ﬁZf(S_t)nsnt. (11.6)
q st

Equation (11.5) and (11.6) gives PV as follows.
PV=G-F=uN-F

| (11.7)
:_Zpinp _*Z f(p-
o 2m N o3
+kT Zlog(l +n, )+ Za)p n,
P P
Consequently, the pressure P is expressed as
1
—~ Nf(p-
SPUAE M
(11.8)

1
+%;log(l+np)+vzp:wpnp

We can also express the enthalpy H using Eqgs. (11.2) and (11.7) as the following.
H=E+PV =k, logl+n, )+ Y an, (11.9)
P P

Therefore, we obtained various kinds of thermodynamic functions E, F H, G, S, and P.

The functions can also be calculated using a different process. As an example, the entropy

and pressure are calculated using the partial derivatives of the free energy F. The

calculations are executed in Appendix III. Of course, our results through this different

process are the same as the previous calculation results in this section. In the calculation
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of the partial derivative by V, it is noteworthy that the intervals of the momentum-levels
vary according to the change of the volume. The details are provided in Appendix III.

If the temperature dependence of the energies does not satisfy the coupled
nonlinear equations (8.18a) and (8.18b), then two calculation results of one
thermodynamic function via two different processes are not in mutual agreement. The
calculation results are incredible when the temperature dependence of elementary
excitation energy is artificially chosen (where the energy form does not generally satisfy
the coupled equation).

Regarding the quantum dynamics of a many-body system, its eigenenergies do
not include temperature variable. The temperature variable appears in statistical physics.
The temperature dependence of excitation energy is caused by changing of quasi particle

distribution via changing of a temperature value. Therefore the variation of excitation

energy does not occur in linear form of eigenenergy like E=3¢gpn, because the
p

excitation energy is independent of quasi particle distribution. Consequently it is doubtful

to apply both use of linear form like E =3 ¢,n, and use of the temperature dependence
p

of &, simultaneously. If the simultaneous use is employed, two calculation results of one

thermodynamic function via two different processes are not in mutual agreement as
mentiond above. However, the methods are used widely to explain the temperature
dependence of excitation energy. In this article, we have created the more reliable method

described above.
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XI1. Discussion and Conclusions

A nonlinear mechanism has been examined in the previous chapters for a
liquid helium system. The total Hamiltonian has a Galilean covariant form. Therefore,
the diagonalized form of the total Hamiltonian has a nonlinear form with respect to the
number operators of the dressed bosons. This nonlinearity yields the coupled integral
equations determining the momentum distribution of dressed bosons. These coupled
equations have infinitely numerous solutions at a temperature lower than the A point. The
nonlinearity produces remarkable properties; for example, two-fluid mechanism,
logarithmic divergence of specific heat, critical exponent at the A point, fountain effect,
quantum evaporation, and so on.

In this final chapter, we briefly discuss a few phenomena expected from the

present theory.

12.1 Width of elementary excitation energy

The dynamic structure factor S(q,v) has been measured in experiments of
neutron scattering [25] or laser-light scattering [17] of superfluid helium, where g denotes
the momentum transfer and v is the energy transfer. The function form of S(q,v) has a
peak for changing of energy transfer V under fixing of . According to Landau’s theory,
the peak width becomes larger as the temperature approaches the A point. On the other
hand, the nonlinear theory predicts that the dynamic structure factor has a delta-function
peak produced by excitation of a dressed boson inside the Bose condensate to the other
momentum state. For the momentum transfer ¢, the dressed boson has the following

momentum value.

(Initial momentum)=0, (Final momentum)=q (12.1)

(Energy transfer)=v = @, — @,

(12.2)
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The Bose condensate disappears at a temperature higher than the A- point. Therefore, the
delta-function peak also disappearsat T > T, .

We can consider another excitation of dressed boson outside the Bose
condensate. In the excitation, the initial momentum and final momentum are expressed as

follows.

(Initial momentum)=Kk, (Final momentum)=k+q(K # 0) (12.3)

(Energy transfer)=v = @y, — @& (12.4)

The values of momentum k (K 0 ) are distributed in a wide region. Therefore, the
energy transfer has various values. This excitation process produces a broad peak in
S(q ,v) . Moreover, we can consider the multiple excitations. These excitations also have
a broad peak. As an example, we present the schematic behavior of S(q,v) at the

momentum transfer of roton minimum Q = 0, in Fig. 12.1.

=
e
e

o -

Fig. 12.1 Schematic diagram of dynamic structure factor predicted using the present

theory
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As presented in Fig. 12.1, in the nonlinear theory, it is predicted that a sharp peak appears
at T <T, , but disappears at T >T, . This sharp peak has an instrumental width. The
peak energy value of the broad peak differs from that of the sharp peak. The behavior
depends on the distribution of the dressed bosons.

We can see precise behaviors of the dynamic structure factor for an extremely
small momentum transfer in laser light scatterings. Experimental results were obtained
from many experiments [17]. Four peaks are detected. Two correspond to the first sound
peak and second sound peak of the Stokes process. The other two peaks belong to the
anti-Stokes process. The peak width of the second sound is smaller than that of the first
sound near the A point [17]. The experimental width of the second sound peak is equal to
the instrumental linewidth. This fact is a strong impetus to consider the second sound
peak near the A point as the excitation mode from the Bose—Einstein condensate.

This second sound peak had not been detected in any neutron scattering.
However, the authors surmise that the peak will also be discovered in neutron scatterings
if the instrumental linewidth becomes narrower and if the neutron scattering is carried out
in an extremely small momentum transfer near the 4 point. (The dynamic structure factor
S(q, v) observed in neutron scatterings should have the same peaks as in Brillouin
scattering of laser-light.) The relevant details are discussed in references [26] and [27].

Brillouin scattering of laser light in superfluid helium has been measured using
a Fabry-Perot interferometer, as described in the related literature [17]. The other
techniques are investigated to improve accuracy. Eden and Swinny measured Brillouin
spectra of xenon gas using an optical beating technique [30]. Sakai and Takagi improved
the technique and then achieved a small instrumental linewidth [31]. The second sound
peak width will be much smaller than that in Fabry-Perot measurement if this technique

is applied to measure the Brillouin spectra of superfluid helium.

12.2 Temperature gap appearing in rotating superfluid helium:
(Temperature dependence of critical velocity)
We discuss the temperature dependence of the critical velocity of a superfluid
component for the case with zero velocity of normal fluid component. As explained in

Sec. 5.4, the energy of the dressed boson near the 4 point is expressed as in Eq. (5.17).
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w, =%Cp+0rdet(p2)+a)0 (12.5)

This energy form derives the velocity of the dressed boson for a small momentum near

the A point as

o Do oo (r, —T)" (12:6)
d N )

This velocity of the dressed boson becomes smaller than Landau’s critical velocity in a

vicinity of the A point. Accordingly, the critical velocity of the present theory is given as
Ve o (Tﬂ -T )1/3 (near the A point). (12.7)
We drew a schematic figure of the critical velocity near the A point in Fig. 12.2.

Critical velocity

VSuper

TA T/l
We next consider the following experiment: We prepare a toroidal vessel filled
with liquid helium. We rotate the vessel around its axis at a temperature higher than T 21

The liquid helium rotates with the vessel. The superfluid component of the dressed
bosons appears at T <T, if we lower the temperature while holding the angular velocity
constant. These condensed dressed bosons continue to flow along the toroidal channel.
The angular velocity of the superfluid component does not change because of the lack of
friction, even when we stop the vessel. Subsequently, we heat this state of superfluid

helium. What phenomenon will occur?
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Our answer is as follows: In this experiment, we express the superfluid
velocity by Vg - This value is smaller than the critical velocity V¢ at an adequately
low temperature as presented in Fig. 12.2. When the temperature value is increased, V¢
varies to be a smaller value. Accordingly the value of Vg, becomes equal to the

critical velocity Vi at temperature Ta, as seen in Fig. 12.2. Thereafter the
Bose-condensed dressed bosons transfer to the other momentum states. Then, frictional
heat is generated and the temperature becomes high to the value Ty suddenly. The
behavior is presented in Fig. 12.3. That is to say, the temperature value jumps from T to

Tg at time t. For that reason, a temperature gap appears in the experiment.

Temperature

to

Fig. 12.3 Time dependence of temperature

The horizontal axis represents the time value and the vertical axis represents the temperature.

We can determine the temperature dependence of the critical velocity near the

A point if this phenomenon is discovered. The measurement is repeated for various values

of Vgper and the value Ty is detected for each value of Vgpe, . We plot the values (Ta,
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Vsuper ) @nd then we obtain the temperature dependence of the critical velocity. Related

details are discussed in a previous report [28].

12.3 A. C. Josephson effect in superfluid helium

In superfluid helium, the ac Josephson effect might occur. A few groups
attempted to verify this phenomenon [32]. They consider that the phenomena are
produced using a phase slip of the vortex. They detected oscillations with very low
frequencies. However, it is difficult to confirm the relation between the frequency and the
difference of pressures.

We examined this phenomenon in reference [33]. The dressed bosons in the
Bose condensate oscillate between two superfluid heliums connected through a pinhole.

Then, we can derive the relation as
f =mgt/(27h), (12.8)

where f is the frequency, m is the mass of helium atom, g is the gravitational acceleration,
{ is the difference of the heights of the two superfluid heliums, and (Zﬂh) is Planck’s
constant. This relation is derived from the fact that the energy of the Bose condensed
dressed boson is equal to the chemical potential (see reference [33]). If experiments are
executed in a higher pressure difference, high-frequency oscillation might be detected,
and the relation might be confirmed (approximately 1 MHz per centimeter difference in

height).

(Conclusion)

The concept of the dressed boson and nonlinear mechanism of the energy form
are valuable for investigation of liquid helium. The authors earnestly hope that this new
viewpoint will be used to improve investigations of superfluid helium and other

many-boson systems.
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Appendix |

We summarize the dynamics of a 1D many-boson system described by the

Hamiltonian:

( 2/(2m )a +(g/(2L)) Zka’;+ka;_kapaq , (ALD)

where a, and a’; respectively signify the annihilation and creation operators of a

boson, m is the mass of the boson, and L is the length of the 1D space. The commutation

relations among these operators are
[ap’ q] o |.ap’an=0’ [a;sa;]:()' (A1.2)

The Hamiltonian is diagonalized completely by the unitary operator U, which was
obtained by S. Sasaki and T. Kebukawa [10]. The unitary operator is denoted as U n for

the total boson number N. Then, the unitary operator U N 1S given as

_ N(N-1)/2
UN - q1SQ2S%S'"SQN [(2/”) Xg02.93an %
ki N N (AL1.3)
x I1 Mag s, ([18g
i fLisi<isn ky — py )l i=1 q'+zj;p'1 o i
in the case of an infinitely large coupling constant g.
Therein, Uy gy = (1 / ) (where 0! =1), (A1.4)
—7z‘h/Lf0ri<j ALs
k,={0fori=j (A1.3)
/L fori > j
h = (Planck’s constant) / (271') (A1.6)
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Pij =—Pii (AL7)

Qg a.03--qy 18 the normalization constant of the free state. All the running momenta

0i,0;,0;--qy and the transfer-momenta pj take the values (Zﬂh/ L)>< integer

because of the periodic boundary condition as follows:
q; = (27%/L)xinteger, p; = (277/L )xinteger - (AL8)

We proved in an earlier paper [10] that this operator U satisfies the unitary relations

UU =1 and UU" =1. The unitary operator U diagonalizes the total Hamiltonian
(Al.1), and the diagonalized form becomes the following form at an infinitely large limit
of g (see Ref. [11]):

2 mlp-q . . 1 PN(NZ -
U'HU = Zp a,a +2Maaaa +— ﬂh J—) (A1.9)
q 2mL 2m
We define the new creation and annihilation operators as

A,=UaU™" and Aj=Ua U™, (A1.10)

which represent the operators of the "dressed boson". We can reexpress the total
Hamiltonian using only the number operators of dressed bosons {A: AS} as the

following.

2 2
H:z;_mA;Ap+ZM Aqu+ [ij
P.q

p 3

(AL11)

For a finite coupling constant, we can expand the diagonalized form of the
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Hamiltonian into the power series of (1/g). The result up to the second order, is the

following.

Zp A 21{ 2h2+[2h )3;1}2@ FAAKA,

m| Lmg \Lmg

2 2\?2 ilp — 2 2
R Eo P Dl oL N(NZ-1)
2m| Lmg Lmg o L PP L 3

+Order(1/g°)

(A1.12)
Rewriting this expression in a form resembling Eq. (3.18), we obtain
(total energy) = Zin — zf p— q nn +Order(l/g ) (A1.13)
where the following hold.
n,=AA, (Al.14)
1) am’N (2N 3 )
+ J— —_
f(p-a)=5 - g (ngj ~(p-a)
aN | 2N (2N 1aN( 1 (AL.15)
+ 1-2 +3 p-q+-=——|1-—
2mL Lmg Lmg 3L N
+Order(1/ 93)

As might be readily apparent from this expression, all Postulates of Sec. 1 are definitely
satisfied in the present 1D system. There is an interesting property of the ground-state,

which is

(1/N X Ground — state| A A | Ground — state) =1 , for any value of g, (AL17)

(1/N X Ground — state|a,a,|Ground — state) = 0, for g >0 N —>o0. (ALI8)

The dressed bosons with momentum zero occupy 100% in the ground-state, but the

original free bosons with momentum zero occupy 0% in the ground-state for g — oo
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and N —> o0 .
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Appendix 11

The left-hand-side of (6.15) can be expanded to the series of t as follows: The

integral of (6.15) is rewritten as the following.

1
i _p(t . ap3)|/3' p’dp = Jj* [ (t . :;g )1/3 - (apg )1/3 ]dp +5° _( a:; ),/3-dp

;s ;s (A2.1)
o (@)=l ap?)
—_+Io dp
al? a1/3(t+ap3)l/3
N NT
) -
1
ps ( 3)‘/3 02dp = a?/s} P 3 dp (A2.2)
plt +ap a'/3(1+apj
t
Here, we introduce a new variable y as
=(ap3)t ) (A2.3)

Changing the integral variable p to (ap3 )/ t, we obtain the following expressions.

w1 sqp = P [ (9)7 =+ y)" \dp
- . pidp=-ts ANy “\VTY) B
! oerap ) 'l { () Jay
pS ap ( y)1/3 (l + y)1/3 t (A2.4)
al? +j ( a1/3( + y)l/3 3ap? dy
P, (op,' ) ( y /3 (l + y)1/3 NE
a’? +J. ( a1/3( 4 y)1/3 NE y2/3 dy
We denote the upper limit of y by Y as
v, =(ap,) )t . (A2.5)

Equation (A2.4) becomes the following.
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P 1 p, th oy ( y)l/3 —(1 + y)l/3 (A2.6)
e pde J dy

3\/3 p *F 332 b y2/3(1+ y)1/3

p(t +ap )
The upper limit Y becomes very large when the value of 1 is small. Therefore, the

integration (A2.6) is expanded to the expression shown below.

R R S ol e () ) A (S A T &
[ d —_Ms _ d _ U+y)" -ly)" d
'L p(t +ap3)'/3 PP a” 3a¥ .[o y2/3 (1+ y)'/3 y Ls y2/3 (l . y)1/3 y

(A2.7)
The first integral in the right-hand-side of (A2.7) is
VP g, ) iR
3% y2/3( y)1/3 637 21—(;) . (A2.8)

The second integral in the right-hand-side of (A2.7) is as shown below.

(1+y)”? s 1+ (1/y))” -1 T 1 (1]
S 2 gy = —+Order| — | |d
yj( y2/31+y‘/3 v I ) ) y{y sy )Y
= J‘[[Jys/ S+ Order(y’g/ } )de
Ys

(A2.9)
The integral value is expanded to the series of Y as

(l+ Y)w yl _| l -2/3 -5/3 -
;[[ y(1+y)” = 2 )Y +Order(y ) L (A2.10)
- (;j y, - Order(ys’s/ 3)

Substitution of (A2.8) and (A2.10) into (A2.7) yields the following.
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Order(y 0 )

- PTG, y,z/g

o A sa”
p,  t7 T(=4r@¢) t” e )7 e t ”

1/z+7/ (21zzi)(3)+3a2/3( j(a ] pPea ———Order

3 Ps a aps
O rErG), t v
:a‘“ +a2/3 2;(%)3 + 4/3 — Order| 3a7/3p55

(A2.11)

This equation is equivalent to (6.16)
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Appendix 111
We have expressed the entropy and the pressure using the number distribution
of dressed bosons in chapter XI. We will derive the function forms via another process in
this Appendix. First, we calculate the partial derivative of free energy F (F is expressed in

(11.3)) by T while fixing the values of N and V, as

s R R b
— =y —|—| +— flp—q)—| n
l:é’r:‘N,V ;2”‘ é’r NV N; ( ﬂ NV ‘ (A31)

—kg Z{log(l +n, )+ n, 1og(1 + np’l )}— kBTZlog(l + np’l {i}p}
P P

NV

where we have used the symmetry property of f(p—q): f(q—p). The coefficient

log(l + np*‘) in the last term of (A3.1) is rewritten using of Eqgs. (11.4) and (3.2) as

log(l + np’l )= (a)p —,u)/(kBT)
:kl'l'(;;ﬂflz f(p—a)n, —%; f(s—t)n,n, —yJ

Substitution of (A3.2) into (A3.1) yields the following expression.

(A3.2)

q

- kBZ{log(l + np)+ n, log(l +n,” )}

p

st i3]

Sl G

it

P (A3.3)

S[Re-tnnen| 2]
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The second term of the right-hand side of Eq. (A3.3) is rewritten as

1 A 1
— -t +u|—=| =|—3f(s—t)hn+ —r
%(st% ( )St ﬂj|:ﬂ.l\‘v (st; T H {ﬂ}

faomof] 5

(A3.4)
Therein the total number N is fixed in the partial derivative; therefore this term becomes

zero. Substitution of (A3.4) into (A3.3) yields
S =—[§j = kBZ{log(l+np)+ n, 10g(1+np_1 )} (A3.5)
NV P

Consequently, Eq. (A3.5) reproduces Eq. (11.1).

Next, we take the partial derivative of F by volume V in fixing the values of T
and N. It is important in this differentiation by V that the level interval of the momenta
varies along with the change of the volume. At the thermodynamic limit, the summation
can be replaced with integration. Consequently, we obtain the partial derivative by V for

the example shown below.

R

p.q

N T

{3 o

ﬁ f(p—an,n, +Z(pr an J{ }

(Znh _” p—qg)n,n d3pd3qﬁL

N.T

Applying the same procedure to the partial derivative of F, we obtain

& 1¢p’ 2 p> 2 a,
== — > flp- X 2N f(p-
(W)N,T \Y ;Zm M NV %: (p q)npnq +Zp:(2m + N ; (p Q)nq EY;

kgT

_%Z{log(l +n, )+ n, log(l + np’l )}— kBT;(log(l + n,;l ){Zﬂm

N,T

p

(A3.6)
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Substitution of (A3.2) into (A3.6) yields

F l<p’ 2

—| ==)—n+—)> f(p-q)nn
[WJN.T V;Zm p NV o (p q) pq (A3.7)

A
—kB—TZ{log(I + np)+ n, log(l +n )}+Z LZ fs—t)n,n, +u | —=
V P P N ? s, t d/ NT
Therein the last partial derivative must be treated carefully because of the following
relation:
ayn n
(ﬁj (") 3 +z[mp} (A39)
N )y1 N \ | N T
N,T

The left-hand side of Eq. (A3.8) is zero because of the fixed value of N. Thus, we obtain

M| _ N (A3.9)
Z|:W:|N$T_ v

Substitution of (A3.9) into (A3.7) yields the following expression.
o | « p? 2

—| ==>—n +——> f(p-g)n,n

(W)NJ Vzp:Zm P NVqu: (p q)pq

_k\BTTZ{log(l + np)+ n, log(l +n,” )}—\’)‘('\:22 f(s—t)n.n, + NJ

p st
| «p? 1
=—) — S flp-
vzplzmn”vaZq: (o -anyn,

_k\BliTZ{log(l +n, )+ n, log(l + npf1 )}—g,u

p

(A3.10)
We substitute equation (A3.2), i.e.

log(l + np’l ): (a)p —,u)/(kBT) )

into (A3.10); then we obtain the following.
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[jjm ZZm N—l\/gf(p—Q)npnq
_\B/;mg(nnp)—\i;(a)p—u)np—\'j# (A3.11)
:\izp“;;anrl\llV;f(p—q)npnq
_k\B/TZp:lOg(lJrnp)_\in:wpnp
Consequently, we obtain the function form of pressure as shown below.
P:—(j]m :“sz . Nl\/%}f(p—Q)n n
+|(\E;Zp:10g(l+np)+\i;a)pnp

This result has the same form as that in (11.8). Therefore, the pressure calculation has

(A3.12)

reproduced the same result via a process that differs from the one presented in chapter XI.
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Mathematica Program 1 (Determination of nonlinear term)

This program determines the function forms (2.68a-¢) and the perameter values of
(2.47)-(2.66).

(* This program determines the non-linear functional form of dressed bosons *)

(* NA:Avogadro number *)

NA=6.0221367*10"23

(* hbar:Planck's constant/(2 Pi) *)

hbar=6.6260755%10"-34/(2*Pi)

(* kB:Boltzmann constant *)

kB=1.380658*10"-23

(* m=mass of He atom, unit: kg *)

m=(4.002602/(6.0221367*10723))*10"-3

(* roh=mass density of liquid helium,

at saturated vapor pressure and 1.1Kelvin unit: kg/m"3 *)

roh=145.5

(* numberDensity: number density of liquid helium unit: 1/m*3 *)

numberDensity=roh/m

(* energyData is the excitation energy data by neutron scatterings. \

{(momentum/hbar)*10"-10, data=energy/Boltzmann constant} namely,

unit {angstrom”-1,Kelvin} *)

energyData={{0.0894,1.6131},{0.0946,1.7175},{0.1150,2.1005},{0.1210,
2.2514},{0.1390,2.6111},{0.1430,2.6343},{0.1594,2.9709},{0.1767,
3.2958},{0.1818,3.3887},{0.1938,3.6324},{0.1990,3.7368},{0.2000,
3.7000},{0.2110,3.9689},{0.2162,4.0850},{0.2278,4.2822},{0.2329,
4.3867},{0.2445,4.6072},{0.2495,4.7116},{0.2611,4.9205},{0.2776,
5.2339},{0.2825,5.3267},{0.2938,5.5240},{0.2988,5.6284},{0.3000,
5.5700},{0.3000,5.6500},{0.4000,7.4000},{0.4036,7.6361},{0.4082,
7.7173},{0.4187,7.9146},{0.4232,7.9958},{0.4355,8.1815},{0.4498,
8.3788},{0.4643,8.6457},{0.4785,8.8662},{0.4926,9.1099},{0.5000,
9.1500},{0.5605,10.1544},{0.6000,10.7500},{0.6243,11.0015},{0.6965,
11.8023},{0.7000,11.7500},{0.7649,12.4173},{0.8000,12.7200},{0.8000,
12.6500},{0.8300,12.8815},{0.8925,13.2297},{0.9000,13.1500},{1.0000,
13.5500},{1.1000,13.8000},{1.1300,13.8200},{1.2000,13.7500},{1.3000,
13.5000},{1.4000,12.9500},{1.5000,12.2000},{1.6000,11.2000},{1.7000,
10.2500},{1.8000,9.2500},{1.8800,8.6940},{1.8900,8.6570},{1.9000,
8.7000},{1.9000,8.6540},{1.9000,8.6340},{1.9100,8.6350},{1.9100,

b 5
2 5
2 1
b b
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8.6160},{1.9150,8.6110},{1.9200,8.6260},{1.9200,8.6100},{1.9250,
8.6060},{1.9300,8.6260},{1.9300,8.6060},{1.9350,8.6300},{1.9350,
8.6120},{1.9400,8.6300},{1.9400,8.6090},{1.9500,8.6500},{1.9500,
8.6330},{1.9600,8.6830},{1.9600,8.6720},{1.9700,8.6950},{2.0000,
8.9500},{2.1000,10.0000},{2.2000,11.6500},{2.3000,13.5500},{2.4000,
15.5000},{2.5000,16.4500},{2.6000,17.0000},{2.7000,17.3000},{2.8000,
17.5000},{2.9000,17.7000},{3.0000,17.8500},{3.1000,18.0000},{3.2000,
18.1500},{3.3000,18.3000},{3.4000,18.3500}, {3.5000,18.4000},{3.6000,
18.4500} }

(* We use phonon velocity value 238 which is the experimental value at \

0.2-1.0K. *)

(* We use roton minimum energy =

8.61*kB at p/(10°10*hbar) = 1.92 from experimental data *)
(* eData is the data for high momentum (momentum/(hbar*10710))>2.4 *)
eData={}; Do[
If[energyData[[n,1]]>2.4,eData=Join[eData, {energyData[[n]]}]],{n,1,
Length[energyData]} ]

eData

(* best fit curve of the excitation energy
for momentum p=>2.55*%10"10*hbar *)

func=Fit[eData,{1,kkk kkk"2} kkk]

ggg=ListPlot[eData,PlotStyle\[Rule] {PointSize[0.015],RGBColor[1,0,0]}]

gg=Plot[func, {kkk,2.5,3.6}]

Show[ggg.gg]

g=ListPlot[energyData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}]

(* ==== elementary excitation energy near zero Kelvin *)

(* velocity of first sound =c1=238 :unit:[m/s] *)

(* eOphonon is the phonon energy at zero Kelvin :unit:J,

where p is momentum.

This function is equal to (2.42) in chaper II of my book *)

eOphonon[p_J:==c1*p

c1=238.

(* dPhonon is the derivative of phonon energy by momentum *)

dPhonon[p ]:=cl

(* maxon energy at zero Kelvin :unit:J.

This function is equal to (2.43) in chaper II of my book *)
eOmaxon[p J:=

maxonl*kB+(maxon2+maxon3*(p-pMax)+maxon4d*(p-pMax)" 2+
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maxon5*(p-pMax)"3)(p-pMax)"2
maxonl=13.82;pMax=1.13*10"10*hbar
(* Maximum energy data in maxon region is 13.82 at pMax=
1.13. Therefore we use the data in this program. *)
dMaxon[p_J]:=(2*maxon2+3*maxon3*(p-pMax)+4*maxon4*(p-pMax)"2+5*
maxon5*(p-pMax)"3)(p-pMax)
(* roton energy at zero Kelvin :unit:J.

This function is equal to (2.44) in chaper II of my book *)
eOroton[p_]:=fDelta0*kB+1/(2*fM0*m)*(p-fQ0*10"10*hbar)"2
fDelta0=8.61;fQ0=1.92;fM0=0.153
dRoton[p_]:=1/(fM0*m)*(p-fQ0*10"10*hbar)

(* eOhighl is the excitation energy for higher region 1
p3<=p<p4.

This function is equal to (2.45) in chaper II of my book *)
eOhigh1[p_J:=hh+c1*(p-p3)+aaa*(p-p3) 2+bbb*(p-p3)"3
dHighl[p_]:=cl+2*aaa*(p-p3)+3*bbb*(p-p3)"2
(* hh is the energy at p=p3 *)

(* higher energy region 2
This function is equal to (2.46) in chaper II of my book *)
eOhigh2[p_J]:=kB*func/. {kkk\[Rule]p/(10"10*hbar)}
(* pl is the momentum of upper bound for phonon : its momentum unit:kg m/sec *)
(* p2 is the momentum of lower bound for roton : its momentum unit:kg m/sec *)
(* p3 is the momentum of upper bound for roton : its momentum unit:kg m/sec,
p3 is determined by equality of derivative coefficient at the boundary \
between roton and higher region *)
(* p4 is the momentum of upper bound for higher region 1 :
its momentum unit:kg m/sec *)
p1=0.5*10"10*hbar;p2=1.78*10"10*hbar;p4=2.55*10"10*hbar;
(* Solve the parameters in order to connect the excitation energy functions \
in three regions. *)
sol=Solve[ {eOmaxon[p1]==eOphonon[p1],dMaxon[p1]\[Equal]dPhonon[p1],
e0maxon[p2]==eOroton[p2],dMaxon[p2]\[Equal]JdRoton[p2]},{maxon2,maxon3,
maxon4,maxon5}]
maxon2=maxon2/.sol[[1,1]]
1.2]]
1,31]

maxon5=maxon5/.sol[[1,4]]

maxon3=maxon3/.sol[|

maxon4=maxon4/.sol[

[
[
[
[
(* Solve the parameter p3 in order to connect the excitation energy at the \
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boundary between roton and higer region. *)
sol=Solve[dRoton[p3]\[Equal]c1,p3]
p3=p3/.sol[[1,1]]
(* Solve the parameter hh in order to connect the excitation energy \
continuously *)
sol=Solve[eOroton[p3]\[Equal]hh,hh]
hh=hh/.sol[[1,1]]
D[eOhigh2[p],p)/.p\[Rule]p4
(* Solve the parameters aaa and bbb in order to connect the excitation energy \
at p=p4 continuously *)
sol=Solve[ {eOhigh1[p4]\[Equal]eOhigh2[p4],
dHigh1[p4]\[Equal]D[eOhigh2[p],p]/.p\[Rule]p4},{aaa,bbb}]
aaa=aaa/.sol[[1,1]];bbb=bbb/.sol[[1,2]]
(* We define new function e0O[p].
This function is equal to the function defined by (2.42)-(2.46) in \
chapter II of my book *)
e0[p_]:=eOphonon[p]/;0<=p<pl
e0[p_]:=eOmaxon[p]/;pl<=p<p2
e0[p_]:=eOroton[p]/;p2<=p<p3
e0[p_J:=eOhighl[p])/;p3<=p<p4
e0[p_J:=eOhigh2[p]/;pd4<=p
(* We will confirm that the function of func is identical to High2 *)
func
(* The function High2[k] is equal to (2.46) in chaper II of my book,
but the variable k is different from p *)
High2[k ]:=dd0+dd1*(k-p4/(10"10*hbar))+dd2*(k-p4/(10"10*hbar))"2
ddO=func/.kkk->p4/(10*10*hbar)
dd1=D[func,kkk]/.kkk->p4/(10"10*hbar)
dd2=D[func,{kkk,2}]/2
(* test of (HIgh2=func) *)
{High2[2.6],func/.kkk\[Rule]2.6}
{High2[2.9],func/.kkk\[Rule]2.9}
(* We write parameter values (2.47)-(2.66) in chapter II of Sasaki's book.
The parameters in Sasaki's book are related by the following equation \
)
(* c1=cl, Delta=fDelta0*kB; p0=fQ0*10"10*hbar; r=fMO0 *)
cl

fDelta0
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fQO

MO

(* g0=maxonl ; pM=pMax *)

maxon]

pMax/(10"10*hbar)

(* d0=dd0*kB ; d1=dd1*kB/(10"10*hbar) ; d2=dd2*kB/(10"10*hbar)"2 *)

ddo

ddl1

dd2

(* pl=pl ; p2=p2 ; p3=p3 ; p4=p4 *)

p1/(10*10*hbar)

p2/(10*10*hbar)

p3/(10*10*hbar)

p4/(10*10*hbar)

(* b0=hh, g2=magnon2/kB , g3=magnon3/kB , g4=magnon4/kB, g5=magnon5/kB,
b2=aaa, b3=bbb *)

hh/kB

maxon2*(10"10*hbar)"2/kB

maxon3*(10"10*hbar)"3/kB

maxon4*(10"10*hbar)"4/kB

maxon5*(10"10*hbar)"5/kB

aaa*(10710*hbar)"2/kB

bbb*(10"10*hbar)"3/kB

(* We show that the experimental data of elementary excitation energy are \

agreement with the function e0 *)

ge0=Plot[e0[k*10"10*hbar]/kB, {k,0,3.6}]

Show([g,ge0]

(* We show the behavior of elementary excitation energy in the region of -3.6<

k<3.6 *)
ge0=Plot[e0[Abs[k]*10"10*hbar]/kB, {k,-3.6,3.6}]

Mathematica Program 2 (Approxmation in second order)

This program determines the kernel function and the temperature dependence of the
dressed boson excitation energy from Bose-Einstein condensate. The kernel values and
the energy values are saved in the files ‘“kernelListNonLinearTheory”,
“elListNonLinearTheory” and “e2ListNonLinearTheory”. Therefore further calculations
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can start from reading these three files.

(* This program is used the parameters which are determined by experimental \
data at 1.1K. The values are shown in (2.47)-(2.66) of this book. *)
(* These parameters are almost equal to ones of Bendt et al.

If we change the fuctional forms in phonon region and high \
momentumregion 2,

we can obtain more sutable parameters fitting to experimental data of \

elementary excitation energy *)
(* Running time of this program is about 3 hours at first running.

This program makes the three files "kernelListNonLinearTheory", \
"elListNonLinearTheory", "e2ListNonLinearTheory". *)

(* NA:Avogadro number *)
NA=6.0221367%10"23
(* hbar:Planck's constant/(2 Pi) *)
hbar=6.6260755%10"-34/(2*Pi)
(* kB:Boltzmann constant *)
kB=1.380658*10"-23
(* m=mass of He atom, unit: kg *)
m=(4.002602/(6.0221367*10723))*10"-3
(* roh=mass density of liquid helium,

at saturated vapor pressure and 1.1Kelvin unit: kg/m"3 *)
roh=145.5
(* numberDensity: number density of liquid helium unit: 1/m"3  *)
numberDensity=roh/m
(* We set the function of excitation energy *)
(* Parameter values of (2.47)-(2.66) *)
c1=238.
delta=8.61*kB
p0=1.92*10"10*hbar
r=0.153
20=13.82
pM=1.13*10"10*hbar
d0=16.7526*kB
d1=3.22877*kB/(10"10*hbar)
d2=-1.56968*kB/(10"10*hbar)"2
p1=0.5*10"10*hbar
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p2=1.78*10"10*hbar

p3=2.1495*10"10*hbar

p4=2.55*10"10*hbar

b0=10.696*kB

b2=14.4344*kB/(10"10*hbar)"2

b3=-55.0958*kB/(10"10*hbar)"3

22=-10.8805/(10"10*hbar)"2

23=-1.81497/(10"10*hbar)"3

24=-0.966809/(10"10*hbar)"4

25=7.19044/(10"10*hbar)"5

(* We define new function e0 *)

e0[p_J:=c1*p/;0<=p<pl

e0[p_]:=kB*(g0+g2*(p-pM)"2+g3*(p-pM)"3+g4*(p-pM)"4+g5*(p-pM)"5) /;p1 <=p<p2

e0[p_J:=delta+(1/(2*m*r))*(p-p0)"2 /;p2<=p<p3

e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)"2+b3*(p-p3)"3 /;p3<=p<p4

e0[p_1:=d0+d1*(p-p4)+d2*(p-p4)"2 /;p4<=p

ge0=Plot[e0[k*10*10*hbar]/kB, {k,0,3.6}]

energyData={ {0.0894,1.6131},{0.0946,1.7175},{0.1150,2.1005},{0.1210,
2.2514},{0.1390,2.6111},{0.1430,2.6343},{0.1594,2.9709},{0.1767,
3.29581,{0.1818,3.3887},{0.1938,3.6324},{0.1990,3.7368,{0.2000,
3.70001,{0.2110,3.9689},{0.2162,4.0850},{0.2278,4.2822},40.2329,
4.3867},{0.2445,4.6072},{0.2495.4.7116},{0.2611,4.9205},{0.2776,
5.23391,{0.2825,5.3267},{0.2938,5.5240}, {0.2988,5.62841,{0.3000,
5.57001,{0.3000,5.6500}, {0.4000,7.4000}, {0.4036,7.63611,{0.4082,
7.71731,{0.4187,7.9146},{0.4232,7.9958},{0.4355,8.18151,{0.4498,
8.37881,{0.4643,8.6457},{0.4785,8.8662},{0.4926,9.1099},{0.5000,
9.15001,{0.5605,10.1544},{0.6000,10.7500}, {0.6243,11.0015},40.6965,
11.80231},{0.7000,11.7500}, {0.7649,12.4173},{0.8000,12.7200}, {0.8000,
12.6500},{0.8300,12.8815},{0.8925,13.2297},{0.9000,13.1500},{1.0000,
13.5500},{1.1000,13.8000}, {1.1300,13.8200}, {1.2000,13.7500},{1.3000,
13.5000},{1.4000,12.9500}, {1.5000,12.2000}, {1.6000,11.2000},{1.7000,
10.2500},{1.8000,9.2500},{1.8800,8.6940},{1.8900,8.6570},{1.9000,
8.70001,{1.9000,8.6540},{1.9000,8.6340},{1.9100,8.63501,{1.9100,
8.61601,{1.9150,8.6110},{1.9200,8.6260},{1.9200,8.6100},{1.9250,
8.60601,{1.9300,8.6260},{1.9300,8.6060},{1.9350,8.63001,{1.9350,
8.61201,{1.9400,8.6300}, {1.9400,8.6090},{1.9500,8.65001,{1.9500,
8.63301,{1.9600,8.6830},{1.9600,8.6720},{1.9700,8.6950},{2.0000,
8.9500},{2.1000,10.0000},{2.2000,11.6500},{2.3000,13.5500},{2.4000,
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15.5000},{2.5000,16.4500},{2.6000,17.0000},{2.7000,17.3000},{2.8000,
17.5000},{2.9000,17.7000},{3.0000,17.8500},{3.1000,18.0000},{3.2000,
18.1500},{3.3000,18.3000},{3.4000,18.3500}, {3.5000,18.4000},{3.6000,
18.4500} }
g=ListPlot[energyData,PlotStyle\[Rule] {PointSize[0.015],RGBColor[1,0,0]}]
Show[g,ge0]
(* function kernel is defined as below  *)
kernel[p_,q ]:=
Nintegrate[e0[Sqrt[Abs[p2-2*p*q*t+q"2]]], {t,-1,1}]-2*e0[p]-2*e0[q]/;
p#0/lg#0
kernel[p_,q_]:=0/;p==0 && q==
(* Approximation of function kernel is defined as below  *)
(* Next command should be done at the first execution of program in order to \
make the file "kernelListNonLinearTheory".
Making of the file needs a long time. Therefore,
we should read the file in the second execution. *)
kList=Table[ {x,y,kernel[x*10"10*hbar,y*10"10*hbar]},{x,0,3.62,0.01},{y,0,3.62,
0.01}]>>"kernelListNonLinearTheory"
OpenRead["kernelListNonLinearTheory"];kList=
Get["kernelListNonLinearTheory"];Close["kernelListNonLinearTheory"]
kAppl[p_q_]-=
z/.{x=p/(10~10*hbar);y=q/(10"10*hbar);nx=IntegerPart[x*100]+1;
ny=IntegerPart[y*100]+1;a00=kList[[nx,ny,3]];al0=kList[[nx+1,ny,3]];
a01=kList[[nx,ny+1,3]];al I=kList[[nx+1,ny+1,3]];
z->al 1*(100*x-nx+1)*(100*y-ny+1)+al0*(100*x-nx+1)*(1-100*y+ny-1)+
a01*(1-100*x+nx-1)*(100*y-ny+1)+a00*(1-100*x+nx-1)*(1-100*y+ny-1)}
kApp3[p_q_]=
z/.{x=p/(10"10*hbar);y=q/(10"10*hbar);nx=IntegerPart[x*100];
ny=IntegerPart[y*100];tx=100*x-nx-0.5;ty=100*y-ny-0.5;
zz1=kList[[nx,ny,3]];zz2=kList[[nx+1,ny,3]];zz3=kList[[nx+2,ny,3]];
zzA=kList[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-z22-7z23+zz4)/
16)+((zz3-222)-(zz4-2z1-3%2z3+3%*222)/24)*
tx+(zz1-222-z23+724)/4*tx"\2+(zz4-2z1-3*223+3%222)/6*tx"3;
zz1=kList[[nx,ny+1,3]];zz2=kList[[nx+1,ny+1,3]];
zz3=kList[[nx+2,ny+1,3]];zz4=KList[[nx+3,ny+1,3]];
72=((222+223)/2-(221-222-223+224)/
16)+((zz3-222)~(zz4-221-3*2z3+3%222)/24)*
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tx+(zz1-222-223+224)/4%tx"2+(224-221-3%223+3%222)/6*tx"3;
zz1=KList[[nx,ny+2,3]];zz2=kList[[nx+1,ny+2,3]];
zz3=kList[[nx+2,ny+2,3]];zz4=kList[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
zz1=kList[[nx,ny+3,3]];zz2=kList[[nx+1,ny+3,3]];
zz3=kList[[nx+2,ny+3,3]];zz4=kList[[nx+3,ny+3,3]];
74=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+774)/A*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
2->((22+23)/2-(z1-22-23+24)/16)+((23-22)~(z4-21-3*23+3*22)/24)*
ty+(z1-z2-z3+24)/4*ty"2+(z4-z1-3%23+3%22)/6%ty 3 }
kApprox[p_,q_]:=kAppl[p,q]/;p<=0.01*10"10*hbar || q<=0.01*10"10*hbar
kApprox[p_,q_]=
kApp3[p.ql/;
0.01*10"10*hbar<p<=3.6*10"10*hbar && 0.01*10"10*hbar<q<=3.6*10"10*hbar

pp=1.135%10"10*hbar;qq=1.875*10"10*hbar; {kernel[pp,qq],
kApprox[pp,qql,(kApprox[pp,qq]-kernel[pp,qq])/kernel[pp.qq]}
pp=0.005*10"10*hbar;qq=1.875*10"10*hbar; {kernel[pp,qq],
kApprox[pp,qq],(kApprox[pp,qq]-kernel[pp,qq])/kernel[pp.qq]}
(* result
kAppl is worse function than kApp3,
and therefore kApprox has larger error for p<=0.01*10"10*hbar ||
q<=0.01*10"10*hbar than in the other region *)
pp=1.555%10"10*hbar;qq=1.555*10"10*hbar;t1=TimeUsed[];Do[
kernel[pp,qq],{pp,1.556*10"10*hbar,1.566*10"10*hbar,0.0001*10"10*hbar} ];t2=
TimeUsed[];Do[
kApprox[pp.,qq], {pp,1.556*10"10*hbar,1.566*10"10*hbar,0.0001*10"10*hbar} ];t3=
TimeUsed[]; {t2-t1,t3-t2}
(* This result shows that the approximation is precise for almost all region,

and is more speedy program *)

(* nnn[q_,T ]is the dreesed boson number in zeroth order aproximation *)
nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999)
(* Divergence occurs because of numerical evaluation error,

when denominator is extremely small. Therefore,
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we change the value 1 to 0.9999999 ;
Deviation caused by this change is negligibly small *)
(* excitation energy of first order *)
el[p_,T J:=eO[p]+rl[p,T]/;p#0 && T#0
el[p_,T ]:=e0[p]/; p£0 && T==0
el[p_,T ]:=0/;p==0
(* recidual part of energy: rl1 *)
rl[p_,T_]:=(2Pi/(numberDensity(2Pi*hbar)"3))*
Nintegrate[k Approx[p,q]*nnn[q,T]*q"2,{q,0,3.6¥10"10*hbar},
PrecisionGoal\[Rule]4]
(* The integral region is 0\[LessEqual]q\[LessEqual]3.6*10"10*hbar,
and the contribution from q>
3.6%10"10*
hbar is negligibly small.

Therefore we have neglected the higher momentum region. *)

(* Next command should be done at the first execution of program in order to \
make the file "elListNonLinearTheory". Making of the file needs a long time.
Therefore, we should read the file in the second execution. *)
elList=Table[ {k,T,e1[k*10"10*hbar,T]},{k,0,3.6,0.01},{T,0,2.4,
0.1}]>>"elListNonLinearTheory"
OpenRead["elListNonLinearTheory"];elList=
Get["elListNonLinearTheory"];Close["e1ListNonLinearTheory"]
elAppl[p ,T ]=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];
tx=x*100-nx;ty=y*10-ny;zzl=elList[[nx+1,ny+1,3]];
zz2=elList[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zzl=elList[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]];
z22=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1}
elApp3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zzl=elList[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1 List[[nx+2,ny,3]];
zz4=elList[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-z22-7z23+zz4)/
16)+((zz3-222)~(zz4-zz1-3*723+3%222)/24)*
tx+(zz1-222-223+724)/4*tx"2+(224-221-3*223+3%222)/6*tx"3;

zzl=elList[[nx,ny+1,3]];zz2=el List[[nx+1,ny+1,3]];
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zz3=elList[[nx+2,ny+1,3]];
zz4=elList[[nx+3,ny+1,3]];
72=((zz2+223)/2-(zz1-222-2z3+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
zz1=elList[[nx,ny+2,3]];zz2=elList[[nx+1,ny+2,3]];
zz3=elList[[nx+2,ny+2,3]];zz4=elList[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-223+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
zz1=elList[[nx,ny+3,3]];zz2=elList[[nx+1,ny+3,3]];
zz3=elList[[nx+2,ny+3,3]];zz4=elList[[nx+3,ny+3,3]];
74=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%2z23+3*222)/24)*
tx+(zz1-222-723+774)/A*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
z\[Rule]((z2+23)/2-(z1-22-23+24)/16)+((z3-22)-(z4-z1-3*23+3*22)/24)*
ty+(z1-22-z3+24)/4*ty 2 +(z4-z1-3*23+3*22)/6*ty"3 }
elApprox[p_,T J:==el[p,T]/;p==3.6*10"10*hbar
elApprox[p_,T_]:==
elAppl[p,TJ/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*%10"10*hbar\[LessEqual]p<3.6*10"10*hbar || T\[LessEqual]0.1
elApprox[p_,T ]:==
el App3[p,T]/;0.01*10"10*hbar<p<3.59*10"10*hbar && 0.1<T\[LessEqual]2.2

T=1.85;pp=1.155*10"10*hbar; {e1[pp,T],
el Approx[pp,T],(el Approx[pp,T]-e1[pp,T])/e1[pp,T]}
T=1.85;pp=0.005*10"10*hbar; {e1[pp,T],
el Approx[pp,T].(el Approx[pp,T]-e1[pp,T])/e1[pp,T]}
T=1.85;pp=1.155*10"10*hbar;t1=TimeUsed[];Do[
el[pp,T],{pp,1.556*10"10*hbar,1.566*10"10*hbar,0.0001*10"10*hbar}];t2=
TimeUsed[];Do[
el Approx[pp,T],{pp,1.556*10"10*hbar,1.566*10"10*hbar,0.0001*10"10*hbar} ];t3=
TimeUsed[]; {t2-t1,t3-t2}
(* This result shows that the approximation is precise for all region,
and is more speedy program *)

(* ===\[Equal] end of test =========== %)
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(* excitation energy of second order *)
(*nl[q_,T_] is the dreesed boson number in first order aproximation *)
nl[q_,T_]:=1/(Exp[el Approx[q,T]/(kB*T)]-0.9999999)
e2[p_,T ]:=eO[p]+r2[p,T]/;p#0 && T#0
e2[p_,T_]:=e0[p]/; p#0 && T==0
e2[p_,T ]:=0/;p==0
(* recidual part of energy: r2 *)
r2[p_,T_]:=(2Pi/(numberDensity(2Pi*hbar)"3))*
Nlintegrate[kApprox[p,q]*n1[q,T]*q"2,{q,0,3.6*10"10*hbar},
PrecisionGoal\[Rule]4]
(* The integral region is 0\[LessEqual]q\[LessEqual]3.6*10"10*hbar,
and the contribution from q>
3.6%10"10*
hbar is negligibly small.

Therefore we have neglected the higher momentum region. *)

(* Next command should be done at the first execution of program in order to \
make the file "e2ListNonLinearTheory". Making of the file needs a long time.
Therefore, we should read the file in the second execution. *)
e2List=Table[ {k,T,e2[k*10"10*hbar,T]},{k,0,3.6,0.01},{T,0,2.2,
0.1}]>>"e2ListNonLinearTheory"
OpenRead["e2ListNonLinearTheory"];e2List=
Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"]
e2Appl[p ,T ]=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];
tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]];
zz2=e2List[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]];
z22=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1}
e2App3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]];
zz4=e2List[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-z22-7z23+zz4)/
16)+((zz3-222)~(zz4-zz1-3*723+3%222)/24)*
tx+(zz1-222-223+724)/4*tx"2+(224-221-3*223+3%222)/6*tx"3;

zzl=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]];
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zz3=e2List[[nx+2,ny+1,3]];
zz4=e2List[[nx+3,ny+1,3]];
72=((zz2+223)/2-(zz1-222-2z3+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]];
zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-223+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]];
zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]];
74=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%2z23+3*222)/24)*
tx+(zz1-222-723+774)/A*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
Z\[Rule]((z2+23)/2-(z1-22-23+24)/16)+((z3-22)-(z4-21-3*23+3*22)/24)*
ty+(z1-22-z3+24)/4*ty 2 +(z4-z1-3*23+3*22)/6*ty"3 }
e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0
e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10"10*hbar || T\[Equal]2.2
e2Approx[p_,T ]:==
e2Appl[p,TJ/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*10710*hbar\[LessEqual]p<3.6*10"10*hbar ||0< T\[LessEqual]0.1|
2.1\[LessEqual]T<2.2
e2Approx[p_,T ]:=e2App3[p,T]/;0.01*10"10*hbar<p<3.59*10"10*hbar && 0.1<T<2.1

T=1.85;pp=1.155*10"10*hbar; {e2[pp,T],

e2Approx[pp,T].(e2Approx[pp,T]-e2[pp,T])/e2[pp,T]}
(* ===\[Equal] end of test =========== ¥*)

Mathematica Program 3 (Calculation of entropy)
This program determines the temperature dependence of entropy.

(* This program calculates entropy *)
(* The excitation energy values of the second order are already saved in the \

files "e2ListNonLinearTheory" *)
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(* NA:Avogadro number *)
NA=6.0221367*10"23
(* hbar:Planck's constant/(2 Pi) *)
hbar=6.6260755%10"-34/(2*Pi)
(* kB:Boltzmann constant *)
kB=1.380658*10"-23
(* m=mass of He atom, unit: kg *)
m=(4.002602/(6.0221367*10723))*10"-3
(* roh=mass density of liquid helium,

at saturated vapor pressure and 1.1Kelvin unit: kg/m"3 *)
roh=145.5
(* numberDensity: number density of liquid helium unit: 1/m*3 *)
numberDensity=roh/m
(* We set the function of excitation energy *)
(* Parameter values of (2.47)-(2.66) *)
c1=238.
delta=8.61*kB
p0=1.92*10"10*hbar
r=0.153
20=13.82
pM=1.13*10"10*hbar
d0=16.7526*kB
d1=3.22877*kB/(10"10*hbar)
d2=-1.56968*kB/(10"10*hbar)"2
p1=0.5*10"10*hbar
p2=1.78*10"10*hbar
p3=2.1495*10"10*hbar
p4=2.55*10"10*hbar
b0=10.696*kB
b2=14.4344*kB/(10"10*hbar)"2
b3=-55.0958*kB/(10"10*hbar)"3
£2=-10.8805/(10"10*hbar)"2
23=-1.81497/(10"10*hbar)"3
24=-0.966809/(10"10*hbar)"4
25=7.19044/(10"10*hbar)"5
(* We define new function e0 *)

e0[p_]:=c1*p/;0<=p<pl
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e0[p_]:=kB*(g0+g2*(p-pM)"2+g3*(p-pM)"3+g4*(p-pM)"4+g5*(p-pM)"5) /;p1<=p<p2
e0[p_J:=delta+(1/(2*m*r))*(p-p0)"2 /;p2<=p<p3
e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)"2+b3*(p-p3)"3 /;p3<=p<p4
e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)"2 /;p4<=p
(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *)
nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999)
(* ======== approximation of el[p,T] =========¥)
(* We read the file "elListNonLinearTheory". Then,
we calculate the approximate value of el[p,T]. *)
OpenRead["e1ListNonLinearTheory"];elList=
Get["elListNonLinearTheory"];Close["e1ListNonLinearTheory"]
elAppl[p_,T ]:=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];
tx=x*100-nx;ty=y*10-ny;zzl=elList[[nx+1,ny+1,3]];
zz2=elList[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zz1=elList[[nx+1,ny+2,3]];zz2=elList[[nx+2,ny+2,3]];
z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1}
elApp3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zz1=elList[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1 List[[nx+2,ny,3]];
zzA=elList[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-z22-7zz3+zz4)/
16)+((zz3-222)-(zz4-2z1-3*zz3+3%222)/24)*
tx+(zz1-222-223+724)/4*tx"\2+(zz4-2z1-3*223+3%222)/6*tx"3;
zzl=elList[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]];
zz3=elList[[nx+2,ny+1,3]];
zzA=elList[[nx+3,ny+1,3]];
722=((zz2+223)/2-(zz1-zz2-7z23+zz4)/
16)+((zz3-222)-(zz4-2z1-3%2z3+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"2+(zz4-2z1-3*223+3%222)/6*tx"3;
zzl=elList[[nx,ny+2,3]];zz2=elList[[nx+1,ny+2,3]];
zz3=elList[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-7zz3+zz4)/
16)+((zz3-222)~(zz4-zz21-3*%7223+3%222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(zz4-221-3*223+3%222)/6¥tx"3;
zzl=elList[[nx,ny+3,3]];zz2=elList[[nx+1,ny+3,3]];
zz3=elList[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]];
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74=((z22+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-221-3%223+3*222)/24)*
tx+(zz1-222-723+7724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
z\[Rule]((z2+23)/2-(z1-22-23+24)/16)+((z3-22)-(z4-z1-3*23+3*22)/24)*
ty+(z1-z2-z3+z4)/4*ty"2+(z4-z1-3*%23+3%*22)/6 %ty 3 }
elApprox[p_,T_]:=el[p,T]/;p==3.6*10"10*hbar
elApprox[p_,T |:=
elAppl[p,Tl/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*10"10*hbar\[LessEqual]p<3.6*10*10*hbar || T\[LessEqual]0.1
elApprox[p_,T_]:==
el App3[p,T1/;0.01*10"10*hbar<p<3.59*10"10*hbar && 0.1<T\[LessEqual]2.2
(*nl[q_,T_] is the dreesed boson number in first order aproximation *)
nl[q_,T_]:=1/(Exp[el Approx[q,T]/(kB*T)]-0.9999999)

(* ——

(* We read the file "e2ListNonLinearTheory". Then,
we calculate the approximate value of e2[p,T]. *)
OpenRead["e2ListNonLinearTheory"];e2List=
Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"]
e2Appl[p ,T ]=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];
tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]];
zz2=e2List[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]];
z22=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1 }
e2App3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]];
zzA=e2List[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-zz2-7zz3+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-z23+724)/4*tx"2+(zz4-2z1-3*223+3*222)/6¥tx"3;
zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]];
zz3=e2List[[nx+2,ny+1,3]];
zz4=e2List[[nx+3,ny+1,3]];
72=((222+223)/2-(221-222-223+224)/
16)+((zz3-222)~(zz4-221-3*2z3+3%222)/24)*
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tx+(zz1-222-223+224)/4%tx"2+(224-221-3%223+3%222)/6*tx"3;
zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]];
zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]];
zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]];
74=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+774)/A*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
z\[Rule]((z2+23)/2-(z1-22-23+24)/16)+((z3-22)-(z4-z1-3*23+3*22)/24)*
ty+(z1-z2-z3+24)/4*ty"2+(z4-z1-3%23+3%22)/6%ty 3 }
e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0
e2Approx[p_,T ]:=e2[p,T]/;p==3.6*10"10*hbar || T\[Equal]2.2
e2Approx[p_,T_]:==
e2Appl[p,TJ/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*10"10*hbar\[LessEqual]p<3.6*10*10*hbar [|0< T\[LessEqual]0.1]|
2.1\[LessEqual]T<2.2
e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10"10*hbar<p<3.59*10"10*hbar && 0.1<T<2.1
(*n2[q_,T ]1is the dreesed boson number in the second order aproximation *)
n2[q ,T_]:==1/(Exp[e2Approx[q,T]/(kB*T)]-0.9999999)
* *)

(* calculation of entropy per atom  *)

(* zeroth order entropy sO[T] (per atom) *)
sO[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)"3))*
Nintegrate[(Log[ 1+nnn[p,T]]+(e0[p)/(kB*T))nnn[p,T])*p"2,{p,0,
3.6*10"10*hbar}]
(* first order entropy s1[T] (per atom) *)
sI[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)"3))*
Nintegrate[(Log[1+n1[p,T]]+(el Approx[p,T]/(kB*T))n1[p,T])*p"2,{p,0,
3.6*10"10*hbar},PrecisionGoal\[Rule]4]
(* second order entropy s2[T] (per atom) *)
s2[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)"3))*
Nintegrate[(Log[1+n2[p,T]]+(e2 Approx[p,T]/(kB*T))n2[p,T])*p"2,{p,0,
3.6*10"10*hbar},PrecisionGoal\[Rule]4]

(* Calculation result of entropy:
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s2[T]/m indicates entropy per kg, (s2[T]/m)/
1000 indicates entropy per g *)
Table[ {T,(s0[T]/m)/1000,(s1[T]/m)/1000,(s2[T]/m)/1000},{T,0.5,2.15,0.05}]
(* The List obtained above indicates {temperature, entropy of zeroth order,
first order, second order}
where the entropy unit is J/(K*g) *)
(* entropyExp is the entropies of experiment *)
entropyExp={{0.2,0.00005},{0.3,0.00018},{0.4,0.00044},{0.5,0.00085},{0.6,
0.00147},{0.7,0.00276},{0.8,0.00475},{0.9,0.00885},{1.0,0.0168},{1.1,
0.0304},{1.2,0.0523},{1.3,0.0853},{1.4,0.132},{1.5,0.197},{1.6,
0.284},{1.7,0.395},{1.8,0.535},{1.9,0.715},{2.0,0.940},{2.1,1.24} }
gExp=ListPlot[entropyExp,PlotStyle\[Rule] {RGBColor[1,0,0],PointSize[0.02]} ]
entropyCal=Table[{T,(s2[T]/m)/1000},{T,0.2,2.15,0.005} ];
gCal=ListPlot[entropyCal,PlotStyle\[Rule] {RGBColor[0,0,0],PointSize[0.007]}]
Show[gExp,gCal]
entropyExpLog10=
Table[ {entropyExp[[n,1]],Log[10,entropyExp[[n,2]]]},{n,1,
Length[entropyExp]} ];
entropyCalLog10=
Table[ {entropyCal[[n,1]],Log[10,entropyCal[[n,2]]]},{n,1,
Length[entropyCal]}];
gExpLogl0=
ListPlot[entropyExpLog10,PlotStyle\[Rule] {RGBColor[1,0,0],PointSize[0.02]} ]
gCalLogl0=
ListPlot[entropyCalLog10,PlotStyle\[Rule] {RGBColor[0,0,0],PointSize[0.005]} ]
Show[gExpLog10,gCalLog10]

Mathematica Program 4 (Calculation of specific heat for 0.2-2.15K)

This program calculates the temperature dependence of specific heat in the temperature
region 0.2 - 2.15 K.

(* This program "AppendixSpecificHeat0.2-2.15.nb" uses the excitation energy \

form at 1.1 K calculated by program "AppendixEnergyForm" *)

(* This program also uses the two files "elListNonLinearTheory",
"e2ListNonLinearTheory" which are obtained by the program \

"AppendixKernelEnergy". *)
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(* NA:Avogadro number *)
NA=6.0221367*10"23
(* hbar:Planck's constant/(2 Pi) *)
hbar=6.6260755%10"-34/(2*Pi)
(* kB:Boltzmann constant *)
kB=1.380658*10"-23
(* m=mass of He atom, unit: kg *)
m=(4.002602/(6.0221367*10723))*10"-3
(* roh=mass density of liquid helium,

at saturated vapor pressure and 1.1Kelvin unit: kg/m"3 *)
roh=145.5
(* numberDensity: number density of liquid helium unit: 1/m*3 *)
numberDensity=roh/m
(* We set the function of excitation energy *)
(* Parameter values of (2.47)-(2.66) *)
c1=238.
delta=8.61*kB
p0=1.92*10"10*hbar
r=0.153
20=13.82
pM=1.13*10"10*hbar
d0=16.7526*kB
d1=3.22877*kB/(10"10*hbar)
d2=-1.56968*kB/(10"10*hbar)"2
p1=0.5*10"10*hbar
p2=1.78*10"10*hbar
p3=2.1495*10"10*hbar
p4=2.55*10"10*hbar
b0=10.696*kB
b2=14.4344*kB/(10"10*hbar)"2
b3=-55.0958*kB/(10"10*hbar)"3
£2=-10.8805/(10"10*hbar)"2
23=-1.81497/(10"10*hbar)"3
24=-0.966809/(10"10*hbar)"4
25=7.19044/(10"10*hbar)"5
(* We define new function e0 *)

e0[p_]:=c1*p/;0<=p<pl
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e0[p_]:=kB*(g0+g2*(p-pM)"2+g3*(p-pM)"3+g4*(p-pM)"4+g5*(p-pM)"5) /;p1<=p<p2
e0[p_J:=delta+(1/(2*m*r))*(p-p0)"2 /;p2<=p<p3
e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)"2+b3*(p-p3)"3 /;p3<=p<p4
e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)"2 /;p4<=p
(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *)
nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999)
(* ======== approximation of el[p,T] =========¥)
(* We read the file "elListNonLinearTheory". Then,
we calculate the approximate value of el[p,T]. *)
OpenRead["e1ListNonLinearTheory"];elList=
Get["elListNonLinearTheory"];Close["e1ListNonLinearTheory"]
elAppl[p_,T ]:=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];
tx=x*100-nx;ty=y*10-ny;zzl=elList[[nx+1,ny+1,3]];
zz2=elList[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zz1=elList[[nx+1,ny+2,3]];zz2=elList[[nx+2,ny+2,3]];
z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1}
elApp3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zz1=elList[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1 List[[nx+2,ny,3]];
zzA=elList[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-z22-7zz3+zz4)/
16)+((zz3-222)-(zz4-2z1-3*zz3+3%222)/24)*
tx+(zz1-222-223+724)/4*tx"\2+(zz4-2z1-3*223+3%222)/6*tx"3;
zzl=elList[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]];
zz3=elList[[nx+2,ny+1,3]];
zzA=elList[[nx+3,ny+1,3]];
722=((zz2+223)/2-(zz1-zz2-7z23+zz4)/
16)+((zz3-222)-(zz4-2z1-3%2z3+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"2+(zz4-2z1-3*223+3%222)/6*tx"3;
zzl=elList[[nx,ny+2,3]];zz2=elList[[nx+1,ny+2,3]];
zz3=elList[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-7zz3+zz4)/
16)+((zz3-222)~(zz4-zz21-3*%7223+3%222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(zz4-221-3*223+3%222)/6¥tx"3;
zzl=elList[[nx,ny+3,3]];zz2=elList[[nx+1,ny+3,3]];
zz3=elList[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]];
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74=((z22+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-221-3%223+3*222)/24)*
tx+(zz1-222-723+7724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
z\[Rule]((z2+23)/2-(z1-22-23+24)/16)+((z3-22)-(z4-z1-3*23+3*22)/24)*
ty+(z1-z2-z3+z4)/4*ty"2+(z4-z1-3*%23+3%*22)/6 %ty 3 }
elApprox[p_,T_]:=el[p,T]/;p==3.6*10"10*hbar
elApprox[p_,T |:=
elAppl[p,Tl/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*10"10*hbar\[LessEqual]p<3.6*10*10*hbar || T\[LessEqual]0.1
elApprox[p_,T_]:==
el App3[p,T1/;0.01*10"10*hbar<p<3.59*10"10*hbar && 0.1<T\[LessEqual]2.2
(*nl[q_,T_] is the dreesed boson number in first order aproximation *)
nl[q_,T_]:=1/(Exp[el Approx[q,T]/(kB*T)]-0.9999999)

(* ——

(* We read the file "e2ListNonLinearTheory". Then,
we calculate the approximate value of e2[p,T]. *)
OpenRead["e2ListNonLinearTheory"];e2List=
Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"]
e2Appl[p ,T ]=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];
tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]];
zz2=e2List[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]];
z22=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1 }
e2App3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]];
zzA=e2List[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-zz2-7zz3+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-z23+724)/4*tx"2+(zz4-2z1-3*223+3*222)/6¥tx"3;
zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]];
zz3=e2List[[nx+2,ny+1,3]];
zz4=e2List[[nx+3,ny+1,3]];
72=((222+223)/2-(221-222-223+224)/
16)+((zz3-222)~(zz4-221-3*2z3+3%222)/24)*
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tx+(zz1-222-223+224)/4%tx"2+(224-221-3%223+3%222)/6*tx"3;
zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]];
zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+724)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]];
zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]];
74=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+774)/A*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
z\[Rule]((z2+23)/2-(z1-22-23+24)/16)+((z3-22)-(z4-z1-3*23+3*22)/24)*
ty+(z1-z2-z3+24)/4*ty"2+(z4-z1-3%23+3%22)/6%ty 3 }
e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0
e2Approx[p_,T ]:=e2[p,T]/;p==3.6*10"10*hbar || T\[Equal]2.2
e2Approx[p_,T_]:==
e2Appl[p,TJ/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*10"10*hbar\[LessEqual]p<3.6*10*10*hbar [|0< T\[LessEqual]0.1]|
2.1\[LessEqual]T<2.2
e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10"10*hbar<p<3.59*10"10*hbar && 0.1<T<2.1
(* ======== approximation for the derivative of e2[p,T]

We should note that dTe2Approx[p,T] is not defined at p=

dTe2Appl[p T ]:=
z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10];

tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]];
zz2=e2List[[nx+2,ny+1,3]];
z1=tx*zz2+(1-tx)*zz1;
zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]];
z2=tx*zz2+(1-tx)*zz1;z\[Rule]10*¥22-10*z1}

dTe2App3[p_,T ]:=z/.{x=p/(10"10*hbar);y=T;nx=IntegerPart[x*100];
ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5;
zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]];
zzA4=e2List[[nx+3,ny,3]];
z1=((zz2+223)/2-(zz1-z22-7z23+zz4)/

16)+((z23-222)-(zz4-2z1-3*223+3%222)/24)*
tx+(zz1-222-223+724)/4*tx"2+(224-221-3*223+3%222)/6*tx"3;
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zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]];
zz3=e2List[[nx+2,ny+1,3]];
zz4=e2List[[nx+3,ny+1,3]];
72=((zz2+223)/2-(zz1-222-223+z24)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+774)/4*tx"\2+(2z4-221-3*223+3*222)/6*tx"3;
zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]];
zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]];
23=((zz2+223)/2-(zz1-222-223+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+774)/A*tx"\2+(zz4-221-3*223+3*222)/6*tx"3;
zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]];
zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]];
74=((zz2+223)/2-(zz1-222-223+zz4)/
16)+((zz3-222)-(zz4-2z1-3%223+3*222)/24)*
tx+(zz1-222-723+774)/4*tx"\2+(zz4-2z1-3*223+3*222)/6*tx"3;
z\[Rule]10(((z3-22)-(z4-z1-3*23+3%22)/24)+(z1-22-23+74)/2*
ty+(z4-z1-3%23+3*22)/2*ty"2)}
dTe2Approx[p_,T_]:=0/; T\[Equal]0.0
dTe2Approx[p_,T_]:==
dTe2Appl[p,TV/;
0\[LessEqual]p\[LessEqual]0.01*10"10*hbar ||
3.59*10710*hbar\[LessEqual]p<3.6*10"10*hbar ||0< T\[LessEqual]0.1|
2.1\[LessEqual]T<2.2
dTe2Approx[p ,T ]:=
dTe2App3[p,T]/;0.01*10*10*hbar<p<3.59*10"10*hbar && 0.1<T<2.1

T=1.65;pp=1.155*10"10*hbar; {dTe2App1[pp,T],
dTe2App3[pp,T],(dTe2App1[pp,T]-dTe2App3[pp,T])/dTe2 App3[pp,T]}

{-1.19005 x 10\*-23,-1.18632 X 10\"-23,0.00313924}

T=2.199999;pp=3.599999*10"10*hbar;dTe2 Approx[pp,T]

-6.14294 X 10\*-23

(* ===\[Equal] end of test =========== *)

* )

(* calculation of specific heat per atom  *)

(* zeroth order specific heat CO[T] (per atom) *)
CO[T_]:=(4*Pi/(numberDensity*(2*Pi*hbar)"3))*

Nintegrate[((nnn[p, T])*2*Exp[e0[p]/(kB*T)](e0[p}/(kB*T))"2)*kB*p*2, {p,0,

157



3.6%10"10*hbar} ]
(* second order specific heat C2[T] (per atom) *)
(* n2[q_,T_] is the dreesed boson number in second order aproximation *)
n2[q ,T_]:=1/(Exp[e2 Approx[q,T]/(kB*T)]-0.9999999)
C2[T_]:=(4*Pi/(numberDensity*(2*Pi*hbar)"3))*
Nintegrate[(n2[p,T])"2*
Exp[e2Approx[p,T]/(kB*T)]*((e2Approx[p,T)/(kB*T))"2*
kB-(e2Approx[p,T]/(kB*T))*dTe2 Approx[p,T])*p"2,{p,0,
3.599999*10"10*hbar} ]
T=1.9;C2[T]/m/1000
(* The next Table is the calculated List as{temperature,
specific heat of zeroth order, second order} *)
Table[{T,(CO[T]/m)/1000,(C2[T]/m)/1000},{T,0.2,2.15,0.05}]
(* We make the list of specific heat {temperature,
specific heat (unit:J/(K*g)} *)
t1=TimeUsed[];specificHeatCal=Table[ {T,C2[T]/m/1000},{T,0.2,2.15,0.005} ];t2=
TimeUsed[];t2-t1
(* specificHeatExp is the specific heat of experiment *)
specificHeatExp={{0.2,0.0002},{0.3,0.0005},{0.4,0.0013},{0.5,0.0025},{0.6,
0.0044},{0.7,0.0098},{0.8,0.0222},{0.9,0.0510},{1.0,0.1042} ,{1.1,
0.191},{1.2,0.322},{1.3,0.516},{1.4,0.780},{1.5,1.127},{1.6,1.572} ,{1.7,
2.11},{1.8,2.81},{1.9,3.79},{2.0,5.18},{2.1,7.51} }
gExp=ListPlot[specificHeatExp,
PlotStyle\[Rule] {RGBColor([1,0,0],PointSize[0.02]}]
specificExpLogl0=
Table[ {specificHeatExp[[n,1]],Log[10,specificHeatExp[[n,2]]]},{n,1,
Length[specificHeatExp]}];
specificCalLogl0=
Table[ {specificHeatCal[[n,1]],Log[10,specificHeatCal[[n,2]]]},{n,1,
Length[specificHeatCal]}];
gExpLogl0=
ListPlot[specificExpLog10,PlotStyle\[Rule] {RGBColor[1,0,0],PointSize[0.02]}]
gCalLogl0=
ListPlot[specificCalLog10,
PlotStyle\[Rule] {RGBColor[0,0,0],PointSize[0.005]} ]
Show[gExpLog10,gCalLog10]
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Mathematica program 5 (Calculation of specific heat near the A point)

This program calculates specific heat near the A point. We use the temperature

dependence of experimental data for second sound verocity.

(* Calculation of Specific Heat near the lambda transition *)
(* alpha:
expansion coefficient of liquid helium near lambda transition :
unit:K"-1
where T and P indicate the temperature and pressure respectively.*)
\I\(alpha[P_, T_]=
0.20821014177938688"\[InvisibleSpace] - 0.19315882351879696™\ P +
0.001665065420298923"\ P\*2 + 5.000779466327585" */-6\ P\"3 -
3.3575696795459315"*A-7\ P\"4 - 0.1817968215507505"\ T +
0.1935429711624159"\ P\ T - 0.00042826241460284105\ P\*2\ T +
0.035644114587116915™\ T\"2 - 0.04892332663996617"\ P\ T\"2 -
0.00024311096857724168™\ P\"2\ T\"2\)
(* energy of phonon part (second sound) :unit:J *)
AN (*\\ velocity\ of\ second\ sound\ =\(21.547\ tt\"\(1/3\) -
0.35276\ P\ tt\\(1/3\) + 32.226\ \@tt - 0.27876\ P\ \@tt +
0.0051713\ PV"2\\@tt\ \\ \ where\ tt = 1 - T/Tlambda\)\ \ *)\)
energyPhonon[tt ,p ]:==
p(cl+c2*P)(tt+(a*p/(2*m)) 3)N(1/3)+p(d1+d2*P+d3*P 2)(tt+(b*p/(2*m)) 2)~(1/2)
(* dedTPhonon = the derivative coefficient, namely D[energyPhonon,T] *)
dedTPhonon[tt_,
p_l:==-(1/(3*Tlambda))*
p*(cl+c2*P)(tt+(a*p/(2*m))*3)"(-2/3)-(1/(2*Tlambda))*
p(d1+d2*P+d3*P 2)(ttH(b*p/(2*m)) 2)"(-1/2)
derivPhonon[tt_,
p_l:=(cl+c2*P)(tt+H(a*p/(2*m))"3)"(1/3)+(d1+d2*P+
d3*PA2)(tt+H(b*p/(2*m)) " 2)N(1/2)+(a*p/(2*m)) 3*(c1+
c2*P)(tt+(a*p/(2*m)) 3)\(-2/3)+(b*p/(2*m)) 2*(d1+d2*P+
d3*PA2)(tt+H(b*p/(2*m))"2)"(-1/2)
¢1=21.547;c2=-0.35276;d1=32.226;d2=-0.27876;d3=0.0051713;bb=0.565;b=
bb*(1-(cl+c2*P)a)/(d1+d2*P+d3*P"2)

(* functions *)
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exPhonon[tt_,q_]:=Exp[energyPhonon[tt,q*hbar]/(kB*Tlambda*(1-tt))]
nPhonon][tt_,q_]:=1/(exPhonon([tt,q]-1)
fPhonon[tt_,q ]:==

alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[ 1 +nPhonon[tt,q]]+

energyPhonon([tt,q*hbar]*nPhonon([tt,q])+
exPhonon([tt,
q]*(energyPhonon[tt,
q*hbar]/(kB*Tlambda*(1-tt)))(energyPhonon([tt,
q*hbar]/(Tlambda*(1-tt))-dedTPhonon[tt,q*hbar])*nPhonon([tt,q]"2

(* specific heat for phonon region: unit is J/(mole K) *)
q1=0.47*10"10
cPhonon[tt_]:=

Nintegrate[fPhonon[tt,q]*q"2/((1000/4.0026)*roh*2*Pi"2),{q,1,q1}]

(* energy form of thermal roton *)
(* These function forms are derived from BD theory.
fDelta=roton minimum energy, unit K
fQ=roton minimum wave vector,unit A”-1
fMeff=effective mass of roton,ratio to the mass of He atom  *)
\\(fDelta[P_, T ]=
11.817996949160221"\[InvisibleSpace] + 0.005462313498632458"\ P +
0.00007060004218597404™\ P\"2 - 1.994136758893095™\ T -
0.03904567848829687"\ P\ T - 0.0004472451972962349™\ P\"2\ T\)
(* cD is the derivative coefficient D[fDelta,T] *)
\I\(eD =\(-1.994136758893095"\)\ -
0.03904567848829687"\ P\ -\(\(0.0004472451972962349™\)\(\\
WWEV2)W\A D)L
\WEQ[P_, T ]=
1.9117207681118162"\[InvisibleSpace] - 0.0025819515490051043™\ P +
0.0002580457099968077°\ P\*2 + 0.0019883653842202686'\ T +
0.005281830335301087"\ P\ T - 0.00018934972954181802™\ P\"2\ T\)
(* cQ is the derivative coefficient D[fQ,T] *)
\\(cQ =\(+0.0019883653842202686™\)\ +
0.005281830335301087"\ P\ -\(\(0.00018934972954181802"\)\(\ \
WEPV2O)W\O VYY)
\WEMeff[P_, T ]=
0.21803261551944467"\[InvisibleSpace] + 0.00003466145724840003"\ P +
5.577735788725462 * -7\ P\*2 - 0.03676347248658116"\ T -
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0.0007115671371523195"\ P\ T - 7.100620816409547"*"-6\ P\"2\ T\)
(* cM is the derivative coefficient D[fMeff,T] *)
\\(eM =\(-0.03676347248658116™\)\ -
0.0007115671371523195"\ P\ - \(\(7.100620816409547" *"-6\)\(\\
WWEPV2)V\A V)Y
(* energyRoton=roton energy, unitJ *)
energyRoton[tt_p_J:=
1/(2*fMeff[P, Tlambda*(1-tt)]*m)*(p-fQ[P,Tlambda*(1-tt)]*10"10*hbar)"2+
fDelta[P,Tlambda*(1-tt)]*kB
(* derivRoton is the derivative coefficient D[energyRoton,p] *)
derivRoton[tt_,p_J]:=
1/(fMeff[P,Tlambda*(1-tt)]*m)*(p-fQ[P,Tlambda*(1-tt)]*10"10*hbar)
d2Roton[tt_,p_]:=1/(fMeff[P,Tlambda*(1-tt)]*m)
(* dedTRoton is the derivative coefficient D[energyRoton,T] *)
dedTRoton[tt_,
p_l:=-cM/(2*fMeff[P,Tlambda*(1-tt)]*2*m)*(p-
fQ[P,Tlambda*(1-tt)]*10"10*hbar)"2-2(cQ*10"10*
hbar/(2*tMeft[P,Tlambda*(1-tt)]*m))*(p-
fQ[P,Tlambda*(1-tt)]*10"10*hbar)+cD*kB
(* calculation of heat capacity for roton region *)
exRoton[tt_,q_]:=Exp[energyRoton[tt,q*hbar]/(kB*Tlambda*(1-tt))]
nRoton[tt ,q ]:=1/(exRoton[tt,q]-1)
fRoton[tt_,q |:==
alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[ 14+nRoton][tt,q]]+
energyRoton[tt,q*hbar]*nRoton[tt,q])+
exRoton[tt,
q]*(energyRoton[tt,
q*hbar]/(kB*Tlambda*(1-tt)))(energyRoton[tt,
q*hbar]/(Tlambda*(1-tt))-dedTRoton[tt,q*hbar])*nRoton][tt,q]"2
(* specific heat for roton region: unit is J/(mole K) *)
q2=1.75*10"10
(* We will set q3 after *)
cRoton[tt_]:=NIntegrate[fRoton[tt,q]*q"2/((1000/4.0026)*roh*2*Pi*2),{q,q2,q3}]

(* constant values *)

(* NA:Avogadro constant *)
NA=6.0221367*10"23
hbar=6.626*10"-34/(2*P1i)
h=6.626*10"-34
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kB=1.381%10"-23
(* m=mass of He atom, unit: kg *)
m=(4.0026/(6.0221367*10"23))*10"-3
AN (F\\V\((0.02210\[InvisibleSpace] + 0.0002426\ P -
2.621*10M(-6\)\ PY"2))\ =\
number\ of\ atoms\ per\ unit\ volume\ I AVN\(-3\)\\ *)\)
(* roh is the mass density which depends on P and T. unit:kg/m"3 =====—====%)
\\(roh =
m*10"30*\((0.02210\[InvisibleSpace] + 0.0002426\ P -
2.621*¥10M(-6\)\ P\*2)\)\)
roh=146.89+1.6125 P-0.01742 P2
(* These two expressions of roh are equivalent. *)
\\(Tlambda = 2.1725 - 0.00977\ P - 0.000127\ P\"2\)
T=Tlambda*(1-tt)
(* energy function for maxon *)
(* maxonl is a peak energy of maxon which is derived from BD (Brooks & \
Donnelly) theory unit: K *)
\!\(maxonl =
3.206405433445097 \[InvisibleSpace] + 0.27134388495988193"\ P -
0.011766735067301868™\ P\"2 + 0.00039726430827396715™\ P\"3 -
5.301226864013549"*2-6\ P\"4 + 12.668467578023716"\ T -
0.09966957241809207"\ P\ T - 3.8815941717254123"\ T\"2 +
0.023402114681846813™\ P\ T\"2\)
(* maxon curve *)
pMax=1.4*10"10*hbar
energyMaxon[tt ,p ]:=
maxon1*kB+(maxon2+maxon3*(p-pMax)+maxon4*(p-pMax)"2+
maxon5*(p-pMax)"3)(p-pMax)"2
derivMaxon[p_]:=
2*maxon2*(p-pMax)+3*maxon3 *(p-pMax)"2+4*maxon4*(p-pMax)"3+5*
maxon5*(p-pMax)"4
energyMaxon|[tt,q1*hbar]
energyPhonon|[tt,q1*hbar]
energyRoton[tt,q2*hbar]
sol=Solve[ {energyMaxon][tt,q1 *hbar]==energyPhonon][tt,q1 *hbar],
derivMaxon[q1*hbar]\[Equal]derivPhonon[tt,q1*hbar],
energyMaxon[tt,q2*hbar]==energyRoton[tt,q2*hbar],
derivMaxon[q2*hbar]\[Equal]derivRoton[tt,q2*hbar]}, {maxon2,maxon3,
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1L,1]]
1,2]]
I

maxon4=maxon4/.sol[[1,3]

maxon4,maxon5} ]
maxon2=maxon2/.sol[[
maxon3=maxon3/.sol[[
[
maxon5=maxon5/.sol[[1,4]]
(* define functions This definition is important. We donot use ":=".
This delayed definition ":=" derives the incorrect result. *)
dedTMaxon([tt_,p_]=-D[energyMaxon]tt,p],tt]/Tlambda
(* calculation of heat capacity for maxon region *)
exMaxon[tt_,q_]:=Exp[energyMaxon[tt,q*hbar]/(kB*Tlambda*(1-tt))]
nMaxon([tt_,q_]:=1/(exMaxon[tt,q]-1)
fMaxon[tt_,q ]:=
alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nMaxon[tt,q]]+
energyMaxon(tt,q*hbar]*nMaxon[tt,q])+
exMaxon([tt,
q]*(energyMaxon[tt,
q*hbar]/(kB*Tlambda*(1-tt)))(energyMaxon([tt,
q*hbar]/(Tlambda*(1-tt))-dedTMaxon[tt,q*hbar])*nMaxon[tt,q]"2
(* specific heat for maxon region: unit is J/(mole K) *)
cMaxon([tt_]:=
Nintegrate[fMaxon[tt,q]*q"2/((1000/4.0026)*roh*2*Pi*2),{q,10°10,q2}]
cPhMaxon[tt_]:=
Nintegrate[fMaxon[tt,q]*q"2/((1000/4.0026)*roh*2*Pi*2),{q,q1,10"10}]
(* high momentum curve *)
firstVelocity={{0.05,237},{2.533125",257},{5.06625",273},{10.1325",
300},{15.19875%,326},{20.265,346},{25.33125",365} }
hl=Fit[firstVelocity, {1,P,P"2} ,P]
p3List=Table[
Join[{P,tt},p/.Solve[derivRoton[tt,p]\[Equal]h1,p]],{tt,0,0.01,
0.002},{P,0,29}1;
p3List=Join[p3List[[1]],p3List[[2]],p3List[[3]],p3List[[4]],p3List[[5]],
p3List[[6]]];
p3=Fit[p3List, {1,Ptt,P*tt} {P,tt}]
q3=p3/hbar
h2=energyRoton[tt,p3]
energyHigh[tt_,p ]:=h1*(p-p3)+h2
Clear[tt];dedTHigh[tt ,p ]=-D[energyHigh[tt,p],tt]/Tlambda

(* calculation of heat capacity for High momentum region q3 <q<5*10"10 *)
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exHigh[tt_,q ]:=Exp[energyHigh][tt,q*hbar]/(kB*Tlambda*(1-tt))]
nHigh[tt_,q_]:=1/(exHigh[tt,q]-1)
fHigh[tt_,q ]:==

alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[ 1+nHigh[tt,q]]+

energyHigh[tt,g*hbar]*nHigh[tt,q])+
exHighltt,
qJ*(energyHigh[tt,
q*hbar]/(kB*Tlambda*(1-tt)))(energyHigh[tt,
q*hbar]/(Tlambda*(1-tt))-dedTHigh[tt,q*hbar])*nHigh[tt,q]"2

(* specific heat for High momentum region : unit is J/(mole K) *)
cHigh[tt_]:=

Nintegrate[fHigh[tt,q]*q"2/((1000/4.0026)*roh*2*Pi*2),{q,q3,5%10"10} ]
(* Figure of function form of excitation energy *)
P=0.05;ttt=0.01;a=0.005426;g1=Plot[energyPhonon][ttt,p]/kB, {p,0,q1 *hbar} ]
q2
q3
P=0.05;tt=0.01;g2=Plot[energyMaxon]tt,p]/kB, {p,q1*hbar,q2*hbar} ]
P=0.05;tt=0.01;g3=Plot[energyRoton[tt,p]/kB, {p,q2*hbar,q3*hbar} ]
P=0.05;tt=0.01;g4=Plot[energyHigh[tt,p]/kB, {p,q3*hbar,2.6*10"10*hbar} ]
pMax/hbar
Show[gl,g2,g3,g4]
Show[gl,g2,PlotRange\[Rule]{0,5}]
(* next functions indicate the fractions of the dressed boson numbers inside \
various momentum regions for the total number of helium atoms *)
(* fractionl = phonon region / total *)
ratioPhonon[tt ]:=NIntegrate[nPhonon[tt,q]*q"2/((roh/m)*2*Pi"2),{q,1,q1}]
(* fraction2 = Maxon region / total *)
ratioMaxon[tt_]:=NIntegrate[nMaxon[tt,q]*q"2/((roh/m)*2*Pi*2),{q,10"10,q2}]
(* fraction3 = the region between phonon and maxon / total *)
ratioPhMaxon[tt ]:=NIntegrate[nMaxon[tt,q]*q"2/((roh/m)*2*Pi*2),{q,q1,10"10}]
(* fraction4 = roton region / total *)
ratioRoton[tt ]:=NIntegrate[nRoton[tt,q]*q"2/((roh/m)*2*Pi*2),{q,q2,q3}]
(* fraction5 = High momentum region / total *)
ratioHigh[tt ]:=NIntegrate[nHigh[tt,q]*q"2/((roh/m)*2*Pi*2),{q,q3,5%¥10"10}]
ratioHR[tt_]:=ratioHigh[tt]+ratioRoton][tt];
ratioHRM[tt_]:=ratioHR[tt]+ratioMaxon[tt];
ratioTotal[tt_]:=ratioPhonon][tt]+ratioPhMaxon[tt]+ratioHRM][tt]

(* Next, we clarify that the transition temperature is certainly equal to the \
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T=Tlambda=2.172 K *)
P=0.05;tt=0;ratioPhonon[tt]+ratioPhMaxon]tt]
P=0.05;tt=0;ratioMaxon(tt]
P=0.05;tt=0;ratioRoton[tt]
P=0.05;tt=0;ratioHigh[tt]
P=0.05;tt=0;ratioTotal[tt]
Tlambda
(* This result indicates that the total number of dressed bosons with non-
zero momentum is equal to the total number of helium atoms at T=
Tlambda. Accordingly,
Bose condensation disappears at T=Tlambda. That is to say,
the transition temperature is certainly equal to Tlambda *)
(* calculation of heat capacity,
make the list area *)
r=Table[{0.1,n},{n,1,15}]
(* calculation of heat capacity of roton;
momentum region from q2*hbar to g3*hbar *)
P=0.05;tt=0.01;cRoton[tt]
P=0.05;Dol[ {tt=2"-n/128;r[[n,1]]=tt;r[[n,2]]=cRoton[tt]},{n,1,15}]
(* heat capacity (unit:J/(K\[Bulletjmole)) of roton region
horizontal axis is t=1-T/Tlambda *)
gl=ListPlot[r,PlotStyle->PointSize[0.02]]
Clear[tt];cRotonFit[tt_]=Fit[r,{1,tt} tt]
(* calculation of maxon momentum region from 1 to 1.75 A*-1 *)
(* heat capacity (unit:J/(K\[Bullet]mole)) for maxon region
from 1 to 1.75 A"-1 *)
tt=0.01;cMaxon[tt]
P=0.05;Do[ {tt=2"-n/128;r[[n,1]]=tt;r[[n,2]]=cMaxon[tt]},{n,1,15}]
gl=ListPlot[r,PlotStyle->PointSize[0.02]]
Clear[tt];cMaxonFit[tt_]=Fit[r, {1,tt},tt]
(* calculation of phonon-maxon momentum region from ql to 1 A*-1 *)
(* heat capacity (unit:J/(K\[Bullet]mole)) for phonon-
maxon region from ql to 1 A*-1 *)
P=0.05;Do[ {tt=2"-n/128;r[[n,1]]=tt;r[[n,2]]=cPhMaxon][tt]},{n,1,15}]
gl=ListPlot[r,PlotStyle->PointSize[0.02]]
Clear[tt];cPhMaxonFit[tt_]=Fit[r,{1,tt},tt]
(* calculation of another momentum region from q3 to 5 A1 *)

Do[{P=0.05;tt=2"-n/128;r[[n, 1 ]]=tt;r[[n,2]]=cHigh[tt]},{n,1,15}];ListPlot[r,
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PlotStyle->PointSize[0.02]]

Clear[tt];cHighFit[tt_]=Fit[r, {1t} tt]

Clear([tt];cRotonFit[tt]

cMaxonFit[tt]

cHighFit[tt]

(* experimental data of heat capacity for svp *)

(* CsDataLow={{t=(1-T/Tlambda),Cs} \[Bullet]\[Bullet]\[Bullet]\[Bullet]}
Cs:unit is J/(mole K)  *)

CsDataLow={{6.6758747697974216"*"-6,76},{4.511970534069982" *-6,
78},{2.5782688766114177"*-6,83.5"},{6.583793738489871" *"-6,
77.1'},{3.7292817679558014"*-6,80.5"},{4.604051565377532 *"-6,
77.7°},{8.47145488029466 *-6,75.9'},{2.302025782688766" *"-6,
82.8'},{8.747697974217312"*"-6,74},{3.2228360957642724 " *"-6,
81.9'},{2.9926335174953956"*"-6,82.2" },{1.1049723756906076 *"-6,
86.8'},{0.00008291896869244934°,63.7"},{0.000015750460405156538",
71.8"},{0.003007366482504604",44.67"},{0.0028540515653775324",
44.92"},{0.0026988950276243093",45.25"},{0.002541436464088398",
45.54'},{0.002379834254143646",45.93},{0.002222375690607735",
46.27°},{0.0019129834254143646°,47.07"},{0.001757366482504604",
47.6'},{0.0016012891344383059",48.06"},{0.001443830570902394",
48.61'},{0.001285451197053407",49.23"},{0.0011325966850828728",
49.88"},{0.000979281767955801",50.65"},{0.0008084714548802946",
51.71'},{0.0006523941068139964",52.85" },{0.0004986187845303868",
54.28'},{0.0003450736648250461",56.2" },{0.00022895948434622468",
58.32'},{0.00013282688766114178",61.05"},{0.00005902394106813996",
65.28'},{0.0007923572744014733",51.84"},{0.0007163904235727441",
52.28'},{0.0006395027624309393",52.93"},{0.0005626151012891344",
53.58'},{0.0004857274401473297",54.44" },{0.0004088858195211787",
55.22'},{0.000331353591160221",56.36"},{0.0004640883977900552",
54.6"},{0.00038637200736648243",55.56" },{0.0003088397790055249",
56.72'},{0.00023158379373848986",58.3"},{0.0001541436464088398",
60.31'},{0.00007757826887661141",63.88" },{0.00022398710865561693",
58.34'},{0.00014631675874769796",60.5" },{0.00005593922651933702",
65.37"},{0.00023825966850828727,57.97" },{0.0001626611418047882",
60.04"},{0.00008517495395948435",63.29"},{0.007739410681399631",
39.17"},{0.004604051565377532,42.3"},{0.003066298342541436",
44.6'},{0.0006823204419889503",52.6"},{0.0005308471454880295",
54.02'},{0.0003670349907918969",55.92" },{0.00020635359116022098",

b
b
b
b
b
b
b
b
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58.98'},{0.002012891344383057,46.86" },{0.0016984346224677715",
47.79'},{0.0013964088397790053",48.86"},{0.0007941988950276243",
51.79'},{0.0004930939226519337",54.28" },{0.00021818600368324123",
58.46'},{0.000056169429097605894",65.51"},{0.007315837937384899",
39.48'},{0.006533149171270718",39.76"},{0.004990791896869245",
41.76'},{0.004216850828729282",42.76"},{0.0034507366482504605",
43.89'},{0.00268232044198895",45.3"},{0.0021404235727440148",
46.52"},{0.0012094843462246777",49.61"},{0.000901012891344383",
51.12°},{0.0005920810313075507",53.32"},{0.00028747697974217313",
57.03'},{0.0000998158379373849°,62.4"},{0.016445672191528544",
34.04'},{0.014742173112338858",34.94'},{0.012767034990791896",
35.89'},{0.011063535911602211°,36.97"} }
CsDataLipa={{0.0091136,38.294"},{0.0075245",39.44"},{0.0063279",
40.449"},{0.0048267",41.991"},{0.0037505",43.384"},{0.0033287",
44.034"},{0.0026579000000000004",45.247"},{0.002016",
46.744"},{0.0016499°,47.778"},{0.0011681999999999999",
49.584"},{0.0010217°,50.278},{0.00077205",51.734"},{0.00065997",
52.535'},{0.00048398",54.11"},{0.00036973",
55.491'},{0.00024743000000000003",57.548" },{0.0001862",
58.987'},{0.00014084",60.394999999999996" },{0.00010746",
61.775000000000006"},{0.000081065",63.166" },{0.000060605",
64.615},{0.00004564",66.03099999999999"},{0.000039284000000000005",
66.774"},{0.000029536",68.215"},{0.000025569",
68.905"},{0.000018917999999999997",70.389"},{0.000013931",
71.894°},{0.000011789",72.69099999999999"},{0.000010101",
73.465},{7.1855999999999994 *1-6,75.127" },{5.2386999999999995 *1-6,
76.6"},{3.7254999999999997" *1-6,78.282" },{3.0057" *"-6,
79.27199999999999"},{2.501"*"-6,80.22"},{1.9984"*"-6,
81.214°},{1.6451'%7-6,82.228"},{9.015"*"-7,85.095"},{5.8475"*"-7,
87.091'},{4.0001 *7-7,88.965"},{2.8675"*"-7,90.447" } ,{2.382"*"-7,
91.46600000000001"},{1.9685 *7-7,92.212"},{1.4472**"-7,
93.734°},{1.3269°%7-7,93.811"},{9.4706"*"-8,
95.544"},{7.165899999999999"%"-8,96.836" },{5.8321 *"-8,
97.98400000000001"},{5.004°*~-8,98.051"},{4.0329"*"-8,
99.24300000000001"},{2.9670999999999998*-8,101.04" },{2.4924 *-8,
102.72},{2.0000999999999998 *-8,103.53"},{1.572 *"-8,
104.28999999999999"},{1.2073"*-8,106.22"},{9.794199999999999"*~-9,
108.13000000000001"},{7.8027"*/-9,105.77},{6.2719"*"-9,

167



108.75999999999999" },{4.8799'*/-9,108.38000000000001" },{4.01"*"-9,
110.92},{3.1344°*-9,108.71000000000001"},{2.4785 *"-9,
111.91'},{1.9753 *-9,116.07000000000001"},{1.5505**"-9,
118.7},{1.2454999999999999"*/-9,116.91"},{1.0115"**-9,
111.97°},{7.9398'*/-10,122.09"} }
datal=ListPlot[CsDataLow,PlotStyle\[Rule] {RGBColor[1,0,0],PointSize[0.01]}]
data2=ListPlot[CsDataLipa,PlotStyle\[Rule] {RGBColor[0,0,1],PointSize[0.01]}]
P=0.05;th=
Plot[ {cHighFit[ttt],cRotonFit[ttt]+cHighFit[ttt],
cMaxonFit[ttt]+cRotonFit[ttt]+cHighFit[ttt],
cPhonon[ttt]+cMaxonFit[ttt]+cPhMaxonFit[ttt]+cRotonFit[ttt]+
cHighFit[ttt]}, {ttt,0.0000000001,0.017},
PlotStyle\[Rule] {RGBColor[1,0,1],RGBColor[0,1,0],RGBColor[0,0,1],
RGBColor[1,0,0]}]
Show[datal,data2,th,PlotRange\[Rule]{{0,0.017},{0,125} }]
CsDataLowLog=
Table[ {Log[10,CsDataLow[[n,1]]],CsDataLow[[n,2]]},{n,1,
Length[CsDataLow]}];
dataLowLog=
ListPlot[CsDataLowLog,PlotStyle\[Rule] {RGBColor[0,0,1],PointSize[0.02]}]
CsDataLipaLog=
Table[ {Log[10,CsDataLipa[[n,1]]],CsDataLipa[[n,2]]},{n,1,
Length[CsDataLipa]}];
dataLipaLog=
ListPlot[CsDataLipaLog,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.012]}]
theoryLog=
ParametricPlot[ {xx,
cPhonon[10”xx]+cRotonFit[ 10"xx]+cMaxonFit[ 1 0"xx]+cPhMaxonFit[ 10 xx ]+
cHighFit[10"xx]},{xx,-9.2,-1.6},
PlotRange\[Rule]{{-9.2,-1.6},{20,125} },
PlotStyle\[Rule]{Thickness[0.0045]}]
Show[dataLowLog,datalipalog,theoryLog,PlotRange\[Rule]{{-9.2,-1.6},{0,125} }]
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