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Abstract. Within the framework of Higher-Order Rewriting Systems pro-
posed by van Oostrom, a sufficient condition for the unique normal form
property is presented. This requires neither left-linearity nor termination of
the system.

1 Introduction

Several frameworks of rewriting systems for higher-order expressions have been pro-
posed [Klo80, Nip91, MN94, L.S93, KvO95]. Van Oostrom and van Raamdonk pro-
posed a framework of Higher-Order Rewriting Systems (HORSs) [vO94, vOvR94,
vR96], capable of unifying the existing theory of rewriting, e.g., Combinatory Re-
duction Systems (CRSs) [Klo80], (another variation of ) Higher-order Rewriting Sys-
tems (HRSs) by Nipkow [Nip91], and Term Rewriting Systems (TRSs). They also
presented a sufficient condition for the Church-Rosser property of HORSs by intro-
ducing a notion corresponding to orthogonality (i.e., non-overlap and left-linearity)
of TRSs.

The framework of HORSs is characterised by the clear separation of replacement
with rewrite rules and matching/substitution for application of the rules. The latter is
done by another rewriting system called substitution calculus, which is a parameter
that determines an HORS together with a set of rewrite rules. In [vO94], some
abstract conditions are first presented on rewrite rules and substitution calculi, and
then properties such as the Church-Rosser property are derived for HORSs satisfying
the conditions. In particular, a non-overlapping left-linear pattern HORS is shown
to satisfy the conditions (see also [vOvR94], [vR96]).

It is well-known that a non-overlapping left-linear TRS has the Church-Rosser
property. Without left-linearity and with a slight modification of the non-overlap
requirement, some results [Che81, dV90, TO94, MO95] have concluded the unigue
normal form property of TRSs. The unique normal form property is a sufficient
condition for consistency of the system [KdV89] and weaker than the Church-Rosser
property.

Let us briefly introduce the methodology in [dV90] (see also [KdV90]). The fol-

lowing theorem concerning (abstract) rewriting systems is the key observation.

Theorem 1 [dV90]. Suppose that rewriting systems —qo and —1 salisfy the follow-
mg:

1. _>0g_>17



2. —1 has the Church-Rosser property, and
3. the set of normal forms of —1 contains those of —q.

Then, —q has the unique normal form property. 1

In order to apply this to TRSs, the notion of (conditional) linearisation is in-
troduced. Linearisation is a transformation from a TRS R to a left-linear semi-
equational conditional TRS R* and non-left-linearity of R is expressed in the con-
dition part of RY. Then, 1 of Theorem 1 apparently holds, and 3 is derived by
assuming 2. Consequently, the unique normal form property of R is reduced to the
Church-Rosser property of R, Using the result that a non-overlapping left-linear
semi-equational conditional TRS has the Church-Rosser property [BK84], we obtain
a sufficient condition for the unique normal form property of TRSs.

In this paper we extend this result to HORSs. The main theorem states that “a
strongly non-overlapping pattern HORS has the unique normal form property”.

The structure of this paper is as follows. Section 2 provides basic definitions
and Section 3 explains HORSs. In Section 4, we introduce the notion of Context-
Conditional HORS (CCHORS, for short), and give a sufficient condition for the
Church-Rosser property of CCHORSs. Based on this result, we present the main
result using Context-Conditional Linearisation in Section 5.

2 Definitions

The definitions in this subsection are based on [vO94].

2.1 Rewriting Systems

A rewriting system (D,—) is a pair of the underlying domain D and the binary
relation — called the rewrite relation. The domain D is often omitted when 1t is
clear from the context. Suppose aq, as,... € D. Each element a; — ay of the rewrite
relation 1s called a rewrite step. A sequence of rewrite steps a; — --- — a, 1s called
a rewrite. The symmetric closure, the reflexive transitive closure and the reflexive
transitive symmetric closure of — are written as <, —* and <", respectively. If
there is no as such that a; — as, then ay is a normal form of the reduction system.
The set of normal forms of — is denoted by NF_,. If ay —™ a5 and as € NF_,, then
as is called a normal form of a;, with notation a; —*' as.

A rewriting system — is terminating if there is no infinite sequence such as
a1 — as,— ---. A rewriting system — has the unique normal form property if for
any normal forms a; and as, a; <" as implies a; = a5. A rewriting system — has
the Church-Rosser property if for any a; <™ as there exists ag such that a; —* as
and as —* az. A rewriting system is said to be complete if 1t is terminating and has
the Church-Rosser property.

2.2 Simply-typed preterms

In this subsection, we introduce higher-order expressions with so-called simple types.
Note that the following definition distinguishes between the syntactic category of
bound variables and that of free variables. Note also that the phrase “(#,y €) X”
introduces a set X with variables @, y ranging over X.



Definition 2. The set (8,7 €) T of Simple types is inductively defined as follows:

1. the base type o is a simple type,
2. if 6 and 7 are simple types, then 6 — 7 is a simple type.

def

A function arity : 7 — Nis defined by (1) arity(o) = 0, and (2) arity(6 — 7) =
arity(r) + 1.

Definition 3. An alphabet (a,b,c €) A is a countable set consisting of the following
symbols:

1. application -(-),
2. abstraction - .-,
3. for each simple type 7,
(a) operator (or constant) symbols F™ G7 H™ .-
(b) bound variables ™, 0™, (7, -,
(c) free variables x™,y”,z7,---. Among these symbols, we have distinguished
symbols O7, 07, - - - called holes. The hole O] is also written as O7.
The operators together with the free variables form the rewrite alphabet Ag.

The type information of the symbols are omitted if they are clear from the context.
Therefore, €7, F7, 7 and O] are often written as &, F,  and O;, respectively.

From the symbols in the alphabet, (simply-typed) raw preterms are built in the
following way. Let Z be a set of bound variables. The set (s,t,r €) RPT(A) of raw
preterms is inductively defined as follows:

1. operator F™, bound variable {7 and free variable 7 are raw preterms of type 7.

2. if s is a raw preterm of type & — 7 and ¢ is a raw preterm of type &, then s(¢)
is a raw preterm of type 7,

3. if 5 is a raw preterm of type 7, then £°.s is a raw preterm of type 6§ — 7.

Since every raw preterm has a unique simple type, we can define arity(s) as the
arity of the type of s.

def

Definition 4. Let A be an alphabet. The set (¢,v, x €) Pos = {0,1}* is called the
set of positions (or occurrences). The concatenation of ¢ and ¢ is denoted by ¢; .
We say ¢ is a prefiz of 1) when there exists ¢’ such that ¥ = ¢;¢'. We write ¢ < ¢
when ¢ is a prefix of ¥, and ¢ < ¢ when ¢ < ¥ and ¢ # . Two positions are
disjoint if they are not prefixes of each other.

Positions in a raw preterm ¢ are represented in Pos in the usual way (see also
[MN94] and [LS93]3). The set of all positions in ¢ is denoted by Pos(¢). The subterm
at position ¢ in s is denoted by s/¢. Furthermore, the symbol at position ¢ in s is
denoted by s(¢). For a symbol a, we define aPos(s) = {¢ € Pos(s)|s(¢) = a}. If

aPos(s) is a singleton set, the element is also denoted by aPos(s). We also define
def

RPos(s) = {¢ € Pos(s)|s(¢) € A}. The function Fvar (Bvar) maps a raw preterm
to the set of free (bound) variables occurring in it.

For a term s and a position ¢ € Pos(s), we say ¢ is in the scope of € in s if there
exists 1 satisfying s/¢ = £.s' and ¢ < ¢. If s(¢) = & and ¢ is not in the scope of ¢
in s, then ¢ 1s called an unbound occurrence of £, and £ 1s said to occur unboundly
i s. The set of bound variables occurring unboundly in a raw preterm s is denoted
by UBvar(s).

8 In [MN94] and [L893], {1,2}* is used instead of {0,1}* for Pos.



Definition 5. Let A be an alphabet. A preterm is a raw preterm without any un-
bound occurrences of bound variables. From now on, we restrict s, ¢ and r to range
over the set PT(.A) of preterms. If Fvar(s) = §, then s is said to be closed.

An instantiation is a set 6 = {x; :=t; |i = 1,---,n} of pairs consisting of a free
variable and a preterm. For a preterm ¢, ¢t denotes the term obtained by replacing
all ; with ¢; (i=1,...,n).

A preterm is an m-ary precontext, if the holes occurring in it are among Oy, .. .,
O,,. We use C, D and F to range over precontexts. We denote m-ary precontexts by
C[m], D[m] and E[m]. We also write a unary precontext as C[], and a binary pre-
context as C[, ]. The term C[m]{0; := s; |i = 1,---,m} is denoted by C[s1, -, s$m].
An m-ary precontext is linear if every hole Oy, --- 0O,, occurs exactly once in it.

Definition 6. Let s be a preterm and z a free variable. Then £.s' is called an z-
closure of s if x does not appear in the scope of £ in s and s’ is obtained from s
by replacing every occurrence of x with &. The set of all z-closures of s is denoted
by clos,(s). For a sequence o = 21, ... ay, of free variables, a o-closure of s is an
xi-closure of ... of an z,,-closure of s.

3 Higher-Order Rewriting Systems

As is mentioned at the beginning, the actual rewrite relation of an HORS is defined by
two rewrite relations, that is, replacement with rewrite rules and another rewriting
system called substitution calculus which performs matching and substitution. In
other words, the rewrite relation of an HORS is defined modulo the substitution
calculus. For example, let us consider an HORS which has the usual A-calculus as
its substitution calculus, and as rules 1 +1 — 2, 24+ 2 — 4, ££/6 — £.1 and
E2xE — ££+E. Then we have the following computation. Subexpressions to which
rewrite rules are applied are indicated by [].

2% (1/1+3/3) —5 2% (n.(n(1) + n(3)))([€-£/¢])
— 2x (n.(n(1) +n(3)))(£.1) =5 2 x ([1+1])
— 2% 2 —5 ([€.2x£])(2)
— ff +8)(2) —p [2+2]

In this paper, we are interested in a pattern HORS, not a general HORS. A pattern
HORS has a simply-typed A-calculus A" with restricted n-ezpansion as its substi-
tution calculus, and the left-hand side of each of its rewrite rules 1s a special term
called a pattern. Various rewriting systems, e.g., CRSs [Klo80], HRSs [Nip91] and
also TRSs, can be embedded into pattern HORSs [vO94].

Basically, the definitions in this section follow [vO94]. The theorems in this sec-
tion without any notice appear in [vO94] and/or [vOvR94].

3.1 Simply-Typed A-calculus as Substitution Calculus

Definition 7. The a-, 8- and 5-rewrite relations on PT(A) are denoted by —,, —3
and —,, respectively [Bar84]. In order to indicate that the rewrite contracts the

subterm at position ¢, we also use — (4 x) for R = o, 3,77. We define —>(¢yﬁ)d:°f%(¢yn)



— +p and —y is the union over all positions ¢ of —(4 7). The rewriting system
(PT(A), — o U —p U —y) is denoted by A7".

A rewrite step s — 4 x) t is below ¢ if ¢ = . In order to indicate that a rewrite
from s to ¢ 1s a sequence of N-rewrite steps below 1, we write s _”<k>w,z<> t.

The following property is a basic fact about typed A-calculi, see e.g., Thm. 2.35
and Thm. 2.38 in [Wol93].

Theorem 8. — 35 is complete modulo —7,. 1

Theorem 9. Suppose s € NF_;. Then s —5 t imples t € NF_ ;. Moreover, if
u€ NF_5, then s{x :=u} e NF_j5. 1

Definition 10. A term (context, resp.) is a preterm (precontext) in —gz-normal
form. The set of A-terms is denoted by T(A).

Remark. A term s’ of arity m can always be written as &1, -, &n.a(s)) - (s}),
where k is the arity of the symbol a. FEach s} (¢ = 1,--- k) is in this form again.
That is, s’ is the 21, - - -, #,,-closure of some term s = a(sy)---(sx). In this case, a
is called the head of s’ and its position is denoted by head(s’).

The descendant relation defined below traces the occurrences of Ag-symbols
along a rewrite.

Definition 11. For a rewrite step u = s —(gx) & (N =a, 3,5 or ), the descendant
relation |u|: Pos X Pos is defined as follows. Let ¢ € RPos(s). If ¢ A ¢, then ¢ |u| .
Otherwise:

1. if R = «, then ¥ |u| ¥,
2. if R= 3 and s/¢ = €.51(s2), then

def

(a) ¥ |u| ¢3¢ if o = ¢;00;41, and

(b) @ [u] ¢;4b1; 2 if 0 = 6 154y and sy (¢hy) =&,
3. if XN =nand ¥ = ¢;00;¢’, then ¢ |u| ¢v',
4. if X = 7, then |u|=]t — () |7t

The descendant relation |d| associated to a rewrite d : {1 —7%_ 1, is the concatena-
tion of descendant relations corresponding to each rewrite step in d. If ¢ € RPos(t;)

and ¢ |d| ¥, then ¢ is called a descendant of ¢, and ¢ is called an origin of .

3.2 Pattern HORS

Definition 12. Let !’ of arity m be the z,---, x,,-closure of a term /. Then !’ is
called a pattern, if it satisfies the following conditions:

1. the head of [ 1s an operator symbol,
2. let @ of arity k& be among x4, -+, zy,
(a) there is at least one occurrence of  in {,
(b) for every occurrence ¢; 0% of z in I, we have that if { _>>(.<!>¢,77) g, then g/¢ =

zi(&1) - (&), where &1, -+ & is a list of pairwise distinct bound variables.

Moreover, in (a) above, if there is precisely one occurrence of # in [, then ! is called
a linear pattern.



Intuitively, 1 of the above conditions corresponds to “the left-hand side of each rule is
not a variable” on TRSs, and 2 to “every variable in the right-hand side of each rule
appears in the left-hand side”. For the precise discussion about the correspondence
between a pattern HORS and a TRS, see Lemma 15.

Definition 13. A pattern Higher-Order Rewriting System (pattern HORS) is a triple
(A, /\ﬁ_’,R> consisting of an alphabet A, a substitution calculus A", and a set R of
pattern rewrite rules. A pattern rewrite rule is a pair of terms of the form [ — r
satisfying the following conditions: (1) both / and r are closed, (2) { and r are of the
same type and (3) [ is a pattern.

We use N and i to range over rewrite rules. The first and second components
of a rule ® are denoted by 1hs(X) and rhs(R) and are its left- and right-hand side,
respectively.

A pattern rewrite rule with a linear left-hand side is called a left-linear pattern
rewrite rule, and a pattern HORS with only left-linear pattern rewrite rules is called
a left-linear pattern HORS.

Let H = (A, /\ﬁ_’,R> be a pattern HORS. We associate two rewriting systems to
a pattern HORS. They are both defined on the set of preterms.

1. For a rule 8 = | — r € R and precontext C[], we define the replacement of
N in C[] by C[l] —¢m C[r]. This is generalised to the replacement of N in an

arbitrary precontext, by defining —y= UC[] —¢x], and to replacement of an
arbitrary rule, by defining —r = UMR —R.

2. The rewrite relation of H is obtained by —>Hd:°fHZﬁ; —R; -

Next, we present some basic definitions and properties related to pattern HORSs.
In the following, we regard terms (i.e., —gz-normal forms) as representatives of the
H;ﬁ—equivalence classes, and restrict, in principle, the rewrite relation —4 to the
relation on the terms. Then, the following property is useful for simplifying the
arguments.

Theorem 14. When we restrict the domain of the rewrite relation —3 to T(A), we
may assume the following without loss of generality:

1. the precontext C[] in the definition of —x is a linear context,
2. we may use —j.; —R; —p, instead of —fni—g; G, i the definition of —x. g

In the second item, %;ﬁ and —>’[§ﬁ are called the expansion and reduction of the

rewrite step, respectively.
The following property is called ‘head-definedness’ in [vO94].

Theorem 15. Let | — r be any pattern rewrite rule.

1. Let C[] be a linear context with hole-position . Then ;¢ has a unique descen-
dant x along any reduction from C[l] to its normal form C[l]] 5.

2. For a posilion x in a term s, there is alt most one linear context C[] with hole-
position 1, such that ¢;head(l) is an origin of x along the expansion from s to
c- I

The head-definedness of a pattern HORS guarantees that “a rewrite step is deter-
mined by the position and the rewrite rule” which trivially holds in the case of TRSs.
This makes it possible to give the following definition.



Definition 16. In the second item of the lemma above, if C[] exists, the pair (x,R)
is called a redez in s and any such expansion is called an extraction of (x,R) from s
(into C[]). If the expansion of a rewrite step w : s — t is an extraction of (¢, N),
we say w rewrites the redex (¢, N), with notation s — 4 ) t.

The descendant relation defined for A" is extended to pattern HORSs in the
following way.

Definition 17. Let ‘H be a pattern HORS and N : [ — r a rewrite rule of H.
For a replacement u : C[l] —¢w) C[r], the descendant relation |u|: RPos(C[l]) x
RPos(C[r]) is defined as follows:

¢ u| ¢ iff ¢ =¥ # OPos(C]).

For a rewrite step s — t in H, the descendant relation |s —4 t| is the concate-
nation of the descendant relations corresponding to its expansion, replacement and
reduction. The extension of the descendant relation to a rewrite ¢; —7, ¢, parallels
the case of A7".

Definition 18. Let H be a pattern HORS and u : s —~ ¢ a rewrite in H or A;".
Suppose that (¢,R) is a redex in s and that ¢ |u| ¢'. If (¢',R) is a redex in ¢, it is
called a residual of (¢, R).

In the following, we outline the proof that “a non-overlapping left-linear pattern
HORS has the Church-Rosser property” in [vO94] and [vOvR94]. The Church-Rosser
property is derived from the Finite Developments theorem, which is an extension of
the first-order case. In the case of a pattern HORS, the technical notion ‘simultaneity’
is introduced, and it mediates between the sufficient condition (i.e., non-overlap and
left-linearity) and the Finite Developments theorem.

Definition 19. Let H be a pattern HORS and U a set of redexes in s;. A rewrite
WSy —p - —n Sy 18 called a development of U if for each w; : &; —3 ti41, there
exists u; € U and w; rewrites a residual of u;. If there are no residuals of I in s, w
is called complete.

def

Definition 20. Let H be a pattern HORS. Let & = {uy, -, um } be a set of (pair-
wise distinct) redexes in a term s, where wu; = (xiyli — ) (i =1,---,m). An
expansion e : s <% _ C[ly, -, ] is called an extraction of U from s (into Clm]), if
C[m] is a linear context and for every u; € U, we have that O;Pos(C[m]);head(l;)
is an origin of x;. If such an extraction exists for the set I/, then U 1s called a simul-
taneous set of redexes. A pattern HORS is simultancous (pairwise simultaneous) if
every set (pair) of redexes is simultaneous.

Definition 21. Let u = (¢;0™,8) and v = (¢/;0”,i) be distinct redexes in a term
s, where m (n) is the arity of the head symbol of 1hs(R) (1hs(i )).

1. The redexes are said to be disjoint if ¢ and ) are disjoint.
2. Otherwise we may assume without loss of generality that ¢ = ¢. Let 1hs(R) be

the zy1, - -, z-closure of [. Two cases are distinguished:
(a) the redex w is said to nest v, if ¢;y;w = ¢, where x;0° is the position of
some variable x of arity ¢ in [, and z is among z1,-- -, g,

(b) otherwise u is said to overlap with v.



A rule R overlaps with another rule i , if some R-redex overlaps with some i -redex.
A pattern HORS has overlap if some rule overlaps with another one, it is non-
overlapping otherwise.

It is decidable whether an HORS has overlap or not.
The following theorem 22, 23 and 24 correspond to Lemma 3.9, Lemma 3.8 and
Theorem 3.10 in [vOvR94], respectively.

Theorem 22. Let 'H be a left-linear pattern HORS. Then H is non-overlapping iff
H is pairwise simultaneous iff H is simultaneous. 1

Theorem 23 (Finite Developments). For any lefi-linear patiern HORS, every
complete development of a set of simultaneous redexes ends in the same term. 1

From these theorems, the following theorem is derived immediately.

Theorem 24. A non-overlapping left-linear pattern HORS has the Church-Rosser
property. ]

4 Context-Conditional HORS

In this section, we introduce Context-Conditional HORSs (CCHORSs). We then
give a sufficient condition for the Church-Rosser property of CCHORSs.

4.1 Context Condition

Definition 25. A Context-Conditional pattern rewrite rule (CC rule, for short) is
NE [~ e=Q satisfying the following:

l.l—risa pattern rewrite rule, and
2. @ is a sequence Ny, ..., Ny, of sets of natural numbers satisfying:

(a) Uicijam Ni =11,...,arity({)}, and
(b) Ny N; =@ fori,j=1,...,mand i # j.

We call @ the condition part of &, and [ — 7 the unconditional part of N. A CC
rule is left-linear if its unconditional part is left-linear. A Contezt-Conditional HORS

(CCHORS) is a triple (A, A7", R) consisting of an alphabet A, a substitution calculus
Ay, and a set R of CC rules.

def

In the rest of this section, H = <.,4,/\ﬁ_’,7%> denotes a CCHORS. The rewriting
system associated to H is defined as follows.

Definition 26. Let X : I — # < Ny, -+, N,, € R. The replacement —i with N of
rank i (i = 0,1,---) is inductively defined as follows:

—Ro— V),

—git1 = {(C[l], C[#]) | the precontext C[] satisfies the %~ context condition of N},
where _%ld:d UiAe R —>7_z,d:°fH’[§ﬁ; —Ris g, and we say C'[] satisfies the <—>;:tl—

context condition of R if the following holds:



for any ¢ € OPos(C[]),
1. there exists @’ such that ¢ = ;0™ and C[i]/d/ = i(sl)(sm)

where m is the arity of i,

2. forany j = 1,---,m, 5 <%, 5p if k k' € N;, where i(§1)(§m)
is the preterm obtained by replacing all bound variables &, -+, &
occurring unboundly in the raw preterm i(sl) -+ (sy) with fresh free
variables xq, - -, x.

bl

VYe define the replacement in R by —>7éd:°f U; —»: and then the rewrite relation of

It is apparent from the definition that —;0C—4.C - C—4. Thus C[] satisfies

the H%l—context condition of R for some 4 iff C] satisfies the <—>;}t—context condition
of R. Hereafter, we call the <—>;‘%—context condition simply the contexrt condition.

Let R be the set of unconditional parts of R, and H the pattern HORS with the
set R of rewrite rules. Then, —5 and — are the subsets of —z and — g restricted
to satisfying the context condition, respectively. In particular, the substitution cal-
culus A7” does not change at all. Therefore, the above definitions related only to A3’
can be extended to CCHORSs with no modification.

In order to extend other definitions and statements about a pattern HORS we
must show that some ‘operations’ (division, substitution and rewrite of the context)
preserve the context condition.

The following lemma directly follows from the definition of the context condition.

Lemma 27 (division). Let C[] be a context with m occurrences of O. Let D[m)] be
the linear context such that D[O,--- O] = C[O]. Then C[] satisfies the context con-
dition of X : |l — <= Q e H iff D[I,---,1,0,1,--- 1] satisfies the context condition
N —
i-1
0f&f0ri:1,~~~,m. 1

Lemma 28 (substitution). For any preterms s, t, u, and a free variable x, s —4
implies s{x = u} —4 t{x = u}. Moreover, if a precontext C[] satisfies the context
condition of X, C[[{x := u} also satisfies it.

Proof Using Theorem 9, it is proved by induction on the rank. 1

Lemma 29 (rewrite of the context). Suppose that C[] satisfies the context con-

dition of& ER.

1. If C[] —5 C'[], then C'[] satisfies the context condition of R.
2. If C[] —pn C'[], then C'[] satisfies the context condition of R. 1

Then, we can prove the following lemma, which corresponds to Theorem 14.

Lemma 30. When we restrict the domain of the rewrite relation — 5 to T(A), we
may assume the following without loss of generality:

1. the precontext C[] in the definition of —4. is a linear context,
2. an the definttion of —y:, we may use —5; —p.; — 5 instead of =55 —p i =5



Proof The proof is done similarly to that of Propositions 3.1.17 and 3.1.22 in
[vO94] using Lemma 27 and Lemma 29. I

Definition 31. The definition of the redex of a CCHORS is obtained by replacing
if C[] exists
in Definition 16 with

if O[] exists and it satisfies the context condition of R.

The descendant relation and the residualof a CCHORS can be defined completely
in the same way as a pattern HORS.

Definition 32. The definition of the simultaneity of redexes of a CCHORS is ob-
tained by modifying Definition 20 as follows:

1. replace H and R; : I; — r; with Hoand 8; : [, — 7 < Q;, respectively,
2. add the following:
3. each occurrence of holes in C[m] salisfies the context condition, that
is, C[l1,--, i1, 0,111, -, ] satisfies the context condition of ¥; for
i=1,---,m
to the condition for simultaneity of redexes.
Definition 33. Let R and i be CC rules with unconditional parts ¥ and i, respec-
tively. Let ¢ = (¢, %) and © = (1,1 ) be distinct redexes in a term s. We say u and v
are disjoint (u nests v, u overlaps v, resp.) if = (¢,R) and v = (1,1 ) are disjoint
(@ nests v, u overlaps v).
A CC rule N overlaps with another CC rule i, if some N-redex overlaps with
some i -redex. A CCHORS has overlap if some rule overlaps with another one; it is
non-overlapping otherwise.

4.2 Church-Rosser Property of CCHORS

A sufficient condition for the Church-Rosser property of CCHORSs is derived in a
similar way to pattern HORSs.

The following two statements concerning pattern HORSs are used to derive prop-
erties of non-overlapping left-linear CCHORSs.

Theorem 34. Let U = {(¢;,N;)]|i=1,---,n} be a simultaneous redex in a term s
of a left-linear pattern HORS H. For any extractions wy : s %;ﬁ Cilly, -+, 1] and
wy s 5, Cally, - 1], we have Cy[n] = Caln].

Proof  The result is immediate from Lemma 3.1.40 in [vO94]. I

Lemma 35. Let X : ! — v/ be a pattern rewrite rule. Suppose thatl' isanxy, -, Tp-
closure of | = F(uy) - (ug). Suppose also that u : s —%n C[l'] is an extraction of a
redex (¢; 0% R) in a term 5. Then, for any z; of arity m; and x s.t. x;0™ € z;Pos(l)
(i=1,---,m), the following holds:

1os —(yy ) C,

2. s/d;x and C[]/¢; 0™~ 1;0™: are the same modulo renaming of bound variables,



3. if ¢;x;w € RPos(s), then ¢;x;w |u| ¢;0m~%1;0™;w,
4. BPos(C]) = ¢;0™. .

Lemma 36. A non-overlapping left-linear CCHORS s simultaneous.

Proof  First, we will show that a left-linear CCHORS H is pairwise simultaneous
if it is non-overlapping. Let @ = (¢;0% R) and o = (1;0/,i) be pairwise distinct

redexes in a term s, where k (j, resp.) is the arity of the head symbol of N (i).
Let X (i) be the unconditional part of N (i"). From Theorem 22, there exists

an extraction w : s <, D[1hs(R),1hs(i)] of redexes u = (¢;0% X)) and v =
(¥;07,i). Therefore, it is enough to show that D[0, 1hs(i )] and D[1hs(R), O] satisfy
the context conditions of R and i, respectively.

1. If @ and v are disjoint, the result is apparent since the extractions of them
take place below the disjoint positions ¢ and 1, respectively; so they do not influence
each other.

2. Otherwise, we can assume @ nests o without loss of generality. Let I/ & lhs(&)
of arity m be an zq, - - -, x-closure of I. Let m; be the arity of z; (i = 1,--- /). Also

let u = s —%n C[I'] be an extraction of @ in s. From the definition, there exist 2; and

X € x;Pos(l) such that ¢; x;w = 9. Thus, from 2 and 3 of Lemma 35, we have that
Y |ul ¢;0M™7%1;0™;w and that s/¢;x and C[]/¢;07 7% 1;0™ are equal modulo
renaming of bound variables. So the redex o/ = (¢;0™~% 1;0™;w,i) in C[] is the
descendant of ¥ and we can construct an extraction of ¢ from C[] by simulating one
of v. Then, the resulting context is D[, ] from Theorem 34. Therefore, D[1hs(R), O]
satisfies the contextdcfondition of i

Suppose C[]/¢ = O(s1) - (sm). Then, the extraction C[] «3, D[O,1hs(i )]
of o takes place ‘inside’ s;. Since C[] satisfies the context condition of R, so does
D[O,1hs(i )].

In a similar way to the pattern HORS’s case, we can show that pairwise simul-
taneity implies simultaneity by induction on the cardinality of the set of redexes
using Lemma 28. ]

Lemma 37 (Finite Developments of CCHORS). Euvery complete development
of a set of simultaneous redexes of a left-linear CCHORS 'H ends in the same term.

Proof  The proof is done in the same way as the pattern HORS’s case, but we
must supplement the argument about the context condition. In [vOvR94], the Finite
Developments theorem is proved in the following way:

Let 4 = V U {u} be a set of redexes. Let L (R, resp.) be the set of the left-
(right-) hand sides of the rules of V', and let [ (v, resp.) be the left- (right-) hand
side of the rule of u. Let us consider any complete U/-development.

1. Suppose u is chosen in the first rewrite step of the development. Then, the
rewrite step s <% C[l] —cp—,) Clr] —5; s’ can be simulated by s 7% D[L, ]
—piL,i—r] DL, 7] —% s, which also extracts ¥ simultaneously.

2. Suppose that D[, ] —>’[§'ﬁ E[]. Let D'[] be the linear context such that
D'a,...,d] = £[0O]. Then, s’ <%, D'[L'] is the extraction of the residuals of V. Let
R’ be the right-hand sides corresponding to L’. We define an order < on the set of
pairs of terms and natural numbers as the lexicographic order of <% _ and <. When
(t,4) = (t',¢) and (t,¢) # (¥, '), we write (¢,4) < (¢',i). If holes appear n and n’



times in D and D', respectively, then we have (D[R, r],n) = (D'[R'],n’). Since = is
a well-founded order, termination of the development follows.

3. By induction on <, we have that any complete ¢/-development can be simulated
by s —%4; DIL, 1] =pr—R,1—r] DIR, 7] —>’[§'ﬁ t, so any resulting term is equal to ¢.

In the case of CCHORSs, we must ascertain that s’ %, D'[L'] in the second
item is an extraction of a set of redexes. To do that, it is enough to show that each
occurrence of holes in D'[] satisfies the context condition (see Definition 32).

From the definition, each occurrence of holes in D[, ] satisfies the context con-
dition. Successively, in D[, 7] from 1 of Lemma 29, in E[] from 2 of Lemma 29 and
in D[] from Lemma 27, each occurrence of holes satisfies the context condition. |

Remark. As is pointed out in [vO94], to be rigorous, we must show that the result
does not depend on the choice of the first rewrite step in 1 in the above proof. In
fact, from Lemma 29, D[L,{] can reach D[R, r] by the replacements in any order.

Theorem 38. A non-overlapping left-linear CCHORS has the Church-Rosser prop-
erty.

Proof By Lemma 36 and Lemma 37. 1

5 Unique Normal Form Property of HORS

In this section we present a new sufficient condition for the unique normal form prop-
erty of a pattern HORS based on the result in the previous section. This condition
requires neither left-linearity nor termination of the pattern HORS.

Definition 39. Suppose that a free variable z appears n times in a term [ (n > 1).
Let y1, -+, yn be a list of pairwise distinct free variables satisfying {yi, -, yn} N
(Fvar(l) — {z}) = 0 and = € {y1, - ,yn}. Then, the z-linearisation of | with
Y1, -, Yn 1s obtained by replacing each occurrence of z with y1,-- -, y, from left
to right. For a sequence ¢ = #1,---,x,, of free variables and sequences Y7, ..., Y,
of lists of free variables satisfying #; € Y; (i = 1,- -+ ,m), the o-linearisation of | with
Y1, -, Y,, i1s the x{-linearisation with Y7 of ... of x,, with Y,, of [.

The following lemma 1s used to define the context-conditional linearisation of a
pattern HORS. The proof is routine.

Lemma40. Let I’ — v’ be a patiern rewrite rule. Let ' of arity m be an x1, ..., &y, -
closure of a term . Then, there exists a unique term v such that v’ is an x1, ..., Ty,-
closure of r. 1

def

Definition 41. Let ® & [/ — #/ be a pattern rewrite rule. If I, #' and Q satisfy
the following conditions, then ® = I — # «< @Q is called a Context-Conditionally
Linearised rule (CCL rule, for short) of R.

L. Let I’ of arity m be an 1, - - -, xp,-closure of {. Then, I is a g-closure of i, where
[ is the xq, - -, z;,-linearisation of | with some sequences Y7, --,Y,, of lists of
free variables, and ¢ is the concatenation of Y, -+, Y,,.

2. Let r be the one in Lemma 40. Then, #' is a o-closure of r.
3. Re-define ¢ = y1, -+ -, ysn. Then, Q is the sequence Ny, -+, N, defined by:



Note that #' is a closed term since x; appears in Y; for i = 1,--- m.

Let H = (A, A7, R) be a pattern HORS. Then, HE <.,4,/\ﬁ_’,7%> is called a
Context-Conditional Linearisation (CCL) of H if for any R € R, there exists a CCL
rule R € R of X.

Any CCL is apparently left-linear from the definition.

Frample 1. For a pattern rewrite rule X : £.D(£)(&) — £.E(§), the following rules are
CCL rules of &:

££'D(E)(E) — ELEE) = {1,2},
£.8'D(E)(E) — ELEE) < {1, 2}

In the rest of this paper, H = <.,4,/\ﬁ_’,7é> denotes a CCL of a pattern HORS
H = (A7 R).

Lemma42. —yC—.

Proof UR:l'—# < Q€HisaCCLrule of X:1' — 1/ €M, then I' —%_;—
;—>’[§77 r' from the definition. Thus, the result is clear. 1

Lemma43. Suppose that H has the Church-Rosser property. Then, NFy C NIy,

Proof  Assume NIy € N Fy,. Let size(t) be the number of occurrences of symbols
in term ¢. Let s be a term minimal wrt. size(s) satisfying s € NIy — NI,

Let ¢ = ((/);Ok,&) be an ‘H-redex in s, where X &' — # < Ny,---, N,, € R
is a CCL rule of & and k is the arity of the head symbol of r. Also, let m be
the arity of I’. Suppose that s —%n C[l"] is the extraction of @. From 1 of Lemma

35,5 —(vsp) C[l']. Let s' and C’[] be the terms obtained from s/¢ and C[]/¢,

respectively, by replacing all unbound occurrences of bound variables with fresh free
variables. Then, we have s' <, 5 C'[l'], and C'[] satisfies the context condition of

N. From minimality of s, we have ¢ = ¢.
def

Therefore, we can suppose that C[] = O(s1)---(sp) for some si,..., s from
4 of Lemma 35. Note that there 1s no unbound occurrence of a bound variable in
$1,-+,8m, and that O does not occur in s1,---, sz since C[] is a linear context.

Since C[] satisfies the context condition of R,
for any N; (j=1,---,m),if N;j ={i,---,i+ ¢}, then s; H;-t H;-t Sitil-
Moreover, s; € NF_.  for i =1,---,m by 2 of Lemma 35 and minimality of s. Thus,
from the Church-Rosser property of H,
for any N; (j=1,---,m),if N; ={i,---, i+ 4}, then s; = - = s;44.

Then, (0%, R) is a redex of H in s from the definition of CCL rules, which contradicts
the assumption. 1

Definition 44. A pattern HORS H is strongly non-overlapping if there exists a
non-overlapping CCL of H.



Theorem 45. A strongly non-overlapping pattern HORS has the unique normal
form property.

Proof From Theorem 1 using Lemma 42, Lemma 43 and Theorem 38. ]

FEzample 2. The untyped A-calculus can be translated into a pattern HORS in the
following way [vO94]. First, new constant symbols abs : (0 — 0) — o and app : 0 —
(0 — o) are introduced in order to embed untyped A-terms into T(.A). Then, the
G-rule is translated into the following pattern rule:

beta : &.n.app(abs(¢.£(¢)))(n) — £.n.(n)

Moreover, let us consider the following pattern rule:

D : {.app(app(D)(§))(€) — €€

which is a translation of the rewrite rule Dzx — F appearing [Klo80]. With either
of CC rules of D in example 1, we can easily verify that a pattern HORS H with
R = {beta,D} is strongly non-overlapping. Therefore, H has the unique normal form

property.

6 Conclusion

We presented a sufficient condition for the unique normal form property of pattern
HORSs. The condition requires neither left-linearity nor termination of the HORS.
In order to investigate it, we introduced the Context-Conditional HORS and the
Context-Conditional Linearisation of HORSs, and gave a sufficient condition for the
Church-Rosser property of CCHORSs.

There were some results about the unique normal form property of individual
non-left-linear and non-terminating higher-order rewriting systems, e.g. [KdV89].
We presented a decidable class of HORSs having the unique normal form property.
Concerning higher-order conditional rewriting, [KvO95] derived the Church-Rosser
property from ‘orthogonality’, which assumed some closure property of the condi-
tions. Also, [LS93] extended the results in [Nip91] to the conditional version.

As a future work, we would like to relax the condition of strong non-overlap. We
expect that the Church-Rosser property of CCHORSs will hold even if we weaken
the non-overlap requirement to admit trivial overlap [vO94]. This will enable us to
treat {beta,eta,D}, where the pattern rewrite rule eta is a translation of untyped
n-rule (see example 2). But this does not imply that any HORS only with trivial
overlap has the unique normal form property. Consider a pattern HORS with the
following rules:

€.1-app(app(app(C)(T))(§)) (1) — £n€
§.1-app(app(app(C)(F))(€)) (1) — £n.1)
¢.€-app(app(app(€)(C))(E))(E) — (€€
which is called Parallel Conditional [KdV90]. Though this system has only trivial
overlap, any CCL of this system has non-trivial overlap.

It would be solved either by a model-theoretic approach [dV90, KdV90], or by
extending the notion of compatibility of TRSs [Che81, MO95]. The former was also



used to conclude the unique normal form property of untyped A-calculus with Sur-
jective Pairing in [KdV89], whereas the latter would give a decidable condition.
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