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2 KHASIDASHVILI, OGAWA, AND VAN OOSTROM

We study perpetuality of reduction steps, as well as perpetuality of re-
dexes, in orthogonal rewrite systems.

A perpetual step is a reduction step which retains the possibility of
infinite reductions. A perpetual redex is a redex which, when put into an
arbitrary context, yields a perpetual step. We generalize and refine existing
criteria for the perpetuality of reduction steps and redexes in orthogonal
Term Rewriting Systems and the A-calculus due to Bergstra and Klop, and
others.

We first introduce Contezt-sensitive Conditional Ezpression Reduction
Systems (CCERSs) and define a concept of orthogonality (which implies
confluence) for them. In particular, several important A-calculi and their
extensions and restrictions can naturally be embedded into orthogonal
CCERSs. We then define a perpetual reduction strategy which enables one
to construct minimal (w.r.t. Lévy’s permutation ordering on reductions)
infinite reductions in orthogonal fully-extended CCERSs.

Using the properties of the minimal perpetual strategy, we prove

1. perpetuality of any reduction step that does not erase potentially in-
finite arguments, which are arguments that may become, via substitution,

infinite after a number of outside steps, and

2. perpetuality (in every context) of any safe redex, which is a redex
whose substitution instances may discard infinite arguments only when the
corresponding contracta remain infinite.

We prove both these perpetuality criteria for orthogonal fully-extended
CCERSs and then specialize and apply them to restricted A-calculi, demon-
strating their usefulness. In particular, we prove the equivalence of weak
and strong normalization (which equivalence is here called uniform normal-
1zation) for various restricted A-calculi, most of which cannot be derived

from previously known perpetuality criteria.

1. INTRODUCTION

The main objective of this paper is to study sufficient conditions for uniform
normalization. Here a term t is uniformly normalizing, UN for short, if either it
does not have any normal form (¢ is not weakly normalizing), or all reductions
starting from ¢ are finite, (¢ is strongly normalizing). We study UN for both first-
and higher-order orthogonal term rewrite systems, where a rewrite system is said
to be UN if each of its terms is so.

Interest in the criteria for UN arises, for example, in the proofs of strong normal-
ization of typed A-calculi, since these criteria are related to the work on reducing
strong normalization proofs to proving weak normalization [50, 37, 23, 70, 17, 31,
24, 25, 65, 73, 49]. Furthermore, the question: ‘Which classes of terms are UN 7’ is
posed by Béhm and Intrigila [11] in connection with finding UN solutions to fixed
point equations, and with the representability of partial recursive functions by UN
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terms only, in the A-calculus.! A useful UN subclass of A-terms has recently been
identified by Mgller Neergaard and Sgrensen [49].

Let us call a term ¢ an co-term if it has an infinite reduction. Furthermore, we call
a reduction step t — s and the corresponding contracted redex-occurrence perpetual
if s is an oo-term if ¢ is so. A redex is called perpetual if its occurrence in every
context (and the corresponding reduction step) is perpetual. It is easy to see that a
rewriting system is UN iff all of its reduction steps are perpetual iff all of its redexes
are perpetual. Studying uniform normalization therefore reduces to studying the
perpetuality of redexes and reduction steps, which has been studied quite exten-
sively. The classical results in this direction are Church’s Conservation Theorem
for the Ar-calculus [13], stating that the Ar-calculus is UN, and the Conservation
Theorem (for the Ag-calculus) due to Barendregt, Bergstra, Klop and Volken [7, 5],
stating that Sr-redexes are perpetual in the A-calculus. Bergstra and Klop [8] gave
a necessary and sufficient criterion for the perpetuality of Sx-redexes. Klop [37]
generalized Church’s Theorem to non-erasing orthogonal Combinatory Reduction
Systems (CRSs) by showing that those systems are UN, and Khasidashvili [31, 32]
generalized the Conservation Theorem to orthogonal Expression Reduction Sys-
tems (ERSs) by proving that all non-erasing redexes are perpetual in orthogonal
fully-extended ERSs.2

For orthogonal Term Rewriting Systems (TRSs), Klop [38] obtained a very pow-
erful perpetuality criterion in terms of critical steps (or critical redex-occurrences).
These are steps that are not perpetual, i.e., they reduce oo-terms to SN terms.
Klop showed that any critical step (contracting a redex-occurrence u) must erase
an argument of u possessing an infinite reduction. This is not true for orthogonal
higher-order rewrite systems, because substitutions (from the outside) into the ar-
guments of © may occur during rewrite steps and such substitutions may turn a
SN argument of u into an co-term. However, we show that (1) a critical step t — s
must necessarily erase a potentially infinite argument, i.e., an argument that would
become an co-(sub)term after a number of (passive, i.e., performed in the context
of u) steps in ¢t. From this we derive another criterion stating (2) perpetuality of
safe redexes (in every context), which is similar to the perpetuality criterion for
Bk-redexes [8]. These two criteria are the main results of this paper, and we will
demonstrate their usefulness in applications.

To unify our results with the ones already in the literature for different orthogonal
rewrite systems, we first introduce a framework of Contezt-sensitive Conditional
Ezpression Reduction Systems (CCERSs). This framework provides a format for
higher-order rewriting which extends ERSs [27] by allowing restrictions on term
formation, on arguments of redexes, and on the contexts in which the redexes
can be contracted. Various interesting typed A-calculi (such as the simply typed
A-calculus [6], its extension with pairing [68], and system F [6]) and A—calculi
with specific reduction strategies (such as the call-by-value A-calculus [60]) can be
directly encoded as CCERSs (see also [39]). After demonstrating the expressiveness
of CCERSs, we will focus our attention on orthogonal CCERSs, present a concept of

1Uniform normalization is called strong normalization in [11].
2The restriction to full extendedness was missing in [31]; full extendedness simply means that
no rules are subject to occur conditions like the one in the 7-rule.
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orthogonality for CCERSs, and prove the standard results for orthogonal CCERSs
(the Finite Developments Theorem [FD], confluence, etc.). Further, by necessity,
we will restrict our attention to fully-ertended orthogonal CCERSs; roughly, in
fully-extended CCERSs, an erasing step cannot turn a non-admissible redex into
an admissible one.

To prove our perpetuality criteria, we will first generalize, from term rewriting
and the A-calculus to orthogonal fully-extended CCERSSs, the constricting perpetual
strategies discovered independently by Plaisted [59], Gramlich [16], Sgrensen [63],
and Mellies [47]. These strategies specify a construction of infinite reductions
(whenever possible) such that all steps are performed in some smallest co-subterm.
Our strategy is slightly more general than the constricting ones (i.e., it specifies
a set of redexes from which any one can be selected for contraction), and can be
restricted so that resulting reduction sequences become constricting. The restricted
strategy allows for simple and concise proofs of our perpetuality criteria. We will
also show that constricting perpetual reductions are minimal w.r.t. Lévy’s permu-
tation ordering on reductions in orthogonal rewriting systems [44, 22].

Even though our criteria are simple and intuitive, they are strong tools in proving
strong normalization from weak normalization in orthogonal (typed or type-free)
rewrite systems. We will show that all known related criteria [13, 7, 8, 37, 38, 31],
except the one in [21], can be obtained as special cases. We will also demonstrate
that uniform normalization for a number of variations of S-reduction (most of which
cannot be derived from previously known perpetuality criteria) [60, 17, 11, 20, 41] is
an immediate consequence of our criteria. ERSs are similar to the Klop’s CRSs [37]
and we claim that all our results are valid for orthogonal fully-extended CRSs as
well (see [61] for a detailed comparison of various forms of higher-order rewriting).
We will demonstrate, however, that our results cannot be extended to higher-order
rewriting systems where function variables can be bound [71, 52, 57], since already
the Conservation Theorem fails for these systems.

The paper is organized as follows: In Section 2, we introduce CCERSs and
show how several rewrite and transition systems can be encoded as CCERSs. In
Section 3, we prove some standard results for orthogonal CCERSs. In Section 4, we
study properties of an extension of existing constricting perpetual strategies, and in
Section 5, we use these properties to obtain our perpetuality criteria for orthogonal
fully-extended CCERSs. Section 6 gives a number of applications, and Section 7
concludes the paper.

The main results of this paper have been published previously in [33, 35].

2. CONTEXT-SENSITIVE CONDITIONAL ERSS

A term rewriting system is a pair consisting of an alphabet and a set of rewrite
rules. The alphabet is used freely to generate the terms and the rewrite rules can
be applied in any surroundings (context), generating the rewrite relation. In the
first-order case one speaks of TRSs, while in the higher-order case there are several
conceptually similar, but notationally often quite different, proposals. The first
general higher order format was introduced long ago by Klop [37] under the name
of Combinatory Reduction Systems (CRSs). Since then, several other interesting
formalisms have been introduced [27, 71, 52, 45, 57]. Restricted rewriting systems
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with substitutions were first studied by Pkhakadze [58] and Aczel [2]. See van
Raamsdonk [61] for a detailed comparison of various forms of higher-order rewriting.

It is often of interest to have the possibility of putting restrictions on the gener-
ation of either the terms or the rewrite relation or both. For example, many typed
lambda calculi (such as the simply typed A-calculus and the system F [6]) can
be viewed as untyped lambda calculi with restrictions on the formation of terms.
(See [39] for an encoding of the system F as a substructure CRS.) On the other
hand, many rewrite strategies are naturally expressed by restricting the application
of the rewrite rules. The call-by-value strategy in A-calculus [60], for example, can
be specified by restricting the second argument of the B-rule to values. In gen-
eral, restricting arguments gives rise to so-called conditional ERSs (cf. [8]). The
leftmost-outermost strategy can be specified by restricting the conteztin which the
(B-rule may be applied. We will call the latter kind of rules in which contexts are
restricted context-sensitive.> We will now introduce CCERSs which allow all three
kinds of restriction.

2.1. The syntax of CCERSs

CCERSs are an extension of ERSs, which are based on the syntax of Pkha-
kadze [58]. Terms in CCERSs are built from the alphabet just like they are in the
first-order case. The symbols having binding power (like the A in A-calculus and the
J in integrals) require some binding variables and terms as arguments, as specified
by their arity. Scope indicators are used to specify which variables have binding
power in which arguments. For example, a 3-redex in the A-calculus appears as
Ap(Az t,s), where Ap is a function symbol of arity 2 and A is an operator sign of
arity (1,1) and scope indicator (1). Integrals such as fst f(z)dz can be represented
as [z(s,t, f(z)) by using an operator sign [ of arity (1,3) and scope indicator (3).

Metaterms will be used to write rewrite rules. They are constructed from metavari-
ables and meta-expressions for substitutions, called metasubstitutions. Instantiation
of metavariables in metaterms yields terms. Metavariables play the role of variables
in the TRS rules and of function variables in other formats of higher-order rewrit-
ing such as Higher-Order TRSs (HOTRSs) [71], Higher-Order Rewrite Systems
(HRS) [52], and Higher-Order Rewriting Systems (HORSs) [57]. Unlike the func-
tion variables in HOTRSs, HRSs, and HORSs, however, metavariables cannot be
bound.

DEFINITION 2.1. Let ¥ be an alphabet comprising infinitely many wvariables,
denoted by z, y, z,..., and symbols (signs). A symbol o can be either a function
symbol (simple operator) having an arity n € N or an operator sign (quantifier sign)
having arity (m,n) € NT x N *. If it is an operator sign it needs to be supplied with
m binding variables z1,. .. ,Z,, to form a gquantifier (compound operator) oz ... Tm,

and it also has a scope indicator specifying in which of the n arguments it has

4

binding power.* Terms t, s, e, o are constructed from variables, function symbols,

3The distinction between ‘conditional’ and ‘context-sensitive’ is, however, more historical than
conceptual.

4Scope indicators can be avoided at the expense of side conditions of the form z ¢ FV(s). In
this case, in order to avoid unintended bindings, such conditions must be imposed on construction
of (admissible) terms rather than on the usage of rewrite rules.
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and quantifiers in the usual first-order way, respecting (the second component of
the) arities. A predicate AT on terms specifies which terms are admissible.
Metaterms are constructed like terms, but also allowing metavariables A, B, ...
and metasubstitutions (t1 /1, ..., tn /%y )to, where each ¢; is an arbitrary metaterm
and the z; have a binding effect in #,. Metaterms without metasubstitutions are
called simple. An assignment 8 maps each metavariable to a term. The application
of 8 to a metaterm ¢ is written ¢6 and is obtained from ¢ by replacing metavariables

with their values under 6 and by replacing metasubstitutions (t1/z1,...,tn/Zxs)t0,
in right to left order, with the result of substitution of terms t,...,t, for free
occurrences of xq,...,T, in ty. The substitution operation may involve a renaming

of bound variables to avoid collision, and we assume that the set of variables in
3. comes equipped with an equivalence relation, called renaming, such that any
equivalence class of variables is infinite. We also assume that any variable can
be renamed by any other variable in the corresponding equivalence class.’ Unless
otherwise specified, the default renaming relation is the total binary relation on

variables (a partial renaming relation may be useful for conditional systems).

The specification of a CCERS consists of an alphabet (generating a set of terms
possibly restricted by the predicate AT as specified above), and a set of rules
(generating the rewrite relation possibly restricted by admissibility predicates AA
and AC as specified below). The predicate AT can be used to express sorting
and typing constraints, since sets of admissible terms allowed for arguments of an
operator can be seen as terms of certain sorts or types. The predicates AA and
AC impose restrictions respectively on arguments of (admissible) redexes and on
the contexts in which they can be contracted.

The CCERS syntax is very close to the syntax of the A-calculus. Those already
familiar with the A-calculus may therefore find ERSs easier to understand than
CRSs, although the differences between the two are ‘semantically’ insignificant. See
also [61]. For example, the S-rule is written as Ap(AzA, B) — (B/z)A, where A
and B can be instantiated by any terms. The 7-rule is written as AzAp(4,z) — A,
where for any assignment 6 € AA(n), x ¢ FV(A0) (the set of free, i.e., unbound,
variables of A#); otherwise an z occurring free in A6 and therefore bound in
Az Ap(Af,z) would become free. A rule like f(A) — Jz(A) is also allowed, but
in that case the assignment 8 with z € A is not allowed. Such a collision be-
tween free and bound variables cannot arise when assignments are restricted by the
condition (*), described below.

Familiar rules for defining existential quantifier 3z and the quantifier 3!z (there
exists exactly one z) are written as J3z(A) — (7z(A4)/z)A and 3lz(A) — Jz(A) A
VzVy(A A (y/x)A = x = y), respectively. For the assignment associating z = 5 to
the metavariable A, these rules generate rewrite steps dz(z = 5) — 7z(z = 5) =5
and lz(z = 5) — Jz(x = 5) AVaVy(z = 5Ay = 5) = z = y). In general,
evaluation of a reduction step may involve execution of a number of substitutions

5An equivalence class of variables can, for example, be the set of variables of the same type in
a typed language.
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corresponding to the metasubstitutions in the right-hand-side of the rule. This will

be explained by examples in the next section.

DEFINITION 2.2. A Context-sensitive Conditional Expression Reduction System
(CCERS) is a pair (X, R), where X is an alphabet described in Definition 2.1 and R is
a set of rewrite rules T : t — s, where ¢ and s are closed metaterms (i.e., metaterms
possibly containing ‘free’ metavariables but not containing free variables).

Furthermore, each rule r has a set of admissible assignments AA(r) which, to
prevent confusion of variable bindings, must satisfy the following variable-capture-
freeness condition:

(*) for any assignment § € AA(r), any metavariable A occurring in ¢ or s, and
any variable z € FV(Af), either every occurrence of A in 7 is in the scope of some
binding occurrence of z in r or no occurrences are.

For any 6 € AA(r), t6 is an r-redez or an R-redez (and so is any wariant of t0
obtained by renaming of bound variables), and s6 is the contractum of t6. We call
R simple if the right-hand sides of R-rules are simple metaterms. We call redexes
that are instances of the same rule weakly similar.

Furthermore, each pair (r,0) with r € R and 6 € AA(r) has a set AC(r,8) of
admissible contexts such that if a context C[] is admissible for (r,6) and o is the
contractum of u = ré according to r, then C[u] — C]o] is an R-reduction step.
In this case, u is admissible for r in the term Clu]. We require that the set of
admissible terms be closed under reduction. We also require that admissibility of
terms, assignments, and contexts be closed under the renaming of bound variables.®

We call a CCERS context-free, or simply a Conditional Ezpression Reduction
System (CERS), if every term is admissible, if every context is admissible for any
redex, if the rules r : ¢ — s are such that t is a simple metaterm and is not a
metavariable, and if each metavariable that occurs in s also occurs in t. Moreover if
for any rule r € R, AA(r) is the maximal set of variable-capture-free assignments,
then we call the CERS an unconditional Expression Reduction System, or simply
an Expression Reduction System (ERS).”

Note that in CCERSs (but not in CERSs or ERSs) we allow metavariable-
rules like n71 : A — Az Ap(A,z) and metavariable-introduction-rules like f(A) —
g(A, B), which are usually excluded a priori. This is useful only when the system
is conditional. Like in the n-rule,the requirement (x) forces z ¢ FV (A6) for every
6 e AA(n™1).

Let 7 : t — s be a rule in a CCERS R and let 8 be admissible for . Subterms
of a redex v = tf that correspond to the metavariables in ¢t are the arguments of v,
and the rest of v is the pattern of v (hence the binding variables of the quantifiers
occurring in the pattern also belong to the pattern). Subterms of v whose head
symbols are in its pattern are called the pattern-subterms of v. The pattern of the
right-hand side of a simple CCERS rule is defined similarly.

8Closure of admissibility of contexts under the renaming of bound variables may need some
clarification: We mean that if » is admissible in C[u] and if C'[u'] is its variant (obtained by a
renaming of bound variables in C[u]), then ' must be a redex admissible for C'[].

7The renaming relation for ERSs is total.
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Notation We use a, b, ¢, d for constants, use t, s, e, 0 for terms and metaterms, use
u,v,w for redexes, and use N, P, Q for reductions (i.e., reduction paths). We write
s C tif s is a subterm (occurrence) of t. A one-step reduction in which a redex
u C t is contracted is written as t = s or t — s or just u. We write P :t —» s or
t L sif P denotes a reduction (sequence) from ¢ to s, write P :t — if P may
be infinite, and write P : ¢t —» oo if P is infinite (i.e, of the length w). For finite P,
P + @ denotes the concatenation of P and Q.

Below, when we refer to terms and redexes, we will always mean admissible terms

and admissible redexes except that are explicitly mentioned.

2.2. Expressive power of CCERSs
To avoid a significant deviation from the main theme, how to encode conditional
TRSs [9] and reduction strategies as CCERSs is described in this subsection only
very briefly. For more details refer to Khasidashvili and van Oostrom [34] where, for
example, encodings of Hilbert- and Gentzen-style proof systems into CCERSs are
also given. An encoding of the w-calculus into a CCERS is given in Appendix A.1.

Conditional TRSs

Conditional term rewriting systems (CTRSs) were introduced by Bergstra and
Klop [9]. Their conditional rules have the form t; = sy A---At, = s, = t — s,
where s; and t; may contain variables in ¢t and s. According to such a rule, t6
can be rewritten to sf if all the equations s;0 = t;0 are satisfied. CTRSs were
classified depending on how satisfaction is defined (‘=’ can be interpreted as —» ,
«—* etc.) As Bergstra and Klop remark this can be generalized by allowing for
arbitrary predicates on the variables as conditions (cf. also [14, 67]).

Clearly, all these CTRSs are context-free CCERSs since they allow conditions
on the arguments but not on the context of rewrite rules. For this reason results
for them are sometimes a special case of general results holding for all CCERSs.
In particular, stable CTRSs for which the unconditional version is orthogonal as
defined in [9] are orthogonal in our sense (to be defined in Subsection 3) and so are
confluent.

FEncoding of strategies

In the literature a strategy for a rewriting system (R, X) is often defined as a map
F:Ter(X) — Ter(X), such that ¢ — F(¢) if ¢t is not a normal form, and ¢t = F(t)
otherwise (e.g., [5]). Such strategies are deterministic and do not specify the way
in which to obtain F(t) from ¢.

The first thing to take into account here is that in a term there may be disjoint
redex occurrences yielding the same result if reduced. For example, take simply the
TRS R = {f(z) — a, b — b} and the term ¢ = g(b, f(b)). Then t is rewritten to
itself when either the first or the second occurrence of b in it is rewritten (using the
second rule). The leftmost b is essential (i.e., contributes to the normal form) [28],
whereas the rightmost b is not. Here our knowing that a strategy F' rewrites t to ¢
is not enough to tell us whether F' rewrites an essential redex in ¢ or an inessential
one. Similarly, I(Iz) can be S-reduced in one step to Iz, where I = Az.z, but the
information I(Iz) — Iz is not enough to determine whether the outermost redex
has been contracted or the innermost one (the effect that contraction of different
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redexes yields the same result is called a ‘syntactic accident’ [43]). So a strategy
should specify which redex occurrence must be contracted.

The second thing to take into account is that a redex occurrence can be an
instance of more than one rule. That is, LHS(r1)0; = u = LHS(ry)0; for some
rules 71 and 73 and some assignments 6; € AA(r1) and 6; € AA(r2). And the
contracta of the different redexes can be the same, which shows that even knowing
the occurrence of the redex may not be sufficient for knowing which rule has been
applied. For example, consider the rules for parallel or:

or(true, ) — true,or(z,true) — true.

Then or(true,true) — true by applying either of the two rules. So a strategy
should specify which rule must be applied.

Finally, although for orthogonal ERSs the result of a reduction step from some
term t is uniquely determined by the redex occurrence and the rule to be ap-
plied, this need not be the case in general. For example, applying the (variable-
introducing, hence non-orthogonal) rule a — A to the term a in the empty context
may lead to any result, depending on the assignment to A.

Thus we prefer to view a strategy as a set F' of triples (7,6, C[]) specifying that
rule 7 : ¢ > s € R can be used with assignment 8 in context C[] to rewrite C[t6]
to C[s0]).® Thus a strategy F may be non-deterministic in that the redex to be
contracted in a term ¢ can be selected from a possibly non-singleton set of redexes
of t specified by F. To a strategy F one can associate a CCERS Ry encoding
exactly the same information by taking 6, C[] admissible for r iff (r,6,C[]) € F.
Obviously, this also holds the other way around; that is, every CCERS can be
viewed as a strategy for its unconditional version.

Note that the set of terms und(F') on which a strategy F' (considered as a set of
triples) is undefined need not coincide with the set of normal forms. Indeed, many
strategies halt once they reach terms to a set of values (e.g., head normal forms or
weak head normal forms in the A-calculus), or if a deadlock situation arises; see [42]
for a number of such strategies. So our definition provides for such strategies, except
the information about which terms from und(F’) are values (and which correspond
to a deadlock situation) must be added explicitly.

3. ORTHOGONAL CCERSS

In this section, we introduce a suitable concept of orthogonality for CCERSs,
prove confluence for them, and illustrate how this result can be used for proving
confluence for restricted A-calculi. We then recall some results concerning the sim-
ilarity of redexes [31] in orthogonal CCERSs. Finally, we present a new proof of
the existence of external redexes [22] in every reducible term in an orthogonal fully-
extended CCERS. The results concerning the similarity of redexes and external
redexes will be used later on to study the perpetuality of redexes in orthogonal

fully-extended CCERSs.

8Note that an ordinary strategy F' can be directly encoded by associating the set {(r : t —
5,0,C[]) | r € R,C[s8] = F(CItf)])} to it.
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3.1. Orthogonality and confluence

The idea of orthogonality is that contraction of a redex does not destroy other
redexes (in whatever way) but instead leaves a number of their residuals. A prereq-
uisite for the definition of residual is the concept of descendant, also called trace,
which allows the tracing of subterms along a reduction. Whereas this concept is
pretty simple in the first-order case, CCERSs may exhibit complex behaviour due to
the possibility of nested metasubstitutions in the right-hand sides of rules, thereby
complicating the definition of descendants. A standard technique in higher-order
rewriting [37] (illustrated below on examples) is to decompose or refine each rewrite
step into two parts: a TRS-part in which the left-hand side is replaced by the
right-hand side without evaluating the (meta)substitutions, and a substitution-part
in which the delayed substitutions are evaluated. To express substitution we use
the S-reduction rules

Sn+1.’lt1 .’L‘nAl AnA(] — (Al/l‘l,...,An/il}n)Ao, n= 1,2,...,

where S™*! is the operator sign of substitution with arity (n,n + 1) and scope
indicator (n + 1) and where z1,...,z, and Ay,...,A,, Ay are pairwise distinct
variables and metavariables. (We assume that the CCERS does not contain symbols
Smt1l. it can of course contain a renamed variant of S-rules. The collection of all
substitution rules, renamed or not, is an ERS itself.) Thus S™*! binds only in the
last argument. One can think of S-redexes as (simultaneous) let-expressions.

Thus the descendant relation of a rewrite step can be obtained by composing
the descendant relation of the TRS-step and the descendant relations of the S-
reduction steps. All known concepts of descendants agree in the cases when the
subterm s C ¢ which is to be traced during a step ¢t — o is (1) in an argument
of the contracted redex u, (2) properly contains u, or (3) does not overlap with u.
The concepts differ when s is a pattern-subterm (i.e., when s is in the contracted
redex u but is not in any of its arguments), in which case we define the contractum
of u to be the descendant of s. According to many definitions, however, s does
not have a u-descendant (descendant is often used as a synonym of residual, which
it is not). In the case of TRSs, our definition coincides with Boudol’s [12] and
differs slightly from Klop’s [38]: according to Klop’s definition the descendants of a
contracted redex, as well as of any of its pattern-subterms, are all subterms whose
head-symbols are within the pattern of the contractum.

We first explain our descendant concept by using examples. Consider a TRS-
step t = f(g(a)) — h(b) = s performed according to the rule f(g(z)) — h(b). The
descendant of both pattern-subterms f(g(a)) and g(a) of t in s is h(b)? and a does
not have a descendant in s. The refinement of a -step t = Ap(Az(Ap(z, x)),z) —p
Ap(z,z) = e would be t = Ap(Az(Ap(z, x)),z) —p, 0 = SwzAp(z,x) =5 Ap(z,2) =
e: the descendant of both ¢ and Az(Ap(z,z)) after the TRS-step is the contrac-
tum S2zzAp(z, ), the descendants of Ap(x,z),2 C t are the respective subterms
Ap(z,z),z C o, the descendant of both 0 = S?2zzAp(x,z) and Ap(z,z) after the
substitution step is the contractum e, and the descendants of z C o, as well as of
the bound occurrence of z in Ap(z, ), are the occurrences of z in e.

9 According to Klop’s definition, the occurrence of b in h(b) is also a descendant for both f(g(a))
and g(a).
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This definition by example can be formalized using paths to refer to subterm
positions in a term ¢: Paths, denoted by ¢, 1, (, &, are strings of integers: the empty
string e refers to the top-position (i.e., the term ¢t itself) and if a path iq,...,1%
refers to a subterm oy ... T (t1,-..,t,) of t, then 41,...,4g,7x11 is again a path
iry1 Of t; X denotes the prefix
ordering on paths. (The binding variables in a quantifier are considered to be at

for each 1 < i1 < m which refers to the subterm ¢

the same position as the quantifier symbol itself. They therefore can be ignored
because they are not subterms.)

DEFINITION 3.1. Let ¢ be a term in a simple CCERS R (so the refinement of an
R-step coincides with the R-step itself), let r : ' — s’ € R, let u be an (admissible)
r-redex in t occurring at a position ¢, let t = s, and let o be a subterm of ¢ at a
position .

1. If ¢ and © are disjoint (i.e, neither ¢ < 1 nor ¢ < ¢), then the descendant of
o is the subterm of s at the same position ;

2. If ¥ < ¢, then again the descendant of o is the subterm of s at the same
position ;

3. If 9 = ¢ - ( where ( is a nonvariable position in the left-hand-side ¢’ of r (- is
the concatenation operation on paths), then the descendant of o is the subterm of
s at the position ¢ (i.e., is the contractum of u);

4. If ¢ = ¢-(;-€ where (; is the position of the ith-from-the-left variable occurrence
in ', then the descendants (0 or more) of o are the subterms in s at all positions
v =¢- C; ¢, 1 <5 <k, where (f,..., C}Cl are the positions of all occurrences of
the same variable in the right-hand-side s’ of r.

DEFINITION 3.2. Let S®™lzy ...z, t;...t,to be an S-redex in a term t at a po-
sition ¢ in a CCERS, let t ¢ s, and let o be a subterm of ¢ at a position .

1. If ¢ and 9 are disjoint, then the descendant of o is the subterm of s at the
same position ;

2. If ¥ < ¢, then again the descendant of o is the subterm of s at the same
position ;

3.If¢p=¢-n+1-¢ (ie., oCty), then the descendant of o is the subterm in s
at position ¢ - £.

4. I =¢-i-& where 1 <1 < mn, then the descendants (0 or more) of o are the
subterms in s at all positions 9; = ¢ - CJZ ¢, 1< j < k;, where (4,..., C;;}, are the
positions of all occurrences of z; in tg.

To illustrate further the third and the fourth cases of Definition 3.2, consider the
S-reduction step t = Sz f(a)g(z) —s g(f(a)) = s. Then the descendant of z C ¢ is
f(a) C s, and the descendant of g(z) C ¢t is s. The descendants of f(a),a C t are
the occurrences f(a),a C s, respectively.

The descendant concept extends by transitivity to arbitrary reductions consisting
of TRS-steps and S-reduction steps. If P is an R-reduction, then P-descendants are
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defined to be the descendants under the refinement of P. The ancestor relation is
the inverse of the descendant relation. The descendant concept allows us to define
residuals:

DEFINITION 3.3. Let t - s be in a CCERS R, let v C t be an admissible redex,
and let w € s be a u-descendant of v. We call w a u-residual of v if (a) the patterns
of u and v do not overlap (i.e., the pattern-occurrences do not share an occurrence
of a symbol in t), (b) w is a redex weakly similar to v (see Definition 2.2), and
(¢) w is admissible. (So w itself does not have u-residuals in s.) The concept of a
residual of redexes extends naturally to arbitrary reductions. A redex in s is called
a new redex or a created redex if it is not a residual of a redex in ¢t. The predecessor
relation is inverse to that of residual.

DEFINITION 3.4. We call a CCERS orthogonal if:

e the left-hand sides of rules are not single metavariables,

e the left-hand side of any rule is a simple metaterm and its metavariables contain
those of the right-hand side, and

e all the descendants of an admissible redex u in a term ¢ under the contraction
of any other admissible redex v C t are residuals of u.

The second condition ensures that rules exhibit deterministic behaviour when
they can be applied. The last condition is the counterpart of the subject reduction
property in typed A-calculi [6]. For example, consider the rulesa — band f(4) —» A
with the admissible assignment A8 = a. The descendant f(b) of the redex f(a) after
contraction of a is not a redex because the assignment A0 = b is not admissible.
Hence the system is not orthogonal.

DEFINITION 3.5. Reductions starting from the same term are called co-initial.
Recall that co-initial reductions P : ¢t — s and @) : t —» e are weakly equivalent or
Hindley-equivalent [5], written P =y @, if s = e and the residuals of any redex of ¢
under P and under @) are the same redexes in s. Furthermore, P and Q) are strictly
equivalent [26], written P = @, if s = e and the descendants of any subterm of ¢
under P and under @ are the same subterms in s.

Using these equivalences and the above definition of residuals, we can easily infer
strong [43, 22] and strict [26] forms of the Church-Rosser property for CCERSs.

A standard method of proving the strong version of CR is one using FD and the
fact that any pair of redexes w,v in a term strongly commute: u + v/u =g v +
u/v [43]; that latter property will be called strong local confluence.!® Indeed, as in
orthogonal TRSs [22], the A-calculus [44, 5], orthogonal CRSs [37], and orthogonal

10FD is often referred to the stronger property that all developments of a set of redexes in a term
are terminating and all complete developments of the same set of redexes are Hindley-equivalent.
This stronger version follows easily from the weaker version (i.e., termination of all developments)
and the strong commutativity of co-initial steps.
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HRSs [54], one can in orthogonal CCERSs use FD and strong commutativity to
define for any co-initial reductions P and @ the residual of P under Q, written
P/Q. We write P 4, Q if P/Q =0 (<, is the Lévy-embedding relation); P and Q
are called Lévy-equivalent or permutation-equivalent (written P ~j, Q) if P 41, Q
and Q< P. It follows from the definition of / that if P+ P’ and Q+@Q’ are co-initial
finite reductions in an orthogonal CCERS, then (P + P')/Q =1 P/Q + P'/(Q/P)
and P/(Q + Q') ~r (P/Q)/Q'. This is all well known and we do not give more
details. The strong Church-Rosser theorem then states that, for any co-initial finite
reductions P and @ in an orthogonal ERS, P U Q ~p Q U P, where P LI () means
P + Q/P. The Strict Church-Rosser theorem states that, for any co-initial finite
reductions P and @ in an orthogonal ERS, P U Q =, QU P. (Thus, P ~; Q
implies P =, Q.) Like the strong CR property, the strict CR property follows
from FD and the following strict local confluence property: any two co-initial steps
u,v strictly commute: u v ~g v U u.

Since developments in CCERSs are obtained by restricting developments in ERSs,
and the latter are a special case of developments in PRSs [61] which are finite [56],
we obtain the following result.

THEOREM 3.1. (Finite Developments) All developments of a term t in an
orthogonal CCERS R eventually terminate.

Using this theorem and the last condition in the definition of orthogonality, the
next theorem follows from some abstract theory of residuals.

THEOREM 3.2. Let P and @ be any co-initial finite reductions in an orthogonal
CCERS R. Then

(1)(Strong Church-Rosser) PUQ ~; QU P.
(2)(Strict Church-Rosser) PUQ = sQ U P.

The A-calculus [5] is the prime example of an ERS. If one restricts term formation
in it, one arrives at a large class of typed lambda calculi. Since the rewrite relation
in these calculi is not restricted in any way and typed terms are closed under 8-
reduction,'! these CCERSs are orthogonal, hence confluent. In Appendix A.2 we
demonstrate how the above confluence result can be used to prove confluence for
the call-by-need A-calculus of Ariola et al. [4].

An emerging class of context-sensitive conditional ERSs is the class of A-calculi
with restricted expansion rules like 7 (see e.g. [3]). These calculi are not orthogonal,
but their confluence can be shown by modifying the confluence diagrams arising
from FD for the corresponding unconditional expansion rules.

3.2. Similarity of redexes

The idea of similarity of redexes [29, 31] v and v is that u and v are weakly
similar — that is, they match the same rewrite rule — and quantifiers in the pattern

11 Proving this subject reduction property is sometimes nontrivial.
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of u and v bind ‘similarly’ in the corresponding arguments. For example, recall
that a S-redex Ap(Azt,s) is an I-redez if + € FV(t) and is a K-redes otherwise.
Then all I-redexes are similar and all K-redexes are similar, but no I-redexes are
similar to a K-redex. Consequently, for any pair of corresponding arguments of u
and v, either both are erased after contraction of uw and v or none is.

A redex in a CCERS has the form u = C[ty,...,t,], where C is the pattern and
t1,...,t, are the arguments. Sometimes we will write u as u = C[T1t1,...,ZTnts),
where T; = {z;,,... ,zi"i} is the subset of binding variables of C' such that t; is
in the scope of an occurrence of each z;;, j = 1,...,n;. Let us call the maximal
subsequence ji,...,jr of 1,...,n such that ¢; ,...,t; have u-descendants the main
sequence of u (or the u-main sequence), call t;,, ..., t;, the (u-)main arguments, and
call the remaining arguments (u)-erased. Further, call uw erasing if k < n and non-
erasing otherwise.

Now the similarity of redexes can be defined as follows: weakly similar re-
dexes v = C[Zit1,...,Tntn] and v = C[T1S1,...,Tnsy,] are similar if, for any
1<i<n, Z;NFV(t;) =7;N FV(s;). For example, consider the rule cz(A, B) —
(cz(f(A),A)/z)B. Then the redexes u = oz(z,y) and v = oz(f(z),y) are similar,
while w = oz(y,y) is not similar to any of them since z ¢ FV(y). However, note
that the second arguments of all the redexes u,v and w are main and the first
arguments are erased. In this paper it is more convenient to use a slightly relaxed
concept of similarity, written ~, such that u ~ v ~ w:

DEFINITION 3.6. We write u ~ v if the main sequences of v and v coincide and
for any main argument t; of u, T; N FV (t;) =z; N FV (s;).

The following lemma implies in particular that, indeed, if v and v are similar,
then 4 ~ v, and that ~ is an equivalence relation. Because its proof involves
properties of essentiality not needed elsewhere in this paper, we omit the proof and
instead refer to previous work [31]. The lemma is quite intuitive anyway: it shows
that only pattern-bindings (i.e., bindings from inside the pattern) of free variables
in main arguments of a redex are relevant for the erasure of its arguments.

Below, 6 will not only denote assignments but will also denote substitutions
assigning terms to variables; when we write o’ = 0 for a substitution 8, we assume
that no free variables of the substituted subterms become bound in o' (i.e., we
rename bound variables in o when necessary).

LEmMMA 3.1. Let u = C[Zit1,...,Tntn] and v = C[T1S1,...,Tnsn] be weakly
similar redezes, and let for any main argument s; of v, TN FV(t;) CT;NFV(s;).
Then the main sequence of u is a subset of the main sequence of v.

COROLLARY 3.1. Letu = C[Zit1,...,Tntn] and v = C[T1S1,...,Tnsy] be weakly
similar redezes, and let for any main argument s; of v, T; N FV (t;) = T, N FV(s;).
Then uw ~ v. In particular, if u = v8, then u ~ v.
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3.3. External redexes

In this subsection we will show that every reducible term in an orthogonal fully-
extended (see Definition 3.7) CCERS has an ezternal redex. External redexes for
orthogonal TRSs were introduced by Huet and Lévy [22], who also proved the
existence of external redexes in every reducible term. Both the original definition
of external redexes and the existence proof are quite lengthy.

With our concept of descendant, external redexes can be defined as redexes whose
descendants can never occur inside the arguments of other redexes. Any external
redex is trivially outermost, but an outermost redex is not necessarily external.
Contracting a redex disjoint from it, may cause its residual to be non-outermost.
For example, consider the orthogonal TRS {f(z,b) — ¢,a — b}. The first a in
f(a,a) is outermost but not external; contracting the second a (which is disjoint
from it) creates the redex f(a,b) having the residual of the first a as argument.
The second a is external.

In an ERS, there may be another reason why an outermost redex need not be
external. Contracting a redex in one of its argument, may cause its residual to
be non-outermost. This already shows up in the ABn-calculus. Let I = Axz.x and
K = Azy.z, as usual [5]. The redex u = I(KIz) in Az.I(KIx)z is outermost but
not external; contracting the redex KIzx in its argument creates the n-redex Ax.I1x
having the residual II of u as argument. This example can be readily encoded as
an orthogonal ERS. We will see later that because of rules like n which test for the
absence of variables in subterms (occur check!) even the conservation theorem fails
for orthogonal CCERSs in general. To rule out such rules, following [55, 19], we
introduce the concept of full extendedness for CCERSSs:

DEFINITION 3.7. We call a CCERS R fully-extended iff for any step t = s in R
and any occurrence w C t of an instance of the left-hand-side (of a rule r € R) such
that:

(a) the patterns of w and u in ¢ do not overlap, and
(b) w has a u-descendant w' € s that is a redex,

w is an admissible redex in t weakly similar to w’.

Now we can easily generalize the proof of existence of external redexes in [28]
from orthogonal TRSs to fully-extended orthogonal CCERSs.

DEFINITION 3.8. Let P : t — o in an orthogonal fully-extended CCERS. A
subterm s C t is P-external if no descendants of s along P appear inside redex-
arguments and is P-internal otherwise. A subterm s C tis externalif s is P-external

for any finite reduction Q : ¢ —» ; otherwise s is internal.!?

Consider the A-term t = Q((Azy.zy)I(Iz)), where I is as defined above and
Q = (Az.zz)(A\z.zz), and consider the f-reduction P : t = Q((\y.Iy)(Iz)) =
Q(I(Iz)) contracting the redexes v = (Azy.zy)] and w = (Ay.Iy)(Iz). Then the
redexes Q,v C t are P-external, whereas the redex Iz C t is P-internal (since after

121n [28], an external (resp. P-external) redex is called unabsorbed (P-unabsorbed).
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the step v the residual of Iz C ¢ is inside an argument the created redex w). Note
that for the outermost redexes Q,I(Iz) C s, there are P-external redexes ,v C ¢
such that the unique P-descendant of Q2 C ¢ overlaps the pattern of Q2 C s and the
unique P-descendant of v overlaps the pattern of I(Iz) C s. Note also that Iz C ¢
may be @ U P-internal even if it is Q-external. For instance, consider a reduction Q
which contracts the occurrences of 2 a finite number of times. These intuitions are
formalized in the following three lemmas and are then used to prove the existence
of external redexes in reducible terms.

Un—1

LEMMA 3.2. Let P :to B t; 3 ... 3" ¢, in an orthogonal fully-extended
CCERS. Then for any outermost redex v C t, there is a P-external redex u C tg
whose unique P-descendant s C t,, overlaps the pattern of v (i.e., either v C s or
s = e for some proper pattern-subterm e of v.)

Proof. By induction on |P|. If |P| = 0 the result is obvious. Suppose |P| > 0
andlet P=P' +u,_;.

(a) Assume first that v is a residual of a redex v’ C ¢, 1. Let v* = o' if
v' € u, ; and let v* = u,,_; otherwise. By full extendedness, since v is outermost,
v* is outermost. By the induction hypothesis there is a P'-external redex u C to
whose unique P’-descendant s’ C t,,_; satisfies either v* C s’ or s’ = €’ for some
proper pattern-subterm e’ of v*. Since u is P'-external, s’ has a unique descendant
sin t,. If v* C s it is easy to see v C s. Otherwise ¢’ = s’ and we consider two

cases:

1. v* = v'. Since the patterns of the redexes v’ and u, ; do not overlap (by
orthogonality), s is a pattern-subterm of v.

2. v* = u, 1. Since the descendant of each pattern-subterm of u, ; is the
contractum of w,_1, v C s.

Therefore u is P-external.

(b) Assume now that w,_; creates v. By full extendedness, the contractum of
u,_1 overlaps the pattern of v. Since v is outermost, u,_1 is outermost. By the
induction hypothesis there is a P’-external redex u C t, such that its unique descen-
dant s’ C t,,_; satisfies either u,_; C s’ or €’ = s’ for some proper pattern-subterm
e’ of u,,_1. Since u is P'-external, s’ has a unique descendant s in t,,. Since the de-
scendant of each pattern-subterm of u,,_; is the contractum of u,,_;, s contains the

contractum of u,, ;. Thus s overlaps the pattern of v. Therefore u is P-external. H

LEMMA 3.3. Let P :t — s be in an orthogonal fully-extended CCERS. If t is
reducible, there is a P-external redex u in t.

Proof. If |P|=0or |P| > 0 and s is not a normal form, then the lemma follows

immediately from Lemma 3.2. Otherwise, let P : ¢ P, s 2 s. Since s is a normal
form, v is outermost. By Lemma 3.2 there is a P'-external redex v C t whose unique

descendant in s’ overlaps the pattern of v. Since s has no redexes, u is P-external. W

LEMMA 3.4. Let P:t — s and Q : t — e be in an orthogonal fully-extended
CCERS. If u is P-internal, then it is Q Ll P-internal.
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Proof. By induction on |@|. It is enough to consider the case when |Q| = 1;
the rest follows from the induction hypothesis. So let ) = w for a redex w in ¢.
Furthermore, let P = P* + v*. Without loss of generality we can assume that u is
P*-external, so v* creates a redex v that contains the unique P-descendant o of u
in its argument.

(a) Assume first that o does not have a w/P-descendant. By Theorem 3.2 u does
not have w LI P-descendants. Hence u is w Ll P-internal (otherwise its descendants
cannot be erased).

(b) Assume now that o has a w/P-descendant o'. Since w/P contracts only resid-

uals of w and v is a new redex, v has a residual v’ that contains o’ in its argument.

By Theorem 3.2 ¢’ is also a w LI P-descendant of u. Hence u is w LI P-internal. W

THEOREM 3.3. FEvery reducible term in an orthogonal fully-extended CCERS has
an external redez.

Proof. Assume that for any outermost redex u; C t there is a finite reduction
P; such that w; is P;-internal (¢ = 1,...,k). Then by Lemma 3.4 all redexes

u; are P-internal for P = P; Ul ... U P,. But this is impossible by Lemma 3.3. H

4. A MINIMAL PERPETUAL STRATEGY

In this section we introduce a perpetual strategy F,>° for orthogonal fully-extended
CCERSs by generalizing the constricting perpetual strategies in the literature [59,
63, 16, 47, 62]. We also study properties of F2° that are used in the next section
to obtain new criteria for the perpetuality of redexes and of redex occurrences in
orthogonal fully-extended CCERSs. A recent survey on perpetual reductions in the
A-calculus and its extensions can be found in [66, 62].

For convenience we have collected the definitions of all related perpetual strategies
in Appendix A.3. To unify the notation we follow [66, 62] and use F; and Fj
to denote the perpetual strategies of Bergstra and Klop [8] and Sgrensen [63],
respectively. And we use F, to denote the zoom-in strategy of Mellies [47].

Let us first fix the terminology. Recall that a term ¢ is called weakly normalizing
(WN), written WN(t), if it is reducible to a normal form (i.e., a term without
a redex), and t is called strongly normalizing (SN), written SN(t), if it does not
possess an infinite reduction. We call ¢ an co-term (written oot), if 7SN (t). Clearly,
for any term t, SN(t) = WN(t). If the converse is also true, then we call ¢
uniformly normalizing (UN). So a UN term t either does not have a normal form
or all reductions from ¢ eventually terminate. Correspondingly, a rewrite system R
is called WN, SN, or UN if all terms in R are WN, SN, or UN, respectively.

Following [8, 38], we call a rewrite step ¢ 2 s, as well as the redex-occurrence
u C t, perpetual if oot = cos. Otherwise we call them critical. We call a redex (not
an occurrence) perpetual iff its occurrence in every (admissible) context is perpetual.
A perpetual strategy in an orthogonal fully-extended CCERS is a (partial) function
on terms which in any reducible term selects a perpetual redex-occurrence; the
orthogonality of the CCERS implies that the redex-occurrence uniquely determines
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the rewrite rule (and the corresponding admissible assignment) according to which
the redex is to be contracted.

DEFINITION 4.1. Let P :t — and s C t. Reduction P is internal to s if it
contracts redexes only in (the descendant of) s. (The contracted redexes in P need

not be proper subterms of s.)

DEFINITION 4.2. (1) Let ¢t be an co-term in an orthogonal fully-extended CCERS
and let s C ¢ be a smallest subterm of ¢ such that co(s) (i.e., such that every proper
subterm e C s is SN). Then we call s a minimal perpetual subterm of t, and call
any external redex of s (such a redex exists by Theorem 3.3) a minimal perpetual
redex of t.

(2) Let F2° be a one-step strategy that contracts a minimal perpetual redex in
t if oot and otherwise contracts any redex. Then we call F;>° a minimal perpetual
strategy. We call F2° constricting if for any F°-reduction P : tg BB
(i-e., any reduction constructed using F?°) starting from an oco-term ¢, and for
any 7, P* : t; 5 tit1 "4 is internal to si, where s; C t; is the minimal

perpetual subterm containing u;. Constricting minimal perpetual strategies will be
denoted Fp .

Recall that, according to Gramlich [16, Remark 3.3.7], a reduction in a TRS is
called constricting if it has the form

Colso] = Co[Ci[s1]] = Co[C1[Cy[s2]]] = ..

where s; are minimal perpetual subterms and u; C s;. Hence any F.5 -reduction
is constricting (according to Gramlich). Plaisted [59] constructs a constricting per-
petual strategy (for TRSs) that in each step contracts a perpetual redex of the
leftmost (innermost) minimal perpetual subterm.!® Sgrensen’s S-reduction strat-
egy F3 [63, 62], as well as Mellies’ zoom-in [-strategy F,, produce constricting
reductions (on oo-terms) and are special cases of F°. Specifically, F, is obtained
from F2P if in each step the leftmost redex of a minimal perpetual subterm is con-
tracted (the leftmost redex in any A-term is external); and F3 is a special case of
F,. The perpetual strategy F» [62] is not zoom-in but is constricting. Note that
F° is not in general a computable strategy, since SN is already undecidable in
orthogonal TRSs [38]; the strategies F1, F», F3, and F, are not computable either.
These four strategies all produce standard reductions.

LEMMA 4.1. Let t be an oo-term in an orthogonal fully-ertended CCERS, let
s C t be a minimal perpetual subterm of t, and let P : t — oo be internal to s.

Then exactly one residual of any external redex w of s is contracted in P.

13 As noted by Gramlich [16], Plaisted’s original definition of ‘constricting’ is not correct because
any infinite reduction becomes constricting.
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Proof. Lett=C[s] and s = C'[s1,...,u,...,8y,], where C' consists of the sym-
bols on the path from the top of s to u (the context C' can be empty, in which
case s = u). If, on the contrary, P does not contract a residual of u, then every
step of P takes place either in one of the s; or in the arguments of u (since u
is external in s). Hence at least one of these subterms has an infinite reduction
— a contradiction, since s is a minimal perpetual subterm. Since u is external,

P cannot duplicate its residuals; hence P contracts exactly one residual of u. M

The following theorem justifies the terminology ‘minimal perpetual redex’.

THEOREM 4.1. F2° is a perpetual strategy in any orthogonal fully-extended CCERS.

Proof. Suppose 0o(tp), let sp be a minimal perpetual subterm of g, and let
u C sp be a minimal perpetual redex. Let P : to Bt B ¢, —» oo be internal to so.

By Lemma 4.1 exactly one residual of u, say u;, is contracted in P. Let P q : to =3

i Ui . P; i P
3.8 tiy1 and Pyt gy tiga — 0o (e, P:ty —» t; e tit1 =% ).

Since P; and w are co-initial, u + P;/u =~ P; + u/P; = P; + u; = P,;1 by Theo-
rem 3.2, hence P = P,y + P, ®f u+P;/u+P},;. That is, u is a perpetual redex-

occurrence. Hence F° is perpetual. W

DEFINITION 4.3. F7 is the leftmost minimal perpetual strategy, denoted Fyoo, if
in each term it contracts the leftmost minimal perpetual redex. (See Definition A.5
for the definition of F;>° for the case of the A-calculus.)

THEOREM 4.2. F° is a constricting strategy in any orthogonal fully-extended
CCERS.

Proof. Let P:ty =3 t; =3ty —» 0o be a leftmost minimal perpetual reduction,
and let s; C t; be the leftmost minimal perpetual subterm of ¢;. Since by Theo-
rem 4.1 u; is perpetual for the term s;, the descendant of s; is an co-term and thus

contains s;41, and it is immediate that P is constricting. H

Although we do not use it in the following, it is interesting to note that the
constricting perpetual reductions are minimal w.r.t. Lévy’s embedding relation <.
Hence the term minimal.

The relations <j,=r, and / (defined in Section 3) are extended to possibly
infinite co-initial reductions N, N’ as follows. N <y, N’, or equivalently, N/N' =0
if for any redex v contracted in N, say N = Ny +v + N3, v/(N'/N1) = 0 (see the
diagram below); and N =~ N’ iff N <; N’ and N’ <j N. Here, for any infinite P,
u/P =0 if u/P’ = @ for some finite initial part P’ of P. And P/Q is defined only

for finite ) as the reduction whose initial parts are residuals of initial parts of P
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under Q.

N1 o 1)‘ N2 - N

N i iN’ /N,

THEOREM 4.3. Let P:ty 3 t; 5 t, —» 0o be a constricting minimal perpetual
reduction in an orthogonal fully-extended CCERS and let Q : to — oo be any
infinite reduction such that @Q < P. Then Q =~ P.

Proof. Since P is constricting, there is a minimal perpetual subterm sy C tg
such that P is internal to sq. Since @ <p P, @ is internal to sy as well. By

the construction, ug is an external redex in sp, and by Lemma 4.1 exactly one

i i i . ’ Q".‘
residual u’ of ug is contracted in Q. So let Q : tg N t; 5 t;+1 %' 50. Then

Q=pu+Q /ug+ Q741> and obviously ug J Q. Similarly, since P is constricting,
for any finite initial part P’ of P, P' <1, Q, and therefore P<;,Q. Thus Q ~;, P. W

5. TWO CHARACTERIZATIONS OF CRITICAL REDEXES

In this section we give an intuitive characterization of critical redex occurrences
for orthogonal fully-extended CCERSs, generalizing Klop’s characterization of crit-
ical redex occurrences for orthogonal TRSs [38], and derive from it a characteriza-
tion of perpetual redexes similar to Bergstra and Klop’s perpetuality criterion for
B-redexes [8]. Our proofs are surprisingly simple, yet the results are rather general
and useful in applications. We need three simple lemmas first.

LEMMA 5.1. Lett - s be in a CCERS, let o C t be either in an argument of u
or not overlapping with u, and let o’ C s be a u-descendant of o. Then o' = 08 for
some substitution 6. Moreover, if o is a redez, then so is o' and o ~ o'.

Proof. Since u can be decomposed as a TRS-step followed by a number of
substitution steps, it is enough to consider the cases when u is a TRS step and
when it is an S-reduction step. If u is a TRS-step, or is an S-reduction step
and o is not in its last argument, then o and o' coincide (hence o ~ o' when
o is a redex). Otherwise, o' = o0f for some substitution 6, and if o is a redex,
we have again o ~ o' by orthogonality and Corollary 3.1, since free variables of

the substituted subterms cannot be bound in 0f (by the variable convention). N
LEMMA 5.2. Let s be a minimal perpetual subterm of t, in an orthogonal fully-
extended CCERS, and let P : t — oo be internal to s. Then P has the form

u . . .
P=t — 0 — e —» oo, where u is the descendant of s in o (i.e., a descendant of
s mecessarily becomes a redexr and is contracted in P).

Proof. If P did not contract descendants of s, then infinitely many steps of P
would be contracted in at least one of the proper subterms of s, and this would con-

tradict the minimality of s. MW
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LEMMA 5.3. In an orthogonal fully-extended CCERS, let P = w + P’ be a con-
stricting minimal perpetual reduction starting from t, and let u be in an argument
o of a redex v Ct. Then P is internal to o.

Proof. Let s C t be the minimal perpetual subterm containing w. By defi-
nition of minimal perpetual reductions, w is an external redex of s; hence s does
not contain v. Since P is constricting, it is internal to s, and orthogonality and

Lemma 5.2 tell us that s cannot overlap the pattern of v. The lemma follows. M

DEFINITION 5.1. (1) Let P:tg 33 t; 5 ... “*3" #;, be in an orthogonal CCERS,
and let sg,s1,...,5; be a chain of descendants of so along P (i.e, s;11 is a u;-
descendant of s; C t;). Then, following [8], we call P passive w.r.t. sg,s1,..., Sk
if the pattern of u; does not overlap s; (s; may be in an argument of u; or be
disjoint from u;) for 0 < 7 < k, and we call s; a passive descendant of so. By
Lemma 5.1, s; = s for some substitution 6, which we call a passive substitution,
or P-substitution (w.r.t. So,81,---,5k)-

(2) Let t be a term in an orthogonal fully-extended CCERS and let s C t. We
call s a potentially infinite subterm of ¢ if s has a passive descendant s’ s.t. oo(s’).

(Thus oco(sf) for some passive substitution 6.)

THEOREM 5.1. Let t be an oo-term and let t = s be a critical step in an orthog-
onal fully-extended CCERS. Then v erases a potentially infinite argument o (thus
oo(08) for some passive substitution 6).

Proof. Let P:t =1ty =3 t; = t, — oo be a constricting minimal perpetual
reduction, which exists by Theorem 4.1 and Theorem 4.2. Since v is critical, SN (s);
hence P/v is finite. Let j be the minimal number such that u;/V; = 0 and u; ¢ Vj,
where V; = v/Pjand P; : t —» t; is the initial part of P with j steps. (Below, V; will
denote both the corresponding set of residuals of v and its complete development.)
By the Finite Developments theorem, no tails of P can contract only residuals of
v; and since P/v is finite, such a j exists.

s
t:t0—>>tl—>>tj—J>tj+1—>> P

of Mg Vi
§=259 —> S — §; —= Sjp1 —>> Pfv

0 0

Since u;/V; = 0 and u; ¢ Vj, there is a redex v’ € V; whose residual is contracted
in V; and erases (the residuals of) w;. Since V; consists of (possibly nested) residuals
of a single redex v C tg, the quantifiers in the pattern of v’ cannot bind variables
inside arguments of other redexes in Vj. Therefore, by Corollary 3.1, v’ is similar
to its residual contracted in V;, and hence u;/v’ = 0, implying that v’ erases its
argument o, say the m-th from the left, containing u;. By Lemma 5.3, the tail
P} :tj — oo of P is internal to o'.
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Let v; C t; be the predecessors of v' along P; (so vyp = v and v; = v'; note
that a redex can have at most one predecessor), and let o; be the m-th argu-
ment of v; (thus o' = o0;). Note that u; # v; because v; has residuals. Let !
be the minimal number such that w; is in an argument of v; (such an [ exists
because u; is in an argument of v;). Then, by Lemma 5.3, all the remaining
steps of P are in the same argument of v; and it must be the m-th argument o,
of v; (thus oo(o;)); but v’ erases its m-th argument, implying by Corollary 3.1
that v; also erases its m-th argument o;. Furthermore, by the choice of [, no
steps of P are contracted inside v; for 0 < ¢ < [; thus v; is a passive descen-
dant of v, and o; is a passive descendant of og. Hence, by Lemma 5.1 v ~ v;.

Thus v erases a potentially infinite argument oy (since co(0;)), and we are done. M

Note in the above theorem that if the orthogonal fully-extended CCERS is
an orthogonal TRS, a potentially infinite argument is actually an oo-term (since
passive descendants are all identical), implying Klop’s perpetuality lemma [38].
O’Donnell’s [53] lemma, stating that any term from which an innermost reduc-
tion is normalizing is strongly normalizing, is an immediate consequence of Klop’s
Lemma.

COROLLARY 5.1. Any redex whose erased arguments are closed SN terms is per-
petual in orthogonal fully-extended CCERSs.

Proof. Immediate, since closed SN terms cannot be potentially infinite sub-
terms. MW

Note that Theorem 5.1 implies a general (although not computable) perpetual
strategy: simply contract a redex u in the term ¢ whose erased arguments (if any)
are not potentially infinite w.r.t. at least one co-subterm s C ¢ (although the erased
arguments of u may be potentially infinite w.r.t. ¢). It is easy to see that the
perpetual strategy F'* of Barendregt et al. [7, 5] and, in general, the limit perpetual
strategy Fj° of Khasidashvili [30, 31, 32] are special cases, since these strategies
contract redexes whose arguments are in normal form and no (sub)terms can be
substituted in the descendants of these arguments. The strategy F/°° (and hence
the strategies F3 and F.), as well as the strategies Fi and F3, are also special cases
of the above general perpetual strategy.

We conclude this section with a characterization of the perpetuality of erasing
redexes, a characterization similar to the perpetuality criterion of Bx-redexes that
was given by Bergstra and Klop [8].

Below, a substitution 6 will be called SN iff SN (z6) for every variable z.

DEFINITION 5.2. We call a redex u safe (respectively, SN-safe) if it is non-erasing
or if it is erasing and for any (resp. SN-) substitution 6, if uf erases an co-argument,
then the contractum of u# is an co-term. (Note that, by Corollary 3.1, u is erasing
iff uf is, for any 0, erasing.)

THEOREM 5.2. In an orthogonal fully-extended CCERS R, any safe redex v is
perpetual.
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Proof. Assume on the contrary that there is a context C[] such that t = Cv] — s
is a critical step. Let [ be the minimal number such that, for some constricting
minimal perpetual reduction P : t = ¢ BBt oo, the tail P : ¢ — oo
of P is in an erased argument of a residual of v. Such an [ exists by the proof
of Theorem 5.1 (in the notation of that theorem, P;* is in an erased argument
of v; C ;). Let v; be the outermost of the redexes in ¢; which contain w; (and
therefore, P;*) in an erased argument o;, say the m-th from the left (thus co(o;)).
By the proof of Theorem 5.1, the m-th argument o of v is v-erased, 0; = of, and
v; = vl for some passive substitution 6.

We want to prove that the safety of v implies co(s;), hence co(s), contradicting
the assumption that ¢ —» s is critical (see the diagram for Theorem 5.1). By
the Finite Developments theorem, we can assume that s; is obtained from ¢; by
contracting (some of) the redexes in V; in the following order: (a) contract redexes
in V; disjoint from wv;; (b) contract redexes in V; that are in the main arguments
of v;; (c) contract the residual v} of v;; (d) contract the remaining redexes, i.e.,
those containing v; in a main (by the choice of v;) argument. Since the contractions
(a) and (b) do not affect o;, v] erases an oco-argument. (Recall from the proof
of Theorem 5.1 that redexes in V; are similar to their residuals contracted in any
development of V}.) Since v; = v and redexes in (b) are in the substitution part
of v;, v = v8* for some substitution §*; hence its contractum e is infinite by the
safety of v. By the choice of v;, e has a descendant e’ in s; after the contractions
(d). By the following diagram (where t? is obtained from ¢; by the steps (a), (b)
and (c); wo + w1 + ... is an infinite reduction of e C t; Uéd) is the set of residuals
of redexes in (d); and Ui(d) are respective residuals of Uéd)), oo(e) implies oo(e).
Indeed, if e; C ¢! is the descendant of e in i, then all Ui(d)—descendants of e; in s!
are disjoint and identical to e;, and s} —» s?"’l contracts exactly one residual of w;
in every Ui(d)—descendant of e; (the latter are also descendants of €' C s;). Hence
0o(s;) — a contradiction.

Wo w1 w2

t tr t; t;

d d d d
vy vy uly Uiy
sl:s?—»sll +~~ slz +~~ 513—_|_>>

Mgller Neergaard and Sgrensen [49] give a different proof of perpetuality of safe
K-redexes in the A-calculus (safe K-redexes are called there good).

The following example demonstrates that non-erasing steps need not be perpetual
in orthogonal CCERSs in general, that is, the restriction to fully-extended CCERSs

is necessary:
EXAMPLE 5.1. Consider the ERS with rules:
Mz(A,B) — (B/z)A
kyz(A) — (a/2)A
e(4,B) — ¢
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fla) — f(a)

where A is a partial quantifier symbol binding only in its first argument, and
y & FV(Af) for any assignment 6 admissible for the x-rule. Consider the term
s = kyz(Az(e(z,y), f(2))). Note that s is not a redex (yet) due to the occurrence
of y. On the one hand, contracting the e-redex yields an infinite reduction

s = kyz(Az(c, f(2))) — Az(c, f(a)) — ...

On the other hand, contracting the (non-erasing) A-redex yields

s = kyz(e(f(2),y)) = kyz(c) — ¢

as only, and strongly normalizing, reduction. Hence the A-step is non-erasing but
critical.

6. APPLICATIONS

We now give a number of applications demonstrating the power and usefulness
of our perpetuality criteria. In some of the examples we will use the conventional
A-calculus notation [5], and by the argument of a S-redex (Az.s)o we will mean its
second argument o.

6.1. The restricted orthogonal A-calculi

Let us call an orthogonal restricted A-calculus (ORLC) a calculus that is obtained
from the A-calculus by restricting the term set and the S-rule (by some conditions
on arguments and contexts) and that is an orthogonal fully-extended CCERS. Ex-
amples include the Aj-calculus, the call-by-value A-calculus [60], and a large class
of typed A-calculi.

If R is an ORLC, then in the proofs of Theorem 5.1 and Theorem 5.2, the P;-
substitution (and in general, any passive substitution along a constricting perpetual
reduction) is SN. This can be proved in a way similar to the one used to prove the
Bergstra-Klop criterion (see [8, Proposition 2.8]), since in the terminology of [8]
and in the notation of Theorem 5.1 and Theorem 5.2:

e P, is SN-substituting (meaning that the arguments of contracted S-redexes are
SN). This is immediate from the minimality of P,.

e P, is simple (meaning that no subterms can be substituted in the subterms
substituted during the previous steps). This follows immediately from externality,
w.r.t. the chosen minimal perpetual subterm, of minimal perpetual redexes (P, is
standard).

Hence, we have the following two corollaries. The first one is a perpetuality cri-
terion for redex-occurrences and can be seen as a refinement of the Bergstra-Klop
criterion [8] in that it takes into account passive substitutions that can be generated
by the context. The second corollary is simply an extension of the Bergstra-Klop

criterion (in the case of #-redexes, the converse statement is much easier to prove,
see [8]).
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COROLLARY 6.1. Let t be an co-term and let t = s be a critical step in an
ORLC. Then v erases a potentially infinite argument o such that oo(of) for some
passive SN-substitution 6.

COROLLARY 6.2. In an ORLC, any SN-safe redex v is perpetual.

For the case of the A-calculus, a different proof of Corollary 6.2 was published by
Xi[72]. A simple proof of the Bergstra-Klop criterion, one that uses the strategy F5
and thus is closely related to our proof was given by van Raamsdonk et al. [62] (that
proof was obtained independently). Honsell and Lenisa [21] derive a strengthened
version of the Bergstra-Klop criterion using semantical methods. They show that
B-redexes that are safe w.r.t. closed NF -substitutions are also perpetual (closed NF-
substitutions instantiate variables by closed normal forms). This criterion cannot
be derived (at least, directly) from the above corollaries.

Note that these corollaries are not valid for orthogonal fully-extended CCERSs in
general since, unlike the passive substitutions in an ORLC, the passive substitutions
along constricting perpetual reductions in orthogonal fully-extended CCERSs need
not be SN: Let R = SU{oczAB — Szw(A/z)B, E(A) — a} where w = Az. Ap(z, x).
Then the step ozAp(z,z)E(x) — oxAp(z,z)a is SN-safe (since it erases only a
variable) but is critical as can be seen from the following diagram, of which the
bottom part is the only reduction starting from oz Ap(z, z)a:

oxdp(z, 2)E(x) — SzwE(Ap(z, z)) —= E(Ap(w,w)) v E(Ap(w, w)) 5
B) B) B| B|
oz Ap(z,z)a 0_4> Szwa S - a i - a 0;;

6.2. Plotkin’s call-by-value \-calculus

To investigate the relation between the A-calculus and ISWIM language of Landin [40],
Plotkin [60] introduced the call-by-value A-calculus Ay. This calculus restricts the
A-calculus by allowing the contraction of redexes whose arguments are wvalues, i.e.,
either abstractions Az.t or variables (we assume that there are no §-rules in the
calculus). Let the lazy call-by-value A-calculus Apy be obtained from Ay by al-
lowing only call-by-value redexes that are not in the scope of a A-occurrence (ALy
is enough for computing values in Ay, see Corollary 1 in [60]). Then it follows
from Corollary 6.1, as well as from Corollary 6.2, that any A;y-redex is perpetual;
hence Apy is UN. Indeed, let v = (Az.s)o be a Apy-redex. Then if o is a variable
it is immediate that v cannot be critical and that if o is an abstraction any of its
instances is an abstraction too and hence is a Ay -normal form. This is not sur-
prising, however, because Ay -redexes are disjoint'* and there is no duplication or
erasure of (admissible) redexes.

14if u,v are redexes in a term t and u = (Az.e)o, then v ¢ e because of the main A of u, and
v & o since o is either a variable or an abstraction; orthogonality of Ary follows from a similar
argument.
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6.3. De Groote’s Brs-reduction

De Groote [17] introduced Bs-reduction on A-terms by the following rule:
Bs : (Az.M)N)O — (Az.MO)N,

where z ¢ FV(M,0O). He proved that the Srs-calculus is UN. Clearly, this is an
immediate corollary of Theorem 5.1 since the Sg- and B7-rules are non-erasing (note
that these rules do not conflict because of the conditions on bound variables). Using
this result, de Groote proves strong normalization of a number of typed A-calculi.

6.4. Bohm and Intrigila’s A-6z-calculus
Bohm and Intrigila [11] introduced the A-éi-calculus in order to study UN so-
lutions to fixed point equations, in the Azn-calculus. Since the K-redexes are the
reason for the failure of uniform normalization in the A(n)-calculus, Bohm and
Intrigila define a ‘restricted’ K-combinator §x by the following rule:

§xAB — A,

where B can be instantiated to closed A-6g-normal forms (possibly containing 85
constants; such a reduction is still well defined). A-8-terms are Aj-terms with the
constant 6. Béhm and Intrigila show that the A-ég-calculus is UN.

Whereas the 7-rule is not fully-extended on the set of all (possibly erasing) terms,
it is fully-extended on the restricted set of (non-erasing) A-8-terms. However, UN
does not follow from Corollary 5.1 since A-8g-calculus violates the orthogonality
assumption. It is only weakly orthogonal since there are the usual (trivial) critical
pairs between the (- and n-rule. We believe to have shown that Corollary 5.1 can
be generalized to weakly orthogonal fully-extended CCERSs, which would yield UN
of A-6j-calculus, but we leave this to future work.

6.5. Honsell and Lenisa’s Bno- and Bxn-calcului
Motivated by a semantical study of the A;- and Ay -calculi, Honsell and Lenisa [20]
and Lenisa [41] defined similar reductions, Sn.- and Bk ny-reductions, respectively,
on A-terms by the following rules:

Bne : (Az.A)B — (B/z)A,
where 8 € AA(Byo) iff 6(B) is a closed S-normal form, and
Brn: (Az.A)B — (B/z)A,

where 8 € AA(Bk ) iff either x € FV(A0) or §(B) is a variable or a closed 3-normal
form. We have immediately from Corollary 5.1 and Corollary 6.2, respectively,
that By. and Bgny are UN. Note however that these conclusions do not follow
(at least, without an extra argument) from Bergstra and Klop’s or Honsell and
Lenisa’s characterizations of perpetual Sx-redexes [8, 21], since By.,Bxn C [ but
not vice versa. (If t has an infinite Byo-reduction and t = s is a Byo-step, then
the Bergstra-Klop and Honsell-Lenisa criteria imply the existence of an infinite
B-reduction starting from s, not the existence of an infinite [yo-reduction, and
similarly for Bxn.) In [20], semantical proofs of UN for Sy. and Bxn are given.
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7. CONCLUDING REMARKS

We have introduced (orthogonal fully-extended) Context-sensitive Conditional
Expression Reduction Systems in which several (typed or untyped) A-calculi can be
expressed straightforwardly. Furthermore, we have obtained two powerful criteria
for the perpetuality of redexes in orthogonal fully-extended CCERSs and have
demonstrated their usefulness in applications.

As stated above, we claim that our results are also valid for Klop’s orthogonal
fully-extended substructure CRSs [39].

Intuitively this is the case since both ERSs and CRSs are essentially second-order
frameworks, i.e., abstractions over metavariables are not allowed. We will now
present an example showing that allowing abstractions on function variables, as is
possible in Nipkow’s higher-order rewriting systems [52], renders the Conservation
Theorem invalid. The example exhibits a non-erasing step which is not perpetual.

ExAMPLE 7.1. Consider the higher-order rewrite system with rules:

fwyz.F(Az.y(x),2)) —5 F(Az.c,Q)
app(abs(A\z.F(x)),S) —beta F(S)

where the first rule contains a function variable (y) as argument to a free variable
(F), the second rule is the usual [46] higher-order rendering of the 3-rule from
A-calculus, and Q = app(abs(Az.app(z,x)), abs(Az.app(z,z))). Then

F(yz.app(abs(Az.y(x)), 2)) —=beta f(Ayz.y(2))

is non-erasing but critical. This can be seen from the following diagram, of which
the bottom part is the only reduction starting from f(Ayz.y(z)).

fQwz.app(abs(Az.y(x)), z)) — app(abs(Az.c), Q) —> app(abs( .€), ) — beﬂta
betal beta l betal
fAyz.y(2)) 7 - c ; - C 7

The point of the example is that, unlike in the ERS- or CRS-case, in HRSs a
substitution inside (caused by contracting a redex outside) a non-erasing redex can
turn it into an erasing one.

There are several interesting directions for further research. One is to try to lift
the orthogonality requirement somewhat, e.g. to weakly orthogonal systems or to
calculi with explicit substitutions. Another is to try to find a higher-order analogue

of our results (circumventing the counterexample above).
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APPENDIX

A.1. ENCODING OF THE n-CALCULUS AS A CCERS

In this section we will encode as a CCERS the version of the m-calculus described
by Milner [48] . Recall that the m-calculus agents P, @, ... are defined as follows:

P:=71y.P | z(y).P | 0| P|P |!P | (z)P
Basic interaction is generated from the rule
z(y)-P|72.Q — [2/y]P|Q

by closing under unguarded contexts and working modulo structural congruence

(see [48]).
A CCERS (X, R;) can be associated to the m-calculus as follows. The alphabet
Y, consists of the function symbols 0,!,|,O with respective arities 0,1,2,3 and

the quantifier symbols I and R with arities (1,2) and (1,1). I binds only in its
last argument. The map [] transforms m-terms into terms in Ter(X;). The only

non-obvious cases are input, output, and restriction:
[z(y)-P] = Iy(=, [P]); [72.Q] = O(z, 2,[Q]); [(«)P] = Rx([P])

Combining the transformation [ ] with the closing under unguarded contexts and
the structural congruence leads to rules R, of the form

C1[Iy(X, P)]| C2[O(X, Z,Q)] — C1[(Z/y)P]| C2|Q], where

1. P,Q, X, Z are metavariables, and admissible assignments for X, Z are vari-
ables.

2. The indicated subterms must be unguarded in C4[] and C5[] and not in the
scope of RX (among the symbols above them can occur only the operators |, ! and
Rz with z # X).

3. For any redex only (all) unguarded contexts are admissible.

The ‘critical pairs’ for the interaction rule are obviously preserved by the transla-
tion, so R; is not orthogonal. Nevertheless, we expect results like the following:
for the standard translation of the A-calculus into the 7-calculus, the corresponding
subcalculus R, is orthogonal and hence confluent modulo the structural congruence.

A.2. CONFLUENCE FOR A CALL-BY-NEED A-CALCULUS

We will show that the call-by-need A-calculus introduced and studied by Ariola
et al. [4] is an orthogonal CCERS. Terms in this calculus are ordinary A-terms
possibly containing let expressions, but the rewrite rules have conditions on them
as follows. Define the syntactic categories by the following grammar:

M =z | MM | .M |letz=Min M

n= Az.M

x=Viletz=Min A

u=[]| EM |letz=Min E | letz=FE in E[z]

B o= <
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The rules are the following:

Az.M)M' — letz=M"in M
let z =V in E[z] — letz=V in E[V]
(let z=Min A)YM' — letz=M in AM’
let z = (lety=Min A) in E[z] — lety=Minlet z = A in E[z]

the rewrite relation —; is obtained from these rules by allowing arbitrary contexts.
By case analysis we show that each of the syntactic categories is closed under —
and that there are no overlaps between the rules, so the system is an orthogonal

conditional ERS.

e M is obviously —;-closed and contains V, A, and E[y] for every y.
e V is —,-closed by the previous item and the fact that no root-steps are possible.

e Ais —,-closed since V is (by the previous item) and we can see that let z =
M in A is closed by considering (root-)overlaps with the four rewrite rules.

1. Root-overlap with the first or third rule is syntactically not possible.

2. To show that root-overlap with the second rule and fourth rule is not possible
it suffices to show that no elements in A are of the form E[y] for any y, which we
prove by induction on the definition of A:

(i) VN E[y] = 0 since E[y] # Az.M.
(ii) (let z =M in A) # E[y] since
a. (letx=Min A) £y,
b. (let z = M in A) # E[y|N,
c. (let z =M in A) # (let z= N in E[y]) by induction hypothesis, and
d. (let z = M in A) # (let z = E[y] in E[z]) by induction hypothesis.

e E[y] is shown to be —-closed by induction on the definition of E.

1. y is a normal form.

2. E[y]M cannot be root-rewritten because E[y] # Az.N (first rule) and E[y]N
A = 0 (third rule). E[y] and M are —,-closed by hypothesis.

3. let z = M in E[y| cannot be root-rewritten (since z # y in the second and
fourth rules), and M and E[y] are —,-closed by hypothesis.

4. let z = E[y] in F[z] cannot be root-rewritten because V' and E[y] are dis-
joint (second rule), and A and E[y] are disjoint (fourth rule). Both E[y] and F[z]
are —,-closed by hypothesis.

Because of the —;-closedness of the syntactic categories, to show orthogonality we
need only to check for possible ‘critical pairs’ between the rules. One easily confirms
that there are no such pairs by using the earlier observation that E[y]NA = @ (which
avoids the possibility of a conflict between the third and fourth rules).
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A.3.

the body of the paper.

Perpetual strategies on A-terms will be defined by induction on the structure of
terms not in B-normal form, and the redex chosen by a strategy for contraction will
be indicated here by underlining. SN (resp. NF3) will denote the set of strongly

B-normalizing A-terms (resp. the set of A-terms in B-normal form). ¢ will denote a

PERPETUAL STRATEGIES

In this appendix we collect definitions of all perpetual strategies mentioned in

sequence of A-terms t1,---,t, and £ € S will denote ¢; € S for each .

DEFINITION A.1l.

GG
~
v
Ql
~
I

DEFINITION A.2. ([8]) The fB-reduction strategy F; (called F' by Bergstra and

Klop [8]) is defined as follows:

~ =~ —
~—
»
Ql
~—
I

([7]) The B-reduction strategy Fs is defined as follows:

TtF(s)o ift € NFg,s ¢ NFg
Az.Fy ()

(Azt)Foo(s)o ifx & FV(t), s ¢ NFg
(Az.t)so ifz € FV(t) or s € NFg

ztFy(s)o ift € NFg,s ¢ NFg
Az .Fy(t)

(Az.t)Fi(s)o if s¢ SNg

(Az.t)so if s€ SNg

DEFINITION A.3. ([62]) The S-reduction strategy F3 is defined as follows:

>
8

N’
I

DEFINITION A .4.

xts0) =
Az.t)

(\z
(\z
(A\z

)
Yo%)

)s0)

R
R
Az.t

J R DI A

(
(
(
(
(

.’L‘EFQ(S)a ifte SNﬁ,S gSNg
(Az.F»(t))o ift¢ SNg
(Azt)Fy(s)o ifte SNg,s € SN
(Az.t)so ift,s € SNg

([63, 62]) The S-reduction strategy F3 is defined as follows:

xtF3(s)o ifte SNg,s ¢ SNg
Az.F3(t)

(Az.F5(t))o ift¢ SNg
(Az.t)oFy(s)e ift,0€ SNj,s & SN
(A\z.t)so ift,s,o0€ SNg

DEFINITION A.5. The B-reduction strategy Fj> is defined as follows:
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F22 (xtso) = atF2(s)o ifte SNg,s ¢ SNg

FEQwt) = AaFRQ)

Fe((Met)o) = (\e.FR(t)s  iftg SN,

F2((Az.t)ose) = (Az.t)oF(s)e ift,0,(Az.t)o€ SNg, s ¢ SN
E((Az.t)soe) = (Az.t)soe if t,s,0 € SNg, (Az.t)so ¢ SNg

DEFINITION A.6. ([30, 31, 32]) The limit strategy F)30, in an orthogonal fully-
extended CCERS is defined as follows:

1. Let u; be a redex in a term t defined as follows: choose an external redex u;
in t; choose an erased argument s; of u; that is not in normal form (if any); choose
in s; an external redex us, and so on as long as possible. Let uy, s1,u2,...,u; be
such a sequence. The redex u; is called a limit redex of t.

2. We call a strategy limit, noted F}3;, , if in any term not in normal form it selects
a limit redex. (Note that by Theorem 3.3 in any term not in normal form there is
a limit redex.)



