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Abstract. We define a perpetual one-step reduction strategy which enables
one to construct minimal (w.r.t. Lévy’s ordering <l on reductions) infinite re-
ductions in Conditional Orthogonal Expression Reduction Systems. We use
this strategy to derive two characterizations of perpetual redexes, i.e., redexes
whose contractions retain the existence of infinite reductions. These charac-
terizations generalize existing related criteria for perpetuality of redexes. We
give a number of applications of our results, demonstrating their usefulness.
In particular, we prove equivalence of weak and strong normalization (the
uniform normalization property) for various restricted A-calculi, which can-
not be derived from previously known perpetuality criteria.

1 Introduction

The objective of this paper is to study sufficient conditions for untform normaliza-
tion, UN, of a term in an orthogonal (first or higher-order) rewrite system, and for
the UN property of the rewrite system itself. Here a term i1s UN if either it does
not have a normal form, or if any reduction eventually terminates in a normal form;
the rewrite system is UN if every term is UN. Interest in criteria for UN arises,
for example, in the proofs of strong normalization of typed A-calculi, as it relates
to the work on reducing strong normalization proofs to proving weak normaliza-
tion [Ned73, Klo80, dVr87, dGr93, Kha94c]. Further, the question: ‘Which classes
of terms have the uniform normalization property?’ is posed in [BI94] in connection
with finding UN solutions to fixed point equations, and with representability of par-
tial recursive functions by UN-terms only, in the A-calculus.! The UN property is
clearly useful as then all strategies are normalizing, and in particular, there is more
room for optimality (cf. [GK96]).

It is easy to see that a rewriting system is UN iff all of its redexes are perpet-
ual. These are redexes that reduce terms having an infinite reduction, which we
call co-terms, to oo-terms. Therefore, studying the UN property reduces to study-
ing perpetuality of redexes. The latter has already been studied quite extensively in
the literature. The classical results in this direction are Church’s Theorem [CR36],
stating that the Ar-calculus is uniformly normalizing, and the Conservation Theo-
rem of Barendregt et al [BBKV76, Bar84], stating that Sj-redexes are perpetual in
the A-calculus. Bergstra and Klop [BK82] give a sufficient and necessary criterion
for perpetuality of Bx-redexes in every context. Klop [Klo80] generalized Church’s
Theorem to all non-erasing orthogonal Combinatory Reduction Systems (CRSs) by

! The UN property is called strong normalization in [B194].



showing that the latter are UN, and Khasidashvili [Kha94c] generalized the Conser-
vation Theorem to all orthogonal Expression Reduction Systems (ERSs) [Kha92],
by proving that all non-erasing redexes are perpetual in orthogonal ERSs.

For orthogonal Term Rewriting Systems (OTRSs), a very powerful perpetuality
criterion was obtained by Klop [Klo92] in terms of critical redexes. These are re-
dexes that are not perpetual, i.e., reduce co-terms to strongly normalizable terms
(SN-terms). Klop showed that any critical redex u must erase an argument pos-
sessing an infinite reduction. The later is not true for higher-order rewrite systems,
because substitutions (from the outside) into the arguments of u may occur during
rewrite steps, which may turn an SN argument of u into an oco-term. However, we
show that a critical redex u in a term ¢ must necessarily erase a potentially infinite
argument, i.e., an argument that would become an oo-(sub)term after a number of
(passive) steps in t. From this, we derive a criterion, called safety, of perpetuality of
redexes in every context, similar to the perpetuality criterion of Sx-redexes [BK82].
These are the main results of this paper, and we will demonstrate their usefulness
in applications.

We obtain our results in the framework of Orthogonal (Context-sensitive) Condi-
tional Erpression reduction Systems (OCERSs) [KO95]. CERS is a format for higher-
order rewriting, or to be precise, second-order rewriting, which extends ERSs [Kha92]
by allowing restrictions both on arguments of redexes and on the contexts in which
the redexes can be contracted. Various interesting typed A-calculi, including the sim-
ply typed A-calculus and the system F [Bar92], can directly be encoded as OCERSs
(see also [KOR93]); A—calculi with specific reduction strategies (such as the call-by-
value A-calculus [Plo75]) can also be naturally encoded as OCERSs. ERSs are very
close to the more familiar format of CRSs of Klop [Klo80], and we claim that all our
results are valid for orthogonal CRSs as well (see [Raa96] for a detailed comparison of
various forms of higher-order rewriting). However, using an example due to van Qost-
rom [00s97], we will demonstrate that our results cannot be extended to higher-order
rewriting systems where function variables can be bound [Wol93, Nip93, OR94], as
they can exhibit pretty strange behaviour not characteristic of the A-calculi.

In order to prove our perpetuality criteria, we first generalize the constrict-
ing (or zoom-in) perpetual strategy, independently discovered by Plaisted [Pla93],
Sgrensen [Sgr95], Gramlich [Gra96], and Mellies [Mel96] (with small differences),
from term rewriting and the A-calculus to OCERSs. These strategies specify a con-
struction of infinite reductions (whenever possible) such that all steps are performed
in some smallest co-subterm. Our strategy is slightly more general than the above,
and can be restricted so that the computation becomes constricting, and this allows
for simple and concise proofs of our perpetuality criteria. We also show that con-
stricting perpetual reductions are minimal w.r.t. Lévy’s ordering on reductions in
orthogonal rewriting systems [Lév80, HLI1].

Despite the fact that our criteria are simple and intuitive, they appear to be
strong tools in proving strong normalization from weak normalization in orthogo-
nal (typed or type-free) rewrite systems. We will show that previously known re-
lated criteria [CR36, BBKV76, BK82, Klo80, Klo92, Kha94c] can be obtained as
special cases. We will also derive the UN property for a number of variations of
B-reductions [Plo75, dGr93, BI94, HL93], which cannot be derived from previously
known perpetuality criteria, as immediate consequences of our criteria.



2 Conditional Expression Reduction Systems

In this section, we recall the basic theory of orthogonal Conditional Expression Re-
duction Systems, OCERSs, as developed in [KO95], and some results concerning
similarity of redexes in OERSs from [Kha94c]. CERSs extend Ezpression Reduction
Systems [Kha92], a formalism of higher-order (rather, second-order) rewriting close
to Combinatory Reduction Systems [Klo80]. We refer to [Raa96] for an extensive
survey of the relationship between various formats of higher-order rewriting, such
as [Klo80, Kha92, Wol93, Nip93, OR94]. Restricted rewriting systems with substi-
tutions were first studied in [Pkh77] and [Acz78]. We refer to [Kl092] for a survey of
results concerning conditional TRSs.

Terms in CERSs are built from the alphabet like in the first order case. The
symbols having binding power (like A in A-calculus or [ in integrals) require some
binding variables and terms as arguments, as specified by their arity. Scope indicators
are used to specify which variables have binding power in which arguments. For
example, a S-redex in the A-calculus appears as Ap(Az ¢,s), where Ap is a function
symbol of arity 2, and A is an operator sign of arity (1, 1) and scope indicator (1).

Integrals such as f; f(z)dz can be represented as [x(s,t, f(x)) using an operator
sign [ of arity (1,3) and scope indicator (3).

Metaterms will be used to write rewrite rules. They are constructed from metavari-
ables and meta-expressions for substitutions, called metasubstitutions. Instantiation
of metavariables in metaterms yields terms. Metavariables play the role of variables
in the TRS rules, and function variables in HRS and HORS rules [Nip93, OR94].
Differently from HRSs and HORSs, metavariables cannot be bound.

Definition 2.1 Let X be an alphabet comprising variables, denoted by z, y, z and
symbols (signs). A symbol ¢ can be either a function symbol (simple operator) having
an arity n € N, or an operator sign (quantifier sign) having arity (m,n) € N x N.
In the latter case o needs to be supplied with m binding variables z1,. .. ,x,, to form
the quantifier (compound operator) oxy ... &y,. If 0 is an operator sign it also has
a scope indicator specifying, for each variable, in which of the n arguments it has
binding power. Terms t, s, e, o are constructed from variables, function symbols and
quantifiers in the usual first-order way, respecting (the second component of the)
arities. A predicate AT on terms specifies which terms are admissible.

Metaterms are constructed like terms, but also allowing as basic constructions
metavariables A, B, ...and metasubstitutions (t1/x1, ..., tn/®n)to, where each ¢; is
an arbitrary metaterm and the z; have a binding effect in ¢;. An assignment 6 maps
each metavariable to some term. The application of 8 to a metaterm ¢ is written t0
and 1s obtained from ¢ by replacing metavariables with their values under #, and
by replacing metasubstitutions (¢1/21,...,t, /%, )to, in right to left order, with the
result of substitution of terms t4,...,f, for free occurrences of z1,...,x, in fg.

The specification of a CERS consists of an alphabet (generating a set of terms
possibly restricted by the predicate AT') as specified above and a set of rules (gen-
erating the rewrite relation possibly restricted by the predicates A4 and AC) as
specified below. The predicate AT can be used to express sorting and typing con-
straints, since sets of admissible terms allowed for arguments of an operator can be
seen as terms of certain sorts or types.



The ERS syntax is very close to the syntax of the A-calculus. For example, the
B-rule is written as Ap(AzA, B) — (B/x)A, where A and B can be instantiated
by any terms. The 5-rule is written as Az Ap(A, #) — A, where it is required that
xz & Af for an assignment @, otherwise an  occurring in Af and therefore bound in
Az (A0, x) would become free. A rule like f(A) — Jz(A) is also allowed, but in that
case the assignment @ with ¥ € A# is not. Such a collision between free and bound
variables cannot arise for restricted (by the condition (*) below, see Definition 2.2)
assignments.

Definition 2.2 A rewrite rule is a (named) pair of metaterms r : ¢ — s, such
that ¢ and s do not contain free variables. We close the rules under assignments:
rf 10 — sf if r : 1 — s and 6 is an assignment. To avoid the capturing of free
variables, this is restricted to assignments # such that

() each free variable occurring in a term A6 assigned to a metavariable A is
either bound in the O-instance of each occurrence of A in the rule or in none of
them.

The term ¢6 is then called a redez and sf its contractum. We close under contexts
C[rf] : C[td] — Clst], if rf : 10 — sf and C[] is a context (a term with one hole).

The rewrite relation thus obtained is the usual (unconditional, context-free) ERS-
rewrite relation. If restrictions are put on assignments, via an admissibility predicate
AA on rules and assignments, the rewrite relation will be called conditional We
call redexes that are instances of the same rule (i.e., with the same admissibility
predicate) weakly similar. If restrictions are put on contexts, via a predicate AC on
rules, assignments and contexts, the rewrite relation will be called context-sensitive.

A CERS R is a pair consisting of an alphabet and a set of rewrite rules, both
possibly restricted.

Note that we allow metavariable-rules like n~! : A — Az Ap(Az) and metava-
riable-introduction-rules like f(A) — g(A, B), which are usually excluded a priori.
This is only useful when the system is conditional.

Let r:t — s be a rule in a CERS R and let # be admissible for r. Subterms of a
redex v = t that correspond to the metavariables in ¢ are the arguments of v, and
the rest is the pattern of v (hence the binding variables of the quantifiers occurring
in the pattern belong to the pattern too). Subterms of v rooted in the pattern are
called the pattern-subterms of v.

Notation We use a,b, ¢, d for constants, ¢, s, e, 0 for terms and metaterms, u, v, w
for redexes, and N, P, @ for reductions. We write s C ¢ if s is a subterm of ¢. A
one-step reduction in which a redex u C t is contracted is written as t — s or t — s
or just u. We write P :¢t — s ort F. §if P denotes a reduction (sequence) from ¢
to s, write P :t — if P may be infinite, and write P : ¢ — oo if P is infinite (i.e,
of the length w). P+ @ denotes the concatenation of P and Q. F'V(t) denotes the
set of free (i.e., unbound) variables of ¢.

Below, when we speak about terms and redexes, we will always mean admissible
terms and admissible redexes, respectively.



2.1 Orthogonal CERSs

The idea of orthogonality is that contraction of a redex does not destroy other redexes
(in whatever way), but rather leaves a number of their residuals. A prerequisite for
the definition of residual is the notion of descendant, also called trace, allowing
tracing of subterms during a reduction. Whereas this is pretty simple in the first-
order case, ERSs may exhibit complex behaviour due to the possibility of nested
metasubstitutions, thereby complicating the definition of descendants. However, it
is a standard technique in higher-order rewriting [Klo80] to decompose or refine each
rewrite step into two parts: a TRS-part replacing the left-hand side by the right-hand
side without evaluating the (meta)substitutions and a substitution-part evaluating
the delayed substitutions. To express substitution, we use the S-reduction rules

Sn+1l‘1...l‘nA1...AnA0 H(Al/Il,...,An/In)Ao, n= 1,2,...,

where S™tL is the operator sign of substitution with arity (n,n + 1) and scope
indicator (n + 1), and #1,...,2, and Ay,..., Ay, Ag are pairwise distinct variables
and metavariables.? Thus S™*! binds only in the last argument. The difference with
F-rules is that S-reductions can only perform G-developments of A-terms, so one can
think of them as (simultaneous) let-expressions.

Thus the descendant relation of a rewrite step can be obtained by composing the
descendant relation of the TRS-step and the descendant relations of the S-reduction
steps. All known concepts of descendants agree in the cases when the subterm s C ¢
which is to be traced during a step t—o is in an argument of the contracted redex
u, properly contains u, or does not overlap with 1t. The differences occur in the case
when s 1s a pattern-subterm, in which case we define the contractum of u to be the
descendant of s, while according to many (especially early) definitions, s does not
have a u-descendant.

We will explain the concept with examples. Consider first a TRS-step ¢ =
flg(a)) — b = s performed according to the rule f(g(z)) — b. The descendant
of both pattern-subterms f(g(a)) and g(a) of ¢ in s is b, and a does not have a
descendant in s. The refinement of a B-step t = Ap(Az(Ap(z,2)),72) —p f(z) = e
would be t = Ap(Ax(Ap(x,x)),2) —p, 0 = S?xzAp(x,x) —s f(z) = e; the descen-
dant of both ¢ and Az(Ap(x, z)) after the TRS-step is the contractum S%zzAp(z, z),
and the descendants of Ap(x, ),z C t are respectively the subterms Ap(z, z),z C o;
the descendant of both o = S2zxzAp(z, ) and Ap(z, x) after the substitution step is
the contractum e; the descendant of z C o, as well as of the bound occurrence of x
in Ap(z, ), is the occurrence of z in e.

Definition 2.3 Let t—s in a CERS R, let v C t be an admissible redex, and let
w € s be a u-descendant of v. We call w a u-residual of v if (a) the patterns of u and
v do not overlap; (b) w is a redex weakly similar to v; and (¢) w is admissible. (So
u itself does not have u-residuals in s.) The notion of residual of redexes extends
naturally to arbitrary reductions. A redex in s is called a new redex or a created
redex if it 1s not a residual of a redex in ¢. The ancestor relation is converse to that
of descendant, and the predecessor relation to that of residual.

2 We assume that the CERS does not contain the symbols ST,



Definition 2.4 ([KO95]) A CERS is called orthogonal (OCERS) if:

— the left-hand side of a rule is not a single metavariable,

— the left-hand side of a rule does not contain metasubstitutions, and its metavari-
ables contain those of the right-hand side,

— all the descendants of an admissible redex u in a term ¢ under the contraction
of any other admissible redex v C t are residuals of u.

The second condition ensures that rules exhibit deterministic behaviour when
they can be applied. The last condition is the counterpart of the subject reduc-
tion property in typed A-calculi [Bar92]. For example, consider the rules a — b and
f(A) — A with admissible assignment A6 = a. The descendant f(b) of the re-
dex f(a) after contraction of a is not a redex since the assignment A6 = b is not
admissible; hence the system is not orthogonal.

As in the case of the A-calculus [Bar84], for any co-initial (i.e., with the same
initial term) reductions P and @, one can define in OCERSs the notion of residual
of P under @), written P/Q, due to Lévy [Lév80]. We write P < Q if P/Q =
(< is the Lévy-embedding relation); P and @ are called Lévy-equivalent, strongly-
equivalent, or permutation-equivalent (written P ~p @) if P <4 @ and Q < P.
It follows easily from the definition of / that, for any (appropriate) P’ and @',

(P+ P)/QrL P/Q+ P'/(Q/P) and P/(Q+ Q') =L (P/Q)/Q".

Theorem 2.5 (Strong Church-Rosser [K095]) For any finite co-initial reduc-
tions P and @ in an OCERS, P+ (Q/P) ~r Q + (P/Q).

2.2 Similarity of redexes

The idea of similarity of redexes [Kha94] u and v is that u and v are weakly similar,
1.e., match the same rewrite rule, and quantifiers in the pattern of v and v bind ‘sim-
ilarly’ in the corresponding arguments. Consequently, for any pair of corresponding
arguments of v and v, either both are erased after contraction of « and v, or none
is. For example, recall that a F-redex Ap(Axt,s) is an I-redex if € FV(¢), and is
a K-redex otherwise. Then, all I-redexes are similar, and so are all K-redexes, but
no [-redex is similar to a K-redex.

We can write a CERS redex as u = C[Z1l1, ..., Tnts], where C is the pattern,

t1,...,t, are the arguments, and Z; = {#;,,..., $in,} is the subset of binding vari-
ables of (' such that ¢; is in the scope of an occurrence of each z;,, i = 1,... n.
Let us call the maximal subsequence ji,...,j; of 1,...,n such that ¢;,,...,¢;, have
u-descendants the main sequence of u or the wu-main sequence, call t; ... t;, (u-

Yymain arguments, and call the remaining arguments (u)-erased. Now the similarity
of redexes can be defined as follows:

Definition 2.6 Let u = C[Zily,...,Tyt,] and v = C[Z1sy, ..., Tpsy] be weakly
similar. We call v and v similar, written u ~ v, if the main sequences of u and v
coincide, and for any main argument ¢; of u, 7 N FV(¢;) = T N FV (s;).

The following lemma, whose proof is similar to that of Lemma 3.3 in [Kha94c],
shows that only pattern-bindings (i.e., bindings from inside the pattern) of free



variables in main arguments of a redex are relevant for the erasure of its arguments.
Below, @ will (besides denoting assignments) also denote substitutions assigning
terms to variables; when we write o’ = o6 for some substitution ¢, we assume that
no free variables of the substituted subterms become bound in o' (i.e., we rename
bound variables in o when necessary).

Lemma 2.7 Let u = C[Z1ty, ..., Thly] and v = C[Z7s1, ..., Ty 5n] be weakly similar
redexes, and let for any main argument ¢; of v, T; N FV(¢;) = Z; N FV(s;). Then
the main sequences of u and v coincide, and consequently, u ~ v. In particular, if
u = v, then u ~ v.

3 A Minimal Perpetual Strategy

In this section we generalize the constricting perpetual strategy [Pla93, Sgr95, Gra96,
Mel96] from TRSs and the A-calculus to all OCERSs.

Let us first fix the terminology. Recall that a term ¢ is called weakly normalizable,
a WN-term, written WN (), if it is reducible to a normal form, i.e., a term without
a redex. t is called strongly normalizable, an SN -term, written SN (t), if it does not
possess an infinite reduction. We call ¢ an oo-term, co(t), if 7S N(t). Clearly, for any
term ¢, SN(t) = WN(t). If the converse is also true, then we call ¢t uniformly nor-
malizable, or a UN-term. So for U N-terms ¢, either ¢ does not have a normal form,
or all reductions from ¢ eventually terminate. Correspondingly, a rewrite system R
is called respectively WN, SN, or UN if so is any term in R.

Following [BK82, Klo92], we call a redex occurrence u C ¢ perpetual if oo(t) =
oo(s), where t=s, and call u critical otherwise. Recall that a perpetual strategy is a
function on terms which selects a perpetual redex in any oco-term, and selects any
redex (if any) otherwise [Bar84]. A redex (not an occurrence) is called perpetual iff
its occurrence in any (admissible) context is perpetual.

Finally, let us recall the concept of external redexes [HL91]. These are redexes
whose residuals or descendants can never occur in an argument of another redex.
Any external redex is outermost, but not vice versa. (For example, consider the
OTRS R = {f(x,9(y)) — y,a — g(b)}; then the first a in f(a,a) is outermost but
not external; the second a is external.) Tt is shown in [HL91] that any term not in
normal form, in an OTRS, has an external redex; the same holds true for orthogonal

ERSs [Kha94c], and similarly, for OCERSs as well.
Theorem 3.1 Any term not in normal form has an external redex, in an OCERS.

Definition 3.2 Let P : t — and s C t. We call P internal to s if it contracts
redexes only in (the descendants of) s.

Definition 3.3 (1) Let co(?), in an OCERS, and let s C ¢ be a smallest subterm of
t such that co(s) (i.e., SN(e) for every proper subterm e C s). We call s a minimal
perpetual subterm of ¢, and call any external redex of s a minimal perpetual redex
of t.

(2) Let F5° be a one-step strategy which contracts a minimal perpetual redex in
t if co(t), and contracts any redex otherwise. Then we call F2° a minimal perpetual



strategy. We call F2° constricting if for any F2’-reduction P : o2 22 . (i.e.
constructed using F%°), and for any i, P} : tiﬂti_l_lui?l ... 18 internal to s;, where
s; C t; 1s the minimal perpetual subterm containing u;.

Note that F° is not in general a computable strategy, as SN is undecidable
already in orthogonal TRSs [Klo92].

Lemma 3.4 Let oo(t), let s C ¢t be a minimal perpetual subterm of ¢, and let
P :t — oo be internal to s. Then exactly one residual of any external redex u of s
is contracted in P.

Proof. Let t = C[s] and s = C'[s1,...,u,...,8,], where C’ consists of the symbols
on the path from the top of s to u. If on the contrary P does not contract a residual
of u, then every step of P takes place either in one of the s;, or in the arguments
of u (since u is external in s). Hence at least one of these subterms has an infinite
reduction — a contradiction, since s is a minimal perpetual subterm. Since u is
external, P cannot duplicate its residuals, hence P contracts exactly one residual of
u.

Theorem 3.5 A minimal perpetual strategy F/ > is a perpetual strategy, in an

OCERS.

Proof. Suppose oo(tg), let sg be a minimal perpetual subterm of g, and let u C
sp be a minimal perpetuality redex. Let P : t0=2¢, 224, —= oo be internal to sg.
By Lemma 3.4, exactly one residual of u, say wu;, is contracted in P. Let P4y :

tolety Mg and PRy c oty iy — 00 (e, P oo otg Tb S, ),
Then, by Theorem 2.5, P = Piyy + Pfyy ~=p u+ (P/u) + Pf,, ie., uis a per-
petual redex. Hence F5° is perpetual.

Definition 3.6 We call F)2° the leftmost minimal perpetual strategy if in each term
it contracts the leftmost minimal perpetual redex.3

Lemma 3.7 The leftmost minimal perpetual strategy is constricting, in an OCERS.

Proof. Let P :t,=%t122t, — 0o be a leftmost minimal perpetual reduction, and let
s; C 1; be the leftmost minimal perpetual subterm of ¢;. Since by Theorem 3.5 w; 1s
perpetual for the term s;, the descendant of s; is an co-term, hence contains s;41;
and it is immediate that P is constricting.

Although we do not use it in the following, it is interesting to note that the
constricting perpetual reductions are minimal w.r.t. Lévy’s embedding relation <,
hence the name minimal

The relations <,y and / are extended to co-initial possibly infinite reductions
N, N’ as follows. N < N’ or equivalently, N/N’ = {§ if, for any redex v contracted

3 Sgrensen’s and Mellids’ strategies correspond to our leftmost and constricting minimal
perpetual strategies, respectively. Gramlich’s and Plaisted’s strategies are defined for non-
orthogonal rewrite systems, and they do not specify the perpetual redexes as external
redexes of a minimal perpetual subterm.



in Nysay N = Ny +v+ N, v/(N'/N1) =0; and N &~y N if N < N and N' < N.
Here, for any infinite P, u/P = ( if u/ P’ = () for some finite initial part P’ of P, and
P/Q is only defined for finite @, as the reduction whose initial parts are residuals of
initial parts of P under Q.

Theorem 3.8 Let P : t9=2¢#; 3¢, — 0o be a constricting minimal perpetual re-
duction and let @ : t; — oo be any infinite reduction such that ¢ < P. Then

Q%LP.

Proof. Since P is constricting, there is a minimal perpetual subterm sy C ¢y such
that P is internal to sq. Since @ < P, @ 1s internal to sy as well. By the construction,
uo 1s an external redex in sq, and by Lemma 3.4 exactly one residual u’ of ug is

. . i Q’f
contracted in Q. So let Q : #g @, té»u—nf;»_l_l 00, Then Q ~r uo + Q;/uo + Qi1

and obviously ug < . Similarly, since P is constricting, for any finite initial part
P'of P, P’ <@, and therefore P < (). Thus @ ~j, P.

4 Two Characterizations of Critical Redexes

In this section, we give a very intuitive characterization of critical redex occurrences
for OCERSs, generalizing Klop’s characterization of critical redex occurrences for
OTRSs [Klo92], and derive from it a characterization of perpetual redexes similar
to Bergstra and Klop’s perpetuality criterion for S-redexes [BK82]. Our proofs are
surprisingly simple, yet the results are rather general and useful in applications. We
need three simple lemmas first.

Lemma 4.1 Let t—s, let 0 C t be either in an argument of u or not overlapping
with u, and let o' C s be a u-descendant of 0. Then o’ = 0 for some substitution 6.
If moreover o is a redex, then so is o' and o ~ o’.

Proof. Since u can be decomposed as a TRS-step followed by a number of substitu-
tion steps, it is enough to consider the cases when u is a TRS step and when it is an
S-reduction step. If u is a TRS-step, or is an S-reduction step and o is not in its last
argument, then o and o’ coincide, hence 0 ~ o' when o0 is a redex. Otherwise, o’ = of
for some substitution #, and if o is a redex, we have again o ~ ¢ by orthogonality
and Lemma 2.7 since free variables of the substituted subterms cannot be bound in
o0 (by the variable convention).

Lemma 4.2 Let s be a minimal perpetual subterm of ¢, and let P : ¢ — o0 be
internal to s. Then P has the form P = — o—e — 0o, where u is the descendant
of s in o (i.e., a descendant of s necessarily becomes a redex and is contracted in P).

Proof. If on the contrary P does not contract descendants of s, then infinitely many
steps of P are contracted in at least one of the proper subterms of s, contradicting
1ts minimality.

Lemma 4.3 Let P = u+ P’ be a constricting minimal perpetual reduction starting
from ¢, in an OCERS, and let u be in an argument o of a redex v C ¢. Then P is
internal to o.



Proof. Let s C t be the minimal perpetual subterm containing u. By definition of
minimal perpetual reductions, u is an external redex of s, hence s does not contain
v. Since P 1s constricting, it is internal to s, and we have by orthogonality and
Lemma 4.2 that s cannot overlap with the pattern of v. The lemma follows.

Definition 4.4 (1) Let P : toﬂtlg...uk—:ltk, and let sg,s1,...,s; be a chain of
descendants of sg in along P (i.e, s;41 is a u;-descendant of s; C ;). Then, follow-
ing [BK82], we call P passive w.r.t. sg, s, ..., s if the pattern of u; does not overlap

with s; (s; may be in an argument of u; or be disjoint from u;) for 0 < ¢ < k. In
the latter case, we call s a passive descendant of sy. By Lemma 4.1, s, = s for
some substitution 0. We call 0 a passive substitution or the P-substitution (w.r.t.
S0,81, - Sk)-

(2) Let t be a term in an OCERS, and let s Ct. We call s a potentially infinite
subterm of ¢ if s has a passive descendant s’ (along some reduction starting from ¢)
s.t. 0o(s’). (Thus co(sf) for some passive substitution 0.)

Theorem 4.5 Let co(t) and let t%s be a critical step, in an OCERS. Then v erases
a potentially infinite argument o (thus co(of) for some passive substitution 6).

Proof. Let P :t = ty=3t;=3t, — 0o be a constricting minimal perpetual reduction,
which exists by Theorem 3.5 and Lemma 3.7. Since v is critical, SN (s), hence in
particular P/v is finite. Let j be the minimal number such that w;/V; = 0 and
u; € V;j, where V; = v/P; and P; : t —- t; is the initial part of P with j steps.
(Below, V; will denote both the corresponding set of residuals of v and its complete
development.) By the Finite Developments theorem [KO95], no tail of P can contract
only residuals of v; and since P/v is finite, such a j exists.

Uy
t:t0—>>tl—>>tj—>tj+1—>> P

I
s=sg —> s —> 5; === Sj41 —> Pfuv

0 0

Since u;/V; = 0 and u; € V}, there is a redex v’ € V; whose residual is contracted
in V; and erases (the residuals of) u;. Since V; consists of (possibly nested) residuals
of a single redex v C t,, the quantifiers in the pattern of v’ cannot bind variables in-
side arguments of other redexes in V;. Therefore v/ is similar to its residual contracted
in V; by Lemma 2.7, and hence u; /v’ = @, implying that v erases its argument o,
say m-th from the left, containing u;. By Lemma 4.3, the tail P/ : {; — oo of P is
internal to o'.

Let v; C ¢; be the predecessors of v’ along P; (so vg = v and v; = v’; note that a
redex can have at most one predecessor), and let o; be the m-th argument of v; (thus
o' = 0;). Note that u; # v; since v; has residuals. Let { be the minimal number such
that w; is in an argument of v; (such an [ exists as u; is in an argument of v;). Then
all the remaining steps of P are in the same argument of v; by Lemma 4.3, and it
must be the m-th argument o; of v; (thus co(0;)); but v’ erases its m-th argument,
implying by Lemma 2.7 that v; also erases its m-th argument o;. Further, by the
choice of [, no steps of P are contracted inside v; for 0 < 7 < [, thus v; is a passive



descendent of v, and o; 1s a passive descendant of og. Hence, by Lemma 4.1 v ~ v;.
Thus v erases a potentially infinite argument og (since co(0;)), and we are done.

Note in the above theorem that if the OCERS is an OTRSs, a potentially infinite
argument is actually an oco-term (since passive descendants are all identical), imply-
ing Klop’s perpetuality lemma [Klo92]. O’Donnell’s [0’Do77] lemma, stating that
any term from which an innermost reduction is normalizing is strongly normalizable,
is an immediate consequence of Klop’s Lemma.

Corollary 4.6 Any redex whose erased arguments are closed SN-terms is perpet-

ual, in OCERSs.
Proof. Immediate, as closed SN-terms cannot be potentially infinite subterms.

Note that Theorem 4.5 implies a general (although not computable) perpetual
strategy: simply reduce a redex which does not erase a potentially infinite sub-
term. Tt is easy to check that the (maximal) perpetual strategies of Barendregt et
al [BBKV76, Bar84] and de Vrijer [dVr87], and in general, the limil perpetual strat-
egy of Khasidashvili [Kha94b, Kha94c], are special cases, as these strategies contract
redexes whose arguments are in normal form, and no (sub)terms can be substituted
in the descendants of these arguments. The minimal perpetual strategy, and hence
the perpetual strategies of [Ser95, Mel96], are also special cases of the above general
perpetual strategy.

We conclude this section with a characterization of perpetuality of erasing re-
dexes, similar to the perpetuality criterion of Bx-redexes in [BK82].

Below, a substitution @ will be called SN iff SN (20) for every variable .

Definition 4.7 We call a redex u safe (respectively, SN-safe) if either it is non-
erasing, or else it is erasing and for any (resp. SN-) substitution 6, if uf erases an
oo-argument, then the contractum of uf is an oo-term. (Note that, by Lemma 2.7,
u is erasing iff u@ is, for any 0.)

Lemma 4.8 Let oo(t) and s = ¢4, in an OCERS. Then oo(s).

Proof. We prove that any infinite reduction P : t=3t; ¢, — oo can be simulated by
some @ : 5 = t0=3,103t26 — co. it is enough to show that t—=o implies s = t6-=0f
for some w C s, and to consider only the cases when u 1s a TRS-step or an S-
reduction step. The first case is immediate, and the second follows from the Church-
Rosser property for S-reductions.

Theorem 4.9 Any safe redex v, in an OCERS R, is perpetual.

Proof. Assume on the contrary that there is a context C[] such that t = Cv] — s is
a critical step. Let [ be the minimal number such that, for some constricting minimal
perpetual reduction P : ¢ = tg=2t; 3ty —= 0o, the tail Pr it — o0 of Pisinan
erased argument of a residual of v. Such an [ exists by the proof of Theorem 4.5
(in the notation of that theorem, P/ is in an erased argument of v; C ;). Let v
be the outermost among redexes in ¢; which contain u; (and therefore, whole PJ)
in an erased argument, o7, say m-th from the left (thus oo(o;)). By the proof of



Theorem 4.5, the m-th argument o of v is v-erased, o; = 08, and v; = v for some
passive substitution 6.

We want to prove that the safety of v implies co(s;), hence oo(s), contradicting
the assumption that ¢{—s is critical (see the diagram for Theorem 4.5). By the Finite
Developments theorem, we can assume that s; 1s obtained from #; by contracting
(some of) the redexes in V7 in the following order: (a) contract redexes in V; disjoint
from v;; (b) contract redexes in V; that are in the main arguments of v;; (¢) contract
the residual v} of v;; (d) contract the remaining redexes, i.e., those containing v; in
a main (by the choice of v;) argument. Since the parts (a) and (b) do not effect oy,
v} erases an oo-argument. (Recall from the proof of Theorem 4.5 that redexes in V;
are similar to their residuals contracted in any development of V7.) Since v; = vf and
redexes in (b) are in the substitution part of v;, v; = vf* for some substitution 6%,
hence i1ts contractum e is infinite by safety of v. By the choice of v;, e has a descendant
¢’ in s; after the part (d), and by Lemma 4.1, ¢/ = e’ for some substitution ¢’. By
Lemma 4.8, co(e) implies co(e’), hence co(s;) — a contradiction.

5 Applications

We now give a number of applications of our perpetuality criteria, demonstrating
their usefulness and powerfulness. Below, in some of the examples, we will use the
conventional A-calculus notation [Bar84]; and by the argument of a S-redex (Az.s)o
we will mean its second argument o.

5.1 The restricted orthogonal A-calculi

Let us call orthogonal restricted A-caleuli (ORLC) the calculi that are obtained
from the A-calculus by restricting the S-rule (by some conditions on arguments and
contexts) and that are orthogonal CERSs. Examples include the Ar-calculus, the
call-by-value A-calculus [Plo75], as well as a large class of typed A-calculi.

If Ris an ORLC, then in the proofs of Theorem 4.5 and Theorem 4.9, the P;-
substitution (and in general, any passive substitution along a constricting perpetual
reduction) is SN. This can be proved similarly to [BK82] (see Proposition 2.8), since,
in the terminology of [BK82] and the notation of Theorem 4.5 and Theorem 4.9:

— P is SN-substituting (meaning that the arguments of contracted S-redexes are
SN). This is immediate from the minimality of P;, and

— P is simple (meaning that no subterms can be substituted in the substituted,
during the previous steps, subterms). This follows immediately from externality,
w.r.t. the chosen minimal perpetual subterm, of minimal perpetual redexes (P
is standard).

Hence, we have the following two corollaries, of which the latter is a mere extension
of Bergstra-Klop criterion [BK82] (in the case of g-redexes, the converse statement
is much easier to prove, see [BK82]).

Corollary 5.1 Let co(?) and let t—s be a critical step, in an ORLC. Then v erases a
potentially infinite argument o such that oo(of) for some passive SN-substitution 6.



Corollary 5.2 Any SN-safe redex v, in an ORLC, is perpetual.

Note that these corollaries are not valid for OCERSs in general since, unlike
ORLC, passive substitutions along constricting perpetual reductions need not be
SN in OCERSs: Let R = SU{oxAB — Sazw(A/2)B, E(x) — a} where w =
Az Ap(z,z). Then the step cxAp(z,2)E(x) — owAp(x,x)a is SN-safe (as it only
erases a variable), but is critical as can be seen from the following diagram, of which
the bottom part is the only reduction starting from oz Ap(z, x)a:

crAp(z,z)E(x) — SzwE(Ap(z,x)) = E(Ap(w,w)) —6> E(Ap(w,w)) ?
crAp(z, x)a — Szwa 3 - a 7 R Q)»

5.2 Plotkin’s call-by-value A-calculus

Plotkin [Plo75] introduced the call-by-value A-calculus, Ay, which restricts the usual
A-calculus by allowing the contraction of redexes whose arguments are values, i.e.,
either abstractions Az.t or variables (we assume that there are no §-rules in the
calculus). Let the lazy call-by-value A-calculus Ary be obtained from Ay by allow-
ing only call-by-value redexes that are not in the scope of a A-occurrence (Apy is
enough for computing values in Ay, see Corollary 1 in [Plo75]). Then it follows from
Corollary 5.1, as well as from Corollary 5.2, that any Apy-redex is perpetual, hence
Arv is UN. Indeed, let v = (Az.s)o be a Apy-redex. Then, if o is a variable, then it
1s immediate that v cannot be critical, and if 0 1s an abstraction, any of its instances
is an abstraction too, hence is a Apy-normal form. This is not surprising, however,
as Apy-redexes are disjoint,* and there is no duplication or erasure of (admissible)
redexes.

5.3 De Groote’s Brs-reduction

De Groote [dGr93] introduced fg-reduction on A-terms by the following rule: Ss :
((Az.M)N)O) — (Az.(MO)N), where x ¢ FV(M,O). He proved that the frg-
calculus is uniformly normalizing. Clearly, this is an immediate corollary of Theo-
rem 4.5 as the fg- and fBr-rules are non-erasing (note that these rules do not conflict
because of the conditions on bound variables). Using this result, the author proves
strong normalization of a number of typed A-calculi.

5.4 Bohm &Intrigila’s A-ég-calculus

Bohm and Intrigila [BI94] introduced the A-ép-calculus in order to study UN so-
lutions to fixed point equations, in the Arn-calculus. Since the K-redexes are the
source of failure of the UN property in the A(n)-calculus, they define a ‘restricted K

* if u, v are redexes in a term ¢ and u = (Az.e)o, then v & e because of the main A of u,
and v & o since o is either a variable or an abstraction; orthogonality of Arv follows from
a similar argument.



combinator’ éx by the following rule: éx AB — A, where B can be instantiated to
closed A-6;-normal forms (possibly containing §x constants; such a reduction is still
well defined). A-65-terms are Ap-terms with the constant éx . The authors show that
the A-ég-calculus has the UN property. This result follows from Corollary 4.6 only if
the n-rule is dropped. However, Klop shows in [Klo80] that 7-redexes are perpetual,
and we hope that our results can be generalized to weakly-orthogonal CERSs (and
thus cover the n-rule since n-redexes are non-erasing) using van Oostrom and van
Raamsdonk’s technique for simulating 87y reductions with g-reductions [OR94].

5.5 Honsell &Lenisa’s Byo.-calculus

Honsell and Lenisa [HL93] define a similar reduction, Sy.-reduction, on A-terms by
the following rule: fy. : (Ax.A)B — (B/x)A, where B can be instantiated to a
closed f-normal form. We have immediately from Corollary 4.6 that Sn. is UN. Note
however that the later does not follow (at least, without an extra argument) from
Bergstra and Klop’s characterization of perpetual Bx-redexes [BK82] as By. C 8
but not conversely. (If ¢ has an infinite Sy.-reduction and tLsis a fByo-step, then
the Bergstra-Klop criterion implies existence of an infinite G-reduction starting from
s, not existence of an infinite Fno-reduction.)

6 Concluding Remarks

We have obtained two criteria for perpetuality of redexes in orthogonal CERSs, and
demonstrated their usefulness in applications. We claim that our results are also
valid for Klop’s orthogonal substructure CRSs [KOR93].

However, they cannot be generalized (at least, directly) to orthogonal Pattern
Rewrite Systems (OPRSs) [Nip93], as witnessed by the following example due to van
Oostrom [O0s97]. Tt shows that already the Conservation Theorem fails for OPRSs
(i.e., non-erasing steps need not be perpetual): Let R = {g(M.N.X(x.M(z),N)) —,
X(x.I,82), @A x.M(x)),N) —g M(N)} where 2 = @(X(x.zx), A(x.xx)). Then
g(M.N.@(A(z.M(2)),N)) —5 g(M.N.M(N)) is non-erasing but critical, as can be
seen from the following diagram, of which the bottom part is the only reduction
starting from g(M.N.M(N)). Such strange behavior arises due to the Ag-reduction
steps in the substitution calculus, which are invisible in a PRS reduction step.

J(M.N.QA@ M(2)), V) — @(A(2.1), 2) % @(r(.1), 2) > .
g g
9} £l 4l
g(M.N.M(N)) I I
g 0 0
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